Science.gov

Sample records for wave-sensitive lws opsins

  1. Genomic organization of duplicated short wave-sensitive and long wave-sensitive opsin genes in the green swordtail, Xiphophorus helleri

    PubMed Central

    2010-01-01

    Background Long wave-sensitive (LWS) opsin genes have undergone multiple lineage-specific duplication events throughout the evolution of teleost fishes. LWS repertoire expansions in live-bearing fishes (family Poeciliidae) have equipped multiple species in this family with up to four LWS genes. Given that color vision, especially attraction to orange male coloration, is important to mate choice within poeciliids, LWS opsins have been proposed as candidate genes driving sexual selection in this family. To date the genomic organization of these genes has not been described in the family Poeciliidae, and little is known about the mechanisms regulating the expression of LWS opsins in any teleost. Results Two BAC clones containing the complete genomic repertoire of LWS opsin genes in the green swordtail fish, Xiphophorus helleri, were identified and sequenced. Three of the four LWS loci identified here were linked in a tandem array downstream of two tightly linked short wave-sensitive 2 (SWS2) opsin genes. The fourth LWS opsin gene, containing only a single intron, was not linked to the other three and is the product of a retrotransposition event. Genomic and phylogenetic results demonstrate that the LWS genes described here share a common evolutionary origin with those previously characterized in other poeciliids. Using qualitative RT-PCR and MSP we showed that each of the LWS and SWS2 opsins, as well as three other cone opsin genes and a single rod opsin gene, were expressed in the eyes of adult female and male X. helleri, contributing to six separate classes of adult retinal cone and rod cells with average λmax values of 365 nm, 405 nm, 459 nm, 499 nm, 534 nm and 568 nm. Comparative genomic analysis identified two candidate teleost opsin regulatory regions containing putative CRX binding sites and hormone response elements in upstream sequences of LWS gene regions of seven teleost species, including X. helleri. Conclusions We report the first complete genomic

  2. Regulatory function of conserved sequences upstream of the long-wave sensitive opsin genes in teleost fishes.

    PubMed

    Tam, Kevin J; Watson, Corey T; Massah, Shabnam; Kolybaba, Addie M; Breden, Felix; Prefontaine, Gratien G; Beischlag, Timothy V

    2011-11-01

    Vertebrate opsin genes often occur in sets of tandem duplicates, and their expression varies developmentally and in response to environmental cues. We previously identified two highly conserved regions upstream of the long-wave sensitive opsin (LWS) gene cluster in teleosts. This region has since been shown in zebrafish to drive expression of LWS genes in vivo. In order to further investigate how elements in this region control opsin gene expression, we tested constructs encompassing the highly conserved regions and the less conserved portions upstream of the coding sequences in a promoter-less luciferase expression system. A ∼4500 bp construct of the upstream region, including the highly-conserved regions Reg I and Reg II, increased expression 100-fold, and successive 5' deletions reduced expression relative to the full 4.5 Kb region. Gene expression was highest when the transcription factor RORα was co-transfected with the proposed regulatory regions. Because these regions were tested in a promoter-less expression system, they include elements able to initiate and drive transcription. Teleosts exhibit complex color-mediated adaptive behavior and their adaptive significance has been well documented in several species. Therefore these upstream regions of LWS represent a model system for understanding the molecular basis of adaptive variation in gene regulation of color vision.

  3. A single enhancer regulating the differential expression of duplicated red-sensitive opsin genes in zebrafish.

    PubMed

    Tsujimura, Taro; Hosoya, Tomohiro; Kawamura, Shoji

    2010-12-16

    A fundamental step in the evolution of the visual system is the gene duplication of visual opsins and differentiation between the duplicates in absorption spectra and expression pattern in the retina. However, our understanding of the mechanism of expression differentiation is far behind that of spectral tuning of opsins. Zebrafish (Danio rerio) have two red-sensitive cone opsin genes, LWS-1 and LWS-2. These genes are arrayed in a tail-to-head manner, in this order, and are both expressed in the long member of double cones (LDCs) in the retina. Expression of the longer-wave sensitive LWS-1 occurs later in development and is thus confined to the peripheral, especially ventral-nasal region of the adult retina, whereas expression of LWS-2 occurs earlier and is confined to the central region of the adult retina, shifted slightly to the dorsal-temporal region. In this study, we employed a transgenic reporter assay using fluorescent proteins and P1-artificial chromosome (PAC) clones encompassing the two genes and identified a 0.6-kb "LWS-activating region" (LAR) upstream of LWS-1, which regulates expression of both genes. Under the 2.6-kb flanking upstream region containing the LAR, the expression pattern of LWS-1 was recapitulated by the fluorescent reporter. On the other hand, when LAR was directly conjugated to the LWS-2 upstream region, the reporter was expressed in the LDCs but also across the entire outer nuclear layer. Deletion of LAR from the PAC clones drastically lowered the reporter expression of the two genes. These results suggest that LAR regulates both LWS-1 and LWS-2 by enhancing their expression and that interaction of LAR with the promoters is competitive between the two genes in a developmentally restricted manner. Sharing a regulatory region between duplicated genes could be a general way to facilitate the expression differentiation in duplicated visual opsins.

  4. Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids.

    PubMed

    Parry, Juliet W L; Carleton, Karen L; Spady, Tyrone; Carboo, Aba; Hunt, David M; Bowmaker, James K

    2005-10-11

    Cichlid fish of the East African Rift Lakes are renowned for their diversity and offer a unique opportunity to study adaptive changes in the visual system in rapidly evolving species flocks. Since color plays a significant role in mate choice, differences in visual sensitivities could greatly influence and even drive speciation of cichlids. Lake Malawi cichlids inhabiting rock and sand habitats have significantly different cone spectral sensitivities. By combining microspectrophotometry (MSP) of isolated cones, sequencing of opsin genes, and spectral analysis of recombinant pigments, we have established the cone complements of four species of Malawi cichlids. MSP demonstrated that each of these species predominately expresses three cone pigments, although these differ between species to give three spectrally different cone complements. In addition, rare populations of spectrally distinct cones were found. In total, seven spectral classes were identified. This was confirmed by opsin gene sequencing, expression, and in vitro reconstitution. The genes represent the four major classes of cone opsin genes that diverged early in vertebrate evolution. All four species possess a long-wave-sensitive (LWS), three spectrally distinct green-sensitive (RH2), a blue-sensitive (SWS2A), a violet-sensitive (SWS2B), and an ultraviolet-sensitive (SWS1) opsin. However, African cichlids determine their spectral sensitivity by differential expression of primarily only three of the seven available cone opsin genes. Phylogenetic analysis suggests that all percomorph fish have similar potential.

  5. Gene duplication and divergence of long wavelength-sensitive opsin genes in the guppy, Poecilia reticulata.

    PubMed

    Watson, Corey T; Gray, Suzanne M; Hoffmann, Margarete; Lubieniecki, Krzysztof P; Joy, Jeffrey B; Sandkam, Ben A; Weigel, Detlef; Loew, Ellis; Dreyer, Christine; Davidson, William S; Breden, Felix

    2011-02-01

    Female preference for male orange coloration in the genus Poecilia suggests a role for duplicated long wavelength-sensitive (LWS) opsin genes in facilitating behaviors related to mate choice in these species. Previous work has shown that LWS gene duplication in this genus has resulted in expansion of long wavelength visual capacity as determined by microspectrophotometry (MSP). However, the relationship between LWS genomic repertoires and expression of LWS retinal cone classes within a given species is unclear. Our previous study in the related species, Xiphophorus helleri, was the first characterization of the complete LWS opsin genomic repertoire in conjunction with MSP expression data in the family Poeciliidae, and revealed the presence of four LWS loci and two distinct LWS cone classes. In this study we characterized the genomic organization of LWS opsin genes by BAC clone sequencing, and described the full range of cone cell types in the retina of the colorful Cumaná guppy, Poecilia reticulata. In contrast to X. helleri, MSP data from the Cumaná guppy revealed three LWS cone classes. Comparisons of LWS genomic organization described here for Cumaná to that of X. helleri indicate that gene divergence and not duplication was responsible for the evolution of a novel LWS haplotype in the Cumaná guppy. This lineage-specific divergence is likely responsible for a third additional retinal cone class not present in X. helleri, and may have facilitated the strong sexual selection driven by female preference for orange color patterns associated with the genus Poecilia.

  6. Retinoic Acid Signaling Regulates Differential Expression of the Tandemly-Duplicated Long Wavelength-Sensitive Cone Opsin Genes in Zebrafish

    PubMed Central

    Frey, Ruth A.; Hunter, Samuel S.; Ashino, Ryuichi; Kawamura, Shoji; Stenkamp, Deborah L.

    2015-01-01

    The signaling molecule retinoic acid (RA) regulates rod and cone photoreceptor fate, differentiation, and survival. Here we elucidate the role of RA in differential regulation of the tandemly-duplicated long wavelength-sensitive (LWS) cone opsin genes. Zebrafish embryos were treated with RA from 48 hours post-fertilization (hpf) to 75 hpf, and RNA was isolated from eyes for microarray analysis. ~170 genes showed significantly altered expression, including several transcription factors and components of cellular signaling pathways. Of interest, the LWS1 opsin gene was strongly upregulated by RA. LWS1 is the upstream member of the tandemly duplicated LWS opsin array and is normally not expressed embryonically. Embryos treated with RA 48 hpf to 100 hpf or beyond showed significant reductions in LWS2-expressing cones in favor of LWS1-expressing cones. The LWS reporter line, LWS-PAC(H) provided evidence that individual LWS cones switched from LWS2 to LWS1 expression in response to RA. The RA signaling reporter line, RARE:YFP indicated that increased RA signaling in cones was associated with this opsin switch, and experimental reduction of RA signaling in larvae at the normal time of onset of LWS1 expression significantly inhibited LWS1 expression. A role for endogenous RA signaling in regulating differential expression of the LWS genes in postmitotic cones was further supported by the presence of an RA signaling domain in ventral retina of juvenile zebrafish that coincided with a ventral zone of LWS1 expression. This is the first evidence that an extracellular signal may regulate differential expression of opsin genes in a tandemly duplicated array. PMID:26296154

  7. Retinoic Acid Signaling Regulates Differential Expression of the Tandemly-Duplicated Long Wavelength-Sensitive Cone Opsin Genes in Zebrafish.

    PubMed

    Mitchell, Diana M; Stevens, Craig B; Frey, Ruth A; Hunter, Samuel S; Ashino, Ryuichi; Kawamura, Shoji; Stenkamp, Deborah L

    2015-08-01

    The signaling molecule retinoic acid (RA) regulates rod and cone photoreceptor fate, differentiation, and survival. Here we elucidate the role of RA in differential regulation of the tandemly-duplicated long wavelength-sensitive (LWS) cone opsin genes. Zebrafish embryos were treated with RA from 48 hours post-fertilization (hpf) to 75 hpf, and RNA was isolated from eyes for microarray analysis. ~170 genes showed significantly altered expression, including several transcription factors and components of cellular signaling pathways. Of interest, the LWS1 opsin gene was strongly upregulated by RA. LWS1 is the upstream member of the tandemly duplicated LWS opsin array and is normally not expressed embryonically. Embryos treated with RA 48 hpf to 100 hpf or beyond showed significant reductions in LWS2-expressing cones in favor of LWS1-expressing cones. The LWS reporter line, LWS-PAC(H) provided evidence that individual LWS cones switched from LWS2 to LWS1 expression in response to RA. The RA signaling reporter line, RARE:YFP indicated that increased RA signaling in cones was associated with this opsin switch, and experimental reduction of RA signaling in larvae at the normal time of onset of LWS1 expression significantly inhibited LWS1 expression. A role for endogenous RA signaling in regulating differential expression of the LWS genes in postmitotic cones was further supported by the presence of an RA signaling domain in ventral retina of juvenile zebrafish that coincided with a ventral zone of LWS1 expression. This is the first evidence that an extracellular signal may regulate differential expression of opsin genes in a tandemly duplicated array.

  8. Divergent selection for opsin gene variation in guppy (Poecilia reticulata) populations of Trinidad and Tobago

    PubMed Central

    Tezuka, A; Kasagi, S; van Oosterhout, C; McMullan, M; Iwasaki, W M; Kasai, D; Yamamichi, M; Innan, H; Kawamura, S; Kawata, M

    2014-01-01

    The guppy is known to exhibit remarkable interindividual variations in spectral sensitivity of middle to long wavelength-sensitive (M/LWS) cone photoreceptor cells. The guppy has four M/LWS-type opsin genes (LWS-1, LWS-2, LWS-3 and LWS-4) that are considered to be responsible for this sensory variation. However, the allelic variation of the opsin genes, particularly in terms of their absorption spectrum, has not been explored in wild populations. Thus, we examined nucleotide variations in the four M/LWS opsin genes as well as blue-sensitive SWS2-B and ultraviolet-sensitive SWS1 opsin genes for comparison and seven non-opsin nuclear loci as reference genes in 10 guppy populations from various light environments in Trinidad and Tobago. For the first time, we discovered a potential spectral variation (180 Ser/Ala) in LWS-1 that differed at an amino acid site known to affect the absorption spectra of opsins. Based on a coalescent simulation of the nucleotide variation of the reference genes, we showed that the interpopulation genetic differentiation of two opsin genes was significantly larger than the neutral expectation. Furthermore, this genetic differentiation was significantly related to differences in dissolved oxygen (DO) level, and it was not explained by the spatial distance between populations. The DO levels are correlated with eutrophication that possibly affects the color of aquatic environments. These results suggest that the population diversity of opsin genes is significantly driven by natural selection and that the guppy could adapt to various light environments through color vision changes. PMID:24690753

  9. Divergent selection for opsin gene variation in guppy (Poecilia reticulata) populations of Trinidad and Tobago.

    PubMed

    Tezuka, A; Kasagi, S; van Oosterhout, C; McMullan, M; Iwasaki, W M; Kasai, D; Yamamichi, M; Innan, H; Kawamura, S; Kawata, M

    2014-11-01

    The guppy is known to exhibit remarkable interindividual variations in spectral sensitivity of middle to long wavelength-sensitive (M/LWS) cone photoreceptor cells. The guppy has four M/LWS-type opsin genes (LWS-1, LWS-2, LWS-3 and LWS-4) that are considered to be responsible for this sensory variation. However, the allelic variation of the opsin genes, particularly in terms of their absorption spectrum, has not been explored in wild populations. Thus, we examined nucleotide variations in the four M/LWS opsin genes as well as blue-sensitive SWS2-B and ultraviolet-sensitive SWS1 opsin genes for comparison and seven non-opsin nuclear loci as reference genes in 10 guppy populations from various light environments in Trinidad and Tobago. For the first time, we discovered a potential spectral variation (180 Ser/Ala) in LWS-1 that differed at an amino acid site known to affect the absorption spectra of opsins. Based on a coalescent simulation of the nucleotide variation of the reference genes, we showed that the interpopulation genetic differentiation of two opsin genes was significantly larger than the neutral expectation. Furthermore, this genetic differentiation was significantly related to differences in dissolved oxygen (DO) level, and it was not explained by the spatial distance between populations. The DO levels are correlated with eutrophication that possibly affects the color of aquatic environments. These results suggest that the population diversity of opsin genes is significantly driven by natural selection and that the guppy could adapt to various light environments through color vision changes.

  10. Anion sensitivity and spectral tuning of middle- and long-wavelength-sensitive (MWS/LWS) visual pigments.

    PubMed

    Davies, Wayne I L; Wilkie, Susan E; Cowing, Jill A; Hankins, Mark W; Hunt, David M

    2012-07-01

    The long-wavelength-sensitive (LWS) opsins form one of four classes of vertebrate cone visual pigment and exhibit peak spectral sensitivities (λ(max)) that generally range from 525 to 560 nm for rhodopsin/vitamin-A(1) photopigments. Unique amongst the opsin classes, many LWS pigments show anion sensitivity through the interaction of chloride ions with a histidine residue at site 197 (H197) to give a long-wavelength spectral shift in peak sensitivity. Although it has been shown that amino acid substitutions at five sites (180, 197, 277, 285 and 308) are useful in predicting the λ(max) values of the LWS pigment class, some species, such as the elephant shark and most marine mammals, express LWS opsins that possess λ(max) values that are not consistent with this 'five-site' rule, indicating that other interactions may be involved. This study has taken advantage of the natural mutation at the chloride-binding site in the mouse LWS pigment. Through the use of a number of mutant pigments generated by site-directed mutagenesis, a new model has been formulated that takes into account the role of charge and steric properties of the side chains of residues at sites 197 and 308 in the function of the chloride-binding site in determining the peak sensitivity of LWS photopigments. PMID:22349213

  11. Temporal and spatial changes in the expression pattern of multiple red and green subtype opsin genes during zebrafish development.

    PubMed

    Takechi, Masaki; Kawamura, Shoji

    2005-04-01

    Zebrafish have two red, LWS-1 and LWS-2, and four green, RH2-1, RH2-2, RH2-3 and RH2-4, opsin genes encoding photopigments with distinct absorption spectra. Occurrence of opsin subtypes by gene duplication is characteristic of fish but little is known whether the subtypes are expressed differently in the retina, either spatially or temporally. Here we show by in situ hybridization the dynamic expression patterns of the opsin subtypes in the zebrafish retina. Expression of red type opsins is initiated with the shorter-wavelength subtype LWS-2, followed by the longer-wavelength subtype LWS-1. In the adult retina, LWS-2 was expressed in the central to dorsal area and LWS-1 in the ventral and peripheral areas. Expression patterns of green type opsins were similar to those of the red type opsins. The expression started with the shortest wavelength subtype RH2-1 followed by the longer wavelength ones, and in the adult retina, the shorter wavelength subtypes (RH2-1 and RH2-2) were expressed in the central to dorsal area and longer wavelength subtypes (RH2-3 and RH2-4) in the ventral and peripheral areas. These results provide the framework for subsequent studies of opsin gene regulation and for probing functional rationale of the developmental changes by using the power of zebrafish genetics.

  12. Adaptation of visual spectra and opsin genes in seabreams.

    PubMed

    Wang, Feng Yu; Yan, Hong Young; Chen, Johnny Shou-Chung; Wang, Tzi Yuan; Wang, Daryi

    2009-07-01

    Three species of seabreams, Acanthopagrus berda, Acanthopagrus schlegelii and Pagrus major, living at different depths, were chosen to investigate how visual spectra and opsin genes evolve in response to various photic environments. The lambda max of photoreceptors and opsin genes were measured and cloned from these species. Eight to twelve nm spectral shifts in the rod and blue cone cells were observed between the deep-sea, P. major, and shallow-sea species, A. berda and A. schlegelii. Furthermore, the deep-sea P. major has lost its red light vision. Six opsin genes, Rh1, Rh2A, Rh2B, SWS1, SWS2 and LWS, were identified from all three seabream species, with the LWS genes of P. major having undergone pseudogenization. These data indicate that the photic environment of habitats select for the physiology of visual spectra and coding of opsin genes.

  13. Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes).

    PubMed

    Matsumoto, Yoshifumi; Fukamachi, Shoji; Mitani, Hiroshi; Kawamura, Shoji

    2006-04-26

    A variety of visual pigment repertoires present in fish species is believed due to the great variation under the water of light environment. A complete set of visual opsin genes has been isolated and characterized for absorption spectra and expression in the retina only in zebrafish. Medaka (Oryzias latipes) is a fish species phylogenetically distant from zebrafish and has served as an important vertebrate model system in molecular and developmental genetics. We previously isolated a medaka rod opsin gene (RH1). In the present study we isolated all the cone opsin genes of medaka by genome screening of a lambda-phage and bacterial artificial chromosome (BAC) libraries. The medaka genome contains two red, LWS-A and LWS-B, three green, RH2-A, RH2-B and RH2-C, and two blue, SWS2-A and SWS2-B, subtype opsin genes as well as a single-copy of the ultraviolet, SWS1, opsin gene. Previously only one gene was believed present for each opsin type as reported in a cDNA-based study. These subtype opsin genes are closely linked and must be the products of local gene duplications but not of a genome-wide duplication. Peak absorption spectra (lambda(max)) of the reconstituted photopigments with 11-cis retinal varied greatly among the three green opsins, 452 nm for RH2-A, 516 nm for RH2-B and 492 nm for RH2-C, and between the two blue opsins, 439 nm for SWS2-A and 405 nm for SWS2-B. Zebrafish also has multiple opsin subtypes, but phylogenetic analysis revealed that medaka and zebrafish gained the subtype opsins independently. The lambda and BAC DNA clones isolated in this study could be useful for investigating the regulatory mechanisms and evolutionary diversity of fish opsin genes.

  14. Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution

    PubMed Central

    Feuda, Roberto; Marlétaz, Ferdinand; Bentley, Michael A.; Holland, Peter W.H.

    2016-01-01

    Opsin proteins covalently bind to small molecular chromophores and each protein-chromophore complex is sensitive to particular wavelengths of light. Multiple opsins with different wavelength absorbance peaks are required for color vision. Comparing opsin responses is challenging at low light levels, explaining why color vision is often lost in nocturnal species. Here, we investigated opsin evolution in 27 phylogenetically diverse insect species including several transitions between photic niches (nocturnal, diurnal, and crepuscular). We find widespread conservation of five distinct opsin genes, more than commonly considered. These comprise one c-opsin plus four r-opsins (long wavelength sensitive or LWS, blue sensitive, ultra violet [UV] sensitive and the often overlooked Rh7 gene). Several recent opsin gene duplications are also detected. The diversity of opsin genes is consistent with color vision in diurnal, crepuscular, and nocturnal insects. Tests for positive selection in relation to photic niche reveal evidence for adaptive evolution in UV-sensitive opsins in day-flying insects in general, and in LWS opsins of day-flying Lepidoptera specifically. PMID:26865071

  15. Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution.

    PubMed

    Feuda, Roberto; Marlétaz, Ferdinand; Bentley, Michael A; Holland, Peter W H

    2016-03-01

    Opsin proteins covalently bind to small molecular chromophores and each protein-chromophore complex is sensitive to particular wavelengths of light. Multiple opsins with different wavelength absorbance peaks are required for color vision. Comparing opsin responses is challenging at low light levels, explaining why color vision is often lost in nocturnal species. Here, we investigated opsin evolution in 27 phylogenetically diverse insect species including several transitions between photic niches (nocturnal, diurnal, and crepuscular). We find widespread conservation of five distinct opsin genes, more than commonly considered. These comprise one c-opsin plus four r-opsins (long wavelength sensitive or LWS, blue sensitive, ultra violet [UV] sensitive and the often overlooked Rh7 gene). Several recent opsin gene duplications are also detected. The diversity of opsin genes is consistent with color vision in diurnal, crepuscular, and nocturnal insects. Tests for positive selection in relation to photic niche reveal evidence for adaptive evolution in UV-sensitive opsins in day-flying insects in general, and in LWS opsins of day-flying Lepidoptera specifically. PMID:26865071

  16. Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution.

    PubMed

    Feuda, Roberto; Marlétaz, Ferdinand; Bentley, Michael A; Holland, Peter W H

    2016-02-09

    Opsin proteins covalently bind to small molecular chromophores and each protein-chromophore complex is sensitive to particular wavelengths of light. Multiple opsins with different wavelength absorbance peaks are required for color vision. Comparing opsin responses is challenging at low light levels, explaining why color vision is often lost in nocturnal species. Here, we investigated opsin evolution in 27 phylogenetically diverse insect species including several transitions between photic niches (nocturnal, diurnal, and crepuscular). We find widespread conservation of five distinct opsin genes, more than commonly considered. These comprise one c-opsin plus four r-opsins (long wavelength sensitive or LWS, blue sensitive, ultra violet [UV] sensitive and the often overlooked Rh7 gene). Several recent opsin gene duplications are also detected. The diversity of opsin genes is consistent with color vision in diurnal, crepuscular, and nocturnal insects. Tests for positive selection in relation to photic niche reveal evidence for adaptive evolution in UV-sensitive opsins in day-flying insects in general, and in LWS opsins of day-flying Lepidoptera specifically.

  17. Spectral sensitivity of guppy visual pigments reconstituted in vitro to resolve association of opsins with cone cell types.

    PubMed

    Kawamura, Shoji; Kasagi, Satoshi; Kasai, Daisuke; Tezuka, Ayumi; Shoji, Ayako; Takahashi, Akiyoshi; Imai, Hiroo; Kawata, Masakado

    2016-10-01

    The guppy (Poecilia reticulata) shows remarkable variation of photoreceptor cells in the retina, especially those sensitive to middle-to-long wavelengths of light. Microspectrophotometry (MSP) has revealed varying "green", "green-yellow" and "yellow" cone cells among guppies in Trinidad and Venezuela (Cumana). In the guppy genome, there are four "long-wave" opsin loci (LWS-1, -2, -3 and -4). Two LWS-1 alleles have potentially differing spectral sensitivity (LWS-1/180Ser and LWS-1/180Ala). In addition, two "middle-wave" loci (RH2-1 and -2), two "short-wave" loci (SWS2-A and -B), and a single "ultraviolet" locus (SWS1) as well as a single "rhodopsin" locus (RH1) are present. However, the absorption spectra of these photopigments have not been measured directly and the association of cell types with these opsins remains speculative. In the present study, we reconstituted these opsin photopigments in vitro. The wavelengths of maximal absorbance (λmax) were 571nm (LWS-1/180Ser), 562nm (LWS-1/180Ala), 519nm (LWS-3), 516nm (LWS-2), 516nm (RH2-1), 476nm (RH2-2), 438nm (SWS2-A), 408nm (SWS2-B), 353nm (SWS1) and 503nm (RH1). The λmax of LWS-3 is much shorter than the value expected (560nm) from the "five-sites" rule. The two LWS-1 alleles could explain difference of the reported MSP λmax values for the yellow cone class between Trinidad and Cumana guppies. Absence of the short-wave-shifted LWS-3 and the green-yellow cone in the green swordtail supports the hypothesis that this cell class of the guppy co-expresses the LWS-1 and LWS-3. These results reveal the basis of variability in the guppy visual system and provide insight into the behavior and ecology of these tropical fishes.

  18. Spectral sensitivity of guppy visual pigments reconstituted in vitro to resolve association of opsins with cone cell types.

    PubMed

    Kawamura, Shoji; Kasagi, Satoshi; Kasai, Daisuke; Tezuka, Ayumi; Shoji, Ayako; Takahashi, Akiyoshi; Imai, Hiroo; Kawata, Masakado

    2016-10-01

    The guppy (Poecilia reticulata) shows remarkable variation of photoreceptor cells in the retina, especially those sensitive to middle-to-long wavelengths of light. Microspectrophotometry (MSP) has revealed varying "green", "green-yellow" and "yellow" cone cells among guppies in Trinidad and Venezuela (Cumana). In the guppy genome, there are four "long-wave" opsin loci (LWS-1, -2, -3 and -4). Two LWS-1 alleles have potentially differing spectral sensitivity (LWS-1/180Ser and LWS-1/180Ala). In addition, two "middle-wave" loci (RH2-1 and -2), two "short-wave" loci (SWS2-A and -B), and a single "ultraviolet" locus (SWS1) as well as a single "rhodopsin" locus (RH1) are present. However, the absorption spectra of these photopigments have not been measured directly and the association of cell types with these opsins remains speculative. In the present study, we reconstituted these opsin photopigments in vitro. The wavelengths of maximal absorbance (λmax) were 571nm (LWS-1/180Ser), 562nm (LWS-1/180Ala), 519nm (LWS-3), 516nm (LWS-2), 516nm (RH2-1), 476nm (RH2-2), 438nm (SWS2-A), 408nm (SWS2-B), 353nm (SWS1) and 503nm (RH1). The λmax of LWS-3 is much shorter than the value expected (560nm) from the "five-sites" rule. The two LWS-1 alleles could explain difference of the reported MSP λmax values for the yellow cone class between Trinidad and Cumana guppies. Absence of the short-wave-shifted LWS-3 and the green-yellow cone in the green swordtail supports the hypothesis that this cell class of the guppy co-expresses the LWS-1 and LWS-3. These results reveal the basis of variability in the guppy visual system and provide insight into the behavior and ecology of these tropical fishes. PMID:27476645

  19. Intra-retinal variation of opsin gene expression in the guppy (Poecilia reticulata).

    PubMed

    Rennison, Diana J; Owens, Gregory L; Allison, W Ted; Taylor, John S

    2011-10-01

    Although behavioural experiments demonstrate that colouration influences mate choice in many species, a complete understanding of this form of signalling requires information about colour vision in the species under investigation. The guppy (Poecilia reticulata) has become a model species for the study of colour-based sexual selection. To investigate the role of opsin gene duplication and divergence in the evolution of colour-based mate choice, we used in situ hybridization to determine where the guppy's nine cone opsins are expressed in the retina. Long wavelength-sensitive (LWS) opsins were more abundant in the dorsal retina than in the ventral retina. One of the middle wavelength-sensitive opsins (RH2-1) exhibited the opposite pattern, while the other middle wavelength-sensitive opsin (RH2-2) and the short wavelength-sensitive opsins (SWS1, SWS2A and SWS2B) were expressed throughout the retina. We also found variation in LWS opsin expression among individuals. These observations suggest that regions of the guppy retina are specialized with respect to wavelength discrimination and/or sensitivity. Intra-retinal variability in opsin expression, which has been observed in several fish species, might be an adaptation to variation in the strength and spectral composition of light entering the eye from above and below. The discovery that opsin expression varies in the guppy retina may motivate new behavioural experiments designed to study its role in mate choice.

  20. Rod monochromacy and the coevolution of cetacean retinal opsins.

    PubMed

    Meredith, Robert W; Gatesy, John; Emerling, Christopher A; York, Vincent M; Springer, Mark S

    2013-04-01

    Cetaceans have a long history of commitment to a fully aquatic lifestyle that extends back to the Eocene. Extant species have evolved a spectacular array of adaptations in conjunction with their deployment into a diverse array of aquatic habitats. Sensory systems are among those that have experienced radical transformations in the evolutionary history of this clade. In the case of vision, previous studies have demonstrated important changes in the genes encoding rod opsin (RH1), short-wavelength sensitive opsin 1 (SWS1), and long-wavelength sensitive opsin (LWS) in selected cetaceans, but have not examined the full complement of opsin genes across the complete range of cetacean families. Here, we report protein-coding sequences for RH1 and both color opsin genes (SWS1, LWS) from representatives of all extant cetacean families. We examine competing hypotheses pertaining to the timing of blue shifts in RH1 relative to SWS1 inactivation in the early history of Cetacea, and we test the hypothesis that some cetaceans are rod monochomats. Molecular evolutionary analyses contradict the "coastal" hypothesis, wherein SWS1 was pseudogenized in the common ancestor of Cetacea, and instead suggest that RH1 was blue-shifted in the common ancestor of Cetacea before SWS1 was independently knocked out in baleen whales (Mysticeti) and in toothed whales (Odontoceti). Further, molecular evidence implies that LWS was inactivated convergently on at least five occasions in Cetacea: (1) Balaenidae (bowhead and right whales), (2) Balaenopteroidea (rorquals plus gray whale), (3) Mesoplodon bidens (Sowerby's beaked whale), (4) Physeter macrocephalus (giant sperm whale), and (5) Kogia breviceps (pygmy sperm whale). All of these cetaceans are known to dive to depths of at least 100 m where the underwater light field is dim and dominated by blue light. The knockout of both SWS1 and LWS in multiple cetacean lineages renders these taxa rod monochromats, a condition previously unknown among

  1. Rod monochromacy and the coevolution of cetacean retinal opsins.

    PubMed

    Meredith, Robert W; Gatesy, John; Emerling, Christopher A; York, Vincent M; Springer, Mark S

    2013-04-01

    Cetaceans have a long history of commitment to a fully aquatic lifestyle that extends back to the Eocene. Extant species have evolved a spectacular array of adaptations in conjunction with their deployment into a diverse array of aquatic habitats. Sensory systems are among those that have experienced radical transformations in the evolutionary history of this clade. In the case of vision, previous studies have demonstrated important changes in the genes encoding rod opsin (RH1), short-wavelength sensitive opsin 1 (SWS1), and long-wavelength sensitive opsin (LWS) in selected cetaceans, but have not examined the full complement of opsin genes across the complete range of cetacean families. Here, we report protein-coding sequences for RH1 and both color opsin genes (SWS1, LWS) from representatives of all extant cetacean families. We examine competing hypotheses pertaining to the timing of blue shifts in RH1 relative to SWS1 inactivation in the early history of Cetacea, and we test the hypothesis that some cetaceans are rod monochomats. Molecular evolutionary analyses contradict the "coastal" hypothesis, wherein SWS1 was pseudogenized in the common ancestor of Cetacea, and instead suggest that RH1 was blue-shifted in the common ancestor of Cetacea before SWS1 was independently knocked out in baleen whales (Mysticeti) and in toothed whales (Odontoceti). Further, molecular evidence implies that LWS was inactivated convergently on at least five occasions in Cetacea: (1) Balaenidae (bowhead and right whales), (2) Balaenopteroidea (rorquals plus gray whale), (3) Mesoplodon bidens (Sowerby's beaked whale), (4) Physeter macrocephalus (giant sperm whale), and (5) Kogia breviceps (pygmy sperm whale). All of these cetaceans are known to dive to depths of at least 100 m where the underwater light field is dim and dominated by blue light. The knockout of both SWS1 and LWS in multiple cetacean lineages renders these taxa rod monochromats, a condition previously unknown among

  2. Rod Monochromacy and the Coevolution of Cetacean Retinal Opsins

    PubMed Central

    Meredith, Robert W.; Gatesy, John; Emerling, Christopher A.; York, Vincent M.; Springer, Mark S.

    2013-01-01

    Cetaceans have a long history of commitment to a fully aquatic lifestyle that extends back to the Eocene. Extant species have evolved a spectacular array of adaptations in conjunction with their deployment into a diverse array of aquatic habitats. Sensory systems are among those that have experienced radical transformations in the evolutionary history of this clade. In the case of vision, previous studies have demonstrated important changes in the genes encoding rod opsin (RH1), short-wavelength sensitive opsin 1 (SWS1), and long-wavelength sensitive opsin (LWS) in selected cetaceans, but have not examined the full complement of opsin genes across the complete range of cetacean families. Here, we report protein-coding sequences for RH1 and both color opsin genes (SWS1, LWS) from representatives of all extant cetacean families. We examine competing hypotheses pertaining to the timing of blue shifts in RH1 relative to SWS1 inactivation in the early history of Cetacea, and we test the hypothesis that some cetaceans are rod monochomats. Molecular evolutionary analyses contradict the “coastal” hypothesis, wherein SWS1 was pseudogenized in the common ancestor of Cetacea, and instead suggest that RH1 was blue-shifted in the common ancestor of Cetacea before SWS1 was independently knocked out in baleen whales (Mysticeti) and in toothed whales (Odontoceti). Further, molecular evidence implies that LWS was inactivated convergently on at least five occasions in Cetacea: (1) Balaenidae (bowhead and right whales), (2) Balaenopteroidea (rorquals plus gray whale), (3) Mesoplodon bidens (Sowerby's beaked whale), (4) Physeter macrocephalus (giant sperm whale), and (5) Kogia breviceps (pygmy sperm whale). All of these cetaceans are known to dive to depths of at least 100 m where the underwater light field is dim and dominated by blue light. The knockout of both SWS1 and LWS in multiple cetacean lineages renders these taxa rod monochromats, a condition previously unknown among

  3. Short Wavelength Cone Opsin Is Not Expressed in the Retina of Arboreal African Pangolin (Manis tricuspis).

    PubMed

    Adekanmbi, Adejoke J; Adekanmbi, Adefisayo A; Akinola, Oluwole B

    2016-01-01

    This paper reports a study of cone photoreceptors present in the retina of Manis tricuspis. Specifically, the LWS (L-) opsin expressed in longwave-sensitive cones and SWS1 (S-) opsin shortwave-sensitive cones were targeted. Vertical sections revealed reactivity to a cone marker, peanut agglutinin (PNA), and to an LWS antibody, but not to an SWS1 antibody. This suggests that the Manis tricuspis visual system is not able to discriminate shorter wavelengths from longer wavelengths because the short wavelength cones are not expressed in their retina. PMID:27242946

  4. Short Wavelength Cone Opsin Is Not Expressed in the Retina of Arboreal African Pangolin (Manis tricuspis)

    PubMed Central

    Adekanmbi, Adejoke J.; Adekanmbi, Adefisayo A.; Akinola, Oluwole B.

    2016-01-01

    This paper reports a study of cone photoreceptors present in the retina of Manis tricuspis. Specifically, the LWS (L-) opsin expressed in longwave-sensitive cones and SWS1 (S-) opsin shortwave-sensitive cones were targeted. Vertical sections revealed reactivity to a cone marker, peanut agglutinin (PNA), and to an LWS antibody, but not to an SWS1 antibody. This suggests that the Manis tricuspis visual system is not able to discriminate shorter wavelengths from longer wavelengths because the short wavelength cones are not expressed in their retina. PMID:27242946

  5. Short Wavelength Cone Opsin Is Not Expressed in the Retina of Arboreal African Pangolin (Manis tricuspis).

    PubMed

    Adekanmbi, Adejoke J; Adekanmbi, Adefisayo A; Akinola, Oluwole B

    2016-01-01

    This paper reports a study of cone photoreceptors present in the retina of Manis tricuspis. Specifically, the LWS (L-) opsin expressed in longwave-sensitive cones and SWS1 (S-) opsin shortwave-sensitive cones were targeted. Vertical sections revealed reactivity to a cone marker, peanut agglutinin (PNA), and to an LWS antibody, but not to an SWS1 antibody. This suggests that the Manis tricuspis visual system is not able to discriminate shorter wavelengths from longer wavelengths because the short wavelength cones are not expressed in their retina.

  6. Numbers and ratios of X-chromosomal-linked opsin genes.

    PubMed

    Wolf, S; Sharpe, L T; Knau, H; Wissinger, B

    1998-11-01

    Quantitative Southern blotting and PCR/RFLP analysis were used to determine the number and ratio of long-wave-sensitive (L-) and mid-wave-sensitive (M-) opsin genes in 25 colour-normal caucasian males. The average observed ratio was 1:2.8 +/- 1.2 for Southern blot analysis and 1:3.0 +/- 1.7 for PCR/RFLP analysis. Thus, the two techniques yielded similar results for the ratio of L- to M-opsin genes (Wilcoxon t-test, P < 0.01). PCR/RFLP analysis of a Sma I polymorphism specific for the most proximal opsin gene suggested an average gene number of 6.0 +/- 2.1, with a range from 4 to 12 in individual subjects. In contrast, Southern blot analysis suggested an average number of 3.8 +/- 1.2, with a range from 2 to 7 (on the assumption that only one L-opsin gene is ever present). Differences between the L- to M-opsin gene ratio and the total gene number in some subjects may result from the presence of multiple L-opsin genes and/or hybrid opsin genes in colour-normal males. An exact determination of the total gene number will require employing other molecular techniques.

  7. Evolution of opsin expression in birds driven by sexual selection and habitat

    PubMed Central

    Bloch, Natasha I.

    2015-01-01

    Theories of sexual and natural selection predict coevolution of visual perception with conspecific colour and/or the light environment animals occupy. One way to test these theories is to focus on the visual system, which can be achieved by studying the opsin-based visual pigments that mediate vision. Birds vary greatly in colour, but opsin gene coding sequences and associated visual pigment spectral sensitivities are known to be rather invariant across birds. Here, I studied expression of the four cone opsin genes (Lws, Rh2, Sws2 and Sws1) in 16 species of New World warblers (Parulidae). I found levels of opsin expression vary both across species and between the sexes. Across species, female, but not male Sws2 expression is associated with an index of sexual selection, plumage dichromatism. This fits predictions of classic sexual selection models, in which the sensory system changes in females, presumably impacting female preference, and co-evolves with male plumage. Expression of the opsins at the extremes of the light spectrum, Lws and Uvs, correlates with the inferred light environment occupied by the different species. Unlike opsin spectral tuning, regulation of opsin gene expression allows for fast adaptive evolution of the visual system in response to natural and sexual selection, and in particular, sex-specific selection pressures. PMID:25429020

  8. Evolution of opsin expression in birds driven by sexual selection and habitat.

    PubMed

    Bloch, Natasha I

    2015-01-01

    Theories of sexual and natural selection predict coevolution of visual perception with conspecific colour and/or the light environment animals occupy. One way to test these theories is to focus on the visual system, which can be achieved by studying the opsin-based visual pigments that mediate vision. Birds vary greatly in colour, but opsin gene coding sequences and associated visual pigment spectral sensitivities are known to be rather invariant across birds. Here, I studied expression of the four cone opsin genes (Lws, Rh2, Sws2 and Sws1) in 16 species of New World warblers (Parulidae). I found levels of opsin expression vary both across species and between the sexes. Across species, female, but not male Sws2 expression is associated with an index of sexual selection, plumage dichromatism. This fits predictions of classic sexual selection models, in which the sensory system changes in females, presumably impacting female preference, and co-evolves with male plumage. Expression of the opsins at the extremes of the light spectrum, Lws and Uvs, correlates with the inferred light environment occupied by the different species. Unlike opsin spectral tuning, regulation of opsin gene expression allows for fast adaptive evolution of the visual system in response to natural and sexual selection, and in particular, sex-specific selection pressures. PMID:25429020

  9. The NASA LWS Sentinels Mission

    NASA Astrophysics Data System (ADS)

    Lin, Robert P.; Science, Sentinels; DefinitionTeam, Technology

    2006-06-01

    One of the primary goals of NASA's Sentinels mission, the heliospheric element of the integrated LWS (Living With a Star) program, is to provide the observations necessary for an understanding of the physics of the Sun/inner heliosphere processes that produce Solar Energetic Particle (SEP) events, so the requirements for eventual predictive capability can be defined. We present the results of the study by the Sentinels Science and Technology Definition Team (STDT) that recommends a combination of the Inner Heliosphere Sentinels (IHS),consisting of four identical spacecraft that utilize Venus gravity assists to achieve 0.25-0.75 AU orbits, primarily for in situ particles and fields measurements; a Near-Earth Sentinel (NES) with a spectroscopic coronagraph to provide the physical conditions in the SEP acceleration region and a wide field (>0.3AU) coronagraph to connect to the HIS measurements, and a Farside Sentinel (FS) with a magnetograph to provide near global photospheric magnetic field measurements for modeling the structure of the inner heliosphere. We show how the combined measurements are designed to lead to an understanding of SEP origin and to improve our predictive capability for large SEP events.

  10. Euarchontan Opsin Variation Brings New Focus to Primate Origins.

    PubMed

    Melin, Amanda D; Wells, Konstans; Moritz, Gillian L; Kistler, Logan; Orkin, Joseph D; Timm, Robert M; Bernard, Henry; Lakim, Maklarin B; Perry, George H; Kawamura, Shoji; Dominy, Nathaniel J

    2016-04-01

    Debate on the adaptive origins of primates has long focused on the functional ecology of the primate visual system. For example, it is hypothesized that variable expression of short- (SWS1) and middle-to-long-wavelength sensitive (M/LWS) opsins, which confer color vision, can be used to infer ancestral activity patterns and therefore selective ecological pressures. A problem with this approach is that opsin gene variation is incompletely known in the grandorder Euarchonta, that is, the orders Scandentia (treeshrews), Dermoptera (colugos), and Primates. The ancestral state of primate color vision is therefore uncertain. Here, we report on the genes (OPN1SW and OPN1LW) that encode SWS1 and M/LWS opsins in seven species of treeshrew, including the sole nocturnal scandentian Ptilocercus lowii. In addition, we examined the opsin genes of the Central American woolly opossum (Caluromys derbianus), an enduring ecological analogue in the debate on primate origins. Our results indicate: 1) retention of ultraviolet (UV) visual sensitivity in C. derbianus and a shift from UV to blue spectral sensitivities at the base of Euarchonta; 2) ancient pseudogenization of OPN1SW in the ancestors of P. lowii, but a signature of purifying selection in those of C. derbianus; and, 3) the absence of OPN1LW polymorphism among diurnal treeshrews. These findings suggest functional variation in the color vision of nocturnal mammals and a distinctive visual ecology of early primates, perhaps one that demanded greater spatial resolution under light levels that could support cone-mediated color discrimination.

  11. Multiple origins of the green-sensitive opsin genes in fish.

    PubMed

    Register, E A; Yokoyama, R; Yokoyama, S

    1994-09-01

    Vertebrate opsins are divided into four major groups: RH1 (rhodopsins), RH2 (rhodopsinlike with various absorption sensitivities), SWS (short-wavelength sensitive), and LWS/MWS (long and middle-wavelength sensitive) groups. The green opsin genes (g101Af and g103Af) in a Mexican characin Astyanax fasciatus belong to the LWS/MWS group, whereas those in goldfish belong to the RH2 group (Yokoyama 1994, Mol Biol Evol 11:32-39). A newly isolated opsin gene (rh11Af) from A. fasciatus contains five exons and four introns, spanning 4.2 kilobases from start to stop codons. This gene is most closely related to the two green opsin genes of goldfish and belongs to the RH2 group. In the LWS/MWS group, gene duplication of the ancestral red and green opsin genes predates the speciation between A. fasciatus and goldfish, suggesting that goldfish also has an additional gene which is orthologous to g101Af and g103Af.

  12. RT-qPCR reveals opsin gene upregulation associated with age and sex in guppies (Poecilia reticulata) - a species with color-based sexual selection and 11 visual-opsin genes

    PubMed Central

    2011-01-01

    Background PCR-based surveys have shown that guppies (Poecilia reticulata) have an unusually large visual-opsin gene repertoire. This has led to speculation that opsin duplication and divergence has enhanced the evolution of elaborate male coloration because it improves spectral sensitivity and/or discrimination in females. However, this conjecture on evolutionary connections between opsin repertoire, vision, mate choice, and male coloration was generated with little data on gene expression. Here, we used RT-qPCR to survey visual-opsin gene expression in the eyes of males, females, and juveniles in order to further understand color-based sexual selection from the perspective of the visual system. Results Juvenile and adult (male and female) guppies express 10 visual opsins at varying levels in the eye. Two opsin genes in juveniles, SWS2B and RH2-2, accounted for >85% of all visual-opsin transcripts in the eye, excluding RH1. This relative abundance (RA) value dropped to about 65% in adults, as LWS-A180 expression increased from approximately 3% to 20% RA. The juvenile-to-female transition also showed LWS-S180 upregulation from about 1.5% to 7% RA. Finally, we found that expression in guppies' SWS2-LWS gene cluster is negatively correlated with distance from a candidate locus control region (LCR). Conclusions Selective pressures influencing visual-opsin gene expression appear to differ among age and sex. LWS upregulation in females is implicated in augmenting spectral discrimination of male coloration and courtship displays. In males, enhanced discrimination of carotenoid-rich food and possibly rival males are strong candidate selective pressures driving LWS upregulation. These developmental changes in expression suggest that adults possess better wavelength discrimination than juveniles. Opsin expression within the SWS2-LWS gene cluster appears to be regulated, in part, by a common LCR. Finally, by comparing our RT-qPCR data to MSP data, we were able to propose the

  13. Vertebrate opsins belonging to different classes vary in constitutively active properties resulting from salt-bridge mutations.

    PubMed

    Nickle, Benjamin; Wilkie, Susan E; Cowing, Jill A; Hunt, David M; Robinson, Phyllis R

    2006-06-13

    Vertebrate opsins are classified into one of five classes on the basis of amino acid similarity. These classes are short wavelength sensitive 1 and 2 (SWS1, SWS2), medium/long wavelength sensitive (M/LWS), and rod opsin like 1 and 2 (RH1, RH2). In bovine rod opsin (RH1), two critical amino acids form a salt bridge in the apoprotein that maintains the opsin in an inactive state. These residues are K296, which functions as the chromophore binding site, and E113, which functions as the counterion to the protonated Schiff base. Corresponding residues in each of the other vertebrate opsin classes are believed to play similar roles. Previous reports have demonstrated that mutations in these critical residues result in constitutive activation of transducin by RH1 class opsins in the absence of chromophore. Additionally, recent reports have shown that an E113Q mutation in SWS1 opsin is constitutively active. Here we ask if the other classes of vertebrate opsins maintain activation characteristics similar to that of bovine RH1 opsin. We approach this question by making the corresponding substitutions which disrupt the K296/E113 salt bridge in opsins belonging to the other vertebrate opsin classes. The mutant opsins are tested for their ability to constitutively activate bovine transducin. We demonstrate that mutations disrupting this key salt bridge produce constitutive activation in all classes. However, the mutant opsins differ in their ability to be quenched in the dark state by the addition of chromophore as well as in their level of constitutive activation. The differences in constitutive activation profiles suggest that structural differences exist among the opsin classes that may translate into a difference in activation properties.

  14. Short- and long-wavelength-sensitive opsins are involved in photoreception both in the retina and throughout the central nervous system of crayfish.

    PubMed

    Kingston, Alexandra C N; Cronin, Thomas W

    2015-12-01

    Crayfish have two classes of photoreceptors in the retinas of their reflecting superposition eyes. Long-wavelength-sensitive photoreceptors, comprised of microvilli from R1-7 cells, make up the main rhabdoms. Eighth retinular cells, located distal to the main rhabdoms, house short-wavelength-sensitive photoreceptors. While the opsin involved in long-wavelength sensitivity has long been known, we present the first description of the short-wavelength-sensitive opsin in the retina of the red swamp crayfish, Procambarus clarkii. The expression patterns of these SWS and LWS opsin proteins in the retina are consistent with the previously described locations of SWS and LWS receptors. Crayfish also have a well-characterized extraocular photoreceptor, called the caudal photoreceptor, located in the sixth abdominal ganglion. To search for retinal opsins in the caudal photoreceptor (and elsewhere in the CNS), we used RT-PCR and immunohistochemical labeling. We found both SWS and LWS opsin transcripts not only in the sixth abdominal ganglion, but also in all ganglia of the nerve cord. Immunolabeling shows that both opsins are expressed in nerve fibers that extend from the brain through the entire length of the CNS. Thus, the same two photopigments are used both for vision in the retina and for extraocular functions throughout the CNS of crayfish.

  15. In the four-eyed fish (Anableps anableps), the regions of the retina exposed to aquatic and aerial light do not express the same set of opsin genes.

    PubMed

    Owens, Gregory L; Rennison, Diana J; Allison, W Ted; Taylor, John S

    2012-02-23

    The four-eyed fish, Anableps anableps, has eyes with unusual morphological adaptations for simultaneous vision above and below water. The retina, for example, is divided such that one region receives light from the aerial field and the other from the aquatic field. To understand better the adaptive value of this partitioned retina, we characterized photoreceptor distribution using in situ hybridization. Cones expressing sws1, sws2b and rh2-2 (i.e. UV, and short wavelength-sensitive) opsins were found throughout the retina, whereas cones expressing rh2-1 (middle wavelength-sensitive) were largely limited to the ventral retina and those expressing lws (long wavelength-sensitive) opsins were only expressed in the dorsal retina. We next asked when this pattern evolved relative to the 'four-eyed' morphology. We characterized opsin expression in Jenynsia onca, a member of the sister genus to Anableps with typical teleost eye morphology. In J. onca, sws1, sws2b, rh2-2 and rh2-1 opsins were expressed throughout the retina; while lws opsins were not expressed in the ventral retina. Thus, the change that coincides with the evolution of unusual anablepid eye morphology is the loss of rh2-1 expression in the dorsal retina, probably to accommodate increased lws opsin expression. The retinal area that samples aerial light appears not to have changed with respect to photoreceptor transcription.

  16. Euarchontan Opsin Variation Brings New Focus to Primate Origins.

    PubMed

    Melin, Amanda D; Wells, Konstans; Moritz, Gillian L; Kistler, Logan; Orkin, Joseph D; Timm, Robert M; Bernard, Henry; Lakim, Maklarin B; Perry, George H; Kawamura, Shoji; Dominy, Nathaniel J

    2016-04-01

    Debate on the adaptive origins of primates has long focused on the functional ecology of the primate visual system. For example, it is hypothesized that variable expression of short- (SWS1) and middle-to-long-wavelength sensitive (M/LWS) opsins, which confer color vision, can be used to infer ancestral activity patterns and therefore selective ecological pressures. A problem with this approach is that opsin gene variation is incompletely known in the grandorder Euarchonta, that is, the orders Scandentia (treeshrews), Dermoptera (colugos), and Primates. The ancestral state of primate color vision is therefore uncertain. Here, we report on the genes (OPN1SW and OPN1LW) that encode SWS1 and M/LWS opsins in seven species of treeshrew, including the sole nocturnal scandentian Ptilocercus lowii. In addition, we examined the opsin genes of the Central American woolly opossum (Caluromys derbianus), an enduring ecological analogue in the debate on primate origins. Our results indicate: 1) retention of ultraviolet (UV) visual sensitivity in C. derbianus and a shift from UV to blue spectral sensitivities at the base of Euarchonta; 2) ancient pseudogenization of OPN1SW in the ancestors of P. lowii, but a signature of purifying selection in those of C. derbianus; and, 3) the absence of OPN1LW polymorphism among diurnal treeshrews. These findings suggest functional variation in the color vision of nocturnal mammals and a distinctive visual ecology of early primates, perhaps one that demanded greater spatial resolution under light levels that could support cone-mediated color discrimination. PMID:26739880

  17. Euarchontan Opsin Variation Brings New Focus to Primate Origins

    PubMed Central

    Melin, Amanda D.; Wells, Konstans; Moritz, Gillian L.; Kistler, Logan; Orkin, Joseph D.; Timm, Robert M.; Bernard, Henry; Lakim, Maklarin B.; Perry, George H.; Kawamura, Shoji; Dominy, Nathaniel J.

    2016-01-01

    Debate on the adaptive origins of primates has long focused on the functional ecology of the primate visual system. For example, it is hypothesized that variable expression of short- (SWS1) and middle-to-long-wavelength sensitive (M/LWS) opsins, which confer color vision, can be used to infer ancestral activity patterns and therefore selective ecological pressures. A problem with this approach is that opsin gene variation is incompletely known in the grandorder Euarchonta, that is, the orders Scandentia (treeshrews), Dermoptera (colugos), and Primates. The ancestral state of primate color vision is therefore uncertain. Here, we report on the genes (OPN1SW and OPN1LW) that encode SWS1 and M/LWS opsins in seven species of treeshrew, including the sole nocturnal scandentian Ptilocercus lowii. In addition, we examined the opsin genes of the Central American woolly opossum (Caluromys derbianus), an enduring ecological analogue in the debate on primate origins. Our results indicate: 1) retention of ultraviolet (UV) visual sensitivity in C. derbianus and a shift from UV to blue spectral sensitivities at the base of Euarchonta; 2) ancient pseudogenization of OPN1SW in the ancestors of P. lowii, but a signature of purifying selection in those of C. derbianus; and, 3) the absence of OPN1LW polymorphism among diurnal treeshrews. These findings suggest functional variation in the color vision of nocturnal mammals and a distinctive visual ecology of early primates, perhaps one that demanded greater spatial resolution under light levels that could support cone-mediated color discrimination. PMID:26739880

  18. Evolution of the cichlid visual palette through ontogenetic subfunctionalization of the opsin gene arrays.

    PubMed

    Spady, Tyrone C; Parry, Juliet W L; Robinson, Phyllis R; Hunt, David M; Bowmaker, James K; Carleton, Karen L

    2006-08-01

    The evolution of cone opsin genes is characterized by a dynamic process of gene birth and death through gene duplication and loss. However, the forces governing the retention and death of opsin genes are poorly understood. African cichlid fishes have a range of ecologies, differing in habitat and foraging style, which make them ideal for examining the selective forces acting on the opsin gene family. In this work, we present data on the riverine cichlid, Oreochromis niloticus, which is an ancestral outgroup to the cichlid adaptive radiations in the Great African lakes. We identify 7 cone opsin genes with several instances of gene duplication. We also characterize the spectral sensitivities of these genes through reconstitution of visual pigments. Peak absorbances demonstrate that each tilapia cone opsin gene codes for a spectrally distinct visual pigment: SWS1 (360 nm), SWS2b (423 nm), SWS2a (456 nm), Rh2b (472 nm), Rh2a beta (518 nm), Rh2a alpha (528 nm), and LWS (561 nm). Furthermore, quantitative reverse transcription polymerase chain reaction at 3 ontogenetic time points demonstrates that although only 4 genes (SWS2a, Rh2a alpha and beta, and LWS) are expressed in adults, mRNAs for the other genes are all expressed during ontogeny. Therefore, subfunctionalization through differential ontogenetic expression may be a key mechanism for preservation of opsin genes. The distinct peak absorbances of these preserved opsin genes provide a palette from which selection creates the diverse visual sensitivities found among the cichlid species of the lacustrine adaptive radiations.

  19. Molecular cloning of cone opsin genes and their expression in the retina of a smelt, Ayu (Plecoglossus altivelis, Teleostei).

    PubMed

    Minamoto, Toshifumi; Shimizu, Isamu

    2005-02-01

    Five cone opsin genes of landlocked ayu fish (Plecoglossus altivelis) were cloned, and the expression patterns of these genes were investigated. AYU-LWS, -RH2-1, -RH2-2, -SWS1-1, and -SWS1-2 were isolated and had high (more than 75%) identity with red, green, green, UV, and UV-sensitive opsin, respectively, genes of other fish reported previously. The results of Southern blotting experiments showed that each gene is present as a single copy. Gene expression was measured by RT-PCR using four populations collected from rivers and a lake in spring and summer. The results of the RT-PCR experiment showed that AYU-SWS1-2 was highly expressed, whereas AYU-SWS1-1 was scarce. Two RH2 opsins were expressed simultaneously in the same individual, and the expression ratio between these opsins changed among populations. In situ hybridization revealed that AYU-LWS and -RH2-1 were expressed in the double cones and that AYU-RH2-2 and -SWS1-2 were expressed in the long and short single cones (LSC and SSC), respectively. It was shown that an individual ayu expresses two RH2 opsins simultaneously in different types of cone cells.

  20. Correlation between nuptial colors and visual sensitivities tuned by opsins leads to species richness in sympatric Lake Victoria cichlid fishes.

    PubMed

    Miyagi, Ryutaro; Terai, Yohey; Aibara, Mitsuto; Sugawara, Tohru; Imai, Hiroo; Tachida, Hidenori; Mzighani, Semvua Isa; Okitsu, Takashi; Wada, Akimori; Okada, Norihiro

    2012-11-01

    Reproductive isolation that prevents interspecific hybridization between closely related coexisting species maintains sympatric species diversity. One of the reproductive isolations is mate choice based on color signals (breeding color perceived by color vision). This is well known in several animal taxa, yet little is known about its genetic and molecular mechanism. Lake Victoria cichlid fishes are thought to be an example of sympatric species diversity. In the species inhabiting different light environments in rocky shore, speciation by sensory drive through color signals has been proposed by analyses of the long wavelength-sensitive (LWS) opsin gene and the male nuptial coloration. However, the genetic and molecular mechanism of how diversity of sympatric species occurring in the same habitat is maintained remains unknown. To address this issue, we determined nucleotide sequences of eight opsins of six sympatric species collected from a sandy-muddy shore--an ideal model system for studying sympatric species. Among eight opsins, the LWS and RH1 alleles were diversified and one particular allele is dominant or fixed in each species, and we propose that this is due to natural selection. The functions of their LWS alleles were also diversified as shown by absorption measurements of reconstituted visual pigments. To analyze the relationship between nuptial coloration and the absorption of LWS pigments, we systematically evaluated and defined nuptial coloration. We showed that the coloration was species specific with respect to hue and significantly differentiated by the index values of hue (dominant wavelength: λ(d)). The λ(d) value of the male nuptial coloration correlated with the absorption of LWS pigments from all the species, suggesting that reproductive isolation through mate choice using color signals may prevent sympatric interspecific hybridization, thereby maintaining the species diversity in sympatric species in Lake Victoria. PMID:22617953

  1. Correlation between nuptial colors and visual sensitivities tuned by opsins leads to species richness in sympatric Lake Victoria cichlid fishes.

    PubMed

    Miyagi, Ryutaro; Terai, Yohey; Aibara, Mitsuto; Sugawara, Tohru; Imai, Hiroo; Tachida, Hidenori; Mzighani, Semvua Isa; Okitsu, Takashi; Wada, Akimori; Okada, Norihiro

    2012-11-01

    Reproductive isolation that prevents interspecific hybridization between closely related coexisting species maintains sympatric species diversity. One of the reproductive isolations is mate choice based on color signals (breeding color perceived by color vision). This is well known in several animal taxa, yet little is known about its genetic and molecular mechanism. Lake Victoria cichlid fishes are thought to be an example of sympatric species diversity. In the species inhabiting different light environments in rocky shore, speciation by sensory drive through color signals has been proposed by analyses of the long wavelength-sensitive (LWS) opsin gene and the male nuptial coloration. However, the genetic and molecular mechanism of how diversity of sympatric species occurring in the same habitat is maintained remains unknown. To address this issue, we determined nucleotide sequences of eight opsins of six sympatric species collected from a sandy-muddy shore--an ideal model system for studying sympatric species. Among eight opsins, the LWS and RH1 alleles were diversified and one particular allele is dominant or fixed in each species, and we propose that this is due to natural selection. The functions of their LWS alleles were also diversified as shown by absorption measurements of reconstituted visual pigments. To analyze the relationship between nuptial coloration and the absorption of LWS pigments, we systematically evaluated and defined nuptial coloration. We showed that the coloration was species specific with respect to hue and significantly differentiated by the index values of hue (dominant wavelength: λ(d)). The λ(d) value of the male nuptial coloration correlated with the absorption of LWS pigments from all the species, suggesting that reproductive isolation through mate choice using color signals may prevent sympatric interspecific hybridization, thereby maintaining the species diversity in sympatric species in Lake Victoria.

  2. M-cone opsin gene number does not correlate with variation in L/M-cone sensitivity.

    PubMed

    Knau, H; Kremers, J; Schmidt, H-J; Wolf, S; Wissinger, B; Sharpe, L T

    2002-07-01

    Molecular genetic studies demonstrate that the human cone opsin gene array on the q-arm of the X-chromosome typically consists of one long-wave-sensitive (L) cone opsin gene and from one to several middle-wave-sensitive (M) cone opsin genes. Although the presence of the single L-cone opsin gene and at least one M-cone opsin gene is essential for normal red-green colour discrimination, the function of the additional M-cone opsin genes is still unclear. To investigate whether any variations in phenotype correlate with differences in the number of M-cone opsin genes, we selected 13 normal trichromat males, for whom four independent molecular techniques have exactly determined their number of M-cone opsin genes, ranging from one to four. Their phenotype was characterized by estimating their foveal L- to M-cone ratio from heterochromatic flicker photometric (HFP) thresholds, by measuring the wavelength corresponding to their 'unique yellow', and by determining their L- and M-cone modulation thresholds (CMTs). No correlation was found between these psychophysical measures and the number of M-cone opsin genes. Although, we found a reasonably good correlation between the L/M-cone ratios based on HFP and on CMT, we did not find any correlation between the estimated L/M-cone ratios and the settings of 'unique yellow'. Our results accord with previous molecular genetic studies that suggest that only the first two genes in the X-linked opsin gene array are expressed.

  3. Opsin evolution in the Ambulacraria.

    PubMed

    D'Aniello, S; Delroisse, J; Valero-Gracia, A; Lowe, E K; Byrne, M; Cannon, J T; Halanych, K M; Elphick, M R; Mallefet, J; Kaul-Strehlow, S; Lowe, C J; Flammang, P; Ullrich-Lüter, E; Wanninger, A; Arnone, M I

    2015-12-01

    Opsins--G-protein coupled receptors involved in photoreception--have been extensively studied in the animal kingdom. The present work provides new insights into opsin-based photoreception and photoreceptor cell evolution with a first analysis of opsin sequence data for a major deuterostome clade, the Ambulacraria. Systematic data analysis, including for the first time hemichordate opsin sequences and an expanded echinoderm dataset, led to a robust opsin phylogeny for this cornerstone superphylum. Multiple genomic and transcriptomic resources were surveyed to cover each class of Hemichordata and Echinodermata. In total, 119 ambulacrarian opsin sequences were found, 22 new sequences in hemichordates and 97 in echinoderms (including 67 new sequences). We framed the ambulacrarian opsin repertoire within eumetazoan diversity by including selected reference opsins from non-ambulacrarians. Our findings corroborate the presence of all major ancestral bilaterian opsin groups in Ambulacraria. Furthermore, we identified two opsin groups specific to echinoderms. In conclusion, a molecular phylogenetic framework for investigating light-perception and photobiological behaviors in marine deuterostomes has been obtained. PMID:26472700

  4. Opsin evolution in the Ambulacraria.

    PubMed

    D'Aniello, S; Delroisse, J; Valero-Gracia, A; Lowe, E K; Byrne, M; Cannon, J T; Halanych, K M; Elphick, M R; Mallefet, J; Kaul-Strehlow, S; Lowe, C J; Flammang, P; Ullrich-Lüter, E; Wanninger, A; Arnone, M I

    2015-12-01

    Opsins--G-protein coupled receptors involved in photoreception--have been extensively studied in the animal kingdom. The present work provides new insights into opsin-based photoreception and photoreceptor cell evolution with a first analysis of opsin sequence data for a major deuterostome clade, the Ambulacraria. Systematic data analysis, including for the first time hemichordate opsin sequences and an expanded echinoderm dataset, led to a robust opsin phylogeny for this cornerstone superphylum. Multiple genomic and transcriptomic resources were surveyed to cover each class of Hemichordata and Echinodermata. In total, 119 ambulacrarian opsin sequences were found, 22 new sequences in hemichordates and 97 in echinoderms (including 67 new sequences). We framed the ambulacrarian opsin repertoire within eumetazoan diversity by including selected reference opsins from non-ambulacrarians. Our findings corroborate the presence of all major ancestral bilaterian opsin groups in Ambulacraria. Furthermore, we identified two opsin groups specific to echinoderms. In conclusion, a molecular phylogenetic framework for investigating light-perception and photobiological behaviors in marine deuterostomes has been obtained.

  5. Molecular and functional characterization of opsins in barfin flounder (Verasper moseri).

    PubMed

    Kasagi, Satoshi; Mizusawa, Kanta; Murakami, Naoto; Andoh, Tadashi; Furufuji, Sumihisa; Kawamura, Shoji; Takahashi, Akiyoshi

    2015-02-10

    Green light irradiation facilitates the somatic growth of barfin flounder (Verasper moseri). However, the V. moseri visual system, which may be associated with somatic growth by acting on the endocrine system upon exposure to this particular wavelength, remains largely unexplored. Herein, we characterized the visual opsin repertoire of V. moseri to understand the molecular basis underlying this effect. The five types of visual opsins that are found in vertebrates were cloned from RNA that was extracted from the eyes of V. moseri. Notably, V. moseri possessed one pseudogene (RH2-A) and two intact (RH2-B and RH2-C) copies of "green-sensitive" opsin genes. The wavelengths of maximum absorption spectra (λmax) for each of the reconstituted photopigments were 552nm for "red-sensitive" LWS, 506nm for RH2-B, 490nm for RH2-C, 482nm and 416nm for "blue-sensitive" SWS2A and SWS2B, respectively, 367nm for "ultraviolet-sensitive" SWS1, and 494nm for "dim-light sensitive rhodopsin" RH1. The λmax of SWS2A was longer than that of any other reported vertebrate SWS2 opsin. By measuring the expression level of these opsin genes with quantitative RT-PCR in 3-, 15-, and 27-month-old fish, we found that RH2-B and SWS2A were expressed at a constant level, whereas the expression of LWS, RH2-C, SWS2B, and SWS1 opsin genes decreased, and that of RH1 increased with age. Barfin flounders inhabit inshore waters at a young age and expand their habitat to deep sea areas as they age, and green light is relatively abundant in deep water compared to the lights of other wavelengths in shallow water. Our results indicate that gene repertoire and expression profile of the opsin genes of barfin flounder are adaptive to their habitat shift that occurs during development, with some opsins acquiring a distinct λmax.

  6. LWS/SET Technology Experiment Carrier

    NASA Technical Reports Server (NTRS)

    Sherman, Barry; Giffin, Geoff

    2002-01-01

    This paper examines the approach taken to building a low-cost, modular spacecraft bus that can be used to support a variety of technology experiments in different space environments. It describes the techniques used and design drivers considered to ensure experiment independence from as yet selected host spacecraft. It describes the technology experiment carriers that will support NASA's Living With a Star Space Environment Testbed space missions. NASA has initiated the Living With a Star (LWS) Program to develop a better scientific understanding to address the aspects of the connected Sun-Earth system that affect life and society. A principal goal of the program is to bridge the gap between science, engineering, and user application communities. The Space Environment Testbed (SET) Project is one element of LWS. The Project will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The SET Project is highly budget constrained and must seek to take advantage of as yet undetermined partnering opportunities for access to space. SET will conduct technology validation experiments hosted on available flight opportunities. The SET Testbeds will be developed in a manner that minimizes the requirements for accommodation, and will be flown as flight opportunities become available. To access the widest range of flight opportunities, two key development requirements are to maintain flexibility with respect to accommodation constraints and to have the capability to respond quickly to flight opportunities. Experiments, already developed to the technology readiness level of needing flight validation in the variable Sun-Earth environment, will be selected on the basis of the need for the subject technology, readiness for flight, need for flight resources and particular orbit. Experiments will be

  7. Spectral sensitivity of cone photoreceptors and opsin expression in two colour-divergent lineages of the lizard Ctenophorus decresii.

    PubMed

    Yewers, Madeleine S; McLean, Claire A; Moussalli, Adnan; Stuart-Fox, Devi; Bennett, Andrew T D; Knott, Ben

    2015-05-15

    Intraspecific differences in sensory perception are rarely reported but may occur when a species range extends across varying sensory environments, or there is coevolution between the sensory system and a varying signal. Examples in colour vision and colour signals are rare in terrestrial systems. The tawny dragon lizard Ctenophorus decresii is a promising candidate for such intraspecific variation, because the species comprises two geographically and genetically distinct lineages in which throat colour (a social signal used in intra- and inter-specific interactions) is locally adapted to the habitat and differs between lineages. Male lizards from the southern lineage have UV-blue throats, whereas males from the northern lineage are polymorphic with four discrete throat colours that all show minimal UV reflectance. Here, we determine the cone photoreceptor spectral sensitivities and opsin expression of the two lineages, to test whether they differ, particularly in the UV wavelengths. Using microspectrophotometry on retinal cone photoreceptors, we identified a long-wavelength-sensitive (LWS) visual pigment, a 'short' and 'long' medium-wavelength-sensitive (MWS) pigment and a short-wavelength-sensitive (SWS) pigment, all of which did not differ in λmax between lineages. Through transcriptome analysis of opsin genes we found that both lineages express four cone opsin genes, including the SWS1 opsin with peak sensitivity in the UV range, and that amino acid sequences did not differ between lineages with the exception of a single leucine to valine substitution in the RH2 opsin. Counts of yellow and transparent oil droplets associated with LWS+MWS and SWS+UVS cones, respectively, showed no difference in relative cone proportions between lineages. Therefore, contrary to predictions, we find no evidence of differences between lineages in single cone photoreceptor spectral sensitivity or opsin expression. However, we confirm the presence of four single cone classes

  8. Spectral sensitivity of cone photoreceptors and opsin expression in two colour-divergent lineages of the lizard Ctenophorus decresii.

    PubMed

    Yewers, Madeleine S; McLean, Claire A; Moussalli, Adnan; Stuart-Fox, Devi; Bennett, Andrew T D; Knott, Ben

    2015-05-15

    Intraspecific differences in sensory perception are rarely reported but may occur when a species range extends across varying sensory environments, or there is coevolution between the sensory system and a varying signal. Examples in colour vision and colour signals are rare in terrestrial systems. The tawny dragon lizard Ctenophorus decresii is a promising candidate for such intraspecific variation, because the species comprises two geographically and genetically distinct lineages in which throat colour (a social signal used in intra- and inter-specific interactions) is locally adapted to the habitat and differs between lineages. Male lizards from the southern lineage have UV-blue throats, whereas males from the northern lineage are polymorphic with four discrete throat colours that all show minimal UV reflectance. Here, we determine the cone photoreceptor spectral sensitivities and opsin expression of the two lineages, to test whether they differ, particularly in the UV wavelengths. Using microspectrophotometry on retinal cone photoreceptors, we identified a long-wavelength-sensitive (LWS) visual pigment, a 'short' and 'long' medium-wavelength-sensitive (MWS) pigment and a short-wavelength-sensitive (SWS) pigment, all of which did not differ in λmax between lineages. Through transcriptome analysis of opsin genes we found that both lineages express four cone opsin genes, including the SWS1 opsin with peak sensitivity in the UV range, and that amino acid sequences did not differ between lineages with the exception of a single leucine to valine substitution in the RH2 opsin. Counts of yellow and transparent oil droplets associated with LWS+MWS and SWS+UVS cones, respectively, showed no difference in relative cone proportions between lineages. Therefore, contrary to predictions, we find no evidence of differences between lineages in single cone photoreceptor spectral sensitivity or opsin expression. However, we confirm the presence of four single cone classes

  9. Transcriptional co-regulation of evolutionarily conserved microRNA/cone opsin gene pairs: implications for photoreceptor subtype specification.

    PubMed

    Daido, Yutaka; Hamanishi, Sakurako; Kusakabe, Takehiro G

    2014-08-01

    The vertebrate retina contains two types of photoreceptor cells, rods and cones, which use distinct types of opsins and phototransduction proteins. Cones can be further divided into several subtypes with differing wavelength sensitivity and morphology. Although photoreceptor development has been extensively studied in a variety of vertebrate species, the mechanism by which photoreceptor subtypes are established is still largely unknown. Here we report two microRNAs (miRNAs), miR-726 and miR-729, which are potentially involved in photoreceptor subtype specification. In the medaka Oryzias latipes, the genes encoding miR-726 and miR-729 are located upstream of the red-sensitive opsin gene LWS-A and the UV-sensitive opsin gene SWS1, respectively, and are transcribed in the opposite direction from the respective opsin genes. The miR-726/LWS pair is conserved between teleosts and tetrapods, and the miR-729/SWS1 pair is conserved among teleosts. in situ hybridization analyses and fluorescence reporter assays suggest that these miRNAs are co-expressed with the respective opsins in specific cone subtypes. Potential targets of miR-726 and miR-729 predicted in silico include several transcription factors that regulate photoreceptor development. Functional analyses of cis-regulatory sequences in vivo suggest that transcription of the paired microRNA and opsin genes is co-regulated by common cis-regulatory modules. We propose an evolutionarily conserved mechanism that controls photoreceptor subtype identity through coupling between transcriptional and post-transcriptional regulations.

  10. Vision for the Future of Lws TR&T

    NASA Astrophysics Data System (ADS)

    Schwadron, N.; Mannucci, A. J.; Antiochos, S. K.; Bhattacharjee, A.; Gombosi, T. I.; Gopalswamy, N.; Kamalabadi, F.; Linker, J.; Pilewskie, P.; Pulkkinen, A. A.; Spence, H. E.; Tobiska, W. K.; Weimer, D. R.; Withers, P.; Bisi, M. M.; Kuznetsova, M. M.; Miller, K. L.; Moretto, T.; Onsager, T. G.; Roussev, I. I.; Viereck, R. A.

    2014-12-01

    The Living With a Star (LWS) program addresses acute societal needs for understanding the effects of space weather and developing scientific knowledge to support predictive capabilities. Our society's heavy reliance on technologies affected by the space environment, an enormous number of airline customers, interest in space tourism, and the developing plans for long-duration human exploration space missions are clear examples that demonstrate urgent needs for space weather models and detailed understanding of space weather effects and risks. Since its inception, the LWS program has provided a vehicle to innovate new mechanisms for conducting research, building highly effective interdisciplinary teams, and ultimately in developing the scientific understanding needed to transition research tools into operational models that support the predictive needs of our increasingly space-reliant society. The advances needed require broad-based observations that cannot be obtained by large missions alone. The Decadal Survey (HDS, 2012) outlines the nation's needs for scientific development that will build the foundation for tomorrow's space weather services. Addressing these goals, LWS must develop flexible pathways to space utilizing smaller, more diverse and rapid development of observational platforms. Expanding utilization of ground-based assets and shared launches will also significantly enhance opportunities to fulfill the growing LWS data needs. Partnerships between NASA divisions, national/international agencies, and with industry will be essential for leveraging resources to address increasing societal demand for space weather advances. Strengthened connections to user communities will enhance the quality and impact of deliverables from LWS programs. Thus, we outline the developing vision for the future of LWS, stressing the need for deeper scientific understanding to improve forecasting capabilities, for more diverse data resources, and for project deliverables that

  11. Evolution and functional diversity of jellyfish opsins.

    PubMed

    Suga, Hiroshi; Schmid, Volker; Gehring, Walter J

    2008-01-01

    Cnidaria are the most basal animal phylum possessing complex eyes [1]. Their eyes predominantly use ciliary photoreceptor cells (c-PRCs) like vertebrates, whereas insect eyes use rhabdomeric photoreceptor cells (r-PRCs) [1-4]. These two cell types show not only different cytoarchitectures but distinct phototransduction cascades, which are triggered by the respective types of opsins (e.g., [5]), ciliary opsins (c-opsins) and rhabdomeric opsins (r-opsins) [6]. Recent reports suggested that the c- and r-PRCs and their respective opsins diverged at least before the deuterostome-protostome split [7-9]. To study the earlier evolution of animal PRCs and opsins, we investigated two hydrozoan jellyfishes. We report here the first-characterized cnidarian opsins. Molecular phylogeny revealed that the cloned 20 jellyfish opsins, together with all the opsins from a hydra and some from a sea anemone, are more closely related to the c-opsins than to any other major opsin subfamily, indicating that the divergence of c- and r-opsins antedates the Cnidaria-Bilateria split. Possible scenarios of animal PRC evolution are discussed. Furthermore, Cladonema opsins show several distinct tissue- and stage-specific expression patterns. The expression of specific opsins in the eyes suggests a role in vision, whereas that in the gonads suggests a role in light-controlled release of gametes.

  12. Evolution and functional diversity of jellyfish opsins.

    PubMed

    Suga, Hiroshi; Schmid, Volker; Gehring, Walter J

    2008-01-01

    Cnidaria are the most basal animal phylum possessing complex eyes [1]. Their eyes predominantly use ciliary photoreceptor cells (c-PRCs) like vertebrates, whereas insect eyes use rhabdomeric photoreceptor cells (r-PRCs) [1-4]. These two cell types show not only different cytoarchitectures but distinct phototransduction cascades, which are triggered by the respective types of opsins (e.g., [5]), ciliary opsins (c-opsins) and rhabdomeric opsins (r-opsins) [6]. Recent reports suggested that the c- and r-PRCs and their respective opsins diverged at least before the deuterostome-protostome split [7-9]. To study the earlier evolution of animal PRCs and opsins, we investigated two hydrozoan jellyfishes. We report here the first-characterized cnidarian opsins. Molecular phylogeny revealed that the cloned 20 jellyfish opsins, together with all the opsins from a hydra and some from a sea anemone, are more closely related to the c-opsins than to any other major opsin subfamily, indicating that the divergence of c- and r-opsins antedates the Cnidaria-Bilateria split. Possible scenarios of animal PRC evolution are discussed. Furthermore, Cladonema opsins show several distinct tissue- and stage-specific expression patterns. The expression of specific opsins in the eyes suggests a role in vision, whereas that in the gonads suggests a role in light-controlled release of gametes. PMID:18160295

  13. Variable light environments induce plastic spectral tuning by regional opsin coexpression in the African cichlid fish, Metriaclima zebra.

    PubMed

    Dalton, Brian E; Lu, Jessica; Leips, Jeff; Cronin, Thomas W; Carleton, Karen L

    2015-08-01

    Critical behaviours such as predation and mate choice often depend on vision. Visual systems are sensitive to the spectrum of light in their environment, which can vary extensively both within and among habitats. Evolutionary changes in spectral sensitivity contribute to divergence and speciation. Spectral sensitivity of the retina is primarily determined by visual pigments, which are opsin proteins bound to a chromophore. We recently discovered that photoreceptors in different regions of the retina, which view objects against distinct environmental backgrounds, coexpress different pairs of opsins in an African cichlid fish, Metriaclima zebra. This coexpression tunes the sensitivity of the retinal regions to the corresponding backgrounds and may aid in detection of dark objects, such as predators. Although intraretinal regionalization of spectral sensitivity in many animals correlates with their light environments, it is unknown whether variation in the light environment induces developmentally plastic alterations of intraretinal sensitivity regions. Here, we demonstrate with fluorescent in situ hybridization and qPCR that the spectrum and angle of environmental light both influence the development of spectral sensitivity regions by altering the distribution and level of opsins across the retina. Normally, M. zebra coexpresses LWS opsin with RH2Aα opsin in double cones of the ventral but not the dorsal retina. However, when illuminated from below throughout development, adult M. zebra coexpressed LWS and RH2Aα in double cones both dorsally and ventrally. Thus, environmental background spectra alter the spectral sensitivity pattern that develops across the retina, potentially influencing behaviours and related evolutionary processes such as courtship and speciation. PMID:26175094

  14. Variable light environments induce plastic spectral tuning by regional opsin coexpression in the African cichlid fish, Metriaclima zebra

    PubMed Central

    Dalton, Brian E.; Lu, Jessica; Leips, Jeff; Cronin, Thomas W.; Carleton, Karen L.

    2015-01-01

    Critical behaviors such as predation and mate choice often depend on vision. Visual systems are sensitive to the spectrum of light in their environment, which can vary extensively both within and among habitats. Evolutionary changes in spectral sensitivity contribute to divergence and speciation. Spectral sensitivity of the retina is primarily determined by visual pigments, which are opsin proteins bound to a chromophore. We recently discovered that photoreceptors in different regions of the retina, which view objects against distinct environmental backgrounds, coexpress different pairs of opsins in an African cichlid fish, Metriaclima zebra. This coexpression tunes the sensitivity of the retinal regions to the corresponding backgrounds and may aid detection of dark objects, such as predators. Although intraretinal regionalization of spectral sensitivity in many animals correlates with their light environments, it is unknown whether variation in the light environment induces developmentally plastic alterations of intraretinal sensitivity regions. Here, we demonstrate with fluorescent in situ hybridization and qPCR that the spectrum and angle of environmental light both influence the development of spectral sensitivity regions by altering the distribution and level of opsins across the retina. Normally M. zebra coexpresses LWS opsin with RH2Aα opsin in double cones of the ventral but not the dorsal retina. However, when illuminated from below throughout development, adult M. zebra coexpressed LWS and RH2Aα in double cones both dorsally and ventrally. Thus, environmental background spectra alter the spectral sensitivity pattern that develops across the retina, potentially influencing behaviors and related evolutionary processes such as courtship and speciation. PMID:26175094

  15. Population variation in opsin expression in the bluefin killifish, Lucania goodei: a real-time PCR study.

    PubMed

    Fuller, R C; Carleton, K L; Fadool, J M; Spady, T C; Travis, J

    2004-02-01

    Quantitative genetics have not been used in vision studies because of the difficulty of objectively measuring large numbers of individuals. Here, we examine the effectiveness of a molecular technique, real-time PCR, as an inference of visual components in the bluefin killifish, Lucania goodei, to determine whether there is population variation in opsin expression. Previous work has shown that spring animals possess a higher frequency of UV and violet cones and a lower frequency of yellow and red cones than swamp animals. Here, we found a good qualitative match between the population differences in opsin expression and those found previously in cone frequency. Spring animals expressed higher amounts of SWS1 and SWS2B opsins (which correspond to UV and violet photopigments) and lower amounts of RH2 and LWS opsins (which correspond to yellow and red photopigments) than swamp animals. The counterintuitive pattern between color pattern, lighting environment, and vision remains. Males with blue anal fins are more abundant in swamps where animals express fewer SWS1 and SWS2B opsins and where transmission of UV/blue wavelengths is low. Understanding this system requires quantitative genetic studies. Real-time PCR is an effective tool for studies requiring inferences of visual physiology in large numbers of individuals.

  16. Three cone opsin genes determine the properties of the visual spectra in the Japanese anchovy, Engraulis japonicus (Engraulidae, Teleostei).

    PubMed

    Kondrashev, Sergei L; Miyazaki, Taeko; Lamash, Nina E; Tsuchiya, Tohru

    2013-03-15

    A complement of cone visual pigments was identified in the Japanese anchovy Engraulis japonicus, one of the engraulid fish species that has a retina specialized for polarization and color vision. The nature of the chromophore bound to opsin proteins was investigated using high performance liquid chromatography. The opsin genes were then cloned and sequenced, and the absorption spectra of different types of cones were obtained by microspectrophotometry. Two green (EJ-RH2-1, EJ-RH2-2) and one red (EJ-LWS) cone opsin genes were identified and are presumably related to the vitamin A1-based visual pigments (i.e. rhodopsins) with λmax values of 492, 474 and 512 nm, respectively. The long and short cones from the ventro-temporal retinal zone consisted of a pure population of RH2 class gene-based pigments (λmax=492 nm). The long and short cones from other retinal areas and the lateral components of the triple cones possessed a mixture of RH2 and LWS class gene-based pigments that exhibited a λmax of ~502 nm. The central component of the triple cones contained only RH2 class gene-based pigments (λmax=474 nm). Thus, E. japonicus possesses a middle-wave range of spectral sensitivity and acquires different color vision systems in distinct visual fields.

  17. Ontogenetic changes in photoreceptor opsin gene expression in coho salmon (Oncorhynchus kisutch, Walbaum).

    PubMed

    Temple, S E; Veldhoen, K M; Phelan, J T; Veldhoen, N J; Hawryshyn, C W

    2008-12-01

    Pacific salmonids start life in fresh water then migrate to the sea, after a metamorphic event called smoltification, later returning to their natal freshwater streams to spawn and die. To accommodate changes in visual environments throughout life history, salmon may adjust their spectral sensitivity. We investigated this possibility by examining ontogenetic and thyroid hormone (TH)-induced changes in visual pigments in coho salmon (Oncorhynchus kisutch, Walbaum). Using microspectrophotometry, we measured the spectral absorbance (quantified by lambda(max)) of rods, and middle and long wavelength-sensitive (MWS and LWS) cones in three age classes of coho, representing both freshwater and marine phases. The lambda(max) of MWS and LWS cones differed among freshwater (alevin and parr) and ocean (smolt) phases. The lambda(max) of rods, on the other hand, did not vary, which is evidence that vitamin A(1)/A(2) visual pigment chromophore ratios were similar among freshwater and ocean phases when sampled at the same time of year. Exogenous TH treatment long wavelength shifted the lambda(max) of rods, consistent with an increase in A(2). However, shifts in cones were greater than predicted for a change in chromophore ratio. Real-time quantitative RT-PCR demonstrated that at least two RH2 opsin subtypes were expressed in MWS cones, and these were differentially expressed among alevin, parr and TH-treated alevin groups. Combined with changes in A(1)/A(2) ratio, differential expression of opsin subtypes allows coho to alter the spectral absorbance of their MWS and LWS cones by as much as 60 and 90 nm, respectively. To our knowledge, this is the largest spectral shift reported in a vertebrate photoreceptor.

  18. Chromatic organization of cone photoreceptors in the retina of rainbow trout: single cones irreversibly switch from UV (SWS1) to blue (SWS2) light sensitive opsin during natural development.

    PubMed

    Cheng, Christiana L; Flamarique, Iñigo Novales

    2007-12-01

    The retinas of salmonid fishes have single and double cones arranged in square to row formations termed mosaics. The square mosaic unit is formed by four double cones that make the sides of the square with a single (centre) cone in the middle, and a single (corner) cone at each corner of the square when present. Previous research using coho salmon-derived riboprobes on four species of anadromous Pacific salmon has shown that all single cones express a SWS1 (UV sensitive) visual pigment protein (opsin) at hatching, and that these cones switch to a SWS2 (blue light sensitive) opsin during the juvenile period. Whether this opsin switch applies to non-anadromous species, like the rainbow trout, is under debate as species-specific riboprobes have not been used to study opsin expression during development of a trout. As well, a postulated recovery of SWS1 opsin expression in the retina of adult rainbow trout, perhaps via a reverse process to that occurring in the juvenile, has not been investigated. Here, we used in situ hybridization with species-specific riboprobes and microspectrophotometry on rainbow trout retina to show that: (1) single cones in the juvenile switch opsin expression from SWS1 to SWS2, (2) this switch is not reversed in the adult, i.e. all single cones in the main retina continue to express SWS2 opsin, and (3) opsin switches do not occur in double cones: each member expresses one opsin, maximally sensitive to green (RH2) or red (LWS) light. The opsin switch in the single cones of salmonid fishes may be a general process of chromatic organization that occurs during retinal development of most vertebrates.

  19. Opsin vs opsin: New materials for biotechnological applications

    NASA Astrophysics Data System (ADS)

    Alfinito, Eleonora; Reggiani, Lino

    2014-08-01

    The need of new diagnostic methods satisfying, as an early detection, a low invasive procedure and a cost-efficient value, is orienting the technological research toward the use of bio-integrated devices, in particular, bio-sensors. The set of know-why necessary to achieve this goal is wide, from biochemistry to electronics and is summarized in an emerging branch of electronics, called proteotronics. Proteotronics is here applied to state a comparative analysis of the electrical responses coming from type-1 and type-2 opsins. In particular, the procedure is used as an early investigation of a recently discovered family of opsins, the proteorhodopsins activated by blue light, BPRs. The results reveal some interesting and unexpected similarities between proteins of the two families, suggesting the global electrical response are not strictly linked to the class identity.

  20. Opsin vs opsin: New materials for biotechnological applications

    SciTech Connect

    Alfinito, Eleonora; Reggiani, Lino

    2014-08-14

    The need of new diagnostic methods satisfying, as an early detection, a low invasive procedure and a cost-efficient value, is orienting the technological research toward the use of bio-integrated devices, in particular, bio-sensors. The set of know-why necessary to achieve this goal is wide, from biochemistry to electronics and is summarized in an emerging branch of electronics, called proteotronics. Proteotronics is here applied to state a comparative analysis of the electrical responses coming from type-1 and type-2 opsins. In particular, the procedure is used as an early investigation of a recently discovered family of opsins, the proteorhodopsins activated by blue light, BPRs. The results reveal some interesting and unexpected similarities between proteins of the two families, suggesting the global electrical response are not strictly linked to the class identity.

  1. The Living With a Star (LWS) Sentinels Mission

    NASA Technical Reports Server (NTRS)

    Szabo, A.

    2005-01-01

    The Sentinels Mission, the heliospheric element of the NASA Living With a Star (LWS) program, is still rapidly evolving, especially as the Sentinels Science and Technology Definition Team is progressing with its work. With the Solar Dynamics Observatory, the solar component, and the Geospace elements taking a more finalized form, it becomes clearer what scientific and measurement objectives will be necessary to establish the solar-geospace connection in order to achieve the goals of the LWS program. Possible, early formulation designs of the Sentinels mission will be presented that includes the Inner Heliospheric Mappers, a four spacecraft mission to observe the inner heliosphere between 0.25 and 1.0 AUs along with a Far Side Sentinel that will perform remote solar observations from nearly the opposite side of the Sun. Moreover, the complementarity of the various planned international missions (e.g., ESA Solar Orbiter, and Beppi Colombo) along with NASA planetary projects (e.g., Mars program and MESSENGER) will be discussed and how they can form a coherent system. Finally, the importance of already available heliospheric data will be emphasized.

  2. Optogenetics: opsins and optical interfaces in neuroscience.

    PubMed

    Adamantidis, Antoine R; Zhang, Feng; de Lecea, Luis; Deisseroth, Karl

    2014-08-01

    Optogenetics is defined as the integration of optics and genetics to control well-defined events within specified cells of living tissue. In this introduction, we focus on the basic techniques necessary for employing microbial opsins as optogenetic tools in mammalian brains. We provide a guide for the fundamentals of optogenetic application-selecting an opsin, implementing expression of opsins based on the neuroscientific experimental requirements, and adapting the corresponding optical hardware for delivery of light into mammalian brains.

  3. Diversity of Active States in TMT Opsins

    PubMed Central

    Sakai, Kazumi; Yamashita, Takahiro; Imamoto, Yasushi; Shichida, Yoshinori

    2015-01-01

    Opn3/TMT opsins belong to one of the opsin groups with vertebrate visual and non-visual opsins, and are widely distributed in eyes, brains and other internal organs in various vertebrates and invertebrates. Vertebrate Opn3/TMT opsins are further classified into four groups on the basis of their amino acid identities. However, there is limited information about molecular properties of these groups, due to the difficulty in preparing the recombinant proteins. Here, we successfully expressed recombinant proteins of TMT1 and TMT2 opsins of medaka fish (Oryzias latipes) in cultured cells and characterized their molecular properties. Spectroscopic and biochemical studies demonstrated that TMT1 and TMT2 opsins functioned as blue light-sensitive Gi/Go-coupled receptors, but exhibited spectral properties and photo-convertibility of the active state different from each other. TMT1 opsin forms a visible light-absorbing active state containing all-trans-retinal, which can be photo-converted to 7-cis- and 9-cis-retinal states in addition to the original 11-cis-retinal state. In contrast, the active state of TMT2 opsin is a UV light-absorbing state having all-trans-retinal and does not photo-convert to any other state, including the original 11-cis-retinal state. Thus, TMT opsins are diversified so as to form a different type of active state, which may be responsible for their different functions. PMID:26491964

  4. LWS/SET End-to-End Data System

    NASA Technical Reports Server (NTRS)

    Giffin, Geoff; Sherman, Barry; Colon, Gilberto (Technical Monitor)

    2002-01-01

    This paper describes the concept for the End-to-End Data System that will support NASA's Living With a Star Space Environment Testbed missions. NASA has initiated the Living With a Star (LWS) Program to develop a better scientific understanding to address the aspects of the connected Sun-Earth system that affect life and society. A principal goal of the program is to bridge the gap.between science, engineering, and user application communities. The Space Environment Testbed (SET) Project is one element of LWS. The Project will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The End-to-end data system allows investigators to access the SET control center, command their experiments, and receive data from their experiments back at their home facility, using the Internet. The logical functioning of major components of the end-to-end data system are described, including the GSFC Payload Operations Control Center (POCC), SET Payloads, the GSFC SET Simulation Lab, SET Experiment PI Facilities, and Host Systems. Host Spacecraft Operations Control Centers (SOCC) and the Host Spacecraft are essential links in the end-to-end data system, but are not directly under the control of the SET Project. Formal interfaces will be established between these entities and elements of the SET Project. The paper describes data flow through the system, from PI facilities connecting to the SET operations center via the Internet, communications to SET carriers and experiments via host systems, to telemetry returns to investigators from their flight experiments. It also outlines the techniques that will be used to meet mission requirements, while holding development and operational costs to a minimum. Additional information is included in the original extended abstract.

  5. Analysis of the opsin repertoire in the tardigrade Hypsibius dujardini provides insights into the evolution of opsin genes in panarthropoda.

    PubMed

    Hering, Lars; Mayer, Georg

    2014-09-04

    Screening of a deeply sequenced transcriptome using Illumina sequencing as well as the genome of the tardigrade Hypsibius dujardini revealed a set of five opsin genes. To clarify the phylogenetic position of these genes and to elucidate the evolutionary history of opsins in Panarthropoda (Onychophora + Tardigrada + Arthropoda), we reconstructed the phylogeny of broadly sampled metazoan opsin genes using maximum likelihood and Bayesian inference methods in conjunction with carefully selected substitution models. According to our findings, the opsin repertoire of H. dujardini comprises representatives of all three major bilaterian opsin clades, including one r-opsin, three c-opsins, and a Group 4 opsin (neuropsin/opsin-5). The identification of the tardigrade ortholog of neuropsin/opsin-5 is the first record of this opsin type in a protostome, but our screening of available metazoan genomes revealed that it is also present in other protostomes. Our opsin phylogeny further suggests that two r-opsins, including an "arthropsin," were present in the last common ancestor of Panarthropoda. Although both r-opsin lineages were retained in Onychophora and Arthropoda, the arthropsin was lost in Tardigrada. The single (most likely visual) r-opsin found in H. dujardini supports the hypothesis of monochromatic vision in the panarthropod ancestor, whereas two duplications of the ancestral panarthropod c-opsin have led to three c-opsins in tardigrades. Although the early-branching nodes are unstable within the metazoans, our findings suggest that the last common ancestor of Bilateria possessed six opsins: Two r-opsins, one c-opsin, and three Group 4 opsins, one of which (Go opsin) was lost in the ecdysozoan lineage.

  6. Analysis of the Opsin Repertoire in the Tardigrade Hypsibius dujardini Provides Insights into the Evolution of Opsin Genes in Panarthropoda

    PubMed Central

    Hering, Lars; Mayer, Georg

    2014-01-01

    Screening of a deeply sequenced transcriptome using Illumina sequencing as well as the genome of the tardigrade Hypsibius dujardini revealed a set of five opsin genes. To clarify the phylogenetic position of these genes and to elucidate the evolutionary history of opsins in Panarthropoda (Onychophora + Tardigrada + Arthropoda), we reconstructed the phylogeny of broadly sampled metazoan opsin genes using maximum likelihood and Bayesian inference methods in conjunction with carefully selected substitution models. According to our findings, the opsin repertoire of H. dujardini comprises representatives of all three major bilaterian opsin clades, including one r-opsin, three c-opsins, and a Group 4 opsin (neuropsin/opsin-5). The identification of the tardigrade ortholog of neuropsin/opsin-5 is the first record of this opsin type in a protostome, but our screening of available metazoan genomes revealed that it is also present in other protostomes. Our opsin phylogeny further suggests that two r-opsins, including an “arthropsin,” were present in the last common ancestor of Panarthropoda. Although both r-opsin lineages were retained in Onychophora and Arthropoda, the arthropsin was lost in Tardigrada. The single (most likely visual) r-opsin found in H. dujardini supports the hypothesis of monochromatic vision in the panarthropod ancestor, whereas two duplications of the ancestral panarthropod c-opsin have led to three c-opsins in tardigrades. Although the early-branching nodes are unstable within the metazoans, our findings suggest that the last common ancestor of Bilateria possessed six opsins: Two r-opsins, one c-opsin, and three Group 4 opsins, one of which (Go opsin) was lost in the ecdysozoan lineage. PMID:25193307

  7. Analysis of the opsin repertoire in the tardigrade Hypsibius dujardini provides insights into the evolution of opsin genes in panarthropoda.

    PubMed

    Hering, Lars; Mayer, Georg

    2014-09-01

    Screening of a deeply sequenced transcriptome using Illumina sequencing as well as the genome of the tardigrade Hypsibius dujardini revealed a set of five opsin genes. To clarify the phylogenetic position of these genes and to elucidate the evolutionary history of opsins in Panarthropoda (Onychophora + Tardigrada + Arthropoda), we reconstructed the phylogeny of broadly sampled metazoan opsin genes using maximum likelihood and Bayesian inference methods in conjunction with carefully selected substitution models. According to our findings, the opsin repertoire of H. dujardini comprises representatives of all three major bilaterian opsin clades, including one r-opsin, three c-opsins, and a Group 4 opsin (neuropsin/opsin-5). The identification of the tardigrade ortholog of neuropsin/opsin-5 is the first record of this opsin type in a protostome, but our screening of available metazoan genomes revealed that it is also present in other protostomes. Our opsin phylogeny further suggests that two r-opsins, including an "arthropsin," were present in the last common ancestor of Panarthropoda. Although both r-opsin lineages were retained in Onychophora and Arthropoda, the arthropsin was lost in Tardigrada. The single (most likely visual) r-opsin found in H. dujardini supports the hypothesis of monochromatic vision in the panarthropod ancestor, whereas two duplications of the ancestral panarthropod c-opsin have led to three c-opsins in tardigrades. Although the early-branching nodes are unstable within the metazoans, our findings suggest that the last common ancestor of Bilateria possessed six opsins: Two r-opsins, one c-opsin, and three Group 4 opsins, one of which (Go opsin) was lost in the ecdysozoan lineage. PMID:25193307

  8. The Microbial Opsin Family of Optogenetic Tools

    PubMed Central

    Zhang, Feng; Vierock, Johannes; Yizhar, Ofer; Fenno, Lief E.; Tsunoda, Satoshi; Kianianmomeni, Arash; Prigge, Matthias; Berndt, Andre; Cushman, John; Polle, Jürgen; Magnuson, Jon; Hegemann, Peter; Deisseroth, Karl

    2014-01-01

    The capture and utilization of light is an exquisitely evolved process. The single-component microbial opsins, although more limited than multicomponent cascades in processing, display unparalleled compactness and speed. Recent advances in understanding microbial opsins have been driven by molecular engineering for optogenetics and by comparative genomics. Here we provide a Primer on these light-activated ion channels and pumps, describe a group of opsins bridging prior categories, and explore the convergence of molecular engineering and genomic discovery for the utilization and understanding of these remarkable molecular machines. PMID:22196724

  9. Carrier Plus: A Sensor Payload for Living With a Star Space Environment Testbed (LWS/SET)

    NASA Technical Reports Server (NTRS)

    Marshall, Cheryl; Moss, Steven; Howard, Regan; LaBel, Kenneth; Grycewicz, Tom; Barth, Janet; Brewer, Dana

    2003-01-01

    The paper discusses the following: 1. Living with a Star (LWS) program: space environment testbed (SET); natural space environment. 2. Carrier plus: goals and benefits. 3. ON-orbit sensor measurements. 4. Carrier plus architecture. 5. Participation in carrier plus.

  10. Involvement of opsins in mammalian sperm thermotaxis

    PubMed Central

    Pérez-Cerezales, Serafín; Boryshpolets, Sergii; Afanzar, Oshri; Brandis, Alexander; Nevo, Reinat; Kiss, Vladimir; Eisenbach, Michael

    2015-01-01

    A unique characteristic of mammalian sperm thermotaxis is extreme temperature sensitivity, manifested by the capacity of spermatozoa to respond to temperature changes of <0.0006 °C as they swim their body-length distance. The identity of the sensing system that confers this exceptional sensitivity on spermatozoa is not known. Here we show that the temperature-sensing system of mammalian spermatozoa involves opsins, known to be G-protein-coupled receptors that act as photosensors in vision. We demonstrate by molecular, immunological, and functional approaches that opsins are present in human and mouse spermatozoa at specific sites, which depend on the species and the opsin type, and that they are involved in sperm thermotaxis via two signalling pathways—the phospholipase C and the cyclic-nucleotide pathways. Our results suggest that, depending on the context and the tissue, mammalian opsins act not only as photosensors but also as thermosensors. PMID:26537127

  11. Metazoan opsin evolution reveals a simple route to animal vision

    PubMed Central

    Feuda, Roberto; Hamilton, Sinead C.; McInerney, James O.; Pisani, Davide

    2012-01-01

    All known visual pigments in Neuralia (Cnidaria, Ctenophora, and Bilateria) are composed of an opsin (a seven-transmembrane G protein-coupled receptor), and a light-sensitive chromophore, generally retinal. Accordingly, opsins play a key role in vision. There is no agreement on the relationships of the neuralian opsin subfamilies, and clarifying their phylogeny is key to elucidating the origin of this protein family and of vision. We used improved methods and data to resolve the opsin phylogeny and explain the evolution of animal vision. We found that the Placozoa have opsins, and that the opsins share a common ancestor with the melatonin receptors. Further to this, we found that all known neuralian opsins can be classified into the same three subfamilies into which the bilaterian opsins are classified: the ciliary (C), rhabdomeric (R), and go-coupled plus retinochrome, retinal G protein-coupled receptor (Go/RGR) opsins. Our results entail a simple scenario of opsin evolution. The first opsin originated from the duplication of the common ancestor of the melatonin and opsin genes in a eumetazoan (Placozoa plus Neuralia) ancestor, and an inference of its amino acid sequence suggests that this protein might not have been light-sensitive. Two more gene duplications in the ancestral neuralian lineage resulted in the origin of the R, C, and Go/RGR opsins. Accordingly, the first animal with at least a C, an R, and a Go/RGR opsin was a neuralian progenitor. PMID:23112152

  12. Metazoan opsin evolution reveals a simple route to animal vision.

    PubMed

    Feuda, Roberto; Hamilton, Sinead C; McInerney, James O; Pisani, Davide

    2012-11-13

    All known visual pigments in Neuralia (Cnidaria, Ctenophora, and Bilateria) are composed of an opsin (a seven-transmembrane G protein-coupled receptor), and a light-sensitive chromophore, generally retinal. Accordingly, opsins play a key role in vision. There is no agreement on the relationships of the neuralian opsin subfamilies, and clarifying their phylogeny is key to elucidating the origin of this protein family and of vision. We used improved methods and data to resolve the opsin phylogeny and explain the evolution of animal vision. We found that the Placozoa have opsins, and that the opsins share a common ancestor with the melatonin receptors. Further to this, we found that all known neuralian opsins can be classified into the same three subfamilies into which the bilaterian opsins are classified: the ciliary (C), rhabdomeric (R), and go-coupled plus retinochrome, retinal G protein-coupled receptor (Go/RGR) opsins. Our results entail a simple scenario of opsin evolution. The first opsin originated from the duplication of the common ancestor of the melatonin and opsin genes in a eumetazoan (Placozoa plus Neuralia) ancestor, and an inference of its amino acid sequence suggests that this protein might not have been light-sensitive. Two more gene duplications in the ancestral neuralian lineage resulted in the origin of the R, C, and Go/RGR opsins. Accordingly, the first animal with at least a C, an R, and a Go/RGR opsin was a neuralian progenitor. PMID:23112152

  13. Broad-Band Activatable White-Opsin

    PubMed Central

    Batabyal, Subrata; Cervenka, Gregory; Ha, Ji Hee; Kim, Young-tae; Mohanty, Samarendra

    2015-01-01

    Currently, the use of optogenetic sensitization of retinal cells combined with activation/inhibition has the potential to be an alternative to retinal implants that would require electrodes inside every single neuron for high visual resolution. However, clinical translation of optogenetic activation for restoration of vision suffers from the drawback that the narrow spectral sensitivity of an opsin requires active stimulation by a blue laser or a light emitting diode with much higher intensities than ambient light. In order to allow an ambient light-based stimulation paradigm, we report the development of a ‘white-opsin’ that has broad spectral excitability in the visible spectrum. The cells sensitized with white-opsin showed excitability at an order of magnitude higher with white light compared to using only narrow-band light components. Further, cells sensitized with white-opsin produced a photocurrent that was five times higher than Channelrhodopsin-2 under similar photo-excitation conditions. The use of fast white-opsin may allow opsin-sensitized neurons in a degenerated retina to exhibit a higher sensitivity to ambient white light. This property, therefore, significantly lowers the activation threshold in contrast to conventional approaches that use intense narrow-band opsins and light to activate cellular stimulation. PMID:26360377

  14. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications

    PubMed Central

    2013-01-01

    Background Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (GNAT) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). Results Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one GNAT, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three GNAT and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R. Conclusions We present an extensive analysis of the paralogon housing the visual opsin, GNAT and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the

  15. Carrier Plus: A sensor payload for Living With a Star Space Environment Testbed (LWS/SET)

    NASA Technical Reports Server (NTRS)

    Marshall, Cheryl J.; Moss, Steven; Howard, Regan; LaBel, Kenneth A.; Grycewicz, Tom; Barth, Janet L.; Brewer, Dana

    2003-01-01

    The Defense Threat Reduction Agency (DTR4) and National Aeronautics and Space Administration (NASA) Goddard Space Flight Center are collaborating to develop the Carrier Plus sensor experiment platform as a capability of the Space Environments Testbed (SET). The Space Environment Testbed (SET) provides flight opportunities for technology experiments as part of NASA's Living With a Star (LWS) program. The Carrier Plus will provide new capability to characterize sensor technologies such as state-of-the-art visible focal plane arrays (FPAs) in a natural space radiation environment. The technical objectives include on-orbit validation of recently developed FPA technologies and performance prediction methodologies, as well as characterization of the FPA radiation response to total ionizing dose damage, displacement damage and transients. It is expected that the sensor experiment will carry 4-6 FPAs and associated radiation correlative environment monitors (CEMs) for a 2006-2007 launch. Sensor technology candidates may include n- and p-charge coupled devices (CCDs), active pixel sensors (APS), and hybrid CMOS arrays. The presentation will describe the Carrier Plus goals and objectives, as well as provide details about the architecture and design. More information on the LWS program can be found at http://lws.gsfc.nasa.gov/. Business announcements for LWS/SET and program briefings are posted at http://lws-set.gsfc.nasa.gov

  16. Paralogous origin of the rhodopsinlike opsin genes in lizards.

    PubMed

    Kawamura, S; Yokoyama, S

    1995-06-01

    Rhodopsinlike opsins constitute a distinct phylogenetic group (Yokoyama 1994, Mol. Biol. Evol. 11:32-39). This RH2 group includes the green-sensitive opsins in chicken and goldfish and the blue-sensitive opsin in a nocturnal lizard gecko. In the present study, we isolated and sequenced the genomic DNA clones for the RH2 opsin gene, rh2Ac, of the diurnal lizard Anolis carolinensis. This single-copy gene spans 18.3 kb from start to stop codons, making it the longest opsin gene known in vertebrates. Phylogenetic analysis strongly suggests that rh2Ac is more closely related to the chicken green opsin gene than to the gecko blue opsin gene. This gene tree differs from the organismal tree, where the two lizard species should be most closely related, implying that rh2Ac and the gecko blue-sensitive opsin genes have been derived from duplicate ancestral genes.

  17. Opsin gene repertoires in northern archaic hominids.

    PubMed

    Taylor, John S; Reimchen, Thomas E

    2016-08-01

    The Neanderthals' northern distribution, hunting techniques, and orbit breadths suggest that they were more active in dim light than modern humans. We surveyed visual opsin genes from four Neanderthals and two other archaic hominids to see if they provided additional support for this hypothesis. This analysis was motivated by the observation that alleles responsible for anomalous trichromacy in humans are more common in northern latitudes, by data suggesting that these variants might enhance vision in mesopic conditions, and by the observation that dim light active species often have fewer opsin genes than diurnal relatives. We also looked for evidence of convergent amino acid substitutions in Neanderthal opsins and orthologs from crepuscular or nocturnal species. The Altai Neanderthal, the Denisovan, and the Ust'-Ishim early modern human had opsin genes that encoded proteins identical to orthologs in the human reference genome. Opsins from the Vindija Cave Neanderthals (three females) had many nonsynonymous substitutions, including several predicted to influence colour vision (e.g., stop codons). However, the functional implications of these observations were difficult to assess, given that "control" loci, where no substitutions were expected, differed from humans to the same extent. This left unresolved the test for colour vision deficiencies in Vindija Cave Neanderthals.

  18. Opsin gene repertoires in northern archaic hominids.

    PubMed

    Taylor, John S; Reimchen, Thomas E

    2016-08-01

    The Neanderthals' northern distribution, hunting techniques, and orbit breadths suggest that they were more active in dim light than modern humans. We surveyed visual opsin genes from four Neanderthals and two other archaic hominids to see if they provided additional support for this hypothesis. This analysis was motivated by the observation that alleles responsible for anomalous trichromacy in humans are more common in northern latitudes, by data suggesting that these variants might enhance vision in mesopic conditions, and by the observation that dim light active species often have fewer opsin genes than diurnal relatives. We also looked for evidence of convergent amino acid substitutions in Neanderthal opsins and orthologs from crepuscular or nocturnal species. The Altai Neanderthal, the Denisovan, and the Ust'-Ishim early modern human had opsin genes that encoded proteins identical to orthologs in the human reference genome. Opsins from the Vindija Cave Neanderthals (three females) had many nonsynonymous substitutions, including several predicted to influence colour vision (e.g., stop codons). However, the functional implications of these observations were difficult to assess, given that "control" loci, where no substitutions were expected, differed from humans to the same extent. This left unresolved the test for colour vision deficiencies in Vindija Cave Neanderthals. PMID:27463216

  19. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision--a significant trend in the evolution of mammalian vision.

    PubMed

    Jacobs, Gerald H

    2013-03-01

    All mammalian cone photopigments are derived from the operation of representatives from two opsin gene families (SWS1 and LWS in marsupial and eutherian mammals; SWS2 and LWS in monotremes), a process that produces cone pigments with respective peak sensitivities in the short and middle-to-long wavelengths. With the exception of a number of primate taxa, the modal pattern for mammals is to have two types of cone photopigment, one drawn from each of the gene families. In recent years, it has been discovered that the SWS1 opsin genes of a widely divergent collection of eutherian mammals have accumulated mutational changes that render them nonfunctional. This alteration reduces the retinal complements of these species to a single cone type, thus rendering ordinary color vision impossible. At present, several dozen species from five mammalian orders have been identified as falling into this category, but the total number of mammalian species that have lost short-wavelength cones in this way is certain to be much larger, perhaps reaching as high as 10% of all species. A number of circumstances that might be used to explain this widespread cone loss can be identified. Among these, the single consistent fact is that the species so affected are nocturnal or, if they are not technically nocturnal, they at least feature retinal organizations that are typically associated with that lifestyle. At the same time, however, there are many nocturnal mammals that retain functional short-wavelength cones. Nocturnality thus appears to set the stage for loss of functional SWS1 opsin genes in mammals, but it cannot be the sole circumstance. PMID:23286388

  20. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision--a significant trend in the evolution of mammalian vision.

    PubMed

    Jacobs, Gerald H

    2013-03-01

    All mammalian cone photopigments are derived from the operation of representatives from two opsin gene families (SWS1 and LWS in marsupial and eutherian mammals; SWS2 and LWS in monotremes), a process that produces cone pigments with respective peak sensitivities in the short and middle-to-long wavelengths. With the exception of a number of primate taxa, the modal pattern for mammals is to have two types of cone photopigment, one drawn from each of the gene families. In recent years, it has been discovered that the SWS1 opsin genes of a widely divergent collection of eutherian mammals have accumulated mutational changes that render them nonfunctional. This alteration reduces the retinal complements of these species to a single cone type, thus rendering ordinary color vision impossible. At present, several dozen species from five mammalian orders have been identified as falling into this category, but the total number of mammalian species that have lost short-wavelength cones in this way is certain to be much larger, perhaps reaching as high as 10% of all species. A number of circumstances that might be used to explain this widespread cone loss can be identified. Among these, the single consistent fact is that the species so affected are nocturnal or, if they are not technically nocturnal, they at least feature retinal organizations that are typically associated with that lifestyle. At the same time, however, there are many nocturnal mammals that retain functional short-wavelength cones. Nocturnality thus appears to set the stage for loss of functional SWS1 opsin genes in mammals, but it cannot be the sole circumstance.

  1. The comb jelly opsins and the origins of animal phototransduction.

    PubMed

    Feuda, Roberto; Rota-Stabelli, Omar; Oakley, Todd H; Pisani, Davide

    2014-07-24

    Opsins mediate light detection in most animals, and understanding their evolution is key to clarify the origin of vision. Despite the public availability of a substantial collection of well-characterized opsins, early opsin evolution has yet to be fully understood, in large part because of the high level of divergence observed among opsins belonging to different subfamilies. As a result, different studies have investigated deep opsin evolution using alternative data sets and reached contradictory results. Here, we integrated the data and methods of three, key, recent studies to further clarify opsin evolution. We show that the opsin relationships are sensitive to outgroup choice; we generate new support for the existence of Rhabdomeric opsins in Cnidaria (e.g., corals and jellyfishes) and show that all comb jelly opsins belong to well-recognized opsin groups (the Go-coupled opsins or the Ciliary opsins), which are also known in Bilateria (e.g., humans, fruit flies, snails, and their allies) and Cnidaria. Our results are most parsimoniously interpreted assuming a traditional animal phylogeny where Ctenophora are not the sister group of all the other animals.

  2. The Comb Jelly Opsins and the Origins of Animal Phototransduction

    PubMed Central

    Feuda, Roberto; Rota-Stabelli, Omar; Oakley, Todd H.; Pisani, Davide

    2014-01-01

    Opsins mediate light detection in most animals, and understanding their evolution is key to clarify the origin of vision. Despite the public availability of a substantial collection of well-characterized opsins, early opsin evolution has yet to be fully understood, in large part because of the high level of divergence observed among opsins belonging to different subfamilies. As a result, different studies have investigated deep opsin evolution using alternative data sets and reached contradictory results. Here, we integrated the data and methods of three, key, recent studies to further clarify opsin evolution. We show that the opsin relationships are sensitive to outgroup choice; we generate new support for the existence of Rhabdomeric opsins in Cnidaria (e.g., corals and jellyfishes) and show that all comb jelly opsins belong to well-recognized opsin groups (the Go-coupled opsins or the Ciliary opsins), which are also known in Bilateria (e.g., humans, fruit flies, snails, and their allies) and Cnidaria. Our results are most parsimoniously interpreted assuming a traditional animal phylogeny where Ctenophora are not the sister group of all the other animals. PMID:25062921

  3. The comb jelly opsins and the origins of animal phototransduction.

    PubMed

    Feuda, Roberto; Rota-Stabelli, Omar; Oakley, Todd H; Pisani, Davide

    2014-08-01

    Opsins mediate light detection in most animals, and understanding their evolution is key to clarify the origin of vision. Despite the public availability of a substantial collection of well-characterized opsins, early opsin evolution has yet to be fully understood, in large part because of the high level of divergence observed among opsins belonging to different subfamilies. As a result, different studies have investigated deep opsin evolution using alternative data sets and reached contradictory results. Here, we integrated the data and methods of three, key, recent studies to further clarify opsin evolution. We show that the opsin relationships are sensitive to outgroup choice; we generate new support for the existence of Rhabdomeric opsins in Cnidaria (e.g., corals and jellyfishes) and show that all comb jelly opsins belong to well-recognized opsin groups (the Go-coupled opsins or the Ciliary opsins), which are also known in Bilateria (e.g., humans, fruit flies, snails, and their allies) and Cnidaria. Our results are most parsimoniously interpreted assuming a traditional animal phylogeny where Ctenophora are not the sister group of all the other animals. PMID:25062921

  4. Living with a Star (LWS) Space Environment Testbeds (SET), Mission Carrier Overview and Capabilities

    NASA Technical Reports Server (NTRS)

    Patschke, Robert; Barth, Janet; Label, Ken; Mariano, Carolyn; Pham, Karen; Brewer, Dana; Cuviello, Michael; Kobe, David; Wu, Carl; Jarosz, Donald

    2004-01-01

    NASA has initiated the Living With a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The three program elements of the LWS Program are Science Missions; Targeted Research and Technology; and Space Environment Testbeds (SETS). SET is an ideal platform for small experiments performing research on space environment effects on technologies and on the mitigation of space weather effects. A short description of the LWS Program will be given, and the SET will be described in detail, giving the mission objectives, available carrier services, and upcoming flight opportunities.

  5. Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: Evidence from visual opsin gene expression

    USGS Publications Warehouse

    Simoe, Bruno F; Sampaio, Filipa L.; Loew, Ellis R.; Sanders, Kate L.; Fisher, Robert N.; Hart, Nathan S.; Hunt, David M.; Partridge, Julian C.; Gower, David J.

    2016-01-01

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor ‘transmutation’. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels.

  6. Multiple rod-cone and cone-rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression.

    PubMed

    Simões, Bruno F; Sampaio, Filipa L; Loew, Ellis R; Sanders, Kate L; Fisher, Robert N; Hart, Nathan S; Hunt, David M; Partridge, Julian C; Gower, David J

    2016-01-27

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor 'transmutation'. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels.

  7. Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution.

    PubMed

    Liegertová, Michaela; Pergner, Jiří; Kozmiková, Iryna; Fabian, Peter; Pombinho, Antonio R; Strnad, Hynek; Pačes, Jan; Vlček, Čestmír; Bartůněk, Petr; Kozmik, Zbyněk

    2015-07-08

    Animals sense light primarily by an opsin-based photopigment present in a photoreceptor cell. Cnidaria are arguably the most basal phylum containing a well-developed visual system. The evolutionary history of opsins in the animal kingdom has not yet been resolved. Here, we study the evolution of animal opsins by genome-wide analysis of the cubozoan jellyfish Tripedalia cystophora, a cnidarian possessing complex lens-containing eyes and minor photoreceptors. A large number of opsin genes with distinct tissue- and stage-specific expression were identified. Our phylogenetic analysis unequivocally classifies cubozoan opsins as a sister group to c-opsins and documents lineage-specific expansion of the opsin gene repertoire in the cubozoan genome. Functional analyses provided evidence for the use of the Gs-cAMP signaling pathway in a small set of cubozoan opsins, indicating the possibility that the majority of other cubozoan opsins signal via distinct pathways. Additionally, these tests uncovered subtle differences among individual opsins, suggesting possible fine-tuning for specific photoreceptor tasks. Based on phylogenetic, expression and biochemical analysis we propose that rapid lineage- and species-specific duplications of the intron-less opsin genes and their subsequent functional diversification promoted evolution of a large repertoire of both visual and extraocular photoreceptors in cubozoans.

  8. A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds.

    PubMed

    Nakane, Yusuke; Ikegami, Keisuke; Ono, Hiroko; Yamamoto, Naoyuki; Yoshida, Shosei; Hirunagi, Kanjun; Ebihara, Shizufumi; Kubo, Yoshihiro; Yoshimura, Takashi

    2010-08-24

    It has been known for many decades that nonmammalian vertebrates detect light by deep brain photoreceptors that lie outside the retina and pineal organ to regulate seasonal cycle of reproduction. However, the identity of these photoreceptors has so far remained unclear. Here we report that Opsin 5 is a deep brain photoreceptive molecule in the quail brain. Expression analysis of members of the opsin superfamily identified as Opsin 5 (OPN5; also known as Gpr136, Neuropsin, PGR12, and TMEM13) mRNA in the paraventricular organ (PVO), an area long believed to be capable of phototransduction. Immunohistochemistry identified Opsin 5 in neurons that contact the cerebrospinal fluid in the PVO, as well as fibers extending to the external zone of the median eminence adjacent to the pars tuberalis of the pituitary gland, which translates photoperiodic information into neuroendocrine responses. Heterologous expression of Opsin 5 in Xenopus oocytes resulted in light-dependent activation of membrane currents, the action spectrum of which showed peak sensitivity (lambda(max)) at approximately 420 nm. We also found that short-wavelength light, i.e., between UV-B and blue light, induced photoperiodic responses in eye-patched, pinealectomized quail. Thus, Opsin 5 appears to be one of the deep brain photoreceptive molecules that regulates seasonal reproduction in birds. PMID:20679218

  9. The Dynamic Evolutionary History of Pancrustacean Eyes and Opsins.

    PubMed

    Henze, Miriam J; Oakley, Todd H

    2015-11-01

    Pancrustacea (Hexapoda plus Crustacea) display an enormous diversity of eye designs, including multiple types of compound eyes and single-chambered eyes, often with color vision and/or polarization vision. Although the eyes of some pancrustaceans are well-studied, there is still much to learn about the evolutionary paths to this amazing visual diversity. Here, we examine the evolutionary history of eyes and opsins across the principle groups of Pancrustacea. First, we review the distribution of lateral and median eyes, which are found in all major pancrustacean clades (Oligostraca, Multicrustacea, and Allotriocarida). At the same time, each of those three clades has taxa that lack lateral and/or median eyes. We then compile data on the expression of visual r-opsins (rhabdomeric opsins) in lateral and median eyes across Pancrustacea and find no evidence for ancient opsin clades expressed in only one type of eye. Instead, opsin clades with eye-specific expression are products of recent gene duplications, indicating a dynamic past, during which opsins often changed expression from one type of eye to another. We also investigate the evolutionary history of peropsins and r-opsins, which are both known to be expressed in eyes of arthropods. By searching published transcriptomes, we discover for the first time crustacean peropsins and suggest that previously reported odonate opsins may also be peropsins. Finally, from analyzing a reconciled, phylogenetic tree of arthropod r-opsins, we infer that the ancestral pancrustacean had four visual opsin genes, which we call LW2, MW1, MW2, and SW. These are the progenitors of opsin clades that later were variously duplicated or lost during pancrustacean evolution. Together, our results reveal a particularly dynamic history, with losses of eyes, duplication and loss of opsin genes, and changes in opsin expression between types of eyes.

  10. Two opsin genes from the vetch aphid, Megoura viciae.

    PubMed

    Gao, N; Foster, R G; Hardie, J

    2000-04-01

    The cDNAs of two opsins (Megopsin1 and Megopsin2) from the vetch aphid, Megoura viciae, have been sequenced and encoded for gene products with 378 and 371 amino acid residues, respectively. Phylogenetic analysis reveals that Megopsin1 falls into the insect long-wavelength opsin group and Megopsin2 is a member of the insect UV-wavelength opsins. Both opsins share the key features of G-protein-coupled receptors and the specific motifs of photopigments. In situ hybridization demonstrated that the transcripts of Megopsin1 and Megopsin2 were expressed in the retinula cells of the compound eyes.

  11. Implications of the ISO LWS spectrum of the prototypical ultraluminous galaxy: ARP 220

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Satyapal, S.; Luhman, M. L.; Melnick, G.; Cox, P.; Cernicharo, J.; Stacey, G. J.; Smith, H. A.; Lord, S. D.; Greenhouse, M. A.

    1997-01-01

    The low resolution far infrared spectrum of the galaxy Arp 220, obtained with the low wavelength spectrometer (LWS) onboard the Infrared Space Observatory (ISO), is presented. The spectrum is dominated by the OH, H2O, CH, NH3 and O I absorption lines. The upper limits on the far infrared fine structure lines indicate a softer radiation in Arp 220 than in starburst galaxies.

  12. Opsin clines in butterflies suggest novel roles for insect photopigments.

    PubMed

    Frentiu, Francesca D; Yuan, Furong; Savage, Wesley K; Bernard, Gary D; Mullen, Sean P; Briscoe, Adriana D

    2015-02-01

    Opsins are ancient molecules that enable animal vision by coupling to a vitamin-derived chromophore to form light-sensitive photopigments. The primary drivers of evolutionary diversification in opsins are thought to be visual tasks related to spectral sensitivity and color vision. Typically, only a few opsin amino acid sites affect photopigment spectral sensitivity. We show that opsin genes of the North American butterfly Limenitis arthemis have diversified along a latitudinal cline, consistent with natural selection due to environmental factors. We sequenced single nucleotide (SNP) polymorphisms in the coding regions of the ultraviolet (UVRh), blue (BRh), and long-wavelength (LWRh) opsin genes from ten butterfly populations along the eastern United States and found that a majority of opsin SNPs showed significant clinal variation. Outlier detection and analysis of molecular variance indicated that many SNPs are under balancing selection and show significant population structure. This contrasts with what we found by analysing SNPs in the wingless and EF-1 alpha loci, and from neutral amplified fragment length polymorphisms, which show no evidence of significant locus-specific or genome-wide structure among populations. Using a combination of functional genetic and physiological approaches, including expression in cell culture, transgenic Drosophila, UV-visible spectroscopy, and optophysiology, we show that key BRh opsin SNPs that vary clinally have almost no effect on spectral sensitivity. Our results suggest that opsin diversification in this butterfly is more consistent with natural selection unrelated to spectral tuning. Some of the clinally varying SNPs may instead play a role in regulating opsin gene expression levels or the thermostability of the opsin protein. Lastly, we discuss the possibility that insect opsins might have important, yet-to-be elucidated, adaptive functions in mediating animal responses to abiotic factors, such as temperature or photoperiod.

  13. Opsin clines in butterflies suggest novel roles for insect photopigments.

    PubMed

    Frentiu, Francesca D; Yuan, Furong; Savage, Wesley K; Bernard, Gary D; Mullen, Sean P; Briscoe, Adriana D

    2015-02-01

    Opsins are ancient molecules that enable animal vision by coupling to a vitamin-derived chromophore to form light-sensitive photopigments. The primary drivers of evolutionary diversification in opsins are thought to be visual tasks related to spectral sensitivity and color vision. Typically, only a few opsin amino acid sites affect photopigment spectral sensitivity. We show that opsin genes of the North American butterfly Limenitis arthemis have diversified along a latitudinal cline, consistent with natural selection due to environmental factors. We sequenced single nucleotide (SNP) polymorphisms in the coding regions of the ultraviolet (UVRh), blue (BRh), and long-wavelength (LWRh) opsin genes from ten butterfly populations along the eastern United States and found that a majority of opsin SNPs showed significant clinal variation. Outlier detection and analysis of molecular variance indicated that many SNPs are under balancing selection and show significant population structure. This contrasts with what we found by analysing SNPs in the wingless and EF-1 alpha loci, and from neutral amplified fragment length polymorphisms, which show no evidence of significant locus-specific or genome-wide structure among populations. Using a combination of functional genetic and physiological approaches, including expression in cell culture, transgenic Drosophila, UV-visible spectroscopy, and optophysiology, we show that key BRh opsin SNPs that vary clinally have almost no effect on spectral sensitivity. Our results suggest that opsin diversification in this butterfly is more consistent with natural selection unrelated to spectral tuning. Some of the clinally varying SNPs may instead play a role in regulating opsin gene expression levels or the thermostability of the opsin protein. Lastly, we discuss the possibility that insect opsins might have important, yet-to-be elucidated, adaptive functions in mediating animal responses to abiotic factors, such as temperature or photoperiod

  14. Variable rates of evolution among Drosophila opsin genes.

    PubMed

    Carulli, J P; Hartl, D L

    1992-09-01

    DNA sequences and chromosomal locations of four Drosophila pseudoobscura opsin genes were compared with those from Drosophila melanogaster, to determine factors that influence the evolution of multigene families. Although the opsin proteins perform the same primary functions, the comparisons reveal a wide range of evolutionary rates. Amino acid identities for the opsins range from 90% for Rh2 to more than 95% for Rh1 and Rh4. Variation in the rate of synonymous site substitution is especially striking: the major opsin, encoded by the Rh1 locus, differs at only 26.1% of synonymous sites between D. pseudoobscura and D. melanogaster, while the other opsin loci differ by as much as 39.2% at synonymous sites. Rh3 and Rh4 have similar levels of synonymous nucleotide substitution but significantly different amounts of amino acid replacement. This decoupling of nucleotide substitution and amino acid replacement suggests that different selective pressures are acting on these similar genes. There is significant heterogeneity in base composition and codon usage bias among the opsin genes in both species, but there are no consistent relationships between these factors and the rate of evolution of the opsins. In addition to exhibiting variation in evolutionary rates, the opsin loci in these species reveal rearrangements of chromosome elements.

  15. Genetic basis of differential opsin gene expression in cichlid fishes.

    PubMed

    Carleton, K L; Hofmann, C M; Klisz, C; Patel, Z; Chircus, L M; Simenauer, L H; Soodoo, N; Albertson, R C; Ser, J R

    2010-04-01

    Visual sensitivity can be tuned by differential expression of opsin genes. Among African cichlid fishes, seven cone opsin genes are expressed in different combinations to produce diverse visual sensitivities. To determine the genetic architecture controlling these adaptive differences, we analysed genetic crosses between species expressing different complements of opsin genes. Quantitative genetic analyses suggest that expression is controlled by only a few loci with correlations among some genes. Genetic mapping identifies clear evidence of trans-acting factors in two chromosomal regions that contribute to differences in opsin expression as well as one cis-regulatory region. Therefore, both cis and trans regulation are important. The simple genetic architecture suggested by these results may explain why opsin gene expression is evolutionarily labile, and why similar patterns of expression have evolved repeatedly in different lineages.

  16. Reconstructing the ancestral butterfly eye: focus on the opsins.

    PubMed

    Briscoe, Adriana D

    2008-06-01

    The eyes of butterflies are remarkable, because they are nearly as diverse as the colors of wings. Much of eye diversity can be traced to alterations in the number, spectral properties and spatial distribution of the visual pigments. Visual pigments are light-sensitive molecules composed of an opsin protein and a chromophore. Most butterflies have eyes that contain visual pigments with a wavelength of peak absorbance, lambda(max), in the ultraviolet (UV, 300-400 nm), blue (B, 400-500 nm) and long wavelength (LW, 500-600 nm) part of the visible light spectrum, respectively, encoded by distinct UV, B and LW opsin genes. In the compound eye of butterflies, each individual ommatidium is composed of nine photoreceptor cells (R1-9) that generally express only one opsin mRNA per cell, although in some butterfly eyes there are ommatidial subtypes in which two opsins are co-expressed in the same photoreceptor cell. Based on a phylogenetic analysis of opsin cDNAs from the five butterfly families, Papilionidae, Pieridae, Nymphalidae, Lycaenidae and Riodinidae, and comparative analysis of opsin gene expression patterns from four of the five families, I propose a model for the patterning of the ancestral butterfly eye that is most closely aligned with the nymphalid eye. The R1 and R2 cells of the main retina expressed UV-UV-, UV-B- or B-B-absorbing visual pigments while the R3-9 cells expressed a LW-absorbing visual pigment. Visual systems of existing butterflies then underwent an adaptive expansion based on lineage-specific B and LW opsin gene multiplications and on alterations in the spatial expression of opsins within the eye. Understanding the molecular sophistication of butterfly eye complexity is a challenge that, if met, has broad biological implications.

  17. Parallel evolution of opsin gene expression in African cichlid fishes.

    PubMed

    O'Quin, Kelly E; Hofmann, Christopher M; Hofmann, Hans A; Carleton, Karen L

    2010-12-01

    Phenotypic evolution may occur either through alterations to the structure of protein-coding genes or their expression. Evidence for which of these two mechanisms more commonly contribute to the evolution of a phenotype can be garnered from examples of parallel and convergent evolution. The visual system of East African cichlid fishes is an excellent system with which to address this question. Cichlid fishes from Lakes Malawi (LM) and Victoria together exhibit three diverse palettes of coexpressed opsins and several important protein-coding mutations that both shift spectral sensitivity. Here we assess both opsin expression and protein-coding diversity among cichlids from a third rift lake, Lake Tanganyika (LT). We found that Tanganyikan cichlids exhibit three palettes of coexpressed opsins that largely overlap the short-, middle-, and long-wavelength-sensitive palettes of LM cichlids. Bayesian phenotypic clustering and ancestral state reconstructions both support the parallel evolution of the short- and middle-wavelength palettes among cichlids from LT and LM. In each case, these transitions occurred from different ancestors that expressed the same long-wavelength palette. We also identified similar but distinct patterns of correlated evolution between opsin expression, diet, and lens transmittance among cichlids from LT and LM as well. In contrast to regulatory changes, we identified few functional or potentially functional mutations in the protein-coding sequences of three variable opsins, with the possible exception of the SWS1 (ultraviolet) opsin. These results underscore the important contribution that gene regulation can make to rapid phenotypic evolution and adaptation.

  18. Modeling Active Region Evolution - A New LWS TR and T Strategic Capability Model Suite

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter

    2012-01-01

    In 2006 the LWS TR&T Program funded us to develop a strategic capability model of slowly evolving coronal active regions. In this poster we report on the overall design, and status of our new modeling suite. Our design features two coronal field models, a non-linear force free field model and a global 3D MHD code. The suite includes supporting tools and a user friendly GUI which will enable users to query the web for relevant magnetograms, download them, process them to synthesize a sequence of photospheric magnetograms and associated photospheric flow field which can then be applied to drive the coronal model innner boundary, run the coronal models and finally visualize the results.

  19. Opsin co-expression in Limulus photoreceptors: differential regulation by light and a circadian clock

    PubMed Central

    Katti, C.; Kempler, K.; Porter, M. L.; Legg, A.; Gonzalez, R.; Garcia-Rivera, E.; Dugger, D.; Battelle, B.-A.

    2010-01-01

    A long-standing concept in vision science has held that a single photoreceptor expresses a single type of opsin, the protein component of visual pigment. However, the number of examples in the literature of photoreceptors from vertebrates and invertebrates that break this rule is increasing. Here, we describe a newly discovered Limulus opsin, Limulus opsin5, which is significantly different from previously characterized Limulus opsins, opsins1 and 2. We show that opsin5 is co-expressed with opsins1 and 2 in Limulus lateral and ventral eye photoreceptors and provide the first evidence that the expression of co-expressed opsins can be differentially regulated. We show that the relative levels of opsin5 and opsin1 and 2 in the rhabdom change with a diurnal rhythm and that their relative levels are also influenced by the animal's central circadian clock. An analysis of the sequence of opsin5 suggests it is sensitive to visible light (400–700 nm) but that its spectral properties may be different from that of opsins1 and 2. Changes in the relative levels of these opsins may underlie some of the dramatic day–night changes in Limulus photoreceptor function and may produce a diurnal change in their spectral sensitivity. PMID:20639420

  20. Opsin co-expression in Limulus photoreceptors: differential regulation by light and a circadian clock.

    PubMed

    Katti, C; Kempler, K; Porter, M L; Legg, A; Gonzalez, R; Garcia-Rivera, E; Dugger, D; Battelle, B-A

    2010-08-01

    A long-standing concept in vision science has held that a single photoreceptor expresses a single type of opsin, the protein component of visual pigment. However, the number of examples in the literature of photoreceptors from vertebrates and invertebrates that break this rule is increasing. Here, we describe a newly discovered Limulus opsin, Limulus opsin5, which is significantly different from previously characterized Limulus opsins, opsins1 and 2. We show that opsin5 is co-expressed with opsins1 and 2 in Limulus lateral and ventral eye photoreceptors and provide the first evidence that the expression of co-expressed opsins can be differentially regulated. We show that the relative levels of opsin5 and opsin1 and 2 in the rhabdom change with a diurnal rhythm and that their relative levels are also influenced by the animal's central circadian clock. An analysis of the sequence of opsin5 suggests it is sensitive to visible light (400-700 nm) but that its spectral properties may be different from that of opsins1 and 2. Changes in the relative levels of these opsins may underlie some of the dramatic day-night changes in Limulus photoreceptor function and may produce a diurnal change in their spectral sensitivity. PMID:20639420

  1. Gas and dust in the Galactic Centre - ISO LWS, submillimetre line and continuum observations.

    NASA Astrophysics Data System (ADS)

    Etxaluze, M.; White, G. J.; Smith, H. A.; Gonzalez-Alfonso, E.; Stark, A. A.; Stacey, G. J.; Leeks, S. J.; Gatley, I.; Fisher, J.; Pierce-Price, D.; Richer, J. S.; Grundy, T. W.; Polehampton, E. T.

    2011-05-01

    The Infrared Space Observatory (ISO) Long wavelength Spectrometer (LWS) has been used to map distribution of the emission from a sample of 22 atomic, molecular and ionised lines toward the Circumnuclear Disk at the Galactic Centre. The circumnuclear disc is clearly seen in the maps of molecular lines such as CO and OH, whilst the central region dominates in other atomic and ionised lines such as [O III] and [N III]. The ISO-LWS spectrum toward Sgr A^* is best represented by the sum of three blackbody curves of 90, 44.5 and 16 K, superposed with 22 lines, including CO, OH, [O I], [O III], [N II], [C II] and H_2O. The CO 4.7 μm absorption band head observed with the ISO SWS spectrometer toward SgrA^* is modeled as having a cold component with Trot = 10 K, for which we estimate N(CO)=7.7× 1018 cm-2, N(13CO) = 1.7× 1017 cm-2 and N(C18O)= 2.1× 1016 cm-2, and a warm component by n(H_2) = 1× 10^5 cm-3, T_k = 70 K, N(CO) = 3.9× 1018 cm-2, N(13CO)= N(CO)/40, N(C18O)= N(CO). Observations of hydrogen recombination lines toward SgrA^* are moddeled as representing a line of sight extiction A_V˜ 24 -28 magnitudes. The SCUBA data at 450 and 850 μm are used in this paper in order to make an estimation of the CND mass of ˜ 2.3× 10^4 M⊙, after removal of the free-free contribution and the local background.

  2. Extraordinary diversity of visual opsin genes in dragonflies

    PubMed Central

    Futahashi, Ryo; Kawahara-Miki, Ryouka; Kinoshita, Michiyo; Yoshitake, Kazutoshi; Yajima, Shunsuke; Arikawa, Kentaro; Fukatsu, Takema

    2015-01-01

    Dragonflies are colorful and large-eyed animals strongly dependent on color vision. Here we report an extraordinary large number of opsin genes in dragonflies and their characteristic spatiotemporal expression patterns. Exhaustive transcriptomic and genomic surveys of three dragonflies of the family Libellulidae consistently identified 20 opsin genes, consisting of 4 nonvisual opsin genes and 16 visual opsin genes of 1 UV, 5 short-wavelength (SW), and 10 long-wavelength (LW) type. Comprehensive transcriptomic survey of the other dragonflies representing an additional 10 families also identified as many as 15–33 opsin genes. Molecular phylogenetic analysis revealed dynamic multiplications and losses of the opsin genes in the course of evolution. In contrast to many SW and LW genes expressed in adults, only one SW gene and several LW genes were expressed in larvae, reflecting less visual dependence and LW-skewed light conditions for their lifestyle under water. In this context, notably, the sand-burrowing or pit-dwelling species tended to lack SW gene expression in larvae. In adult visual organs: (i) many SW genes and a few LW genes were expressed in the dorsal region of compound eyes, presumably for processing SW-skewed light from the sky; (ii) a few SW genes and many LW genes were expressed in the ventral region of compound eyes, probably for perceiving terrestrial objects; and (iii) expression of a specific LW gene was associated with ocelli. Our findings suggest that the stage- and region-specific expressions of the diverse opsin genes underlie the behavior, ecology, and adaptation of dragonflies. PMID:25713365

  3. Extraordinary diversity of visual opsin genes in dragonflies.

    PubMed

    Futahashi, Ryo; Kawahara-Miki, Ryouka; Kinoshita, Michiyo; Yoshitake, Kazutoshi; Yajima, Shunsuke; Arikawa, Kentaro; Fukatsu, Takema

    2015-03-17

    Dragonflies are colorful and large-eyed animals strongly dependent on color vision. Here we report an extraordinary large number of opsin genes in dragonflies and their characteristic spatiotemporal expression patterns. Exhaustive transcriptomic and genomic surveys of three dragonflies of the family Libellulidae consistently identified 20 opsin genes, consisting of 4 nonvisual opsin genes and 16 visual opsin genes of 1 UV, 5 short-wavelength (SW), and 10 long-wavelength (LW) type. Comprehensive transcriptomic survey of the other dragonflies representing an additional 10 families also identified as many as 15-33 opsin genes. Molecular phylogenetic analysis revealed dynamic multiplications and losses of the opsin genes in the course of evolution. In contrast to many SW and LW genes expressed in adults, only one SW gene and several LW genes were expressed in larvae, reflecting less visual dependence and LW-skewed light conditions for their lifestyle under water. In this context, notably, the sand-burrowing or pit-dwelling species tended to lack SW gene expression in larvae. In adult visual organs: (i) many SW genes and a few LW genes were expressed in the dorsal region of compound eyes, presumably for processing SW-skewed light from the sky; (ii) a few SW genes and many LW genes were expressed in the ventral region of compound eyes, probably for perceiving terrestrial objects; and (iii) expression of a specific LW gene was associated with ocelli. Our findings suggest that the stage- and region-specific expressions of the diverse opsin genes underlie the behavior, ecology, and adaptation of dragonflies. PMID:25713365

  4. Extraordinary diversity of visual opsin genes in dragonflies.

    PubMed

    Futahashi, Ryo; Kawahara-Miki, Ryouka; Kinoshita, Michiyo; Yoshitake, Kazutoshi; Yajima, Shunsuke; Arikawa, Kentaro; Fukatsu, Takema

    2015-03-17

    Dragonflies are colorful and large-eyed animals strongly dependent on color vision. Here we report an extraordinary large number of opsin genes in dragonflies and their characteristic spatiotemporal expression patterns. Exhaustive transcriptomic and genomic surveys of three dragonflies of the family Libellulidae consistently identified 20 opsin genes, consisting of 4 nonvisual opsin genes and 16 visual opsin genes of 1 UV, 5 short-wavelength (SW), and 10 long-wavelength (LW) type. Comprehensive transcriptomic survey of the other dragonflies representing an additional 10 families also identified as many as 15-33 opsin genes. Molecular phylogenetic analysis revealed dynamic multiplications and losses of the opsin genes in the course of evolution. In contrast to many SW and LW genes expressed in adults, only one SW gene and several LW genes were expressed in larvae, reflecting less visual dependence and LW-skewed light conditions for their lifestyle under water. In this context, notably, the sand-burrowing or pit-dwelling species tended to lack SW gene expression in larvae. In adult visual organs: (i) many SW genes and a few LW genes were expressed in the dorsal region of compound eyes, presumably for processing SW-skewed light from the sky; (ii) a few SW genes and many LW genes were expressed in the ventral region of compound eyes, probably for perceiving terrestrial objects; and (iii) expression of a specific LW gene was associated with ocelli. Our findings suggest that the stage- and region-specific expressions of the diverse opsin genes underlie the behavior, ecology, and adaptation of dragonflies.

  5. Ant opsins: sequences from the Saharan silver ant and the carpenter ant.

    PubMed

    Popp, M P; Grisshammer, R; Hargrave, P A; Smith, W C

    1996-03-01

    cDNA clones encoding opsins from compound eyes of carpenter ant, Camponotus abdominalis, and Saharan silver ant, Cataglyphis bombycina, were isolated from cDNA libraries. The opsin cDNAs from each species code for deduced proteins with 378 amino acids which are 92% identical. Of the 30 amino acid differences between the two proteins, 13 are non-conservative. Eight of these non-conservative substitutions are within the membrane spanning domain. The presence of a potential Schiff-base counterion in helix III in both species suggests that these opsins are the protein moiety of the visible range pigments. When compared to all known opsins, these opsins are most similar to the opsin from preying mantis (76% identity at the amino acid level). Phyletic comparisons group the two ant opsins with the other arthropod long wavelength opsins.

  6. Ant opsins: sequences from the Saharan silver ant and the carpenter ant.

    PubMed

    Popp, M P; Grisshammer, R; Hargrave, P A; Smith, W C

    1996-03-01

    cDNA clones encoding opsins from compound eyes of carpenter ant, Camponotus abdominalis, and Saharan silver ant, Cataglyphis bombycina, were isolated from cDNA libraries. The opsin cDNAs from each species code for deduced proteins with 378 amino acids which are 92% identical. Of the 30 amino acid differences between the two proteins, 13 are non-conservative. Eight of these non-conservative substitutions are within the membrane spanning domain. The presence of a potential Schiff-base counterion in helix III in both species suggests that these opsins are the protein moiety of the visible range pigments. When compared to all known opsins, these opsins are most similar to the opsin from preying mantis (76% identity at the amino acid level). Phyletic comparisons group the two ant opsins with the other arthropod long wavelength opsins. PMID:9372150

  7. Expression of opsin genes early in ocular development of humans and mice.

    PubMed

    Tarttelin, Emma E; Bellingham, James; Bibb, Lindsay C; Foster, Russell G; Hankins, Mark W; Gregory-Evans, Kevin; Gregory-Evans, Cheryl Y; Wells, Dominic J; Lucas, Robert J

    2003-03-01

    We have compared the onsets of expression of the classical visual opsins with those of the non-rod, non-cone opsins in foetal and post-natal eye tissue from mice and humans. Mouse Rgr-opsin, peropsin, encephalopsin and melanopsin are all expressed in foetal development by E11.5, unlike the murine rod and cone opsins that exhibit post-natal expression, e.g. P1 for ultraviolet cone opsin and P5 for rod opsin. Human non-rod, non-cone opsins are also all expressed early, by 8.6 weeks post-conception. The implications of these observations are discussed with regard to the possible functions of these opsins at early stages of ocular development.

  8. The evolution and expression of the moth visual opsin family.

    PubMed

    Xu, Pengjun; Lu, Bin; Xiao, Haijun; Fu, Xiaowei; Murphy, Robert W; Wu, Kongming

    2013-01-01

    Because visual genes likely evolved in response to their ambient photic environment, the dichotomy between closely related nocturnal moths and diurnal butterflies forms an ideal basis for investigating their evolution. To investigate whether the visual genes of moths are associated with nocturnal dim-light environments or not, we cloned long-wavelength (R), blue (B) and ultraviolet (UV) opsin genes from 12 species of wild-captured moths and examined their evolutionary functions. Strong purifying selection appeared to constrain the functions of the genes. Dark-treatment altered the levels of mRNA expression in Helicoverpa armigera such that R and UV opsins were up-regulated after dark-treatment, the latter faster than the former. In contrast, B opsins were not significantly up-regulated. Diel changes of opsin mRNA levels in both wild-captured and lab-reared individuals showed no significant fluctuation within the same group. However, the former group had significantly elevated levels of expression compared with the latter. Consequently, environmental conditions appeared to affect the patterns of expression. These findings and the proportional expression of opsins suggested that moths potentially possessed color vision and the visual system played a more important role in the ecology of moths than previously appreciated. This aspect did not differ much from that of diurnal butterflies.

  9. Evidence from opsin genes rejects nocturnality in ancestral primates

    PubMed Central

    Tan, Ying; Yoder, Anne D.; Yamashita, Nayuta; Li, Wen-Hsiung

    2005-01-01

    It is firmly believed that ancestral primates were nocturnal, with nocturnality having been maintained in most prosimian lineages. Under this traditional view, the opsin genes in all nocturnal prosimians should have undergone similar degrees of functional relaxation and accumulated similar extents of deleterious mutations. This expectation is rejected by the short-wavelength (S) opsin gene sequences from 14 representative prosimians. We found severe defects of the S opsin gene only in lorisiforms, but no defect in five nocturnal and two diurnal lemur species and only minor defects in two tarsiers and two nocturnal lemurs. Further, the nonsynonymous-to-synonymous rate ratio of the S opsin gene is highest in the lorisiforms and varies among the other prosimian branches, indicating different time periods of functional relaxation among lineages. These observations suggest that the ancestral primates were diurnal or cathemeral and that nocturnality has evolved several times in the prosimians, first in the lorisiforms but much later in other lineages. This view is further supported by the distribution pattern of the middle-wavelength (M) and long-wavelength (L) opsin genes among prosimians. PMID:16192351

  10. Evidence from opsin genes rejects nocturnality in ancestral primates.

    PubMed

    Tan, Ying; Yoder, Anne D; Yamashita, Nayuta; Li, Wen-Hsiung

    2005-10-11

    It is firmly believed that ancestral primates were nocturnal, with nocturnality having been maintained in most prosimian lineages. Under this traditional view, the opsin genes in all nocturnal prosimians should have undergone similar degrees of functional relaxation and accumulated similar extents of deleterious mutations. This expectation is rejected by the short-wavelength (S) opsin gene sequences from 14 representative prosimians. We found severe defects of the S opsin gene only in lorisiforms, but no defect in five nocturnal and two diurnal lemur species and only minor defects in two tarsiers and two nocturnal lemurs. Further, the nonsynonymous-to-synonymous rate ratio of the S opsin gene is highest in the lorisiforms and varies among the other prosimian branches, indicating different time periods of functional relaxation among lineages. These observations suggest that the ancestral primates were diurnal or cathemeral and that nocturnality has evolved several times in the prosimians, first in the lorisiforms but much later in other lineages. This view is further supported by the distribution pattern of the middle-wavelength (M) and long-wavelength (L) opsin genes among prosimians.

  11. Making the gradient: Thyroid hormone regulates cone opsin expression in the developing mouse retina

    PubMed Central

    Roberts, Melanie R.; Srinivas, Maya; Forrest, Douglas; Morreale de Escobar, Gabriella; Reh, Thomas A.

    2006-01-01

    Most mammals have two types of cone photoreceptors, which contain either medium wavelength (M) or short wavelength (S) opsin. The number and spatial organization of cone types varies dramatically among species, presumably to fine-tune the retina for different visual environments. In the mouse, S- and M-opsin are expressed in an opposing dorsal–ventral gradient. We previously reported that cone opsin patterning requires thyroid hormone β2, a nuclear hormone receptor that regulates transcription in conjunction with its ligand, thyroid hormone (TH). Here we show that exogenous TH inhibits S-opsin expression, but activates M-opsin expression. Binding of endogenous TH to TRβ2 is required to inhibit S-opsin and to activate M-opsin. TH is symmetrically distributed in the retina at birth as S-opsin expression begins, but becomes elevated in the dorsal retina at the time of M-opsin onset (postnatal day 10). Our results show that TH is a critical regulator of both S-opsin and M-opsin, and suggest that a TH gradient may play a role in establishing the gradient of M-opsin. These results also suggest that the ratio and patterning of cone types may be determined by TH availability during retinal development. PMID:16606843

  12. Differential expression of duplicated VAL-opsin genes in the developing zebrafish.

    PubMed

    Kojima, Daisuke; Torii, Masaki; Fukada, Yoshitaka; Dowling, John E

    2008-03-01

    Non-visual opsins mediate various light-dependent physiological events. Our previous search for non-visual opsin genes in zebrafish led to the discovery of VAL-opsin (VAL-opsinA) in deep brain cells and retinal horizontal cells of the adult fish. In this study, we report the identification and characterization of its duplicated gene, VAL-opsinB, in zebrafish. A molecular phylogenetic analysis indicates that VAL-opsinB is orthologous to a previously reported salmon gene and that the duplication of the VAL-opsin gene occurred in the teleost lineage. The recombinant protein of zebrafish VAL-opsinB forms a green-sensitive photopigment when reconstituted with 11-cis-retinal. VAL-opsinB expression was detected in a limited number of cells of the brain and the eye, and the expression pattern is distinct from that of the VAL-opsinA gene. Such a differential expression pattern suggests that VAL-opsinA and VAL-opsinB are involved in different physiological events in zebrafish.

  13. Neuronal Organization of Deep Brain Opsin Photoreceptors in Adult Teleosts

    PubMed Central

    Hang, Chong Yee; Kitahashi, Takashi; Parhar, Ishwar S.

    2016-01-01

    Biological impacts of light beyond vision, i.e., non-visual functions of light, signify the need to better understand light detection (or photoreception) systems in vertebrates. Photopigments, which comprise light-absorbing chromophores bound to a variety of G-protein coupled receptor opsins, are responsible for visual and non-visual photoreception. Non-visual opsin photopigments in the retina of mammals and extra-retinal tissues of non-mammals play an important role in non-image-forming functions of light, e.g., biological rhythms and seasonal reproduction. This review highlights the role of opsin photoreceptors in the deep brain, which could involve conserved neurochemical systems that control different time- and light-dependent physiologies in in non-mammalian vertebrates including teleost fish. PMID:27199680

  14. Renewal of opsin in the photoreceptor cells of the mosquito

    PubMed Central

    1979-01-01

    Mosquito rhodopsin is a digitonin-soluble membrane protein of molecular weight 39,000 daltons, as determined by sodium dodecyl sulfate gel electrophoresis. The rhodopsin undergoes a spectral transition from R515-520 to M480 after orange illumination. The visual pigment apoprotein, opsin, is the major membrane protein in the eye. Protein synthesis in the photoreceptor cells occurs in the perinuclear cytoplasm and the newly made protein is transported to the rhabdom. Light adaptation increases the rate of turnover of this rhabdomal protein. The turnover of electrophoretically isolated opsin is also stimulated by light adaptation. The changes observed in protein metabolism biochemically, are consistent with previous morphological observations of photoreceptor membrane turnover. The results agree with the hypothesis that the newly synthesized rhabdomal protein is opsin. PMID:512631

  15. Frequent gene conversion between human red and green opsin genes.

    PubMed

    Zhao, Z; Hewett-Emmett, D; Li, W H

    1998-04-01

    To study the evolution of human X-linked red and green opsin genes, genomic sequences in large regions of the two genes were compared. The divergences in introns 3, 4, and 5 and the 3' flanking sequence of the two genes are significantly lower than those in exons 4 and 5. The homogenization mechanism of introns and the 3' flanking sequence of human red and green opsin genes is probably gene conversion, which also occurred in exons 1 and 6. At least one gene conversion event occurred in each of three regions (1, 3, and 5) in the sequences compared. In conclusion, gene conversion has occurred frequently between human red and green opsin genes, but exons 2, 3, 4, and 5 have been maintained distinct between the two genes by natural selection.

  16. A Large and Phylogenetically Diverse Class of Type 1 Opsins Lacking a Canonical Retinal Binding Site.

    PubMed

    Becker, Erin A; Yao, Andrew I; Seitzer, Phillip M; Kind, Tobias; Wang, Ting; Eigenheer, Rich; Shao, Katie S Y; Yarov-Yarovoy, Vladimir; Facciotti, Marc T

    2016-01-01

    Opsins are photosensitive proteins catalyzing light-dependent processes across the tree of life. For both microbial (type 1) and metazoan (type 2) opsins, photosensing depends upon covalent interaction between a retinal chromophore and a conserved lysine residue. Despite recent discoveries of potential opsin homologs lacking this residue, phylogenetic dispersal and functional significance of these abnormal sequences have not yet been investigated. We report discovery of a large group of putatively non-retinal binding opsins, present in a number of fungal and microbial genomes and comprising nearly 30% of opsins in the Halobacteriacea, a model clade for opsin photobiology. We report phylogenetic analyses, structural modeling, genomic context analysis and biochemistry, to describe the evolutionary relationship of these recently described proteins with other opsins, show that they are expressed and do not bind retinal in a canonical manner. Given these data, we propose a hypothesis that these abnormal opsin homologs may represent a novel family of sensory opsins which may be involved in taxis response to one or more non-light stimuli. If true, this finding would challenge our current understanding of microbial opsins as a light-specific sensory family, and provides a potential analogy with the highly diverse signaling capabilities of the eukaryotic G-protein coupled receptors (GPCRs), of which metazoan type 2 opsins are a light-specific sub-clade. PMID:27327432

  17. A Large and Phylogenetically Diverse Class of Type 1 Opsins Lacking a Canonical Retinal Binding Site

    PubMed Central

    Becker, Erin A.; Yao, Andrew I.; Seitzer, Phillip M.; Kind, Tobias; Wang, Ting; Eigenheer, Rich; Shao, Katie S. Y.; Yarov-Yarovoy, Vladimir; Facciotti, Marc T.

    2016-01-01

    Opsins are photosensitive proteins catalyzing light-dependent processes across the tree of life. For both microbial (type 1) and metazoan (type 2) opsins, photosensing depends upon covalent interaction between a retinal chromophore and a conserved lysine residue. Despite recent discoveries of potential opsin homologs lacking this residue, phylogenetic dispersal and functional significance of these abnormal sequences have not yet been investigated. We report discovery of a large group of putatively non-retinal binding opsins, present in a number of fungal and microbial genomes and comprising nearly 30% of opsins in the Halobacteriacea, a model clade for opsin photobiology. We report phylogenetic analyses, structural modeling, genomic context analysis and biochemistry, to describe the evolutionary relationship of these recently described proteins with other opsins, show that they are expressed and do not bind retinal in a canonical manner. Given these data, we propose a hypothesis that these abnormal opsin homologs may represent a novel family of sensory opsins which may be involved in taxis response to one or more non-light stimuli. If true, this finding would challenge our current understanding of microbial opsins as a light-specific sensory family, and provides a potential analogy with the highly diverse signaling capabilities of the eukaryotic G-protein coupled receptors (GPCRs), of which metazoan type 2 opsins are a light-specific sub-clade. PMID:27327432

  18. NASA's Living With a Star (LWS) Sentinels Mission to Understand the Origin of Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Mewaldt, R. A.; Lin, R. P.; Szabo, A.

    2006-05-01

    One of the primary goals of NASA's Sentinels mission, the heliospheric element of the integrated LWS program, is to provide observations necessary for understanding the physics of solar/inner heliosphere processes that produce solar energetic particle (SEP) events, so that requirements for eventual predictive capability can be defined. We present the results of a study by the Sentinels Science and Technology Definition Team (STDT) that recommends the following program: (a) four identical Inner Heliosphere Sentinels (IHS) spacecraft that utilize Venus gravity assists to achieve 0.25-0.7 AU orbits, primarily for in situ particles and fields measurements; (b) a Near-Earth Sentinel (NES) with a spectroscopic coronagraph to provide the physical conditions in the SEP acceleration region and a wide field (>~0.3 AU) coronagraph to connect to the IHS measurements; and (3) a Farside Sentinel (FS) with a magnetograph to provide near global photospheric magnetic field measurements for modeling the structure of the inner heliosphere. From their multiple vantage points, distributed in radius and longitude, the four IHS spacecraft will be able to study the injection, acceleration, and transport of SEPs with unprecedented precision, which should resolve issues that have arisen from SEP timing studies at 1 AU. We illustrate how these combined measurements will lead to an understanding of SEP origin and improve our predictive capability for large SEP events.

  19. Differential expression of duplicated opsin genes in two eyetypes of ostracod crustaceans.

    PubMed

    Oakley, Todd H; Huber, Daniel R

    2004-08-01

    In the first molecular study of ostracod (Crustacea) vision, we present partial cDNA sequences of ostracod visual pigment genes (opsins). We found strong support for differential expression of opsins in ostracod median and compound eyes and suggest that photoreceptor specific expression may be a general phenomenon in organisms with multiple receptors. We infer that eye-specific expression predates the divergence of the two species examined, Skogsbergia lerneri and Vargula hilgendorfii, because eye-specific opsin orthologs are present in both species. We found multiple opsin loci in ostracods, estimating that at least eight are present in Skogsbergia lerneri. All opsins from both ostracod species examined are more closely related to each other than to any other known opsin sequences. Because we find no evidence for gene conversion or alternative splicing, we suggest the occurrence of many recent gene duplications. Why ostracods may have retained multiple recent opsin gene duplicates is unknown, but we discuss several possible hypotheses.

  20. Expression dynamics and protein localization of rhabdomeric opsins in Platynereis larvae.

    PubMed

    Randel, Nadine; Bezares-Calderón, Luis A; Gühmann, Martin; Shahidi, Réza; Jékely, Gáspár

    2013-07-01

    The larval stages of polychaete annelids are often responsive to light and can possess one to six eyes. The early trochophore larvae of the errant annelid Platynereis dumerilii have a single pair of ventral eyespots, whereas older nectochaete larvae have an additional two pairs of dorsal eyes that will develop into the adult eyes. Early Platynereis trochophores show robust positive phototaxis starting on the first day of development. Even though the mechanism of phototaxis in Platynereis early trochophore larvae is well understood, no photopigment (opsin) expression has yet been described in this stage. In late trochophore larvae, a rhabdomeric-type opsin, r-opsin1, expressed in both the eyespots and the adult eyes has already been reported. Here, we identify another Platynereis rhabdomeric opsin, r-opsin3, that is expressed in a single photoreceptor in the eyespots in early trochophores, suggesting that it mediates early larval phototaxis. We also show that r-opsin1 and r-opsin3 are expressed in adjacent photoreceptor cells in the eyespots in later stages, indicating that a second eyespot-photoreceptor differentiates in late trochophore larvae. Using serial transmission electron microscopy (TEM), we identified and reconstructed both photoreceptors and a pigment cell in the late larval eyespot. We also characterized opsin expression in the adult eyes and found that the two opsins co-express there in several photoreceptor cells. Using antibodies recognizing r-opsin1 and r-opsin3 proteins, we demonstrate that both opsins localize to the rhabdomere in all six eyes. In addition, we found that r-opsin1 mRNA is localized to, and translated in, the projections of the adult eyes. The specific changes we describe in opsin transcription and translation and in the cellular complement suggest that the six larval eyes undergo spectral and functional maturation during the early planktonic phase of the Platynereis life cycle. PMID:23667045

  1. Characterisation and localisation of the opsin protein repertoire in the brain and retinas of a spider and an onychophoran

    PubMed Central

    2013-01-01

    Background Opsins have been found in the majority of animals and their most apparent functions are related to vision and light-guided behaviour. As an increasing number of sequences have become available it has become clear that many opsin-like transcripts are expressed in tissues other than the eyes. Opsins can be divided into three main groups: rhabdomeric opsins (r-opsins), ciliary opsins (c-opsins) and group 4 opsins. In arthropods, the main focus has been on the r-opsins involved in vision. However, with increased sequencing it is becoming clear that arthropods also possess opsins of the c-type, group 4 opsins and the newly discovered arthropsins but the functions of these opsins are unknown in arthropods and data on their localisation is limited or absent. Results We identified opsins from the spider Cupiennius salei and the onychophoran Euperipatoides kanangrensis and characterised the phylogeny and localisation of these transcripts. We recovered all known visual opsins in C. salei, and in addition found a peropsin, a c-opsin and an opsin resembling Daphnia pulex arthropsin. The peropsin was expressed in all eye types except the anterior median eyes. The arthropsin and the c-opsin were expressed in the central nervous system but not the eyes. In E. kanangrensis we found: a c-opsin; an opsin resembling D. pulex arthropsins; and an r-opsin with high sequence similarity to previously published onychophoran onychopsins. The E. kanangrensis c-opsin and onychopsin were expressed in both the eyes and the brain but the arthropsin only in the brain. Conclusion Our novel finding that opsins of both the ciliary and rhabdomeric type are present in the onychophoran and a spider suggests that these two types of opsins were present in the last common ancestor of the Onychophora and Euarthropoda. The expression of the c-opsin in the eye of an onychophoran indicates that c-opsins may originally have been involved in vision in the arthropod clade. The lack of c-opsin

  2. Restoration of Vision with Ectopic Expression of Human Rod Opsin.

    PubMed

    Cehajic-Kapetanovic, Jasmina; Eleftheriou, Cyril; Allen, Annette E; Milosavljevic, Nina; Pienaar, Abigail; Bedford, Robert; Davis, Katherine E; Bishop, Paul N; Lucas, Robert J

    2015-08-17

    Many retinal dystrophies result in photoreceptor loss, but the inner retinal neurons can survive, making them potentially amenable to emerging optogenetic therapies. Here, we show that ectopically expressed human rod opsin, driven by either a non-selective or ON-bipolar cell-specific promoter, can function outside native photoreceptors and restore visual function in a mouse model of advanced retinal degeneration. Electrophysiological recordings from retinal explants and the visual thalamus revealed changes in firing (increases and decreases) induced by simple light pulses, luminance increases, and naturalistic movies in treated mice. These responses could be elicited at light intensities within the physiological range and substantially below those required by other optogenetic strategies. Mice with rod opsin expression driven by the ON-bipolar specific promoter displayed behavioral responses to increases in luminance, flicker, coarse spatial patterns, and elements of a natural movie at levels of contrast and illuminance (≈50-100 lux) typical of natural indoor environments. These data reveal that virally mediated ectopic expression of human rod opsin can restore vision under natural viewing conditions and at moderate light intensities. Given the inherent advantages in employing a human protein, the simplicity of this intervention, and the quality of vision restored, we suggest that rod opsin merits consideration as an optogenetic actuator for treating patients with advanced retinal degeneration. PMID:26234216

  3. Restoration of Vision with Ectopic Expression of Human Rod Opsin.

    PubMed

    Cehajic-Kapetanovic, Jasmina; Eleftheriou, Cyril; Allen, Annette E; Milosavljevic, Nina; Pienaar, Abigail; Bedford, Robert; Davis, Katherine E; Bishop, Paul N; Lucas, Robert J

    2015-08-17

    Many retinal dystrophies result in photoreceptor loss, but the inner retinal neurons can survive, making them potentially amenable to emerging optogenetic therapies. Here, we show that ectopically expressed human rod opsin, driven by either a non-selective or ON-bipolar cell-specific promoter, can function outside native photoreceptors and restore visual function in a mouse model of advanced retinal degeneration. Electrophysiological recordings from retinal explants and the visual thalamus revealed changes in firing (increases and decreases) induced by simple light pulses, luminance increases, and naturalistic movies in treated mice. These responses could be elicited at light intensities within the physiological range and substantially below those required by other optogenetic strategies. Mice with rod opsin expression driven by the ON-bipolar specific promoter displayed behavioral responses to increases in luminance, flicker, coarse spatial patterns, and elements of a natural movie at levels of contrast and illuminance (≈50-100 lux) typical of natural indoor environments. These data reveal that virally mediated ectopic expression of human rod opsin can restore vision under natural viewing conditions and at moderate light intensities. Given the inherent advantages in employing a human protein, the simplicity of this intervention, and the quality of vision restored, we suggest that rod opsin merits consideration as an optogenetic actuator for treating patients with advanced retinal degeneration.

  4. Vertebrate ancient opsin photopigment spectra and the avian photoperiodic response.

    PubMed

    Davies, Wayne I L; Turton, Michael; Peirson, Stuart N; Follett, Brian K; Halford, Stephanie; Garcia-Fernandez, Jose M; Sharp, Peter J; Hankins, Mark W; Foster, Russell G

    2012-04-23

    In mammals, photoreception is restricted to cones, rods and a subset of retinal ganglion cells. By contrast, non-mammalian vertebrates possess many extraocular photoreceptors but in many cases the role of these photoreceptors and their underlying photopigments is unknown. In birds, deep brain photoreceptors have been shown to sense photic changes in daylength (photoperiod) and mediate seasonal reproduction. Nonetheless, the specific identity of the opsin photopigment 'sensor' involved has remained elusive. Previously, we showed that vertebrate ancient (VA) opsin is expressed in avian hypothalamic neurons and forms a photosensitive molecule. However, a direct functional link between VA opsin and the regulation of seasonal biology was absent. Here, we report the in vivo and in vitro absorption spectra (λ(max) = ~490 nm) for chicken VA photopigments. Furthermore, the spectral sensitivity of these photopigments match the peak absorbance of the avian photoperiodic response (λ(max) = 492 nm) and permits maximum photon capture within the restricted light environment of the hypothalamus. Such a correspondence argues strongly that VA opsin plays a key role in regulating seasonal reproduction in birds.

  5. Absorption Characteristics of Vertebrate Non-Visual Opsin, Opn3.

    PubMed

    Sugihara, Tomohiro; Nagata, Takashi; Mason, Benjamin; Koyanagi, Mitsumasa; Terakita, Akihisa

    2016-01-01

    Most animals possess multiple opsins which sense light for visual and non-visual functions. Here, we show spectral characteristics of non-visual opsins, vertebrate Opn3s, which are widely distributed among vertebrates. We successfully expressed zebrafish Opn3 in mammalian cultured cells and measured its absorption spectrum spectroscopically. When incubated with 11-cis retinal, zebrafish Opn3 formed a blue-sensitive photopigment with an absorption maximum around 465 nm. The Opn3 converts to an all-trans retinal-bearing photoproduct with an absorption spectrum similar to the dark state following brief blue-light irradiation. The photoproduct experienced a remarkable blue-shift, with changes in position of the isosbestic point, during further irradiation. We then used a cAMP-dependent luciferase reporter assay to investigate light-dependent cAMP responses in cultured cells expressing zebrafish, pufferfish, anole and chicken Opn3. The wild type opsins did not produce responses, but cells expressing chimera mutants (WT Opn3s in which the third intracellular loops were replaced with the third intracellular loop of a Gs-coupled jellyfish opsin) displayed light-dependent changes in cAMP. The results suggest that Opn3 is capable of activating G protein(s) in a light-dependent manner. Finally, we used this assay to measure the relative wavelength-dependent response of cells expressing Opn3 chimeras to multiple quantally-matched stimuli. The inferred spectral sensitivity curve of zebrafish Opn3 accurately matched the measured absorption spectrum. We were unable to estimate the spectral sensitivity curve of mouse or anole Opn3, but, like zebrafish Opn3, the chicken and pufferfish Opn3-JiL3 chimeras also formed blue-sensitive pigments. These findings suggest that vertebrate Opn3s may form blue-sensitive G protein-coupled pigments. Further, we suggest that the method described here, combining a cAMP-dependent luciferase reporter assay with chimeric opsins possessing the third

  6. Absorption Characteristics of Vertebrate Non-Visual Opsin, Opn3

    PubMed Central

    Sugihara, Tomohiro; Nagata, Takashi; Mason, Benjamin; Koyanagi, Mitsumasa; Terakita, Akihisa

    2016-01-01

    Most animals possess multiple opsins which sense light for visual and non-visual functions. Here, we show spectral characteristics of non-visual opsins, vertebrate Opn3s, which are widely distributed among vertebrates. We successfully expressed zebrafish Opn3 in mammalian cultured cells and measured its absorption spectrum spectroscopically. When incubated with 11-cis retinal, zebrafish Opn3 formed a blue-sensitive photopigment with an absorption maximum around 465 nm. The Opn3 converts to an all-trans retinal-bearing photoproduct with an absorption spectrum similar to the dark state following brief blue-light irradiation. The photoproduct experienced a remarkable blue-shift, with changes in position of the isosbestic point, during further irradiation. We then used a cAMP-dependent luciferase reporter assay to investigate light-dependent cAMP responses in cultured cells expressing zebrafish, pufferfish, anole and chicken Opn3. The wild type opsins did not produce responses, but cells expressing chimera mutants (WT Opn3s in which the third intracellular loops were replaced with the third intracellular loop of a Gs-coupled jellyfish opsin) displayed light-dependent changes in cAMP. The results suggest that Opn3 is capable of activating G protein(s) in a light-dependent manner. Finally, we used this assay to measure the relative wavelength-dependent response of cells expressing Opn3 chimeras to multiple quantally-matched stimuli. The inferred spectral sensitivity curve of zebrafish Opn3 accurately matched the measured absorption spectrum. We were unable to estimate the spectral sensitivity curve of mouse or anole Opn3, but, like zebrafish Opn3, the chicken and pufferfish Opn3-JiL3 chimeras also formed blue-sensitive pigments. These findings suggest that vertebrate Opn3s may form blue-sensitive G protein-coupled pigments. Further, we suggest that the method described here, combining a cAMP-dependent luciferase reporter assay with chimeric opsins possessing the third

  7. Diversity of animal opsin-based pigments and their optogenetic potential.

    PubMed

    Koyanagi, Mitsumasa; Terakita, Akihisa

    2014-05-01

    Most animal opsin-based pigments are typical G protein-coupled receptors (GPCR) and consist of a protein moiety, opsin, and 11-cis retinal as a chromophore. More than several thousand opsins have been identified from a wide variety of animals, which have multiple opsin genes. Accumulated evidence reveals the molecular property of opsin-based pigments, particularly non-conventional visual pigments including non-visual pigments. Opsin-based pigments are generally a bistable pigment having two stable and photointerconvertible states and therefore are bleach-resistant and reusable, unlike vertebrate visual pigments which become bleached. The opsin family contains Gt-coupled, Gq-coupled, Go-coupled, Gs-coupled, Gi-coupled, and Gi/Go-coupled opsins, indicating the existence of a large diversity of light-driven GPCR-signaling cascades. It is suggested that these molecular properties might contribute to different physiologies. In addition, various opsin based-pigments, especially nonconventional visual pigments having different molecular characteristics would facilitate the design and development of promising optogenetic tools for modulating GPCR-signaling, which is involved in a wide variety of physiological responses. We here introduce molecular and functional properties of various kinds of opsins and discuss their physiological function and also their potentials for optogenetic applications. This article is part of a Special Issue entitled: Retinal proteins - you can teach an old dog new tricks. PMID:24041647

  8. Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders.

    PubMed

    Koyanagi, Mitsumasa; Nagata, Takashi; Katoh, Kazutaka; Yamashita, Shigeki; Tokunaga, Fumio

    2008-02-01

    Among terrestrial animals, only vertebrates and arthropods possess wavelength-discrimination ability, so-called "color vision". For color vision to exist, multiple opsins which encode visual pigments sensitive to different wavelengths of light are required. While the molecular evolution of opsins in vertebrates has been well investigated, that in arthropods remains to be elucidated. This is mainly due to poor information about the opsin genes of non-insect arthropods. To obtain an overview of the evolution of color vision in Arthropoda, we isolated three kinds of opsins, Rh1, Rh2, and Rh3, from two jumping spider species, Hasarius adansoni and Plexippus paykulli. These spiders belong to Chelicerata, one of the most distant groups from Hexapoda (insects), and have color vision as do insects. Phylogenetic analyses of jumping spider opsins revealed a birth and death process of color vision evolution in the arthropod lineage. Phylogenetic positions of jumping spider opsins revealed that at least three opsins had already existed before the Chelicerata-Pancrustacea split. In addition, sequence comparison between jumping spider Rh3 and the shorter wavelength-sensitive opsins of insects predicted that an opsin of the ancestral arthropod had the lysine residue responsible for UV sensitivity. These results strongly suggest that the ancestral arthropod had at least trichromatic vision with a UV pigment and two visible pigments. Thereafter, in each pancrustacean and chelicerate lineage, the opsin repertoire was reconstructed by gene losses, gene duplications, and function-altering amino acid substitutions, leading to evolution of color vision. PMID:18217181

  9. Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders.

    PubMed

    Koyanagi, Mitsumasa; Nagata, Takashi; Katoh, Kazutaka; Yamashita, Shigeki; Tokunaga, Fumio

    2008-02-01

    Among terrestrial animals, only vertebrates and arthropods possess wavelength-discrimination ability, so-called "color vision". For color vision to exist, multiple opsins which encode visual pigments sensitive to different wavelengths of light are required. While the molecular evolution of opsins in vertebrates has been well investigated, that in arthropods remains to be elucidated. This is mainly due to poor information about the opsin genes of non-insect arthropods. To obtain an overview of the evolution of color vision in Arthropoda, we isolated three kinds of opsins, Rh1, Rh2, and Rh3, from two jumping spider species, Hasarius adansoni and Plexippus paykulli. These spiders belong to Chelicerata, one of the most distant groups from Hexapoda (insects), and have color vision as do insects. Phylogenetic analyses of jumping spider opsins revealed a birth and death process of color vision evolution in the arthropod lineage. Phylogenetic positions of jumping spider opsins revealed that at least three opsins had already existed before the Chelicerata-Pancrustacea split. In addition, sequence comparison between jumping spider Rh3 and the shorter wavelength-sensitive opsins of insects predicted that an opsin of the ancestral arthropod had the lysine residue responsible for UV sensitivity. These results strongly suggest that the ancestral arthropod had at least trichromatic vision with a UV pigment and two visible pigments. Thereafter, in each pancrustacean and chelicerate lineage, the opsin repertoire was reconstructed by gene losses, gene duplications, and function-altering amino acid substitutions, leading to evolution of color vision.

  10. ISO-LWS observations of Herbig Ae/Be stars. II. Molecular lines

    NASA Astrophysics Data System (ADS)

    Giannini, T.; Lorenzetti, D.; Tommasi, E.; Nisini, B.; Benedettini, M.; Pezzuto, S.; Strafella, F.; Barlow, M.; Clegg, P. E.; Cohen, M.; di Giorgio, A. M.; Liseau, R.; Molinari, S.; Palla, F.; Saraceno, P.; Smith, H. A.; Spinoglio, L.; White, G. J.

    1999-06-01

    We present the first ISO-LWS observations of the molecular FIR lines in 3 out of a sample of 11 Herbig Ae/Be stars (HAEBE), namely IRAS12496-7650, RCrA and LkHα 234. High-J rotational CO lines (from Jup = 14 to Jup = 19) have been observed in all the spectra, while two (at 79 mu m and 84 mu m) and three OH lines (at 71 mu m, 79 mu m and 84 mu m) were detected in LkHα 234 and RCrA respectively. For all sources the molecular emission has been consistently fitted with a Large Velocity Gradient (LVG) model and it results originated in a warm (T ga 200 K) and dense (nH_2 >~ 10(5) cm(-3) ) gas located in very compact regions having diameters of few hundreds of AU. These three sources are those with the highest density among the stars of the sample; this suggests that the molecular emission arises in regions showing density peaks. By comparing the observed cooling ratios with model predictions, we find that the FUV radiation from the central source (or from a more embedded companion) is the most likely responsible for the line excitation. At least for the sources where OH has been observed, the contribution of shocks to the line emission can be reasonably ruled out because of the absence in the spectra of any water vapour lines, in contrast with the predictions for molecular emission coming from warm shocked environments. Based on observations with ISO, an ESA project with instruments funded by ESA Member States and with the participation of ISAS and NASA}

  11. Evolution of SECAA's Services and Role to Support SEC Virtual Observatories and the Missions of LWS

    NASA Astrophysics Data System (ADS)

    McGuire, R. E.; Candey, R. M.; Chimiak, R. A.; Fung, S. F.; Green, J. L.; Han, D. B.; Harris, B. T.; Johnson, R. C.; Kessel, R. L.; Kovalick, T. J.; Leckner, H. A.

    2003-12-01

    The successful definition and implementation of a Virtual Observatory (VO) framework to be the future Sun-Earth Connection (SEC) / Solar-Terrestrial data environment will enable a distributed and modular implementation but nonetheless increasingly integrated and transparent data view by end users. All important SEC science data must be easily accessible and scientifically usable, both for specialized studies and across the boundaries of missions and traditional disciplines. The systematic long-term preservation, access and usability of data must be ensured. The SEC Active Archive (SECAA) center in the Space Physics Data Facility (SPDF), in close coordination with the National Space Science Data Center (NSSDC), operates uniquely important multi-mission data services and active archiving activities. Services such as CDAWeb, SSCWeb, OMNIWeb, various FTP data access and display capabilities, and new interfaces to translation-software tools supporting the Common Data Format (CDF) must be extended to function within and actively support the VO framework for this SEC thrust to be ultimately successful. In this presentation, we will briefly review the importance of our existing unique capabilities, our understanding of the VO thrust in SEC and the role we see for multi-mission services of this nature within a VO paradigm and in support of future missions and programs such as Living With a Star (LWS). We will discuss the technical evolution of our present services towards full accessability and continuing growth in scope and functionality to the SEC community as webservices. We will lay out our long-term understanding and vision for our services and activities, including the role and importance of acquisition and other information services to the broad needs of future data management. We will define the issues and directions we now see as critical and approaches to meet these challenges.

  12. Spatial and temporal expression of cone opsins during monkey retinal development.

    PubMed

    Bumsted, K; Jasoni, C; Szél, A; Hendrickson, A

    1997-02-01

    The primate retina requires a coordinated series of developmental events to form its specialized photoreceptor topography. In this study, the temporal expression of cone photoreceptor opsin was determined in Macaca monkey retina. Markers for mRNA and protein that recognize short wavelength (S) and long/medium wavelength (L/M) opsin were used to determine (1) the temporal and spatial patterns of opsin expression, (2) the spatial relationship between S and L/M cones at the time of initial opsin expression, and (3) the relative time of cone and rod opsin expression (Dorn et al. [1995] Invest. Ophthalmol. Vis. Sci. 36:2634-2651). Adult cone outer segments were recognized by either L/M or S opsin antiserum. Of all adult cone inner segments, 88-90% contained L/M opsin mRNA, whereas 10-12% contained S opsin mRNA. Fetal cones initially showed cell membrane as well as outer segment labeling for opsin protein, but cell membrane labeling disappeared by birth. No cones at any age contained markers for both S and L/M opsin mRNA or protein. S and L/M opsin protein appeared in the fovea at fetal day 75. Once opsin expression progressed beyond the fovea, both mRNA and protein for S opsin were consistently detected more peripherally than L/M opsin. Cones at the peripheral edge of S opsin expression had basal telodendria that appeared to reach toward neighboring cones. Because interactions between cone populations could organize the cone mosaic, the spatial relationship between S cones and the first cones to express L/M protein was analyzed quantitatively by using double-label immunocytochemistry. No consistent relationship was found between these two cone populations. Cones are generated at least 1 week before rods across monkey retina. However, rod opsin protein appears in and around the fovea at fetal day 66, 1 week before cone opsin protein. This suggests that independent local factors control differentiation in these two photoreceptor populations.

  13. Sequences and evolution of human and squirrel monkey blue opsin genes.

    PubMed

    Shimmin, L C; Mai, P; Li, W H

    1997-04-01

    The sequences of the entire blue opsin gene in the squirrel monkey (Saimiri boliviensis) and the five introns of the human blue opsin gene were obtained. Intron 3 of these genes contains an Alu sequence and intron 4 contains a partial mer13 sequence. A comparison of the squirrel monkey opsin sequence with published mammalian opsin sequences shows that features believed to be functionally critical are all conserved. However, the blue opsin has evolved twice as fast as rhodopsin and is only as conservative as the beta globin, which has evolved at the average rate of mammalian proteins. Interestingly, the interhelical loops are, on average, actually more conservative than the transmembrane alpha helical regions. The introns of the blue opsin gene have evolved at the average rate of introns in primate genes.

  14. Short wavelength-sensitive opsins from the Saharan silver and carpenter ants.

    PubMed

    Smith, W C; Ayers, D M; Popp, M P; Hargrave, P A

    1997-06-01

    We have previously cloned the opsins coding for the long-wavelength visual pigments from the Saharan silver ant and carpenter ant. Here we report two new cDNA clones isolated from cDNA libraries which also code for opsin proteins. These cDNAs code for deduced proteins with 369 amino acids which are 91% identical to each other, but only 38% identical to the previously cloned opsins. Phyletic comparisons suggest that these opsins are likely the ultraviolet sensitive visual pigments, a conclusion that is supported by the presence of a phenylalanine at the counterion position in the third transmembrane segment.

  15. Short wavelength-sensitive opsins from the Saharan silver and carpenter ants.

    PubMed

    Smith, W C; Ayers, D M; Popp, M P; Hargrave, P A

    1997-06-01

    We have previously cloned the opsins coding for the long-wavelength visual pigments from the Saharan silver ant and carpenter ant. Here we report two new cDNA clones isolated from cDNA libraries which also code for opsin proteins. These cDNAs code for deduced proteins with 369 amino acids which are 91% identical to each other, but only 38% identical to the previously cloned opsins. Phyletic comparisons suggest that these opsins are likely the ultraviolet sensitive visual pigments, a conclusion that is supported by the presence of a phenylalanine at the counterion position in the third transmembrane segment. PMID:9706701

  16. Co-expression of three opsins in cone photoreceptors of the salamander, Ambystoma tigrinum

    PubMed Central

    Isayama, Tomoki; Chen, Ying; Kono, Masahiro; Fabre, Eduard; Slavsky, Michael; DeGrip, Willem J.; Ma, Jian-Xing; Crouch, Rosalie K.; Makino, Clint L.

    2014-01-01

    Whereas more than one type of visual opsin is present in the retina of most vertebrates, it was thought that each type of photoreceptor expressed only one opsin. However, evidence has accumulated that some photoreceptors contain more than one opsin, in many cases as a result of a developmental transition from the expression of one opsin to another. The salamander UV-sensitive (UV) cone is particularly notable because it contains three opsins (Makino and Dodd, 1996; J Gen Physiol 108:27–34). Two opsin types are expressed at levels more than a hundred times lower than that of the primary opsin. Here, immunohistochemical experiments identified the primary component as a UV cone opsin and the two minor components as the short wavelength-sensitive (S) and long wavelength-sensitive (L) cone opsins. Based on single cell recordings of 156 photoreceptors, the presence of three components in UV cones of hatchlings and terrestrial adults ruled out a developmental transition. There was no evidence for multiple opsin types within rods or S cones. But immunohistochemistry and partial bleaching in conjunction with single cell recording revealed that both single and double L cones contained low levels of short wavelength-sensitive pigments in addition to the main L visual pigment. These results raise the possibility that co-expression of multiple opsins in other vertebrates was overlooked because a minor component absorbing at short wavelengths was masked by the main visual pigment or because the expression level of a component absorbing at long wavelengths was exceedingly low. PMID:24374736

  17. Coexpression of three opsins in cone photoreceptors of the salamander Ambystoma tigrinum.

    PubMed

    Isayama, Tomoki; Chen, Ying; Kono, Masahiro; Fabre, Eduard; Slavsky, Michael; DeGrip, Willem J; Ma, Jian-Xing; Crouch, Rosalie K; Makino, Clint L

    2014-07-01

    Although more than one type of visual opsin is present in the retina of most vertebrates, it was thought that each type of photoreceptor expresses only one opsin. However, evidence has accumulated that some photoreceptors contain more than one opsin, in many cases as a result of a developmental transition from the expression of one opsin to another. The salamander UV-sensitive (UV) cone is particularly notable because it contains three opsins (Makino and Dodd [1996] J Gen Physiol 108:27-34). Two opsin types are expressed at levels more than 100 times lower than the level of the primary opsin. Here, immunohistochemical experiments identified the primary component as a UV cone opsin and the two minor components as the short wavelength-sensitive (S) and long wavelength-sensitive (L) cone opsins. Based on single-cell recordings of 156 photoreceptors, the presence of three components in UV cones of hatchlings and terrestrial adults ruled out a developmental transition. There was no evidence for multiple opsin types within rods or S cones, but immunohistochemistry and partial bleaching in conjunction with single-cell recording revealed that both single and double L cones contained low levels of short wavelength-sensitive pigments in addition to the main L visual pigment. These results raise the possibility that coexpression of multiple opsins in other vertebrates was overlooked because a minor component absorbing at short wavelengths was masked by the main visual pigment or because the expression level of a component absorbing at long wavelengths was exceedingly low. PMID:24374736

  18. Molecular characterization of visual pigments in Branchiopoda and the evolution of opsins in Arthropoda.

    PubMed

    Kashiyama, Kazuyuki; Seki, Takaharu; Numata, Hideharu; Goto, Shin G

    2009-02-01

    Studies on color vision in invertebrates have focused primarily on insect visual pigments, with little attention given to crustacean visual pigments. None of the blue-green-, blue-, or ultraviolet (UV)-sensitive-opsins have been identified in crustaceans. In addition, the discussion of visual pigments has been limited to long-wavelength-sensitive opsins in Pancrustacea. Here, we focused on Branchiopoda (Crustacea), which is a sister group of Hexapoda including insects. In the tadpole shrimp Triops granarius, the visual pigment chromophore was retinal. Multiple opsins were isolated from each of three branchiopod species, T. granarius, Triops longicaudatus, and the fairy shrimp Branchinella kugenumaensis (five, five, and four opsins from these species, respectively). Phylogenetic analyses and the presence of a lysine residue corresponding to position 90 in bovine rhodopsin suggested that three of the branchiopod opsins comprise UV-sensitive pigments. In addition, the phylogenetic relationships between insect and branchiopod UV-sensitive opsins revealed that the divergence of blue- and UV-sensitive pigments predates the Branchiopoda and Insecta divergence. The other branchiopod opsins show distant relationships to other known insect opsins and form novel clusters. The present results strongly suggest that the ancestral arthropod of the Chelicerata-Pancrustacea lineages possessed at least four types of opsins. The ancestors of Pancrustacea and the Insecta-Branchiopoda lineages possessed at least five and six types of opsins, respectively. Our results suggest that in the evolutionary process associated with each lineage, several opsins appeared and diversified with repeated gene duplication, of which some have been lost in some taxa.

  19. Molecular characterization of crustacean visual pigments and the evolution of pancrustacean opsins.

    PubMed

    Porter, Megan L; Cronin, Thomas W; McClellan, David A; Crandall, Keith A

    2007-01-01

    Investigations of opsin evolution outside of vertebrate systems have long been focused on insect visual pigments, whereas other groups have received little attention. Furthermore, few studies have explicitly investigated the selective influences across all the currently characterized arthropod opsins. In this study, we contribute to the knowledge of crustacean opsins by sequencing 1 opsin gene each from 6 previously uncharacterized crustacean species (Euphausia superba, Homarus gammarus, Archaeomysis grebnitzkii, Holmesimysis costata, Mysis diluviana, and Neomysis americana). Visual pigment spectral absorbances were measured using microspectrophotometry for species not previously characterized (A. grebnitzkii=496 nm, H. costata=512 nm, M. diluviana=501 nm, and N. americana=520 nm). These novel crustacean opsin sequences were included in a phylogenetic analysis with previously characterized arthropod opsin sequences to determine the evolutionary placement relative to the well-established insect spectral clades (long-/middle-/short-wavelength sensitive). Phylogenetic analyses indicate these novel crustacean opsins form a monophyletic clade with previously characterized crayfish opsin sequences and form a sister group to insect middle-/long-wavelength-sensitive opsins. The reconstructed opsin phylogeny and the corresponding spectral data for each sequence were used to investigate selective influences within arthropod, and mainly "pancrustacean," opsin evolution using standard dN/dS ratio methods and more sensitive techniques investigating the amino acid property changes resulting from nonsynonymous replacements in a historical (i.e., phylogenetic) context. Although the conservative dN/dS methods did not detect any selection, 4 amino acid properties (coil tendencies, compressibility, power to be at the middle of an alpha-helix, and refractive index) were found to be influenced by destabilizing positive selection. Ten amino acid sites relating to these properties were

  20. Ocular and extraocular expression of opsins in the rhopalium of Tripedalia cystophora (Cnidaria: Cubozoa).

    PubMed

    Bielecki, Jan; Zaharoff, Alexander K; Leung, Nicole Y; Garm, Anders; Oakley, Todd H

    2014-01-01

    A growing body of work on the neuroethology of cubozoans is based largely on the capabilities of the photoreceptive tissues, and it is important to determine the molecular basis of their light sensitivity. The cubozoans rely on 24 special purpose eyes to extract specific information from a complex visual scene to guide their behavior in the habitat. The lens eyes are the most studied photoreceptive structures, and the phototransduction in the photoreceptor cells is based on light sensitive opsin molecules. Opsins are photosensitive transmembrane proteins associated with photoreceptors in eyes, and the amino acid sequence of the opsins determines the spectral properties of the photoreceptors. Here we show that two distinct opsins (Tripedalia cystophora-lens eye expressed opsin and Tripedalia cystophora-neuropil expressed opsin, or Tc-leo and Tc-neo) are expressed in the Tripedalia cystophora rhopalium. Quantitative PCR determined the level of expression of the two opsins, and we found Tc-leo to have a higher amount of expression than Tc-neo. In situ hybridization located Tc-leo expression in the retinal photoreceptors of the lens eyes where the opsin is involved in image formation. Tc-neo is expressed in a confined part of the neuropil and is probably involved in extraocular light sensation, presumably in relation to diurnal activity.

  1. Cone opsin genes of african cichlid fishes: tuning spectral sensitivity by differential gene expression.

    PubMed

    Carleton, K L; Kocher, T D

    2001-08-01

    Spectral tuning of visual pigments is typically accomplished through changes in opsin amino acid sequence. Within a given opsin class, changes at a few key sites control wavelength specificity. To investigate known differences in the visual pigment spectral sensitivity of the Lake Malawi cichlids, Metriaclima zebra (368, 488, and 533 nm) and Dimidiochromis compressiceps (447, 536, and 569 nm), we sequenced cone opsin genes from these species as well as Labeotropheus fuelleborni and Oreochromis niloticus. These cichlids have five distinct classes of cone opsin genes, including two unique SWS-2 genes. Comparisons of the inferred amino acid sequences from the five cone opsin genes of M. zebra, D. compressiceps, and L. fuelleborni show the sequences to be nearly identical. Therefore, evolution of key opsin sites cannot explain the differences in visual pigment sensitivities. Real-time PCR demonstrates that different cichlid species express different subsets of the available cone opsin genes. Metriaclima zebra and L. fuelleborni express a complement of genes which give them UV-shifted visual pigments, while D. compressiceps expresses a different set to produce a red-shifted visual system. Thus, variations in cichlid spectral sensitivity have arisen through evolution of gene regulation, rather than through changes in opsin amino acid sequence.

  2. Opsin evolution and expression in Arthropod compound Eyes and Ocelli: Insights from the cricket Gryllus bimaculatus

    PubMed Central

    2012-01-01

    Background Opsins are key proteins in animal photoreception. Together with a light-sensitive group, the chromophore, they form visual pigments which initiate the visual transduction cascade when photoactivated. The spectral absorption properties of visual pigments are mainly determined by their opsins, and thus opsins are crucial for understanding the adaptations of animal eyes. Studies on the phylogeny and expression pattern of opsins have received considerable attention, but our knowledge about insect visual opsins is still limited. Up to now, researchers have focused on holometabolous insects, while general conclusions require sampling from a broader range of taxa. We have therefore investigated visual opsins in the ocelli and compound eyes of the two-spotted cricket Gryllus bimaculatus, a hemimetabolous insect. Results Phylogenetic analyses place all identified cricket sequences within the three main visual opsin clades of insects. We assign three of these opsins to visual pigments found in the compound eyes with peak absorbances in the green (515 nm), blue (445 nm) and UV (332 nm) spectral range. Their expression pattern divides the retina into distinct regions: (1) the polarization-sensitive dorsal rim area with blue- and UV-opsin, (2) a newly-discovered ventral band of ommatidia with blue- and green-opsin and (3) the remainder of the compound eye with UV- and green-opsin. In addition, we provide evidence for two ocellar photopigments with peak absorbances in the green (511 nm) and UV (350 nm) spectral range, and with opsins that differ from those expressed in the compound eyes. Conclusions Our data show that cricket eyes are spectrally more specialized than has previously been assumed, suggesting that similar adaptations in other insect species might have been overlooked. The arrangement of spectral receptor types within some ommatidia of the cricket compound eyes differs from the generally accepted pattern found in holometabolous insect taxa and awaits a

  3. Functional properties of opsins and their contribution to light-sensing physiology.

    PubMed

    Terakita, Akihisa; Nagata, Takashi

    2014-10-01

    Many animals have developed systems for sensing environmental conditions during evolution. In sensory cells, receptor molecules are responsible for their sensing abilities. In light sensing, most animals capture light information via rhodopsin-like photoreceptive proteins known as opsin-based pigments. A body of evidence from comparisons of amino acid sequences and in vitro experiments demonstrates that opsins have phylogenetically and functionally diversified during evolution and suggests that the phylogenetic diversity in opsins correlates with the variety of molecular properties of opsin-based pigments. In this review, we discuss the various molecular properties of opsin-based pigments and their contribution to light-sensing ability by providing two examples: i) contribution of photoregeneration ability and Chromophore retinal binding property of an Opn3 homolog to non-visual photoreception, and ii) contribution of an absorption characteristic of a visual pigment to depth perception in jumping spiders. PMID:25284384

  4. Evolution and Expression Plasticity of Opsin Genes in a Fig Pollinator, Ceratosolen solmsi

    PubMed Central

    Bian, Sheng-Nan; Niu, Li-Ming; Murphy, Robert W.; Huang, Da-Wei

    2013-01-01

    Figs and fig pollinators have co-evolved species-specific systems of mutualism. So far, it was unknown how visual opsin genes of pollinators have evolved in the light conditions inside their host figs. We cloned intact full-length mRNA sequences of four opsin genes from a species of fig pollinator, Ceratosolen solmsi, and tested for selective pressure and expressional plasticity of these genes. Molecular evolutionary analysis indicated that the four opsin genes evolved under different selective constraints. Subsets of codons in the two long wavelength sensitive opsin (LW1, LW2) genes were positively selected in ancestral fig pollinators. The ultraviolet sensitive opsin (UV) gene was under strong purifying selection, whereas a relaxation of selective constrains occurred on several amino acids in the blue opsin. RT-qPCR analysis suggested that female and male fig pollinators had different expression patterns possibly due to their distinct lifestyles and different responses to light within the syconia. Co-evolutionary history with figs might have influenced the evolution and expression plasticity of opsin genes in fig pollinators. PMID:23342036

  5. Spectral tuning by opsin coexpression in retinal regions that view different parts of the visual field.

    PubMed

    Dalton, Brian E; Loew, Ellis R; Cronin, Thomas W; Carleton, Karen L

    2014-12-22

    Vision frequently mediates critical behaviours, and photoreceptors must respond to the light available to accomplish these tasks. Most photoreceptors are thought to contain a single visual pigment, an opsin protein bound to a chromophore, which together determine spectral sensitivity. Mechanisms of spectral tuning include altering the opsin, changing the chromophore and incorporating pre-receptor filtering. A few exceptions to the use of a single visual pigment have been documented in which a single mature photoreceptor coexpresses opsins that form spectrally distinct visual pigments, and in these exceptions the functional significance of coexpression is unclear. Here we document for the first time photoreceptors coexpressing spectrally distinct opsin genes in a manner that tunes sensitivity to the light environment. Photoreceptors of the cichlid fish, Metriaclima zebra, mix different pairs of opsins in retinal regions that view distinct backgrounds. The mixing of visual pigments increases absorbance of the corresponding background, potentially aiding the detection of dark objects. Thus, opsin coexpression may be a novel mechanism of spectral tuning that could be useful for detecting prey, predators and mates. However, our calculations show that coexpression of some opsins can hinder colour discrimination, creating a trade-off between visual functions. PMID:25377457

  6. Spectral tuning by opsin coexpression in retinal regions that view different parts of the visual field.

    PubMed

    Dalton, Brian E; Loew, Ellis R; Cronin, Thomas W; Carleton, Karen L

    2014-12-22

    Vision frequently mediates critical behaviours, and photoreceptors must respond to the light available to accomplish these tasks. Most photoreceptors are thought to contain a single visual pigment, an opsin protein bound to a chromophore, which together determine spectral sensitivity. Mechanisms of spectral tuning include altering the opsin, changing the chromophore and incorporating pre-receptor filtering. A few exceptions to the use of a single visual pigment have been documented in which a single mature photoreceptor coexpresses opsins that form spectrally distinct visual pigments, and in these exceptions the functional significance of coexpression is unclear. Here we document for the first time photoreceptors coexpressing spectrally distinct opsin genes in a manner that tunes sensitivity to the light environment. Photoreceptors of the cichlid fish, Metriaclima zebra, mix different pairs of opsins in retinal regions that view distinct backgrounds. The mixing of visual pigments increases absorbance of the corresponding background, potentially aiding the detection of dark objects. Thus, opsin coexpression may be a novel mechanism of spectral tuning that could be useful for detecting prey, predators and mates. However, our calculations show that coexpression of some opsins can hinder colour discrimination, creating a trade-off between visual functions.

  7. Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L.).

    PubMed Central

    Hope, A J; Partridge, J C; Hayes, P K

    1998-01-01

    The rod photoreceptors of the European eel, Anguilla anguilla (L.), alter their wavelength of maximum sensitivity (lambda max) from c.a. 523 nm to c.a. 482 nm at maturation, a switch involving the synthesis of a new visual pigment protein (opsin) that is inserted into the outer segments of existing rods. We artificially induced the switch in rod opsin production by the administration of hormones, and monitored the switch at the level of mRNA accumulation using radiolabelled oligonuleotides that hybridized differently to the two forms of eel rod opsin. The production of the deep-sea form of rod opsin was detected 6 h after the first hormone injection, and the switch in rod opsin expression was complete within four weeks, at which time only the mRNA for the deep-sea opsin was detectable in the retinal cells. It is suggested that this system could be used as a tractable model for studying the regulatory control of opsin gene expression. PMID:9633112

  8. Spectral tuning by opsin coexpression in retinal regions that view different parts of the visual field

    PubMed Central

    Dalton, Brian E.; Loew, Ellis R.; Cronin, Thomas W.; Carleton, Karen L.

    2014-01-01

    Vision frequently mediates critical behaviours, and photoreceptors must respond to the light available to accomplish these tasks. Most photoreceptors are thought to contain a single visual pigment, an opsin protein bound to a chromophore, which together determine spectral sensitivity. Mechanisms of spectral tuning include altering the opsin, changing the chromophore and incorporating pre-receptor filtering. A few exceptions to the use of a single visual pigment have been documented in which a single mature photoreceptor coexpresses opsins that form spectrally distinct visual pigments, and in these exceptions the functional significance of coexpression is unclear. Here we document for the first time photoreceptors coexpressing spectrally distinct opsin genes in a manner that tunes sensitivity to the light environment. Photoreceptors of the cichlid fish, Metriaclima zebra, mix different pairs of opsins in retinal regions that view distinct backgrounds. The mixing of visual pigments increases absorbance of the corresponding background, potentially aiding the detection of dark objects. Thus, opsin coexpression may be a novel mechanism of spectral tuning that could be useful for detecting prey, predators and mates. However, our calculations show that coexpression of some opsins can hinder colour discrimination, creating a trade-off between visual functions. PMID:25377457

  9. Molecular expression of opsin gene in growing juvenile mackerel ( Scomber japonicus Houttuyn)

    NASA Astrophysics Data System (ADS)

    Kim, Eung-Oh; Yoon, Seong-Jong; Park, Kyoung-Hyun; Kim, Dae-Hyun; Do, Jeung-Wan; Cho, Eun-Seob

    2009-12-01

    Fish have developed color vision that is closely adapted to their photic environments, where both spectral sensitivity and the number of visual opsins are influenced. The mackerel used in this study is one of the most important fishery stocks in Korea. The opsin gene of the mackerel juveniles after 20 days in hatching was isolated and characterized based on the molecular study of visual photoreceptor. The full-length mackerel opsin gene was obtained by PCR amplification of genomic DNA, as well as cDNA synthesis. Sequence analysis of the opsin gene showed that it contained a 1,080 bp open reading frame encoding 360 amino acids. Based on Schiff’s base formation (S114, K119), glycosylation (E3, F37) and palmitoylation (S281, 282), the deduced amino acid sequence had a typical rod opsin. The mackerel and Gempylus serpens showed 73.7% DNA homology on opsin gene, which was higher than any other of investigated species. In the analysis of phylogenetic relationship, the genetic placement of the mackerel is closer to that of Scombroidei than Labroidei, with supporting somewhat strong bootstrap value. In the analysis of Northern and RT-PCR, the probed products were observed only in rapidly growing juveniles. These findings indicate that in mackerel opsin mRNA expression can be detected in day-20 hatching larvae. It may play an important role in stimulating growth hormone.

  10. Evolution and expression plasticity of opsin genes in a fig pollinator, Ceratosolen solmsi.

    PubMed

    Wang, Bo; Xiao, Jin-Hua; Bian, Sheng-Nan; Niu, Li-Ming; Murphy, Robert W; Huang, Da-Wei

    2013-01-01

    Figs and fig pollinators have co-evolved species-specific systems of mutualism. So far, it was unknown how visual opsin genes of pollinators have evolved in the light conditions inside their host figs. We cloned intact full-length mRNA sequences of four opsin genes from a species of fig pollinator, Ceratosolen solmsi, and tested for selective pressure and expressional plasticity of these genes. Molecular evolutionary analysis indicated that the four opsin genes evolved under different selective constraints. Subsets of codons in the two long wavelength sensitive opsin (LW1, LW2) genes were positively selected in ancestral fig pollinators. The ultraviolet sensitive opsin (UV) gene was under strong purifying selection, whereas a relaxation of selective constrains occurred on several amino acids in the blue opsin. RT-qPCR analysis suggested that female and male fig pollinators had different expression patterns possibly due to their distinct lifestyles and different responses to light within the syconia. Co-evolutionary history with figs might have influenced the evolution and expression plasticity of opsin genes in fig pollinators.

  11. Variation in opsin genes correlates with signaling ecology in North American fireflies

    PubMed Central

    Sander, Sarah E.; Hall, David W.

    2015-01-01

    Genes underlying signal reception should evolve to maximize signal detection in a particular environment. In animals, opsins, the protein component of visual pigments, are predicted to evolve according to this expectation. Fireflies are known for their bioluminescent mating signals. The eyes of nocturnal species are expected to maximize detection of conspecific signal colors emitted in the typical low-light environment. This is not expected for species that have transitioned to diurnal activity in bright daytime environments. Here we test the hypothesis that opsin gene sequence plays a role in modifying firefly eye spectral sensitivity. We use genome and transcriptome sequencing in four firefly species, transcriptome sequencing in six additional species, and targeted gene sequencing in 28 other species to identify all opsin genes present in North American fireflies and to elucidate amino acid sites under positive selection. We also determine whether amino acid substitutions in opsins are linked to evolutionary changes in signal mode, signal color, and light environment. We find only two opsins, one long wavelength and one ultraviolet, in all firefly species and identify 25 candidate sites that may be involved in determining spectral sensitivity. In addition, we find elevated rates of evolution at transitions to diurnal activity, and changes in selective constraint on LW opsin associated with changes in light environment. Our results suggest that changes in eye spectral sensitivity are at least partially due to opsin sequence. Fireflies continue to be a promising system in which to investigate the evolution of signals, receptors, and signaling environments. PMID:26289828

  12. Variation in opsin genes correlates with signalling ecology in North American fireflies.

    PubMed

    Sander, S E; Hall, D W

    2015-09-01

    Genes underlying signal reception should evolve to maximize signal detection in a particular environment. In animals, opsins, the protein component of visual pigments, are predicted to evolve according to this expectation. Fireflies are known for their bioluminescent mating signals. The eyes of nocturnal species are expected to maximize the detection of conspecific signal colours emitted in the typical low-light environment. This is not expected for species that have transitioned to diurnal activity in bright daytime environments. Here, we test the hypothesis that opsin gene sequence plays a role in modifying firefly eye spectral sensitivity. We use genome and transcriptome sequencing in four firefly species, transcriptome sequencing in six additional species and targeted gene sequencing in 28 other species to identify all opsin genes present in North American fireflies and to elucidate amino acid sites under positive selection. We also determine whether amino acid substitutions in opsins are linked to evolutionary changes in signal mode, signal colour and light environment. We find only two opsins, one long wavelength and one ultraviolet, in all firefly species and identify 25 candidate sites that may be involved in determining spectral sensitivity. In addition, we find elevated rates of evolution at transitions to diurnal activity, and changes in selective constraint on long wavelength opsin associated with changes in light environment. Our results suggest that changes in eye spectral sensitivity are at least partially due to opsin sequence. Fireflies continue to be a promising system in which to investigate the evolution of signals, receptors and signalling environments.

  13. Retinal cone photoreceptors of the deer mouse Peromyscus maniculatus: development, topography, opsin expression and spectral tuning.

    PubMed

    Arbogast, Patrick; Glösmann, Martin; Peichl, Leo

    2013-01-01

    A quantitative analysis of photoreceptor properties was performed in the retina of the nocturnal deer mouse, Peromyscus maniculatus, using pigmented (wildtype) and albino animals. The aim was to establish whether the deer mouse is a more suitable model species than the house mouse for photoreceptor studies, and whether oculocutaneous albinism affects its photoreceptor properties. In retinal flatmounts, cone photoreceptors were identified by opsin immunostaining, and their numbers, spectral types, and distributions across the retina were determined. Rod photoreceptors were counted using differential interference contrast microscopy. Pigmented P. maniculatus have a rod-dominated retina with rod densities of about 450.000/mm(2) and cone densities of 3000-6500/mm(2). Two cone opsins, shortwave sensitive (S) and middle-to-longwave sensitive (M), are present and expressed in distinct cone types. Partial sequencing of the S opsin gene strongly supports UV sensitivity of the S cone visual pigment. The S cones constitute a 5-15% minority of the cones. Different from house mouse, S and M cone distributions do not have dorsoventral gradients, and coexpression of both opsins in single cones is exceptional (<2% of the cones). In albino P. maniculatus, rod densities are reduced by approximately 40% (270.000/mm(2)). Overall, cone density and the density of cones exclusively expressing S opsin are not significantly different from pigmented P. maniculatus. However, in albino retinas S opsin is coexpressed with M opsin in 60-90% of the cones and therefore the population of cones expressing only M opsin is significantly reduced to 5-25%. In conclusion, deer mouse cone properties largely conform to the general mammalian pattern, hence the deer mouse may be better suited than the house mouse for the study of certain basic cone properties, including the effects of albinism on cone opsin expression. PMID:24260509

  14. Three Different Cone Opsin Gene Array Mutational Mechanisms with Genotype–Phenotype Correlation and Functional Investigation of Cone Opsin Variants

    PubMed Central

    Gardner, Jessica C; Liew, Gerald; Quan, Ying-Hua; Ermetal, Burcu; Ueyama, Hisao; Davidson, Alice E; Schwarz, Nele; Kanuga, Naheed; Chana, Ravinder; Maher, Eamonn R; Webster, Andrew R; Holder, Graham E; Robson, Anthony G; Cheetham, Michael E; Liebelt, Jan; Ruddle, Jonathan B; Moore, Anthony T; Michaelides, Michel; Hardcastle, Alison J

    2014-01-01

    Mutations in the OPN1LW (L-) and OPN1MW (M-)cone opsin genes underlie a spectrum of cone photoreceptor defects from stationary loss of color vision to progressive retinal degeneration. Genotypes of 22 families with a range of cone disorders were grouped into three classes: deletions of the locus control region (LCR); missense mutation (p.Cys203Arg) in an L-/M-hybrid gene; and exon 3 single-nucleotide polymorphism (SNP) interchange haplotypes in an otherwise normal gene array. Moderate-to-high myopia was observed in all mutation categories. Individuals with LCR deletions or p.Cys203Arg mutations were more likely to have nystagmus and poor vision, with disease progression in some p.Cys203Arg patients. Three disease-associated exon 3 SNP haplotypes encoding LIAVA, LVAVA, or MIAVA were identified in our cohort. These patients were less likely to have nystagmus but more likely to show progression, with all patients over the age of 40 years having marked macular abnormalities. Previously, the haplotype LIAVA has been shown to result in exon 3 skipping. Here, we show that haplotypes LVAVA and MIAVA also result in aberrant splicing, with a residual low level of correctly spliced cone opsin. The OPN1LW/OPN1MW:c.532A>G SNP, common to all three disease-associated haplotypes, appears to be principally responsible for this mutational mechanism. PMID:25168334

  15. A ligand channel through the G protein coupled receptor opsin.

    PubMed

    Hildebrand, Peter W; Scheerer, Patrick; Park, Jung Hee; Choe, Hui-Woog; Piechnick, Ronny; Ernst, Oliver P; Hofmann, Klaus Peter; Heck, Martin

    2009-01-01

    The G protein coupled receptor rhodopsin contains a pocket within its seven-transmembrane helix (TM) structure, which bears the inactivating 11-cis-retinal bound by a protonated Schiff-base to Lys296 in TM7. Light-induced 11-cis-/all-trans-isomerization leads to the Schiff-base deprotonated active Meta II intermediate. With Meta II decay, the Schiff-base bond is hydrolyzed, all-trans-retinal is released from the pocket, and the apoprotein opsin reloaded with new 11-cis-retinal. The crystal structure of opsin in its active Ops* conformation provides the basis for computational modeling of retinal release and uptake. The ligand-free 7TM bundle of opsin opens into the hydrophobic membrane layer through openings A (between TM1 and 7), and B (between TM5 and 6), respectively. Using skeleton search and molecular docking, we find a continuous channel through the protein that connects these two openings and comprises in its central part the retinal binding pocket. The channel traverses the receptor over a distance of ca. 70 A and is between 11.6 and 3.2 A wide. Both openings are lined with aromatic residues, while the central part is highly polar. Four constrictions within the channel are so narrow that they must stretch to allow passage of the retinal beta-ionone-ring. Constrictions are at openings A and B, respectively, and at Trp265 and Lys296 within the retinal pocket. The lysine enforces a 90 degrees elbow-like kink in the channel which limits retinal passage. With a favorable Lys side chain conformation, 11-cis-retinal can take the turn, whereas passage of the all-trans isomer would require more global conformational changes. We discuss possible scenarios for the uptake of 11-cis- and release of all-trans-retinal. If the uptake gate of 11-cis-retinal is assigned to opening B, all-trans is likely to leave through the same gate. The unidirectional passage proposed previously requires uptake of 11-cis-retinal through A and release of photolyzed all-trans-retinal through

  16. Optogenetics: 10 years of microbial opsins in neuroscience.

    PubMed

    Deisseroth, Karl

    2015-09-01

    Over the past 10 years, the development and convergence of microbial opsin engineering, modular genetic methods for cell-type targeting and optical strategies for guiding light through tissue have enabled versatile optical control of defined cells in living systems, defining modern optogenetics. Despite widespread recognition of the importance of spatiotemporally precise causal control over cellular signaling, for nearly the first half (2005-2009) of this 10-year period, as optogenetics was being created, there were difficulties in implementation, few publications and limited biological findings. In contrast, the ensuing years have witnessed a substantial acceleration in the application domain, with the publication of thousands of discoveries and insights into the function of nervous systems and beyond. This Historical Commentary reflects on the scientific landscape of this decade-long transition.

  17. Optogenetics: 10 years of microbial opsins in neuroscience

    PubMed Central

    Deisseroth, Karl

    2016-01-01

    Over the past 10 years, the development and convergence of microbial opsin engineering, modular genetic methods for cell-type targeting and optical strategies for guiding light through tissue have enabled versatile optical control of defined cells in living systems, defining modern optogenetics. Despite widespread recognition of the importance of spatiotemporally precise causal control over cellular signaling, for nearly the first half (2005–2009) of this 10-year period, as optogenetics was being created, there were difficulties in implementation, few publications and limited biological findings. In contrast, the ensuing years have witnessed a substantial acceleration in the application domain, with the publication of thousands of discoveries and insights into the function of nervous systems and beyond. This Historical Commentary reflects on the scientific landscape of this decade-long transition. PMID:26308982

  18. The photochemical determinants of color vision: revealing how opsins tune their chromophore's absorption wavelength.

    PubMed

    Wang, Wenjing; Geiger, James H; Borhan, Babak

    2014-01-01

    The evolution of a variety of important chromophore-dependent biological processes, including microbial light sensing and mammalian color vision, relies on protein modifications that alter the spectral characteristics of a bound chromophore. Three different color opsins share the same chromophore, but have three distinct absorptions that together cover the entire visible spectrum, giving rise to trichromatic vision. The influence of opsins on the absorbance of the chromophore has been studied through methods such as model compounds, opsin mutagenesis, and computational modeling. The recent development of rhodopsin mimic that uses small soluble proteins to recapitulate the binding and wavelength tuning of the native opsins provides a new platform for studying protein-regulated spectral tuning. The ability to achieve far-red shifted absorption in the rhodopsin mimic system was attributed to a combination of the lack of a counteranion proximal to the iminium, and a uniformly neutral electrostatic environment surrounding the chromophore. PMID:24323922

  19. Y-chromosomal red-green opsin genes of nocturnal New World monkey.

    PubMed

    Kawamura, Shoji; Takenaka, Naomi; Hiramatsu, Chihiro; Hirai, Momoki; Takenaka, Osamu

    2002-10-23

    The X-chromosomal locality of the red-green-sensitive opsin genes has been the norm for all mammals and is essential for color vision of higher primates. Owl monkeys (Aotus), a genus of New World monkeys, are the only nocturnal higher primates and are severely color-blind. We demonstrate that the owl monkeys possess extra red-green opsin genes on the Y-chromosome. The Y-linked opsin genes were found to be extremely varied, in one male appearing to be a functional gene and in other males to be multicopy pseudogenes. These Y-linked opsin genes should offer a rare opportunity to study the evolutionary fate of genes translocated to the Y chromosome.

  20. The photochemical determinants of color vision: revealing how opsins tune their chromophore's absorption wavelength.

    PubMed

    Wang, Wenjing; Geiger, James H; Borhan, Babak

    2014-01-01

    The evolution of a variety of important chromophore-dependent biological processes, including microbial light sensing and mammalian color vision, relies on protein modifications that alter the spectral characteristics of a bound chromophore. Three different color opsins share the same chromophore, but have three distinct absorptions that together cover the entire visible spectrum, giving rise to trichromatic vision. The influence of opsins on the absorbance of the chromophore has been studied through methods such as model compounds, opsin mutagenesis, and computational modeling. The recent development of rhodopsin mimic that uses small soluble proteins to recapitulate the binding and wavelength tuning of the native opsins provides a new platform for studying protein-regulated spectral tuning. The ability to achieve far-red shifted absorption in the rhodopsin mimic system was attributed to a combination of the lack of a counteranion proximal to the iminium, and a uniformly neutral electrostatic environment surrounding the chromophore.

  1. Depth-dependent plasticity in opsin gene expression varies between damselfish (Pomacentridae) species.

    PubMed

    Stieb, Sara M; Carleton, Karen L; Cortesi, Fabio; Marshall, N Justin; Salzburger, Walter

    2016-08-01

    Phenotypic plasticity plays an important role in adapting the visual capability of many animal species to changing sensory requirements. Such variability may be driven by developmental change or may result from environmental changes in light habitat, thereby improving performance in different photic environments. In this study, we examined inter- and intraspecific plasticity of visual sensitivities in seven damselfish species, part of the species-rich and colourful fish fauna of the Great Barrier Reef in Australia. Our goal was to test whether the visual systems of damselfish were tuned to the prevailing light environment in different habitats and/or other aspects of their lifestyle. More specifically, we compared the opsin gene expression levels from individuals living in different photic habitats. We found that all species expressed rod opsin (RH1) used for dim-light vision, and primarily three cone opsins (SWS1, RH2B and RH2A) used for colour vision. While RH1 levels changed exclusively following a diurnal cycle, cone opsin expression varied with depth in four of the seven species. Estimates of visual pigment performance imply that changes in opsin expression adjust visual sensitivities to the dominant photic regime. However, we also discovered that some species show a more stable opsin expression profile. Further, we found indication that seasonal changes, possibly linked to changes in the photic environment, might also trigger opsin expression. These findings suggest that plasticity in opsin gene expression of damselfish is highly species-specific, possibly due to ecological differences in visual tasks or, alternatively, under phylogenetic constraints. PMID:27262029

  2. Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species.

    PubMed

    Spady, Tyrone C; Seehausen, Ole; Loew, Ellis R; Jordan, Rebecca C; Kocher, Thomas D; Carleton, Karen L

    2005-06-01

    Cichlid fish inhabit a diverse range of environments that vary in the spectral content of light available for vision. These differences should result in adaptive selective pressure on the genes involved in visual sensitivity, the opsin genes. This study examines the evidence for differential adaptive molecular evolution in East African cichlid opsin genes due to gross differences in environmental light conditions. First, we characterize the selective regime experienced by cichlid opsin genes using a likelihood ratio test format, comparing likelihood models with different constraints on the relative rates of amino acid substitution, across sites. Second, we compare turbid and clear lineages to determine if there is evidence of differences in relative rates of substitution. Third, we present evidence of functional diversification and its relationship to the photic environment among cichlid opsin genes. We report statistical evidence of positive selection in all cichlid opsin genes, except short wavelength-sensitive 1 and short wavelength-sensitive 2b. In all genes predicted to be under positive selection, except short wavelength-sensitive 2a, we find differences in selective pressure between turbid and clear lineages. Potential spectral tuning sites are variable among all cichlid opsin genes; however, patterns of substitution consistent with photic environment-driven evolution of opsin genes are observed only for short wavelength-sensitive 1 opsin genes. This study identifies a number of promising candidate-tuning sites for future study by site-directed mutagenesis. This work also begins to demonstrate the molecular evolutionary dynamics of cichlid visual sensitivity and its relationship to the photic environment.

  3. Cone opsins, colour blindness and cone dystrophy: Genotype-phenotype correlations.

    PubMed

    Gardner, J C; Michaelides, M; Hardcastle, A J

    2016-05-25

    X-linked cone photoreceptor disorders caused by mutations in the OPN1LW (L) and OPN1MW (M) cone opsin genes on chromosome Xq28 include a range of conditions from mild stable red-green colour vision deficiencies to severe cone dystrophies causing progressive loss of vision and blindness. Advances in molecular genotyping and functional analyses of causative variants, combined with deep retinal phenotyping, are unravelling genetic mechanisms underlying the variability of cone opsin disorders.

  4. Broadband activation by white-opsin lowers intensity threshold for cellular stimulation

    PubMed Central

    Batabyal, Subrata; Cervenka, Gregory; Birch, David; Kim, Young-tae; Mohanty, Samarendra

    2015-01-01

    Photoreceptors, which initiate the conversion of ambient light to action potentials via retinal circuitry, degenerate in retinal diseases such as retinitis pigmentosa and age related macular degeneration leading to loss of vision. Current prosthetic devices using arrays consisting of electrodes or LEDs (for optogenetic activation of conventional narrow-band opsins) have limited spatial resolution and can cause damage to retinal circuits by mechanical or photochemical (by absorption of intense narrow band light) means. Here, we describe a broad-band light activatable white-opsin for generating significant photocurrent at white light intensity levels close to ambient daylight conditions. White-opsin produced an order of magnitude higher photocurrent in response to white light as compared to narrow-band opsin channelrhodopsin-2, while maintaining the ms-channel kinetics. High fidelity of peak-photocurrent (both amplitude and latency) of white-opsin in response to repetitive white light stimulation of varying pulse width was observed. The significantly lower intensity stimulation required for activating white-opsin sensitized cells may facilitate ambient white light-based restoration of vision for patients with widespread photoreceptor degeneration. PMID:26658483

  5. Opsin Repertoire and Expression Patterns in Horseshoe Crabs: Evidence from the Genome of Limulus polyphemus (Arthropoda: Chelicerata).

    PubMed

    Battelle, Barbara-Anne; Ryan, Joseph F; Kempler, Karen E; Saraf, Spencer R; Marten, Catherine E; Warren, Wesley C; Minx, Patrick J; Montague, Michael J; Green, Pamela J; Schmidt, Skye A; Fulton, Lucinda; Patel, Nipam H; Protas, Meredith E; Wilson, Richard K; Porter, Megan L

    2016-01-01

    Horseshoe crabs are xiphosuran chelicerates, the sister group to arachnids. As such, they are important for understanding the most recent common ancestor of Euchelicerata and the evolution and diversification of Arthropoda. Limulus polyphemus is the most investigated of the four extant species of horseshoe crabs, and the structure and function of its visual system have long been a major focus of studies critical for understanding the evolution of visual systems in arthropods. Likewise, studies of genes encoding Limulus opsins, the protein component of the visual pigments, are critical for understanding opsin evolution and diversification among chelicerates, where knowledge of opsins is limited, and more broadly among arthropods. In the present study, we sequenced and assembled a high quality nuclear genomic sequence of L. polyphemus and used these data to annotate the full repertoire of Limulus opsins. We conducted a detailed phylogenetic analysis of Limulus opsins, including using gene structure and synteny information to identify relationships among different opsin classes. We used our phylogeny to identify significant genomic events that shaped opsin evolution and therefore the visual system of Limulus We also describe the tissue expression patterns of the 18 opsins identified and show that transcripts encoding a number, including a peropsin, are present throughout the central nervous system. In addition to significantly extending our understanding of photosensitivity in Limulus and providing critical insight into the genomic evolution of horseshoe crab opsins, this work provides a valuable genomic resource for addressing myriad questions related to xiphosuran physiology and arthropod evolution. PMID:27189985

  6. Opsin Repertoire and Expression Patterns in Horseshoe Crabs: Evidence from the Genome of Limulus polyphemus (Arthropoda: Chelicerata)

    PubMed Central

    Battelle, Barbara-Anne; Ryan, Joseph F.; Kempler, Karen E.; Saraf, Spencer R.; Marten, Catherine E.; Warren, Wesley C.; Minx, Patrick J.; Montague, Michael J.; Green, Pamela J.; Schmidt, Skye A.; Fulton, Lucinda; Patel, Nipam H.; Protas, Meredith E.; Wilson, Richard K.; Porter, Megan L.

    2016-01-01

    Horseshoe crabs are xiphosuran chelicerates, the sister group to arachnids. As such, they are important for understanding the most recent common ancestor of Euchelicerata and the evolution and diversification of Arthropoda. Limulus polyphemus is the most investigated of the four extant species of horseshoe crabs, and the structure and function of its visual system have long been a major focus of studies critical for understanding the evolution of visual systems in arthropods. Likewise, studies of genes encoding Limulus opsins, the protein component of the visual pigments, are critical for understanding opsin evolution and diversification among chelicerates, where knowledge of opsins is limited, and more broadly among arthropods. In the present study, we sequenced and assembled a high quality nuclear genomic sequence of L. polyphemus and used these data to annotate the full repertoire of Limulus opsins. We conducted a detailed phylogenetic analysis of Limulus opsins, including using gene structure and synteny information to identify relationships among different opsin classes. We used our phylogeny to identify significant genomic events that shaped opsin evolution and therefore the visual system of Limulus. We also describe the tissue expression patterns of the 18 opsins identified and show that transcripts encoding a number, including a peropsin, are present throughout the central nervous system. In addition to significantly extending our understanding of photosensitivity in Limulus and providing critical insight into the genomic evolution of horseshoe crab opsins, this work provides a valuable genomic resource for addressing myriad questions related to xiphosuran physiology and arthropod evolution. PMID:27189985

  7. Opsin Repertoire and Expression Patterns in Horseshoe Crabs: Evidence from the Genome of Limulus polyphemus (Arthropoda: Chelicerata).

    PubMed

    Battelle, Barbara-Anne; Ryan, Joseph F; Kempler, Karen E; Saraf, Spencer R; Marten, Catherine E; Warren, Wesley C; Minx, Patrick J; Montague, Michael J; Green, Pamela J; Schmidt, Skye A; Fulton, Lucinda; Patel, Nipam H; Protas, Meredith E; Wilson, Richard K; Porter, Megan L

    2016-06-03

    Horseshoe crabs are xiphosuran chelicerates, the sister group to arachnids. As such, they are important for understanding the most recent common ancestor of Euchelicerata and the evolution and diversification of Arthropoda. Limulus polyphemus is the most investigated of the four extant species of horseshoe crabs, and the structure and function of its visual system have long been a major focus of studies critical for understanding the evolution of visual systems in arthropods. Likewise, studies of genes encoding Limulus opsins, the protein component of the visual pigments, are critical for understanding opsin evolution and diversification among chelicerates, where knowledge of opsins is limited, and more broadly among arthropods. In the present study, we sequenced and assembled a high quality nuclear genomic sequence of L. polyphemus and used these data to annotate the full repertoire of Limulus opsins. We conducted a detailed phylogenetic analysis of Limulus opsins, including using gene structure and synteny information to identify relationships among different opsin classes. We used our phylogeny to identify significant genomic events that shaped opsin evolution and therefore the visual system of Limulus We also describe the tissue expression patterns of the 18 opsins identified and show that transcripts encoding a number, including a peropsin, are present throughout the central nervous system. In addition to significantly extending our understanding of photosensitivity in Limulus and providing critical insight into the genomic evolution of horseshoe crab opsins, this work provides a valuable genomic resource for addressing myriad questions related to xiphosuran physiology and arthropod evolution.

  8. X-linked cone dystrophy caused by mutation of the red and green cone opsins.

    PubMed

    Gardner, Jessica C; Webb, Tom R; Kanuga, Naheed; Robson, Anthony G; Holder, Graham E; Stockman, Andrew; Ripamonti, Caterina; Ebenezer, Neil D; Ogun, Olufunmilola; Devery, Sophie; Wright, Genevieve A; Maher, Eamonn R; Cheetham, Michael E; Moore, Anthony T; Michaelides, Michel; Hardcastle, Alison J

    2010-07-01

    X-linked cone and cone-rod dystrophies (XLCOD and XLCORD) are a heterogeneous group of progressive disorders that solely or primarily affect cone photoreceptors. Mutations in exon ORF15 of the RPGR gene are the most common underlying cause. In a previous study, we excluded RPGR exon ORF15 in some families with XLCOD. Here, we report genetic mapping of XLCOD to Xq26.1-qter. A significant LOD score was detected with marker DXS8045 (Z(max) = 2.41 [theta = 0.0]). The disease locus encompasses the cone opsin gene array on Xq28. Analysis of the array revealed a missense mutation (c. 529T>C [p. W177R]) in exon 3 of both the long-wavelength-sensitive (LW, red) and medium-wavelength-sensitive (MW, green) cone opsin genes that segregated with disease. Both exon 3 sequences were identical and were derived from the MW gene as a result of gene conversion. The amino acid W177 is highly conserved in visual and nonvisual opsins across species. We show that W177R in MW opsin and the equivalent W161R mutation in rod opsin result in protein misfolding and retention in the endoplasmic reticulum. We also demonstrate that W177R misfolding, unlike the P23H mutation in rod opsin that causes retinitis pigmentosa, is not rescued by treatment with the pharmacological chaperone 9-cis-retinal. Mutations in the LW/MW cone opsin gene array can, therefore, lead to a spectrum of disease, ranging from color blindness to progressive cone dystrophy (XLCOD5). PMID:20579627

  9. Regeneration of bovine and octopus opsins in situ with natural and artificial retinals

    SciTech Connect

    Koutalos, Y.; Ebrey, T.G.; Tsuda, M.; Odashima, K.; Lien, T.; Park, M.H.; Shimizu, N.; Derguini, F.; Nakanishi, K.; Gilson, H.R.; Honig, B. )

    1989-03-21

    The authors consider the problem of color regulation in visual pigments for both bovine rhodopsin and octopus rhodopsin. Both pigments have 11-cis-retinal as their chromophore. These rhodopsins were bleached in their native membranes, and the opsins were regenerated with natural and artificial chromophores. Both bovine and octopus opsins were regenerated with the 9-cis- and 11-cis-retinal isomers, but the octopus opsin was additionally regenerated with the 13-cis and all-trans isomers. Titration of the octopus opsin with 11-cis-retinal gave an extinction coefficient for octopus rhodopsin of 27,000 {plus minus} 3,000 M{sup {minus}1} cm{sup {minus}1} at 475 nm. The absorption maxima of bovine artificial pigments formed by regenerating opsin with the 11-cis dihydro series of chromophores support a color regulation model for bovine rhodopsin in which the chromophore-binding site of the protein has two negative charges: one directly hydrogen bonded to the Schiff base nitrogen and another near carbon-13. Formation of octopus artificial pigments with both all-trans and 11-cis dihydro chromophores leads to a similar model for octopus rhodopsin and metarhodopsin: there are two negative charges in the chromophore-binding site, one directly hydrogen bonded to the Schiff base nitrogen and a second near carbon-13. The interaction of this second charge with the chromophore in octopus rhodopsin is weaker than in bovine, while in metarhodopsin it is as strong as in bovine.

  10. Diurnal lighting patterns and habitat alter opsin expression and colour preferences in a killifish

    PubMed Central

    Johnson, Ashley M.; Stanis, Shannon; Fuller, Rebecca C.

    2013-01-01

    Spatial variation in lighting environments frequently leads to population variation in colour patterns, colour preferences and visual systems. Yet lighting conditions also vary diurnally, and many aspects of visual systems and behaviour vary over this time scale. Here, we use the bluefin killifish (Lucania goodei) to compare how diurnal variation and habitat variation (clear versus tannin-stained water) affect opsin expression and the preference to peck at different-coloured objects. Opsin expression was generally lowest at midnight and dawn, and highest at midday and dusk, and this diurnal variation was many times greater than variation between habitats. Pecking preference was affected by both diurnal and habitat variation but did not correlate with opsin expression. Rather, pecking preference matched lighting conditions, with higher preferences for blue at noon and for red at dawn/dusk, when these wavelengths are comparatively scarce. Similarly, blue pecking preference was higher in tannin-stained water where blue wavelengths are reduced. In conclusion, L. goodei exhibits strong diurnal cycles of opsin expression, but these are not tightly correlated with light intensity or colour. Temporally variable pecking preferences probably result from lighting environment rather than from opsin production. These results may have implications for the colour pattern diversity observed in these fish. PMID:23698009

  11. Spectral sensitivity in Onychophora (velvet worms) revealed by electroretinograms, phototactic behaviour and opsin gene expression.

    PubMed

    Beckmann, Holger; Hering, Lars; Henze, Miriam J; Kelber, Almut; Stevenson, Paul A; Mayer, Georg

    2015-03-01

    Onychophorans typically possess a pair of simple eyes, inherited from the last common ancestor of Panarthropoda (Onychophora+Tardigrada+Arthropoda). These visual organs are thought to be homologous to the arthropod median ocelli, whereas the compound eyes probably evolved in the arthropod lineage. To gain insights into the ancestral function and evolution of the visual system in panarthropods, we investigated phototactic behaviour, opsin gene expression and the spectral sensitivity of the eyes in two representative species of Onychophora: Euperipatoides rowelli (Peripatopsidae) and Principapillatus hitoyensis (Peripatidae). Our behavioural analyses, in conjunction with previous data, demonstrate that both species exhibit photonegative responses to wavelengths ranging from ultraviolet to green light (370-530 nm), and electroretinograms reveal that the onychophoran eye is maximally sensitive to blue light (peak sensitivity ∼480 nm). Template fits to these sensitivities suggest that the onychophoran eye is monochromatic. To clarify which type of opsin the single visual pigment is based on, we localised the corresponding mRNA in the onychophoran eye and brain using in situ hybridization. Our data show that the r-opsin gene (onychopsin) is expressed exclusively in the photoreceptor cells of the eye, whereas c-opsin mRNA is confined to the optic ganglion cells and the brain. Together, our findings suggest that the onychopsin is involved in vision, whereas c-opsin might have a photoreceptive, non-visual function in onychophorans.

  12. Crepuscular Behavioral Variation and Profiling of Opsin Genes in Anopheles gambiae and Anopheles stephensi (Diptera: Culicidae)

    PubMed Central

    Jenkins, Adam M.; Muskavitch, Marc A. T.

    2015-01-01

    We understand little about photopreference and the molecular mechanisms governing vision-dependent behavior in vector mosquitoes. Investigations of the influence of photopreference on adult mosquito behaviors such as endophagy and exophagy and endophily and exophily will enhance our ability to develop and deploy vector-targeted interventions and monitoring techniques. Our laboratory-based analyses have revealed that crepuscular period photopreference differs between An. gambiae and An. stephensi. We employed qRT-PCR to assess crepuscular transcriptional expression patterns of long wavelength-, short wavelength-, and ultraviolet wavelength-sensing opsins (i.e., rhodopsin-class G-protein coupled receptors) in An. gambiae and in An. stephensi. Transcript levels do not exhibit consistent differences between species across diurnal cycles, indicating that differences in transcript abundances within this gene set are not correlated with these behavioral differences. Using developmentally staged and gender-specific RNAseq data sets in An. gambiae, we show that long wavelength-sensing opsins are expressed in two different patterns (one set expressed during larval stages, and one set expressed during adult stages), while short wavelength- and ultraviolet wavelength-sensing opsins exhibit increased expression during adult stages. Genomic organization of An. gambiae opsins suggests paralogous gene expansion of long wavelength-sensing opsins in comparison with An. stephensi. We speculate that this difference in gene number may contribute to variation between these species in photopreference behavior (e.g., visual sensitivity). PMID:26334802

  13. Spectral sensitivity in Onychophora (velvet worms) revealed by electroretinograms, phototactic behaviour and opsin gene expression.

    PubMed

    Beckmann, Holger; Hering, Lars; Henze, Miriam J; Kelber, Almut; Stevenson, Paul A; Mayer, Georg

    2015-03-01

    Onychophorans typically possess a pair of simple eyes, inherited from the last common ancestor of Panarthropoda (Onychophora+Tardigrada+Arthropoda). These visual organs are thought to be homologous to the arthropod median ocelli, whereas the compound eyes probably evolved in the arthropod lineage. To gain insights into the ancestral function and evolution of the visual system in panarthropods, we investigated phototactic behaviour, opsin gene expression and the spectral sensitivity of the eyes in two representative species of Onychophora: Euperipatoides rowelli (Peripatopsidae) and Principapillatus hitoyensis (Peripatidae). Our behavioural analyses, in conjunction with previous data, demonstrate that both species exhibit photonegative responses to wavelengths ranging from ultraviolet to green light (370-530 nm), and electroretinograms reveal that the onychophoran eye is maximally sensitive to blue light (peak sensitivity ∼480 nm). Template fits to these sensitivities suggest that the onychophoran eye is monochromatic. To clarify which type of opsin the single visual pigment is based on, we localised the corresponding mRNA in the onychophoran eye and brain using in situ hybridization. Our data show that the r-opsin gene (onychopsin) is expressed exclusively in the photoreceptor cells of the eye, whereas c-opsin mRNA is confined to the optic ganglion cells and the brain. Together, our findings suggest that the onychopsin is involved in vision, whereas c-opsin might have a photoreceptive, non-visual function in onychophorans. PMID:25617459

  14. Crepuscular Behavioral Variation and Profiling of Opsin Genes in Anopheles gambiae and Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Jenkins, Adam M; Muskavitch, Marc A T

    2015-05-01

    We understand little about photo-preference and the molecular mechanisms governing vision-dependent behavior in vector mosquitoes. Investigations of the influence of photo-preference on adult mosquito behaviors such as endophagy and exophagy and endophily and exophily will enhance our ability to develop and deploy vector-targeted interventions and monitoring techniques. Our laboratory-based analyses have revealed that crepuscular period photo-preference differs between An. gambiae and An. stephensi. We employed qRT-PCR to assess crepuscular transcriptional expression patterns of long wavelength-, short wavelength-, and ultraviolet wavelength-sensing opsins (i.e., rhodopsin-class G-protein coupled receptors) in An. gambiae and in An. stephensi. Transcript levels do not exhibit consistent differences between species across diurnal cycles, indicating that differences in transcript abundances within this gene set are not correlated with these behavioral differences. Using developmentally staged and gender-specific RNAseq data sets in An. gambiae, we show that long wavelength-sensing opsins are expressed in two different patterns (one set expressed during larval stages, and one set expressed during adult stages), while short wavelength- and ultraviolet wavelength-sensing opsins exhibit increased expression during adult stages. Genomic organization of An. gambiae opsins suggests paralogous gene expansion of long wavelength-sensing opsins in comparison with An. stephensi. We speculate that this difference in gene number may contribute to variation between these species in photo-preference behavior (e.g., visual sensitivity).

  15. Diurnal lighting patterns and habitat alter opsin expression and colour preferences in a killifish.

    PubMed

    Johnson, Ashley M; Stanis, Shannon; Fuller, Rebecca C

    2013-07-22

    Spatial variation in lighting environments frequently leads to population variation in colour patterns, colour preferences and visual systems. Yet lighting conditions also vary diurnally, and many aspects of visual systems and behaviour vary over this time scale. Here, we use the bluefin killifish (Lucania goodei) to compare how diurnal variation and habitat variation (clear versus tannin-stained water) affect opsin expression and the preference to peck at different-coloured objects. Opsin expression was generally lowest at midnight and dawn, and highest at midday and dusk, and this diurnal variation was many times greater than variation between habitats. Pecking preference was affected by both diurnal and habitat variation but did not correlate with opsin expression. Rather, pecking preference matched lighting conditions, with higher preferences for blue at noon and for red at dawn/dusk, when these wavelengths are comparatively scarce. Similarly, blue pecking preference was higher in tannin-stained water where blue wavelengths are reduced. In conclusion, L. goodei exhibits strong diurnal cycles of opsin expression, but these are not tightly correlated with light intensity or colour. Temporally variable pecking preferences probably result from lighting environment rather than from opsin production. These results may have implications for the colour pattern diversity observed in these fish.

  16. Color-deficient cone mosaics associated with Xq28 opsin mutations: A stop codon versus gene deletions

    PubMed Central

    Wagner-Schuman, Melissa; Neitz, Jay; Rha, Jungtae; Williams, David R.; Neitz, Maureen; Carroll, Joseph

    2010-01-01

    Our understanding of the etiology of red-green color vision defects is evolving. While missense mutations within the long- (L-) and middle-wavelength sensitive (M-) photopigments and gross rearrangements within the L/M-opsin gene array are commonly associated with red-green defects, recent work using adaptive optics retinal imaging has shown that different genotypes can have distinct consequences for the cone mosaic. Here we examined the cone mosaic in red-green color deficient individuals with multiple X-chromosome opsin genes that encode L opsin, as well as individuals with a single X-chromosome opsin gene that encodes L opsin and a single patient with a novel premature termination codon in his M-opsin gene and a normal L-opsin gene. We observed no difference in cone density between normal trichomats and multiple or single gene dichromats. In addition, we demonstrate different phenotypic effects of a nonsense mutation versus the previously described deleterious polymorphism, (LIAVA), both of which differ from multiple and single gene dichromats. Our results help refine the relationship between opsin genotype and cone photoreceptor mosaic phenotype. PMID:20854834

  17. Adaptive evolution of cone opsin genes in two colorful cyprinids, Opsariichthys pachycephalus and Candidia barbatus.

    PubMed

    Wang, Feng Yu; Chung, Wen Sung; Yan, Hong Young; Tzeng, Chyng Shyan

    2008-07-01

    Opsariichthys pachycephalus and Candidia barbatus are two phylogenetically related freshwater cyprinids that both exhibit colorful, yet quite different nuptial coloration. This study was designed to test the hypothesis that differences in nuptial coloration between two species could reflect differences in color perception ability and the opsin genes that coded for it. Genes encoding the visual pigments of these two species were cloned and sequenced, lambda(max) of cone photoreceptors and the reflectance spectra of their body coloration were measured to test the hypothesis. The 14-nm spectral shift between green-light-sensitive photoreceptors of these two cyprinids is found to correlate well with differences in their reflective spectra. The spectral shift could result from differential expression of opsin genes and the interactive effects of the amino acid replacements in various minor sites. These results support our hypothesis that nuptial coloration is tied to color perception ability and opsin genes.

  18. The Microbial Opsin Homolog Sop1 is involved in Sclerotinia sclerotiorum Development and Environmental Stress Response

    PubMed Central

    Lyu, Xueliang; Shen, Cuicui; Fu, Yanping; Xie, Jiatao; Jiang, Daohong; Li, Guoqing; Cheng, Jiasen

    2016-01-01

    Microbial opsins play a crucial role in responses to various environmental signals. Here, we report that the microbial opsin homolog gene sop1 from the necrotrophic phytopathogenic fungus Sclerotinia sclerotiorum was dramatically up-regulated during infection and sclerotial development compared with the vegetative growth stage. Further, study showed that sop1 was essential for growth, sclerotial development and full virulence of S. sclerotiorum. Sop1-silenced transformants were more sensitive to high salt stress, fungicides and high osmotic stress. However, they were more tolerant to oxidative stress compared with the wild-type strain, suggesting that sop1 is involved in different stress responses and fungicide resistance, which plays a role in the environmental adaptability of S. sclerotiorum. Furthermore, a Delta blast search showed that microbial opsins are absent from the genomes of animals and most higher plants, indicating that sop1 is a potential drug target for disease control of S. sclerotiorum. PMID:26779159

  19. Opsin expression in Limulus eyes: a UV opsin is expressed in each eye type and co-expressed with a visible light-sensitive opsin in ventral larval eyes.

    PubMed

    Battelle, Barbara-Anne; Kempler, Karen E; Harrison, Alexandra; Dugger, Donald R; Payne, Richard

    2014-09-01

    The eyes of the horseshoe crab, Limulus polyphemus, are a model for studies of visual function and the visual systems of euarthropods. Much is known about the structure and function of L. polyphemus photoreceptors, much less about their photopigments. Three visible-light-sensitive L. polyphemus opsins were characterized previously (LpOps1, 2 and 5). Here we characterize a UV opsin (LpUVOps1) that is expressed in all three types of L. polyphemus eyes. It is expressed in most photoreceptors in median ocelli, the only L. polyphemus eyes in which UV sensitivity was previously detected, and in the dendrite of eccentric cells in lateral compound eyes. Therefore, eccentric cells, previously thought to be non-photosensitive second-order neurons, may actually be UV-sensitive photoreceptors. LpUVOps1 is also expressed in small photoreceptors in L. polyphemus ventral larval eyes, and intracellular recordings from these photoreceptors confirm that LpUVOps1 is an active, UV-sensitive photopigment. These photoreceptors also express LpOps5, which we demonstrate is an active, long-wavelength-sensitive photopigment. Thus small photoreceptors in ventral larval eyes, and probably those of the other larval eyes, have dual sensitivity to UV and visible light. Interestingly, the spectral tuning of small ventral photoreceptors may change day to night, because the level of LpOps5 in their rhabdoms is lower during the day than during the night, whereas LpUVOps1 levels show no diurnal change. These and previous findings show that opsin co-expression and the differential regulation of co-expressed opsins in rhabdoms is a common feature of L. polyphemus photoreceptors. PMID:24948643

  20. Opsin expression in Limulus eyes: a UV opsin is expressed in each eye type and co-expressed with a visible light-sensitive opsin in ventral larval eyes

    PubMed Central

    Battelle, Barbara-Anne; Kempler, Karen E.; Harrison, Alexandra; Dugger, Donald R.; Payne, Richard

    2014-01-01

    The eyes of the horseshoe crab, Limulus polyphemus, are a model for studies of visual function and the visual systems of euarthropods. Much is known about the structure and function of L. polyphemus photoreceptors, much less about their photopigments. Three visible-light-sensitive L. polyphemus opsins were characterized previously (LpOps1, 2 and 5). Here we characterize a UV opsin (LpUVOps1) that is expressed in all three types of L. polyphemus eyes. It is expressed in most photoreceptors in median ocelli, the only L. polyphemus eyes in which UV sensitivity was previously detected, and in the dendrite of eccentric cells in lateral compound eyes. Therefore, eccentric cells, previously thought to be non-photosensitive second-order neurons, may actually be UV-sensitive photoreceptors. LpUVOps1 is also expressed in small photoreceptors in L. polyphemus ventral larval eyes, and intracellular recordings from these photoreceptors confirm that LpUVOps1 is an active, UV-sensitive photopigment. These photoreceptors also express LpOps5, which we demonstrate is an active, long-wavelength-sensitive photopigment. Thus small photoreceptors in ventral larval eyes, and probably those of the other larval eyes, have dual sensitivity to UV and visible light. Interestingly, the spectral tuning of small ventral photoreceptors may change day to night, because the level of LpOps5 in their rhabdoms is lower during the day than during the night, whereas LpUVOps1 levels show no diurnal change. These and previous findings show that opsin co-expression and the differential regulation of co-expressed opsins in rhabdoms is a common feature of L. polyphemus photoreceptors. PMID:24948643

  1. Opsin expression in Limulus eyes: a UV opsin is expressed in each eye type and co-expressed with a visible light-sensitive opsin in ventral larval eyes.

    PubMed

    Battelle, Barbara-Anne; Kempler, Karen E; Harrison, Alexandra; Dugger, Donald R; Payne, Richard

    2014-09-01

    The eyes of the horseshoe crab, Limulus polyphemus, are a model for studies of visual function and the visual systems of euarthropods. Much is known about the structure and function of L. polyphemus photoreceptors, much less about their photopigments. Three visible-light-sensitive L. polyphemus opsins were characterized previously (LpOps1, 2 and 5). Here we characterize a UV opsin (LpUVOps1) that is expressed in all three types of L. polyphemus eyes. It is expressed in most photoreceptors in median ocelli, the only L. polyphemus eyes in which UV sensitivity was previously detected, and in the dendrite of eccentric cells in lateral compound eyes. Therefore, eccentric cells, previously thought to be non-photosensitive second-order neurons, may actually be UV-sensitive photoreceptors. LpUVOps1 is also expressed in small photoreceptors in L. polyphemus ventral larval eyes, and intracellular recordings from these photoreceptors confirm that LpUVOps1 is an active, UV-sensitive photopigment. These photoreceptors also express LpOps5, which we demonstrate is an active, long-wavelength-sensitive photopigment. Thus small photoreceptors in ventral larval eyes, and probably those of the other larval eyes, have dual sensitivity to UV and visible light. Interestingly, the spectral tuning of small ventral photoreceptors may change day to night, because the level of LpOps5 in their rhabdoms is lower during the day than during the night, whereas LpUVOps1 levels show no diurnal change. These and previous findings show that opsin co-expression and the differential regulation of co-expressed opsins in rhabdoms is a common feature of L. polyphemus photoreceptors.

  2. Active opsin loci adopt intrachromosomal loops that depend on the photoreceptor transcription factor network.

    PubMed

    Peng, Guang-Hua; Chen, Shiming

    2011-10-25

    Rod and cone opsin genes are expressed in a mutually exclusive manner in their respective photoreceptor subtypes in the mammalian retina. Previous transgenic mouse studies showed that functional interactions between the distal enhancer and proximal promoter of rhodopsin and long/medium-wavelength (L/M) opsin genes are essential for regulating their cell-type-specific transcription. We have used chromosomal conformation capture assays in mouse retinas to investigate the molecular mechanism responsible for this interaction. Here we show that each opsin gene forms intrachromosomal loops in the appropriate photoreceptor subtype, while maintaining a linear configuration in other cell types where it is silent. The enhancer forms physical contacts not only with the promoter but also with the coding regions of each opsin locus. ChIP assays showed that cell-type-specific target binding by three key photoreceptor transcription factors-cone--rod homeobox (CRX), neural retina leucine zipper (NRL), and nuclear receptor subfamily 2, group E, member 3 (NR2E3)--is required for the appropriate local chromosomal organization and transcription of rod and cone opsins. Similar correlations between chromosomal loops and active transcription of opsin genes were also observed in human photoreceptors. Furthermore, quantitative chromosomal conformation capture on human retinas from two male donors showed that the L/M enhancer locus control region (LCR) loops with either the L or M promoter in a near 3:1 ratio, supporting distance-dependent competition between L and M for LCR. Altogether, our results suggest that the photoreceptor transcription factor network cooperatively regulates the chromosomal organization of target genes to precisely control photoreceptor subtype-specific gene expression.

  3. Low-frequency vibrational modes in blue opsin: A computational study

    NASA Astrophysics Data System (ADS)

    Thirumuruganandham, Saravana Prakash; Urbassek, Herbert M.

    Vibrational excitations of low-frequency collective modes are essential for functionally important conformational transitions in proteins. We have carried out an analysis of the low-frequency modes in blue opsin based on both normal-mode analysis and molecular dynamics simulations. Power spectra obtained by molecular dynamics agree well with the normal modes. A representative set of low-frequency modes is discussed with the help of vector-field representation. We thus demonstrate that terahertz spectroscopy of low-frequency modes might be relevant for identifying those vibrational degrees of freedom that correlate to known conformational changes in opsins.

  4. Topographical regulation of cone and rod opsin genes: parallel, position dependent levels of transcription.

    PubMed

    van Ginkel, P R; Timmers, A M; Szél, A; Hauswirth, W W

    1995-10-27

    RNase protection assays were used to follow rhodopsin and red cone opsin mRNA levels during bovine fetal development as a function of retinal position. Following induction, an equivalent radial gradient of rod and cone opsin mRNA is present in the fetal retina. This gradient is maintained in the adult retina even though no corresponding gradient in rod or cone cell density is present. Since the mRNA expression gradient does not progress radially, position dependent levels of photoreceptor-specific transcription is suggested.

  5. Molecular Evidence that Only Two Opsin Subfamilies, the Blue Light- (SWS2) and Green Light-Sensitive (RH2), Drive Color Vision in Atlantic Cod (Gadus morhua)

    PubMed Central

    Søviknes, Anne Mette; Drivenes, Øyvind; Helvik, Jon Vidar

    2014-01-01

    Teleosts show a great variety in visual opsin complement, due to both gene duplication and gene loss. The repertoire ranges from one subfamily of visual opsins (scotopic vision) including rod opsin only retinas seen in many deep-sea species to multiple subfamilies of visual opsins in some pelagic species. We have investigated the opsin repertoire of Atlantic cod (Gadus morhua) using information in the recently sequenced cod genome and found that despite cod not being a deep sea species it lacks visual subfamilies sensitive towards the most extreme parts of the light spectra representing UV and red light. Furthermore, we find that Atlantic cod has duplicated paralogs of both blue-sensitive SWS2 and green-sensitive RH2 subfamilies, with members belonging to each subfamily linked in tandem within the genome (two SWS2-, and three RH2A genes, respectively). The presence of multiple cone opsin genes indicates that there have been duplication events in the cod ancestor SWS2 and RH2 opsins producing paralogs that have been retained in Atlantic. Our results are supported by expressional analysis of cone opsins, which further revealed an ontogenetic change in the array of cone opsins expressed. These findings suggest life stage specific programs for opsin regulation which could be linked to habitat changes and available light as the larvae is transformed into an early juvenile. Altogether we provide the first molecular evidence for color vision driven by only two families of cone opsins due to gene loss in a teleost. PMID:25551396

  6. Travelling-wave Green tensor and near-field Rayleigh-wave sensitivity

    NASA Astrophysics Data System (ADS)

    Liu, Kui; Zhou, Ying

    2016-04-01

    Travelling-wave Green tensor has been widely used in calculations of synthetic seismograms and finite-frequency sensitivities of surface waves. The classic travelling-wave decomposition is based on a far-field approximation and may not be valid when applied to construct sensitivity kernels in regions close to the receiver. In this paper, we calculate synthetic seismograms and finite-frequency sensitivity kernels of Rayleigh waves based on travelling-wave representation of Green tensor that fully accounts for near-field effects. We show that far-field approximation is adequate for synthetic seismograms when the source-receiver epicentral distance is greater than the dominant wavelength. Errors in Rayleigh-wave sensitivity kernels introduced by far-field approximation are in general negligible for single-station measurements except for in a small region around the station, and the errors are more significant in sensitivity kernels for interstation measurements. In addition, interstation measurements are strongly sensitive to structures outside the region between the two stations, even for two stations along the same great circle path from the seismic source.

  7. Metal Mesh Fabrication and Testing for Infrared Astronomy and ISO Science Programs; ISO GO Data Analysis and LWS Instrument Team Activities

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Oliversen, Ronald J. (Technical Monitor)

    2001-01-01

    This research program addresses astrophysics research with the Infrared Space Observatory's Long Wavelength Spectrometer (ISO-LWS), including efforts to supply ISO-LWS with superior metal mesh filters. This grant has, over the years, enabled Dr. Smith in his role as a Co-Investigator on the satellite, the PI (Principal Investigator) on the Extragalactic Science Team, and a member of the Calibration and performance working groups. The emphasis of the budget in this proposal is in support of Dr. Smith's Infrared Space Observatory research. This program began (under a different grant number) while Dr. Smith was at the Smithsonian's National Air and Space Museum, and was transferred to SAO with a change in number. While Dr. Smith was a visiting Discipline Scientist at NASA HQ the program was in abeyance, but it has resumed in full since his return to SAO. The Infrared Space Observatory mission was launched in November, 1996, and since then has successfully completed its planned lifetime mission. Data are currently being calibrated to the 2% level.

  8. Coupling and decoupling of evolutionary mode between X- and Y-chromosomal red-green opsin genes in owl monkeys.

    PubMed

    Nagao, Kenji; Takenaka, Naomi; Hirai, Momoki; Kawamura, Shoji

    2005-06-01

    We previously discovered Y-chromosomal red-green opsin genes in two types of owl monkeys with different chromosomal characteristics. In one type, the Y-linked opsin gene is a single-copy intact gene and in the other, the genes exist as multiple pseudogenes on a Y/autosome fusion chromosome. In the present study, we first distinguished the two types of monkeys as distinct allopatric species on the basis of karyotypic characteristics: Aotus lemurinus griseimembra (Karyotype III, diploid chromosome number [2n]=53) and Aotus azarae boliviensis (Karyotype VI; male 2n=49; female 2n=50), belonging to the northern and southern species groups, respectively, separated by the Amazon River system. Our sequence analysis revealed a common L1-Alu-Alu insertion between the two species in the 3'-flanking region of the X-linked opsin genes. The insertion was absent in the Y-linked opsin genes and in the human red and green opsin genes, indicating that it occurred in the X copy before the split into northern and southern species and after the X to Y duplication, i.e. duplication preceded speciation. We also show that in the northern species, the Y-linked opsin gene has evolved concomitantly with the X-linked copy whereas in the southern species, the Y-autosome fusion possibly led to decoupling evolutionary processes between X- and Y-linked copies and subsequent degeneration and duplications of the Y-linked opsin gene.

  9. Expression and Evolution of Short Wavelength Sensitive Opsins in Colugos: A Nocturnal Lineage That Informs Debate on Primate Origins.

    PubMed

    Moritz, Gillian L; Lim, Norman T-L; Neitz, Maureen; Peichl, Leo; Dominy, Nathaniel J

    2013-01-01

    A nocturnal activity pattern is central to almost all hypotheses on the adaptive origins of primates. This enduring view has been challenged in recent years on the basis of variation in the opsin genes of nocturnal primates. A correspondence between the opsin genes and activity patterns of species in Euarchonta-the superordinal group that includes the orders Primates, Dermoptera (colugos), and Scandentia (treeshrews)-could prove instructive, yet the basic biology of the dermopteran visual system is practically unknown. Here we show that the eye of the Sunda colugo (Galeopterus variegatus) lacks a tapetum lucidum and has an avascular retina, and we report on the expression and spectral sensitivity of cone photopigments. We found that Sunda colugos have intact short wavelength sensitive (S-) and long wavelength sensitive (L-) opsin genes, and that both opsins are expressed in cone photoreceptors of the retina. The inferred peak spectral sensitivities are 451 and 562 nm, respectively. In line with adaptation to nocturnal vision, cone densities are low. Surprisingly, a majority of S-cones coexpress some L-opsin. We also show that the ratio of rates of nonsynonymous to synonymous substitutions of exon 1 of the S-opsin gene is indicative of purifying selection. Taken together, our results suggest that natural selection has favored a functional S-opsin in a nocturnal lineage for at least 45 million years. Accordingly, a nocturnal activity pattern remains the most likely ancestral character state of euprimates.

  10. Two opsins from the compound eye of the crab Hemigrapsus sanguineus

    PubMed

    Sakamoto; Hisatomi; Tokunaga; Eguchi

    1996-01-01

    The primary structures of two opsins from the brachyuran crab Hemigrapsus sanguineus were deduced from the cDNA nucleotide sequences. Both deduced proteins were composed of 377 amino acid residues and included residues highly conserved in visual pigments of other species, and the proteins were 75 % identical to each other. The distribution of opsin transcripts in the compound eye, determined by in situ hybridization, suggested that the mRNAs of the two opsins were expressed simultaneously in all of the seven retinular cells (R1-R7) forming the main rhabdom in each ommatidium. Two different visual pigments may be present in one photoreceptor cell in this brachyuran crab. The spectral sensitivity of the compound eye was also determined by recording the electroretinogram. The compound eye was maximally sensitive at about 480 nm. These and previous findings suggest that both opsins of this brachyuran crab produce visual pigments with maximal absorption in the blue-green region of the spectrum. Evidence is presented that crustaceans possess multiple pigment systems for vision.

  11. Homeobox transcription factor Six7 governs expression of green opsin genes in zebrafish.

    PubMed

    Ogawa, Yohey; Shiraki, Tomoya; Kojima, Daisuke; Fukada, Yoshitaka

    2015-08-01

    Colour discrimination in vertebrates requires cone photoreceptor cells in the retina, and high-acuity colour vision is endowed by a set of four cone subtypes expressing UV-, blue-, green- and red-sensitive opsins. Previous studies identified transcription factors governing cone photoreceptor development in mice, although loss of blue and green opsin genes in the evolution of mammals make it difficult to understand how high-acuity colour vision was organized during evolution and development. Zebrafish (Danio rerio) represents a valuable vertebrate model for studying colour vision as it retains all the four ancestral vertebrate cone subtypes. Here, by RT-qPCR and in situ hybridization analysis, we found that sine oculis homeobox homolog 7 (six7), a transcription factor widely conserved in ray-finned fish, is expressed predominantly in the cone photoreceptors in zebrafish at both the larval and the adult stages. TAL effector nuclease-based six7 knock-out revealed its roles in expression of green, red and blue cone opsin genes. Most prominently, the six7 deficiency caused a loss of expression of all the green opsins at both the larval and adult stages. six7 is indispensable for the development and/or maintenance of the green cones. PMID:26180064

  12. Novel missense mutations in red/green opsin genes in congenital color-vision deficiencies.

    PubMed

    Ueyama, Hisao; Kuwayama, Shigeki; Imai, Hiroo; Tanabe, Shoko; Oda, Sanae; Nishida, Yasuhiro; Wada, Akimori; Shichida, Yoshinori; Yamade, Shinichi

    2002-06-01

    The DNAs from 217 Japanese males with congenital red/green color-vision deficiencies were analyzed. Twenty-three subjects had the normal genotype of a single red gene, followed by a green gene. Four of the 23 were from the 69 protan subject group and 19 of the 23 were from the 148 deutan subject group. Three of the 23 subjects had missense mutations. The mutation Asn94Lys (AAC-->AAA) occurred in the single green gene of a deutan subject (A155). The Arg330Gln (CGA-->CAA) mutation was detected in both green genes of another deutan subject (A164). The Gly338Glu (GGG-->GAG) mutation occurred in the single red gene of a protan subject (A89). Both normal and mutant opsins were expressed in cultured COS-7 cells and visual pigments were regenerated with 11-cis-retinal. The normal red and green opsins showed absorbance spectra with lambda(max) of 560 and 530 nm, respectively, but the three mutant opsins had altered spectra. The mutations in Asn94Lys and Gly338Glu resulted in no absorbance and the Arg330Gln mutation gave a low absorbance spectrum with a lambda(max) of 530 nm. Therefore these three mutant opsins are likely to be affected in the folding process, resulting in a loss of function as a visual pigment. PMID:12051694

  13. Three opsin-encoding cDNAS from the compound eye of Manduca sexta.

    PubMed

    Chase, M R; Bennett, R R; White, R H

    1997-09-01

    Three distinct opsin-encoding cDNAs, designated MANOP1, MANOP2 and MANOP3, were isolated from the retina of the sphingid moth Manduca sexta. MANOP1 codes for a protein with 377 amino acid residues. It is similar in sequence to members of a phylogenetic group of long-wavelength-sensitive arthropod photopigments, most closely resembling the opsins of ants, a praying mantis, a locust and the honeybee. MANOP2 and MANOP3 opsins have 377 and 384 residues respectively. They belong to a related group of insect visual pigments that include the ultraviolet-sensitive rhodopsins of flies as well as other insect rhodopsins that are also thought to absorb at short wavelengths. The retina of Manduca sexta contains three rhodopsins, P520, P450 and P357, with absorbance peaks, respectively, at green, blue and ultraviolet wavelengths. There is evidence that MANOP1 encodes the opsin of P520. We suggest that MANOP2 encodes P357 and that MANOP3, representing a class of blue-sensitive insect photopigments, encodes P450. PMID:9343857

  14. Expression of Sonic hedgehog and retinal opsin genes in experimentally-induced myopic chick eyes.

    PubMed

    Escaño, M F; Fujii, S; Sekiya, Y; Yamamoto, M; Negi, A

    2000-11-01

    The purpose of this study was to evaluate changes in the expression of different genes in chick retinal tissues after induction of experimental myopia and to evaluate the roles of these genes in the regulation of postnatal eye growth and myopia. Form-deprivation using occlusive goggles and hyperopic defocus by negative spectacle lenses were used to induce myopia in hatched chicks. Expression levels of Sonic hedgehog, its receptor complex, and other retinal cell genes were evaluated by semi-quantitative reverse transcription-polymerase chain reaction. Levels of Sonic hedgehog protein were further evaluated by Western blot analysis. The induction of myopia caused significant increase in expression of Sonic hedgehog mRNA and protein and increased expression of blue and red opsin mRNA. In contrast, the expression of mRNA for Sonic hedgehog receptor complex (Patched-Smoothened), rhodopsin, vimentin, green opsin, violet opsin, and HPC-1 were unaffected by the induction of myopia. The increase in expression of Sonic hedgehog in chick retinas in experimentally-induced myopia suggests involvement in the retina control of postnatal eye growth. Furthermore, Sonic hedgehog may influence the expression of blue and red opsins under myopic conditions.

  15. Homeobox transcription factor Six7 governs expression of green opsin genes in zebrafish.

    PubMed

    Ogawa, Yohey; Shiraki, Tomoya; Kojima, Daisuke; Fukada, Yoshitaka

    2015-08-01

    Colour discrimination in vertebrates requires cone photoreceptor cells in the retina, and high-acuity colour vision is endowed by a set of four cone subtypes expressing UV-, blue-, green- and red-sensitive opsins. Previous studies identified transcription factors governing cone photoreceptor development in mice, although loss of blue and green opsin genes in the evolution of mammals make it difficult to understand how high-acuity colour vision was organized during evolution and development. Zebrafish (Danio rerio) represents a valuable vertebrate model for studying colour vision as it retains all the four ancestral vertebrate cone subtypes. Here, by RT-qPCR and in situ hybridization analysis, we found that sine oculis homeobox homolog 7 (six7), a transcription factor widely conserved in ray-finned fish, is expressed predominantly in the cone photoreceptors in zebrafish at both the larval and the adult stages. TAL effector nuclease-based six7 knock-out revealed its roles in expression of green, red and blue cone opsin genes. Most prominently, the six7 deficiency caused a loss of expression of all the green opsins at both the larval and adult stages. six7 is indispensable for the development and/or maintenance of the green cones.

  16. Homeobox transcription factor Six7 governs expression of green opsin genes in zebrafish

    PubMed Central

    Ogawa, Yohey; Shiraki, Tomoya; Kojima, Daisuke; Fukada, Yoshitaka

    2015-01-01

    Colour discrimination in vertebrates requires cone photoreceptor cells in the retina, and high-acuity colour vision is endowed by a set of four cone subtypes expressing UV-, blue-, green- and red-sensitive opsins. Previous studies identified transcription factors governing cone photoreceptor development in mice, although loss of blue and green opsin genes in the evolution of mammals make it difficult to understand how high-acuity colour vision was organized during evolution and development. Zebrafish (Danio rerio) represents a valuable vertebrate model for studying colour vision as it retains all the four ancestral vertebrate cone subtypes. Here, by RT-qPCR and in situ hybridization analysis, we found that sine oculis homeobox homolog 7 (six7), a transcription factor widely conserved in ray-finned fish, is expressed predominantly in the cone photoreceptors in zebrafish at both the larval and the adult stages. TAL effector nuclease-based six7 knock-out revealed its roles in expression of green, red and blue cone opsin genes. Most prominently, the six7 deficiency caused a loss of expression of all the green opsins at both the larval and adult stages. six7 is indispensable for the development and/or maintenance of the green cones. PMID:26180064

  17. Novel missense mutations in red/green opsin genes in congenital color-vision deficiencies.

    PubMed

    Ueyama, Hisao; Kuwayama, Shigeki; Imai, Hiroo; Tanabe, Shoko; Oda, Sanae; Nishida, Yasuhiro; Wada, Akimori; Shichida, Yoshinori; Yamade, Shinichi

    2002-06-01

    The DNAs from 217 Japanese males with congenital red/green color-vision deficiencies were analyzed. Twenty-three subjects had the normal genotype of a single red gene, followed by a green gene. Four of the 23 were from the 69 protan subject group and 19 of the 23 were from the 148 deutan subject group. Three of the 23 subjects had missense mutations. The mutation Asn94Lys (AAC-->AAA) occurred in the single green gene of a deutan subject (A155). The Arg330Gln (CGA-->CAA) mutation was detected in both green genes of another deutan subject (A164). The Gly338Glu (GGG-->GAG) mutation occurred in the single red gene of a protan subject (A89). Both normal and mutant opsins were expressed in cultured COS-7 cells and visual pigments were regenerated with 11-cis-retinal. The normal red and green opsins showed absorbance spectra with lambda(max) of 560 and 530 nm, respectively, but the three mutant opsins had altered spectra. The mutations in Asn94Lys and Gly338Glu resulted in no absorbance and the Arg330Gln mutation gave a low absorbance spectrum with a lambda(max) of 530 nm. Therefore these three mutant opsins are likely to be affected in the folding process, resulting in a loss of function as a visual pigment.

  18. Molecular cloning and characterization of five opsin genes from the marine flatfish Atlantic halibut (Hippoglossus hippoglossus).

    PubMed

    Helvik, J V; Drivenes, O; Naess, T H; Fjose, A; Seo, H C

    2001-01-01

    Most molecular studies on the visual system in fish have been performed on freshwater teleosts such as goldfish and zebrafish where cones and rods appear simultaneously. Many marine fishes have long larval phase in the upper pelagic zone before transformation into a juvenile and a benthic life style. The retina at the larval stages consists of only single cone cells; later during metamorphosis double cones and rods develop. The flatfish Atlantic halibut (Hippoglossus hippoglossus) is a typical example of a marine species with such a two-step retina development. In this study, we have cloned five different opsins from Atlantic halibut larvae and juvenile retinas. Sequence comparisons with other opsins and phylogenetic analysis show that the five genes belong to the opsins of long-wavelength sensitive (L); middle-wavelength sensitive, M(Cone) and M(Rod); and short-wavelength sensitive, S(Blue) and S(Ultraviolet), respectively. In situ hybridization analysis reveals expression in double cone (L and M(Cone)), single cone (S(Blue) and S(Ultraviolet)), and rod (M(Rod)) types of photoreceptor cells in juvenile halibut retina. The visual system in Atlantic halibut seems therefore to have all four types of cone photoreceptors in addition to rod photoreceptors. This work shows for the first time molecular isolation of a complete set of retinal visual pigment genes from a marine teleost and describes the first cloning of an ultraviolet-sensitive opsin type from a marine teleost.

  19. Intron splice sites of Papilio glaucus PglRh3 corroborate insect opsin phylogeny.

    PubMed

    Briscoe, A D

    1999-04-01

    Full-length cDNA clones encoding the PglRh3 opsin from the tiger swallowtail butterfly Papilio glaucus were isolated from cDNA synthesized from adult head tissue total RNA. This cDNA consists of 1679 nucleotides and contains a single open reading frame predicted to be 379 amino acids in length. PCR amplification of genomic DNA with primers spanning the coding region yielded a single 2760bp fragment which was sequenced. The PglRh3 gene has nine exons and eight introns, four of which are in unique locations relative to the positions of introns in other known insect opsin sequences. Phylogenetic analyses of amino acid and nucleotide sequence data places PglRh3 within a clade of insect visual pigments thought to be sensitive to long wavelengths of light. The genomic structure of PglRh3 is the first characterized from a member of this opsin clade. Three PglRh3 intron positions are shared with Drosophila Rh1, and one of these is also shared with Drosophila Rh2. By contrast, none of the known intron locations in a clade of anciently diverged ultraviolet- and blue-sensitive visual pigments are shared by P. glaucus PglRh3, Drosophila Rh1 or Rh2. The placement of introns within opsin genes therefore independently supports the clustering of a putatively long-wavelength-sensitive clade with a clade of blue-green-sensitive visual pigments.

  20. Opsins in Limulus eyes: characterization of three visible light-sensitive opsins unique to and co-expressed in median eye photoreceptors and a peropsin/RGR that is expressed in all eyes.

    PubMed

    Battelle, Barbara-Anne; Kempler, Karen E; Saraf, Spencer R; Marten, Catherine E; Dugger, Donald R; Speiser, Daniel I; Oakley, Todd H

    2015-02-01

    The eyes of the horseshoe crab Limulus polyphemus have long been used for studies of basic mechanisms of vision, and the structure and physiology of Limulus photoreceptors have been examined in detail. Less is known about the opsins Limulus photoreceptors express. We previously characterized a UV opsin (LpUVOps1) that is expressed in all three types of Limulus eyes (lateral compound eyes, median ocelli and larval eyes) and three visible light-sensitive rhabdomeric opsins (LpOps1, -2 and -5) that are expressed in Limulus lateral compound and larval eyes. Physiological studies showed that visible light-sensitive photoreceptors are also present in median ocelli, but the visible light-sensitive opsins they express were unknown. In the current study we characterize three newly identified, visible light-sensitive rhabdomeric opsins (LpOps6, -7 and -8) that are expressed in median ocelli. We show that they are ocellar specific and that all three are co-expressed in photoreceptors distinct from those expressing LpUVOps1. Our current findings show that the pattern of opsin expression in Limulus eyes is much more complex than previously thought and extend our previous observations of opsin co-expression in visible light-sensitive Limulus photoreceptors. We also characterize a Limulus peropsin/RGR (LpPerOps1). We examine the phylogenetic relationship of LpPerOps1 with other peropsins and RGRs, demonstrate that LpPerOps1 transcripts are expressed in each of the three types of Limulus eyes and show that the encoded protein is expressed in membranes of cells closely associated with photoreceptors in each eye type. These finding suggest that peropsin was in the opsin repertoire of euchelicerates. PMID:25524988

  1. Opsins in Limulus eyes: characterization of three visible light-sensitive opsins unique to and co-expressed in median eye photoreceptors and a peropsin/RGR that is expressed in all eyes

    PubMed Central

    Battelle, Barbara-Anne; Kempler, Karen E.; Saraf, Spencer R.; Marten, Catherine E.; Dugger, Donald R.; Speiser, Daniel I.; Oakley, Todd H.

    2015-01-01

    The eyes of the horseshoe crab Limulus polyphemus have long been used for studies of basic mechanisms of vision, and the structure and physiology of Limulus photoreceptors have been examined in detail. Less is known about the opsins Limulus photoreceptors express. We previously characterized a UV opsin (LpUVOps1) that is expressed in all three types of Limulus eyes (lateral compound eyes, median ocelli and larval eyes) and three visible light-sensitive rhabdomeric opsins (LpOps1, -2 and -5) that are expressed in Limulus lateral compound and larval eyes. Physiological studies showed that visible light-sensitive photoreceptors are also present in median ocelli, but the visible light-sensitive opsins they express were unknown. In the current study we characterize three newly identified, visible light-sensitive rhabdomeric opsins (LpOps6, -7 and -8) that are expressed in median ocelli. We show that they are ocellar specific and that all three are co-expressed in photoreceptors distinct from those expressing LpUVOps1. Our current findings show that the pattern of opsin expression in Limulus eyes is much more complex than previously thought and extend our previous observations of opsin co-expression in visible light-sensitive Limulus photoreceptors. We also characterize a Limulus peropsin/RGR (LpPerOps1). We examine the phylogenetic relationship of LpPerOps1 with other peropsins and RGRs, demonstrate that LpPerOps1 transcripts are expressed in each of the three types of Limulus eyes and show that the encoded protein is expressed in membranes of cells closely associated with photoreceptors in each eye type. These finding suggest that peropsin was in the opsin repertoire of euchelicerates. PMID:25524988

  2. Opsins in Limulus eyes: characterization of three visible light-sensitive opsins unique to and co-expressed in median eye photoreceptors and a peropsin/RGR that is expressed in all eyes.

    PubMed

    Battelle, Barbara-Anne; Kempler, Karen E; Saraf, Spencer R; Marten, Catherine E; Dugger, Donald R; Speiser, Daniel I; Oakley, Todd H

    2015-02-01

    The eyes of the horseshoe crab Limulus polyphemus have long been used for studies of basic mechanisms of vision, and the structure and physiology of Limulus photoreceptors have been examined in detail. Less is known about the opsins Limulus photoreceptors express. We previously characterized a UV opsin (LpUVOps1) that is expressed in all three types of Limulus eyes (lateral compound eyes, median ocelli and larval eyes) and three visible light-sensitive rhabdomeric opsins (LpOps1, -2 and -5) that are expressed in Limulus lateral compound and larval eyes. Physiological studies showed that visible light-sensitive photoreceptors are also present in median ocelli, but the visible light-sensitive opsins they express were unknown. In the current study we characterize three newly identified, visible light-sensitive rhabdomeric opsins (LpOps6, -7 and -8) that are expressed in median ocelli. We show that they are ocellar specific and that all three are co-expressed in photoreceptors distinct from those expressing LpUVOps1. Our current findings show that the pattern of opsin expression in Limulus eyes is much more complex than previously thought and extend our previous observations of opsin co-expression in visible light-sensitive Limulus photoreceptors. We also characterize a Limulus peropsin/RGR (LpPerOps1). We examine the phylogenetic relationship of LpPerOps1 with other peropsins and RGRs, demonstrate that LpPerOps1 transcripts are expressed in each of the three types of Limulus eyes and show that the encoded protein is expressed in membranes of cells closely associated with photoreceptors in each eye type. These finding suggest that peropsin was in the opsin repertoire of euchelicerates.

  3. Transcriptome analysis and RNA interference of cockroach phototransduction indicate three opsins and suggest a major role for TRPL channels.

    PubMed

    French, Andrew S; Meisner, Shannon; Liu, Hongxia; Weckström, Matti; Torkkeli, Päivi H

    2015-01-01

    Our current understanding of insect phototransduction is based on a small number of species, but insects occupy many different visual environments. We created the retinal transcriptome of a nocturnal insect, the cockroach, Periplaneta americana to identify proteins involved in the earliest stages of compound eye phototransduction, and test the hypothesis that different visual environments are reflected in different molecular contributions to function. We assembled five novel mRNAs: two green opsins, one UV opsin, and one each TRP and TRPL ion channel homologs. One green opsin mRNA (pGO1) was 100-1000 times more abundant than the other opsins (pGO2 and pUVO), while pTRPL mRNA was 10 times more abundant than pTRP, estimated by transcriptome analysis or quantitative PCR (qPCR). Electroretinograms were used to record photoreceptor responses. Gene-specific in vivo RNA interference (RNAi) was achieved by injecting long (596-708 bp) double-stranded RNA into head hemolymph, and verified by qPCR. RNAi of the most abundant green opsin reduced both green opsins by more than 97% without affecting UV opsin, and gave a maximal reduction of 75% in ERG amplitude 7 days after injection that persisted for at least 19 days. RNAi of pTRP and pTRPL genes each specifically reduced the corresponding mRNA by 90%. Electroretinogram (ERG) reduction by pTRPL RNAi was slower than for opsin, reaching 75% attenuation by 21 days, without recovery at 29 days. pTRP RNAi attenuated ERG much less; only 30% after 21 days. Combined pTRP plus pTRPL RNAi gave only weak evidence of any cooperative interactions. We conclude that silencing retinal genes by in vivo RNAi using long dsRNA is effective, that visible light transduction in Periplaneta is dominated by pGO1, and that pTRPL plays a major role in cockroach phototransduction. PMID:26257659

  4. Transcriptome analysis and RNA interference of cockroach phototransduction indicate three opsins and suggest a major role for TRPL channels

    PubMed Central

    French, Andrew S.; Meisner, Shannon; Liu, Hongxia; Weckström, Matti; Torkkeli, Päivi H.

    2015-01-01

    Our current understanding of insect phototransduction is based on a small number of species, but insects occupy many different visual environments. We created the retinal transcriptome of a nocturnal insect, the cockroach, Periplaneta americana to identify proteins involved in the earliest stages of compound eye phototransduction, and test the hypothesis that different visual environments are reflected in different molecular contributions to function. We assembled five novel mRNAs: two green opsins, one UV opsin, and one each TRP and TRPL ion channel homologs. One green opsin mRNA (pGO1) was 100–1000 times more abundant than the other opsins (pGO2 and pUVO), while pTRPL mRNA was 10 times more abundant than pTRP, estimated by transcriptome analysis or quantitative PCR (qPCR). Electroretinograms were used to record photoreceptor responses. Gene-specific in vivo RNA interference (RNAi) was achieved by injecting long (596–708 bp) double-stranded RNA into head hemolymph, and verified by qPCR. RNAi of the most abundant green opsin reduced both green opsins by more than 97% without affecting UV opsin, and gave a maximal reduction of 75% in ERG amplitude 7 days after injection that persisted for at least 19 days. RNAi of pTRP and pTRPL genes each specifically reduced the corresponding mRNA by 90%. Electroretinogram (ERG) reduction by pTRPL RNAi was slower than for opsin, reaching 75% attenuation by 21 days, without recovery at 29 days. pTRP RNAi attenuated ERG much less; only 30% after 21 days. Combined pTRP plus pTRPL RNAi gave only weak evidence of any cooperative interactions. We conclude that silencing retinal genes by in vivo RNAi using long dsRNA is effective, that visible light transduction in Periplaneta is dominated by pGO1, and that pTRPL plays a major role in cockroach phototransduction. PMID:26257659

  5. De Novo Adult Transcriptomes of Two European Brittle Stars: Spotlight on Opsin-Based Photoreception.

    PubMed

    Delroisse, Jérôme; Mallefet, Jérôme; Flammang, Patrick

    2016-01-01

    Next generation sequencing (NGS) technology allows to obtain a deeper and more complete view of transcriptomes. For non-model or emerging model marine organisms, NGS technologies offer a great opportunity for rapid access to genetic information. In this study, paired-end Illumina HiSeqTM technology has been employed to analyse transcriptomes from the arm tissues of two European brittle star species, Amphiura filiformis and Ophiopsila aranea. About 48 million Illumina reads were generated and 136,387 total unigenes were predicted from A. filiformis arm tissues. For O. aranea arm tissues, about 47 million reads were generated and 123,324 total unigenes were obtained. Twenty-four percent of the total unigenes from A. filiformis show significant matches with sequences present in reference online databases, whereas, for O. aranea, this percentage amounts to 23%. In both species, around 50% of the predicted annotated unigenes were significantly similar to transcripts from the purple sea urchin, the closest species to date that has undergone complete genome sequencing and annotation. GO, COG and KEGG analyses were performed on predicted brittle star unigenes. We focused our analyses on the phototransduction actors involved in light perception. Firstly, two new echinoderm opsins were identified in O. aranea: one rhabdomeric opsin (homologous to vertebrate melanopsin) and one RGR opsin. The RGR-opsin is supposed to be involved in retinal regeneration while the r-opsin is suspected to play a role in visual-like behaviour. Secondly, potential phototransduction actors were identified in both transcriptomes using the fly (rhabdomeric) and mammal (ciliary) classical phototransduction pathways as references. Finally, the sensitivity of O.aranea to monochromatic light was investigated to complement data available for A. filiformis. The presence of microlens-like structures at the surface of dorsal arm plate of O. aranea could potentially explain phototactic behaviour differences

  6. De Novo Adult Transcriptomes of Two European Brittle Stars: Spotlight on Opsin-Based Photoreception.

    PubMed

    Delroisse, Jérôme; Mallefet, Jérôme; Flammang, Patrick

    2016-01-01

    Next generation sequencing (NGS) technology allows to obtain a deeper and more complete view of transcriptomes. For non-model or emerging model marine organisms, NGS technologies offer a great opportunity for rapid access to genetic information. In this study, paired-end Illumina HiSeqTM technology has been employed to analyse transcriptomes from the arm tissues of two European brittle star species, Amphiura filiformis and Ophiopsila aranea. About 48 million Illumina reads were generated and 136,387 total unigenes were predicted from A. filiformis arm tissues. For O. aranea arm tissues, about 47 million reads were generated and 123,324 total unigenes were obtained. Twenty-four percent of the total unigenes from A. filiformis show significant matches with sequences present in reference online databases, whereas, for O. aranea, this percentage amounts to 23%. In both species, around 50% of the predicted annotated unigenes were significantly similar to transcripts from the purple sea urchin, the closest species to date that has undergone complete genome sequencing and annotation. GO, COG and KEGG analyses were performed on predicted brittle star unigenes. We focused our analyses on the phototransduction actors involved in light perception. Firstly, two new echinoderm opsins were identified in O. aranea: one rhabdomeric opsin (homologous to vertebrate melanopsin) and one RGR opsin. The RGR-opsin is supposed to be involved in retinal regeneration while the r-opsin is suspected to play a role in visual-like behaviour. Secondly, potential phototransduction actors were identified in both transcriptomes using the fly (rhabdomeric) and mammal (ciliary) classical phototransduction pathways as references. Finally, the sensitivity of O.aranea to monochromatic light was investigated to complement data available for A. filiformis. The presence of microlens-like structures at the surface of dorsal arm plate of O. aranea could potentially explain phototactic behaviour differences

  7. De Novo Adult Transcriptomes of Two European Brittle Stars: Spotlight on Opsin-Based Photoreception

    PubMed Central

    Mallefet, Jérôme; Flammang, Patrick

    2016-01-01

    Next generation sequencing (NGS) technology allows to obtain a deeper and more complete view of transcriptomes. For non-model or emerging model marine organisms, NGS technologies offer a great opportunity for rapid access to genetic information. In this study, paired-end Illumina HiSeqTM technology has been employed to analyse transcriptomes from the arm tissues of two European brittle star species, Amphiura filiformis and Ophiopsila aranea. About 48 million Illumina reads were generated and 136,387 total unigenes were predicted from A. filiformis arm tissues. For O. aranea arm tissues, about 47 million reads were generated and 123,324 total unigenes were obtained. Twenty-four percent of the total unigenes from A. filiformis show significant matches with sequences present in reference online databases, whereas, for O. aranea, this percentage amounts to 23%. In both species, around 50% of the predicted annotated unigenes were significantly similar to transcripts from the purple sea urchin, the closest species to date that has undergone complete genome sequencing and annotation. GO, COG and KEGG analyses were performed on predicted brittle star unigenes. We focused our analyses on the phototransduction actors involved in light perception. Firstly, two new echinoderm opsins were identified in O. aranea: one rhabdomeric opsin (homologous to vertebrate melanopsin) and one RGR opsin. The RGR-opsin is supposed to be involved in retinal regeneration while the r-opsin is suspected to play a role in visual-like behaviour. Secondly, potential phototransduction actors were identified in both transcriptomes using the fly (rhabdomeric) and mammal (ciliary) classical phototransduction pathways as references. Finally, the sensitivity of O.aranea to monochromatic light was investigated to complement data available for A. filiformis. The presence of microlens-like structures at the surface of dorsal arm plate of O. aranea could potentially explain phototactic behaviour differences

  8. Transcript localization of four opsin genes in the three visual organs of Drosophila; RH2 is ocellus specific.

    PubMed

    Pollock, J A; Benzer, S

    1988-06-23

    Drosophila and other Dipteran flies have three different kinds of visual organs; in the adult a pair of compound eyes and three dorsal ocelli; and in the larva a pair of internal photoreceptor organs. They develop in distinct ways, yet have certain features in common. All three organs use retinal-derived chromophores, coupled to distinct opsins, to provide a diversity of spectral sensitivities. Four opsin genes have been identified thus far in Drosophila; Rh1, Rh2, Rh3 and Rh4 (refs 6-11). We have used in situ hybridization to study the messenger RNAs expressed by these four opsin genes in all three visual organs. Rh1, Rh3 and Rh4 are already known to be expressed in different subsets of cells in the compound eye. We found that, in contrast, opsin Rh2 is the predominant opsin expressed in the ocelli. Opsin Rh1 is known to be expressed in the larval photoreceptor. We found that Rh3 and Rh4 are as well, but not Rh2. The ocellar-specific gene expression of Rh2 is of particular interest for its possible bearing on the function of the ocellus.

  9. Signatures of functional constraint at aye-aye opsin genes: the potential of adaptive color vision in a nocturnal primate.

    PubMed

    Perry, George H; Martin, Robert D; Verrelli, Brian C

    2007-09-01

    While color vision perception is thought to be adaptively correlated with foraging efficiency for diurnal mammals, those that forage exclusively at night may not need color vision nor have the capacity for it. Indeed, although the basic condition for mammals is dichromacy, diverse nocturnal mammals have only monochromatic vision, resulting from functional loss of the short-wavelength sensitive opsin gene. However, many nocturnal primates maintain intact two opsin genes and thus have dichromatic capacity. The evolutionary significance of this surprising observation has not yet been elucidated. We used a molecular population genetics approach to test evolutionary hypotheses for the two intact opsin genes of the fully nocturnal aye-aye (Daubentonia madagascariensis), a highly unusual and endangered Madagascar primate. No evidence of gene degradation in either opsin gene was observed for any of 8 aye-aye individuals examined. Furthermore, levels of nucleotide diversity for opsin gene functional sites were lower than those for 15 neutrally evolving intergenic regions (>25 kb in total), which is consistent with a history of purifying selection on aye-aye opsin genes. The most likely explanation for these findings is that dichromacy is advantageous for aye-ayes despite their nocturnal activity pattern. We speculate that dichromatic nocturnal primates may be able to perceive color while foraging under moonlight conditions, and suggest that behavioral and ecological comparisons among dichromatic and monochromatic nocturnal primates will help to elucidate the specific activities for which color vision perception is advantageous.

  10. Enhancer/Promoter Activities of the Long/Middle Wavelength-Sensitive Opsins of Vertebrates Mediated by Thyroid Hormone Receptor β2 and COUP-TFII

    PubMed Central

    Iida, Atsumi; Itoh, Toshio; Watanabe, Sumiko

    2013-01-01

    Cone photopigments (opsins) are crucial elements of, and the first detection module in, color vision. Individual opsins have different wavelength sensitivity patterns, and the temporal and spatial expression patterns of opsins are unique and stringently regulated. Long and middle wavelength-sensitive (L/M) opsins are of the same phylogenetic type. Although the roles of thyroid hormone/TRß2 and COUP-TFs in the transcriptional regulation of L/M opsins have been explored, the detailed mechanisms, including the target sequence in the enhancer of L/M opsins, have not been revealed. We aimed to reveal molecular mechanisms of L/M opsins in vertebrates. Using several human red opsin enhancer/promoter-luciferase reporter constructs, we found that TRß2 increased luciferase activities through the 5′-UTR and intron 3–4 region, whereas the presence of T3 affected only the intron 3–4 region-dependent luciferase activity. Furthermore, COUP-TFII suppressed intron 3–4 region-dependent luciferase activities. However, luciferase expression driven by the mouse M opsin intron 3–4 region was only slightly increased by TRß2, and rather enhanced by COUP-TFII. To determine whether these differential responses reflect differences between primates and rodents, we examined the enhancer/promoter region of the red opsin of the common marmoset. Interestingly, while TRß2 increased 5′-UTR- or intron 3–4 region-driven luciferase expression, as observed for the human red opsin, expression of the latter luciferase was not suppressed by COUP-TFII. In fact, immunostaining of common marmoset retinal sections revealed expression of COUP-TFII and red opsin in the cone cells. PMID:24058409

  11. Conformational selection and equilibrium governs the ability of retinals to bind opsin.

    PubMed

    Schafer, Christopher T; Farrens, David L

    2015-02-13

    Despite extensive study, how retinal enters and exits the visual G protein-coupled receptor rhodopsin remains unclear. One clue may lie in two openings between transmembrane helix 1 (TM1) and TM7 and between TM5 and TM6 in the active receptor structure. Recently, retinal has been proposed to enter the inactive apoprotein opsin (ops) through these holes when the receptor transiently adopts the active opsin conformation (ops*). Here, we directly test this "transient activation" hypothesis using a fluorescence-based approach to measure rates of retinal binding to samples containing differing relative fractions of ops and ops*. In contrast to what the transient activation hypothesis model would predict, we found that binding for the inverse agonist, 11-cis-retinal (11CR), slowed when the sample contained more ops* (produced using M257Y, a constitutively activating mutation). Interestingly, the increased presence of ops* allowed for binding of the agonist, all-trans-retinal (ATR), whereas WT opsin showed no binding. Shifting the conformational equilibrium toward even more ops* using a G protein peptide mimic (either free in solution or fused to the receptor) accelerated the rate of ATR binding and slowed 11CR binding. An arrestin peptide mimic showed little effect on 11CR binding; however, it stabilized opsin · ATR complexes. The TM5/TM6 hole is apparently not involved in this conformational selection. Increasing its size by mutagenesis did not enable ATR binding but instead slowed 11CR binding, suggesting that it may play a role in trapping 11CR. In summary, our results indicate that conformational selection dictates stable retinal binding, which we propose involves ATR and 11CR binding to different states, the latter a previously unidentified, open-but-inactive conformation.

  12. Nonvisual Opsins and the Regulation of Peripheral Clocks by Light and Hormones.

    PubMed

    Poletini, Maristela O; Ramos, Bruno C; Moraes, Maria Nathalia; Castrucci, Ana Maria L

    2015-01-01

    The molecular clock machinery is conserved throughout evolution. However, how environmental cues are perceived has evolved in such a way that peripheral clocks in mammals require a variety of signals, including hormones. On the other hand, in nonmammalian cells able to directly detect light, light seems to play a major role in the synchronization of the clock. The interaction between perception of circadian light by nonvisual opsins and hormones will be discussed under the perspective of clock synchronization at the molecular level.

  13. Conformational Selection and Equilibrium Governs the Ability of Retinals to Bind Opsin*

    PubMed Central

    Schafer, Christopher T.; Farrens, David L.

    2015-01-01

    Despite extensive study, how retinal enters and exits the visual G protein-coupled receptor rhodopsin remains unclear. One clue may lie in two openings between transmembrane helix 1 (TM1) and TM7 and between TM5 and TM6 in the active receptor structure. Recently, retinal has been proposed to enter the inactive apoprotein opsin (ops) through these holes when the receptor transiently adopts the active opsin conformation (ops*). Here, we directly test this “transient activation” hypothesis using a fluorescence-based approach to measure rates of retinal binding to samples containing differing relative fractions of ops and ops*. In contrast to what the transient activation hypothesis model would predict, we found that binding for the inverse agonist, 11-cis-retinal (11CR), slowed when the sample contained more ops* (produced using M257Y, a constitutively activating mutation). Interestingly, the increased presence of ops* allowed for binding of the agonist, all-trans-retinal (ATR), whereas WT opsin showed no binding. Shifting the conformational equilibrium toward even more ops* using a G protein peptide mimic (either free in solution or fused to the receptor) accelerated the rate of ATR binding and slowed 11CR binding. An arrestin peptide mimic showed little effect on 11CR binding; however, it stabilized opsin·ATR complexes. The TM5/TM6 hole is apparently not involved in this conformational selection. Increasing its size by mutagenesis did not enable ATR binding but instead slowed 11CR binding, suggesting that it may play a role in trapping 11CR. In summary, our results indicate that conformational selection dictates stable retinal binding, which we propose involves ATR and 11CR binding to different states, the latter a previously unidentified, open-but-inactive conformation. PMID:25451936

  14. Identification of a locus control region for quadruplicated green-sensitive opsin genes in zebrafish.

    PubMed

    Tsujimura, Taro; Chinen, Akito; Kawamura, Shoji

    2007-07-31

    Duplication of opsin genes has a crucial role in the evolution of visual system. Zebrafish have four green-sensitive (RH2) opsin genes (RH2-1, RH2-2, RH2-3, and RH2-4) arrayed in tandem. They are expressed in the short member of the double cones (SDC) but differ in expression areas in the retina and absorption spectra of their encoding photopigments. The shortest and the second shortest wavelength subtypes, RH2-1 and RH2-2, are expressed in the central-to-dorsal retina. The longer wavelength subtype, RH2-3, is expressed circumscribing the RH2-1/RH2-2 area, and the longest subtype, RH2-4, is expressed further circumscribing the RH2-3 area and mainly occupying the ventral retina. The present report shows that a 0.5-kb region located 15 kb upstream of the RH2 gene array is an essential regulator for their expression. When the 0.5-kb region was deleted from a P1-artificial chromosome (PAC) clone encompassing the four RH2 genes and when one of these genes was replaced with a reporter GFP gene, the GFP expression in SDCs was abolished in the zebrafish to which a series of the modified PAC clones were introduced. Transgenic studies also showed that the 0.5-kb region conferred the SDC-specific expression for promoters of a non-SDC (UV opsin) and a nonretinal (keratin 8) gene. Changing the location of the 0.5-kb region in the PAC clone conferred the highest expression for its proximal gene. The 0.5-kb region was thus designated as RH2-LCR analogous to the locus control region of the L-M opsin genes of primates.

  15. Phenotypic plasticity in opsin expression in a butterfly compound eye complements sex role reversal

    PubMed Central

    2012-01-01

    Background Animals often display phenotypic plasticity in morphologies and behaviors that result in distinct adaptations to fluctuating seasonal environments. The butterfly Bicyclus anynana has two seasonal forms, wet and dry, that vary in wing ornament brightness and in the identity of the sex that performs the most courting and choosing. Rearing temperature is the cue for producing these alternative seasonal forms. We hypothesized that, barring any developmental constraints, vision should be enhanced in the choosy individuals but diminished in the non-choosy individuals due to physiological costs. As a proxy of visual performance we measured eye size, facet lens size, and sensitivity to light, e.g., the expression levels of all opsins, in males and females of both seasonal forms. Results We found that B. anynana eyes displayed significant sexual dimorphism and phenotypic plasticity for both morphology and opsin expression levels, but not all results conformed to our prediction. Males had larger eyes than females across rearing temperatures, and increases in temperature produced larger eyes in both sexes, mostly via increases in facet number. Ommatidia were larger in the choosy dry season (DS) males and transcript levels for all three opsins were significantly lower in the less choosy DS females. Conclusions Opsin level plasticity in females, and ommatidia size plasticity in males supported our visual plasticity hypothesis but males appear to maintain high visual function across both seasons. We discuss our results in the context of distinct sexual and natural selection pressures that may be facing each sex in the wild in each season. PMID:23194112

  16. Differentially-expressed opsin genes identified in Sinocyclocheilus cavefish endemic to China.

    PubMed

    Meng, Fanwei; Zhao, Yahui; Postlethwait, John H; Zhang, Chunguang

    2013-04-01

    Eye degeneration is a common troglomorphic character of cave-dwelling organisms. Comparing the morphology and molecular biology of cave species and their close surface relatives is a powerful tool for studying regressive eye evolution and other adaptive phenotypes. We compared two co-occurring and closely-related species of the fish genus Sinocyclocheilus, which is endemic to China and includes both surface- and cave-dwelling species. Sinocyclocheilus tileihornes, a cave species, had smaller eyes than Sinocyclocheilus angustiporus, a surface species. Histological and immunohistochemical analyses revealed that the cavefish had shorter cones and more disorderly rods than did the surface-dwelling species. Using quantitative PCR and in situ hybridization, we found that rhodopsin and a long-wavelength sensitive opsin had significantly lower expression levels in the cavefish. Furthermore, one of two short-wavelength-sensitive opsins was expressed at significantly higher levels in the cavefish. Changes in the expression of opsin genes may have played a role in the degeneration of cavefish eyes. PMID:24363664

  17. Differentially-expressed opsin genes identified in Sinocyclocheilus cavefish endemic to China

    PubMed Central

    Meng, Fanwei; Zhao, Yahui; Postlethwait, John H.; Zhang, Chunguang

    2013-01-01

    Eye degeneration is a common troglomorphic character of cave-dwelling organisms. Comparing the morphology and molecular biology of cave species and their close surface relatives is a powerful tool for studying regressive eye evolution and other adaptive phenotypes. We compared two co-occurring and closely-related species of the fish genus Sinocyclocheilus, which is endemic to China and includes both surface- and cave-dwelling species. Sinocyclocheilus tileihornes, a cave species, had smaller eyes than Sinocyclocheilus angustiporus, a surface species. Histological and immunohistochemical analyses revealed that the cavefish had shorter cones and more disorderly rods than did the surface-dwelling species. Using quantitative PCR and in situ hybridization, we found that rhodopsin and a long-wavelength sensitive opsin had significantly lower expression levels in the cavefish. Furthermore, one of two short-wavelength-sensitive opsins was expressed at significantly higher levels in the cavefish. Changes in the expression of opsin genes may have played a role in the degeneration of cavefish eyes PMID:24363664

  18. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation.

    PubMed

    Berglund, Ken; Clissold, Kara; Li, Haofang E; Wen, Lei; Park, Sung Young; Gleixner, Jan; Klein, Marguerita E; Lu, Dongye; Barter, Joseph W; Rossi, Mark A; Augustine, George J; Yin, Henry H; Hochgeschwender, Ute

    2016-01-19

    Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type Gaussia luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright Gaussia luciferase variants with either channelrhodopsin to excite neurons (luminescent opsin, LMO) or a proton pump to inhibit neurons (inhibitory LMO, iLMO). These improved LMOs could reliably activate or silence neurons in vitro and in vivo. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra in vivo produced not only the expected bidirectional control of single unit activity but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, although preserving the ability to be activated by external light sources, LMOs expand the use of optogenetics by making the same opsins accessible to noninvasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales. PMID:26733686

  19. Atomistic design of microbial opsin-based blue-shifted optogenetics tools

    NASA Astrophysics Data System (ADS)

    Kato, Hideaki E.; Kamiya, Motoshi; Sugo, Seiya; Ito, Jumpei; Taniguchi, Reiya; Orito, Ayaka; Hirata, Kunio; Inutsuka, Ayumu; Yamanaka, Akihiro; Maturana, Andrés D.; Ishitani, Ryuichiro; Sudo, Yuki; Hayashi, Shigehiko; Nureki, Osamu

    2015-05-01

    Microbial opsins with a bound chromophore function as photosensitive ion transporters and have been employed in optogenetics for the optical control of neuronal activity. Molecular engineering has been utilized to create colour variants for the functional augmentation of optogenetics tools, but was limited by the complexity of the protein-chromophore interactions. Here we report the development of blue-shifted colour variants by rational design at atomic resolution, achieved through accurate hybrid molecular simulations, electrophysiology and X-ray crystallography. The molecular simulation models and the crystal structure reveal the precisely designed conformational changes of the chromophore induced by combinatory mutations that shrink its π-conjugated system which, together with electrostatic tuning, produce large blue shifts of the absorption spectra by maximally 100 nm, while maintaining photosensitive ion transport activities. The design principle we elaborate is applicable to other microbial opsins, and clarifies the underlying molecular mechanism of the blue-shifted action spectra of microbial opsins recently isolated from natural sources.

  20. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation

    PubMed Central

    Berglund, Ken; Clissold, Kara; Li, Haofang E.; Wen, Lei; Park, Sung Young; Gleixner, Jan; Klein, Marguerita E.; Lu, Dongye; Barter, Joseph W.; Rossi, Mark A.; Augustine, George J.; Yin, Henry H.; Hochgeschwender, Ute

    2016-01-01

    Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type Gaussia luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright Gaussia luciferase variants with either channelrhodopsin to excite neurons (luminescent opsin, LMO) or a proton pump to inhibit neurons (inhibitory LMO, iLMO). These improved LMOs could reliably activate or silence neurons in vitro and in vivo. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra in vivo produced not only the expected bidirectional control of single unit activity but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, although preserving the ability to be activated by external light sources, LMOs expand the use of optogenetics by making the same opsins accessible to noninvasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales. PMID:26733686

  1. Atomistic design of microbial opsin-based blue-shifted optogenetics tools

    PubMed Central

    Kato, Hideaki E.; Kamiya, Motoshi; Sugo, Seiya; Ito, Jumpei; Taniguchi, Reiya; Orito, Ayaka; Hirata, Kunio; Inutsuka, Ayumu; Yamanaka, Akihiro; Maturana, Andrés D.; Ishitani, Ryuichiro; Sudo, Yuki; Hayashi, Shigehiko; Nureki, Osamu

    2015-01-01

    Microbial opsins with a bound chromophore function as photosensitive ion transporters and have been employed in optogenetics for the optical control of neuronal activity. Molecular engineering has been utilized to create colour variants for the functional augmentation of optogenetics tools, but was limited by the complexity of the protein–chromophore interactions. Here we report the development of blue-shifted colour variants by rational design at atomic resolution, achieved through accurate hybrid molecular simulations, electrophysiology and X-ray crystallography. The molecular simulation models and the crystal structure reveal the precisely designed conformational changes of the chromophore induced by combinatory mutations that shrink its π-conjugated system which, together with electrostatic tuning, produce large blue shifts of the absorption spectra by maximally 100 nm, while maintaining photosensitive ion transport activities. The design principle we elaborate is applicable to other microbial opsins, and clarifies the underlying molecular mechanism of the blue-shifted action spectra of microbial opsins recently isolated from natural sources. PMID:25975962

  2. Atomistic design of microbial opsin-based blue-shifted optogenetics tools.

    PubMed

    Kato, Hideaki E; Kamiya, Motoshi; Sugo, Seiya; Ito, Jumpei; Taniguchi, Reiya; Orito, Ayaka; Hirata, Kunio; Inutsuka, Ayumu; Yamanaka, Akihiro; Maturana, Andrés D; Ishitani, Ryuichiro; Sudo, Yuki; Hayashi, Shigehiko; Nureki, Osamu

    2015-05-15

    Microbial opsins with a bound chromophore function as photosensitive ion transporters and have been employed in optogenetics for the optical control of neuronal activity. Molecular engineering has been utilized to create colour variants for the functional augmentation of optogenetics tools, but was limited by the complexity of the protein-chromophore interactions. Here we report the development of blue-shifted colour variants by rational design at atomic resolution, achieved through accurate hybrid molecular simulations, electrophysiology and X-ray crystallography. The molecular simulation models and the crystal structure reveal the precisely designed conformational changes of the chromophore induced by combinatory mutations that shrink its π-conjugated system which, together with electrostatic tuning, produce large blue shifts of the absorption spectra by maximally 100 nm, while maintaining photosensitive ion transport activities. The design principle we elaborate is applicable to other microbial opsins, and clarifies the underlying molecular mechanism of the blue-shifted action spectra of microbial opsins recently isolated from natural sources.

  3. Mutational changes in S-cone opsin genes common to both nocturnal and cathemeral Aotus monkeys.

    PubMed

    Levenson, David H; Fernandez-Duque, Eduardo; Evans, Sian; Jacobs, Gerald H

    2007-07-01

    Aotus is a platyrrhine primate that has been classically considered to be nocturnal. Earlier research revealed that this animal lacks a color vision capacity because, unlike all other platyrrhine monkeys, Aotus has a defect in the opsin gene that is required to produce short-wavelength sensitive (S) cone photopigment. Consequently, Aotus retains only a single type of cone photopigment. Other mammals have since been found to show similar losses and it has often been speculated that such change is in some fashion tied to nocturnality. Although most species of Aotus are indeed nocturnal, recent observations show that Aotus azarai, an owl monkey species native to portions of Argentina and Paraguay, displays a cathemeral activity pattern being active during daylight hours as frequently as during nighttime hours. We have sequenced portions of the S-cone opsin gene in A. azarai and Aotus nancymaae, the latter a typically nocturnal species. The S-cone opsin genes in both species contain the same fatal defects earlier detected for Aotus trivirgatus. On the basis of the phylogenetic relationships of these three species these results imply that Aotus must have lost a capacity for color vision early in its history and they also suggest that the absence of color vision is not compulsively linked to a nocturnal lifestyle.

  4. Differentially-expressed opsin genes identified in Sinocyclocheilus cavefish endemic to China.

    PubMed

    Meng, Fanwei; Zhao, Yahui; Postlethwait, John H; Zhang, Chunguang

    2013-04-01

    Eye degeneration is a common troglomorphic character of cave-dwelling organisms. Comparing the morphology and molecular biology of cave species and their close surface relatives is a powerful tool for studying regressive eye evolution and other adaptive phenotypes. We compared two co-occurring and closely-related species of the fish genus Sinocyclocheilus, which is endemic to China and includes both surface- and cave-dwelling species. Sinocyclocheilus tileihornes, a cave species, had smaller eyes than Sinocyclocheilus angustiporus, a surface species. Histological and immunohistochemical analyses revealed that the cavefish had shorter cones and more disorderly rods than did the surface-dwelling species. Using quantitative PCR and in situ hybridization, we found that rhodopsin and a long-wavelength sensitive opsin had significantly lower expression levels in the cavefish. Furthermore, one of two short-wavelength-sensitive opsins was expressed at significantly higher levels in the cavefish. Changes in the expression of opsin genes may have played a role in the degeneration of cavefish eyes.

  5. Evolutionary renovation of L/M opsin polymorphism confers a fruit discrimination advantage to ateline New World monkeys.

    PubMed

    Matsumoto, Yoshifumi; Hiramatsu, Chihiro; Matsushita, Yuka; Ozawa, Norihiro; Ashino, Ryuichi; Nakata, Makiko; Kasagi, Satoshi; Di Fiore, Anthony; Schaffner, Colleen M; Aureli, Filippo; Melin, Amanda D; Kawamura, Shoji

    2014-04-01

    New World monkeys exhibit prominent colour vision variation due to allelic polymorphism of the long-to-middle wavelength (L/M) opsin gene. The known spectral variation of L/M opsins in primates is broadly determined by amino acid composition at three sites: 180, 277 and 285 (the 'three-sites' rule). However, two L/M opsin alleles found in the black-handed spider monkeys (Ateles geoffroyi) are known exceptions, presumably due to novel mutations. The spectral separation of the two L/M photopigments is 1.5 times greater than expected based on the 'three-sites' rule. Yet the consequence of this for the visual ecology of the species is unknown, as is the evolutionary mechanism by which spectral shift was achieved. In this study, we first examine L/M opsins of two other Atelinae species, the long-haired spider monkeys (A. belzebuth) and the common woolly monkeys (Lagothrix lagotricha). By a series of site-directed mutagenesis, we show that a mutation Y213D (tyrosine to aspartic acid at site 213) in the ancestral opsin of the two alleles enabled N294K, which occurred in one allele of the ateline ancestor and increased the spectral separation between the two alleles. Second, by modelling the chromaticity of dietary fruits and background leaves in a natural habitat of spider monkeys, we demonstrate that chromatic discrimination of fruit from leaves is significantly enhanced by these mutations. This evolutionary renovation of L/M opsin polymorphism in atelines illustrates a previously unappreciated dynamism of opsin genes in shaping primate colour vision.

  6. Haplotype diversity in the human red and green opsin genes: evidence for frequent sequence exchange in exon 3.

    PubMed

    Winderickx, J; Battisti, L; Hibiya, Y; Motulsky, A G; Deeb, S S

    1993-09-01

    We studied polymorphisms in the coding sequences of the human red and green opsin genes of 133 Caucasian males. Eleven polymorphic sites were discovered in the red opsin gene, seven of which were in exon 3, three in exon 4 and one in exon 5. Polymorphisms at 8 of these sites resulted in amino acid substitutions which generated a total of 18 unique red opsins in the population. The substitutions at three (S180A, I230T, and A233S) of the 8 sites involve hydroxyl-bearing to non-polar amino acid residues, and are therefore likely to alter spectral characteristics of the red pigment. Eight polymorphic sites were observed in the green opsin coding sequences, six of which were in exon 3, one in exon 2 and one in exon 5. Five of the eight involved amino acid substitutions which generated 15 unique green opsins in the population. Substitutions at two of these sites involve hydroxyl-bearing vs. non-polar residues. Six polymorphisms, all of which are located in exon 3, are shared between the red and green opsin genes, essentially making it difficult to assign this exon to either of these genes. Markers in exon 3 are in partial linkage disequilibrium with those in exons 4 and 5, whereas the latter two are in strong linkage disequilibrium with each other. Furthermore, markers in the 5' region of exon 3 are also in only partial (54%) disequilibrium with those in the 3' region. The above results strongly suggest a history of frequent gene conversion, mainly localized to exon 3, in the lineages leading to the human red and green opsin genes.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Evolutionary renovation of L/M opsin polymorphism confers a fruit discrimination advantage to ateline New World monkeys

    PubMed Central

    Matsumoto, Yoshifumi; Hiramatsu, Chihiro; Matsushita, Yuka; Ozawa, Norihiro; Ashino, Ryuichi; Nakata, Makiko; Kasagi, Satoshi; Di Fiore, Anthony; Schaffner, Colleen M; Aureli, Filippo; Melin, Amanda D; Kawamura, Shoji

    2014-01-01

    New World monkeys exhibit prominent colour vision variation due to allelic polymorphism of the long-to-middle wavelength (L/M) opsin gene. The known spectral variation of L/M opsins in primates is broadly determined by amino acid composition at three sites: 180, 277 and 285 (the ‘three-sites’ rule). However, two L/M opsin alleles found in the black-handed spider monkeys (Ateles geoffroyi) are known exceptions, presumably due to novel mutations. The spectral separation of the two L/M photopigments is 1.5 times greater than expected based on the ‘three-sites’ rule. Yet the consequence of this for the visual ecology of the species is unknown, as is the evolutionary mechanism by which spectral shift was achieved. In this study, we first examine L/M opsins of two other Atelinae species, the long-haired spider monkeys (A. belzebuth) and the common woolly monkeys (Lagothrix lagotricha). By a series of site-directed mutagenesis, we show that a mutation Y213D (tyrosine to aspartic acid at site 213) in the ancestral opsin of the two alleles enabled N294K, which occurred in one allele of the ateline ancestor and increased the spectral separation between the two alleles. Second, by modelling the chromaticity of dietary fruits and background leaves in a natural habitat of spider monkeys, we demonstrate that chromatic discrimination of fruit from leaves is significantly enhanced by these mutations. This evolutionary renovation of L/M opsin polymorphism in atelines illustrates a previously unappreciated dynamism of opsin genes in shaping primate colour vision. PMID:24612406

  8. Constraints on the Bulk Composition of Uranus from Herschel PACS and ISO LWS Photometry, SOFIA FORCAST Photometry and Spectroscopy, and Ground-Based Photometry of its Thermal Emission

    NASA Astrophysics Data System (ADS)

    Orton, Glenn; Mueller, Thomas; Burgdorf, Martin; Fletcher, Leigh; de Pater, Imke; Atreya, Sushil; Adams, Joseph; Herter, Terry; Keller, Luke; Sidher, Sunil; Sinclair, James; Fujiyoshi, Takuya

    2016-04-01

    We present thermal infrared observations of the disk of Uranus at 17-200 μm to deduce its global thermal structure and bulk composition. We combine 17-200 μm filtered photometric measurements by the Herschel PACS and ISO LWS instruments and 19-35 μm filtered photometry and spectroscopy by the SOFIA FORCAST instrument, supplemented by 17-25 μm ground-based photometric filtered imaging of Uranus. Previous analysis of infrared spectroscopic measurements of the disk of Uranus made by the Spitzer IRS instrument yielded a model for the disk-averaged temperature profile and stratospheric composition (Orton et al. 2014a Icarus 243,494; 2014b Icarus 243, 471) that were consistent with submillimeter spectroscopy by the Herschel SPIRE instrument (Swinyard et al. 2014, MNRAS 440, 3658). Our motivation to observe the 17-35 μm spectrum was to place more stringent constraints on the global para-H2 / ortho-H2 ratio in the upper troposphere and lower stratosphere than the ISO SWS results of Fouchet et al. (2003, Icarus 161, 127), who examined H2 quadrupole lines. We will discuss the consistency of these observations with a higher para-H2 fraction than implied by local thermal equilibrium, which would resolve a discrepancy between the Spitzer-based model and observations of HD lines by the Herschel PACS experiment (Feuchtgruber et al. 2013 Astron. & Astrophys. 551, A126). Constraints on the global para-H2 fraction allow for more precise analysis of the far-infrared spectrum, which is sensitive to the He:H2 ratio, a quantity that was not constrained by the Spitzer IRS spectra. The derived model, which assumed the ratio derived by the Voyager-2 IRIS/radio-science occultation experiment (Conrath et al. 1987 J. Geophys. Res. 92, 15003), is inconsistent with 70-200 μm PACS photometry (Mueller et al. 2016 Astron. & Astrophys. submittted) and ISO LWS photometric measurements. However, the model can be made consistent with the observations if the fraction of He relative to H2 were

  9. Effects of light-emitting diode spectra on the vertebrate ancient long opsin and gonadotropin hormone in the goldfish Carassius auratus.

    PubMed

    Song, Jin Ah; Kim, Na Na; Choi, Young Jae; Choi, Ji Yong; Kim, Bong-Seok; Choi, Cheol Young

    2016-08-01

    We determined the molecular mechanism underlying the environmental (photoperiodic) regulation of sexual maturation in fish, we examined the expression of sexual maturation-related hormones and vertebrate ancient long opsin (VAL-opsin) in goldfish (Carassius auratus) exposed to different light spectra (red and green light-emitting diodes). We further evaluated the effect of exogenous gonadotropin hormone (GTH) on the expression of VAL-opsin under different light conditions. Our results demonstrated that the expression of GTHs was higher in the fish exposed to green light, and VAL-opsin levels were increased in the fish receiving GTH injection. Therefore, we have uncovered a molecular mechanism underlying the environmental (light)-induced trigger for sexual maturation: VAL-opsin is activated by green light and GTH, which promotes the expression of sexual maturation genes. PMID:27255995

  10. Pharmacological Chaperone-mediated in Vivo Folding and Stabilization of the P23H-opsin Mutant Associated with Autosomal Dominant Retinitis Pigmentosa*

    PubMed Central

    Imanishi, Yoshikazu; Zhu, Li; Filipek, Sławomir; Palczewski, Krzysztof; Kaushal, Shalesh

    2006-01-01

    Protein conformational disorders, which include certain types of retinitis pigmentosa, are a set of inherited human diseases in which mutant proteins are misfolded and often aggregated. Many opsin mutants associated with retinitis pigmentosa, the most common being P23H, are misfolded and retained within the cell. Here, we describe a pharmacological chaperone, 11-cis-7-ring retinal, that quantitatively induces the in vivo folding of P23H-opsin. The rescued protein forms pigment, acquires mature glycosylation, and is transported to the cell surface. Additionally, we determined the temperature stability of the rescued protein as well as the reactivity of the retinal-opsin Schiff base to hydroxylamine. Our study unveils novel properties of P23H-opsin and its interaction with the chromophore. These properties suggest that 11-cis-7-ring retinal may be a useful therapeutic agent for the rescue of P23H-opsin and the prevention of retinal degeneration. PMID:12566452

  11. Opsins in onychophora (velvet worms) suggest a single origin and subsequent diversification of visual pigments in arthropods.

    PubMed

    Hering, Lars; Henze, Miriam J; Kohler, Martin; Kelber, Almut; Bleidorn, Christoph; Leschke, Maren; Nickel, Birgit; Meyer, Matthias; Kircher, Martin; Sunnucks, Paul; Mayer, Georg

    2012-11-01

    Multiple visual pigments, prerequisites for color vision, are found in arthropods, but the evolutionary origin of their diversity remains obscure. In this study, we explore the opsin genes in five distantly related species of Onychophora, using deep transcriptome sequencing and screening approaches. Surprisingly, our data reveal the presence of only one opsin gene (onychopsin) in each onychophoran species, and our behavioral experiments indicate a maximum sensitivity of onychopsin to blue-green light. In our phylogenetic analyses, the onychopsins represent the sister group to the monophyletic clade of visual r-opsins of arthropods. These results concur with phylogenomic support for the sister-group status of the Onychophora and Arthropoda and provide evidence for monochromatic vision in velvet worms and in the last common ancestor of Onychophora and Arthropoda. We conclude that the diversification of visual pigments and color vision evolved in arthropods, along with the evolution of compound eyes-one of the most sophisticated visual systems known. PMID:22683812

  12. Opsins in onychophora (velvet worms) suggest a single origin and subsequent diversification of visual pigments in arthropods.

    PubMed

    Hering, Lars; Henze, Miriam J; Kohler, Martin; Kelber, Almut; Bleidorn, Christoph; Leschke, Maren; Nickel, Birgit; Meyer, Matthias; Kircher, Martin; Sunnucks, Paul; Mayer, Georg

    2012-11-01

    Multiple visual pigments, prerequisites for color vision, are found in arthropods, but the evolutionary origin of their diversity remains obscure. In this study, we explore the opsin genes in five distantly related species of Onychophora, using deep transcriptome sequencing and screening approaches. Surprisingly, our data reveal the presence of only one opsin gene (onychopsin) in each onychophoran species, and our behavioral experiments indicate a maximum sensitivity of onychopsin to blue-green light. In our phylogenetic analyses, the onychopsins represent the sister group to the monophyletic clade of visual r-opsins of arthropods. These results concur with phylogenomic support for the sister-group status of the Onychophora and Arthropoda and provide evidence for monochromatic vision in velvet worms and in the last common ancestor of Onychophora and Arthropoda. We conclude that the diversification of visual pigments and color vision evolved in arthropods, along with the evolution of compound eyes-one of the most sophisticated visual systems known.

  13. Nucleotide Polymorphisms Upstream of the X-chromosome Opsin Gene Array Tune L:M Cone Ratio

    PubMed Central

    Gunther, Karen L.; Neitz, Jay

    2008-01-01

    In support of the long-held idea that cone ratio is genetically determined by variation linked to the X-chromosome opsin gene locus, the present study identified nucleotide differences in DNA segments containing regulatory regions of the L and M opsin genes that are associated with significant differences in the relative number of L versus M cones. Specific haplotypes (combinations of genetic differences) were identified that correlated with high versus low L:M cone ratio. These findings are consistent with the biological principle that DNA sequence variations affect binding affinities for protein components of complexes that influence the relative probability that an L versus M opsin gene will be silenced during development, and in turn, produce variation in the proportion of L to M cones. PMID:18598397

  14. Co-Expression of VAL- and TMT-Opsins Uncovers Ancient Photosensory Interneurons and Motorneurons in the Vertebrate Brain

    PubMed Central

    Fischer, Ruth M.; Fontinha, Bruno M.; Kirchmaier, Stephan; Steger, Julia; Bloch, Susanne; Inoue, Daigo; Panda, Satchidananda; Rumpel, Simon; Tessmar-Raible, Kristin

    2013-01-01

    The functional principle of the vertebrate brain is often paralleled to a computer: information collected by dedicated devices is processed and integrated by interneuron circuits and leads to output. However, inter- and motorneurons present in today's vertebrate brains are thought to derive from neurons that combined sensory, integration, and motor function. Consistently, sensory inter­motorneurons have been found in the simple nerve nets of cnidarians, animals at the base of the evolutionary lineage. We show that light-sensory motorneurons and light-sensory interneurons are also present in the brains of vertebrates, challenging the paradigm that information processing and output circuitry in the central brain is shielded from direct environmental influences. We investigated two groups of nonvisual photopigments, VAL- and TMT-Opsins, in zebrafish and medaka fish; two teleost species from distinct habitats separated by over 300 million years of evolution. TMT-Opsin subclasses are specifically expressed not only in hypothalamic and thalamic deep brain photoreceptors, but also in interneurons and motorneurons with no known photoreceptive function, such as the typeXIV interneurons of the fish optic tectum. We further show that TMT-Opsins and Encephalopsin render neuronal cells light-sensitive. TMT-Opsins preferentially respond to blue light relative to rhodopsin, with subclass-specific response kinetics. We discovered that tmt-opsins co-express with val-opsins, known green light receptors, in distinct inter- and motorneurons. Finally, we show by electrophysiological recordings on isolated adult tectal slices that interneurons in the position of typeXIV neurons respond to light. Our work supports “sensory-inter-motorneurons” as ancient units for brain evolution. It also reveals that vertebrate inter- and motorneurons are endowed with an evolutionarily ancient, complex light-sensory ability that could be used to detect changes in ambient light spectra, possibly

  15. Inferred L/M cone opsin polymorphism of ancestral tarsiers sheds dim light on the origin of anthropoid primates.

    PubMed

    Melin, Amanda D; Matsushita, Yuka; Moritz, Gillian L; Dominy, Nathaniel J; Kawamura, Shoji

    2013-05-22

    Tarsiers are small nocturnal primates with a long history of fuelling debate on the origin and evolution of anthropoid primates. Recently, the discovery of M and L opsin genes in two sister species, Tarsius bancanus (Bornean tarsier) and Tarsius syrichta (Philippine tarsier), respectively, was interpreted as evidence of an ancestral long-to-middle (L/M) opsin polymorphism, which, in turn, suggested a diurnal or cathemeral (arrhythmic) activity pattern. This view is compatible with the hypothesis that stem tarsiers were diurnal; however, a reversion to nocturnality during the Middle Eocene, as evidenced by hyper-enlarged orbits, predates the divergence of T. bancanus and T. syrichta in the Late Miocene. Taken together, these findings suggest that some nocturnal tarsiers possessed high-acuity trichromatic vision, a concept that challenges prevailing views on the adaptive origins of the anthropoid visual system. It is, therefore, important to explore the plausibility and antiquity of trichromatic vision in the genus Tarsius. Here, we show that Sulawesi tarsiers (Tarsius tarsier), a phylogenetic out-group of Philippine and Bornean tarsiers, have an L opsin gene that is more similar to the L opsin gene of T. syrichta than to the M opsin gene of T. bancanus in non-synonymous nucleotide sequence. This result suggests that an L/M opsin polymorphism is the ancestral character state of crown tarsiers and raises the possibility that many hallmarks of the anthropoid visual system evolved under dim (mesopic) light conditions. This interpretation challenges the persistent nocturnal-diurnal dichotomy that has long informed debate on the origin of anthropoid primates. PMID:23536597

  16. Inferred L/M cone opsin polymorphism of ancestral tarsiers sheds dim light on the origin of anthropoid primates

    PubMed Central

    Melin, Amanda D.; Matsushita, Yuka; Moritz, Gillian L.; Dominy, Nathaniel J.; Kawamura, Shoji

    2013-01-01

    Tarsiers are small nocturnal primates with a long history of fuelling debate on the origin and evolution of anthropoid primates. Recently, the discovery of M and L opsin genes in two sister species, Tarsius bancanus (Bornean tarsier) and Tarsius syrichta (Philippine tarsier), respectively, was interpreted as evidence of an ancestral long-to-middle (L/M) opsin polymorphism, which, in turn, suggested a diurnal or cathemeral (arrhythmic) activity pattern. This view is compatible with the hypothesis that stem tarsiers were diurnal; however, a reversion to nocturnality during the Middle Eocene, as evidenced by hyper-enlarged orbits, predates the divergence of T. bancanus and T. syrichta in the Late Miocene. Taken together, these findings suggest that some nocturnal tarsiers possessed high-acuity trichromatic vision, a concept that challenges prevailing views on the adaptive origins of the anthropoid visual system. It is, therefore, important to explore the plausibility and antiquity of trichromatic vision in the genus Tarsius. Here, we show that Sulawesi tarsiers (Tarsius tarsier), a phylogenetic out-group of Philippine and Bornean tarsiers, have an L opsin gene that is more similar to the L opsin gene of T. syrichta than to the M opsin gene of T. bancanus in non-synonymous nucleotide sequence. This result suggests that an L/M opsin polymorphism is the ancestral character state of crown tarsiers and raises the possibility that many hallmarks of the anthropoid visual system evolved under dim (mesopic) light conditions. This interpretation challenges the persistent nocturnal–diurnal dichotomy that has long informed debate on the origin of anthropoid primates. PMID:23536597

  17. Jellyfish vision starts with cAMP signaling mediated by opsin-G(s) cascade.

    PubMed

    Koyanagi, Mitsumasa; Takano, Kosuke; Tsukamoto, Hisao; Ohtsu, Kohzoh; Tokunaga, Fumio; Terakita, Akihisa

    2008-10-01

    Light sensing starts with phototransduction in photoreceptor cells. The phototransduction cascade has diverged in different species, such as those mediated by transducin in vertebrate rods and cones, by G(q)-type G protein in insect and molluscan rhabdomeric-type visual cells and vertebrate photosensitive retinal ganglion cells, and by G(o)-type G protein in scallop ciliary-type visual cells. Here, we investigated the phototransduction cascade of a prebilaterian box jellyfish, the most basal animal having eyes containing lens and ciliary-type visual cells similar to vertebrate eyes, to examine the similarity at the molecular level and to obtain an implication of the origin of the vertebrate phototransduction cascade. We showed that the opsin-based pigment functions as a green-sensitive visual pigment and triggers the G(s)-type G protein-mediated phototransduction cascade in the ciliary-type visual cells of the box jellyfish lens eyes. We also demonstrated the light-dependent cAMP increase in the jellyfish visual cells and HEK293S cells expressing the jellyfish opsin. The first identified prebilaterian cascade was distinct from known phototransduction cascades but exhibited significant partial similarity with those in vertebrate and molluscan ciliary-type visual cells, because all involved cyclic nucleotide signaling. These similarities imply a monophyletic origin of ciliary phototransduction cascades distributed from prebilaterian to vertebrate. PMID:18832159

  18. The evolution of irradiance detection: melanopsin and the non-visual opsins

    PubMed Central

    Peirson, Stuart N.; Halford, Stephanie; Foster, Russell G.

    2009-01-01

    Circadian rhythms are endogenous 24 h cycles that persist in the absence of external time cues. These rhythms provide an internal representation of day length and optimize physiology and behaviour to the varying demands of the solar cycle. These clocks require daily adjustment to local time and the primary time cue (zeitgeber) used by most vertebrates is the daily change in the amount of environmental light (irradiance) at dawn and dusk, a process termed photoentrainment. Attempts to understand the photoreceptor mechanisms mediating non-image-forming responses to light, such as photoentrainment, have resulted in the discovery of a remarkable array of different photoreceptors and photopigment families, all of which appear to use a basic opsin/vitamin A-based photopigment biochemistry. In non-mammalian vertebrates, specialized photoreceptors are located within the pineal complex, deep brain and dermal melanophores. There is also strong evidence in fish and amphibians for the direct photic regulation of circadian clocks in multiple tissues. By contrast, mammals possess only ocular photoreceptors. However, in addition to the image-forming rods and cones of the retina, there exists a third photoreceptor system based on a subset of melanopsin-expressing photosensitive retinal ganglion cells (pRGCs). In this review, we discuss the range of vertebrate photoreceptors and their opsin photopigments, describe the melanopsin/pRGC system in some detail and then finally consider the molecular evolution and sensory ecology of these non-image-forming photoreceptor systems. PMID:19720649

  19. A Naturally Occurring Mutation of the Opsin Gene (T4R) in Dogs Affects Glycosylation and Stability of the G Protein-coupled Receptor*

    PubMed Central

    Zhu, Li; Jang, Geeng-Fu; Jastrzebska, Beata; Filipek, Sławomir; Pearce-Kelling, Susan E.; Aguirre, Gustavo D.; Stenkamp, Ronald E.; Acland, Gregory M.; Palczewski, Krzysztof

    2005-01-01

    Rho (rhodopsin; opsin plus 11-cis-retinal) is a prototypical G protein-coupled receptor responsible for the capture of a photon in retinal photoreceptor cells. A large number of mutations in the opsin gene associated with autosomal dominant retinitis pigmentosa have been identified. The naturally occurring T4R opsin mutation in the English mastiff dog leads to a progressive retinal degeneration that closely resembles human retinitis pigmentosa caused by the T4K mutation in the opsin gene. Using genetic approaches and biochemical assays, we explored the properties of the T4R mutant protein. Employing immunoaffinity-purified Rho from affected RHOT4R/T4R dog retina, we found that the mutation abolished glycosylation at Asn2, whereas glycosylation at Asn15 was unaffected, and the mutant opsin localized normally to the rod outer segments. Moreover, we found that T4R Rho* lost its chromophore faster as measured by the decay of meta-rhodopsin II and that it was less resistant to heat denaturation. Detergent-solubilized T4R opsin regenerated poorly and interacted abnormally with the G protein transducin (Gt). Structurally, the mutation affected mainly the “plug” at the intradiscal (extracellular) side of Rho, which is possibly responsible for protecting the chromophore from the access of bulk water. The T4R mutation may represent a novel molecular mechanism of degeneration where the unliganded form of the mutant opsin exerts a detrimental effect by losing its structural integrity. PMID:15459196

  20. Diel changes in the expression of long wavelength-sensitive and ultraviolet-sensitive opsin genes in the Japanese firefly, Luciola cruciata.

    PubMed

    Oba, Yuichi; Kainuma, Takahiko

    2009-05-01

    Sexual communication between male and female fireflies involves the visual detection of bioluminescence. In the present study, we isolated two different types of opsin cDNAs from an adult of the Japanese firefly, Luciola cruciata. Phylogenetic analysis indicated that these genes correspond to long wavelength-sensitive and ultraviolet-sensitive opsins. This is in agreement with the prior findings, in which the spectral sensitivity of the L. cruciata eye showed two peaks, UV and long wavelength, and the latter substantially matched the bioluminescent spectrum of lambdamax=560 nm. Diel changes in both opsins mRNA levels were determined by quantitative PCR analysis. In adult females, the mRNA level of long wavelength-sensitive opsin was higher at night than in the day, and peaked at 20:00, the time when the luminescence behavior was most active. On the other hand, the expression level of ultraviolet-sensitive opsin was not significantly changed during the day. In adult males, diel changes in the expression of both opsins were not significant. The results suggest that the expression level of "bioluminescence-sensitive" opsins in female L. cruciata is linked to their mating behavior.

  1. Reproducible and sustained regulation of Gαs signalling using a metazoan opsin as an optogenetic tool.

    PubMed

    Bailes, Helena J; Zhuang, Ling-Yu; Lucas, Robert J

    2012-01-01

    Originally developed to regulate neuronal excitability, optogenetics is increasingly also used to control other cellular processes with unprecedented spatiotemporal resolution. Optogenetic modulation of all major G-protein signalling pathways (Gq, Gi and Gs) has been achieved using variants of mammalian rod opsin. We show here that the light response driven by such rod opsin-based tools dissipates under repeated exposure, consistent with the known bleaching characteristics of this photopigment. We continue to show that replacing rod opsin with a bleach resistant opsin from Carybdea rastonii, the box jellyfish, (JellyOp) overcomes this limitation. Visible light induced high amplitude, reversible, and reproducible increases in cAMP in mammalian cells expressing JellyOp. While single flashes produced a brief cAMP spike, repeated stimulation could sustain elevated levels for 10s of minutes. JellyOp was more photosensitive than currently available optogenetic tools, responding to white light at irradiances ≥1 µW/cm(2). We conclude that JellyOp is a promising new tool for mimicking the activity of Gs-coupled G protein coupled receptors with fine spatiotemporal resolution. PMID:22292038

  2. Evolution of color vision in pierid butterflies: blue opsin duplication, ommatidial heterogeneity and eye regionalization in Colias erate.

    PubMed

    Awata, Hiroko; Wakakuwa, Motohiro; Arikawa, Kentaro

    2009-04-01

    This paper documents the molecular organization of the eye of the Eastern Pale Clouded Yellow butterfly, Colias erate (Pieridae). We cloned four cDNAs encoding visual pigment opsins, corresponding to one ultraviolet, two blue and one long wavelength-absorbing visual pigments. Duplication of the blue visual pigment class occurs also in another pierid species, Pieris rapae, suggesting that blue duplication is a general feature in the family Pieridae. We localized the opsin mRNAs in the Colias retina by in situ hybridization. Among the nine photoreceptor cells in an ommatidium, R1-9, we found that R3-8 expressed the long wavelength class mRNA in all ommatidia. R1 and R2 expressed mRNAs of the short wavelength opsins in three fixed combinations, corresponding to three types of ommatidia. While the duplicated blue opsins in Pieris are separately expressed in two subsets of R1-2 photoreceptors, one blue sensitive and another violet sensitive, those of Colias appear to be always coexpressed.

  3. Spatial distribution of opsin-encoding mRNAs in the tiered larval retinas of the sunburst diving beetle Thermonectus marmoratus (Coleoptera: Dytiscidae)

    PubMed Central

    Maksimovic, Srdjan; Cook, Tiffany A.; Buschbeck, Elke K.

    2009-01-01

    Larvae of the sunburst diving beetle, Thermonectus marmoratus, have a cluster of six stemmata (E1-6) and one eye patch on each side of the head. Each eye has two retinas: a distal retina that is closer to the lens, and a proximal retina that lies directly underneath. The distal retinas of E1 and E2 are made of a dorsal and a ventral stack of at least twelve photoreceptor layers. Could this arrangement be used to compensate for lens chromatic aberration, with shorter wavelengths detected by the distal layers and longer wavelengths by the proximal layers? To answer this question we molecularly identified opsins and their expression patterns in these eyes. We found three opsin-encoding genes. The distal retinas of all six eyes express long-wavelength opsin (TmLW) mRNA, whereas the proximal retinas express ultraviolet opsin (TmUV I) mRNA. In the proximal retinas of E1 and E2, the TmUV I mRNA is expressed only in the dorsal stack. A second ultraviolet opsin mRNA (TmUV II), is expressed in the proximal retinas of E1 and E2 (both stacks). The finding that longer-wavelength opsins are expressed distally to shorter-wavelength opsins makes it unlikely that this retinal arrangement is used to compensate for lens chromatic aberration. In addition, we also described opsin expression patterns in the medial retina of E1 and in the non-tiered retina of the lensless eye patch. To our knowledge, this is also the first report of multiple UV opsins being expressed in the same stemma. PMID:19915119

  4. Parallel reduction in expression, but no loss of functional constraint, in two opsin paralogs within cave populations of Gammarus minus (Crustacea: Amphipoda)

    PubMed Central

    2013-01-01

    Background Gammarus minus, a freshwater amphipod living in the cave and surface streams in the eastern USA, is a premier candidate for studying the evolution of troglomorphic traits such as pigmentation loss, elongated appendages, and reduced eyes. In G. minus, multiple pairs of genetically related, physically proximate cave and surface populations exist which exhibit a high degree of intraspecific morphological divergence. The morphology, ecology, and genetic structure of these sister populations are well characterized, yet the genetic basis of their morphological divergence remains unknown. Results We used degenerate PCR primers designed to amplify opsin genes within the subphylum Crustacea and discovered two distinct opsin paralogs (average inter-paralog protein divergence ≈ 20%) in the genome of three independently derived pairs of G. minus cave and surface populations. Both opsin paralogs were found to be related to other crustacean middle wavelength sensitive opsins. Low levels of nucleotide sequence variation (< 1% within populations) were detected in both opsin genes, regardless of habitat, and dN/dS ratios did not indicate a relaxation of functional constraint in the cave populations with reduced or absent eyes. Maximum likelihood analyses using codon-based models also did not detect a relaxation of functional constraint in the cave lineages. We quantified expression level of both opsin genes and found that the expression of both paralogs was significantly reduced in all three cave populations relative to their sister surface populations. Conclusions The concordantly lowered expression level of both opsin genes in cave populations of G. minus compared to sister surface populations, combined with evidence for persistent purifying selection in the cave populations, is consistent with an unspecified pleiotropic function of opsin proteins. Our results indicate that phototransduction proteins such as opsins may have retained their function in cave

  5. Molecular cloning of fresh water and deep-sea rod opsin genes from Japanese eel Anguilla japonica and expressional analyses during sexual maturation.

    PubMed

    Zhang, H; Futami, K; Horie, N; Okamura, A; Utoh, T; Mikawa, N; Yamada, Y; Tanaka, S; Okamoto, N

    2000-03-01

    We have determined the complete cDNA sequences of fresh water rod opsin gene (fwo) and deep-sea rod opsin gene (dso) from Japanese eel Anguilla japonica. The cDNA clones of fwo and dso consisted of 1437 and 1497 nucleotides, respectively. The predicted opsins of both genes consisted of 352 amino acid residues. Southern blot and PCR analyses of genomic DNA indicated that the Japanese eel genome contains only one fwo and one dso and they are intronless. Quantitative RT-PCR analyses revealed that the expression of fwo decreases with sexual maturation while that of dso increases.

  6. Extraordinarily low evolutionary rates of short wavelength-sensitive opsin pseudogenes

    PubMed Central

    Yokoyama, Shozo; Starmer, William T.; Liu, Yang; Tada, Takashi; Britt, Lyle

    2013-01-01

    Aquatic organisms such as cichlids, coelacanths, seals, and cetaceans are active in UV-blue color environments, but many of them mysteriously lost their abilities to detect these colors. The loss of these functions is a consequence of the pseudogenization of their short wavelength-sensitive (SWS1) opsin genes without gene duplication. We show that the SWS1 gene (BdenS1ψ) of the deep-sea fish, pearleye (Benthalbella dentata), became a pseudogene in a similar fashion about 130 million years ago (Mya) yet it is still transcribed. The rates of nucleotide substitution (~1.4 × 10−9 /site/year) of the pseudogenes of these aquatic species as well as some prosimian and bat species are much smaller than the previous estimates for the globin and immunoglobulin pseudogenes. PMID:24125953

  7. A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception.

    PubMed

    Cavallari, Nicola; Frigato, Elena; Vallone, Daniela; Fröhlich, Nadine; Lopez-Olmeda, Jose Fernando; Foà, Augusto; Berti, Roberto; Sánchez-Vázquez, Francisco Javier; Bertolucci, Cristiano; Foulkes, Nicholas S

    2011-09-01

    The circadian clock is synchronized with the day-night cycle primarily by light. Fish represent fascinating models for deciphering the light input pathway to the vertebrate clock since fish cell clocks are regulated by direct light exposure. Here we have performed a comparative, functional analysis of the circadian clock involving the zebrafish that is normally exposed to the day-night cycle and a cavefish species that has evolved in perpetual darkness. Our results reveal that the cavefish retains a food-entrainable clock that oscillates with an infradian period. Importantly, however, this clock is not regulated by light. This comparative study pinpoints the two extra-retinal photoreceptors Melanopsin (Opn4m2) and TMT-opsin as essential upstream elements of the peripheral clock light input pathway. PMID:21909239

  8. Optical control of neuronal excitation and inhibition using a single opsin protein, ChR2

    PubMed Central

    Liske, Holly; Qian, Xiang; Anikeeva, Polina; Deisseroth, Karl; Delp, Scott

    2013-01-01

    The effect of electrical stimulation on neuronal membrane potential is frequency dependent. Low frequency electrical stimulation can evoke action potentials, whereas high frequency stimulation can inhibit action potential transmission. Optical stimulation of channelrhodopsin-2 (ChR2) expressed in neuronal membranes can also excite action potentials. However, it is unknown whether optical stimulation of ChR2-expressing neurons produces a transition from excitation to inhibition with increasing light pulse frequencies. Here we report optical inhibition of motor neuron and muscle activity in vivo in the cooled sciatic nerves of Thy1-ChR2-EYFP mice. We also demonstrate all-optical single-wavelength control of neuronal excitation and inhibition without co-expression of inhibitory and excitatory opsins. This all-optical system is free from stimulation-induced electrical artifacts and thus provides a new approach to investigate mechanisms of high frequency inhibition in neuronal circuits in vivo and in vitro. PMID:24173561

  9. Site-directed mutagenesis of highly conserved amino acids in the first cytoplasmic loop of Drosophila Rh1 opsin blocks rhodopsin synthesis in the nascent state.

    PubMed Central

    Bentrop, J; Schwab, K; Pak, W L; Paulsen, R

    1997-01-01

    The cytoplasmic surface of Drosophila melanogaster Rh1 rhodopsin (ninaE) harbours amino acids which are highly conserved among G-protein-coupled receptors. Site-directed mutations which cause Leu81Gln or Asn86Ile amino acid substitutions in the first cytoplasmic loop of the Rh1 opsin protein, are shown to block rhodopsin synthesis in the nascent, glycosylated state from which the mutant opsin is degraded rapidly. In mutants Leu81Gln and Asn86Ile, only 20-30% and <2% respectively, of functional rhodopsins are synthesized and transported to the photoreceptive membrane. Thus, conserved amino acids in opsin's cytoplasmic surface are a critical factor in the interaction of opsin with proteins of the rhodopsin processing machinery. Photoreceptor cells expressing mutant rhodopsins undergo age-dependent degeneration in a recessive manner. PMID:9130705

  10. The Expression of Three Opsin Genes from the Compound Eye of Helicoverpa armigera (Lepidoptera: Noctuidae) Is Regulated by a Circadian Clock, Light Conditions and Nutritional Status

    PubMed Central

    Yan, Shuo; Zhu, Jialin; Zhu, Weilong; Zhang, Xinfang; Li, Zhen; Liu, Xiaoxia; Zhang, Qingwen

    2014-01-01

    Visual genes may become inactive in species that inhabit poor light environments, and the function and regulation of opsin components in nocturnal moths are interesting topics. In this study, we cloned the ultraviolet (UV), blue (BL) and long-wavelength-sensitive (LW) opsin genes from the compound eye of the cotton bollworm and then measured their mRNA levels using quantitative real-time PCR. The mRNA levels fluctuated over a daily cycle, which might be an adaptation of a nocturnal lifestyle, and were dependent on a circadian clock. Cycling of opsin mRNA levels was disturbed by constant light or constant darkness, and the UV opsin gene was up-regulated after light exposure. Furthermore, the opsin genes tended to be down-regulated upon starvation. Thus, this study illustrates that opsin gene expression is determined by multiple endogenous and exogenous factors and is adapted to the need for nocturnal vision, suggesting that color vision may play an important role in the sensory ecology of nocturnal moths. PMID:25353953

  11. The expression of three opsin genes from the compound eye of Helicoverpa armigera (Lepidoptera: Noctuidae) is regulated by a circadian clock, light conditions and nutritional status.

    PubMed

    Yan, Shuo; Zhu, Jialin; Zhu, Weilong; Zhang, Xinfang; Li, Zhen; Liu, Xiaoxia; Zhang, Qingwen

    2014-01-01

    Visual genes may become inactive in species that inhabit poor light environments, and the function and regulation of opsin components in nocturnal moths are interesting topics. In this study, we cloned the ultraviolet (UV), blue (BL) and long-wavelength-sensitive (LW) opsin genes from the compound eye of the cotton bollworm and then measured their mRNA levels using quantitative real-time PCR. The mRNA levels fluctuated over a daily cycle, which might be an adaptation of a nocturnal lifestyle, and were dependent on a circadian clock. Cycling of opsin mRNA levels was disturbed by constant light or constant darkness, and the UV opsin gene was up-regulated after light exposure. Furthermore, the opsin genes tended to be down-regulated upon starvation. Thus, this study illustrates that opsin gene expression is determined by multiple endogenous and exogenous factors and is adapted to the need for nocturnal vision, suggesting that color vision may play an important role in the sensory ecology of nocturnal moths.

  12. Characterization of opsin gene alleles affecting color vision in a wild population of titi monkeys (Callicebus brunneus).

    PubMed

    Bunce, John A; Isbell, Lynne A; Neitz, Maureen; Bonci, Daniela; Surridge, Alison K; Jacobs, Gerald H; Smith, David Glenn

    2011-02-01

    The color vision of most platyrrhine primates is determined by alleles at the polymorphic X-linked locus coding for the opsin responsible for the middle- to long-wavelength (M/L) cone photopigment. Females who are heterozygous at the locus have trichromatic vision, whereas homozygous females and all males are dichromatic. This study characterized the opsin alleles in a wild population of the socially monogamous platyrrhine monkey Callicebus brunneus (the brown titi monkey), a primate that an earlier study suggests may possess an unusual number of alleles at this locus and thus may be a subject of special interest in the study of primate color vision. Direct sequencing of regions of the M/L opsin gene using feces-, blood-, and saliva-derived DNA obtained from 14 individuals yielded evidence for the presence of three functionally distinct alleles, corresponding to the most common M/L photopigment variants inferred from a physiological study of cone spectral sensitivity in captive Callicebus. PMID:20938927

  13. Evolutionary dynamics of Rh2 opsins in birds demonstrate an episode of accelerated evolution in the New World warblers (Setophaga)

    PubMed Central

    Price, Trevor D.

    2015-01-01

    Low rates of sequence evolution associated with purifying selection can be interrupted by episodic changes in selective regimes. Visual pigments are a unique system in which we can investigate the functional consequences of genetic changes, therefore connecting genotype to phenotype in the context of natural and sexual selection pressures. We study the RH2 and RH1 visual pigments (opsins) across 22 bird species belonging to two ecologically convergent clades, the New World warblers (Parulidae) and Old World warblers (Phylloscopidae), and evaluate rates of evolution in these clades along with data from 21 additional species. We demonstrate generally slow evolution of these opsins: both Rh1 and Rh2 are highly conserved across Old World and New World warblers. However, Rh2 underwent a burst of evolution within the New World genus Setophaga, where it accumulated substitutions at 6 amino acid sites across the species we studied. Evolutionary analyses revealed a significant increase in dN/dS in Setophaga, implying relatively strong selective pressures to overcome long-standing purifying selection. We studied the effects of each substitution on spectral tuning and found they do not cause large spectral shifts. Thus substitutions may reflect other aspects of opsin function, such as those affecting photosensitivity and/or dark-light adaptation. Although it is unclear what these alterations mean for color perception, we suggest that rapid evolution is linked to sexual selection, given the exceptional plumage colour diversification in Setophaga. PMID:25827331

  14. Evolutionary dynamics of Rh2 opsins in birds demonstrate an episode of accelerated evolution in the New World warblers (Setophaga).

    PubMed

    Bloch, Natasha I; Price, Trevor D; Chang, Belinda S W

    2015-05-01

    Low rates of sequence evolution associated with purifying selection can be interrupted by episodic changes in selective regimes. Visual pigments are a unique system in which we can investigate the functional consequences of genetic changes, therefore connecting genotype to phenotype in the context of natural and sexual selection pressures. We study the RH2 and RH1 visual pigments (opsins) across 22 bird species belonging to two ecologically convergent clades, the New World warblers (Parulidae) and Old World warblers (Phylloscopidae) and evaluate rates of evolution in these clades along with data from 21 additional species. We demonstrate generally slow evolution of these opsins: both Rh1 and Rh2 are highly conserved across Old World and New World warblers. However, Rh2 underwent a burst of evolution within the New World genus Setophaga, where it accumulated substitutions at 6 amino acid sites across the species we studied. Evolutionary analyses revealed a significant increase in dN /dS in Setophaga, implying relatively strong selective pressures to overcome long-standing purifying selection. We studied the effects of each substitution on spectral tuning and found they do not cause large spectral shifts. Thus, substitutions may reflect other aspects of opsin function, such as those affecting photosensitivity and/or dark-light adaptation. Although it is unclear what these alterations mean for colour perception, we suggest that rapid evolution is linked to sexual selection, given the exceptional plumage colour diversification in Setophaga.

  15. Selective expression of human X chromosome-linked green opsin genes.

    PubMed Central

    Winderickx, J; Battisti, L; Motulsky, A G; Deeb, S S

    1992-01-01

    The human red and green photopigments are specified by genes on the long arm of the X chromosome (Xq28). In individuals with normal color vision, the locus was proposed to consist of a single red pigment gene upstream of one or more copies of green pigment genes. The presence of a single red pigment gene in the array was confirmed by demonstration of only one retinal mRNA transcript coding for the red opsin. In individuals with multiple green pigment genes, it is unknown whether all genes are expressed. We analyzed the sequence of red- and green-specific mRNA from retinas of individuals with multiple green pigment genes in comparison with the corresponding genomic DNA sequences. The data showed that only a single green pigment gene is expressed. We therefore suggest that a locus control-like element, already known to be located 3.8 kilobases upstream of the transcription initiation site of the red pigment gene, allows transcription of only a single copy of the green pigment genes, probably the most proximal copy. This finding provides an explanation for the not-infrequent presence of 5' green-red hybrid genes in individuals with normal color vision. Such hybrid genes are usually associated with defective color vision. We suggest that 5' green-red hybrid genes produce defective color vision only when their position in the gene array allows expression in the retinal cone cells. Images PMID:1409688

  16. Inhibitory luminopsins: genetically-encoded bioluminescent opsins for versatile, scalable, and hardware-independent optogenetic inhibition

    PubMed Central

    Tung, Jack K.; Gutekunst, Claire-Anne; Gross, Robert E.

    2015-01-01

    Optogenetic techniques provide an unprecedented ability to precisely manipulate neural activity in the context of complex neural circuitry. Although the toolbox of optogenetic probes continues to expand at a rapid pace with more efficient and responsive reagents, hardware-based light delivery is still a major hurdle that limits its practical use in vivo. We have bypassed the challenges of external light delivery by directly coupling a bioluminescent light source (a genetically encoded luciferase) to an inhibitory opsin, which we term an inhibitory luminopsin (iLMO). iLMO was shown to suppress action potential firing and synchronous bursting activity in vitro in response to both external light and luciferase substrate. iLMO was further shown to suppress single-unit firing rate and local field potentials in the hippocampus of anesthetized rats. Finally, expression of iLMO was scaled up to multiple structures of the basal ganglia to modulate rotational behavior of freely moving animals in a hardware-independent fashion. This novel class of optogenetic probes demonstrates how non-invasive inhibition of neural activity can be achieved, which adds to the versatility, scalability, and practicality of optogenetic applications in freely behaving animals. PMID:26399324

  17. Selective expression of human X chromosome-linked green opsin genes.

    PubMed

    Winderickx, J; Battisti, L; Motulsky, A G; Deeb, S S

    1992-10-15

    The human red and green photopigments are specified by genes on the long arm of the X chromosome (Xq28). In individuals with normal color vision, the locus was proposed to consist of a single red pigment gene upstream of one or more copies of green pigment genes. The presence of a single red pigment gene in the array was confirmed by demonstration of only one retinal mRNA transcript coding for the red opsin. In individuals with multiple green pigment genes, it is unknown whether all genes are expressed. We analyzed the sequence of red- and green-specific mRNA from retinas of individuals with multiple green pigment genes in comparison with the corresponding genomic DNA sequences. The data showed that only a single green pigment gene is expressed. We therefore suggest that a locus control-like element, already known to be located 3.8 kilobases upstream of the transcription initiation site of the red pigment gene, allows transcription of only a single copy of the green pigment genes, probably the most proximal copy. This finding provides an explanation for the not-infrequent presence of 5' green-red hybrid genes in individuals with normal color vision. Such hybrid genes are usually associated with defective color vision. We suggest that 5' green-red hybrid genes produce defective color vision only when their position in the gene array allows expression in the retinal cone cells.

  18. Color Vision Variation as Evidenced by Hybrid L/M Opsin Genes in Wild Populations of Trichromatic Alouatta New World Monkeys.

    PubMed

    Matsushita, Yuka; Oota, Hiroki; Welker, Barbara J; Pavelka, Mary S; Kawamura, Shoji

    2014-01-01

    Platyrrhine (New World) monkeys possess highly polymorphic color vision owing to allelic variation of the single-locus L/M opsin gene on the X chromosome. Most species consist of female trichromats and female and male dichromats. Howlers (genus Alouatta) are an exception; they are considered to be routinely trichromatic with L and M opsin genes juxtaposed on the X chromosome, as seen in catarrhine primates (Old World monkeys, apes, and humans). Yet it is not known whether trichromacy is invariable in howlers. We examined L/M opsin variation in wild howler populations in Costa Rica and Nicaragua (Alouatta palliata) and Belize (A. pigra), using fecal DNA. We surveyed exon 5 sequences (containing the diagnostic 277th and 285th residues for λmax) for 8 and 18 X chromosomes from Alouatta palliata and A. pigra, respectively. The wavelengths of maximal absorption (λmax) of the reconstituted L and M opsin photopigments were 564 nm and 532 nm, respectively, in both species. We found one M-L hybrid sequence with a recombinant 277/285 haplotype in Alouatta palliata and two L-M hybrid sequences in A. pigra. The λmax values of the reconstituted hybrid photopigments were in the range of 546~554 nm, which should result in trichromat phenotypes comparable to those found in other New World monkey species. Our finding of color vision variation due to high frequencies of L/M hybrid opsin genes in howlers challenges the current view that howlers are routine and uniform trichromats. These results deepen our understanding of the evolutionary significance of color vision polymorphisms and routine trichromacy and emphasize the need for further assessment of opsin gene variation as well as behavioral differences among subtypes of trichromacy. PMID:24523565

  19. Color Vision Variation as Evidenced by Hybrid L/M Opsin Genes in Wild Populations of Trichromatic Alouatta New World Monkeys.

    PubMed

    Matsushita, Yuka; Oota, Hiroki; Welker, Barbara J; Pavelka, Mary S; Kawamura, Shoji

    2014-01-01

    Platyrrhine (New World) monkeys possess highly polymorphic color vision owing to allelic variation of the single-locus L/M opsin gene on the X chromosome. Most species consist of female trichromats and female and male dichromats. Howlers (genus Alouatta) are an exception; they are considered to be routinely trichromatic with L and M opsin genes juxtaposed on the X chromosome, as seen in catarrhine primates (Old World monkeys, apes, and humans). Yet it is not known whether trichromacy is invariable in howlers. We examined L/M opsin variation in wild howler populations in Costa Rica and Nicaragua (Alouatta palliata) and Belize (A. pigra), using fecal DNA. We surveyed exon 5 sequences (containing the diagnostic 277th and 285th residues for λmax) for 8 and 18 X chromosomes from Alouatta palliata and A. pigra, respectively. The wavelengths of maximal absorption (λmax) of the reconstituted L and M opsin photopigments were 564 nm and 532 nm, respectively, in both species. We found one M-L hybrid sequence with a recombinant 277/285 haplotype in Alouatta palliata and two L-M hybrid sequences in A. pigra. The λmax values of the reconstituted hybrid photopigments were in the range of 546~554 nm, which should result in trichromat phenotypes comparable to those found in other New World monkey species. Our finding of color vision variation due to high frequencies of L/M hybrid opsin genes in howlers challenges the current view that howlers are routine and uniform trichromats. These results deepen our understanding of the evolutionary significance of color vision polymorphisms and routine trichromacy and emphasize the need for further assessment of opsin gene variation as well as behavioral differences among subtypes of trichromacy.

  20. Opsin Effect on the Electronic Structure of the Retinylidene Chromophore in Rhodopsin.

    PubMed

    Sproviero, Eduardo M

    2015-03-10

    Direct examination of experimental NMR parameters combined with electronic structure analysis was used to provide a first-principle interpretation of NMR experiments and give a precise evaluation of how the electronic perturbation of the protein environment affects the electronic properties of the retinylidene chromophere in rhodopsin. To this end, we pursued a theoretical analysis using a combination of tools including quantum mechanics/molecular mechanics (QM/MM) at the Density Functional Theory (DFT) level, in conjunction with gauge independent atomic orbital (GIAO) calculations of (13)C NMR chemical shieldings and (1)J(CC) spin-spin coupling constants obtained with the Coupled Perturbed DFT (CPDFT) method. The opsin effect on the retinylidene chromophere is interpreted as an inductive effect of Glu-113 which readjusts the weighting factors of resonance substructures of the conjugated chain of the chromophere. These changes give a rationalization to the alternating effect of the (13)C chemical shifts magnitudes when comparing the retinylidene chromophere in the presence and absence of the protein environment. Conversely, perturbation of π orbitals has little to no effect over (1)J (13)C-(13)C spin-spin coupling constants, as they are mainly dominated by the Fermi contact term, and hence the counteraion effect is restricted to the vicinity of the perturbation. Thus, the apparent contradiction between experimental findings based on chemical shifts (deep penetration) and one-bond J-couplings (localized effects of the protonated Schiff base at the chain terminus) is in fact a consequence of different properties responding differently to the same external perturbation.

  1. Nocturnal light environments influence color vision and signatures of selection on the OPN1SW opsin gene in nocturnal lemurs.

    PubMed

    Veilleux, Carrie C; Louis, Edward E; Bolnick, Deborah A

    2013-06-01

    Although loss of short-wavelength-sensitive (SWS) cones and dichromatic color vision in mammals has traditionally been linked to a nocturnal lifestyle, recent studies have identified variation in selective pressure for the maintenance of the OPN1SW opsin gene (and thus, potentially dichromacy) among nocturnal mammalian lineages. These studies hypothesize that purifying selection to retain SWS cones may be associated with a selective advantage for nocturnal color vision under certain ecological conditions. In this study, we explore the effect of nocturnal light environment on OPN1SW opsin gene evolution in a diverse sample of nocturnal lemurs (106 individuals, 19 species, and 5 genera). Using both phylogenetic and population genetic approaches, we test whether species from closed canopy rainforests, which are impoverished in short-wavelength light, have experienced relaxed selection compared with species from open canopy forests. We identify clear signatures of differential selection on OPN1SW by habitat type. Our results suggest that open canopy species generally experience strong purifying selection to maintain SWS cones. In contrast, closed canopy species experience weaker purifying selection or a relaxation of selection on OPN1SW. We also found evidence of nonfunctional OPN1SW genes in all Phaner species and in Cheirogaleus medius, implying at least three independent losses of SWS cones in cheirogaleids. Our results suggest that the evolution of color vision in nocturnal lemurs has been influenced by nocturnal light environment.

  2. Possible Involvement of Cone Opsins in Distinct Photoresponses of Intrinsically Photosensitive Dermal Chromatophores in Tilapia Oreochromis niloticus

    PubMed Central

    Chen, Shyh-Chi; Robertson, R. Meldrum; Hawryshyn, Craig W.

    2013-01-01

    Dermal specialized pigment cells (chromatophores) are thought to be one type of extraretinal photoreceptors responsible for a wide variety of sensory tasks, including adjusting body coloration. Unlike the well-studied image-forming function in retinal photoreceptors, direct evidence characterizing the mechanism of chromatophore photoresponses is less understood, particularly at the molecular and cellular levels. In the present study, cone opsin expression was detected in tilapia caudal fin where photosensitive chromatophores exist. Single-cell RT-PCR revealed co-existence of different cone opsins within melanophores and erythrophores. By stimulating cells with six wavelengths ranging from 380 to 580 nm, we found melanophores and erythrophores showed distinct photoresponses. After exposed to light, regardless of wavelength presentation, melanophores dispersed and maintained cell shape in an expansion stage by shuttling pigment granules. Conversely, erythrophores aggregated or dispersed pigment granules when exposed to short- or middle/long-wavelength light, respectively. These results suggest that diverse molecular mechanisms and light-detecting strategies may be employed by different types of tilapia chromatophores, which are instrumental in pigment pattern formation. PMID:23940562

  3. Deep Brain Photoreceptor (val-opsin) Gene Knockout Using CRISPR/Cas Affects Chorion Formation and Embryonic Hatching in the Zebrafish

    PubMed Central

    Hang, Chong Yee; Moriya, Shogo; Ogawa, Satoshi; Parhar, Ishwar S.

    2016-01-01

    Non-rod non-cone photopigments in the eyes and the brain can directly mediate non-visual functions of light in non-mammals. This was supported by our recent findings on vertebrate ancient long (VAL)-opsin photopigments encoded by the val-opsinA (valopa) and val-opsinB (valopb) genes in zebrafish. However, the physiological functions of valop isoforms remain unknown. Here, we generated valop-mutant zebrafish using CRISPR/Cas genome editing, and examined the phenotypes of loss-of-function mutants. F0 mosaic mutations and germline transmission were confirmed via targeted insertions and/or deletions in the valopa or valopb gene in F1 mutants. Based on in silico analysis, frameshift mutations converted VAL-opsin proteins to non-functional truncated forms with pre-mature stop codons. Most F1 eggs or embryos from F0 female valopa/b mutants showed either no or only partial chorion elevation, and the eggs or embryos died within 26 hour-post-fertilization. However, most F1 embryos from F0 male valopa mutant developed but hatched late compared to wild-type embryos, which hatched at 4 day-post-fertilization. Late-hatched F1 offspring included wild-type and mutants, indicating the parental effects of valop knockout. This study shows valop gene knockout affects chorion formation and embryonic hatching in the zebrafish. PMID:27792783

  4. The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates.

    PubMed

    Dulai, K S; von Dornum, M; Mollon, J D; Hunt, D M

    1999-07-01

    Trichromacy in all Old World primates is dependent on separate X-linked MW and LW opsin genes that are organized into a head-to-tail tandem array flanked on the upstream side by a locus control region (LCR). The 5' regions of these two genes show homology for only the first 236 bp, although within this region, the differences are conserved in humans, chimpanzees, and two species of cercopithecoid monkeys. In contrast, most New World primates have only a single polymorphic X-linked opsin gene; all males are dichromats and trichromacy is achieved only in those females that possess a different form of this gene on each X chromosome. By sequencing the upstream region of this gene in a New World monkey, the marmoset, we have been able to demonstrate the presence of an LCR in an equivalent position to that in Old World primates. Moreover, the marmoset sequence shows extensive homology from the coding region to the LCR with the upstream sequence of the human LW gene, a distance of >3 kb, whereas homology with the human MW gene is again limited to the first 236 bp, indicating that the divergent MW sequence identifies the site of insertion of the duplicated gene. This is further supported by the presence of an incomplete Alu element on the upstream side of this insertion point in the MW gene of both humans and a cercopithecoid monkey, with additional Alu elements present further upstream. Therefore, these Alu elements may have been involved in the initial gene duplication and may also be responsible for the high frequency of gene loss and gene duplication within the opsin gene array. Full trichromacy is present in one species of New World monkey, the howler monkey, in which separate MW and LW genes are again present. In contrast to the separate genes in humans, however, the upstream sequences of the two howler genes show homology with the marmoset for at least 600 bp, which is well beyond the point of divergence of the human MW and LW genes, and each sequence is associated

  5. Trans-specific evolution of opsin alleles and the maintenance of trichromatic colour vision in Callitrichine primates.

    PubMed

    Surridge, Alison K; Mundy, Nicholas I

    2002-10-01

    Many New World (NW) primates possess a remarkable polymorphism in an X-linked locus, which encodes for the visual pigments (opsins) used for colour vision. Females that are heterozygous for opsin alleles of different spectral sensitivity at this locus have trichromatic colour vision, whereas homozygous females and males are dichromatic, with poor colour discrimination in the red-green range. Here we describe an extensive survey of allelic variation in both exons and introns at this locus within and among species of the Callitrichines (marmosets and tamarins). All five genera of Callitrichines have the X-linked polymorphism, and only the three functional allelic classes described previously (with maximum wavelength sensitivities at about 543 nm, 556 nm and 563 nm) were found among the 16 species and 233 or more X-chromosomes sampled. In spite of the homogenizing effects of gene conversion, phylogenetic analyses provide direct evidence for trans-specific evolution of alleles over time periods of at least 5-6 million years, and up to 14 million years (estimated from independent phylogenies). These conclusions are supported by the distribution of insertions and deletions in introns. The maintenance of polymorphism over these time periods requires an adaptive explanation, which must involve a heterozygote advantage for trichromats. The lack of detection of alleles that are recombinant for spectral sensitivity suggests that such alleles are suboptimal. The two main hypotheses for the selective advantage of trichromacy in primates are frugivory for ripe fruits and folivory for young leaves. The latter can be discounted in Callitrichines, as they are not folivorous. PMID:12296957

  6. Trans-specific evolution of opsin alleles and the maintenance of trichromatic colour vision in Callitrichine primates.

    PubMed

    Surridge, Alison K; Mundy, Nicholas I

    2002-10-01

    Many New World (NW) primates possess a remarkable polymorphism in an X-linked locus, which encodes for the visual pigments (opsins) used for colour vision. Females that are heterozygous for opsin alleles of different spectral sensitivity at this locus have trichromatic colour vision, whereas homozygous females and males are dichromatic, with poor colour discrimination in the red-green range. Here we describe an extensive survey of allelic variation in both exons and introns at this locus within and among species of the Callitrichines (marmosets and tamarins). All five genera of Callitrichines have the X-linked polymorphism, and only the three functional allelic classes described previously (with maximum wavelength sensitivities at about 543 nm, 556 nm and 563 nm) were found among the 16 species and 233 or more X-chromosomes sampled. In spite of the homogenizing effects of gene conversion, phylogenetic analyses provide direct evidence for trans-specific evolution of alleles over time periods of at least 5-6 million years, and up to 14 million years (estimated from independent phylogenies). These conclusions are supported by the distribution of insertions and deletions in introns. The maintenance of polymorphism over these time periods requires an adaptive explanation, which must involve a heterozygote advantage for trichromats. The lack of detection of alleles that are recombinant for spectral sensitivity suggests that such alleles are suboptimal. The two main hypotheses for the selective advantage of trichromacy in primates are frugivory for ripe fruits and folivory for young leaves. The latter can be discounted in Callitrichines, as they are not folivorous.

  7. Opsin gene sequence variation across phylogenetic and population histories in Mysis (Crustacea: Mysida) does not match current light environments or visual-pigment absorbance spectra.

    PubMed

    Audzijonyte, Asta; Pahlberg, Johan; Viljanen, Martta; Donner, Kristian; Väinölä, Risto

    2012-05-01

    The hypothesis that selection on the opsin gene is efficient in tuning vision to the ambient light environment of an organism was assessed in 49 populations of 12 Mysis crustacean species, inhabiting arctic marine waters, coastal littoral habitats, freshwater lakes ('glacial relicts') and the deep Caspian Sea. Extensive sequence variation was found within and among taxa, but its patterns did not match expectations based on light environments, spectral sensitivity of the visual pigment measured by microspectrophotometry or the history of species and populations. The main split in the opsin gene tree was between lineages I and II, differing in six amino acids. Lineage I was present in marine and Caspian Sea species and in the North American freshwater Mysis diluviana, whereas lineage II was found in the European and circumarctic fresh- and brackish-water Mysis relicta, Mysis salemaai and Mysis segerstralei. Both lineages were present in some populations of M. salemaai and M. segerstralei. Absorbance spectra of the visual pigment in nine populations of the latter three species showed a dichotomy between lake (λ(max) =554-562 nm) and brackish-water (Baltic Sea) populations (λ(max) = 521-535 nm). Judged by the shape of spectra, this difference was not because of different chromophores (A2 vs. A1), but neither did it coincide with the split in the opsin tree (lineages I/II), species identity or current light environments. In all, adaptive evolution of the opsin gene in Mysis could not be demonstrated, but its sequence variation did not conform to a neutral expectation either, suggesting evolutionary constraints and/or unidentified mechanisms of spectral tuning. PMID:22429275

  8. Mutations of the Opsin Gene (Y102H and I307N) Lead to Light-induced Degeneration of Photoreceptors and Constitutive Activation of Phototransduction in Mice*

    PubMed Central

    Budzynski, Ewa; Gross, Alecia K.; McAlear, Suzanne D.; Peachey, Neal S.; Shukla, Meera; He, Feng; Edwards, Malia; Won, Jungyeon; Hicks, Wanda L.; Wensel, Theodore G.; Naggert, Jurgen K.; Nishina, Patsy M.

    2010-01-01

    Mutations in the Rhodopsin (Rho) gene can lead to autosomal dominant retinitis pigmentosa (RP) in humans. Transgenic mouse models with mutations in Rho have been developed to study the disease. However, it is difficult to know the source of the photoreceptor (PR) degeneration in these transgenic models because overexpression of wild type (WT) Rho alone can lead to PR degeneration. Here, we report two chemically mutagenized mouse models carrying point mutations in Rho (Tvrm1 with an Y102H mutation and Tvrm4 with an I307N mutation). Both mutants express normal levels of rhodopsin that localize to the PR outer segments and do not exhibit PR degeneration when raised in ambient mouse room lighting; however, severe PR degeneration is observed after short exposures to bright light. Both mutations also cause a delay in recovery following bleaching. This defect might be due to a slower rate of chromophore binding by the mutant opsins compared with the WT form, and an increased rate of transducin activation by the unbound mutant opsins, which leads to a constitutive activation of the phototransduction cascade as revealed by in vitro biochemical assays. The mutant-free opsins produced by the respective mutant Rho genes appear to be more toxic to PRs, as Tvrm1 and Tvrm4 mutants lacking the 11-cis chromophore degenerate faster than mice expressing WT opsin that also lack the chromophore. Because of their phenotypic similarity to humans with B1 Rho mutations, these mutants will be important tools in examining mechanisms underlying Rho-induced RP and for testing therapeutic strategies. PMID:20207741

  9. The influence of L-opsin gene polymorphisms and neural ageing on spatio-chromatic contrast sensitivity in 20-71 year olds.

    PubMed

    Dees, Elise W; Gilson, Stuart J; Neitz, Maureen; Baraas, Rigmor C

    2015-11-01

    Chromatic contrast sensitivity may be a more sensitive measure of an individual's visual function than achromatic contrast sensitivity. Here, the first aim was to quantify individual- and age-related variations in chromatic contrast sensitivity to a range of spatial frequencies for stimuli along two complementary directions in color space. The second aim was to examine whether polymorphisms at specific amino acid residues of the L- and M-opsin genes (OPN1LW and OPN1MW) known to affect spectral tuning of the photoreceptors could influence spatio-chromatic contrast sensitivity. Chromatic contrast sensitivity functions were measured in 50 healthy individuals (20-71 years) employing a novel pseudo-isochromatic grating stimulus. The spatio-chromatic contrast sensitivity functions were found to be low pass for all subjects, independent of age and color vision. The results revealed a senescent decline in spatio-chromatic contrast sensitivity. There were considerable between-individual differences in sensitivity within each age decade for individuals 49 years old or younger, and age did not predict sensitivity for these age decades alone. Forty-six subjects (including a color deficient male and eight female carriers) were genotyped for L- and M-opsin genes. The Ser180Ala polymorphisms on the L-opsin gene were found to influence the subject's color discrimination and their sensitivity to spatio-chromatic patterns. The results expose the significant role of neural and genetic factors in the deterioration of visual function with increasing age.

  10. Development of Lead Hammerhead Ribozyme Candidates against Human Rod Opsin mRNA for Retinal Degeneration Therapy

    PubMed Central

    Abdelmaksoud, Heba E.; Yau, Edwin H.; Zuker, Michael; Sullivan, Jack M.

    2011-01-01

    To identify lead candidate allele-independent hammerhead ribozymes (hhRz) for the treatment of autosomal dominant mutations in the human rod opsin (RHO) gene, we tested a series of hhRzs for potential to significantly knockdown human RHO gene expression in a human cell expression system. Multiple computational criteria were used to select target mRNA regions likely to be single stranded and accessible to hhRz annealing and cleavage. Target regions are tested for accessibility in a human cell culture expression system where the hhRz RNA and target mRNA and protein are coexpressed. The hhRz RNA is embedded in an adenoviral VAI RNA chimeric RNA of established structure and properties which are critical to the experimental paradigm. The chimeric hhRz-VAI RNA is abundantly transcribed so that the hhRzs are expected to be in great excess over substrate mRNA. HhRz-VAI traffics predominantly to the cytoplasm to colocalize with the RHO mRNA target. Colocalization is essential for second-order annealing reactions. The VAI chimera protects the hhRz RNA from degradation and provides for a long half life. With cell lines chosen for high transfection efficiency and a molar excess of hhRz plasmid over target plasmid, the conditions of this experimental paradigm are specifically designed to evaluate for regions of accessibility of the target mRNA in cellulo. Western analysis was used to measure the impact of hhRz expression on RHO protein expression. Three lead candidate hhRz designs were identified that significantly knockdown target protein expression relative to control (p < 0.05). Successful lead candidates (hhRz CUC↓ 266, hhRz CUC↓ 1411, hhRz AUA↓ 1414) targeted regions of human RHO mRNA that were predicted to be accessible by a bioinformatics approach, whereas regions predicted to be inaccessible supported no knockdown. The maximum opsin protein level knockdown is approximately 30% over a 48 hr paradigm of testing. These results validate a rigorous computational

  11. Estimating Neural Background Input with Controlled and Fast Perturbations: A Bandwidth Comparison between Inhibitory Opsins and Neural Circuits.

    PubMed

    Eriksson, David

    2016-01-01

    To test the importance of a certain cell type or brain area it is common to make a "lack of function" experiment in which the neuronal population of interest is inhibited. Here we review physiological and methodological constraints for making controlled perturbations using the corticothalamic circuit as an example. The brain with its many types of cells and rich interconnectivity offers many paths through which a perturbation can spread within a short time. To understand the side effects of the perturbation one should record from those paths. We find that ephaptic effects, gap-junctions, and fast chemical synapses are so fast that they can react to the perturbation during the few milliseconds it takes for an opsin to change the membrane potential. The slow chemical synapses, astrocytes, extracellular ions and vascular signals, will continue to give their physiological input for around 20 ms before they also react to the perturbation. Although we show that some pathways can react within milliseconds the strength/speed reported in this review should be seen as an upper bound since we have omitted how polysynaptic signals are attenuated. Thus the number of additional recordings that has to be made to control for the perturbation side effects is expected to be fewer than proposed here. To summarize, the reviewed literature not only suggests that it is possible to make controlled "lack of function" experiments, but, it also suggests that such a "lack of function" experiment can be used to measure the context of local neural computations. PMID:27574506

  12. Opsin expression, physiological characterization and identification of photoreceptor cells in the dorsal rim area and main retina of the desert locust, Schistocerca gregaria.

    PubMed

    Schmeling, Fabian; Wakakuwa, Motohiro; Tegtmeier, Jennifer; Kinoshita, Michiyo; Bockhorst, Tobias; Arikawa, Kentaro; Homberg, Uwe

    2014-10-01

    For compass orientation many insects rely on the pattern of sky polarization, but some species also exploit the sky chromatic contrast. Desert locusts, Schistocerca gregaria, detect polarized light through a specialized dorsal rim area (DRA) in their compound eye. To better understand retinal mechanisms underlying visual navigation, we compared opsin expression, spectral and polarization sensitivities and response-stimulus intensity functions in the DRA and main retina of the locust. In addition to previously characterized opsins of long-wavelength-absorbing (Lo1) and blue-absorbing visual pigments (Lo2), we identified an opsin of an ultraviolet-absorbing visual pigment (LoUV). DRA photoreceptors exclusively expressed Lo2, had peak spectral sensitivities at 441 nm and showed high polarization sensitivity (PS 1.3-31.7). In contrast, ommatidia in the main eye co-expressed Lo1 and Lo2 in five photoreceptors, expressed Lo1 in two proximal photoreceptors, and Lo2 or LoUV in one distal photoreceptor. Correspondingly, we found broadband blue- and green-peaking spectral sensitivities in the main eye and one narrowly tuned UV peaking receptor. Polarization sensitivity in the main retina was low (PS 1.3-3.8). V-log I functions in the DRA were steeper than in the main retina, supporting a role in polarization vision. Desert locusts occur as two morphs, a day-active gregarious and a night-active solitarious form. In solitarious locusts, sensitivities in the main retina were generally shifted to longer wavelengths, particularly in ventral eye regions, supporting a nocturnal lifestyle at low light levels. The data support the role of the DRA in polarization vision and suggest trichromatic colour vision in the desert locust. PMID:25104757

  13. Estimating Neural Background Input with Controlled and Fast Perturbations: A Bandwidth Comparison between Inhibitory Opsins and Neural Circuits

    PubMed Central

    Eriksson, David

    2016-01-01

    To test the importance of a certain cell type or brain area it is common to make a “lack of function” experiment in which the neuronal population of interest is inhibited. Here we review physiological and methodological constraints for making controlled perturbations using the corticothalamic circuit as an example. The brain with its many types of cells and rich interconnectivity offers many paths through which a perturbation can spread within a short time. To understand the side effects of the perturbation one should record from those paths. We find that ephaptic effects, gap-junctions, and fast chemical synapses are so fast that they can react to the perturbation during the few milliseconds it takes for an opsin to change the membrane potential. The slow chemical synapses, astrocytes, extracellular ions and vascular signals, will continue to give their physiological input for around 20 ms before they also react to the perturbation. Although we show that some pathways can react within milliseconds the strength/speed reported in this review should be seen as an upper bound since we have omitted how polysynaptic signals are attenuated. Thus the number of additional recordings that has to be made to control for the perturbation side effects is expected to be fewer than proposed here. To summarize, the reviewed literature not only suggests that it is possible to make controlled “lack of function” experiments, but, it also suggests that such a “lack of function” experiment can be used to measure the context of local neural computations. PMID:27574506

  14. Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina.

    PubMed

    Mollick, Tanzina; Mohlin, Camilla; Johansson, Kjell

    2016-09-01

    Retinal neurodegenerative disorders like retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy and retinal detachment decrease retinal functionality leading to visual impairment. The pathological events are characterized by photoreceptor degeneration, synaptic disassembly, remodeling of postsynaptic neurons and activation of glial cells. Despite intense research, no effective treatment has been found for these disorders. The current study explores the potential of human neural progenitor cell (hNPC) derived factors to slow the degenerative processes in adult porcine retinal explants. Retinas were cultured for 3 days with or without hNPCs as a feeder layer and investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), immunohistochemical, western blot and quantitative real time-polymerase chain reaction (qRT-PCR) techniques. TUNEL showed that hNPCs had the capacity to limit photoreceptor cell death. Among cone photoreceptors, hNPC coculture resulted in better maintenance of cone outer segments and reduced opsin mislocalization. Additionally, maintained synaptic structural integrity and preservation of second order calbindin positive horizontal cells was also observed. However, Müller cell gliosis only seemed to be alleviated in terms of reduced Müller cell density. Our observations indicate that at 3 days of coculture, hNPC derived factors had the capacity to protect photoreceptors, maintain synaptic integrity and support horizontal cell survival. Human neural progenitor cell applied treatment modalities may be an effective strategy to help maintain retinal functionality in neurodegenerative pathologies. Whether hNPCs can independently hinder Müller cell gliosis by utilizing higher concentrations or by combination with other pharmacological agents still needs to be determined. PMID:27369448

  15. Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA.

    PubMed

    Odeen, Anders; Hastad, Olle

    2003-06-01

    To gain insights into the evolution and ecology of visually acute animals such as birds, biologists often need to understand how these animals perceive colors. This poses a problem, since the human eye is of a different design than that of most other animals. The standard solution is to examine the spectral sensitivity properties of animal retinas through microspectophotometry-a procedure that is rather complicated and therefore only has allowed examinations of a limited number of species to date. We have developed a faster and simpler molecular method, which can be used to estimate the color sensitivities of a bird by sequencing a part of the gene coding for the ultraviolet or violet absorbing opsin in the avian retina. With our method, there is no need to sacrifice the animal, and it thereby facilitates large screenings, including rare and endangered species beyond the reach of microspectrophotometry. Color vision in birds may be categorized into two classes: one with a short-wavelength sensitivity biased toward violet (VS) and the other biased toward ultraviolet (UVS). Using our method on 45 species from 35 families, we demonstrate that the distribution of avian color vision is more complex than has previously been shown. Our data support VS as the ancestral state in birds and show that UVS has evolved independently at least four times. We found species with the UVS type of color vision in the orders Psittaciformes and Passeriformes, in agreement with previous findings. However, species within the families Corvidae and Tyrannidae did not share this character with other passeriforms. We also found UVS type species within the Laridae and Struthionidae families. Raptors (Accipitridae and Falconidae) are of the violet type, giving them a vision system different from their passeriform prey. Intriguing effects on the evolution of color signals can be expected from interactions between predators and prey. Such interactions may explain the presence of UVS in Laridae and

  16. Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina.

    PubMed

    Mollick, Tanzina; Mohlin, Camilla; Johansson, Kjell

    2016-09-01

    Retinal neurodegenerative disorders like retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy and retinal detachment decrease retinal functionality leading to visual impairment. The pathological events are characterized by photoreceptor degeneration, synaptic disassembly, remodeling of postsynaptic neurons and activation of glial cells. Despite intense research, no effective treatment has been found for these disorders. The current study explores the potential of human neural progenitor cell (hNPC) derived factors to slow the degenerative processes in adult porcine retinal explants. Retinas were cultured for 3 days with or without hNPCs as a feeder layer and investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), immunohistochemical, western blot and quantitative real time-polymerase chain reaction (qRT-PCR) techniques. TUNEL showed that hNPCs had the capacity to limit photoreceptor cell death. Among cone photoreceptors, hNPC coculture resulted in better maintenance of cone outer segments and reduced opsin mislocalization. Additionally, maintained synaptic structural integrity and preservation of second order calbindin positive horizontal cells was also observed. However, Müller cell gliosis only seemed to be alleviated in terms of reduced Müller cell density. Our observations indicate that at 3 days of coculture, hNPC derived factors had the capacity to protect photoreceptors, maintain synaptic integrity and support horizontal cell survival. Human neural progenitor cell applied treatment modalities may be an effective strategy to help maintain retinal functionality in neurodegenerative pathologies. Whether hNPCs can independently hinder Müller cell gliosis by utilizing higher concentrations or by combination with other pharmacological agents still needs to be determined.

  17. Gene duplication and spectral diversification of cone visual pigments of zebrafish.

    PubMed

    Chinen, Akito; Hamaoka, Takanori; Yamada, Yukihiro; Kawamura, Shoji

    2003-02-01

    Zebrafish is becoming a powerful animal model for the study of vision but the genomic organization and variation of its visual opsins have not been fully characterized. We show here that zebrafish has two red (LWS-1 and LWS-2), four green (RH2-1, RH2-2, RH2-3, and RH2-4), and single blue (SWS2) and ultraviolet (SWS1) opsin genes in the genome, among which LWS-2, RH2-2, and RH2-3 are novel. SWS2, LWS-1, and LWS-2 are located in tandem and RH2-1, RH2-2, RH2-3, and RH2-4 form another tandem gene cluster. The peak absorption spectra (lambdamax) of the reconstituted photopigments from the opsin cDNAs differed markedly among them: 558 nm (LWS-1), 548 nm (LWS-2), 467 nm (RH2-1), 476 nm (RH2-2), 488 nm (RH2-3), 505 nm (RH2-4), 355 nm (SWS1), 416 nm (SWS2), and 501 nm (RH1, rod opsin). The quantitative RT-PCR revealed a considerable difference among the opsin genes in the expression level in the retina. The expression of the two red opsin genes and of three green opsin genes, RH2-1, RH2-3, and RH2-4, is significantly lower than that of RH2-2, SWS1, and SWS2. These findings must contribute to our comprehensive understanding of visual capabilities of zebrafish and the evolution of the fish visual system and should become a basis of further studies on expression and developmental regulation of the opsin genes.

  18. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution.

    PubMed

    Emerling, Christopher A; Huynh, Hieu T; Nguyen, Minh A; Meredith, Robert W; Springer, Mark S

    2015-11-22

    Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage. PMID:26582021

  19. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution.

    PubMed

    Emerling, Christopher A; Huynh, Hieu T; Nguyen, Minh A; Meredith, Robert W; Springer, Mark S

    2015-11-22

    Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage.

  20. Opsin1-2, G(q)α and arrestin levels at Limulus rhabdoms are controlled by diurnal light and a circadian clock.

    PubMed

    Battelle, Barbara-Anne; Kempler, Karen E; Parker, Alexander K; Gaddie, Cristina D

    2013-05-15

    Dark and light adaptation in photoreceptors involve multiple processes including those that change protein concentrations at photosensitive membranes. Light- and dark-adaptive changes in protein levels at rhabdoms have been described in detail in white-eyed Drosophila maintained under artificial light. Here we tested whether protein levels at rhabdoms change significantly in the highly pigmented lateral eyes of wild-caught Limulus polyphemus maintained in natural diurnal illumination and whether these changes are under circadian control. We found that rhabdomeral levels of opsins (Ops1-2), the G protein activated by rhodopsin (G(q)α) and arrestin change significantly from day to night and that nighttime levels of each protein at rhabdoms are significantly influenced by signals from the animal's central circadian clock. Clock input at night increases Ops1-2 and G(q)α and decreases arrestin levels at rhabdoms. Clock input is also required for a rapid decrease in rhabdomeral Ops1-2 beginning at sunrise. We found further that dark adaptation during the day and the night are not equivalent. During daytime dark adaptation, when clock input is silent, the increase of Ops1-2 at rhabdoms is small and G(q)α levels do not increase. However, increases in Ops1-2 and G(q)α at rhabdoms are enhanced during daytime dark adaptation by treatments that elevate cAMP in photoreceptors, suggesting that the clock influences dark-adaptive increases in Ops1-2 and G(q)α at Limulus rhabdoms by activating cAMP-dependent processes. The circadian regulation of Ops1-2 and G(q)α levels at rhabdoms probably has a dual role: to increase retinal sensitivity at night and to protect photoreceptors from light damage during the day. PMID:23393287

  1. Unique haplotype in exon 3 of cone opsin mRNA affects splicing of its precursor, leading to congenital color vision defect.

    PubMed

    Ueyama, Hisao; Muraki-Oda, Sanae; Yamade, Shinichi; Tanabe, Shoko; Yamashita, Takahiro; Shichida, Yoshinori; Ogita, Hisakazu

    2012-07-20

    We have analyzed L/M visual pigment gene arrays in 119 Japanese men with protanopia color vision defect and found that five had a normal gene order of L-M. Among the five men, two (identified as A376 and A642) had apparently normal L genes. To clarify their L gene defect, the whole L or M gene from A376 and control subjects was cloned in an expression vector. Total RNA extracted from the transfected HEK293 cells was analyzed by Northern blot and reverse transcription-polymerase chain reaction. The product from the cloned L gene of A376 was smaller than the normal control due to the absence of exon 3. To investigate such exon-skipping at splicing, minigenes of exon 3 accompanying introns 2 and 3 were prepared from A376, A642, and control subjects. The minigenes of A376 (L) and A642 (L) showed the product lacking exon 3 only, while the minigene of normal control N44 (L) showed the product retaining exon 3 only. Exchanging of introns 2 and 3 between the A376 (L) and N44 (L) minigenes showed that the skipping of exon 3 was caused by the exon itself. Seven differences in exon 3 between A376 (L) and N44 (L) were all within already-known polymorphisms as follows: G(151-3), C(153-1), G(155-3), A(171-1), T(171-3), G(178-1) and G(180-1) in A376 (L) and A642 (L), and A(151-3), A(153-1), C(155-3), G(171-1), G(171-3), A(178-1) and T(180-1) in N44 (L). An in vitro mutagenesis experiment with these nucleotides in the minigenes showed that exon 3 was completely skipped at splicing only in the haplotype observed in A376 (L) and A642 (L). These results suggest that complete skipping of exon 3 at splicing, due to the unique haplotype of the exon, causes loss of expression of L-opsin in these men. PMID:22732407

  2. ISO Guest Observer Data Analysis and LWS Instrument Team Activities

    NASA Technical Reports Server (NTRS)

    Smith, Howard

    2001-01-01

    The following is an interim annual report. Dr. Smith is currently on an extended TDY to the Istituto di Fisica dello Spazio Interplanetario (IFSI) at the Consilio Nazionale delle Richerche (CNR) in Rome, Italy, where he has been working on a related NASA grant in support of analysis of Infrared Space Observatory (ISO) data on star formation in Ultra Luminous Infrared Galaxies and our galaxy. Work emphasizes development of metal mesh grids for use in spacecraft, and the design and fabrication of test elements by the Naval Research Laboratory, Washington D.C. Work has progressed well, but slowly, on that program due to the departure of a key engineer. NASA has been advised of the delay, and granted a no-cost extension, whereby SAO has authorized a delay in the final report from NRL. Nevertheless NRL has continued to make progress. Two papers have been submitted to refereed journals related to this program, and a new design for mesh operating in the 20-40 micron region has been developed. Meetings continue through the summer on these items. A new technical scientist has been made a job offer and hopefully will be on board NRL shortly, although most of the present grant work is already completed. A more complete report, with copies of the submitted papers, designs, and other measures of progress, will be submitted to NASA in September when Dr. Smith returns from his current TDY.

  3. ISO Guest Observer Data Analysis and LWS Instrument Team Activities

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Smith, Howard A.

    2003-01-01

    We have designed and fabricated infrared filters for use at wavelengths greater than or equal to 15 microns. Unlike conventional dielectric filters used at the short wavelengths, ours are made from stacked metal grids, spaced at a very small fraction of the performance wavelengths. The individual lattice layers are gold, the spacers are polyimide, and they are assembled using integrated circuit processing techniques; they resemble some metallic photonic band-gap structures. We simulate the filter performance accurately, including the coupling of the propagating, near-field electromagnetic modes, using computer aided design codes. We find no anomalous absorption. The geometrical parameters of the grids are easily altered in practice, allowing for the production of tuned filters with predictable useful transmission characteristics. Although developed for astronomical instrumentation, the filters are broadly applicable in systems across infrared and terahertz bands.

  4. ISO Guest Observer Data Analysis and LWS Instrument Team Activities

    NASA Technical Reports Server (NTRS)

    Smith, Howard

    2002-01-01

    This project was granted a no-cost extension prompted by the request of the major subcontractor, the Naval Research Laboratory, which had not yet completed its tasks. As of July 2002, they had made substantial progress. They have successfully fabricated a metal mesh grid on polyimide, and also successfully fabricated a 2-layer metal mesh infrared filter using stacks of these metal mesh grids on polyimide; the actual layering was done at SAO. Both warm and cold spectroscopic tests were done on these fabricated devices. The measurements were in good agreement with the theory, and also reasonable performance in absolute terms. NRL is now working on fabricating a 3-layer metal mesh infrared filter, and a prototype is expected in the next month. Testing should occur before the end of the fiscal year. Finally, NRL has preliminarily agreed to hire a new postdoctoral person to refine the modeling of the filters based on the new measurements. The person should arrive this fall. NRL has a new Fourier Transform Spectrometer which will be delivered in the next month, and which will be used to facilitate the testing which has up to now been done in collaboration with NASA Goddard Space Flight Space Center.

  5. Extending the LWS Data Environment: Distributed Data Processing and Analysis

    NASA Technical Reports Server (NTRS)

    Narock, Thomas

    2005-01-01

    The final stages of this work saw changes to the original framework, as well as the completion and integration of several data processing services. Initially, it was thought that a peer-to-peer architecture was necessary to make this work possible. The peer-to-peer architecture provided many benefits including the dynamic discovery of new services that would be continually added. A prototype example was built and while it showed promise, a major disadvantage was seen in that it was not easily integrated into the existing data environment. While the peer-to-peer system worked well for finding and accessing distributed data processing services, it was found that its use was limited by the difficulty in calling it from existing tools and services. After collaborations with members of the data community, it was determined that our data processing system was of high value and that a new interface should be pursued in order for the community to take full advantage of it. As such; the framework was modified from a peer-to-peer architecture to a more traditional web service approach. Following this change multiple data processing services were added. These services include such things as coordinate transformations and sub setting of data. Observatory (VHO), assisted with integrating the new architecture into the VHO. This allows anyone using the VHO to search for data, to then pass that data through our processing services prior to downloading it. As a second attempt at demonstrating the new system, a collaboration was established with the Collaborative Sun Earth Connector (CoSEC) group at Lockheed Martin. This group is working on a graphical user interface to the Virtual Observatories and data processing software. The intent is to provide a high-level easy-to-use graphical interface that will allow access to the existing Virtual Observatories and data processing services from one convenient application. Working with the CoSEC group we provided access to our data processing tools from within their software. This now allows the CoSEC community to take advantage of our services and also demonstrates another means of accessing our system.

  6. Cold stepping drive for the ISO/LWS

    NASA Astrophysics Data System (ADS)

    Patrick, T. J.; Sidey, R. C.; Towlson, W. A.

    Development work has begun on an interchange mechanism for the pair of Fabry-Perot interferometers proposed for the Long Wavelength Spectrometer planned as one of the focal plane instruments for the Infrared Space Observatory. The two Fabry-Perot assemblies will be mounted on a balanced wheel which is to be carried on a shaft mounted in ball bearings which have been MoS 2 treated at the European Space Tribology Laboratory. Cryogenic testing is in hand at the Institute of Cryogenics, University of Southampton, UK. A ring gear on the wheel will be driven from the output pinion of a stepping motor. At a later stage in the project a choice will be made among all available cold motors with suitable performance. In the meantime, a prototype has been built of a special cryogenic permanent magnet stepping motor intended to operate on a current of a few milliamperes. The Paper describes constructional features of the drive, together with early results for the motor prototype.

  7. A novel molecular marker for the study of Neotropical cichlid phylogeny.

    PubMed

    Fabrin, T M C; Gasques, L S; Prioli, S M A P; Prioli, A J

    2015-12-22

    The use of molecular markers has contributed to phylogeny and to the reconstruction of species' evolutionary history. Each region of the genome has different evolution rates, which may or may not identify phylogenetic signal at different levels. Therefore, it is important to assess new molecular markers that can be used for phylogenetic reconstruction. Regions that may be associated with species characteristics and are subject to selective pressure, such as opsin genes, which encode proteins related to the visual system and are widely expressed by Cichlidae family members, are interesting. Our aim was to identify a new nuclear molecular marker that could establish the phylogeny of Neotropical cichlids and is potentially correlated with the visual system. We used Bayesian inference and maximum likelihood analysis to support the use of the nuclear opsin LWS gene in the phylogeny of eight Neotropical cichlid species. Their use concatenated to the mitochondrial gene COI was also tested. The LWS gene fragment comprised the exon 2-4 region, including the introns. The LWS gene provided good support for both analyses up to the genus level, distinguishing the studied species, and when concatenated to the COI gene, there was a good support up to the species level. Another benefit of utilizing this region, is that some polymorphisms are associated with changes in spectral properties of the LWS opsin protein, which constitutes the visual pigment that absorbs red light. Thus, utilization of this gene as a molecular marker to study the phylogeny of Neotropical cichlids is promising.

  8. The visual pigments of the West Indian manatee (Trichechus manatus).

    PubMed

    Newman, Lucy A; Robinson, Phyllis R

    2006-10-01

    Manatees are unique among the fully aquatic marine mammals in that they are herbivorous creatures, with hunting strategies restricted to grazing on sea-grasses. Since the other groups of (carnivorous) marine mammals have been found to possess various visual system adaptations to their unique visual environments, it was of interest to investigate the visual capability of the manatee. Previous work, both behavioral (Griebel & Schmid, 1996), and ultrastructural (Cohen, Tucker, & Odell, 1982; unpublished work cited by Griebel & Peichl, 2003), has suggested that manatees have the dichromatic color vision typical of diurnal mammals. This study uses molecular techniques to investigate the cone visual pigments of the manatee. The aim was to clone and sequence cone opsins from the retina, and, if possible, express and reconstitute functional visual pigments to perform spectral analysis. Both LWS and SWS cone opsins were cloned and sequenced from manatee retinae, which, upon expression and spectral analysis, had lambda(max) values of 555 and 410 nm, respectively. The expression of both the LWS and SWS cone opsin in the manatee retina is unique as both pinnipeds and cetaceans only express a cone LWS opsin.

  9. The visual pigments of the West Indian manatee (Trichechus manatus).

    PubMed

    Newman, Lucy A; Robinson, Phyllis R

    2006-10-01

    Manatees are unique among the fully aquatic marine mammals in that they are herbivorous creatures, with hunting strategies restricted to grazing on sea-grasses. Since the other groups of (carnivorous) marine mammals have been found to possess various visual system adaptations to their unique visual environments, it was of interest to investigate the visual capability of the manatee. Previous work, both behavioral (Griebel & Schmid, 1996), and ultrastructural (Cohen, Tucker, & Odell, 1982; unpublished work cited by Griebel & Peichl, 2003), has suggested that manatees have the dichromatic color vision typical of diurnal mammals. This study uses molecular techniques to investigate the cone visual pigments of the manatee. The aim was to clone and sequence cone opsins from the retina, and, if possible, express and reconstitute functional visual pigments to perform spectral analysis. Both LWS and SWS cone opsins were cloned and sequenced from manatee retinae, which, upon expression and spectral analysis, had lambda(max) values of 555 and 410 nm, respectively. The expression of both the LWS and SWS cone opsin in the manatee retina is unique as both pinnipeds and cetaceans only express a cone LWS opsin. PMID:16650454

  10. Non-image Forming Light Detection by Melanopsin, Rhodopsin, and Long-Middlewave (L/W) Cone Opsin in the Subterranean Blind Mole Rat, Spalax Ehrenbergi: Immunohistochemical Characterization, Distribution, and Connectivity.

    PubMed

    Esquiva, Gema; Avivi, Aaron; Hannibal, Jens

    2016-01-01

    The blind mole rat, Spalax ehrenbergi, can, despite severely degenerated eyes covered by fur, entrain to the daily light/dark cycle and adapt to seasonal changes due to an intact circadian timing system. The present study demonstrates that the Spalax retina contains a photoreceptor layer, an outer nuclear layer (ONL), an outer plexiform layer (OPL), an inner nuclear layer (INL), an inner plexiform layer (IPL), and a ganglion cell layer (GCL). By immunohistochemistry, the number of melanopsin (mRGCs) and non-melanopsin bearing retinal ganglion cells was analyzed in detail. Using the ganglion cell marker RNA-binding protein with multiple splicing (RBPMS) it was shown that the Spalax eye contains 890 ± 62 RGCs. Of these, 87% (752 ± 40) contain melanopsin (cell density 788 melanopsin RGCs/mm(2)). The remaining RGCs were shown to co-store Brn3a and calretinin. The melanopsin cells were located mainly in the GCL with projections forming two dendritic plexuses located in the inner part of the IPL and in the OPL. Few melanopsin dendrites were also found in the ONL. The Spalax retina is rich in rhodopsin and long/middle wave (L/M) cone opsin bearing photoreceptor cells. By using Ctbp2 as a marker for ribbon synapses, both rods and L/M cone ribbons containing pedicles in the OPL were found in close apposition with melanopsin dendrites in the outer plexus suggesting direct synaptic contact. A subset of cone bipolar cells and all photoreceptor cells contain recoverin while a subset of bipolar and amacrine cells contain calretinin. The calretinin expressing amacrine cells seemed to form synaptic contacts with rhodopsin containing photoreceptor cells in the OPL and contacts with melanopsin cell bodies and dendrites in the IPL. The study demonstrates the complex retinal circuitry used by the Spalax to detect light, and provides evidence for both melanopsin and non-melanopsin projecting pathways to the brain.

  11. Non-image Forming Light Detection by Melanopsin, Rhodopsin, and Long-Middlewave (L/W) Cone Opsin in the Subterranean Blind Mole Rat, Spalax Ehrenbergi: Immunohistochemical Characterization, Distribution, and Connectivity

    PubMed Central

    Esquiva, Gema; Avivi, Aaron; Hannibal, Jens

    2016-01-01

    The blind mole rat, Spalax ehrenbergi, can, despite severely degenerated eyes covered by fur, entrain to the daily light/dark cycle and adapt to seasonal changes due to an intact circadian timing system. The present study demonstrates that the Spalax retina contains a photoreceptor layer, an outer nuclear layer (ONL), an outer plexiform layer (OPL), an inner nuclear layer (INL), an inner plexiform layer (IPL), and a ganglion cell layer (GCL). By immunohistochemistry, the number of melanopsin (mRGCs) and non-melanopsin bearing retinal ganglion cells was analyzed in detail. Using the ganglion cell marker RNA-binding protein with multiple splicing (RBPMS) it was shown that the Spalax eye contains 890 ± 62 RGCs. Of these, 87% (752 ± 40) contain melanopsin (cell density 788 melanopsin RGCs/mm2). The remaining RGCs were shown to co-store Brn3a and calretinin. The melanopsin cells were located mainly in the GCL with projections forming two dendritic plexuses located in the inner part of the IPL and in the OPL. Few melanopsin dendrites were also found in the ONL. The Spalax retina is rich in rhodopsin and long/middle wave (L/M) cone opsin bearing photoreceptor cells. By using Ctbp2 as a marker for ribbon synapses, both rods and L/M cone ribbons containing pedicles in the OPL were found in close apposition with melanopsin dendrites in the outer plexus suggesting direct synaptic contact. A subset of cone bipolar cells and all photoreceptor cells contain recoverin while a subset of bipolar and amacrine cells contain calretinin. The calretinin expressing amacrine cells seemed to form synaptic contacts with rhodopsin containing photoreceptor cells in the OPL and contacts with melanopsin cell bodies and dendrites in the IPL. The study demonstrates the complex retinal circuitry used by the Spalax to detect light, and provides evidence for both melanopsin and non-melanopsin projecting pathways to the brain. PMID:27375437

  12. Targeting of exon VI-skipping human RGR-opsin to the plasma membrane of pigment epithelium and co-localization with terminal complement complex C5b-9

    PubMed Central

    Kochounian, Harold; Zhang, Zhaoxia; Spee, Christine; Hinton, David R.

    2016-01-01

    Purpose Rare mutations in the human RGR gene lead to autosomal recessive retinitis pigmentosa or dominantly inherited peripapillary choroidal atrophy. Here, we analyze a common exon-skipping isoform of the human retinal G protein-coupled receptor opsin (RGR-d) to determine differences in subcellular targeting between RGR-d and normal RGR and possible association with abnormal traits in the human eye. Methods The terminal complement complex (C5b-9), vitronectin, CD46, syntaxin-4, and RGR-d were analyzed in human eye tissue from young and old donors or in cultured fetal RPE cells by means of immunofluorescent labeling and high-resolution confocal microscopy or immunohistochemical staining. Results We observed that RGR-d is targeted to the basolateral plasma membrane of the RPE. RGR-d, but not normal RGR, is expressed in cultured human fetal RPE cells in which the protein also trafficks to the plasma membrane. In young donors, the amount of RGR-d protein in the basolateral plasma membrane was much higher than that in the RPE cells of older subjects. In older donor eyes, the level of immunoreactive RGR-d within RPE cells was often low or undetectable, and immunostaining of RGR-d was consistently strongest in extracellular deposits in Bruch’s membrane. Double immunofluorescent labeling in the basal deposits revealed significant aggregate and small punctate co-localization of RGR-d with C5b-9 and vitronectin. Conclusions RGR-d may escape endoplasmic reticulum-associated degradation and in contrast to full-length RGR, traffick to the basolateral plasma membrane, particularly in younger subjects. RGR-d in the plasma membrane indicates that the protein is properly folded, as misfolded membrane proteins cannot otherwise sort to the plasma membrane. The close association of extracellular RGR-d with both vitronectin and C5b-9 suggests a potential role of RGR-d-containing deposits in complement activation. PMID:27011730

  13. Non-image Forming Light Detection by Melanopsin, Rhodopsin, and Long-Middlewave (L/W) Cone Opsin in the Subterranean Blind Mole Rat, Spalax Ehrenbergi: Immunohistochemical Characterization, Distribution, and Connectivity.

    PubMed

    Esquiva, Gema; Avivi, Aaron; Hannibal, Jens

    2016-01-01

    The blind mole rat, Spalax ehrenbergi, can, despite severely degenerated eyes covered by fur, entrain to the daily light/dark cycle and adapt to seasonal changes due to an intact circadian timing system. The present study demonstrates that the Spalax retina contains a photoreceptor layer, an outer nuclear layer (ONL), an outer plexiform layer (OPL), an inner nuclear layer (INL), an inner plexiform layer (IPL), and a ganglion cell layer (GCL). By immunohistochemistry, the number of melanopsin (mRGCs) and non-melanopsin bearing retinal ganglion cells was analyzed in detail. Using the ganglion cell marker RNA-binding protein with multiple splicing (RBPMS) it was shown that the Spalax eye contains 890 ± 62 RGCs. Of these, 87% (752 ± 40) contain melanopsin (cell density 788 melanopsin RGCs/mm(2)). The remaining RGCs were shown to co-store Brn3a and calretinin. The melanopsin cells were located mainly in the GCL with projections forming two dendritic plexuses located in the inner part of the IPL and in the OPL. Few melanopsin dendrites were also found in the ONL. The Spalax retina is rich in rhodopsin and long/middle wave (L/M) cone opsin bearing photoreceptor cells. By using Ctbp2 as a marker for ribbon synapses, both rods and L/M cone ribbons containing pedicles in the OPL were found in close apposition with melanopsin dendrites in the outer plexus suggesting direct synaptic contact. A subset of cone bipolar cells and all photoreceptor cells contain recoverin while a subset of bipolar and amacrine cells contain calretinin. The calretinin expressing amacrine cells seemed to form synaptic contacts with rhodopsin containing photoreceptor cells in the OPL and contacts with melanopsin cell bodies and dendrites in the IPL. The study demonstrates the complex retinal circuitry used by the Spalax to detect light, and provides evidence for both melanopsin and non-melanopsin projecting pathways to the brain. PMID:27375437

  14. Overexpression of bacterio-opsin in Escherichia coli as a water-soluble fusion to maltose binding protein: efficient regeneration of the fusion protein and selective cleavage with trypsin.

    PubMed Central

    Chen, G. Q.; Gouaux, J. E.

    1996-01-01

    Bacteriorhodopsin (bR) is a light-driven proton pump from Halobacterium salinarium and is a model system for studying membrane protein folding, stability, function, and structure. bR is composed of bacterio-opsin (bO), the 248-amino acid apo protein, and all-trans retinal, which is linked to lysine 216 via a protonated Schiff base. A bO gene (sbOd) possessing 29 unique restriction sites and a carboxyl-terminal purification epitope (1D4, nine amino acids) has been designed and synthesized. Overexpression of bO was achieved by fusion to the carboxyl terminus of maltose binding protein (MBP). The expressed fusion protein (MBP-sbO-1D4) formed inclusion bodies in Escherichia coli and, following solubilization with urea and removal of the urea by dialysis, approximately 170 mg of approximately 75% pure MBP-sbO-1D4 was obtained from 1 L of culture. MBP-sbO-1D4 formed high molecular weight (> or = 2,000 kDa) oligomers that were water-soluble. The synthetic bO with the 1D4 tag (sbO-1D4) was separated from MBP by trypsin cleavage at the factor Xa site between the MBP and sbO-1D4 domains. Selective trypsin cleavage at the factor Xa site, instead of at the 14 other potential trypsin sites within bO, was accomplished by optimization of the digestion conditions. Both MBP-sbO-1D4 and sbO-1D4 were regenerated with all-trans retinal and purified to homogeneity. In general, 6-10 mg of sbR-1D4 and 52 mg of MBP-sbR-1D4 were obtained from 1 L of cell culture. No significant differences in terms of UV/vis light absorbance, light/dark adaptation, and photocycle properties were observed among sbR-1D4, MBP-sbR-1D4, and bR from H. salinarium. PMID:8868482

  15. Visual Pigments, Ocular Filters and the Evolution of Snake Vision.

    PubMed

    Simões, Bruno F; Sampaio, Filipa L; Douglas, Ronald H; Kodandaramaiah, Ullasa; Casewell, Nicholas R; Harrison, Robert A; Hart, Nathan S; Partridge, Julian C; Hunt, David M; Gower, David J

    2016-10-01

    Much of what is known about the molecular evolution of vertebrate vision comes from studies of mammals, birds and fish. Reptiles (especially snakes) have barely been sampled in previous studies despite their exceptional diversity of retinal photoreceptor complements. Here, we analyze opsin gene sequences and ocular media transmission for up to 69 species to investigate snake visual evolution. Most snakes express three visual opsin genes (rh1, sws1, and lws). These opsin genes (especially rh1 and sws1) have undergone much evolutionary change, including modifications of amino acid residues at sites of known importance for spectral tuning, with several tuning site combinations unknown elsewhere among vertebrates. These changes are particularly common among dipsadine and colubrine "higher" snakes. All three opsin genes are inferred to be under purifying selection, though dN/dS varies with respect to some lineages, ecologies, and retinal anatomy. Positive selection was inferred at multiple sites in all three opsins, these being concentrated in transmembrane domains and thus likely to have a substantial effect on spectral tuning and other aspects of opsin function. Snake lenses vary substantially in their spectral transmission. Snakes active at night and some of those active by day have very transmissive lenses, whereas some primarily diurnal species cut out shorter wavelengths (including UVA). In terms of retinal anatomy, lens transmission, visual pigment spectral tuning and opsin gene evolution the visual system of snakes is exceptionally diverse compared with all other extant tetrapod orders. PMID:27535583

  16. Visual Pigments, Ocular Filters and the Evolution of Snake Vision.

    PubMed

    Simões, Bruno F; Sampaio, Filipa L; Douglas, Ronald H; Kodandaramaiah, Ullasa; Casewell, Nicholas R; Harrison, Robert A; Hart, Nathan S; Partridge, Julian C; Hunt, David M; Gower, David J

    2016-10-01

    Much of what is known about the molecular evolution of vertebrate vision comes from studies of mammals, birds and fish. Reptiles (especially snakes) have barely been sampled in previous studies despite their exceptional diversity of retinal photoreceptor complements. Here, we analyze opsin gene sequences and ocular media transmission for up to 69 species to investigate snake visual evolution. Most snakes express three visual opsin genes (rh1, sws1, and lws). These opsin genes (especially rh1 and sws1) have undergone much evolutionary change, including modifications of amino acid residues at sites of known importance for spectral tuning, with several tuning site combinations unknown elsewhere among vertebrates. These changes are particularly common among dipsadine and colubrine "higher" snakes. All three opsin genes are inferred to be under purifying selection, though dN/dS varies with respect to some lineages, ecologies, and retinal anatomy. Positive selection was inferred at multiple sites in all three opsins, these being concentrated in transmembrane domains and thus likely to have a substantial effect on spectral tuning and other aspects of opsin function. Snake lenses vary substantially in their spectral transmission. Snakes active at night and some of those active by day have very transmissive lenses, whereas some primarily diurnal species cut out shorter wavelengths (including UVA). In terms of retinal anatomy, lens transmission, visual pigment spectral tuning and opsin gene evolution the visual system of snakes is exceptionally diverse compared with all other extant tetrapod orders.

  17. Cone visual pigments of monotremes: filling the phylogenetic gap.

    PubMed

    Wakefield, Matthew J; Anderson, Mark; Chang, Ellen; Wei, Ke-Jun; Kaul, Rajinder; Graves, Jennifer A Marshall; Grützner, Frank; Deeb, Samir S

    2008-01-01

    We have determined the sequence and genomic organization of the genes encoding the cone visual pigment of the platypus (Ornithorhynchus anatinus) and the echidna (Tachyglossus aculeatus), and inferred their spectral properties and evolutionary pathways. We prepared platypus and echidna retinal RNA and used primers of the middle-wave-sensitive (MWS), long-wave-sensitive (LWS), and short-wave sensitive (SWS1) pigments corresponding to coding sequences that are highly conserved among mammals; to PCR amplify the corresponding pigment sequences. Amplification from the retinal RNA revealed the expression of LWS pigment mRNA that is homologous in sequence and spectral properties to the primate LWS visual pigments. However, we were unable to amplify the mammalian SWS1 pigment from these two species, indicating this gene was lost prior to the echidna-platypus divergence (21 MYA). Subsequently, when the platypus genome sequence became available, we found an LWS pigment gene in a conserved genomic arrangement that resembles the primate pigment, but, surprisingly we found an adjacent (20 kb) SWS2 pigment gene within this conserved genomic arrangement. We obtained the same result after sequencing the echidna genes. The encoded SWS2 pigment is predicted to have a wavelength of maximal absorption of about 440 nm, and is paralogous to SWS pigments typically found in reptiles, birds, and fish but not in mammals. This study suggests the locus control region (LCR) has played an important role in the conservation of photo receptor gene arrays and the control of their spatial and temporal expression in the retina in all mammals. In conclusion, a duplication event of an ancestral cone visual pigment gene, followed by sequence divergence and selection gave rise to the LWS and SWS2 visual pigments. So far, the echidna and platypus are the only mammals that share the gene structure of the LWS-SWS2 pigment gene complex with reptiles, birds and fishes.

  18. Cone visual pigments of monotremes: filling the phylogenetic gap.

    PubMed

    Wakefield, Matthew J; Anderson, Mark; Chang, Ellen; Wei, Ke-Jun; Kaul, Rajinder; Graves, Jennifer A Marshall; Grützner, Frank; Deeb, Samir S

    2008-01-01

    We have determined the sequence and genomic organization of the genes encoding the cone visual pigment of the platypus (Ornithorhynchus anatinus) and the echidna (Tachyglossus aculeatus), and inferred their spectral properties and evolutionary pathways. We prepared platypus and echidna retinal RNA and used primers of the middle-wave-sensitive (MWS), long-wave-sensitive (LWS), and short-wave sensitive (SWS1) pigments corresponding to coding sequences that are highly conserved among mammals; to PCR amplify the corresponding pigment sequences. Amplification from the retinal RNA revealed the expression of LWS pigment mRNA that is homologous in sequence and spectral properties to the primate LWS visual pigments. However, we were unable to amplify the mammalian SWS1 pigment from these two species, indicating this gene was lost prior to the echidna-platypus divergence (21 MYA). Subsequently, when the platypus genome sequence became available, we found an LWS pigment gene in a conserved genomic arrangement that resembles the primate pigment, but, surprisingly we found an adjacent (20 kb) SWS2 pigment gene within this conserved genomic arrangement. We obtained the same result after sequencing the echidna genes. The encoded SWS2 pigment is predicted to have a wavelength of maximal absorption of about 440 nm, and is paralogous to SWS pigments typically found in reptiles, birds, and fish but not in mammals. This study suggests the locus control region (LCR) has played an important role in the conservation of photo receptor gene arrays and the control of their spatial and temporal expression in the retina in all mammals. In conclusion, a duplication event of an ancestral cone visual pigment gene, followed by sequence divergence and selection gave rise to the LWS and SWS2 visual pigments. So far, the echidna and platypus are the only mammals that share the gene structure of the LWS-SWS2 pigment gene complex with reptiles, birds and fishes. PMID:18598396

  19. Visual system evolution and the nature of the ancestral snake.

    PubMed

    Simões, B F; Sampaio, F L; Jared, C; Antoniazzi, M M; Loew, E R; Bowmaker, J K; Rodriguez, A; Hart, N S; Hunt, D M; Partridge, J C; Gower, D J

    2015-07-01

    The dominant hypothesis for the evolutionary origin of snakes from 'lizards' (non-snake squamates) is that stem snakes acquired many snake features while passing through a profound burrowing (fossorial) phase. To investigate this, we examined the visual pigments and their encoding opsin genes in a range of squamate reptiles, focusing on fossorial lizards and snakes. We sequenced opsin transcripts isolated from retinal cDNA and used microspectrophotometry to measure directly the spectral absorbance of the photoreceptor visual pigments in a subset of samples. In snakes, but not lizards, dedicated fossoriality (as in Scolecophidia and the alethinophidian Anilius scytale) corresponds with loss of all visual opsins other than RH1 (λmax 490-497 nm); all other snakes (including less dedicated burrowers) also have functional sws1 and lws opsin genes. In contrast, the retinas of all lizards sampled, even highly fossorial amphisbaenians with reduced eyes, express functional lws, sws1, sws2 and rh1 genes, and most also express rh2 (i.e. they express all five of the visual opsin genes present in the ancestral vertebrate). Our evidence of visual pigment complements suggests that the visual system of stem snakes was partly reduced, with two (RH2 and SWS2) of the ancestral vertebrate visual pigments being eliminated, but that this did not extend to the extreme additional loss of SWS1 and LWS that subsequently occurred (probably independently) in highly fossorial extant scolecophidians and A. scytale. We therefore consider it unlikely that the ancestral snake was as fossorial as extant scolecophidians, whether or not the latter are para- or monophyletic.

  20. The LWS Geospace Storm Investigations Exploring the Extremes of Space Weather

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Geospace mission of the Living With a Star program is a family of investigations focusing on the compelling science questions that advance our ability to specify, understand, and predict the societal impact of solar variance. Two key areas have been identified as combining both importance to society and potential for scientific progress: 1) characterization and understanding of the acceleration, global distribution, and variability of energetic electrons and ions in the inner magnetosphere, and 2) characterization and understanding of the ionosphere and irregularities that affect communications, navigation and radar systems. Under these broad categories specific science questions have emerged as the priority science objectives for the first Geospace Investigations: How and why do relativistic electrons in the outer zone and slot region vary during geomagnetic storms? How does the long- and short-term variability of the Sun affect the global-scale behavior of the ionospheric electron density and irregularities, especially during magnetic storms and at mid-latitudes? The first Geospace mission will attempt to answer these questions.

  1. Flight Experiments for Living With a Star Space Environment Testbed (LWS-SET): Relationship to Technology

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Barth, Janet L.; Brewer, Dana A.

    2003-01-01

    This viewgraph presentation provides information on flight validation experiments for technologies to determine solar effects. The experiments are intended to demonstrate tolerance to a solar variant environment. The technologies tested are microelectronics, photonics, materials, and sensors.

  2. LWS Proposal to Provide Scientific Guidance and Modeling Support for the Ionospheric Mapping Mission. Part 1

    NASA Technical Reports Server (NTRS)

    Richmond, Arthur D.

    2005-01-01

    A data assimilation system for specifying the thermospheric density has been developed over the last several years. This system ingests GRACE/CHAMP-type in situ as well as SSULI/SSUSI remote sensing observations while making use of a physical model, the Coupled Thermosphere-Ionosphere Model (CTIM) (Fuller-Rowel1 et al., 1996). The Kalman filter was implemented as the backbone to the data assimilation system, which provides a statistically 'best' estimate as well as an estimate of the error in its state. The system was tested using a simulated thermosphere and observations. CHAMP data were then used to provide the system with a real data source. The results of this study are herein.

  3. Beauty in the eyes of the beholders: colour vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata).

    PubMed

    Sandkam, Benjamin; Young, C Megan; Breden, Felix

    2015-02-01

    A broad range of animals use visual signals to assess potential mates, and the theory of sensory exploitation suggests variation in visual systems drives mate preference variation due to sensory bias. Trinidadian guppies (Poecilia reticulata), a classic system for studies of the evolution of female mate choice, provide a unique opportunity to test this theory by looking for covariation in visual tuning, light environment and mate preferences. Female preference co-evolves with male coloration, such that guppy females from 'low-predation' environments have stronger preferences for males with more orange/red coloration than do females from 'high-predation' environments. Here, we show that colour vision also varies across populations, with 'low'-predation guppies investing more of their colour vision to detect red/orange coloration. In independently colonized watersheds, guppies expressed higher levels of both LWS-1 and LWS-3 (the most abundant LWS opsins) in 'low-predation' populations than 'high-predation' populations at a time that corresponds to differences in cone cell abundance. We also observed that the frequency of a coding polymorphism differed between high- and low-predation populations. Together, this shows that the variation underlying preference could be explained by simple changes in expression and coding of opsins, providing important candidate genes to investigate the genetic basis of female preference variation in this model system. PMID:25556876

  4. Beauty in the eyes of the beholders: colour vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata).

    PubMed

    Sandkam, Benjamin; Young, C Megan; Breden, Felix

    2015-02-01

    A broad range of animals use visual signals to assess potential mates, and the theory of sensory exploitation suggests variation in visual systems drives mate preference variation due to sensory bias. Trinidadian guppies (Poecilia reticulata), a classic system for studies of the evolution of female mate choice, provide a unique opportunity to test this theory by looking for covariation in visual tuning, light environment and mate preferences. Female preference co-evolves with male coloration, such that guppy females from 'low-predation' environments have stronger preferences for males with more orange/red coloration than do females from 'high-predation' environments. Here, we show that colour vision also varies across populations, with 'low'-predation guppies investing more of their colour vision to detect red/orange coloration. In independently colonized watersheds, guppies expressed higher levels of both LWS-1 and LWS-3 (the most abundant LWS opsins) in 'low-predation' populations than 'high-predation' populations at a time that corresponds to differences in cone cell abundance. We also observed that the frequency of a coding polymorphism differed between high- and low-predation populations. Together, this shows that the variation underlying preference could be explained by simple changes in expression and coding of opsins, providing important candidate genes to investigate the genetic basis of female preference variation in this model system.

  5. Demonstration of a genotype-phenotype correlation in the polymorphic color vision of a non-callitrichine New World monkey, capuchin (Cebus apella).

    PubMed

    Saito, Atsuko; Kawamura, Shoji; Mikami, Akichika; Ueno, Yoshikazu; Hiramatsu, Chihiro; Koida, Kowa; Fujita, Kazuo; Kuroshima, Hika; Hasegawa, Toshikazu

    2005-12-01

    Color-vision polymorphism in New World monkeys occurs because of an allelic polymorphism of the single-copy red-green middle-to-long-wavelength-sensitive (M/LWS) opsin gene on the X chromosome. Because color-vision types can readily be estimated from allelic types of the M/LWS opsin gene, this polymorphic system offers researchers an excellent opportunity to study the association between vision and behavior. As a prerequisite for such studies, genetically determined color-vision types must be concordant with phenotypes determined directly by behavioral criteria (e.g., by a color discrimination test). However, such correlations between genotypes and phenotypes have been studied only for callitrichine species. Using genetic, electrophysiological, and behavioral approaches, we evaluated the color vision of brown capuchin monkeys (Cebus apella), a representative non-callitrichine model animal for physiology and behavior. Two allelic M/LWS opsins-P545 and P530-were identified in the studied captive population. Females had one or both of the alleles, and males had either one. The retinal sensitivity in P530 dichromats was short-wave shifted relative to that in P545 dichromats, whereas that in P530/P545 trichromats was between the two groups. In a discrimination task using Ishihara pseudo-isochromatic plates, P530/P545 trichromats were successful in discriminating stimuli that P530 and P545 dichromats were unable to discriminate. In a food-search task, P530/P545 trichromats were able to locate red targets among green distracters as quickly as among white distracters, whereas both types of dichromats took longer. These results demonstrate the mutual consistency between genotypes and phenotypes of color vision, and provide a solid genetic basis on which the ecology and evolution of color vision can be investigated.

  6. Cone monochromacy and visual pigment spectral tuning in wobbegong sharks.

    PubMed

    Theiss, Susan M; Davies, Wayne I L; Collin, Shaun P; Hunt, David M; Hart, Nathan S

    2012-12-23

    Much is known regarding the evolution of colour vision in nearly every vertebrate class, with the notable exception of the elasmobranchs. While multiple spectrally distinct cone types are found in some rays, sharks appear to possess only a single class of cone and, therefore, may be colour blind. In this study, the visual opsin genes of two wobbegong species, Orectolobus maculatus and Orectolobus ornatus, were isolated to verify the molecular basis of their monochromacy. In both species, only two opsin genes are present, RH1 (rod) and LWS (cone), which provide further evidence to support the concept that sharks possess only a single cone type. Examination of the coding sequences revealed substitutions that account for interspecific variation in the photopigment absorbance spectra, which may reflect the difference in visual ecology between these species.

  7. The transcription factor GTF2IRD1 regulates the topology and function of photoreceptors by modulating photoreceptor gene expression across the retina.

    PubMed

    Masuda, Tomohiro; Zhang, Xiaodong; Berlinicke, Cindy; Wan, Jun; Yerrabelli, Anitha; Conner, Elizabeth A; Kjellstrom, Sten; Bush, Ronald; Thorgeirsson, Snorri S; Swaroop, Anand; Chen, Shiming; Zack, Donald J

    2014-11-12

    The mechanisms that specify photoreceptor cell-fate determination, especially as regards to short-wave-sensitive (S) versus medium-wave-sensitive (M) cone identity, and maintain their nature and function, are not fully understood. Here we report the importance of general transcription factor II-I repeat domain-containing protein 1 (GTF2IRD1) in maintaining M cone cell identity and function as well as rod function. In the mouse, GTF2IRD1 is expressed in cell-fate determined photoreceptors at postnatal day 10. GTF2IRD1 binds to enhancer and promoter regions in the mouse rhodopsin, M- and S-opsin genes, but regulates their expression differentially. Through interaction with the transcription factors CRX and thyroid hormone receptor β 2, it enhances M-opsin expression, whereas it suppresses S-opsin expression; and with CRX and NRL, it enhances rhodopsin expression. In an apparent paradox, although GTF2IRD1 is widely expressed in multiple cell types across the retina, knock-out of GTF2IRD1 alters the retinal expression of only a limited number of annotated genes. Interestingly, however, the null mutation leads to altered topology of cone opsin expression in the retina, with aberrant S-opsin overexpression and M-opsin underexpression in M cones. Gtf2ird1-null mice also demonstrate abnormal M cone and rod electrophysiological responses. These findings suggest an important role for GTF2IRD1 in regulating the level and topology of rod and cone gene expression, and in maintaining normal retinal function. PMID:25392503

  8. The Transcription Factor GTF2IRD1 Regulates the Topology and Function of Photoreceptors by Modulating Photoreceptor Gene Expression across the Retina

    PubMed Central

    Masuda, Tomohiro; Zhang, Xiaodong; Berlinicke, Cindy; Wan, Jun; Yerrabelli, Anitha; Conner, Elizabeth A.; Kjellstrom, Sten; Bush, Ronald; Thorgeirsson, Snorri S.; Swaroop, Anand; Chen, Shiming

    2014-01-01

    The mechanisms that specify photoreceptor cell-fate determination, especially as regards to short-wave-sensitive (S) versus medium-wave-sensitive (M) cone identity, and maintain their nature and function, are not fully understood. Here we report the importance of general transcription factor II-I repeat domain-containing protein 1 (GTF2IRD1) in maintaining M cone cell identity and function as well as rod function. In the mouse, GTF2IRD1 is expressed in cell-fate determined photoreceptors at postnatal day 10. GTF2IRD1 binds to enhancer and promoter regions in the mouse rhodopsin, M- and S-opsin genes, but regulates their expression differentially. Through interaction with the transcription factors CRX and thyroid hormone receptor β 2, it enhances M-opsin expression, whereas it suppresses S-opsin expression; and with CRX and NRL, it enhances rhodopsin expression. In an apparent paradox, although GTF2IRD1 is widely expressed in multiple cell types across the retina, knock-out of GTF2IRD1 alters the retinal expression of only a limited number of annotated genes. Interestingly, however, the null mutation leads to altered topology of cone opsin expression in the retina, with aberrant S-opsin overexpression and M-opsin underexpression in M cones. Gtf2ird1-null mice also demonstrate abnormal M cone and rod electrophysiological responses. These findings suggest an important role for GTF2IRD1 in regulating the level and topology of rod and cone gene expression, and in maintaining normal retinal function. PMID:25392503

  9. Richer color experience in observers with multiple photopigment opsin genes.

    PubMed

    Jameson, K A; Highnote, S M; Wasserman, L M

    2001-06-01

    Traditional color vision theory posits that three types of retinal photopigments transduce light into a trivariate neural color code, thereby explaining color-matching behaviors. This principle of trichromacy is in need of reexamination in view of molecular genetics results suggesting that a substantial percentage of women possess more than three classes of retinal photopigments. At issue is the question of whether four-photopigment retinas necessarily yield trichromatic color perception. In the present paper, we review results and theory underlying the accepted photoreceptor-based model of trichromacy. A review of the psychological literature shows that gender-linked differences in color perception warrant further investigation of retinal photopigment classes and color perception relations. We use genetic analyses to examine an important position in the gene sequence, and we empirically assess and compare the color perception of individuals possessing more than three retinal photopigment genes with those possessing fewer retinal photopigment genes. Women with four-photopigment genotypes are found to perceive significantly more chromatic appearances in comparison with either male or female trichromat controls. We provide a rationale for this previously undetected finding and discuss implications for theories of color perception and gender differences in color behavior.

  10. Bridging particle and wave sensitivity in a configurable detector of positive operator-valued measures.

    PubMed

    Puentes, Graciana; Lundeen, Jeff S; Branderhorst, Matthijs P A; Coldenstrodt-Ronge, Hendrik B; Smith, Brian J; Walmsley, Ian A

    2009-02-27

    We report an optical detector with tunable positive operator-valued measures. The device is based on a combination of weak-field homodyne techniques and photon-number-resolving detection. The resulting positive operator-valued measures can be continuously tuned from Fock-state projectors to a variety of phase-dependent quantum-state measurements by adjusting different system parameters such as local oscillator coupling, amplitude, and phase, allowing thus not only detection but also preparation of exotic quantum states. Experimental tomographic reconstructions of classical benchmark states are presented as a demonstration of the detector capabilities.

  11. Adaptive gene loss reflects differences in the visual ecology of basal vertebrates.

    PubMed

    Davies, Wayne L; Collin, Shaun P; Hunt, David M

    2009-08-01

    The agnathans (lampreys and hagfishes) are representatives of the jawless fishes and constitute the first lineage of extant vertebrates to evolve within chordate phylogenetic history. Previously, we showed that the southern hemisphere pouched lamprey Geotria australis has the potential for pentachromacy with the expression of five visual pigment (opsin) genes (LWS, SWS1, SWS2, RhA, and RhB) in five different cone-like photoreceptors for life in a brightly lit environment exposed to a broad spectrum of light. In contrast, the northern hemisphere sea lamprey Petromyzon marinus dwells in a wide range of depths that are relatively deeper than the epipelagic waters inhabited by G. australis. Thus, the light levels of the habitat in which the sea lamprey resides are greatly diminished and different regions of the light spectrum are differentially absorbed. Therefore, the visual systems of these two species of lamprey constitute a natural experiment in which to study the selection pressures underlying opsin gene expression and the evolution of color discrimination. By analyzing the opsin genes of P. marinus, we show the expression of two intact retinal opsins, RhA and LWS, which, when regenerated with 11-cis retinal, give peak spectral sensitivities (lambda(max) values) of 501 and 536 nm, respectively. In contrast to G. australis, the genome of P. marinus possesses remnants of SWS1 and SWS2 pseudogenes, which with the loss of RhB, suggests that P. marinus is a dichromat. Using site-directed mutagenesis, we show that a single amino acid substitution (Ser to Pro) at site 164 is responsible for a blue shift of 19 nm of the LWS visual pigment of P. marinus compared with G. australis, which may reflect habitat differences between the two species. Based on these studies, we propose that gene loss (or duplication) and subsequent mutation plays an important role in the evolution of color vision and that the complement and tuning of these visual pigments reflect the ecology and

  12. Evolutionary loss of cone photoreception in balaenid whales reveals circuit stability in the mammalian retina.

    PubMed

    Schweikert, Lorian E; Fasick, Jeffry I; Grace, Michael S

    2016-10-01

    The classical understanding of mammalian vision is that it occurs through "duplex" retinae containing both rod and cone photoreceptors, the signals from which are processed through rod- and/or cone-specific signaling pathways. The recent discovery of rod monochromacy in some cetacean lineages provides a novel opportunity to investigate the effects of an evolutionary loss of cone photoreception on retinal organization. Sequence analysis of right whale (Eubalaena glacialis; family Balaenidae) cDNA derived from long-wavelength sensitive (LWS) cone opsin mRNA identified several mutations in the opsin coding sequence, suggesting the loss of cone cell function, but maintenance of non-photosensitive, cone opsin mRNA-expressing cells in the retina. Subsequently, we investigated the retina of the closely related bowhead whale (Balaena mysticetus; family Balaenidae) to determine how the loss of cone-mediated photoreception affects light signaling pathways in the retina. Anti-opsin immunofluorescence demonstrated the total loss of cone opsin expression in B. mysticetus, whereas light microscopy, transmission electron microscopy, and bipolar cell (protein kinase C-α [PKC-α] and recoverin) immunofluorescence revealed the maintenance of cone soma, putative cone pedicles, and both rod and cone bipolar cell types. These findings represent the first immunological and anatomical evidence of a naturally occurring rod-monochromatic mammalian retina, and suggest that despite the loss of cone-mediated photoreception, the associated cone signaling structures (i.e., cone synapses and cone bipolar cells) may be maintained for multichannel rod-based signaling in balaenid whales. J. Comp. Neurol. 524:2873-2885, 2016. © 2016 Wiley Periodicals, Inc. PMID:26972896

  13. Parallel and convergent evolution of the dim-light vision gene RH1 in bats (Order: Chiroptera).

    PubMed

    Shen, Yong-Yi; Liu, Jie; Irwin, David M; Zhang, Ya-Ping

    2010-01-21

    Rhodopsin, encoded by the gene Rhodopsin (RH1), is extremely sensitive to light, and is responsible for dim-light vision. Bats are nocturnal mammals that inhabit poor light environments. Megabats (Old-World fruit bats) generally have well-developed eyes, while microbats (insectivorous bats) have developed echolocation and in general their eyes were degraded, however, dramatic differences in the eyes, and their reliance on vision, exist in this group. In this study, we examined the rod opsin gene (RH1), and compared its evolution to that of two cone opsin genes (SWS1 and M/LWS). While phylogenetic reconstruction with the cone opsin genes SWS1 and M/LWS generated a species tree in accord with expectations, the RH1 gene tree united Pteropodidae (Old-World fruit bats) and Yangochiroptera, with very high bootstrap values, suggesting the possibility of convergent evolution. The hypothesis of convergent evolution was further supported when nonsynonymous sites or amino acid sequences were used to construct phylogenies. Reconstructed RH1 sequences at internal nodes of the bat species phylogeny showed that: (1) Old-World fruit bats share an amino acid change (S270G) with the tomb bat; (2) Miniopterus share two amino acid changes (V104I, M183L) with Rhinolophoidea; (3) the amino acid replacement I123V occurred independently on four branches, and the replacements L99M, L266V and I286V occurred each on two branches. The multiple parallel amino acid replacements that occurred in the evolution of bat RH1 suggest the possibility of multiple convergences of their ecological specialization (i.e., various photic environments) during adaptation for the nocturnal lifestyle, and suggest that further attention is needed on the study of the ecology and behavior of bats.

  14. Developmental plasticity in vision and behavior may help guppies overcome increased turbidity.

    PubMed

    Ehlman, Sean M; Sandkam, Benjamin A; Breden, Felix; Sih, Andrew

    2015-12-01

    Increasing turbidity in streams and rivers near human activity is cause for environmental concern, as the ability of aquatic organisms to use visual information declines. To investigate how some organisms might be able to developmentally compensate for increasing turbidity, we reared guppies (Poecilia reticulata) in either clear or turbid water. We assessed the effects of developmental treatments on adult behavior and aspects of the visual system by testing fish from both developmental treatments in turbid and clear water. We found a strong interactive effect of rearing and assay conditions: fish reared in clear water tended to decrease activity in turbid water, whereas fish reared in turbid water tended to increase activity in turbid water. Guppies from all treatments decreased activity when exposed to a predator. To measure plasticity in the visual system, we quantified treatment differences in opsin gene expression of individuals. We detected a shift from mid-wave-sensitive opsins to long wave-sensitive opsins for guppies reared in turbid water. Since long-wavelength sensitivity is important in motion detection, this shift likely allows guppies to salvage motion-detecting abilities when visual information is obscured in turbid water. Our results demonstrate the importance of developmental plasticity in responses of organisms to rapidly changing environments.

  15. Developmental plasticity in vision and behavior may help guppies overcome increased turbidity.

    PubMed

    Ehlman, Sean M; Sandkam, Benjamin A; Breden, Felix; Sih, Andrew

    2015-12-01

    Increasing turbidity in streams and rivers near human activity is cause for environmental concern, as the ability of aquatic organisms to use visual information declines. To investigate how some organisms might be able to developmentally compensate for increasing turbidity, we reared guppies (Poecilia reticulata) in either clear or turbid water. We assessed the effects of developmental treatments on adult behavior and aspects of the visual system by testing fish from both developmental treatments in turbid and clear water. We found a strong interactive effect of rearing and assay conditions: fish reared in clear water tended to decrease activity in turbid water, whereas fish reared in turbid water tended to increase activity in turbid water. Guppies from all treatments decreased activity when exposed to a predator. To measure plasticity in the visual system, we quantified treatment differences in opsin gene expression of individuals. We detected a shift from mid-wave-sensitive opsins to long wave-sensitive opsins for guppies reared in turbid water. Since long-wavelength sensitivity is important in motion detection, this shift likely allows guppies to salvage motion-detecting abilities when visual information is obscured in turbid water. Our results demonstrate the importance of developmental plasticity in responses of organisms to rapidly changing environments. PMID:26427995

  16. The activation of directional stem cell motility by green light-emitting diode irradiation.

    PubMed

    Ong, Wei-Kee; Chen, How-Foo; Tsai, Cheng-Ting; Fu, Yun-Ju; Wong, Yi-Shan; Yen, Da-Jen; Chang, Tzu-Hao; Huang, Hsien-Da; Lee, Oscar Kuang-Sheng; Chien, Shu; Ho, Jennifer Hui-Chun

    2013-03-01

    Light-emitting diode (LED) irradiation is potentially a photostimulator to manipulate cell behavior by opsin-triggered phototransduction and thermal energy supply in living cells. Directional stem cell motility is critical for the efficiency and specificity of stem cells in tissue repair. We explored that green LED (530 nm) irradiation directed the human orbital fat stem cells (OFSCs) to migrate away from the LED light source through activation of extracellular signal-regulated kinases (ERK)/MAP kinase/p38 signaling pathway. ERK inhibitor selectively abrogated light-driven OFSC migration. Phosphorylation of these kinases as well as green LED irradiation-induced cell migration was facilitated by increasing adenosine triphosphate (ATP) production in OFSCs after green LED exposure, and which was thermal stress-independent mechanism. OFSCs, which are multi-potent mesenchymal stem cells isolated from human orbital fat tissue, constitutionally express three opsins, i.e. retinal pigment epithelium-derived rhodopsin homolog (RRH), encephalopsin (OPN3) and short-wave-sensitive opsin 1 (OPN1SW). However, only two non-visual opsins, i.e. RRH and OPN3, served as photoreceptors response to green LED irradiation-induced OFSC migration. In conclusion, stem cells are sensitive to green LED irradiation-induced directional cell migration through activation of ERK signaling pathway via a wavelength-dependent phototransduction.

  17. S cones: Evolution, retinal distribution, development, and spectral sensitivity.

    PubMed

    Hunt, David M; Peichl, Leo

    2014-03-01

    S cones expressing the short wavelength-sensitive type 1 (SWS1) class of visual pigment generally form only a minority type of cone photoreceptor within the vertebrate duplex retina. Hence, their primary role is in color vision, not in high acuity vision. In mammals, S cones may be present as a constant fraction of the cones across the retina, may be restricted to certain regions of the retina or may form a gradient across the retina, and in some species, there is coexpression of SWS1 and the long wavelength-sensitive (LWS) class of pigment in many cones. During retinal development, SWS1 opsin expression generally precedes that of LWS opsin, and evidence from genetic studies indicates that the S cone pathway may be the default pathway for cone development. With the notable exception of the cartilaginous fishes, where S cones appear to be absent, they are present in representative species from all other vertebrate classes. S cone loss is not, however, uncommon; they are absent from most aquatic mammals and from some but not all nocturnal terrestrial species. The peak spectral sensitivity of S cones depends on the spectral characteristics of the pigment present. Evidence from the study of agnathans and teleost fishes indicates that the ancestral vertebrate SWS1 pigment was ultraviolet (UV) sensitive with a peak around 360 nm, but this has shifted into the violet region of the spectrum (>380 nm) on many separate occasions during vertebrate evolution. In all cases, the shift was generated by just one or a few replacements in tuning-relevant residues. Only in the avian lineage has tuning moved in the opposite direction, with the reinvention of UV-sensitive pigments. PMID:23895771

  18. S cones: Evolution, retinal distribution, development, and spectral sensitivity.

    PubMed

    Hunt, David M; Peichl, Leo

    2014-03-01

    S cones expressing the short wavelength-sensitive type 1 (SWS1) class of visual pigment generally form only a minority type of cone photoreceptor within the vertebrate duplex retina. Hence, their primary role is in color vision, not in high acuity vision. In mammals, S cones may be present as a constant fraction of the cones across the retina, may be restricted to certain regions of the retina or may form a gradient across the retina, and in some species, there is coexpression of SWS1 and the long wavelength-sensitive (LWS) class of pigment in many cones. During retinal development, SWS1 opsin expression generally precedes that of LWS opsin, and evidence from genetic studies indicates that the S cone pathway may be the default pathway for cone development. With the notable exception of the cartilaginous fishes, where S cones appear to be absent, they are present in representative species from all other vertebrate classes. S cone loss is not, however, uncommon; they are absent from most aquatic mammals and from some but not all nocturnal terrestrial species. The peak spectral sensitivity of S cones depends on the spectral characteristics of the pigment present. Evidence from the study of agnathans and teleost fishes indicates that the ancestral vertebrate SWS1 pigment was ultraviolet (UV) sensitive with a peak around 360 nm, but this has shifted into the violet region of the spectrum (>380 nm) on many separate occasions during vertebrate evolution. In all cases, the shift was generated by just one or a few replacements in tuning-relevant residues. Only in the avian lineage has tuning moved in the opposite direction, with the reinvention of UV-sensitive pigments.

  19. Early evolution of vertebrate photoreception: lessons from lampreys and lungfishes.

    PubMed

    Collin, Shaun P

    2009-03-01

    Lampreys (Agnatha) and lungfish (Dipnoi) are representatives of the earliest and the intermediate stages in vertebrate evolution, respectively, and survived in the Cambrian (approximately 540 mA, lampreys) and Devonian (approximately 400 mA, lungfishes) Periods. The unique phylogenetic position of these two groups presents us with an exciting opportunity to understand life in ancient times and to begin to trace the evolution of vision and photoreception in vertebrates. Using a multidisciplinary approach employing anatomical and molecular techniques, the evolution of photoreception is explored in these extant, living fossils to predict the environmental lighting conditions to which our vertebrate ancestors were exposed. Contrary to expectations, the retinae of the southern hemisphere lamprey (Geotria australis Gray, 1851) and the Australian lungfish (Neoceratodus forsteri Krefft, 1870) are far from "primitive," each possessing five types of photoreceptors, many with spectral filters for tuning the light. Detailed ultrastructural analysis reveals that all five receptor types in G. australis are cone-like, whereas N. forsteri possesses four cone types and a single type of rod. Each receptor type also contains a different visual pigment (opsin gene); that is, LWS, SWS1, SWS2, RhA and RhB in G. australis and LWS, SWS1, SWS2, Rh1 and Rh2 in N. forsteri, all of which are expressed within the retina and are sensitive to different parts of the electromagnetic spectrum, providing the potential for pentachromatic and tetrachromatic color vision, respectively.

  20. Short-wavelength sensitive opsin (SWS1) as a new marker for vertebrate phylogenetics

    PubMed Central

    van Hazel, Ilke; Santini, Francesco; Müller, Johannes; Chang, Belinda SW

    2006-01-01

    Background Vertebrate SWS1 visual pigments mediate visual transduction in response to light at short wavelengths. Due to their importance in vision, SWS1 genes have been isolated from a surprisingly wide range of vertebrates, including lampreys, teleosts, amphibians, reptiles, birds, and mammals. The SWS1 genes exhibit many of the characteristics of genes typically targeted for phylogenetic analyses. This study investigates both the utility of SWS1 as a marker for inferring vertebrate phylogenetic relationships, and the characteristics of the gene that contribute to its phylogenetic utility. Results Phylogenetic analyses of vertebrate SWS1 genes produced topologies that were remarkably congruent with generally accepted hypotheses of vertebrate evolution at both higher and lower taxonomic levels. The few exceptions were generally associated with areas of poor taxonomic sampling, or relationships that have been difficult to resolve using other molecular markers. The SWS1 data set was characterized by a substantial amount of among-site rate variation, and a relatively unskewed substitution rate matrix, even when the data were partitioned into different codon sites and individual taxonomic groups. Although there were nucleotide biases in some groups at third positions, these biases were not convergent across different taxonomic groups. Conclusion Our results suggest that SWS1 may be a good marker for vertebrate phylogenetics due to the variable yet consistent patterns of sequence evolution exhibited across fairly wide taxonomic groups. This may result from constraints imposed by the functional role of SWS1 pigments in visual transduction. PMID:17107620

  1. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup

    PubMed Central

    Lamb, Trevor D.; Collin, Shaun P.; Pugh, Edward N.

    2011-01-01

    Charles Darwin appreciated the conceptual difficulty in accepting that an organ as wonderful as the vertebrate eye could have evolved through natural selection. He reasoned that if appropriate gradations could be found that were useful to the animal and were inherited, then the apparent difficulty would be overcome. Here, we review a wide range of findings that capture glimpses of the gradations that appear to have occurred during eye evolution, and provide a scenario for the unseen steps that have led to the emergence of the vertebrate eye. PMID:18026166

  2. Functional map of arrestin binding to phosphorylated opsin, with and without agonist

    PubMed Central

    Peterhans, Christian; Lally, Ciara C. M.; Ostermaier, Martin K.; Sommer, Martha E.; Standfuss, Jörg

    2016-01-01

    Arrestins desensitize G protein-coupled receptors (GPCRs) and act as mediators of signalling. Here we investigated the interactions of arrestin-1 with two functionally distinct forms of the dim-light photoreceptor rhodopsin. Using unbiased scanning mutagenesis we probed the individual contribution of each arrestin residue to the interaction with the phosphorylated apo-receptor (Ops-P) and the agonist-bound form (Meta II-P). Disruption of the polar core or displacement of the C-tail strengthened binding to both receptor forms. In contrast, mutations of phosphate-binding residues (phosphosensors) suggest the phosphorylated receptor C-terminus binds arrestin differently for Meta II-P and Ops-P. Likewise, mutations within the inter-domain interface, variations in the receptor-binding loops and the C-edge of arrestin reveal different binding modes. In summary, our results indicate that arrestin-1 binding to Meta II-P and Ops-P is similarly dependent on arrestin activation, although the complexes formed with these two receptor forms are structurally distinct. PMID:27350090

  3. Opsin switch reveals function of the ultraviolet cone in fish foraging.

    PubMed

    Novales Flamarique, Iñigo

    2013-02-01

    Although several studies have shown that ultraviolet (UV) wavelengths are important in naturally occurring, visually guided behaviours of vertebrates, the function of the UV cone in such behaviours is unknown. Here, I used thyroid hormone to transform the UV cones of young rainbow trout into blue cones, a phenomenon that occurs naturally as the animal grows, to test whether the resulting loss of UV sensitivity affected the animal's foraging performance on Daphnia magna, a prey zooplankton. The distances and angles at which prey were located (variables that are known indicators of foraging performance) were significantly reduced for UV knock-out fish compared with controls. Optical measurements and photon-catch calculations revealed that the contrast of Daphnia was greater when perceived by the visual system of control versus that of thyroid-hormone-treated fish, demonstrating that the UV cone enhanced the foraging performance of young rainbow trout. Because most juvenile fishes have UV cones and feed on zooplankton, this finding has wide implications for understanding the visual ecology of fishes. The enhanced target contrast provided by UV cones could be used by other vertebrates in various behaviours, including foraging, mate selection and communication.

  4. Opsin switch reveals function of the ultraviolet cone in fish foraging

    PubMed Central

    Novales Flamarique, Iñigo

    2013-01-01

    Although several studies have shown that ultraviolet (UV) wavelengths are important in naturally occurring, visually guided behaviours of vertebrates, the function of the UV cone in such behaviours is unknown. Here, I used thyroid hormone to transform the UV cones of young rainbow trout into blue cones, a phenomenon that occurs naturally as the animal grows, to test whether the resulting loss of UV sensitivity affected the animal's foraging performance on Daphnia magna, a prey zooplankton. The distances and angles at which prey were located (variables that are known indicators of foraging performance) were significantly reduced for UV knock-out fish compared with controls. Optical measurements and photon-catch calculations revealed that the contrast of Daphnia was greater when perceived by the visual system of control versus that of thyroid-hormone-treated fish, demonstrating that the UV cone enhanced the foraging performance of young rainbow trout. Because most juvenile fishes have UV cones and feed on zooplankton, this finding has wide implications for understanding the visual ecology of fishes. The enhanced target contrast provided by UV cones could be used by other vertebrates in various behaviours, including foraging, mate selection and communication. PMID:23222448

  5. Retinoic acid stimulate differentiation of hippocampal stem cells into opsin expressing cells in vitro.

    PubMed

    Safari, M; Nobakht, M; Roshandel, N Rahbar; Ghazi, F; Joghataee, M T

    2009-09-01

    The results of several studies have demonstrated that cell differentiation influenced by derivatives of retinoic acid. To determine whether retinoic acid mediate the differentiation of neural stem cells we treated dissociated hippocampal stem cells with different concentrations of all trans or 9-cis retinoic acid and analyzed the effects on cell fate by specific monoclonal antibody for photoreceptors. Addition of exogenous retinoic acid caused a dose dependent specific in the elevation of the cell number that developed as photoreceptors in culture. Also results ofimmunohistochemical studies using monoclonal antibody demonstrated that the primary effect ofretinoic acid was to influence progenitor cells the developed as mature and immature photoreceptors. These results suggest that retinoic acid may play an important effect in the normal development of photoreceptor cells in vitro.

  6. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup.

    PubMed

    Lamb, Trevor D; Collin, Shaun P; Pugh, Edward N

    2007-12-01

    Charles Darwin appreciated the conceptual difficulty in accepting that an organ as wonderful as the vertebrate eye could have evolved through natural selection. He reasoned that if appropriate gradations could be found that were useful to the animal and were inherited, then the apparent difficulty would be overcome. Here, we review a wide range of findings that capture glimpses of the gradations that appear to have occurred during eye evolution, and provide a scenario for the unseen steps that have led to the emergence of the vertebrate eye.

  7. Of Mice, Men, and Microbial Opsins: How Optogenetics Can Help Hone Mouse Models of Mental Illness.

    PubMed

    Marton, Tobias F; Sohal, Vikaas S

    2016-01-01

    Genetic, pharmacologic, and behavioral manipulations have long been powerful tools for generating rodent models to study the neural substrates underlying psychiatric disease. Recent advances in the use of optogenetics in awake behaving rodents has added an additional valuable methodology to this experimental toolkit. Here, we review several recent studies that leverage optogenetic technologies to elucidate neural mechanisms possibly related to depression, anxiety, and obsessive-compulsive disorder. We use a few illustrative examples to highlight key emergent principles about how optogenetics, in conjunction with more established modalities, can help to organize our understanding of how disease-related states, specific neuronal circuits, and various behavioral assays fit into hierarchical frameworks such as the National Institute of Mental Health Research Domain Criteria matrix.

  8. Cell-specific DNA methylation patterns of retina-specific genes.

    PubMed

    Merbs, Shannath L; Khan, Miriam A; Hackler, Laszlo; Oliver, Verity F; Wan, Jun; Qian, Jiang; Zack, Donald J

    2012-01-01

    Many studies have demonstrated that epigenetic mechanisms are important in the regulation of gene expression during embryogenesis, gametogenesis, and other forms of tissue-specific gene regulation. We sought to explore the possible role of epigenetics, specifically DNA methylation, in the establishment and maintenance of cell type-restricted gene expression in the retina. To assess the relationship between DNA methylation status and expression level of retinal genes, bisulfite sequence analysis of the 1000 bp region around the transcription start sites (TSS) of representative rod and cone photoreceptor-specific genes and gene expression analysis were performed in the WERI and Y79 human retinoblastoma cell lines. Next, the homologous genes in mouse were bisulfite sequenced in the retina and in non-expressing tissues. Finally, bisulfite sequencing was performed on isolated photoreceptor and non-photoreceptor retinal cells isolated by laser capture microdissection. Differential methylation of rhodopsin (RHO), retinal binding protein 3 (RBP3, IRBP) cone opsin, short-wave-sensitive (OPN1SW), cone opsin, middle-wave-sensitive (OPN1MW), and cone opsin, long-wave-sensitive (OPN1LW) was found in the retinoblastoma cell lines that inversely correlated with gene expression levels. Similarly, we found tissue-specific hypomethylation of the promoter region of Rho and Rbp3 in mouse retina as compared to non-expressing tissues, and also observed hypomethylation of retinal-expressed microRNAs. The Rho and Rbp3 promoter regions were unmethylated in expressing photoreceptor cells and methylated in non-expressing, non-photoreceptor cells from the inner nuclear layer. A third regional hypomethylation pattern of photoreceptor-specific genes was seen in a subpopulation of non-expressing photoreceptors (Rho in cones from the Nrl -/- mouse and Opn1sw in rods). These results demonstrate that a number of photoreceptor-specific genes have cell-specific differential DNA methylation that

  9. Eye spectral sensitivity in fresh- and brackish-water populations of three glacial-relict Mysis species (Crustacea): physiology and genetics of differential tuning.

    PubMed

    Donner, Kristian; Zak, Pavel; Viljanen, Martta; Lindström, Magnus; Feldman, Tatiana; Ostrovsky, Mikhail

    2016-04-01

    Absorbance spectra of single rhabdoms were studied by microspectrophotometry (MSP) and spectral sensitivities of whole eyes by electroretinography (ERG) in three glacial-relict species of opossum shrimps (Mysis). Among eight populations from Fennoscandian fresh-water lakes (L) and seven populations from the brackish-water Baltic Sea (S), L spectra were systematically red-shifted by 20-30 nm compared with S spectra, save for one L and one S population. The difference holds across species and bears no consistent adaptive relation to the current light environments. In the most extensively studied L-S pair, two populations of M. relicta (L(p) and S(p)) separated for less than 10,000 years, no differences translating into amino acid substitutions have been found in the opsin genes, and the chromophore of the visual pigments as analyzed by HPLC is pure A1. However, MSP experiments with spectrally selective bleaching show the presence of two rhodopsins (λ(max) ≈ 525-530 nm, MWS, and 565-570 nm, LWS) expressed in different proportions. ERG recordings of responses to "red" and "blue" light linearly polarized at orthogonal angles indicate segregation of the pigments into different cells differing in polarization sensitivity. We propose that the pattern of development of LWS and MWS photoreceptors is governed by an ontogenetic switch responsive to some environmental signal(s) other than light that generally differ(s) between lakes and sea, and that this reaction norm is conserved from a common ancestor of all three species. PMID:26984686

  10. Spatial and temporal differences between the expression of short- and middle-wave sensitive cone pigments in the mouse retina: a developmental study.

    PubMed

    Szél, A; Röhlich, P; Mieziewska, K; Aguirre, G; van Veen, T

    1993-05-22

    In an earlier study we found a topographic separation of middlewave-sensitive (M) and shortwave-sensitive (S) cones in the adult mouse retina. In the present study we investigated the development of the two colour-specific cone types to see whether there is also a temporal difference between the expression of the specific cone visual pigments. Using two anti-cone visual pigment antibodies, COS-1 and OS-2, we compared the densities of immunopositive cone outer segments on retinal whole mounts derived from mice of various ages. The first detectable cone outer segments were the S-cones which appeared in the inferior half of the retina on postnatal day 4. At this stage, the density of the S-cones was very low (30-40 cones/retina) but increased steadily on the following days to reach a value comparable to that of adults by P30 (18,000/mm2). This cone type always remained much more abundant in the lower part of the retina throughout the whole retinal development. In the superior half of the retina, a few S-cones appeared from postnatal day 7; however, their number always remained about one order of magnitude lower than in the inferior part. In contrast, M-cone outer segments were not identifiable earlier than postnatal day 11 and were confined exclusively to the superior part of the retina during the whole developmental process. On postnatal day 12, their density was 1,900/mm2 and increased to a value of 11,000/mm2 by postnatal day 30, which represented the adult stage. As shown by comparison of isodensity lines derived from immunocytochemical reactions of whole mount retinas, the two cone types occupied complementary halves of the mouse retina with maximum density centres located in opposite retinal quadrants. We conclude that 1) in contrast to the primate retina, mouse S-cones precede the M-cones in their development, and 2) the spatial arrangements of the two cone types is maintained throughout the whole differentiation process. PMID:8509512

  11. Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves.

    PubMed

    Colosi, John A

    2008-09-01

    While many results have been intuited from numerical simulation studies, the precise connections between shallow-water acoustic variability and the space-time scales of nonlinear internal waves (NLIWs) as well as the background environmental conditions have not been clearly established analytically. Two-dimensional coupled mode propagation through NLIWs is examined using a perturbation series solution in which each order n is associated with nth-order multiple scattering. Importantly, the perturbation solution gives resonance conditions that pick out specific NLIW scales that cause coupling, and seabed attenuation is demonstrated to broaden these resonances, fundamentally changing the coupling behavior at low frequency. Sound-speed inhomogeneities caused by internal solitary waves (ISWs) are primarily considered and the dependence of mode coupling on ISW amplitude, range width, depth structure, location relative to the source, and packet characteristics are delineated as a function of acoustic frequency. In addition, it is seen that significant energy transfer to modes with initially low or zero energy involves at least a second order scattering process. Under moderate scattering conditions, comparisons of first order, single scattering theoretical predictions to direct numerical simulation demonstrate the accuracy of the approach for acoustic frequencies upto 400 Hz and for single as well as multiple ISW wave packets.

  12. From CIE 2006 physiological model to improved age-dependent and average colorimetric observers.

    PubMed

    Sarkar, Abhijit; Autrusseau, Florent; Viénot, Françoise; Le Callet, Patrick; Blondé, Laurent

    2011-10-01

    In the context of color perception on modern wide-gamut displays with narrowband spectral primaries, we performed a theoretical analysis on various aspects of physiological observers proposed by CIE TC 1-36 (CIEPO06). We allowed certain physiological factors to vary, which was not considered in the CIEPO06 framework. For example, we analyzed that the long-wave-sensitive (LWS) or medium-wave-sensitive (MWS) peak wavelength shift in the photopigment absorption spectra, a factor not modeled in CIEPO06, contributed more toward observer variability than some of the factors considered in the model. Further, we compared the color-matching functions derived from the CIEPO06 model and the CIE 10° standard colorimetric observer to the average observer data from three distinct subgroups of Stiles-Burch observers, formed on the basis of observer ages (22-23 years, 27-29 years, and 49-50 years). The errors in predicting the x(λ) and y(λ) color-matching functions of the intragroup average observers in the long-wave range and in the medium-wave range, respectively, were generally more in the case of the CIEPO06 model compared to the 10° standard colorimetric observer and manifested in both spectral and chromaticity space. In contrast, the short-wave-sensitive z₁₀(λ) function of the 10° standard colorimetric observer performed poorly compared to the CIEPO06 model for all three subgroups. Finally, a constrained nonlinear optimization on the CIEPO06 model outputs showed that a peak wavelength shift of photopigment density alone could not improve the model prediction errors at higher wavelengths. As an alternative, two optimized weighting functions for each of the LWS and MWS cone photopigment densities led to significant improvement in the prediction of intra-age-group average data for both the 22-23 year and 49-50 year age groups. We hypothesize that the assumption in the CIEPO06 model that the peak optical density of visual pigments does not vary with age is false and is

  13. The two-step development of a duplex retina involves distinct events of cone and rod neurogenesis and differentiation.

    PubMed

    Valen, Ragnhild; Eilertsen, Mariann; Edvardsen, Rolf Brudvik; Furmanek, Tomasz; Rønnestad, Ivar; van der Meeren, Terje; Karlsen, Ørjan; Nilsen, Tom Ole; Helvik, Jon Vidar

    2016-08-15

    Unlike in mammals, persistent postembryonic retinal growth is a characteristic feature of fish, which includes major remodeling events that affect all cell types including photoreceptors. Consequently, visual capabilities change during development, where retinal sensitivity to different wavelengths of light (photopic vision), -and to limited photons (scotopic vision) are central capabilities for survival. Differently from well-established model fish, Atlantic cod has a prolonged larval stage where only cone photoreceptors are present. Rods do not appear until juvenile transition (metamorphosis), a hallmark of indirect developing species. Previously we showed that whole gene families of lws (red-sensitive) and sws1 (UV-sensitive) opsins have been lost in cod, while rh2a (green-sensitive) and sws2 (blue-sensitive) genes have tandem duplicated. Here, we provide a comprehensive characterization of a two-step developing duplex retina in Atlantic cod. The study focuses on cone subtype dynamics and delayed rod neurogenesis and differentiation in all cod life stages. Using transcriptomic and histological approaches we show that different opsins disappear in a topographic manner during development where central to peripheral retina is a key axis of expressional change. Early cone differentiation was initiated in dorso-temporal retina different from previously described in fish. Rods first appeared during initiation of metamorphosis and expression of the nuclear receptor transcription factor nr2e3-1, suggest involvement in rod specification. The indirect developmental strategy thus allows for separate studies of cones and rods development, which in nature correlates with visual changes linked to habitat shifts. The clustering of key retinal genes according to life stage, suggests that Atlantic cod with its sequenced genome may be an important resource for identification of underlying factors required for development and function of photopic and scotopic vision. PMID:27374844

  14. The two-step development of a duplex retina involves distinct events of cone and rod neurogenesis and differentiation.

    PubMed

    Valen, Ragnhild; Eilertsen, Mariann; Edvardsen, Rolf Brudvik; Furmanek, Tomasz; Rønnestad, Ivar; van der Meeren, Terje; Karlsen, Ørjan; Nilsen, Tom Ole; Helvik, Jon Vidar

    2016-08-15

    Unlike in mammals, persistent postembryonic retinal growth is a characteristic feature of fish, which includes major remodeling events that affect all cell types including photoreceptors. Consequently, visual capabilities change during development, where retinal sensitivity to different wavelengths of light (photopic vision), -and to limited photons (scotopic vision) are central capabilities for survival. Differently from well-established model fish, Atlantic cod has a prolonged larval stage where only cone photoreceptors are present. Rods do not appear until juvenile transition (metamorphosis), a hallmark of indirect developing species. Previously we showed that whole gene families of lws (red-sensitive) and sws1 (UV-sensitive) opsins have been lost in cod, while rh2a (green-sensitive) and sws2 (blue-sensitive) genes have tandem duplicated. Here, we provide a comprehensive characterization of a two-step developing duplex retina in Atlantic cod. The study focuses on cone subtype dynamics and delayed rod neurogenesis and differentiation in all cod life stages. Using transcriptomic and histological approaches we show that different opsins disappear in a topographic manner during development where central to peripheral retina is a key axis of expressional change. Early cone differentiation was initiated in dorso-temporal retina different from previously described in fish. Rods first appeared during initiation of metamorphosis and expression of the nuclear receptor transcription factor nr2e3-1, suggest involvement in rod specification. The indirect developmental strategy thus allows for separate studies of cones and rods development, which in nature correlates with visual changes linked to habitat shifts. The clustering of key retinal genes according to life stage, suggests that Atlantic cod with its sequenced genome may be an important resource for identification of underlying factors required for development and function of photopic and scotopic vision.

  15. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats.

    PubMed

    Jones, Gareth; Teeling, Emma C; Rossiter, Stephen J

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a "birth-and death" evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences.

  16. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats.

    PubMed

    Jones, Gareth; Teeling, Emma C; Rossiter, Stephen J

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a "birth-and death" evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences. PMID:23755015

  17. Retinal transcriptome sequencing sheds light on the adaptation to nocturnal and diurnal lifestyles in raptors

    PubMed Central

    Wu, Yonghua; Hadly, Elizabeth A.; Teng, Wenjia; Hao, Yuyang; Liang, Wei; Liu, Yu; Wang, Haitao

    2016-01-01

    Owls (Strigiformes) represent a fascinating group of birds that are the ecological night-time counterparts to diurnal raptors (Accipitriformes). The nocturnality of owls, unusual within birds, has favored an exceptional visual system that is highly tuned for hunting at night, yet the molecular basis for this adaptation is lacking. Here, using a comparative evolutionary analysis of 120 vision genes obtained by retinal transcriptome sequencing, we found strong positive selection for low-light vision genes in owls, which contributes to their remarkable nocturnal vision. Not surprisingly, we detected gene loss of the violet/ultraviolet-sensitive opsin (SWS1) in all owls we studied, but two other color vision genes, the red-sensitive LWS and the blue-sensitive SWS2, were found to be under strong positive selection, which may be linked to the spectral tunings of these genes toward maximizing photon absorption in crepuscular conditions. We also detected the only other positively selected genes associated with motion detection in falcons and positively selected genes associated with bright-light vision and eye protection in other diurnal raptors (Accipitriformes). Our results suggest the adaptive evolution of vision genes reflect differentiated activity time and distinct hunting behaviors. PMID:27645106

  18. Visual pigments in a living fossil, the Australian lungfish Neoceratodus forsteri

    PubMed Central

    Bailes, Helena J; Davies, Wayne L; Trezise, Ann EO; Collin, Shaun P

    2007-01-01

    Background One of the greatest challenges facing the early land vertebrates was the need to effectively interpret a terrestrial environment. Interpretation was based on ocular adaptations evolved for an aquatic environment millions of years earlier. The Australian lungfish Neoceratodus forsteri is thought to be the closest living relative to the first terrestrial vertebrate, and yet nothing is known about the visual pigments present in lungfish or the early tetrapods. Results Here we identify and characterise five visual pigments (rh1, rh2, lws, sws1 and sws2) expressed in the retina of N. forsteri. Phylogenetic analysis of the molecular evolution of lungfish and other vertebrate visual pigment genes indicates a closer relationship between lungfish and amphibian pigments than to pigments in teleost fishes. However, the relationship between lungfish, the coelacanth and tetrapods could not be absolutely determined from opsin phylogeny, supporting an unresolved trichotomy between the three groups. Conclusion The presence of four cone pigments in Australian lungfish suggests that the earliest tetrapods would have had a colorful view of their terrestrial environment. PMID:17961206

  19. Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates.

    PubMed

    Saito, Atsuko; Mikami, Akichika; Kawamura, Shoji; Ueno, Yoshikazu; Hiramatsu, Chihiro; Widayati, Kanthi A; Suryobroto, Bambang; Teramoto, Migaku; Mori, Yusuke; Nagano, Kunitoshi; Fujita, Kazuo; Kuroshima, Hika; Hasegawa, Toshikazu

    2005-12-01

    Due to a middle- to long-wavelength-sensitive (M/LWS) cone opsin polymorphism, there is considerable phenotypic variation in the color vision of New World monkeys. Many females have trichromatic vision, whereas some females and all males have dichromatic vision. The selective pressures that maintain this polymorphism are unclear. In the present study we compared the performance of dichromats and trichromats in a discrimination task. We examined tri- and dichromatic individuals of two species: brown capuchin monkeys (Cebus apella) and long-tailed macaques (Macaca fascicularis). We also examined one protanomalous chimpanzee (Pan troglodytes). The subjects' task was to discriminate a circular pattern from other patterns in which textural elements differed in orientation and thickness from the background. After they were trained with stimuli of a single color, the subjects were presented with color-camouflaged stimuli with a green/red mosaic overlaid onto the pattern. The dichromatic monkeys and the protanomalous chimpanzee selected the correct stimulus under camouflaged conditions at rates significantly above chance levels, while the trichromats did not. These findings demonstrate that dichromatic nonhuman primates possess a superior visual ability to discriminate color-camouflaged stimuli, and that such an ability may confer selective advantages with respect to the detection of cryptic foods and/or predators. PMID:16342068

  20. How parrots see their colours: novelty in the visual pigments of Platycercus elegans.

    PubMed

    Knott, Ben; Davies, Wayne I L; Carvalho, Livia S; Berg, Mathew L; Buchanan, Katherine L; Bowmaker, James K; Bennett, Andrew T D; Hunt, David M

    2013-12-01

    Intraspecific differences in retinal physiology have been demonstrated in several vertebrate taxa and are often subject to adaptive evolution. Nonetheless, such differences are currently unknown in birds, despite variations in habitat, behaviour and visual stimuli that might influence spectral sensitivity. The parrot Platycercus elegans is a species complex with extreme plumage colour differences between (and sometimes within) subspecies, making it an ideal candidate for intraspecific differences in spectral sensitivity. Here, the visual pigments of P. elegans were fully characterised through molecular sequencing of five visual opsin genes and measurement of their absorbance spectra using microspectrophotometry. Three of the genes, LWS, SW1 and SWS2, encode for proteins similar to those found in other birds; however, both the RH1 and RH2 pigments had polypeptides with carboxyl termini of different lengths and unusual properties that are unknown previously for any vertebrate visual pigment. Specifically, multiple RH2 transcripts and protein variants (short, medium and long) were identified for the first time that are generated by alternative splicing of downstream coding and non-coding exons. Our work provides the first complete characterisation of the visual pigments of a parrot, perhaps the most colourful order of birds, and moreover suggests more variability in avian eyes than hitherto considered.

  1. Retinal transcriptome sequencing sheds light on the adaptation to nocturnal and diurnal lifestyles in raptors.

    PubMed

    Wu, Yonghua; Hadly, Elizabeth A; Teng, Wenjia; Hao, Yuyang; Liang, Wei; Liu, Yu; Wang, Haitao

    2016-01-01

    Owls (Strigiformes) represent a fascinating group of birds that are the ecological night-time counterparts to diurnal raptors (Accipitriformes). The nocturnality of owls, unusual within birds, has favored an exceptional visual system that is highly tuned for hunting at night, yet the molecular basis for this adaptation is lacking. Here, using a comparative evolutionary analysis of 120 vision genes obtained by retinal transcriptome sequencing, we found strong positive selection for low-light vision genes in owls, which contributes to their remarkable nocturnal vision. Not surprisingly, we detected gene loss of the violet/ultraviolet-sensitive opsin (SWS1) in all owls we studied, but two other color vision genes, the red-sensitive LWS and the blue-sensitive SWS2, were found to be under strong positive selection, which may be linked to the spectral tunings of these genes toward maximizing photon absorption in crepuscular conditions. We also detected the only other positively selected genes associated with motion detection in falcons and positively selected genes associated with bright-light vision and eye protection in other diurnal raptors (Accipitriformes). Our results suggest the adaptive evolution of vision genes reflect differentiated activity time and distinct hunting behaviors. PMID:27645106

  2. Age-Related Deterioration of Rod Vision in Mice

    PubMed Central

    Kolesnikov, Alexander V.; Fan, Jie; Crouch, Rosalie K.; Kefalov, Vladimir J.

    2010-01-01

    Even in healthy individuals, aging leads to deterioration in visual acuity, contrast sensitivity, visual field, and dark adaptation. Little is known about the neural mechanisms that drive the age-related changes of the retina and more specifically of photoreceptors. According to one hypothesis, the age-related deterioration in rod function is due to the limited availability of 11-cis-retinal for rod pigment formation. To determine how aging affects rod photoreceptors and to test the retinoid deficiency hypothesis, we compared the morphological and functional properties of rods of adult and aged B6D2F1/J mice. We found that the number of rods and the length of their outer segments were significantly reduced in 2.5 year-old mice compared to 4 month-old animals. Aging also resulted in a 2-fold reduction in the total level of opsin in the retina. Behavioral tests revealed that scotopic visual acuity and contrast sensitivity were decreased by 2-fold in aged mice, and rod ERG recordings demonstrated reduced amplitudes of both a- and b-waves. Sensitivity of aged rods determined from single-cell recordings was also decreased by 1.5-fold, corresponding to not more than 1% free opsin in these photoreceptors, and kinetic parameters of dim flash response were not altered. Notably, the rate of rod dark adaptation was unaffected by age. Thus, our results argue against age-related deficiency of 11-cis-retinal in the B6D2F1/J mouse rod visual cycle. Surprisingly, the level of cellular dark noise was increased in aged rods providing an alternative mechanism for their desensitization. PMID:20720130

  3. Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna.

    PubMed

    Nakamura, Yoji; Mori, Kazuki; Saitoh, Kenji; Oshima, Kenshiro; Mekuchi, Miyuki; Sugaya, Takuma; Shigenobu, Yuya; Ojima, Nobuhiko; Muta, Shigeru; Fujiwara, Atushi; Yasuike, Motoshige; Oohara, Ichiro; Hirakawa, Hideki; Chowdhury, Vishwajit Sur; Kobayashi, Takanori; Nakajima, Kazuhiro; Sano, Motohiko; Wada, Tokio; Tashiro, Kosuke; Ikeo, Kazuho; Hattori, Masahira; Kuhara, Satoru; Gojobori, Takashi; Inouye, Kiyoshi

    2013-07-01

    Tunas are migratory fishes in offshore habitats and top predators with unique features. Despite their ecological importance and high market values, the open-ocean lifestyle of tuna, in which effective sensing systems such as color vision are required for capture of prey, has been poorly understood. To elucidate the genetic and evolutionary basis of optic adaptation of tuna, we determined the genome sequence of the Pacific bluefin tuna (Thunnus orientalis), using next-generation sequencing technology. A total of 26,433 protein-coding genes were predicted from 16,802 assembled scaffolds. From these, we identified five common fish visual pigment genes: red-sensitive (middle/long-wavelength sensitive; M/LWS), UV-sensitive (short-wavelength sensitive 1; SWS1), blue-sensitive (SWS2), rhodopsin (RH1), and green-sensitive (RH2) opsin genes. Sequence comparison revealed that tuna's RH1 gene has an amino acid substitution that causes a short-wave shift in the absorption spectrum (i.e., blue shift). Pacific bluefin tuna has at least five RH2 paralogs, the most among studied fishes; four of the proteins encoded may be tuned to blue light at the amino acid level. Moreover, phylogenetic analysis suggested that gene conversions have occurred in each of the SWS2 and RH2 loci in a short period. Thus, Pacific bluefin tuna has undergone evolutionary changes in three genes (RH1, RH2, and SWS2), which may have contributed to detecting blue-green contrast and measuring the distance to prey in the blue-pelagic ocean. These findings provide basic information on behavioral traits of predatory fish and, thereby, could help to improve the technology to culture such fish in captivity for resource management.

  4. Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna.

    PubMed

    Nakamura, Yoji; Mori, Kazuki; Saitoh, Kenji; Oshima, Kenshiro; Mekuchi, Miyuki; Sugaya, Takuma; Shigenobu, Yuya; Ojima, Nobuhiko; Muta, Shigeru; Fujiwara, Atushi; Yasuike, Motoshige; Oohara, Ichiro; Hirakawa, Hideki; Chowdhury, Vishwajit Sur; Kobayashi, Takanori; Nakajima, Kazuhiro; Sano, Motohiko; Wada, Tokio; Tashiro, Kosuke; Ikeo, Kazuho; Hattori, Masahira; Kuhara, Satoru; Gojobori, Takashi; Inouye, Kiyoshi

    2013-07-01

    Tunas are migratory fishes in offshore habitats and top predators with unique features. Despite their ecological importance and high market values, the open-ocean lifestyle of tuna, in which effective sensing systems such as color vision are required for capture of prey, has been poorly understood. To elucidate the genetic and evolutionary basis of optic adaptation of tuna, we determined the genome sequence of the Pacific bluefin tuna (Thunnus orientalis), using next-generation sequencing technology. A total of 26,433 protein-coding genes were predicted from 16,802 assembled scaffolds. From these, we identified five common fish visual pigment genes: red-sensitive (middle/long-wavelength sensitive; M/LWS), UV-sensitive (short-wavelength sensitive 1; SWS1), blue-sensitive (SWS2), rhodopsin (RH1), and green-sensitive (RH2) opsin genes. Sequence comparison revealed that tuna's RH1 gene has an amino acid substitution that causes a short-wave shift in the absorption spectrum (i.e., blue shift). Pacific bluefin tuna has at least five RH2 paralogs, the most among studied fishes; four of the proteins encoded may be tuned to blue light at the amino acid level. Moreover, phylogenetic analysis suggested that gene conversions have occurred in each of the SWS2 and RH2 loci in a short period. Thus, Pacific bluefin tuna has undergone evolutionary changes in three genes (RH1, RH2, and SWS2), which may have contributed to detecting blue-green contrast and measuring the distance to prey in the blue-pelagic ocean. These findings provide basic information on behavioral traits of predatory fish and, thereby, could help to improve the technology to culture such fish in captivity for resource management. PMID:23781100

  5. Non-random association of opsin alleles in wild groups of red-bellied tamarins (Saguinus labiatus) and maintenance of the colour vision polymorphism.

    PubMed

    Surridge, Alison K; Suárez, Sandra S; Buchanan-Smith, Hannah M; Mundy, Nicholas I

    2005-12-22

    The remarkable X-linked colour vision polymorphism observed in many New World primates is thought to be maintained by balancing selection. Behavioural tests support a hypothesis of heterozygote advantage, as heterozygous females (with trichromatic vision) exhibit foraging benefits over homozygous females and males (with dichromatic vision) when detecting ripe fruit on a background of leaves. Whilst most studies to date have examined the functional relevance of polymorphic colour vision in the context of foraging behaviour, alternative hypotheses proposed to explain the polymorphism have remained unexplored. In this study we examine colour vision polymorphism, social group composition and breeding success in wild red-bellied tamarins Saguinus labiatus. We find that the association of males and females within tamarin social groups is non-random with respect to colour vision genotype, with identified mating partners having the greatest allelic diversity. The observed distribution of alleles may be driven by inbreeding avoidance and implies an important new mechanism for maintaining colour vision polymorphism. This study also provides the first preliminary evidence that wild trichromatic females may have increased fitness compared with dichromatic counterparts, as measured by breeding success and longevity. PMID:17148234

  6. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp.

    PubMed

    Gao, Shiqiang; Nagpal, Jatin; Schneider, Martin W; Kozjak-Pavlovic, Vera; Nagel, Georg; Gottschalk, Alexander

    2015-01-01

    Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ∼17 cGMP s(-1)). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O2/CO2 sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals.

  7. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp

    PubMed Central

    Gao, Shiqiang; Nagpal, Jatin; Schneider, Martin W.; Kozjak-Pavlovic, Vera; Nagel, Georg; Gottschalk, Alexander

    2015-01-01

    Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ∼17 cGMP s−1). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O2/CO2 sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals. PMID:26345128

  8. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp.

    PubMed

    Gao, Shiqiang; Nagpal, Jatin; Schneider, Martin W; Kozjak-Pavlovic, Vera; Nagel, Georg; Gottschalk, Alexander

    2015-01-01

    Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ∼17 cGMP s(-1)). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O2/CO2 sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals. PMID:26345128

  9. The Living with a Star Program Mission Plan

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Day, John (Technical Monitor)

    2001-01-01

    LWS (Living With a Star) is research science focused to facilitate enabling science for spacecraft design (specifically environment specification models) and spacecraft operations (specifically Space Weather research). The following topics are discussed: LWS goals and program, program architecture, the solar dynamic observer, the geospace plan, the space environment testbed concept, and the heliosphere missions.

  10. Differential gene expression in mouse retina related to regional differences in vulnerability to hyperoxia

    PubMed Central

    Natoli, Riccardo; Valter, Krisztina; Stone, Jonathan

    2010-01-01

    Purpose In the C57BL/6J mouse retina, hyperoxia-induced degeneration of photoreceptors shows strong regional variation, beginning at a locus ~0.5 mm inferior to the optic disc. To identify gene expression differences that might underlie this variability in vulnerability, we have used microarray techniques to describe regional (superior-inferior) variations in gene expression in the retina. Methods Young adult C57BL/6J mice raised in dim cyclic illumination (12 h at 5 lx and 12 h in darkness) were exposed to hyperoxia (75% oxygen for two weeks). Retinas were collected from hyperoxia-exposed and control animals without fixation and divided into superior and inferior halves. RNA was extracted from each sample, purified, and hybridized to Mouse Gene 1.0 ST arrays (Affymetrix). The consistency of the microarray results was assessed using quantitative PCR for selected genes. Expression data were analyzed to identify genes and ncRNAs whose differential expression between the superior and inferior retina could be associated with relative vulnerability to hyperoxia. Results In control retinas, only two genes showed a fold difference in expression >2 between the superior and inferior retina; another 25 showed a fold difference of 1.5–2.0. Of these 27, the functions of six genes, including ventral anterior homeobox containing gene 2 (Vax2) and T-box 5 (Tbox5), are related to parameters of anatomic development and the functions of five are related to sensory perception. Among the latter, short-wave-sensitive cone opsin (Opn1sw) was more strongly expressed in the inferior retina and medium-wave-sensitive cone opsin (Opn1mw) in the superior retina. This is consistent with known differences in S- and M-cone distribution, confirming our separation of retinal regions. The highest fold difference was reported for membrane metalloendopeptidase (Mme), a member from the metallothionein group of cytoprotective proteins. To identify genes whose regulation by hyperoxia was

  11. Expression of Synaptic and Phototransduction Markers During Photoreceptor Development in the Marmoset Monkey Callithrix jacchus

    PubMed Central

    HENDRICKSON, ANITA; TROILO, DAVID; DJAJADI, HIDAYAT; POSSIN, DANIEL; SPRINGER, ALAN

    2009-01-01

    Marmoset photoreceptor development was studied to determine the expression sequence for synaptic, opsin, and phototransduction proteins. All markers appear first in cones within the incipient foveal center or in rods at the foveal edge. Recoverin appears in cones across 70% of the retina at fetal day (Fd) 88, indicating that it is expressed shortly after photoreceptors are generated. Synaptic markers synaptophysin, SV2, glutamate vesicular transporter 1, and CTBP2 label foveal cones at Fd 88 and cones at the retinal edge around birth. Cones and rods have distinctly different patterns of synaptic protein and opsin expression. Synaptic markers are expressed first in cones, with a considerable delay before they appear in rods at the same eccentricity. Cones express synaptic markers 2–3 weeks before they express opsin, but rods express opsin 2–4 weeks before rod synaptic marker labeling is detected. Medium/long-wavelength-selective (M&L) opsin appears in foveal cones and rod opsin in rods around the fovea at Fd 100. Very few cones expressing short-wavelength-selective (S) opsin are found in the Fd 105 fovea. Across peripheral retina, opsin appears first in rods, followed about 1 week later by M&L cone opsin. S cone opsin appears last, and all opsins reach the retinal edge by 1 week after birth. Cone transducin and rod arrestin are expressed concurrently with opsin, but cone arrestin appears slightly later. Marmoset photoreceptor development differs from that in Macaca and humans. It starts relatively late, at 56% gestation, compared with Macaca at 32% gestation. The marmoset opsin expression sequence is also different from that of either Macaca or human. PMID:19003975

  12. Dimerization of visual pigments in vivo.

    PubMed

    Zhang, Tao; Cao, Li-Hui; Kumar, Sandeep; Enemchukwu, Nduka O; Zhang, Ning; Lambert, Alyssia; Zhao, Xuchen; Jones, Alex; Wang, Shixian; Dennis, Emily M; Fnu, Amrita; Ham, Sam; Rainier, Jon; Yau, King-Wai; Fu, Yingbin

    2016-08-01

    It is a deeply engrained notion that the visual pigment rhodopsin signals light as a monomer, even though many G protein-coupled receptors are now known to exist and function as dimers. Nonetheless, recent studies (albeit all in vitro) have suggested that rhodopsin and its chromophore-free apoprotein, R-opsin, may indeed exist as a homodimer in rod disk membranes. Given the overwhelmingly strong historical context, the crucial remaining question, therefore, is whether pigment dimerization truly exists naturally and what function this dimerization may serve. We addressed this question in vivo with a unique mouse line (S-opsin(+)Lrat(-/-)) expressing, transgenically, short-wavelength-sensitive cone opsin (S-opsin) in rods and also lacking chromophore to exploit the fact that cone opsins, but not R-opsin, require chromophore for proper folding and trafficking to the photoreceptor's outer segment. In R-opsin's absence, S-opsin in these transgenic rods without chromophore was mislocalized; in R-opsin's presence, however, S-opsin trafficked normally to the rod outer segment and produced functional S-pigment upon subsequent chromophore restoration. Introducing a competing R-opsin transmembrane helix H1 or helix H8 peptide, but not helix H4 or helix H5 peptide, into these transgenic rods caused mislocalization of R-opsin and S-opsin to the perinuclear endoplasmic reticulum. Importantly, a similar peptide-competition effect was observed even in WT rods. Our work provides convincing evidence for visual pigment dimerization in vivo under physiological conditions and for its role in pigment maturation and targeting. Our work raises new questions regarding a potential mechanistic role of dimerization in rhodopsin signaling. PMID:27462111

  13. Immunolocalization of Arthropsin in the Onychophoran Euperipatoides rowelli (Peripatopsidae).

    PubMed

    Schumann, Isabell; Hering, Lars; Mayer, Georg

    2016-01-01

    Opsins are light-sensitive proteins that play a key role in animal vision and are related to the ancient photoreceptive molecule rhodopsin found in unicellular organisms. In general, opsins involved in vision comprise two major groups: the rhabdomeric (r-opsins) and the ciliary opsins (c-opsins). The functionality of opsins, which is dependent on their protein structure, may have changed during evolution. In arthropods, typically r-opsins are responsible for vision, whereas in vertebrates c-opsins are components of visual photoreceptors. Recently, an enigmatic r-opsin-like protein called arthropsin has been identified in various bilaterian taxa, including arthropods, lophotrochozoans, and chordates, by performing transcriptomic and genomic analyses. Since the role of arthropsin and its distribution within the body are unknown, we immunolocalized this protein in a representative of Onychophora - Euperipatoides rowelli - an ecdysozoan taxon which is regarded as one of the closest relatives of Arthropoda. Our data show that arthropsin is expressed in the central nervous system of E. rowelli, including the brain and the ventral nerve cords, but not in the eyes. These findings are consistent with previous results based on reverse transcription PCR in a closely related onychophoran species and suggest that arthropsin is a non-visual protein. Based on its distribution in the central brain region and the mushroom bodies, we speculate that the onychophoran arthropsin might be either a photosensitive molecule playing a role in the circadian clock, or a non-photosensitive protein involved in olfactory pathways, or both. PMID:27540356

  14. Immunolocalization of Arthropsin in the Onychophoran Euperipatoides rowelli (Peripatopsidae)

    PubMed Central

    Schumann, Isabell; Hering, Lars; Mayer, Georg

    2016-01-01

    Opsins are light-sensitive proteins that play a key role in animal vision and are related to the ancient photoreceptive molecule rhodopsin found in unicellular organisms. In general, opsins involved in vision comprise two major groups: the rhabdomeric (r-opsins) and the ciliary opsins (c-opsins). The functionality of opsins, which is dependent on their protein structure, may have changed during evolution. In arthropods, typically r-opsins are responsible for vision, whereas in vertebrates c-opsins are components of visual photoreceptors. Recently, an enigmatic r-opsin-like protein called arthropsin has been identified in various bilaterian taxa, including arthropods, lophotrochozoans, and chordates, by performing transcriptomic and genomic analyses. Since the role of arthropsin and its distribution within the body are unknown, we immunolocalized this protein in a representative of Onychophora – Euperipatoides rowelli – an ecdysozoan taxon which is regarded as one of the closest relatives of Arthropoda. Our data show that arthropsin is expressed in the central nervous system of E. rowelli, including the brain and the ventral nerve cords, but not in the eyes. These findings are consistent with previous results based on reverse transcription PCR in a closely related onychophoran species and suggest that arthropsin is a non-visual protein. Based on its distribution in the central brain region and the mushroom bodies, we speculate that the onychophoran arthropsin might be either a photosensitive molecule playing a role in the circadian clock, or a non-photosensitive protein involved in olfactory pathways, or both. PMID:27540356

  15. Immunolocalization of Arthropsin in the Onychophoran Euperipatoides rowelli (Peripatopsidae).

    PubMed

    Schumann, Isabell; Hering, Lars; Mayer, Georg

    2016-01-01

    Opsins are light-sensitive proteins that play a key role in animal vision and are related to the ancient photoreceptive molecule rhodopsin found in unicellular organisms. In general, opsins involved in vision comprise two major groups: the rhabdomeric (r-opsins) and the ciliary opsins (c-opsins). The functionality of opsins, which is dependent on their protein structure, may have changed during evolution. In arthropods, typically r-opsins are responsible for vision, whereas in vertebrates c-opsins are components of visual photoreceptors. Recently, an enigmatic r-opsin-like protein called arthropsin has been identified in various bilaterian taxa, including arthropods, lophotrochozoans, and chordates, by performing transcriptomic and genomic analyses. Since the role of arthropsin and its distribution within the body are unknown, we immunolocalized this protein in a representative of Onychophora - Euperipatoides rowelli - an ecdysozoan taxon which is regarded as one of the closest relatives of Arthropoda. Our data show that arthropsin is expressed in the central nervous system of E. rowelli, including the brain and the ventral nerve cords, but not in the eyes. These findings are consistent with previous results based on reverse transcription PCR in a closely related onychophoran species and suggest that arthropsin is a non-visual protein. Based on its distribution in the central brain region and the mushroom bodies, we speculate that the onychophoran arthropsin might be either a photosensitive molecule playing a role in the circadian clock, or a non-photosensitive protein involved in olfactory pathways, or both.

  16. TARGETED RESEARCH AND TECHNOLOGY WITHIN NASA'S LIVING WITH A STAR PROGRAM.

    SciTech Connect

    Gosling, J. T.; Antiochos, Spiro; Baker, Kile; Bellaire, Paul; Blake, Bern; Crowley, Geoff; Eddy, Jack; Goodrich, Charles; Gopalswamy, Nat; Hesse, Michael; Hurlburt, Neal; Jackman, Charles; Kozyra, Janet; Labonte, Barry; Lean, Judith; Linker, Jon; Mazur, Joe; Onsager, Terry; Sibeck, David

    2003-07-10

    NASA’s Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.

  17. Targeted Research and Technology Within NASA's Living With a Star Program

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro; Baker, Kile; Bellaire, Paul; Blake, Bern; Crowley, Geoff; Eddy, Jack; Goodrich, Charles; Gopalswamy, Nat; Gosling, Jack; Hesse, Michael

    2004-01-01

    Targeted Research & Technology (TR&T) NASA's Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.

  18. Targeted Research and Technology Within NASA's Living With a Star Program

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2003-01-01

    NASA's Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.

  19. Evolution of color vision.

    PubMed

    Pichaud, F; Briscoe, A; Desplan, C

    1999-10-01

    Color vision is achieved by comparing the inputs from retinal photoreceptor neurons that differ in their wavelength sensitivity. Recent studies have elucidated the distribution and phylogeny of opsins, the family of light-sensitive molecules involved in this process. Interesting new findings suggest that animals have evolved a strategy to achieve specific sensitivity through the mutually exclusive expression of different opsin genes in photoreceptors.

  20. Identification and characterization of a protostome homologue of peropsin from a jumping spider.

    PubMed

    Nagata, Takashi; Koyanagi, Mitsumasa; Tsukamoto, Hisao; Terakita, Akihisa

    2010-01-01

    Peropsin, a member of the opsin family, has characteristics of two functionally distinct opsin-groups, that is, amino acid residues conserved among opsins for light-sensing and a retinal-photoisomerase-like molecular property. Although such a bilateral feature of peropsin seems to be important for understanding the diversity of the opsin family, previous studies have been limited to higher deuterostome, vertebrate and amphioxus peropsins. Here, we report a protostome peropsin homologue from a jumping spider. We found a spider opsin that shares amino acid homology and conserved amino acid residues with known peropsins. The spider opsin-based pigment heterologously expressed in cultured cells exhibited photoisomerase-like isomerization characteristics and a bistable nature. Based on the characteristics of both the amino acid homology and its photochemical properties, we concluded that the spider opsin is the first protostome peropsin homologue. These results show that peropsin existed before the deuterostome-protostome split like other members of the opsin family. In addition, the spider peropsin was localized to non-visual cells in the retina, and fluorescence from reduced retinal chromophore was also observed in the region where peropsin was localized. These findings provide the first demonstration that the peropsin can form a photosensitive pigment in vivo and underlie non-visual function. PMID:19960196

  1. Into the blue: gene duplication and loss underlie color vision adaptations in a deep-sea chimaera, the elephant shark Callorhinchus milii.

    PubMed

    Davies, Wayne L; Carvalho, Livia S; Tay, Boon-Hui; Brenner, Sydney; Hunt, David M; Venkatesh, Byrappa

    2009-03-01

    The cartilaginous fishes reside at the base of the gnathostome lineage as the oldest extant group of jawed vertebrates. Recently, the genome of the elephant shark, Callorhinchus milii, a chimaerid holocephalan, has been sequenced and therefore becomes the first cartilaginous fish to be analyzed in this way. The chimaeras have been largely neglected and very little is known about the visual systems of these fishes. By searching the elephant shark genome, we have identified gene fragments encoding a rod visual pigment, Rh1, and three cone visual pigments, the middle wavelength-sensitive or Rh2 pigment, and two isoforms of the long wavelength-sensitive or LWS pigment, LWS1 and LWS2, but no evidence for the two short wavelength-sensitive cone classes, SWS1 and SWS2. Expression of these genes in the retina was confirmed by RT-PCR. Full-length coding sequences were used for in vitro expression and gave the following peak absorbances: Rh1 496 nm, Rh2 442 nm, LWS1 499 nm, and LWS2 548 nm. Unusually, therefore, for a deep-sea fish, the elephant shark possesses cone pigments and the potential for trichromacy. Compared with other vertebrates, the elephant shark Rh2 and LWS1 pigments are the shortest wavelength-shifted pigments of their respective classes known to date. The mechanisms for this are discussed and we provide experimental evidence that the elephant shark LWS1 pigment uses a novel tuning mechanism to achieve the short wavelength shift to 499 nm, which inactivates the chloride-binding site. Our findings have important implications for the present knowledge of color vision evolution in early vertebrates.

  2. Insulin-induced hypoglycemia associations with gene expression changes in liver and hypothalamus of chickens from lines selected for low or high body weight.

    PubMed

    Rice, Brittany B; Zhang, Wei; Bai, Shiping; Siegel, Paul B; Cline, Mark A; Gilbert, Elizabeth R

    2014-11-01

    Chickens selected for low (LWS) or high (HWS) body weight for more than 56 generations now have a 10-fold difference in body weight at 56 days of age and correlated responses in appetite and glucose regulation. The LWS chickens are lean and some are anorexic, while the HWS are compulsive feeders and have a different threshold sensitivity of food intake and blood glucose to both central and peripheral insulin, respectively. We previously demonstrated that at 90-days of age, insulin-induced hypoglycemia was associated with reduced glucose transporter expression in the liver of both lines, and differences in expression of neuropeptide Y (NPY) and NPY receptor sub-type genes between LWS and HWS in the hypothalamus. The objective of this study was to determine effects of insulin-induced hypoglycemia on gene expression in the hypothalamus and liver of early post-hatch LWS and HWS chicks. On day 5 post-hatch chicks from each line were fasted for 3h and injected intraperitoneally with insulin or vehicle. At 1h post-injection, chicks were euthanized, blood glucose was measured, and hypothalamus and liver were removed. Total RNA was isolated and real time PCR performed. Insulin injection was associated with a more pronounced reduction in blood glucose in HWS compared with LWS chicks (two-way interaction; P<0.05). Aromatic L-amino acid decarboxylase, NPY, and NPY receptor sub-types 2 and 5 mRNA quantities were greater in LWS than HWS chicks in the hypothalamus (P<0.05), whereas pro-opiomelanocortin mRNA was greater in the hypothalamus of HWS than LWS (P<0.05). In the liver, glucose transporter 1, 2 and 3 (GLUT 1, 2 and 3, respectively) mRNA abundance was greater in HWS than LWS chicks (P<0.05). Compared to the vehicle, insulin treatment was associated with an increase in tryptophan hydroxylase 2 mRNA in the hypothalamus of both lines (P=0.02). In the liver of both lines, insulin treatment was associated with decreased (P=0.01) GLUT2 mRNA and increased (P=0.01) GLUT1 m

  3. Strategic Science to Address Current and Future Space Weather Needs

    NASA Astrophysics Data System (ADS)

    Mannucci, A. J.; Schwadron, N.; Antiochos, S. K.; Bhattacharjee, A.; Bisi, M. M.; Gopalswamy, N.; Kamalabadi, F.; Pulkkinen, A. A.; Tobiska, W. K.; Weimer, D. R.; Withers, P.

    2014-12-01

    NASA's Living With a Star (LWS) program has contributed a wealth of scientific knowledge that is relevant to space weather and user needs. A targeted approach to science questions has resulted in leveraging new scientific knowledge to improve not only our understanding of the Heliophysics domain, but also to develop predictive capabilities in key areas of LWS science. This fascinating interplay between science and applications promises to benefit both domains. Scientists providing feedback to the LWS program are now discussing an evolution of the targeted approach that explicitly considers how new science improves, or enables, predictive capability directly. Long-term program goals are termed "Strategic Science Areas" (SSAs) that address predictive capabilities in six specific areas: geomagnetically induced currents, satellite drag, solar energetic particles, ionospheric total electron content, radio frequency scintillation induced by the ionosphere, and the radiation environment. SSAs are organized around user needs and the impacts of space weather on society. Scientists involved in the LWS program identify targeted areas of research that reference (or bear upon) societal needs. Such targeted science leads to new discoveries and is one of the valid forms of exploration. In this talk we describe the benefits of targeted science, and how addressing societal impacts in an appropriate way maintains the strong science focus of LWS, while also leading to its broader impacts.

  4. Living With a Star, the Geospace Mission Definition Team and Aeronomy

    NASA Technical Reports Server (NTRS)

    Kintner, Paul M., Jr.; Meier, R. R.; Spann, Jim; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    To gain an understanding of the Sun-Earth system, including how and why the sun varies, how the earth responds, and the impacts on humanity, research is needed that has a integrated and systematic approach. The Living With a Star (LWS) program represents an important element in this regard both to continued progress in space science in general and in Aeronomy in particular. A fundamental question in Aeronomy is how the variable sun affects the ionosphere, thermosphere, and mesosphere. The LWS program focuses on those areas of scientific understanding that promote progress in areas that have human impact and can be investigated with space borne instruments. The Geospace Mission Definition Team is charged with investigating the science priorities identified by the LWS Science Architecture Team and developing an approach to making the necessary measurements in concert with other missions and programs. An important aspect of this approach is that all LWS measurement programs are operating simultaneously for several years. We will review some of the areas that the LWS SAT have emphasized in Aeronomy, including understanding the effects of solar variability on ionospheric density and irregularities, the effects of solar variability on the mass density of the atmosphere at LEO altitudes, and the effects of solar variability on near-surface temperatures and on ozone distribution.

  5. Identification of circadian brain photoreceptors mediating photic entrainment of behavioural rhythms in lizards.

    PubMed

    Pasqualetti, Massimo; Bertolucci, Cristiano; Ori, Michela; Innocenti, Augusto; Magnone, Maria C; De Grip, Willem J; Nardi, Irma; Foà, Augusto

    2003-07-01

    We have shown previously that in ruin lizards (Podarcis sicula) the ablation of all known photoreceptive structures (lateral eyes, pineal and parietal eye) in the same individual animal does not prevent entrainment of their circadian locomotor rhythms to light. The present study was aimed at identifying the circadian brain photoreceptors mediating entrainment. For this purpose, we looked for opsin expression in the brain by means of immunocytochemistry. Using anti-cone-opsin antiserum CERN 874 we have localized photoreceptors in the periventricular area of hypothalamus, near the third cerebral ventricle. We also cloned a brain opsin cDNA that, on the basis of the deduced amino acid sequence, appears to belong to the RH2 class of cone-opsins. We named the cloned cone-opsin Ps-RH2. To examine whether brain cone-opsins mediate photic entrainment of circadian locomotor rhythms, we performed post-transcriptional inactivation experiments by injecting an expression eukaryotic vector transcribing the antisense cone-opsin Ps-RH2 mRNA in the third cerebral ventricle of pinealectomized-retinectomized lizards previously entrained to a light-dark (LD) cycle. Injections of the antisense construct abolished photic entrainment of circadian locomotor rhythms of pinealectomized-retinectomized lizards to the LD cycle for 6-9 days. CERN 874 completely failed to label cells within the periventricular area of hypothalamus of brains injected with antisense construct. Thus, abolishment of photic entrainment is due to inactivation of endogenous brain cone-opsins mRNA. The present results demonstrate for the first time in a vertebrate that brain cone-opsins are part of a true circadian brain photoreceptor participating in photic entrainment of behavioural rhythms. PMID:12887418

  6. Molecular evolution of bat color vision genes.

    PubMed

    Wang, Daryi; Oakley, Todd; Mower, Jeffrey; Shimmin, Lawrence C; Yim, Sokchea; Honeycutt, Rodney L; Tsao, Hsienshao; Li, Wen-Hsiung

    2004-02-01

    The two suborders of bats, Megachiroptera (megabats) and Microchiroptera (microbats), use different sensory modalities for perceiving their environment. Megabats are crepuscular and rely on a well-developed eyes and visual pathway, whereas microbats occupy a nocturnal niche and use acoustic orientation or echolocation more than vision as the major means of perceiving their environment. In view of the differences associated with their sensory systems, we decided to investigate the function and evolution of color vision (opsin genes) in these two suborders of bats. The middle/long wavelength (M/L) and short wavelength (S) opsin genes were sequenced from two frugivorous species of megabats, Haplonycteris fischeri and Pteropus dasymallus formosus, and one insectivorous species of microbat, Myotis velifer. Contrary to the situation in primates, where many nocturnal species have lost the functional S opsin gene, both crepuscular and strictly nocturnal species of bats that we examined have functional M/L and S opsin genes. Surprisingly, the S opsin in these bats may be sensitive to UV light, which is relatively more abundant at dawn and at dusk. The M/L opsin in these bats appears to be the L type, which is sensitive to red and may be helpful for identifying fruits among leaves or for other purposes. Most interestingly, H. fischeri has a recent duplication of the M/L opsin gene, representing to date the only known case of opsin gene duplication in non-primate mammals. Some of these observations are unexpected and may provide insights into the effect of nocturnal life on the evolution of opsin genes in mammals and the evolution of the life history traits of bats in general.

  7. Modulation of propagation-invariant Localized Waves for FSO communication systems.

    PubMed

    Salem, Mohamed A; Bağcı, Hakan

    2012-07-01

    The novel concept of spatio-temporal modulation of Nyquist pulses is introduced, and the resulting wave-packets are termed Nyquist Localized Waves (LWs). Ideal Nyquist LWs belong to the generic family of LW solutions and can propagate indefinitely in unbounded media without attenuation or chromatic dispersion. The possibility of modulating Nyquist LWs for free-space optical (FSO) communication systems is demonstrated using two different modulation techniques. The first technique is on-off keying (OOK) with alternate mark inversion (AMI) coding for 1-bit per symbol transmission, and the second one is 16-ary quadrature amplitude modulation (16-QAM) for 4-bits per symbol transmission. Aspects related to the performance, detection and generation of the spatio-temporally coupled wave-packets are discussed and future research directions are outlined.

  8. Genetic selection for body weight in chickens has altered responses of the brain's AMPK system to food intake regulation effect of ghrelin, but not obestatin.

    PubMed

    Xu, Pingwen; Siegel, Paul B; Denbow, D Michael

    2011-08-01

    The effects of ghrelin and obestatin regulation of food intake are different in mammals and chickens. We investigated central effects of ghrelin and obestatin in lines of chickens selected 50 generations for high (HWS) or low (LWS) body weight. We hypothesized that the effect of ghrelin and obestatin on food intake in 5-day-old chicks is mediated by the AMP-activated protein kinase (AMPK) system and selection for body weight alters the brain's response to ghrelin and obestatin by changing the neuronal AMPK system. Although intracerebroventricular (ICV) ghrelin injection decreased food intake in both lines, the threshold for the anorexigenic effect of central ghrelin was lower in LWS than HWS chicks. Obestatin caused a linear dose-dependent increase in food intake in HWS but not LWS chicks. ICV injection of 0.4 nmol ghrelin inhibited hypothalamic AMPK related gene expression and phosphorylation of AMPK α and acetyl-CoA carboxylase (ACC) with the magnitude of inhibition different in the two lines. In contrast, ICV injection of 4 nmol obestatin did not affect mRNA expression of AMPK system or phosphorylation of AMPK and ACC in either line. These data support the premise of a lower threshold for anorexigenic effect of central ghrelin in LWS than HWS chicks, and this difference may be associated with differential hypothalamic AMPK signaling. Additionally, the hypothalamic mRNA level of ghrelin was significantly higher in LWS than HWS, which may have also contributed to the different threshold response to ghrelin in these two lines. The expression of the ghrelin receptor was also higher in the LWS line, but not until 56 days of age. In summary, selection for body weight has resulted in differences in the central ghrelin and obestatin system, and an altered brain AMPK system may contribute to the different neuronal response to ghrelin, but not obestatin.

  9. Total Land Water Storage Change over 2003 - 2013 Estimated from a Global Mass Budget Approach

    NASA Technical Reports Server (NTRS)

    Dieng, H. B.; Champollion, N.; Cazenave, A.; Wada, Y.; Schrama, E.; Meyssignac, B.

    2015-01-01

    We estimate the total land water storage (LWS) change between 2003 and 2013 using a global water mass budget approach. Hereby we compare the ocean mass change (estimated from GRACE space gravimetry on the one hand, and from the satellite altimetry-based global mean sea level corrected for steric effects on the other hand) to the sum of the main water mass components of the climate system: glaciers, Greenland and Antarctica ice sheets, atmospheric water and LWS (the latter being the unknown quantity to be estimated). For glaciers and ice sheets, we use published estimates of ice mass trends based on various types of observations covering different time spans between 2003 and 2013. From the mass budget equation, we derive a net LWS trend over the study period. The mean trend amounts to +0.30 +/- 0.18 mm/yr in sea level equivalent. This corresponds to a net decrease of -108 +/- 64 cu km/yr in LWS over the 2003-2013 decade. We also estimate the rate of change in LWS and find no significant acceleration over the study period. The computed mean global LWS trend over the study period is shown to be explained mainly by direct anthropogenic effects on land hydrology, i.e. the net effect of groundwater depletion and impoundment of water in man-made reservoirs, and to a lesser extent the effect of naturally-forced land hydrology variability. Our results compare well with independent estimates of human-induced changes in global land hydrology.

  10. NASA space shuttle lightweight seat

    NASA Technical Reports Server (NTRS)

    Hansen, Chris; Jermstad, Wayne; Lewis, James; Colangelo, Todd

    1996-01-01

    The Space Shuttle Lightweight Seat-Mission Specialist (LWS-MS) is a crew seat for the mission specialists who fly aboard the Space Shuttle. The LWS-MS is a lightweight replacement for the mission specialist seats currently flown on the Shuttle. Using state-of-the-art analysis techniques, a team of NASA and Lockheed engineers from the Johnson Space Center (JSC) designed a seat that met the most stringent requirements demanded of the new seats by the Shuttle program, and reduced the weight of the seats by 52%.

  11. The Living With a Star Program Space Environment Testbed

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Day, John H. (Technical Monitor)

    2001-01-01

    This viewgraph presentation describes the objective, approach, and scope of the Living With a Star (LWS) program at the Marshall Space Flight Center. Scientists involved in the project seek to refine the understanding of space weather and the role of solar variability in terrestrial climate change. Research and the development of improved analytic methods have led to increased predictive capabilities and the improvement of environment specification models. Specifically, the Space Environment Testbed (SET) project of LWS is responsible for the implementation of improved engineering approaches to observing solar effects on climate change. This responsibility includes technology development, ground test protocol development, and the development of a technology application model/engineering tool.

  12. Living with a Star Space Environment Testbed

    NASA Technical Reports Server (NTRS)

    Barth, Janet

    2003-01-01

    Summary of activities: (1) FYO1 NRA - Model development and data mining. (2) FY03 NRA - Flight investigations. (3) SET carrier development. (4) Study for accommodation of SET carrier to support advanced detectors. (5) Collaboration with other programs: LWS TR&T to maximize synergy between TR&T space environment research and SET space environment effects research. LWS Data System to optimize dissemination of SET data. NASA Electronic Parts and Packaging Program to leverage ground testing of technologies. Defense Threat Reduction Agency to leverage ground testing and common interests in advanced detectors. and Air Force Research Laboratory to leverage flight opportunities. (6) Education and Public Outreach.

  13. The photochemical determinants of color vision

    PubMed Central

    Wang, Wenjing; Geiger, James H; Borhan, Babak

    2014-01-01

    The evolution of a variety of important chromophore-dependent biological processes, including microbial light sensing and mammalian color vision, relies on protein modifications that alter the spectral characteristics of a bound chromophore. Three different color opsins share the same chromophore, but have three distinct absorptions that together cover the entire visible spectrum, giving rise to trichromatic vision. The influence of opsins on the absorbance of the chromophore has been studied through methods such as model compounds, opsin mutagenesis, and computational modeling. The recent development of rhodopsin mimic that uses small soluble proteins to recapitulate the binding and wavelength tuning of the native opsins provides a new platform for studying protein-regulated spectral tuning. The ability to achieve far-red shifted absorption in the rhodopsin mimic system was attributed to a combination of the lack of a counteranion proximal to the iminium, and a uniformly neutral electrostatic environment surrounding the chromophore. PMID:24323922

  14. Seasonal biology: avian photoreception goes deep.

    PubMed

    Wyse, Cathy; Hazlerigg, David

    2009-08-25

    The avian hypothalamus senses light directly, allowing endocrine physiology to synchronise to seasonal day-length changes. New data implicate the photopigment VA-opsin in this deep brain photoreception. PMID:19706275

  15. THE RHODOPSIN SYSTEM OF THE SQUID

    PubMed Central

    Hubbard, Ruth; St. George, Robert C. C.

    1958-01-01

    Squid rhodopsin (λmax 493 mµ)—like vertebrate rhodopsins—contains a retinene chromophore linked to a protein, opsin. Light transforms rhodopsin to lumi- and metarhodopsin. However, whereas vertebrate metarhodopsin at physiological temperatures decomposes into retinene and opsin, squid metarhodopsin is stable. Light also converts squid metarhodopsin to rhodopsin. Rhodopsin is therefore regenerated from metarhodopsin in the light. Irradiation of rhodopsin or metarhodopsin produces a steady state by promoting the reactions, See PDF for Equation Squid rhodopsin contains neo-b (11-cis) retinene; metarhodopsin all-trans retinene. The interconversion of rhodopsin and metarhodopsin involves only the stereoisomerization of their chromophores. Squid metarhodopsin is a pH indicator, red (λmax 500 mµ) near neutrality, yellow (λmax 380 mµ) in alkaline solution. The two forms—acid and alkaline metarhodopsin—are interconverted according to the equation, Alkaline metarhodopsin + H+ ⇌acid metarhodopsin, with pK 7.7. In both forms, retinene is attached to opsin at the same site as in rhodopsin. However, metarhodopsin decomposes more readily than rhodopsin into retinene and opsin. The opsins apparently fit the shape of the neo-b chromophore. When light isomerizes the chromophore to the all-trans configuration, squid opsin accepts the all-trans chromophore, while vertebrate opsins do not and hence release all-trans retinene. Light triggers vision by affecting directly the shape of the retinene chromophore. This changes its relationship with opsin, so initiating a train of chemical reactions. PMID:13491819

  16. The evolution of color vision in nocturnal mammals.

    PubMed

    Zhao, Huabin; Rossiter, Stephen J; Teeling, Emma C; Li, Chanjuan; Cotton, James A; Zhang, Shuyi

    2009-06-01

    Nonfunctional visual genes are usually associated with species that inhabit poor light environments (aquatic/subterranean/nocturnal), and these genes are believed to have lost function through relaxed selection acting on the visual system. Indeed, the visual system is so adaptive that the reconstruction of intact ancestral opsin genes has been used to reject nocturnality in ancestral primates. To test these assertions, we examined the functionality of the short and medium- to long-wavelength opsin genes in a group of mammals that are supremely adapted to a nocturnal niche: the bats. We sequenced the visual cone opsin genes in 33 species of bat with diverse sensory ecologies and reconstructed their evolutionary history spanning 65 million years. We found that, whereas the long-wave opsin gene was conserved in all species, the short-wave opsin gene has undergone dramatic divergence among lineages. The occurrence of gene defects in the short-wave opsin gene leading to loss of function was found to directly coincide with the origin of high-duty-cycle echolocation and changes in roosting ecology in some lineages. Our findings indicate that both opsin genes have been under purifying selection in the majority bats despite a long history of nocturnality. However, when spectacular losses do occur, these result from an evolutionary sensory modality tradeoff, most likely driven by subtle shifts in ecological specialization rather than a nocturnal lifestyle. Our results suggest that UV color vision plays a considerably more important role in nocturnal mammalian sensory ecology than previously appreciated and highlight the caveat of inferring light environments from visual opsins and vice versa.

  17. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... power supply and electronic circuits that produce a periodic electrical pulse to stimulate the heart... strength, duration, R-wave sensitivity, and other pacing variables. (b) Classification. Class...

  18. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... power supply and electronic circuits that produce a periodic electrical pulse to stimulate the heart... strength, duration, R-wave sensitivity, and other pacing variables. (b) Classification. Class...

  19. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... power supply and electronic circuits that produce a periodic electrical pulse to stimulate the heart... strength, duration, R-wave sensitivity, and other pacing variables. (b) Classification. Class...

  20. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... power supply and electronic circuits that produce a periodic electrical pulse to stimulate the heart... strength, duration, R-wave sensitivity, and other pacing variables. (b) Classification. Class...

  1. Evidence for distributed light sensing in the skin of cuttlefish, Sepia officinalis.

    PubMed

    Mäthger, Lydia M; Roberts, Steven B; Hanlon, Roger T

    2010-10-23

    We report that the skin of cuttlefish, Sepia officinalis, contains opsin transcripts suggesting a possible role of distributed light sensing for dynamic camouflage and signalling. The mRNA coding for opsin from various body regions was amplified and sequenced, and gene expression was detected in fin and ventral skin samples. The amino acid sequence of the opsin polypeptide that these transcripts would produce was identical in retina and fin tissue samples, but the ventral skin opsin transcripts differed by a single amino acid. The diverse camouflage and signalling body patterns of cephalopods are visually controlled, and these findings suggest a possible additional mechanism of light sensing and subsequent skin patterning. Cuttlefish, along with a number of other cephalopod species, have been shown to be colour-blind. Since the opsin in the fin is identical to that of the retina (λmax=492 nm), and the ventral transcripts are also unlikely to be spectrally different, colour discrimination by the skin opsins is unlikely. However, spectral discrimination could be provided by involving other skin structures (chromatophores and iridophores), which produce changeable colours and patterns. This 'distributed sensing' could supplement the otherwise visually driven dynamic camouflage system by assisting with colour or brightness matching to adjacent substrates.

  2. Immunohistochemical evidence for multiple photosystems in box jellyfish.

    PubMed

    Ekström, Peter; Garm, Anders; Pålsson, Jonas; Vihtelic, Thomas S; Nilsson, Dan-Eric

    2008-07-01

    Cubomedusae (box jellyfish) possess a remarkable visual system with 24 eyes distributed in four sensory structures termed rhopalia. Each rhopalium is equipped with six eyes: two pairs of pigment cup eyes and two unpaired lens eyes. Each eye type probably captures specific features of the visual environment. To investigate whether multiple types of photoreceptor cells are present in the rhopalium, and whether the different eye types possess different types of photoreceptors, we have used immunohistochemistry with a range of vertebrate opsin antibodies to label the photoreceptors, and electroretinograms (ERG) to determine their spectral sensitivity. All photoreceptor cells of the two lens eyes of the box jellyfish Tripedalia cystophora and Carybdea marsupialis displayed immunoreactivity for an antibody directed against the zebrafish ultraviolet (UV) opsin, but not against any of eight other rhodopsin or cone opsin antibodies tested. In neither of the two species were the pigment cup eyes immunoreactive for any of the opsin antibodies. ERG analysis of the Carybdea lower lens eyes demonstrated a single spectral sensitivity maximum at 485 nm suggesting the presence of a single opsin type. Our data demonstrate that the lens eyes of box jellyfish utilize a single opsin and are thus color-blind, and that there is probably a different photopigment in the pigment cup eyes. The results support our hypothesis that the lens eyes and the pigment cup eyes of box jellyfish are involved in different and specific visual tasks. PMID:18504619

  3. Human Cone Visual Pigment Deletions Spare Sufficient Photoreceptors to Warrant Gene Therapy

    PubMed Central

    Cideciyan, Artur V.; Hufnagel, Robert B.; Carroll, Joseph; Sumaroka, Alexander; Luo, Xunda; Schwartz, Sharon B.; Dubra, Alfredo; Land, Megan; Michaelides, Michel; Gardner, Jessica C.; Hardcastle, Alison J.; Moore, Anthony T.; Sisk, Robert A.; Ahmed, Zubair M.; Kohl, Susanne

    2013-01-01

    Abstract Human X-linked blue-cone monochromacy (BCM), a disabling congenital visual disorder of cone photoreceptors, is a candidate disease for gene augmentation therapy. BCM is caused by either mutations in the red (OPN1LW) and green (OPN1MW) cone photoreceptor opsin gene array or large deletions encompassing portions of the gene array and upstream regulatory sequences that would predict a lack of red or green opsin expression. The fate of opsin-deficient cone cells is unknown. We know that rod opsin null mutant mice show rapid postnatal death of rod photoreceptors. Using in vivo histology with high-resolution retinal imaging, we studied a cohort of 20 BCM patients (age range 5–58) with large deletions in the red/green opsin gene array. Already in the first years of life, retinal structure was not normal: there was partial loss of photoreceptors across the central retina. Remaining cone cells had detectable outer segments that were abnormally shortened. Adaptive optics imaging confirmed the existence of inner segments at a spatial density greater than that expected for the residual blue cones. The evidence indicates that human cones in patients with deletions in the red/green opsin gene array can survive in reduced numbers with limited outer segment material, suggesting potential value of gene therapy for BCM. PMID:24067079

  4. Encephalic photoreception and phototactic response in the troglobiont Somalian blind cavefish Phreatichthys andruzzii.

    PubMed

    Tarttelin, Emma E; Frigato, Elena; Bellingham, James; Di Rosa, Viviana; Berti, Roberto; Foulkes, Nicholas S; Lucas, Robert J; Bertolucci, Cristiano

    2012-08-15

    Many physiological and behavioural responses to changes in environmental lighting conditions are mediated by extraocular photoreceptors. Here we investigate encephalic photoreception in Phreatichthys andruzzii, a typical cave-dwelling fish showing an extreme phenotype with complete anophthalmy and a reduction in size of associated brain structures. We firstly identified two P. andruzzii photopigments, orthologues of rod opsin and exo-rod opsin. In vitro, both opsins serve as light-absorbing photopigments with λ(max) around 500 nm when reconstituted with an A(1) chromophore. When corrected for the summed absorption from the skin and skull, the spectral sensitivity profiles shifted to longer wavelengths (rod opsin: 521 nm; exo-rod opsin: 520 nm). We next explored the involvement of both opsins in the negative phototaxis reported for this species. A comparison of the spectral sensitivity of the photophobic response with the putative A(2) absorbance spectra corrected for skin/skull absorbance indicates that the A(2) versions of either or both of these pigments could explain the observed behavioural spectral sensitivity. PMID:22837464

  5. The molecular genetics and evolution of colour and polarization vision in stomatopod crustaceans.

    PubMed

    Cronin, T W; Porter, M L; Bok, M J; Wolf, J B; Robinson, P R

    2010-09-01

    Stomatopod crustaceans have the most complex assemblage of visual receptor classes known; retinas of many species are thought to express up to 16 different visual pigments. Physiological studies indicate that stomatopods contain up to six distinct middle-wavelength-sensitive (MWS) photoreceptor classes, suggesting that no more than six different MWS opsin gene copies exist per species. However, we previously reported the unexpected expression of 6-15 different MWS genes in retinas of each of five stomatopod species (Visual Neurosci 26: 255-266, 2009). Here, we present a review of the results reported in this publication, plus new results that shed light on the origins of the diverse colour and polarization visual capabilities of stomatopod crustaceans. Using in situ hybridization of opsins in photoreceptor cells, we obtained new results that support the hypothesis of an ancient functional division separating spatial and polarizational vision from colour vision in the stomatopods. Since evolutionary trace analysis indicates that stomatopod MWS opsins have diverged both with respect to spectral tuning and to cytoplasmic interactions, we have now further analyzed these data in an attempt to uncover the origins, diversity and potential specializations among clades for specific visual functions. The presence of many clusters of highly similar transcripts suggests exuberant opsin gene duplication has occurred in the stomatopods, together with more conservative, ancient gene duplication events within the stem crustacean lineage. Phylogenetic analysis of opsin relatedness suggests that opsins specialized for colour vision have diverged from those devoted to polarization vision, and possibly motion and spatial vision.

  6. An extended family of novel vertebrate photopigments is widely expressed and displays a diversity of function

    PubMed Central

    Davies, Wayne I.L.; Tamai, T. Katherine; Zheng, Lei; Fu, Josephine K.; Rihel, Jason; Foster, Russell G.; Whitmore, David; Hankins, Mark W.

    2015-01-01

    Light affects animal physiology and behavior more than simply through classical visual, image-forming pathways. Nonvisual photoreception regulates numerous biological systems, including circadian entrainment, DNA repair, metabolism, and behavior. However, for the majority of these processes, the photoreceptive molecules involved are unknown. Given the diversity of photophysiological responses, the question arises whether a single photopigment or a greater diversity of proteins within the opsin superfamily detect photic stimuli. Here, a functional genomics approach identified the full complement of photopigments in a highly light-sensitive model vertebrate, the zebrafish (Danio rerio), and characterized their tissue distribution, expression levels, and biochemical properties. The results presented here reveal the presence of 42 distinct genes encoding 10 classical visual photopigments and 32 nonvisual opsins, including 10 novel opsin genes comprising four new pigment classes. Consistent with the presence of light-entrainable circadian oscillators in zebrafish, all adult tissues examined expressed two or more opsins, including several novel opsins. Spectral and electrophysiological analyses of the new opsins demonstrate that they form functional photopigments, each with unique chromophore-binding and wavelength specificities. This study has revealed a remarkable number and diversity of photopigments in zebrafish, the largest number so far discovered for any vertebrate. Found in amphibians, reptiles, birds, and all three mammalian clades, most of these genes are not restricted to teleosts. Therefore, nonvisual light detection is far more complex than initially appreciated, which has significant biological implications in understanding photoreception in vertebrates. PMID:26450929

  7. The contribution of IFSI (Istituto di Fisica dello Spazio Interplanetario) to the ISO project

    NASA Astrophysics Data System (ADS)

    Orfei, R.; Baldetti, P.; Ceccarelli, C.; Cerulli, P.; Lorenzetti, D.

    1990-02-01

    IFSI efforts in the development of the long-wavelength spectrometer (LWS) for the IR Space Observatory (ISO), scheduled for launch in 1993, are briefly reviewed. The LWS operates at 45-200 microns with resolution of about 200 (using a grating alone) or about 10,000 (using a grating with one of two Fabry-Perot etalons). Other LWS parameters include FOV 1.5 arcmin, sensitivity 1 x 10 to the -16th W/sq m, and SNR = 10 for a 10-sec high-resolution observation. Particular attention is given to the LWS data-processing unit (DPU), based on an 80C86 CPU and providing telecommand reception at 80 bps, data telemetry at 32,000 bps, detector sampling once every 0.5 msec, control of gratings and etalons, and continuous self-maintenance. Since the orbit of ISO exposes it to the earth radiation belts for about 2 h/day, the DPU is doubled, and the software is completely relocatable. An overview of the software design and a description of the low-noise dc-dc converter are included.

  8. Molecular genetics of human color vision.

    PubMed

    Deeb, S S; Motulsky, A G

    1996-05-01

    The significant advances in our understanding of color vision has been due to the convergence of information from behavioral and molecular genetic analyses. The molecular biology of the visual pigments; molecular genetic basis of variation in normal and abnormal color vision, and regulation of the genes at the LWS-MWS pigment gene locus are discussed.

  9. The molecular genetics and evolution of red and green color vision in vertebrates.

    PubMed

    Yokoyama, S; Radlwimmer, F B

    2001-08-01

    To better understand the evolution of red-green color vision in vertebrates, we inferred the amino acid sequences of the ancestral pigments of 11 selected visual pigments: the LWS pigments of cave fish (Astyanax fasciatus), frog (Xenopus laevis), chicken (Gallus gallus), chameleon (Anolis carolinensis), goat (Capra hircus), and human (Homo sapiens);and the MWS pigments of cave fish, gecko (Gekko gekko), mouse (Mus musculus), squirrel (Sciurus carolinensis), and human. We constructed these ancestral pigments by introducing the necessary mutations into contemporary pigments and evaluated their absorption spectra using an in vitro assay. The results show that the common ancestor of vertebrates and most other ancestors had LWS pigments. Multiple regression analyses of ancestral and contemporary MWS and LWS pigments show that single mutations S180A, H197Y, Y277F, T285A, A308S, and double mutations S180A/H197Y shift the lambda(max) of the pigments by -7, -28, -8, -15, -27, and 11 nm, respectively. It is most likely that this "five-sites" rule is the molecular basis of spectral tuning in the MWS and LWS pigments during vertebrate evolution.

  10. NASA s Contribution To International Living With A Star

    NASA Astrophysics Data System (ADS)

    Guhathakurta, M.

    The Living With a Star (LWS) program seeks to develop the scientific understanding necessary to effectively address those aspects of the connected Sun-Earth system that directly affect life and society. It is the study of the physics of solar variability and its effects. Why do we care? We have increased dependence on space-based systems, soon a permanent presence of humans in Earth orbit, and eventually human voyages beyond Earth. Solar variability can affect space systems, human space flight, electric power grids, GPS signals, high frequency radio communications, long range radar, mi- croelectronics and humans in high altitude spacecraft, and terrestrial climate. Prudence demands that we fully understand the space environment affecting these systems. In addition, we should fully understand both natural and anthropogenic causes of global climate change. To address these questions NASA formulated two groups of mission scenarios in the LWS Space Weather Research Network: (a) solar dynamics elements (Solar Dynamics Observatory/Sentinels) that observe the Sun and track disturbances originating there and (b) geospace dynamics elements (Geospace Missions Network) consisting of con- stellations of small satellites located in key regions around the Earth to measure down- stream effects. A coherent effort to develop analytic and data reduction techniques targeting scientific problems relevant to utilitarian needs are being addressed by the Targeted Research &Technology (TR&T) program. Activities in this area not only will allow development of new theories and improvements of models, but also will form the basis for new observational initiatives to be undertaken later in the program. Finally, Space Environment Testbeds is dedicated towards research on instruments &spacecraft systems for future missions in severe radiation environments. Although originally a U.S. initiative, the problems that LWS addresses are global in nature. Thus, it is recognized that LWS will be more

  11. Fed and fasted chicks from lines divergently selected for low or high body weight have differential hypothalamic appetite-associated factor mRNA expression profiles.

    PubMed

    Yi, Jiaqing; Gilbert, Elizabeth R; Siegel, Paul B; Cline, Mark A

    2015-06-01

    We have demonstrated that chicken lines which have undergone intense divergent selection for either low (LWS) or high (HWS) body weight (anorexic and obese containing, respectively) have differential food intake threshold responses to a range of intracerebroventricular injected neurotransmitters. The study reported herein was designed to measure endogenous appetite-associated factor mRNA profiles between these lines in an effort to further understand the molecular mechanisms involved in their differential eating patterns. Whole hypothalamus was collected from 5 day-old chicks that had been fasted for 180 min or had free access to food. Total RNA was isolated, reverse transcribed, and real-time PCR performed. Although mRNAs encoding orexigenic neuropeptides including agouti-related peptide, neuropeptide Y (NPY), prolactin-releasing peptide, and visfatin did not differ in expression between the lines, NPY receptor 5 mRNA was greater in fed LWS than HWS chicks, but fasting decreased the magnitude of difference. Anorexigenic factors including amylin, corticotropin releasing factor (CRF) and ghrelin were not differentially expressed between lines, while mRNA abundance of calcitonin, CRF receptor 1, leptin receptor, neuropeptide S, melanocortin receptor 3, and oxytocin were greater in LWS than HWS chicks. Pro-opiomelanocortin mRNA was lower in LWS than HWS chicks, while fasting decreased its expression in both lines. These results suggest that there are differences in gene expression of appetite-associated factors between LWS and HWS lines that might be associated with their differential food intake and thus contribute to differences in severity of anorexia, body weight, adiposity, and development of obesity. PMID:25677648

  12. Photoreceptor topography and spectral sensitivity in the common brushtail possum (Trichosurus vulpecula).

    PubMed

    Vlahos, Lisa M; Knott, Ben; Valter, Krisztina; Hemmi, Jan M

    2014-10-15

    Marsupials are believed to be the only non-primate mammals with both trichromatic and dichromatic color vision. The diversity of color vision systems present in marsupials remains mostly unexplored. Marsupials occupy a diverse range of habitats, which may have led to considerable variation in the presence, density, distribution, and spectral sensitivity of retinal photoreceptors. In this study we analyzed the distribution of photoreceptors in the common brushtail possum (Trichosurus vulpecula). Immunohistochemistry in wholemounts revealed three cone subpopulations recognized within two spectrally distinct cone classes. Long-wavelength sensitive (LWS) single cones were the largest cone subgroup (67-86%), and formed a weak horizontal visual streak (peak density 2,106 ± 435/mm2) across the central retina. LWS double cones were strongly concentrated ventrally (569 ± 66/mm2), and created a "negative" visual streak (134 ± 45/mm2) in the central retina. The strong regionalization between LWS cone topographies suggests differing visual functions. Short-wavelength sensitive (SWS) cones were present in much lower densities (3-10%), mostly located ventrally (179 ± 101/mm2). A minority population of cones (0-2.4%) remained unlabeled by both SWS- and LWS-specific antibodies, and may represent another cone population. Microspectrophotometry of LWS cone and rod visual pigments shows peak spectral sensitivities at 544 nm and 500 nm, respectively. Cone to ganglion cell convergences remain low and constant across the retina, thereby maintaining good visual acuity, but poor contrast sensitivity during photopic vision. Given that brushtail possums are so strongly nocturnal, we hypothesize that their acuity is set by the scotopic visual system, and have minimized the number of cones necessary to serve the ganglion cells for photopic vision. PMID:24737644

  13. Primate genotyping via high resolution melt analysis: rapid and reliable identification of color vision status in wild lemurs.

    PubMed

    Jacobs, Rachel L; Spriggs, Amanda N; MacFie, Tammie S; Baden, Andrea L; Irwin, Mitchell T; Wright, Patricia C; Louis, Edward E; Lawler, Richard R; Mundy, Nicholas I; Bradley, Brenda J

    2016-10-01

    Analyses of genetic polymorphisms can aid our understanding of intra- and interspecific variation in primate sociality, ecology, and behavior. Studies of primate opsin genes are prime examples of this, as single nucleotide variants (SNVs) in the X-linked opsin gene underlie variation in color vision. For primate species with polymorphic trichromacy, genotyping opsin SNVs can generally indicate whether individual primates are red-green color-blind (denoted homozygous M or homozygous L) or have full trichromatic color vision (heterozygous ML). Given the potential influence of color vision on behavior and fitness, characterizing the color vision status of study subjects is becoming commonplace for many primate field projects. Such studies traditionally involve a multi-step sequencing-based method that can be costly and time-consuming. Here we present a new reliable, rapid, and relatively inexpensive method for characterizing color vision in primate populations using high resolution melt analysis (HRMA). Using lemurs as a case study, we characterized variation at exons 3 and/or 5 of the X-linked opsin gene for 87 individuals representing nine species. We scored opsin genotypes and color vision status using both traditional sequencing-based methods as well as our novel melting-curve based HRMA protocol. For each species, the melting curves of varying genotypes (homozygous M, homozygous L, heterozygous ML) differed in melting temperature and/or shape. Melting curves for each sample were consistent across replicates, and genotype-specific melting curves were consistent across DNA sources (blood vs. feces). We show that opsin genotypes can be quickly and reliably scored using HRMA once lab-specific reference curves have been developed based on known genotypes. Although the protocol presented here focuses on genotyping lemur opsin loci, we also consider the larger potential for applying this approach to various types of genetic studies of primate populations. PMID:27271303

  14. Primate genotyping via high resolution melt analysis: rapid and reliable identification of color vision status in wild lemurs.

    PubMed

    Jacobs, Rachel L; Spriggs, Amanda N; MacFie, Tammie S; Baden, Andrea L; Irwin, Mitchell T; Wright, Patricia C; Louis, Edward E; Lawler, Richard R; Mundy, Nicholas I; Bradley, Brenda J

    2016-10-01

    Analyses of genetic polymorphisms can aid our understanding of intra- and interspecific variation in primate sociality, ecology, and behavior. Studies of primate opsin genes are prime examples of this, as single nucleotide variants (SNVs) in the X-linked opsin gene underlie variation in color vision. For primate species with polymorphic trichromacy, genotyping opsin SNVs can generally indicate whether individual primates are red-green color-blind (denoted homozygous M or homozygous L) or have full trichromatic color vision (heterozygous ML). Given the potential influence of color vision on behavior and fitness, characterizing the color vision status of study subjects is becoming commonplace for many primate field projects. Such studies traditionally involve a multi-step sequencing-based method that can be costly and time-consuming. Here we present a new reliable, rapid, and relatively inexpensive method for characterizing color vision in primate populations using high resolution melt analysis (HRMA). Using lemurs as a case study, we characterized variation at exons 3 and/or 5 of the X-linked opsin gene for 87 individuals representing nine species. We scored opsin genotypes and color vision status using both traditional sequencing-based methods as well as our novel melting-curve based HRMA protocol. For each species, the melting curves of varying genotypes (homozygous M, homozygous L, heterozygous ML) differed in melting temperature and/or shape. Melting curves for each sample were consistent across replicates, and genotype-specific melting curves were consistent across DNA sources (blood vs. feces). We show that opsin genotypes can be quickly and reliably scored using HRMA once lab-specific reference curves have been developed based on known genotypes. Although the protocol presented here focuses on genotyping lemur opsin loci, we also consider the larger potential for applying this approach to various types of genetic studies of primate populations.

  15. The evolution of complexity in the visual systems of stomatopods: insights from transcriptomics.

    PubMed

    Porter, Megan L; Speiser, Daniel I; Zaharoff, Alexander K; Caldwell, Roy L; Cronin, Thomas W; Oakley, Todd H

    2013-07-01

    Stomatopod crustaceans have complex visual systems containing up to 16 different spectral classes of photoreceptors, more than described for any other animal. A previous molecular study of this visual system focusing on the expression of opsin genes found many more transcripts than predicted on the basis of physiology, but was unable to fully document the expressed opsin genes responsible for this diversity. Furthermore, questions remain about how other components of phototransduction cascades are involved. This study continues prior investigations by examining the molecular function of stomatopods' visual systems using new whole eye 454 transcriptome datasets from two species, Hemisquilla californiensis and Pseudosquilla ciliata. These two species represent taxonomic diversity within the order Stomatopoda, as well as variations in the anatomy and physiology of the visual system. Using an evolutionary placement algorithm to annotate the transcriptome, we identified the presence of nine components of the stomatopods' G-protein-coupled receptor (GPCR) phototransduction cascade, including two visual arrestins, subunits of the heterotrimeric G-protein, phospholipase C, transient receptor potential channels, and opsin transcripts. The set of expressed transduction genes suggests that stomatopods utilize a Gq-mediated GPCR-signaling cascade. The most notable difference in expression between the phototransduction cascades of the two species was the number of opsin contigs recovered, with 18 contigs found in retinas of H. californiensis, and 49 contigs in those of P. ciliata. Based on phylogenetic placement and fragment overlap, these contigs were estimated to represent 14 and 33 expressed transcripts, respectively. These data expand the known opsin diversity in stomatopods to clades of arthropod opsins that are sensitive to short wavelengths and ultraviolet wavelengths and confirm the results of previous studies recovering more opsin transcripts than spectrally distinct

  16. Instream wood in a steep headwater channel: geomorphic significance of large and small wood

    NASA Astrophysics Data System (ADS)

    Galia, Tomáš; Šilhán, Karel; Ruiz-Villanueva, Virginia; Tichavský, Radek

    2016-04-01

    Besides the well-known significance of large wood (LW), also small woody pieces (SW; here defined as pieces with dimensions at least 0.5 m length and 0.05 m diameter), can play an important role in steep narrow headwaters. We inventoried instream wood in the 0.4 km long Mazák headwater channel, Moravskoslezské Beskydy Mts, Czech Republic (2LWs and 199 SWs. In addition, dendrogeomorphic dating of 36 LWs and 17 SWs was performed to obtain residence time of local instream wood and to provide some insights into its mobility. Practically all investigated pieces were European beeches (Fagus sylvatica L.); only two pieces were Norway spruces (Picea abies (L.) Karst.). First results showed an increase in the number of LWs in channel-reaches confined by the steepest adjacent hillslopes (especially at 0.15-0.20 km). Increasing downstream amount of SW most likely reflected transport processes in the stream, and the later deposition of SWs on the lowest channel gradients. Also LWs and SWs in the downstream channel-reaches were more decayed than wood presented in the upper reaches. The orientation of instream wood was connected with its length and stability, and LWs longer than 5 m were usually attached to adjacent hillslopes. Pieces longer than 2 m, which were unattached or were somehow stabilized in the channel bed, had often orientation of 0° or 337°. LWs were mostly unattached in the upstream channel-reaches, while often stabilized by adjacent hillslopes in the middle part. At 0.05-0.10 km, there were also many logs stabilized by

  17. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides.

    PubMed

    Ramirez, M Desmond; Oakley, Todd H

    2015-05-15

    Cephalopods are renowned for changing the color and pattern of their skin for both camouflage and communication. Yet, we do not fully understand how cephalopods control the pigmented chromatophore organs in their skin and change their body pattern. Although these changes primarily rely on eyesight, we found that light causes chromatophores to expand in excised pieces of Octopus bimaculoides skin. We call this behavior light-activated chromatophore expansion (or LACE). To uncover how octopus skin senses light, we used antibodies against r-opsin phototransduction proteins to identify sensory neurons that express r-opsin in the skin. We hypothesized that octopus LACE relies on the same r-opsin phototransduction cascade found in octopus eyes. By creating an action spectrum for the latency to LACE, we found that LACE occurred most quickly in response to blue light. We fit our action spectrum data to a standard opsin curve template and estimated the λmax of LACE to be 480 nm. Consistent with our hypothesis, the maximum sensitivity of the light sensors underlying LACE closely matches the known spectral sensitivity of opsin from octopus eyes. LACE in isolated preparations suggests that octopus skin is intrinsically light sensitive and that this dispersed light sense might contribute to their unique and novel patterning abilities. Finally, our data suggest that a common molecular mechanism for light detection in eyes may have been co-opted for light sensing in octopus skin and then used for LACE.

  18. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides

    PubMed Central

    Ramirez, M. Desmond; Oakley, Todd H.

    2015-01-01

    ABSTRACT Cephalopods are renowned for changing the color and pattern of their skin for both camouflage and communication. Yet, we do not fully understand how cephalopods control the pigmented chromatophore organs in their skin and change their body pattern. Although these changes primarily rely on eyesight, we found that light causes chromatophores to expand in excised pieces of Octopus bimaculoides skin. We call this behavior light-activated chromatophore expansion (or LACE). To uncover how octopus skin senses light, we used antibodies against r-opsin phototransduction proteins to identify sensory neurons that express r-opsin in the skin. We hypothesized that octopus LACE relies on the same r-opsin phototransduction cascade found in octopus eyes. By creating an action spectrum for the latency to LACE, we found that LACE occurred most quickly in response to blue light. We fit our action spectrum data to a standard opsin curve template and estimated the λmax of LACE to be 480 nm. Consistent with our hypothesis, the maximum sensitivity of the light sensors underlying LACE closely matches the known spectral sensitivity of opsin from octopus eyes. LACE in isolated preparations suggests that octopus skin is intrinsically light sensitive and that this dispersed light sense might contribute to their unique and novel patterning abilities. Finally, our data suggest that a common molecular mechanism for light detection in eyes may have been co-opted for light sensing in octopus skin and then used for LACE. PMID:25994633

  19. Thyroid Hormone Signaling and Cone Photoreceptor Viability.

    PubMed

    Ma, Hongwei; Ding, Xi-Qin

    2016-01-01

    Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and apoptosis. In the retina, TH signaling plays a central role in cone opsin expression. TH signaling inhibits S opsin expression, stimulates M opsin expression, and promotes dorsal-ventral opsin patterning. TH signaling has also been associated with cone photoreceptor viability. Treatment with thyroid hormone triiodothyronine (T3) or induction of high T3 by deleting the hormone-inactivating enzyme type 3 iodothyronine deiodinase (DIO3) causes cone death in mice. This effect is reversed by deletion of the TH receptor (TR) gene. Consistent with the T3 treatment effect, suppressing TH signaling preserves cones in mouse models of retinal degeneration. The regulation of cone survival by TH signaling appears to be independent of its regulatory role in cone opsin expression. The mechanism by which TH signaling regulates cone viability remains to be identified. The current understanding of TH signaling regulation in photoreceptor viability suggests that suppressing TH signaling locally in the retina may represent a novel strategy for retinal degeneration management. PMID:26427466

  20. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides.

    PubMed

    Ramirez, M Desmond; Oakley, Todd H

    2015-05-15

    Cephalopods are renowned for changing the color and pattern of their skin for both camouflage and communication. Yet, we do not fully understand how cephalopods control the pigmented chromatophore organs in their skin and change their body pattern. Although these changes primarily rely on eyesight, we found that light causes chromatophores to expand in excised pieces of Octopus bimaculoides skin. We call this behavior light-activated chromatophore expansion (or LACE). To uncover how octopus skin senses light, we used antibodies against r-opsin phototransduction proteins to identify sensory neurons that express r-opsin in the skin. We hypothesized that octopus LACE relies on the same r-opsin phototransduction cascade found in octopus eyes. By creating an action spectrum for the latency to LACE, we found that LACE occurred most quickly in response to blue light. We fit our action spectrum data to a standard opsin curve template and estimated the λmax of LACE to be 480 nm. Consistent with our hypothesis, the maximum sensitivity of the light sensors underlying LACE closely matches the known spectral sensitivity of opsin from octopus eyes. LACE in isolated preparations suggests that octopus skin is intrinsically light sensitive and that this dispersed light sense might contribute to their unique and novel patterning abilities. Finally, our data suggest that a common molecular mechanism for light detection in eyes may have been co-opted for light sensing in octopus skin and then used for LACE. PMID:25994633

  1. A Fluorescence-based Assay of Phospholipid Scramblase Activity.

    PubMed

    Ploier, Birgit; Menon, Anant K

    2016-01-01

    Scramblases translocate phospholipids across the membrane bilayer bidirectionally in an ATP-independent manner. The first scramblase to be identified and biochemically verified was opsin, the apoprotein of the photoreceptor rhodopsin. Rhodopsin is a G protein-coupled receptor localized in rod photoreceptor disc membranes of the retina where it is responsible for the perception of light. Rhodopsin's scramblase activity does not depend on its ligand 11-cis-retinal, i.e., the apoprotein opsin is also active as a scramblase. Although constitutive and regulated phospholipid scrambling play an important role in cell physiology, only a few phospholipid scramblases have been identified so far besides opsin. Here we describe a fluorescence-based assay of opsin's scramblase activity. Opsin is reconstituted into large unilamellar liposomes composed of phosphatidylcholine, phosphatidylglycerol and a trace quantity of fluorescent NBD-labeled PC (1-palmitoyl-2-{6-[7-nitro-2-1,3-benzoxadiazole-4-yl)amino]hexanoyl}-sn-glycero-3-phosphocholine). Scramblase activity is determined by measuring the extent to which NBD-PC molecules located in the inner leaflet of the vesicle are able to access the outer leaflet where their fluorescence is chemically eliminated by a reducing agent that cannot cross the membrane. The methods we describe have general applicability and can be used to identify and characterize scramblase activities of other membrane proteins. PMID:27684510

  2. An explicit signature of balancing selection for color-vision variation in new world monkeys.

    PubMed

    Hiwatashi, Tomohide; Okabe, Yugo; Tsutsui, Toko; Hiramatsu, Chihiro; Melin, Amanda D; Oota, Hiroki; Schaffner, Colleen M; Aureli, Filippo; Fedigan, Linda M; Innan, Hideki; Kawamura, Shoji

    2010-02-01

    Color vision is an important characteristic of primates and, intriguingly, Neotropical monkeys are highly polymorphic for this trait. Recent field studies have challenged the conventional view that trichromatic color vision is more adaptive than dichromatic color vision. No study has investigated the pattern of genetic variation in the long to middle wavelength-sensitive (L-M or red-green) opsin gene as compared with that of other genomic regions (neutral references) in wild populations of New World monkeys to look for the signature of natural selection. Here, we report such a study conducted on spider monkeys and capuchin monkeys inhabiting Santa Rosa National Park, Costa Rica. The nucleotide sequence of the L-M opsin gene was more polymorphic than the sequences of the neutral references, although the opsin-gene sequences were not more divergent between the two species than were the sequences of the neutral references. In a coalescence simulation that took into account the observed nucleotide diversity of the neutral references, the Tajima's D value of the L-M opsin gene deviated significantly in a positive direction from the expected range. These results are the first to statistically demonstrate balancing selection acting on the polymorphic L-M opsin gene of New World monkeys. Taking the results of behavioral and genetic studies together, the balancing selection we detected may indicate that coexistence of different color-vision types in the same population, also characteristic of humans, is adaptive. PMID:19861643

  3. An explicit signature of balancing selection for color-vision variation in new world monkeys.

    PubMed

    Hiwatashi, Tomohide; Okabe, Yugo; Tsutsui, Toko; Hiramatsu, Chihiro; Melin, Amanda D; Oota, Hiroki; Schaffner, Colleen M; Aureli, Filippo; Fedigan, Linda M; Innan, Hideki; Kawamura, Shoji

    2010-02-01

    Color vision is an important characteristic of primates and, intriguingly, Neotropical monkeys are highly polymorphic for this trait. Recent field studies have challenged the conventional view that trichromatic color vision is more adaptive than dichromatic color vision. No study has investigated the pattern of genetic variation in the long to middle wavelength-sensitive (L-M or red-green) opsin gene as compared with that of other genomic regions (neutral references) in wild populations of New World monkeys to look for the signature of natural selection. Here, we report such a study conducted on spider monkeys and capuchin monkeys inhabiting Santa Rosa National Park, Costa Rica. The nucleotide sequence of the L-M opsin gene was more polymorphic than the sequences of the neutral references, although the opsin-gene sequences were not more divergent between the two species than were the sequences of the neutral references. In a coalescence simulation that took into account the observed nucleotide diversity of the neutral references, the Tajima's D value of the L-M opsin gene deviated significantly in a positive direction from the expected range. These results are the first to statistically demonstrate balancing selection acting on the polymorphic L-M opsin gene of New World monkeys. Taking the results of behavioral and genetic studies together, the balancing selection we detected may indicate that coexistence of different color-vision types in the same population, also characteristic of humans, is adaptive.

  4. Molecular evolution of vertebrate visual pigments.

    PubMed

    Yokoyama, S

    2000-07-01

    Dramatic improvement of our understanding of the genetic basis of vision was brought by the molecular characterization of the bovine rhodopsin gene and the human rhodopsin and color opsin genes (Nathans and Hogness, 1983; Nathans et al., 1984, 1986a,b). The availability of cDNA clones from these studies has facilitated the isolation of retinal and nonretinal opsin genes and cDNA clones from a large variety of species. Today, the number of genomic and cDNA clones of opsin genes isolated from different vertebrate species exceeds 100 and is increasing rapidly. The opsin gene sequences reveal the importance of the origin and differentiation of various opsins and visual pigments. To understand the molecular genetic basis of spectral tuning of visual pigments, it is essential to establish correlations between a series of the sequences of visual pigments and their lambda(max) values. The potentially important amino acid changes identified in this way have to be tested whether they are in fact responsible for the lambda(max)-shifts using site-directed mutagenesis and cultured cells. A major goal of molecular evolutionary genetics is to understand the molecular mechanisms involved in functional adaptations of organisms to different environments, including the mechanisms of the regulation of the spectral absorption. Therefore, both molecular evolutionary analyses of visual pigments and vision science have an important common goal.

  5. Evolution and Mechanism of Spectral Tuning of Blue-Absorbing Visual Pigments in Butterflies

    PubMed Central

    Wakakuwa, Motohiro; Terakita, Akihisa; Koyanagi, Mitsumasa; Stavenga, Doekele G.; Shichida, Yoshinori; Arikawa, Kentaro

    2010-01-01

    The eyes of flower-visiting butterflies are often spectrally highly complex with multiple opsin genes generated by gene duplication, providing an interesting system for a comparative study of color vision. The Small White butterfly, Pieris rapae, has duplicated blue opsins, PrB and PrV, which are expressed in the blue (λmax = 453 nm) and violet receptors (λmax = 425 nm), respectively. To reveal accurate absorption profiles and the molecular basis of the spectral tuning of these visual pigments, we successfully modified our honeybee opsin expression system based on HEK293s cells, and expressed PrB and PrV, the first lepidopteran opsins ever expressed in cultured cells. We reconstituted the expressed visual pigments in vitro, and analysed them spectroscopically. Both reconstituted visual pigments had two photointerconvertible states, rhodopsin and metarhodopsin, with absorption peak wavelengths 450 nm and 485 nm for PrB and 420 nm and 482 nm for PrV. We furthermore introduced site-directed mutations to the opsins and found that two amino acid substitutions, at positions 116 and 177, were crucial for the spectral tuning. This tuning mechanism appears to be specific for invertebrates and is partially shared by other pierid and lycaenid butterfly species. PMID:21124838

  6. The Eyes Have It: Regulatory and Structural Changes Both Underlie Cichlid Visual Pigment Diversity

    PubMed Central

    Marshall, N. Justin; Cronin, Thomas W.; Seehausen, Ole; Carleton, Karen L.

    2009-01-01

    A major goal of evolutionary biology is to unravel the molecular genetic mechanisms that underlie functional diversification and adaptation. We investigated how changes in gene regulation and coding sequence contribute to sensory diversification in two replicate radiations of cichlid fishes. In the clear waters of Lake Malawi, differential opsin expression generates diverse visual systems, with sensitivities extending from the ultraviolet to the red regions of the spectrum. These sensitivities fall into three distinct clusters and are correlated with foraging habits. In the turbid waters of Lake Victoria, visual sensitivity is constrained to longer wavelengths, and opsin expression is correlated with ambient light. In addition to regulatory changes, we found that the opsins coding for the shortest- and longest-wavelength visual pigments have elevated numbers of potentially functional substitutions. Thus, we present a model of sensory evolution in which both molecular genetic mechanisms work in concert. Changes in gene expression generate large shifts in visual pigment sensitivity across the collective opsin spectral range, but changes in coding sequence appear to fine-tune visual pigment sensitivity at the short- and long-wavelength ends of this range, where differential opsin expression can no longer extend visual pigment sensitivity. PMID:20027211

  7. Regulation by light in Fusarium.

    PubMed

    Avalos, Javier; Estrada, Alejandro F

    2010-11-01

    The genus Fusarium stands out as research model for pathogenesis and secondary metabolism. Light stimulates the production of some Fusarium metabolites, such as the carotenoids, and in many species it influences the production of asexual spores and sexual fruiting bodies. As found in other fungi with well-known photoresponses, the Fusarium genomes contain several genes for photoreceptors, among them a set of White Collar (WC) proteins, a cryptochrome, a photolyase, a phytochrome and two presumably photoactive opsins. The mutation of the opsin genes produced no apparent phenotypic alterations, but the loss of the only WC-1 orthologous protein eliminated the photoinduced expression of the photolyase and opsin genes. In contrast to other carotenogenic species, lack of the WC photoreceptor did not impede the light-induced accumulation of carotenoids, but produced alterations in conidiation, animal pathogenicity and nitrogen-regulated secondary metabolism. The regulation and functional role of other Fusarium photoreceptors is currently under investigation.

  8. Molecular evidence for color discrimination in the Atlantic sand fiddler crab, Uca pugilator

    PubMed Central

    Rajkumar, Premraj; Rollmann, Stephanie M.; Cook, Tiffany A.; Layne, John E.

    2010-01-01

    SUMMARY Fiddler crabs are intertidal brachyuran crabs that belong to the genus Uca. Approximately 97 different species have been identified, and several of these live sympatrically. Many have species-specific body color patterns that may act as signals for intra- and interspecific communication. To understand the behavioral and ecological role of this coloration we must know whether fiddler crabs have the physiological capacity to perceive color cues. Using a molecular approach, we identified the opsin-encoding genes and determined their expression patterns across the eye of the sand fiddler crab, Uca pugilator. We identified three different opsin-encoding genes (UpRh1, UpRh2 and UpRh3). UpRh1 and UpRh2 are highly related and have similarities in their amino acid sequences to other arthropod long- and medium-wavelength-sensitive opsins, whereas UpRh3 is similar to other arthropod UV-sensitive opsins. All three opsins are expressed in each ommatidium, in an opsin-specific pattern. UpRh3 is present only in the R8 photoreceptor cell, whereas UpRh1 and UpRh2 are present in the R1-7 cells, with UpRh1 expression restricted to five cells and UpRh2 expression present in three cells. Thus, one photoreceptor in every ommatidium expresses both UpRh1 and UpRh2, providing another example of sensory receptor coexpression. These results show that U. pugilator has the basic molecular machinery for color perception, perhaps even trichromatic vision. PMID:21113005

  9. Sexual dimorphism in the compound eye of Heliconius erato: a nymphalid butterfly with at least five spectral classes of photoreceptor.

    PubMed

    McCulloch, Kyle J; Osorio, Daniel; Briscoe, Adriana D

    2016-08-01

    Most butterfly families expand the number of spectrally distinct photoreceptors in their compound eye by opsin gene duplications together with lateral filter pigments; however, most nymphalid genera have limited diversity, with only three or four spectral types of photoreceptor. Here, we examined the spatial pattern of opsin expression and photoreceptor spectral sensitivities in Heliconius erato, a nymphalid with duplicate ultraviolet opsin genes, UVRh1 and UVRh2 We found that the H. erato compound eye is sexually dimorphic. Females express the two UV opsin proteins in separate photoreceptors, but males do not express UVRh1. Intracellular recordings confirmed that females have three short wavelength-sensitive photoreceptors (λmax=356, ∼390 and 470 nm), while males have two (λmax=390 and ∼470 nm). We also found two long wavelength-sensitive photoreceptors (green, λmax∼555 nm, and red, λmax∼600 nm), which express the same LW opsin. The red cell's shifted sensitivity is probably due to perirhabdomal filtering pigments. Sexual dimorphism of the UV-absorbing rhodopsins may reflect the females' need to discriminate conspecifics from co-mimics. Red-green color vision may be used to detect differences in red coloration on Heliconius wings, or for host-plant identification. Among nymphalids so far investigated, only H. erato is known to possess five spectral classes of photoreceptor; sexual dimorphism of the eye via suppression of one class of opsin (here UVRh1 in males) has not - to our knowledge - been reported in any animal. PMID:27247318

  10. PyRhO: A Multiscale Optogenetics Simulation Platform

    PubMed Central

    Evans, Benjamin D.; Jarvis, Sarah; Schultz, Simon R.; Nikolic, Konstantin

    2016-01-01

    Optogenetics has become a key tool for understanding the function of neural circuits and controlling their behavior. An array of directly light driven opsins have been genetically isolated from several families of organisms, with a wide range of temporal and spectral properties. In order to characterize, understand and apply these opsins, we present an integrated suite of open-source, multi-scale computational tools called PyRhO. The purpose of developing PyRhO is three-fold: (i) to characterize new (and existing) opsins by automatically fitting a minimal set of experimental data to three-, four-, or six-state kinetic models, (ii) to simulate these models at the channel, neuron and network levels, and (iii) provide functional insights through model selection and virtual experiments in silico. The module is written in Python with an additional IPython/Jupyter notebook based GUI, allowing models to be fit, simulations to be run and results to be shared through simply interacting with a webpage. The seamless integration of model fitting algorithms with simulation environments (including NEURON and Brian2) for these virtual opsins will enable neuroscientists to gain a comprehensive understanding of their behavior and rapidly identify the most suitable variant for application in a particular biological system. This process may thereby guide not only experimental design and opsin choice but also alterations of the opsin genetic code in a neuro-engineering feed-back loop. In this way, we expect PyRhO will help to significantly advance optogenetics as a tool for transforming biological sciences. PMID:27148037

  11. Characterization of Channelrhodopsin and Archaerhodopsin in Cholinergic Neurons of Cre-Lox Transgenic Mice

    PubMed Central

    Hedrick, Tristan; Danskin, Bethanny; Larsen, Rylan S.; Ollerenshaw, Doug; Groblewski, Peter; Valley, Matthew; Olsen, Shawn; Waters, Jack

    2016-01-01

    The study of cholinergic signaling in the mammalian CNS has been greatly facilitated by the advent of mouse lines that permit the expression of reporter proteins, such as opsins, in cholinergic neurons. However, the expression of opsins could potentially perturb the physiology of opsin-expressing cholinergic neurons or mouse behavior. Indeed, the published literature includes examples of cellular and behavioral perturbations in preparations designed to drive expression of opsins in cholinergic neurons. Here we investigate expression of opsins, cellular physiology of cholinergic neurons and behavior in two mouse lines, in which channelrhodopsin-2 (ChR2) and archaerhodopsin (Arch) are expressed in cholinergic neurons using the Cre-lox system. The two mouse lines were generated by crossing ChAT-Cre mice with Cre-dependent reporter lines Ai32(ChR2-YFP) and Ai35(Arch-GFP). In most mice from these crosses, we observed expression of ChR2 and Arch in only cholinergic neurons in the basal forebrain and in other putative cholinergic neurons in the forebrain. In small numbers of mice, off-target expression occurred, in which fluorescence did not appear limited to cholinergic neurons. Whole-cell recordings from fluorescently-labeled basal forebrain neurons revealed that both proteins were functional, driving depolarization (ChR2) or hyperpolarization (Arch) upon illumination, with little effect on passive membrane properties, spiking pattern or spike waveform. Finally, performance on a behavioral discrimination task was comparable to that of wild-type mice. Our results indicate that ChAT-Cre x reporter line crosses provide a simple, effective resource for driving indicator and opsin expression in cholinergic neurons with few adverse consequences and are therefore an valuable resource for studying the cholinergic system. PMID:27243816

  12. PyRhO: A Multiscale Optogenetics Simulation Platform.

    PubMed

    Evans, Benjamin D; Jarvis, Sarah; Schultz, Simon R; Nikolic, Konstantin

    2016-01-01

    Optogenetics has become a key tool for understanding the function of neural circuits and controlling their behavior. An array of directly light driven opsins have been genetically isolated from several families of organisms, with a wide range of temporal and spectral properties. In order to characterize, understand and apply these opsins, we present an integrated suite of open-source, multi-scale computational tools called PyRhO. The purpose of developing PyRhO is three-fold: (i) to characterize new (and existing) opsins by automatically fitting a minimal set of experimental data to three-, four-, or six-state kinetic models, (ii) to simulate these models at the channel, neuron and network levels, and (iii) provide functional insights through model selection and virtual experiments in silico. The module is written in Python with an additional IPython/Jupyter notebook based GUI, allowing models to be fit, simulations to be run and results to be shared through simply interacting with a webpage. The seamless integration of model fitting algorithms with simulation environments (including NEURON and Brian2) for these virtual opsins will enable neuroscientists to gain a comprehensive understanding of their behavior and rapidly identify the most suitable variant for application in a particular biological system. This process may thereby guide not only experimental design and opsin choice but also alterations of the opsin genetic code in a neuro-engineering feed-back loop. In this way, we expect PyRhO will help to significantly advance optogenetics as a tool for transforming biological sciences. PMID:27148037

  13. Phototransduction Motifs and Variations

    PubMed Central

    Yau, King-Wai; Hardie, Roger C.

    2010-01-01

    Seeing begins in the photoreceptors, where light is absorbed and signaled to the nervous system. Throughout the animal kingdom, photoreceptors are diverse in design and purpose. Nonetheless, phototransduction—the mechanism by which absorbed photons are converted into an electrical response—is highly conserved and based almost exclusively on a single class of photoproteins, the opsins. In this Review, we survey the G protein-coupled signaling cascades downstream from opsins in photoreceptors across vertebrate and invertebrate species, noting their similarities as well as differences. PMID:19837030

  14. ANTENNA RADIATION NEAR THE LOCAL PLASMA FREQUENCY BY LANGMUIR WAVE EIGENMODES

    SciTech Connect

    Malaspina, David M.; Cairns, Iver H.; Ergun, Robert E. E-mail: cairns@physics.usyd.edu.au

    2012-08-10

    Langmuir waves (LWs) in the solar wind are generated by electron beams associated with solar flares, interplanetary shock fronts, planetary bow shocks, and magnetic holes. In principle, LWs localized as eigenmodes of density fluctuations can emit electromagnetic (EM) radiation by an antenna mechanism near the local plasma frequency f{sub p} and twice the local plasma frequency. In this work, analytic expressions are derived for the radiated electric and magnetic fields and power generated near f{sub p} by LW eigenmodes. The EM wave power emitted near f{sub p} is predicted as a function of the eigenmode length scale L, maximum electric field, driving electron beam speed, and the ambient plasma density and temperature. The escape to a distant observer of f{sub p} radiation from a localized Langmuir eigenmode is also briefly explored as a function of the plasma conditions.

  15. The Stroop effect in English-Japanese bilinguals: the effect of phonological similarity.

    PubMed

    Sumiya, Hiromi; Healy, Alice F

    2008-01-01

    English-Japanese bilinguals performed a Stroop color-word interference task with both English and Japanese stimuli and responded in both English and Japanese. The Japanese stimuli were either the traditional color terms (TCTs) written in Hiragana or loanwords (LWs) from English written in Katakana. Both within-language and between-language interference were found for all combinations of stimuli and responses. The between-language interference was larger for Katakana LWs (phonologically similar to English) than for Hiragana TCTs, especially with Japanese responses. The magnitude of this phonological effect increased with self-rated reading fluency in Japanese. Overall responding was slower and the Stroop effect larger with English than with Japanese stimuli. These results suggest that unintentional lexical access elicits automatic phonological processing even with intermediate-level reading proficiency. PMID:18444519

  16. NASA's Living with a Star Program: The Geospace Mission Concept

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Giles, Barbara; Zanetti, Lawrence; Spann, James; Day, John H. (Technical Monitor)

    2002-01-01

    NASA has initiated the Living with a Star Program (LWS) to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. Three program elements are the Science Missions; a Theory, Modeling, and Data Analysis program; and a Space Environment Testbeds program. Because many of the effects of solar variability on humanity are observed in Geospace regions of space, the science research for all three elements of the LWS Program have significant components in Geospace regions.

  17. Evaluation of mercury in liquid waste processing facilities - Phase I report

    SciTech Connect

    Jain, V.; Occhipinti, J. E.; Shah, H.; Wilmarth, W. R.; Edwards, R. E.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  18. Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report

    SciTech Connect

    Jain, V.; Occhipinti, J.; Shah, H.; Wilmarth, B.; Edwards, R.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  19. Evaluation of mercury in the liquid waste processing facilities

    SciTech Connect

    Jain, Vijay; Shah, Hasmukh; Occhipinti, John E.; Wilmarth, William R.; Edwards, Richard E.

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  20. The Living With a Star CDAW on the Solar and Geospace Connections of Solar Energetic Particles

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara J.; Gopalswamy, Nat; Colon, Gilberto (Technical Monitor)

    2002-01-01

    The Living With a Star Program is sponsoring its first CDAW (Coordinated Data Analysis Workshop) to be held July 23-26, 2002 at a conference support location near the NASA Goddard Space Flight Center. This CDAW's topic is Solar Energetic Particle events. The topic was chosen due to the breadth of the impact of SEP's on the space environment and terrestrial climate. General goals of the LWS CDAW are a) Stimulate LWS Science on the near term, b) Facilitate cross-disciplinary interaction between the LWS scientific and space environment communities, c) Produce science products for all potential users, and d) Assist in the development of the LWS data system. The workshop will proceed similar to a previous CDAW held in 1999 on Interplanetary Type 11 Shocks. A list of target events has been compiled, which can be found at the workshop home page. The page lists all of the SEP events from 1996 January to 2001 December with energy > 10 MeV particle intensities exceeding 10 PFU. Preparation for the workshop consists of identifying relevant data from a wide variety of sources (solar, interplanetary, magnetospheric and climatary), accumulating the data (frequently this consists of both raw data, processed data and plots to ease perusal during the workshop) and gathering the software tools. Participants in the workshop are expected to complete their contributions of data or models prior to arriving at the workshop. Most of the CDAW consists of joint analysis of this data; only a few introductory talks are given at the beginning of the workshop, with the rest of the time being devoted to producing scientific results. Additional symposia may be scheduled at a later date, which will allow a venue for scientific talks on the CDAW results and associated science. The poster will list the scientific goals of the workshop, as well as a scientific discussion of the data which has been accumulated thus far.

  1. Wetland treatment of oil and gas well wastewaters. Quarterly technical report, November 25, 1993--March 24, 1994

    SciTech Connect

    Kadlec, R.H.; Srinivasan, K.R.

    1994-04-15

    In the third quarterly report, adsorption of heavy metals ions such as Cu(II) and Cr(VI) onto soils drawn from the laboratory-type wetland (LW) was shown to be weak. On the other hand, it was shown that modified-clays did adsorb Cr(VI) ions strongly at pH 4.5. Further, studies on the pH dependence of the adsorption of {beta}-naphthoic acid, (NA), a well-documented contaminant in many oil and gas well waste waters (4), onto modified-clays were undertaken and it was shown that uptake of NA by modified-clays was of the high affinity type at pH 4.5 and 7.0, but weak at pH 9.0. Adsorption of heavy metal ions, Cu{sup 2+}, and CR(VI) onto algae, a proposed wetland amendment, was carried out and the results were presented and discussed in the fourth quarterly report. Studies on the dynamics of uptake of phenol and NA by laboratory-type wetlands (LWs) were initiated and preliminary results indicated that both phenol and NA were sorbed onto components of LWs. A mass balance model has been developed to quantify the fate of phenol in LWs. The model is based on the postulate that the fate of phenol in LWs can be attributed to a combination of (1) evaporation of solute and solvent, (2) adsorption of phenol onto various components of LW and (3) its biodegradation, both in solution and at solid-liquid interface. As an initial approximation, the latter two processes have been lumped together and incorporated into the model as an unit operation. Both zero order and first order kinetics for the disappearance of phenol have been considered. Evaporative losses of water and phenol have also been taken into account and this model is presented and discussed in this quarterly report.

  2. Learnability of Red-Green Opponency

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.

    1997-01-01

    Lennie, Haake, and Williams found that in the lateral geniculate nucleus (LGN), parvocellular unit responses are consistent with the hypothesis that their input connectivity is blind to the difference between middle-wavelength-sensitive (MWS) and long-wavelength-sensitive (LWS) cones. Most of their cells have a total MWS input weight opposite in sign and similar in magnitude to their total LWS input weight. If these weights are exactly balanced, the construction of a red-green opponent system from such units is simple: such units need only be aligned so the signs of their outputs agree. Ahumada and Mulligan described an associative learning process which can accomplish this alignment. If the units are not balanced (carry some luminance information), the strong overlap between the MWS and LWS spectral responses can cause units to agree more on the basis of luminance, and the associative process fails to produce red-green opponency. The learning theory requires that the LGN units be nearly balanced (more strongly encode chromaticity than luminance) and quantitatively expresses the requirement: the principal component of the LGN outputs must be in the red-green rather than the luminance direction. We show that the cone weights of the monkey LGN cells measured by Derrington, Krauskopf, and Lennie can satisfy this learnability criterion even if the MWS spectral response is close to the LWS spectral response, simulating anomalous trichromacy. The learnability theory provides a source of visual system variation for explaining why different anomalous trichromats may make the same average anomaloscope match (same pigments), but have either narrow (good opponent learning) or wide (poor learning) ranges of acceptable matches.

  3. Multi-Mode Electromagnetic Ultrasonic Lamb Wave Tomography Imaging for Variable-Depth Defects in Metal Plates.

    PubMed

    Huang, Songling; Zhang, Yu; Wang, Shen; Zhao, Wei

    2016-05-02

    This paper proposes a new cross-hole tomography imaging (CTI) method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs). The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer) arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect's thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method.

  4. Studies on chemical charge doping related optical properties in monolayer WS2

    NASA Astrophysics Data System (ADS)

    Rivera, Adriana M.; Gaur, Anand P. S.; Sahoo, Satyaprakash; Katiyar, Ram S.

    2016-09-01

    Thermal stability of quasi particles, i.e., exciton and trion, and a strong particle-particle interaction significantly tune the optical properties of atomically thin two dimensional (2D) metal dichalcogenides. The present work addresses the effect of inherent defects upon optical properties of chemical vapor deposition grown 1 L-WS2 and proposes the use of chemical transfer doping as a reversible and simple method for identification of the type of excess charge in the system. Photoluminescence (PL) studies in pristine 1 L-WS2 show that an additional band at ˜0.06 eV below trion (X±) PL band was evolved (at low temperature) which was associated to the bound exciton with charged/neutral defect. Using 7,7,8,8-Tetracyanoquinodimethane and 2,2-bis1,3-dithiolylidene as p and n-type dopants, respectively, we determined that the inherent defects/metal vacancies, which could be due to the presence of Tungsten metal deficiency, contributed in p-type nature of the pristine 1 L-WS2. Doping of 2D transition metal dichalcogenides materials with organic molecule via the surface charge transfer method is not only a way to provide a handy way to tailor the electronic and optical properties but also can be used as a tool to determine the nature of defects in the material.

  5. Multi-Mode Electromagnetic Ultrasonic Lamb Wave Tomography Imaging for Variable-Depth Defects in Metal Plates.

    PubMed

    Huang, Songling; Zhang, Yu; Wang, Shen; Zhao, Wei

    2016-01-01

    This paper proposes a new cross-hole tomography imaging (CTI) method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs). The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer) arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect's thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method. PMID:27144571

  6. Matching the Spectrometers on board ISO

    NASA Astrophysics Data System (ADS)

    Burgdorf, M.; Feuchtgruber, H.; Salama, A.; García-Lario, P.; Müller, T.; Lord, S.

    We report on the findings of the Spectral Matching Working Group, the main aim of which was to investigate discontinuities between SWS and LWS in complete ISO spectra from 2 - 200 μm. In order to check in a quantitative way the agreement between the two spectrometers, a software tool was developed which automatically selected observations made with SWS and LWS on the same coordinates and which calculated the ratio of the fluxes in the overlap region from the browser products. In this way all observations suitable for this cross-calibration exercise could be selected, provided that they were performed with standard Astronomical Observing Templates and covered the wavelength range that SWS and LWS have in common. 95% of those targets which were neither extended nor variable showed an agreement better than 20% between the two spectrometers. Several problems with the data from the instruments, like saturation effects, detector transients and discontinuities between the sub-spectra from different detectors, affect both spectrometers in a similar way and require special processing steps. We show, for some solar system objects, to which extent the spectra taken with ISO from the mid- to the far-infrared agree with theoretical models. Furthermore, we discuss for the example of Neptune how the combined information from both spectrometers can be used to put new constraints on models of objects that are possible calibration standards for future missions.

  7. Multi-Mode Electromagnetic Ultrasonic Lamb Wave Tomography Imaging for Variable-Depth Defects in Metal Plates

    PubMed Central

    Huang, Songling; Zhang, Yu; Wang, Shen; Zhao, Wei

    2016-01-01

    This paper proposes a new cross-hole tomography imaging (CTI) method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs). The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer) arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect’s thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method. PMID:27144571

  8. Linear response, fluctuation-dissipation, and finite-system-size effects in superdiffusion.

    PubMed

    Godec, Aljaž; Metzler, Ralf

    2013-07-01

    Lévy walks (LWs) are a popular stochastic tool to model anomalous diffusion and have recently been used to describe a variety of phenomena. We study the linear response behavior of this generic model of superdiffusive LWs in finite systems to an external force field under both stationary and nonstationary conditions. These finite-size LWs are based on power-law waiting time distributions with a finite-time regularization at τ(c), such that the physical requirements are met to apply linear response theory and derive the power spectrum with the correct short frequency limit, without the introduction of artificial cutoffs. We obtain the generalized Einstein relation for both ensemble and time averages over the entire process time and determine the turnover to normal Brownian motion when the full system is explored. In particular, we obtain an exact expression for the long time diffusion constant as a function of the scaling exponent of the waiting time density and the characteristic time scale τ(c).

  9. Improving wheat grain yield under water stress by stem hydrocarbon reserve utilization.

    PubMed

    Gholami, A; Asadollahi, A Poor

    2008-11-01

    Current assimilation and remobilization of dry matter during grain filling in wheat subjected to different levels of water deficit during phenological growth stage. The experiment was conducted as split plot. Time of water stress and levels considered as main and sub plots, respectively. water stress treatments exposed at jointing, anthesis and seed filling stage and levels of water stress include, Full Irrigation (FI), Low Water Stress (LWS), Moderate Water Stress (MWS) and High Water Stress (HWS). Grain yield and dry matter accumulation and remobilization were negatively affected by water stress. The lowest grain yield was obtained from HWS and when water stress occurred at anthesis. Dry matter accumulation at LWS was 4.87%, at MWS was 14.86% and at HWS was 26.55% lower than FI, respectively. Spike density and the number of kernel per spike were affected similarly and decreased with water deficit increased. The decrease in the number of spikes per unit area due to LWS, MWS and HWS was 13, 23 and 30% compared to FI, respectively. As the water stress was imposed at jointing stage, the lowest number of spikes per unit area and when imposed at anthesis, the lowest number of kernel per spike was obtained. With increase in water stress intensity, the contribution of mobilized DM (DMRC) to grain yield increased. The highest DMRC value obtained from HWS with 25.37%.

  10. Solar Sentinels: Report of the Science and Technology Definition Team

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The goal of NASA s Living With a Star (LWS) program is to develop the scientific understanding necessary to effectively address those aspects of the connected Sun Earth system that directly affect life and society. Along with the other elements of LWS, Solar Sentinels aims to discover, understand, and model the heliospheric initiation, propagation, and solar connection of those energetic phenomena that adversely affect space exploration and life and society here on Earth. The Solar Sentinels mission will address the following questions: (1) How, where, and under what circumstances are solar energetic particles (SEPs) accelerated to high energies and how do they propagate through the heliosphere? And (2) How are solar wind structures associated with these SEPs, like CMEs, shocks, and high-speed streams, initiated, propagate, evolve, and interact in the inner heliosphere? The Sentinels STDT recommends implementing this mission in two portions, one optimized for inner heliospheric in-situ measurements and the other for solar remote observations. Sentinels will greatly enhance the overall LWS science return.

  11. Statistical and molecular analyses of evolutionary significance of red-green color vision and color blindness in vertebrates.

    PubMed

    Yokoyama, Shozo; Takenaka, Naomi

    2005-04-01

    Red-green color vision is strongly suspected to enhance the survival of its possessors. Despite being red-green color blind, however, many species have successfully competed in nature, which brings into question the evolutionary advantage of achieving red-green color vision. Here, we propose a new method of identifying positive selection at individual amino acid sites with the premise that if positive Darwinian selection has driven the evolution of the protein under consideration, then it should be found mostly at the branches in the phylogenetic tree where its function had changed. The statistical and molecular methods have been applied to 29 visual pigments with the wavelengths of maximal absorption at approximately 510-540 nm (green- or middle wavelength-sensitive [MWS] pigments) and at approximately 560 nm (red- or long wavelength-sensitive [LWS] pigments), which are sampled from a diverse range of vertebrate species. The results show that the MWS pigments are positively selected through amino acid replacements S180A, Y277F, and T285A and that the LWS pigments have been subjected to strong evolutionary conservation. The fact that these positively selected M/LWS pigments are found not only in animals with red-green color vision but also in those with red-green color blindness strongly suggests that both red-green color vision and color blindness have undergone adaptive evolution independently in different species.

  12. Genetic diversity and population structure in lines of chickens divergently selected for high and low 8-week body weight.

    PubMed

    Márquez, G C; Siegel, P B; Lewis, R M

    2010-12-01

    A long-term selection experiment for high or low 8-wk BW in White Plymouth Rock chickens was conducted to study effects of selection on BW and correlated characters. Two lines [high (HWS), low (LWS) weight] were established and have undergone 48 generations of selection. The lines were managed to curtail inbreeding and to maintain similar population structures; such is necessary for equitable comparison of selection response between lines. Our objective was to test the success of that breeding strategy by characterizing genetic diversity and inbreeding in these lines. A pedigree of 5,998 individuals was assembled, with 68 founders, 2,962 HWS chickens, and 2,968 LWS chickens. Inbreeding coefficients (F) were calculated for each line. Maximum F was 0.53 and 0.61, mean F was 0.26 (SD 0.15) and 0.30 (SD 0.17), and change in F was 1.3 and 1.6% per generation in LWS and HWS lines, respectively. The effective population size was 38.3 in LWS and 32.1 in HWS lines. The effective number of founders was 15.7 in both lines, and the effective number of ancestors was 17.5 and 15.5 in LWS and HWS lines, respectively. Thirty ancestors accounted for 90% of the genetic makeup of both lines. Seven male and eight female founders still contributed to both lines at generation 48, although some contributed more to one line than the other. Family sizes were similar for males and females of each line, with males having larger family sizes with greater variance. Accumulated inbreeding was high and effective population size was low, as expected in closed lines. Effective number of founders was relatively low compared with actual number of founders, indicating some contributed more than others to the last generation. Family size statistics indicated that fewer males than females were used, leading to the observed levels of inbreeding. Given their similarity in genetic diversity and family size, it can be concluded that breeding decisions throughout the project resulted in similar population

  13. Diurnality and cone photopigment polymorphism in strepsirrhines: examination of linkage in Lemur catta.

    PubMed

    Jacobs, Gerald H; Deegan, Jess F

    2003-09-01

    Trichromatic color vision is routine among catarrhine primates, but occurs only as a variant form of color vision in some individuals in most platyrrhine genera. This arises from a fundamental difference in the organization of X-chromosome cone opsin genes in these two lineages: catarrhines have two opsin genes specifying middle- and long-wavelength-sensitive cone pigments, while platyrrhines have only a single gene. Some female platyrrhine monkeys achieve trichromacy because of a species polymorphism that allows the possibility of different opsin gene alleles on the two X-chromosomes. Recently, a similar opsin gene polymorphism was detected in some diurnal strepsirrhines, while at the same time appearing to be absent in any nocturnal genera. The aim of this study was to assess whether cone pigment polymorphism is inevitably linked to diurnality in strepsirrhines. Cone photopigments were measured in a species usually classified as diurnal, the ring-tailed lemur (Lemur catta), using electroretinogram flicker photometry, a noninvasive electrophysiological procedure. Each of 12 animals studied was found to have the same middle-wavelength cone pigment, with peak sensitivity at about 547 nm. In conjunction with earlier results, this implies that cone pigment polymorphism is unlikely to exist in this species and that, accordingly, such variation is not a consistently predictable feature of vision in diurnal strepsirrhines. PMID:12923905

  14. Comparative visual ecology of cephalopods from different habitats

    PubMed Central

    Marshall, N. Justin

    2016-01-01

    Previous investigations of vision and visual pigment evolution in aquatic predators have focused on fish and crustaceans, generally ignoring the cephalopods. Since the first cephalopod opsin was sequenced in late 1980s, we now have data on over 50 cephalopod opsins, prompting this functional and phylogenetic examination. Much of this data does not specifically examine the visual pigment spectral absorbance position (λmax) relative to environment or lifestyle, and cephalopod opsin functional adaptation and visual ecology remain largely unknown. Here we introduce a new protocol for photoreceptor microspectrophotometry (MSP) that overcomes the difficulty of bleaching the bistable visual pigment and that reveals eight coastal coleoid cephalopods to be monochromatic with λmax varying from 484 to 505 nm. A combination of current MSP results, the λmax values previously characterized using cephalopod retinal extracts (467–500 nm) and the corresponding opsin phylogenetic tree were used for systematic comparisons with an end goal of examining the adaptations of coleoid visual pigments to different light environments. Spectral tuning shifts are described in response to different modes of life and light conditions. A new spectral tuning model suggests that nine amino acid substitution sites may determine the direction and the magnitude of spectral shifts. PMID:27629028

  15. Color vision of ancestral organisms of higher primates.

    PubMed

    Nei, M; Zhang, J; Yokoyama, S

    1997-06-01

    The color vision of mammals is controlled by photosensitive proteins called opsins. Most mammals have dichromatic color vision, but hominoids and Old World (OW) monkeys enjoy trichromatic vision, having the blue-, green-, and red-sensitive opsin genes. Most New World (NW) monkeys are either dichromatic or trichromatic, depending on the sex and genotype. Trichromacy in higher primates is believed to have evolved to facilitate the detection of yellow and red fruits against dappled foliage, but the process of evolutionary change from dichromacy to trichromacy is not well understood. Using the parsimony and the newly developed Bayesian methods, we inferred the amino acid sequences of opsins of ancestral organisms of higher primates. The results suggest that the ancestors of OW and NW monkeys lacked the green gene and that the green gene later evolved from the red gene. The fact that the red/green opsin gene has survived the long nocturnal stage of mammalian evolution and that it is under strong purifying selection in organisms that live in dark environments suggests that this gene has another important function in addition to color vision, probably the control of circadian rhythms. PMID:9190062

  16. Different Transmembrane Domains Associate with Distinct Endoplasmic Reticulum Components during Membrane Integration of a Polytopic Protein

    PubMed Central

    Meacock, Suzanna L.; Lecomte, Fabienne J.L.; Crawshaw, Samuel G.; High, Stephen

    2002-01-01

    We have been studying the insertion of the seven transmembrane domain (TM) protein opsin to gain insights into how the multiple TMs of polytopic proteins are integrated at the endoplasmic reticulum (ER). We find that the ER components associated with the first and second TMs of the nascent opsin polypeptide chain are clearly distinct. The first TM (TM1) is adjacent to the α and β subunits of the Sec61 complex, and a novel component, a protein associated with the ER translocon of 10 kDa (PAT-10). The most striking characteristic of PAT-10 is that it remains adjacent to TM1 throughout the biogenesis and membrane integration of the full-length opsin polypeptide. TM2 is also found to be adjacent to Sec61α and Sec61β during its membrane integration. However, TM2 does not form any adducts with PAT-10; rather, a transient association with the TRAM protein is observed. We show that the association of PAT-10 with opsin TM1 does not require the N-glycosylation of the nascent chain and occurs irrespective of the amino acid sequence and transmembrane topology of TM1. We conclude that the precise makeup of the ER membrane insertion site can be distinct for the different transmembrane domains of a polytopic protein. We find that the environment of a particular TM can be influenced by both the “stage” of nascent chain biosynthesis reached, and the TM's relative location within the polypeptide. PMID:12475939

  17. A simplified mass-transfer model for visual pigments in amphibian retinal-cone outer segments.

    PubMed

    Weber, Paul W; Howle, Laurens E; Murray, Mark M; Corless, Joseph M

    2011-02-01

    When radiolabeled precursors and autoradiography are used to investigate turnover of protein components in photoreceptive cone outer segments (COSs), the labeled components--primarily visual pigment molecules (opsins)--are diffusely distributed along the COS. To further assess this COS labeling pattern, we derive a simplified mass-transfer model for quantifying the contributions of advective and diffusive mechanisms to the distribution of opsins within COSs of the frog retina. Two opsin-containing regions of the COS are evaluated: the core axial array of disks and the plasmalemma. Numerical solutions of the mass-transfer model indicate three distinct stages of system evolution. In the first stage, plasmalemma diffusion is dominant. In the second stage, the plasmalemma density reaches a metastable state and transfer between the plasmalemma and disk region occurs, which is followed by an increase in density that is qualitatively similar for both regions. The final stage consists of both regions slowly evolving to the steady-state solution. Our results indicate that autoradiographic and cognate approaches for tracking labeled opsins in the COS cannot be effective methodologies for assessing new disk formation at the base of the COS.

  18. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies

    PubMed Central

    Briscoe, Adriana D.; Bybee, Seth M.; Bernard, Gary D.; Yuan, Furong; Sison-Mangus, Marilou P.; Reed, Robert D.; Warren, Andrew D.; Llorente-Bousquets, Jorge; Chiao, Chuan-Chin

    2010-01-01

    The butterfly Heliconius erato can see from the UV to the red part of the light spectrum with color vision proven from 440 to 640 nm. Its eye is known to contain three visual pigments, rhodopsins, produced by an 11-cis-3-hydroxyretinal chromophore together with long wavelength (LWRh), blue (BRh) and UV (UVRh1) opsins. We now find that H. erato has a second UV opsin mRNA (UVRh2)—a previously undescribed duplication of this gene among Lepidoptera. To investigate its evolutionary origin, we screened eye cDNAs from 14 butterfly species in the subfamily Heliconiinae and found both copies only among Heliconius. Phylogeny-based tests of selection indicate positive selection of UVRh2 following duplication, and some of the positively selected sites correspond to vertebrate visual pigment spectral tuning residues. Epi-microspectrophotometry reveals two UV-absorbing rhodopsins in the H. erato eye with λmax = 355 nm and 398 nm. Along with the additional UV opsin, Heliconius have also evolved 3-hydroxy-DL-kynurenine (3-OHK)-based yellow wing pigments not found in close relatives. Visual models of how butterflies perceive wing color variation indicate this has resulted in an expansion of the number of distinguishable yellow colors on Heliconius wings. Functional diversification of the UV-sensitive visual pigments may help explain why the yellow wing pigments of Heliconius are so colorful in the UV range compared to the yellow pigments of close relatives lacking the UV opsin duplicate. PMID:20133601

  19. Comparative visual ecology of cephalopods from different habitats.

    PubMed

    Chung, Wen-Sung; Marshall, N Justin

    2016-09-14

    Previous investigations of vision and visual pigment evolution in aquatic predators have focused on fish and crustaceans, generally ignoring the cephalopods. Since the first cephalopod opsin was sequenced in late 1980s, we now have data on over 50 cephalopod opsins, prompting this functional and phylogenetic examination. Much of this data does not specifically examine the visual pigment spectral absorbance position (λmax) relative to environment or lifestyle, and cephalopod opsin functional adaptation and visual ecology remain largely unknown. Here we introduce a new protocol for photoreceptor microspectrophotometry (MSP) that overcomes the difficulty of bleaching the bistable visual pigment and that reveals eight coastal coleoid cephalopods to be monochromatic with λmax varying from 484 to 505 nm. A combination of current MSP results, the λmax values previously characterized using cephalopod retinal extracts (467-500 nm) and the corresponding opsin phylogenetic tree were used for systematic comparisons with an end goal of examining the adaptations of coleoid visual pigments to different light environments. Spectral tuning shifts are described in response to different modes of life and light conditions. A new spectral tuning model suggests that nine amino acid substitution sites may determine the direction and the magnitude of spectral shifts. PMID:27629028

  20. Alouatta trichromatic color vision: cone spectra and physiological responses studied with microspectrophotometry and single unit retinal electrophysiology.

    PubMed

    Silveira, Luiz Carlos L; Saito, Cézar A; da Silva Filho, Manoel; Kremers, Jan; Bowmaker, James K; Lee, Barry B

    2014-01-01

    The howler monkeys (Alouatta sp.) are the only New World primates to exhibit routine trichromacy. Both males and females have three cone photopigments. However, in contrast to Old World monkeys, Alouatta has a locus control region upstream of each opsin gene on the X-chromosome and this might influence the retinal organization underlying its color vision. Post-mortem microspectrophotometry (MSP) was performed on the retinae of two male Alouatta to obtain rod and cone spectral sensitivities. The MSP data were consistent with only a single opsin being expressed in each cone and electrophysiological data were consistent with this primate expressing full trichromacy. To study the physiological organization of the retina underlying Alouatta trichromacy, we recorded from retinal ganglion cells of the same animals used for MSP measurements with a variety of achromatic and chromatic stimulus protocols. We found MC cells and PC cells in the Alouatta retina with similar properties to those previously found in the retina of other trichromatic primates. MC cells showed strong phasic responses to luminance changes and little response to chromatic pulses. PC cells showed strong tonic response to chromatic changes and small tonic response to luminance changes. Responses to other stimulus protocols (flicker photometry; changing the relative phase of red and green modulated lights; temporal modulation transfer functions) were also similar to those recorded in other trichromatic primates. MC cells also showed a pronounced frequency double response to chromatic modulation, and with luminance modulation response saturation accompanied by a phase advance between 10-20 Hz, characteristic of a contrast gain mechanism. This indicates a very similar retinal organization to Old-World monkeys. Cone-specific opsin expression in the presence of a locus control region for each opsin may call into question the hypothesis that this region exclusively controls opsin expression.

  1. Alouatta trichromatic color vision: cone spectra and physiological responses studied with microspectrophotometry and single unit retinal electrophysiology.

    PubMed

    Silveira, Luiz Carlos L; Saito, Cézar A; da Silva Filho, Manoel; Kremers, Jan; Bowmaker, James K; Lee, Barry B

    2014-01-01

    The howler monkeys (Alouatta sp.) are the only New World primates to exhibit routine trichromacy. Both males and females have three cone photopigments. However, in contrast to Old World monkeys, Alouatta has a locus control region upstream of each opsin gene on the X-chromosome and this might influence the retinal organization underlying its color vision. Post-mortem microspectrophotometry (MSP) was performed on the retinae of two male Alouatta to obtain rod and cone spectral sensitivities. The MSP data were consistent with only a single opsin being expressed in each cone and electrophysiological data were consistent with this primate expressing full trichromacy. To study the physiological organization of the retina underlying Alouatta trichromacy, we recorded from retinal ganglion cells of the same animals used for MSP measurements with a variety of achromatic and chromatic stimulus protocols. We found MC cells and PC cells in the Alouatta retina with similar properties to those previously found in the retina of other trichromatic primates. MC cells showed strong phasic responses to luminance changes and little response to chromatic pulses. PC cells showed strong tonic response to chromatic changes and small tonic response to luminance changes. Responses to other stimulus protocols (flicker photometry; changing the relative phase of red and green modulated lights; temporal modulation transfer functions) were also similar to those recorded in other trichromatic primates. MC cells also showed a pronounced frequency double response to chromatic modulation, and with luminance modulation response saturation accompanied by a phase advance between 10-20 Hz, characteristic of a contrast gain mechanism. This indicates a very similar retinal organization to Old-World monkeys. Cone-specific opsin expression in the presence of a locus control region for each opsin may call into question the hypothesis that this region exclusively controls opsin expression. PMID:25405863

  2. Alouatta Trichromatic Color Vision: Cone Spectra and Physiological Responses Studied with Microspectrophotometry and Single Unit Retinal Electrophysiology

    PubMed Central

    Silveira, Luiz Carlos L.; Saito, Cézar A.; da Silva Filho, Manoel; Kremers, Jan; Bowmaker, James K.; Lee, Barry B.

    2014-01-01

    The howler monkeys (Alouatta sp.) are the only New World primates to exhibit routine trichromacy. Both males and females have three cone photopigments. However, in contrast to Old World monkeys, Alouatta has a locus control region upstream of each opsin gene on the X-chromosome and this might influence the retinal organization underlying its color vision. Post-mortem microspectrophotometry (MSP) was performed on the retinae of two male Alouatta to obtain rod and cone spectral sensitivities. The MSP data were consistent with only a single opsin being expressed in each cone and electrophysiological data were consistent with this primate expressing full trichromacy. To study the physiological organization of the retina underlying Alouatta trichromacy, we recorded from retinal ganglion cells of the same animals used for MSP measurements with a variety of achromatic and chromatic stimulus protocols. We found MC cells and PC cells in the Alouatta retina with similar properties to those previously found in the retina of other trichromatic primates. MC cells showed strong phasic responses to luminance changes and little response to chromatic pulses. PC cells showed strong tonic response to chromatic changes and small tonic response to luminance changes. Responses to other stimulus protocols (flicker photometry; changing the relative phase of red and green modulated lights; temporal modulation transfer functions) were also similar to those recorded in other trichromatic primates. MC cells also showed a pronounced frequency double response to chromatic modulation, and with luminance modulation response saturation accompanied by a phase advance between 10–20 Hz, characteristic of a contrast gain mechanism. This indicates a very similar retinal organization to Old-World monkeys. Cone-specific opsin expression in the presence of a locus control region for each opsin may call into question the hypothesis that this region exclusively controls opsin expression. PMID:25405863

  3. Ustilago maydis accumulates beta-carotene at levels determined by a retinal-forming carotenoid oxygenase.

    PubMed

    Estrada, Alejandro F; Brefort, Thomas; Mengel, Carina; Díaz-Sánchez, Violeta; Alder, Adrian; Al-Babili, Salim; Avalos, Javier

    2009-10-01

    The basidiomycete Ustilago maydis, the causative agent of corn smut disease, has emerged as a model organism for dimorphism and fungal phytopathogenicity. In this work, we line out the key conserved enzymes for beta-carotene biosynthesis encoded by the U. maydis genome and show that this biotrophic fungus accumulates beta-carotene. The amount of this pigment depended on culture pH and aeration but was not affected by light and was not increased by oxidative stress. Moreover, we identified the U. maydis gene, cco1, encoding a putative beta-carotene cleavage oxygenase. Heterologous overexpression and in vitro analyses of purified enzyme demonstrated that Cco1 catalyzes the symmetrical cleavage of beta-carotene to yield two molecules of retinal. Analyses of beta-carotene and retinal contents in U. maydiscco1 deletion and over-expression strains confirmed the enzymatic function of Cco1, and revealed that Cco1 determines the beta-carotene content. Our data indicate that carotenoid biosynthesis in U. maydis is carried out to provide retinal rather than to deliver protective pigments. The U. maydis genome also encodes three potential opsins, a family of photoactive proteins that use retinal as chromophore. Two opsin genes showed different light-regulated expression patterns, suggesting specialized roles in photobiology, while no mRNA was detected for the third opsin gene in the same experiments. However, deletion of the cco1 gene, which should abolish function of all the retinal-dependent opsins, did not affect growth, morphology or pathogenicity, suggesting that retinal and opsin proteins play no relevant role in U. maydis under the tested conditions.

  4. The expression of retinal cell markers in human retinal pigment epithelial cells and their augmentation by the synthetic retinoid fenretinide

    PubMed Central

    Vugler, Anthony A.; Yu, Lu; Semo, Maayan; Coffey, Pete; Moss, Stephen E.; Greenwood, John

    2011-01-01

    Purpose In several species the retinal pigment epithelium (RPE) has the potential to transdifferentiate into retinal cells to regenerate functional retinal tissue after injury. However, this capacity for regeneration is lost in mammals. The synthetic retinoic acid derivative, fenretinide [N(4-hydroxyphenyl) retinamide], induces a neuronal-like phenotype in the human adult retinal pigment epithelial cell line (ARPE-19). These changes are characterized by the appearance of neural-like processes and the expression of neuronal markers not normally associated with RPE cells. Here we assess whether fenretinide can induce a neuroretinal cell phenotype in ARPE-19 cells, by examining retinal cell marker expression. Methods ARPE-19 cells were treated daily with culture medium containing either 3 μM fenretinide or dimethyl sulfoxide as a control for 7 days. Cells were processed for immunocytochemistry, western blotting, and for analysis by PCR to examine the expression of a panel of RPE, neural, and retinal-associated cellular markers, including classical and non-canonical opsins. Results Treatment with fenretinide for 7 days induced the formation of neuronal-like processes in ARPE-19 cells. Fenretinide induced the expression of the cone long wavelength sensitive opsin (OPN1lw) but not rhodopsin (RHO), while decreasing the expression of RPE cell markers. Many of the neuronal and retinal specific markers examined were expressed in both control and fenretinide treated cells, including those involved in photoreceptor cell development and the multipotency of neural retinal progenitor cells. Interestingly, ARPE-19 cells also expressed both photoreceptor specific and non-specific canonical opsins. Conclusions The expression of retinal-associated markers and loss of RPE cell markers in control ARPE-19 cells suggests that these cells might have dedifferentiated from an RPE cell phenotype under standard culture conditions. The expression of molecules, such as the transcription

  5. Effects of Optogenetic Activation of Corticothalamic Terminals in the Motor Thalamus of Awake Monkeys

    PubMed Central

    Hu, Xing; Smith, Yoland; Wichmann, Thomas

    2016-01-01

    The role of the corticothalamic projection in the ventral motor thalamus remains poorly understood. Therefore, we studied the electrophysiological responses of neurons in the basal ganglia and cerebellar receiving-territories of the motor thalamus (BGMT and CbMT, respectively) using optogenetic activation of corticothalamic projections in awake rhesus macaques. After injections of viral vectors carrying the excitatory opsins ChR2 or C1V1 into the primary motor and premotor cortices of two monkeys, we used optrodes to light activate opsin-expressing neurons in cortex or their terminals in the thalamus while simultaneously recording the extracellular activity of neurons in the vicinity of the stimulation sites. As expected, light activation of opsins in the cerebral cortex evoked robust, short-latency increases in firing of cortical neurons. In contrast, light stimulation of corticothalamic terminals induced small-amplitude, long-latency increases and/or decreases of activity in thalamic neurons. In postmortem material, opsins were found to be expressed in cell bodies and dendrites of cortical neurons and along their corticothalamic projections. At the electron microscopic level, opsin labeling was confined to unmyelinated preterminal axons and small terminals that formed asymmetric synapses with dendrites of projection neurons or GABAergic interneurons in BGMT and CbMT and with neurons in the reticular thalamic nucleus. The morphological features of the transfected terminals, along with the long latency and complex physiological responses of thalamic neurons to their activation, suggest a modulatory role of corticothalamic afferents upon the primate ventral motor thalamus. SIGNIFICANCE STATEMENT This study provides the first analysis of the physiological effects of cortical inputs on the activity of neurons in the primate ventral motor thalamus using light activation of opsin-containing corticothalamic terminals in awake monkeys. We found that selective light

  6. Effects of live weight at slaughter on fatty acid composition of Longissimus dorsi and Biceps femoris muscles of indigenous Lori goat.

    PubMed

    Kiani, Ali; Fallah, Rozbeh

    2016-01-01

    This study aimed to determine fatty acid (FA) composition of Longissimus dorsi (LD) and Biceps femoris (BF) muscles of an Iranian indigenous goat (Lori goat) at two live weights at slaughter (LWS). Twenty male Lori goats (5 to 8 months) raised in nomadic system were slaughtered either at LWS less than 20 kg (light) or LWS more than 30 kg (heavy). Carcass dressing and FA composition of intramuscular fat of LD and BF muscles as well as cholesterol content of LD muscle were determined. Heavy goats had higher dressing percentage than light ones (42.7vs.39.3%, P < 0.01). The predominant n-6 FA were C18:2, and C20:4 while C22:5, C20:5, C18:3, C20:3, and C22:6 were the n-3 FA detected. Polyunsaturated and saturated FA contributed 22% and 36% of the total FA in both muscles, respectively. Palmitic acid (C16:0) of LD was higher in heavy compared to the light goats (P < 0.05). BF muscle had higher α-linolenic acid (18:3 n-3) as percentage than LD muscle (P < 0.05). The ratio of n-6/n-3 FA and polyunsaturated/saturated FA were 3.8 and 0.6, respectively. Cholesterol content of LD muscle of light and heavy goats were 71.2 ± 16 and 59.5 ± 14 mg per 100 g fresh meat respectively. In conclusion, desirable PUFA/SFA (0.6) and n-3/n-6 ratio (3.8) found in indigenous Lori goat propose healthy source of lean meat for the consumers.

  7. Physical Conditions in Interstellar and Circumstellar Medium from ISO Observations (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Cernicharo, J.; Gonzalez-Alfonso, E.; Lefloch, B.

    We present our results concerning the determination of physical conditions in interstellar and circumstellar clouds. All the data presented here have been obtained with the instruments on board the ISO satellite. A raster map of the 179.5 um line of H20 centered on SgrB2 has been made with the LWS grating spectrometer shows this line in absorption against the far-infrared continuum at all observed positions with a line absorption depth of ~15%. Fabry-Percot observations of the H20 lines indicate a broad absorption profile between -150 and 100 kms-1 proving that water vapour is present in the molecular gas along the line of sight toward SgrB2. We derive a lower limit to the H20 abundance in SgrB2 of 10-5. In Orion-IRC2 we have deteded several rotational transitions of water vapour in emission. Transitions involving energy levels higher than 1000 K have been detected. Many lines of H2 18O and H2 170 haye also been observed in this source where first estimations indicate a water vapour abundance similar to that of SgrB2. We also report the detection of triatomic carbon in the diffuse interstellar medium through the observation of several ro-vibrational lines of its low energy bending mode. Concerning star forming regions we have made a detailed study of the Trifid nebula using the ISOCAM, ISOPHOT, LWS and SWS instruments together with molecular observations from ground based telescopes. A second generation of newly-born stars has been found in the interface between the HII region and surrounding molecular cloud. Finally we present LWS observations and modelling of evolved stars.

  8. Impedance-matching analysis in IR leaky-wave antennas

    NASA Astrophysics Data System (ADS)

    Premkumar, Navaneeth; Xu, Yuancheng; Lail, Brian A.

    2015-08-01

    Planar leaky-wave antennas (LWA) that are capable of full-space scanning have long since been the pursuit for applications including, but not limited to, integration onto vehicles and into cameras for wide-angle of view beam-steering. Such a leaky-wave surface (LWS) was designed for long-wave infrared frequencies with frequency scanning capability. The LWS is based on a microstrip patch array design of a leaky-wave impedance surface and is made up of gold microstrip patches on a grounded zinc sulphide substrate. A 1D composite right/left-handed (CRLH) metamaterial made by periodically stacking a unit cell of the LWS in the longitudinal direction to form a LWA was designed. This paper deals with loading the LWA with a nickel bolometer to collect leaky-wave signals. The LWA radiates a backward leaking wave at 30 degrees at 28.3THz and scans through broadside for frequencies 20THz through 40THz. The paper deals with effectively placing the bolometer in order for the collected signal to exhibit the designed frequency regime. An effective way to maximize the power coupling into the load from the antenna is also explored. The benefit of such a metamaterial/holographic antennacoupled detector is its ability to provide appreciable capture cross-sections while delivering smart signals to subwavelength sized detectors. Due to their high-gain, low-profile, fast response time of the detector and ease of fabrication, this IR LWA-coupled bolometer harbors great potential in the areas of high resolution, uncooled, infrared imaging.

  9. Breeding objectives for pigs in Kenya. II: economic values incorporating risks in different smallholder production systems.

    PubMed

    Mbuthia, Jackson Mwenda; Rewe, Thomas Odiwuor; Kahi, Alexander Kigunzu

    2015-02-01

    This study estimated economic values for production traits (dressing percentage (DP), %; live weight for growers (LWg), kg; live weight for sows (LWs), kg) and functional traits (feed intake for growers (FEEDg), feed intake for sow (FEEDs), preweaning survival rate (PrSR), %; postweaning survival (PoSR), %; sow survival rate (SoSR), %, total number of piglets born (TNB) and farrowing interval (FI), days) under different smallholder pig production systems in Kenya. Economic values were estimated considering two production circumstances: fixed-herd and fixed-feed. Under the fixed-herd scenario, economic values were estimated assuming a situation where the herd cannot be increased due to other constraints apart from feed resources. The fixed-feed input scenario assumed that the herd size is restricted by limitation of feed resources available. In addition to the tradition profit model, a risk-rated bio-economic model was used to derive risk-rated economic values. This model accounted for imperfect knowledge concerning risk attitude of farmers and variance of input and output prices. Positive economic values obtained for traits DP, LWg, LWs, PoSR, PrSR, SoSR and TNB indicate that targeting them in improvement would positively impact profitability in pig breeding programmes. Under the fixed-feed basis, the risk-rated economic values for DP, LWg, LWs and SoSR were similar to those obtained under the fixed-herd situation. Accounting for risks in the EVs did not yield errors greater than ±50 % in all the production systems and basis of evaluation meaning there would be relatively little effect on the real genetic gain of a selection index. Therefore, both traditional and risk-rated models can be satisfactorily used to predict profitability in pig breeding programmes.

  10. High Angular Resolution Mid-Infrared Imaging of Young Stars in Orion BN/KL

    NASA Technical Reports Server (NTRS)

    Greenhill, L. J.; Gezari, D. Y.; Danchi, W. C.; Najita, J.; Monnier, J. D.

    2004-01-01

    The authors present Keck LWS images of the Orion BN/KL star forming region obtained in the first multi-wavelength study to have 0.3--0.5 resolution from 4.7 (micro)m to 22 (micro)m. The young stellar objects designed infrared source n and radio source I are believed to dominate the BN/KL region. They have detected extended emission from a probable accretion disk around source n but infer a stellar luminosity on the order of only 2000 L(sub (center-dot)).

  11. WASTE CERTIFICATION PROGRAM PLAN - REVISION 7

    SciTech Connect

    MORGAN, LK

    2002-01-08

    The primary changes that have been made to this revision reflect the relocation of the Waste Certification Official (WCO) organizationally from the Quality Services Division (QSD) into the Laboratory Waste Services (LWS) Organization. Additionally, the responsibilities for program oversight have been differentiated between the QSD and LWS. The intent of this effort is to ensure that those oversight functions, which properly belonged to the WCO, moved with that function; but retain an independent oversight function outside of the LWS Organization ensuring the potential for introduction of organizational bias, regarding programmatic and technical issues, is minimized. The Waste Certification Program (WCP) itself has been modified to allow the waste certification function to be performed by any of the personnel within the LWS Waste Acceptance/Certification functional area. However, a single individual may not perform both the technical waste acceptance review and the final certification review on the same 2109 data package. Those reviews must be performed by separate individuals in a peer review process. There will continue to be a designated WCO who will have lead programmatic responsibility for the WCP and will exercise overall program operational oversite as well as determine the overall requirements of the certification program. The quality assurance organization will perform independent, outside oversight to ensure that any organizational bias does not degrade the integrity of the waste certification process. The core elements of the previous WCP have been retained, however, the terms and process structure have been modified.. There are now two ''control points,'' (1) the data package enters the waste certification process with the signature of the Generator Interface/Generator Interface Equivalent (GI/GIE), (2) the package is ''certified'', thus exiting the process. The WCP contains three steps, (1) the technical review for waste acceptance, (2) a review of the

  12. Thermal Evolution of Juvenile Subduction Zones ' New Constraints from Lu-Hf Geochronology on HP oceanic rocks (Halilbaǧi, Central Anatolia)

    NASA Astrophysics Data System (ADS)

    Pourteau, Amaury; Scherer, Erik; Schmidt, Alexander; Bast, Rebecca

    2015-04-01

    The thermal structure of subduction zones plays a key role on mechanical and chemical processes taking place along the slab-mantle interface. Until now, changes through time of this thermal structure have been explored mostly by the means of numerical simulations. However, both "warm" (i.e., epidote-bearing), and "cold" (i.e., lawsonite-bearing) HP oceanic rocks have been reported in some fossil subduction complexes exposed at the Earth's surface (e.g., Franciscan Complex, California; Rio San Juan Complex, Hispañola; Halilbağı Unit, Central Anatolia). These a-priori "incompatible" rocks witness different thermal stages of ancient subduction zones and their study might provide complementary constraints to numerical models. To decipher the meaning of these contrasting metamorphic rocks in the Halilbağı Unit, we are carrying out Lu-Hf geochronology on garnet (grt) and lws from a variety of HP oceanic rocks, as well as the metamorphic sole of the overlying ophiolite. We selected five samples that are representative of the variety of metamorphic evolutions (i.e. peak conditions and P-T paths) encountered in this area. Preliminary analyses yielded 110 Ma (grt-hbl isochron) for a sub-ophiolitic grt amphibolite; 92 Ma (grt-omp) for an eclogite with prograde and retrograde ep; 90 Ma (grt-omp) for an eclogitic metabasite with prograde ep and retrograde ep+lws; 87 Ma (grt-gln) for a lws eclogite with prograde ep; and 86 Ma (grt-gln) for a blueschist with prograde and retrograde lws. These ages are mainly two-point isochrons. Further-refined data will be presented at the EGU General Assembly 2015, in Vienna. The consistent younging trend from "warm" to "cold" metamorphic rocks revealed by these first-order results points to metamorphic-sole formation during the initiation of intra-oceanic subduction at ~110 Ma, and subsequent cooling of the slab-mantle interface between 92 and 86 Ma. Therefore, the contrasting metamorphic evolutions encountered in the Halilbağı Unit

  13. The Living With a Star Space Environment Testbed Program

    NASA Technical Reports Server (NTRS)

    Barth, Janet; LaBel, Kenneth; Day, John H. (Technical Monitor)

    2001-01-01

    NASA has initiated the Living with a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affects life and society. The Program Architecture includes science missions, theory and modeling and Space Environment Testbeds (SET). This current paper discusses the Space Environment Testbeds. The goal of the SET program is to improve the engineering approach to accomodate and/or mitigate the effects of solar variability on spacecraft design and operations. The SET Program will infuse new technologies into the space programs through collection of data in space and subsequent design and validation of technologies. Examples of these technologies are cited and discussed.

  14. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    NASA Astrophysics Data System (ADS)

    Beaulieu, S. E.; Brickley, A.; Emery, M.; Spargo, A.; Patterson, K.; Joyce, K.; Silva, T.; Madin, K.

    2014-12-01

    Digital globes are new technologies increasingly used in both informal and formal education to display global datasets. By creating a narrative using multiple datasets, linkages between Earth systems - lithosphere, hydrosphere, atmosphere, and biosphere - can be conveyed. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question in developing new content for digital globes that interweaves imagery obtained by deep-diving vehicles with global datasets, including a new dataset locating the world's known hydrothermal vents. Our two narratives, "Life Without Sunlight" (LWS) and "Smoke and Fire Underwater" (SFU), each focus on STEM (science, technology, engineering, and mathematics) principles related to geology, biology, and exploration. We are preparing a summative evaluation for our content delivered on NOAA's Science on a Sphere as interactive presentations and as movies. We tested knowledge gained with respect to the STEM principles and the level of excitement generated by the virtual deep-sea exploration. We conducted a Post-test Only Design with quantitative data based on self-reporting on a Likert scale. A total of 75 adults and 48 youths responded to our questionnaire, distributed into test groups that saw either one of the two narratives delivered either as a movie or as an interactive presentation. Here, we report preliminary results for the youths, the majority (81%) of which live in towns with lower income and lower levels of educational attainment as compared to other towns in Massachusetts. For both narratives, there was knowledge gained for all 6 STEM principles and "Quite a Bit" of excitement. The mode in responses for knowledge gained was "Quite a Bit" for both the movie and the interactive presentation for 4 of the STEM principles (LWS geology, LWS biology, SFU geology, and SFU exploration) and "Some" for SFU biology. Only for LWS exploration was there a difference in mode between the

  15. The Living With a Star Space Environment Testbed Experiments

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.

    2014-01-01

    The focus of the Living With a Star (LWS) Space Environment Testbed (SET) program is to improve the performance of hardware in the space radiation environment. The program has developed a payload for the Air Force Research Laboratory (AFRL) Demonstration and Science Experiments (DSX) spacecraft that is scheduled for launch in August 2015 on the SpaceX Falcon Heavy rocket. The primary structure of DSX is an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring. DSX will be in a Medium Earth Orbit (MEO). This oral presentation will describe the SET payload.

  16. Designing 2D arrays for SHM of planar structures: a review

    NASA Astrophysics Data System (ADS)

    Stepinski, Tadeusz; Ambrozinski, Lukasz; Uhl, Tadeusz

    2013-04-01

    Monitoring structural integrity of large planar structures that aims at detecting and localizing impact or damage at any point of the structure requires normally a relatively dense network of uniformly distributed ultrasonic sensors. 2-D ultrasonic phased arrays, due to their beam-steering capability and all azimuth angle coverage are a very promising tool for structural health monitoring (SHM) of plate-like structures using Lamb waves (LW). Linear phased arrays that have been proposed for that purpose, produce mirrored image characterized by azimuth dependent resolution, which prevents unequivocal damage localization. 2D arrays do not have this drawback and they are even capable of mode selectivity when generating and receiving LWs. Performance of 2D arrays depends on their topology as well as the number of elements (transducers) used and their spacing in terms of wavelength. In this paper we propose a consistent methodology for three-step: theoretical, numerical and experimental investigation of a diversity of 2D array topologies in SHM applications. In the first step, the theoretical evaluation is performed using frequency-dependent structure transfer function (STF). STF that defines linear propagation of different LWs modes through the dispersive medium enables theoretical investigation of the particular array performance for a predefined tone-burst excitation signal. A dedicated software tool has been developed for the numerical evaluation of 2D array directional characteristics (beampattern) in a specific structure. The simulations are performed using local interaction simulation approach (LISA), implemented using NVIDIA CUDA graphical computation unit (GPU), which enables time-efficient 3D simulations of LWs propagation. Beampatterns of a 2D array can be to some extend evaluated analytically and using numerical simulations; in most cases, however, they require experimental verification. Using scanning laser vibrometer is proposed for that purpose, in a setup

  17. WP1: transgenic opto-animals

    NASA Astrophysics Data System (ADS)

    UŻarowska, E.; Czajkowski, Rafał; Konopka, W.

    2014-11-01

    We aim to create a set of genetic tools where permanent opsin expression (ChR or NpHR) is precisely limited to the population of neurons that express immediate early gene c-fos during a specific temporal window of behavioral training. Since the c-fos gene is only expressed in neurons that form experience-dependent ensemble, this approach will result in specific labeling of a small subset of cells that create memory trace for the learned behavior. To this end we employ two alternative inducible gene expression systems: Tet Expression System and Cre/lox System. In both cases, the temporal window for opsin induction is controlled pharmacologically, by doxycycline or tamoxifen, respectively. Both systems will be used for creating lines of transgenic animals.

  18. UV wavelengths experienced during development affect larval newt visual sensitivity and predation efficiency.

    PubMed

    Martin, Mélissa; Théry, Marc; Rodgers, Gwendolen; Goven, Delphine; Sourice, Stéphane; Mège, Pascal; Secondi, Jean

    2016-02-01

    We experimentally investigated the influence of developmental plasticity of ultraviolet (UV) visual sensitivity on predation efficiency of the larval smooth newt, Lissotriton vulgaris. We quantified expression of SWS1 opsin gene (UV-sensitive protein of photoreceptor cells) in the retinas of individuals who had developed in the presence (UV+) or absence (UV-) of UV light (developmental treatments), and tested their predation efficiency under UV+ and UV- light (testing treatments). We found that both SWS1 opsin expression and predation efficiency were significantly reduced in the UV- developmental group. Larvae in the UV- testing environment displayed consistently lower predation efficiency regardless of their developmental treatment. These results prove for the first time, we believe, functional UV vision and developmental plasticity of UV sensitivity in an amphibian at the larval stage. They also demonstrate that UV wavelengths enhance predation efficiency and suggest that the magnitude of the behavioural response depends on retinal properties induced by the developmental lighting environment.

  19. Photopigments and colour vision in New World monkeys from the family Atelidae.

    PubMed

    Jacobs, G H; Deegan, J F

    2001-04-01

    Most New World monkeys have an X-chromosome