Science.gov

Sample records for wave-sensitive lws opsins

  1. The molecular basis of color vision in colorful fish: Four Long Wave-Sensitive (LWS) opsins in guppies (Poecilia reticulata) are defined by amino acid substitutions at key functional sites

    PubMed Central

    2008-01-01

    Background Comparisons of functionally important changes at the molecular level in model systems have identified key adaptations driving isolation and speciation. In cichlids, for example, long wavelength-sensitive (LWS) opsins appear to play a role in mate choice and male color variation within and among species. To test the hypothesis that the evolution of elaborate coloration in male guppies (Poecilia reticulata) is also associated with opsin gene diversity, we sequenced long wavelength-sensitive (LWS) opsin genes in six species of the family Poeciliidae. Results Sequences of four LWS opsin genes were amplified from the guppy genome and from mRNA isolated from adult guppy eyes. Variation in expression was quantified using qPCR. Three of the four genes encode opsins predicted to be most sensitive to different wavelengths of light because they vary at key amino acid positions. This family of LWS opsin genes was produced by a diversity of duplication events. One, an intronless gene, was produced prior to the divergence of families Fundulidae and Poeciliidae. Between-gene PCR and DNA sequencing show that two of the guppy LWS opsins are linked in an inverted orientation. This inverted tandem duplication event occurred near the base of the poeciliid tree in the common ancestor of Poecilia and Xiphophorus. The fourth sequence has been uncovered only in the genus Poecilia. In the guppies surveyed here, this sequence is a hybrid, with the 5' end most similar to one of the tandem duplicates and the 3' end identical to the other. Conclusion Enhanced wavelength discrimination, a possible consequence of opsin gene duplication and divergence, might have been an evolutionary prerequisite for color-based sexual selection and have led to the extraordinary coloration now observed in male guppies and in many other poeciliids. PMID:18638376

  2. The effect of selection on a long wavelength-sensitive (LWS) opsin gene of Lake Victoria cichlid fishes

    PubMed Central

    Terai, Yohey; Mayer, Werner E.; Klein, Jan; Tichy, Herbert; Okada, Norihiro

    2002-01-01

    In East African Lake Victoria >200 endemic species of haplochromine fishes have been described on the basis of morphological and behavioral differences. Yet molecular analysis has failed to reveal any species-specific differences among these fishes in either mitochondrial or nuclear genes. Although the genes could be shown to vary, the variations represent trans-species polymorphisms not yet assorted along species lines. Nevertheless, fixed genetic differences must exist between the species at loci responsible for the adaptive characters distinguishing the various forms from one another. Here we describe variation and fixation at the long wavelength-sensitive (LWS) opsin locus, which is selection-driven, adaptive, and if not species- then at least population-specific. Because color is one of the characters distinguishing species of haplochromine fishes and color perception plays an important part in food acquisition and mate choice, we suggest that the observed variation and fixation at the LWS opsin locus may have been involved in the process that has led to the spectacular species divergence of haplochromine fishes in Lake Victoria. PMID:12438648

  3. Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids.

    PubMed

    Parry, Juliet W L; Carleton, Karen L; Spady, Tyrone; Carboo, Aba; Hunt, David M; Bowmaker, James K

    2005-10-11

    Cichlid fish of the East African Rift Lakes are renowned for their diversity and offer a unique opportunity to study adaptive changes in the visual system in rapidly evolving species flocks. Since color plays a significant role in mate choice, differences in visual sensitivities could greatly influence and even drive speciation of cichlids. Lake Malawi cichlids inhabiting rock and sand habitats have significantly different cone spectral sensitivities. By combining microspectrophotometry (MSP) of isolated cones, sequencing of opsin genes, and spectral analysis of recombinant pigments, we have established the cone complements of four species of Malawi cichlids. MSP demonstrated that each of these species predominately expresses three cone pigments, although these differ between species to give three spectrally different cone complements. In addition, rare populations of spectrally distinct cones were found. In total, seven spectral classes were identified. This was confirmed by opsin gene sequencing, expression, and in vitro reconstitution. The genes represent the four major classes of cone opsin genes that diverged early in vertebrate evolution. All four species possess a long-wave-sensitive (LWS), three spectrally distinct green-sensitive (RH2), a blue-sensitive (SWS2A), a violet-sensitive (SWS2B), and an ultraviolet-sensitive (SWS1) opsin. However, African cichlids determine their spectral sensitivity by differential expression of primarily only three of the seven available cone opsin genes. Phylogenetic analysis suggests that all percomorph fish have similar potential.

  4. Retinoic Acid Signaling Regulates Differential Expression of the Tandemly-Duplicated Long Wavelength-Sensitive Cone Opsin Genes in Zebrafish

    PubMed Central

    Frey, Ruth A.; Hunter, Samuel S.; Ashino, Ryuichi; Kawamura, Shoji; Stenkamp, Deborah L.

    2015-01-01

    The signaling molecule retinoic acid (RA) regulates rod and cone photoreceptor fate, differentiation, and survival. Here we elucidate the role of RA in differential regulation of the tandemly-duplicated long wavelength-sensitive (LWS) cone opsin genes. Zebrafish embryos were treated with RA from 48 hours post-fertilization (hpf) to 75 hpf, and RNA was isolated from eyes for microarray analysis. ~170 genes showed significantly altered expression, including several transcription factors and components of cellular signaling pathways. Of interest, the LWS1 opsin gene was strongly upregulated by RA. LWS1 is the upstream member of the tandemly duplicated LWS opsin array and is normally not expressed embryonically. Embryos treated with RA 48 hpf to 100 hpf or beyond showed significant reductions in LWS2-expressing cones in favor of LWS1-expressing cones. The LWS reporter line, LWS-PAC(H) provided evidence that individual LWS cones switched from LWS2 to LWS1 expression in response to RA. The RA signaling reporter line, RARE:YFP indicated that increased RA signaling in cones was associated with this opsin switch, and experimental reduction of RA signaling in larvae at the normal time of onset of LWS1 expression significantly inhibited LWS1 expression. A role for endogenous RA signaling in regulating differential expression of the LWS genes in postmitotic cones was further supported by the presence of an RA signaling domain in ventral retina of juvenile zebrafish that coincided with a ventral zone of LWS1 expression. This is the first evidence that an extracellular signal may regulate differential expression of opsin genes in a tandemly duplicated array. PMID:26296154

  5. Aspects of LWS processing

    NASA Astrophysics Data System (ADS)

    Leeks, S. J.; Swinyard, B. M.; Lim, T.; Clegg, P. E.

    1999-03-01

    We present an outline of various stages of the Long Wavelength Spectrometer (LWS) data pipeline processing, from the conversion of the output from the detectors through to a calibrated spectrum. Normal calibration is based on a linear relationship between the Uranus data from the LWS and a theoretical model of the planet. For strong sources, however, some of the detectors behave non-linearly. We show that, using a strong source for which we have a good model as a calibrator, these data can be corrected. Examples of the resulting spectra are shown.

  6. Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution.

    PubMed

    Feuda, Roberto; Marlétaz, Ferdinand; Bentley, Michael A; Holland, Peter W H

    2016-02-09

    Opsin proteins covalently bind to small molecular chromophores and each protein-chromophore complex is sensitive to particular wavelengths of light. Multiple opsins with different wavelength absorbance peaks are required for color vision. Comparing opsin responses is challenging at low light levels, explaining why color vision is often lost in nocturnal species. Here, we investigated opsin evolution in 27 phylogenetically diverse insect species including several transitions between photic niches (nocturnal, diurnal, and crepuscular). We find widespread conservation of five distinct opsin genes, more than commonly considered. These comprise one c-opsin plus four r-opsins (long wavelength sensitive or LWS, blue sensitive, ultra violet [UV] sensitive and the often overlooked Rh7 gene). Several recent opsin gene duplications are also detected. The diversity of opsin genes is consistent with color vision in diurnal, crepuscular, and nocturnal insects. Tests for positive selection in relation to photic niche reveal evidence for adaptive evolution in UV-sensitive opsins in day-flying insects in general, and in LWS opsins of day-flying Lepidoptera specifically.

  7. Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution

    PubMed Central

    Feuda, Roberto; Marlétaz, Ferdinand; Bentley, Michael A.; Holland, Peter W.H.

    2016-01-01

    Opsin proteins covalently bind to small molecular chromophores and each protein-chromophore complex is sensitive to particular wavelengths of light. Multiple opsins with different wavelength absorbance peaks are required for color vision. Comparing opsin responses is challenging at low light levels, explaining why color vision is often lost in nocturnal species. Here, we investigated opsin evolution in 27 phylogenetically diverse insect species including several transitions between photic niches (nocturnal, diurnal, and crepuscular). We find widespread conservation of five distinct opsin genes, more than commonly considered. These comprise one c-opsin plus four r-opsins (long wavelength sensitive or LWS, blue sensitive, ultra violet [UV] sensitive and the often overlooked Rh7 gene). Several recent opsin gene duplications are also detected. The diversity of opsin genes is consistent with color vision in diurnal, crepuscular, and nocturnal insects. Tests for positive selection in relation to photic niche reveal evidence for adaptive evolution in UV-sensitive opsins in day-flying insects in general, and in LWS opsins of day-flying Lepidoptera specifically. PMID:26865071

  8. Anion sensitivity and spectral tuning of middle- and long-wavelength-sensitive (MWS/LWS) visual pigments.

    PubMed

    Davies, Wayne I L; Wilkie, Susan E; Cowing, Jill A; Hankins, Mark W; Hunt, David M

    2012-07-01

    The long-wavelength-sensitive (LWS) opsins form one of four classes of vertebrate cone visual pigment and exhibit peak spectral sensitivities (λ(max)) that generally range from 525 to 560 nm for rhodopsin/vitamin-A(1) photopigments. Unique amongst the opsin classes, many LWS pigments show anion sensitivity through the interaction of chloride ions with a histidine residue at site 197 (H197) to give a long-wavelength spectral shift in peak sensitivity. Although it has been shown that amino acid substitutions at five sites (180, 197, 277, 285 and 308) are useful in predicting the λ(max) values of the LWS pigment class, some species, such as the elephant shark and most marine mammals, express LWS opsins that possess λ(max) values that are not consistent with this 'five-site' rule, indicating that other interactions may be involved. This study has taken advantage of the natural mutation at the chloride-binding site in the mouse LWS pigment. Through the use of a number of mutant pigments generated by site-directed mutagenesis, a new model has been formulated that takes into account the role of charge and steric properties of the side chains of residues at sites 197 and 308 in the function of the chloride-binding site in determining the peak sensitivity of LWS photopigments.

  9. Spectral sensitivity of guppy visual pigments reconstituted in vitro to resolve association of opsins with cone cell types.

    PubMed

    Kawamura, Shoji; Kasagi, Satoshi; Kasai, Daisuke; Tezuka, Ayumi; Shoji, Ayako; Takahashi, Akiyoshi; Imai, Hiroo; Kawata, Masakado

    2016-10-01

    The guppy (Poecilia reticulata) shows remarkable variation of photoreceptor cells in the retina, especially those sensitive to middle-to-long wavelengths of light. Microspectrophotometry (MSP) has revealed varying "green", "green-yellow" and "yellow" cone cells among guppies in Trinidad and Venezuela (Cumana). In the guppy genome, there are four "long-wave" opsin loci (LWS-1, -2, -3 and -4). Two LWS-1 alleles have potentially differing spectral sensitivity (LWS-1/180Ser and LWS-1/180Ala). In addition, two "middle-wave" loci (RH2-1 and -2), two "short-wave" loci (SWS2-A and -B), and a single "ultraviolet" locus (SWS1) as well as a single "rhodopsin" locus (RH1) are present. However, the absorption spectra of these photopigments have not been measured directly and the association of cell types with these opsins remains speculative. In the present study, we reconstituted these opsin photopigments in vitro. The wavelengths of maximal absorbance (λmax) were 571nm (LWS-1/180Ser), 562nm (LWS-1/180Ala), 519nm (LWS-3), 516nm (LWS-2), 516nm (RH2-1), 476nm (RH2-2), 438nm (SWS2-A), 408nm (SWS2-B), 353nm (SWS1) and 503nm (RH1). The λmax of LWS-3 is much shorter than the value expected (560nm) from the "five-sites" rule. The two LWS-1 alleles could explain difference of the reported MSP λmax values for the yellow cone class between Trinidad and Cumana guppies. Absence of the short-wave-shifted LWS-3 and the green-yellow cone in the green swordtail supports the hypothesis that this cell class of the guppy co-expresses the LWS-1 and LWS-3. These results reveal the basis of variability in the guppy visual system and provide insight into the behavior and ecology of these tropical fishes.

  10. Rod monochromacy and the coevolution of cetacean retinal opsins.

    PubMed

    Meredith, Robert W; Gatesy, John; Emerling, Christopher A; York, Vincent M; Springer, Mark S

    2013-04-01

    Cetaceans have a long history of commitment to a fully aquatic lifestyle that extends back to the Eocene. Extant species have evolved a spectacular array of adaptations in conjunction with their deployment into a diverse array of aquatic habitats. Sensory systems are among those that have experienced radical transformations in the evolutionary history of this clade. In the case of vision, previous studies have demonstrated important changes in the genes encoding rod opsin (RH1), short-wavelength sensitive opsin 1 (SWS1), and long-wavelength sensitive opsin (LWS) in selected cetaceans, but have not examined the full complement of opsin genes across the complete range of cetacean families. Here, we report protein-coding sequences for RH1 and both color opsin genes (SWS1, LWS) from representatives of all extant cetacean families. We examine competing hypotheses pertaining to the timing of blue shifts in RH1 relative to SWS1 inactivation in the early history of Cetacea, and we test the hypothesis that some cetaceans are rod monochomats. Molecular evolutionary analyses contradict the "coastal" hypothesis, wherein SWS1 was pseudogenized in the common ancestor of Cetacea, and instead suggest that RH1 was blue-shifted in the common ancestor of Cetacea before SWS1 was independently knocked out in baleen whales (Mysticeti) and in toothed whales (Odontoceti). Further, molecular evidence implies that LWS was inactivated convergently on at least five occasions in Cetacea: (1) Balaenidae (bowhead and right whales), (2) Balaenopteroidea (rorquals plus gray whale), (3) Mesoplodon bidens (Sowerby's beaked whale), (4) Physeter macrocephalus (giant sperm whale), and (5) Kogia breviceps (pygmy sperm whale). All of these cetaceans are known to dive to depths of at least 100 m where the underwater light field is dim and dominated by blue light. The knockout of both SWS1 and LWS in multiple cetacean lineages renders these taxa rod monochromats, a condition previously unknown among

  11. Rod Monochromacy and the Coevolution of Cetacean Retinal Opsins

    PubMed Central

    Meredith, Robert W.; Gatesy, John; Emerling, Christopher A.; York, Vincent M.; Springer, Mark S.

    2013-01-01

    Cetaceans have a long history of commitment to a fully aquatic lifestyle that extends back to the Eocene. Extant species have evolved a spectacular array of adaptations in conjunction with their deployment into a diverse array of aquatic habitats. Sensory systems are among those that have experienced radical transformations in the evolutionary history of this clade. In the case of vision, previous studies have demonstrated important changes in the genes encoding rod opsin (RH1), short-wavelength sensitive opsin 1 (SWS1), and long-wavelength sensitive opsin (LWS) in selected cetaceans, but have not examined the full complement of opsin genes across the complete range of cetacean families. Here, we report protein-coding sequences for RH1 and both color opsin genes (SWS1, LWS) from representatives of all extant cetacean families. We examine competing hypotheses pertaining to the timing of blue shifts in RH1 relative to SWS1 inactivation in the early history of Cetacea, and we test the hypothesis that some cetaceans are rod monochomats. Molecular evolutionary analyses contradict the “coastal” hypothesis, wherein SWS1 was pseudogenized in the common ancestor of Cetacea, and instead suggest that RH1 was blue-shifted in the common ancestor of Cetacea before SWS1 was independently knocked out in baleen whales (Mysticeti) and in toothed whales (Odontoceti). Further, molecular evidence implies that LWS was inactivated convergently on at least five occasions in Cetacea: (1) Balaenidae (bowhead and right whales), (2) Balaenopteroidea (rorquals plus gray whale), (3) Mesoplodon bidens (Sowerby's beaked whale), (4) Physeter macrocephalus (giant sperm whale), and (5) Kogia breviceps (pygmy sperm whale). All of these cetaceans are known to dive to depths of at least 100 m where the underwater light field is dim and dominated by blue light. The knockout of both SWS1 and LWS in multiple cetacean lineages renders these taxa rod monochromats, a condition previously unknown among

  12. Short Wavelength Cone Opsin Is Not Expressed in the Retina of Arboreal African Pangolin (Manis tricuspis).

    PubMed

    Adekanmbi, Adejoke J; Adekanmbi, Adefisayo A; Akinola, Oluwole B

    2016-01-01

    This paper reports a study of cone photoreceptors present in the retina of Manis tricuspis. Specifically, the LWS (L-) opsin expressed in longwave-sensitive cones and SWS1 (S-) opsin shortwave-sensitive cones were targeted. Vertical sections revealed reactivity to a cone marker, peanut agglutinin (PNA), and to an LWS antibody, but not to an SWS1 antibody. This suggests that the Manis tricuspis visual system is not able to discriminate shorter wavelengths from longer wavelengths because the short wavelength cones are not expressed in their retina.

  13. Short Wavelength Cone Opsin Is Not Expressed in the Retina of Arboreal African Pangolin (Manis tricuspis)

    PubMed Central

    Adekanmbi, Adejoke J.; Adekanmbi, Adefisayo A.; Akinola, Oluwole B.

    2016-01-01

    This paper reports a study of cone photoreceptors present in the retina of Manis tricuspis. Specifically, the LWS (L-) opsin expressed in longwave-sensitive cones and SWS1 (S-) opsin shortwave-sensitive cones were targeted. Vertical sections revealed reactivity to a cone marker, peanut agglutinin (PNA), and to an LWS antibody, but not to an SWS1 antibody. This suggests that the Manis tricuspis visual system is not able to discriminate shorter wavelengths from longer wavelengths because the short wavelength cones are not expressed in their retina. PMID:27242946

  14. Opsins have evolved under the permanent heterozygote model: insights from phylotranscriptomics of Odonata.

    PubMed

    Suvorov, Anton; Jensen, Nicholas O; Sharkey, Camilla R; Fujimoto, M Stanley; Bodily, Paul; Wightman, Haley M Cahill; Ogden, T Heath; Clement, Mark J; Bybee, Seth M

    2017-03-01

    Gene duplication plays a central role in adaptation to novel environments by providing new genetic material for functional divergence and evolution of biological complexity. Several evolutionary models have been proposed for gene duplication to explain how new gene copies are preserved by natural selection, but these models have rarely been tested using empirical data. Opsin proteins, when combined with a chromophore, form a photopigment that is responsible for the absorption of light, the first step in the phototransduction cascade. Adaptive gene duplications have occurred many times within the animal opsins' gene family, leading to novel wavelength sensitivities. Consequently, opsins are an attractive choice for the study of gene duplication evolutionary models. Odonata (dragonflies and damselflies) have the largest opsin repertoire of any insect currently known. Additionally, there is tremendous variation in opsin copy number between species, particularly in the long-wavelength-sensitive (LWS) class. Using comprehensive phylotranscriptomic and statistical approaches, we tested various evolutionary models of gene duplication. Our results suggest that both the blue-sensitive (BS) and LWS opsin classes were subjected to strong positive selection that greatly weakens after multiple duplication events, a pattern that is consistent with the permanent heterozygote model. Due to the immense interspecific variation and duplicability potential of opsin genes among odonates, they represent a unique model system to test hypotheses regarding opsin gene duplication and diversification at the molecular level.

  15. Evolution of opsin expression in birds driven by sexual selection and habitat.

    PubMed

    Bloch, Natasha I

    2015-01-07

    Theories of sexual and natural selection predict coevolution of visual perception with conspecific colour and/or the light environment animals occupy. One way to test these theories is to focus on the visual system, which can be achieved by studying the opsin-based visual pigments that mediate vision. Birds vary greatly in colour, but opsin gene coding sequences and associated visual pigment spectral sensitivities are known to be rather invariant across birds. Here, I studied expression of the four cone opsin genes (Lws, Rh2, Sws2 and Sws1) in 16 species of New World warblers (Parulidae). I found levels of opsin expression vary both across species and between the sexes. Across species, female, but not male Sws2 expression is associated with an index of sexual selection, plumage dichromatism. This fits predictions of classic sexual selection models, in which the sensory system changes in females, presumably impacting female preference, and co-evolves with male plumage. Expression of the opsins at the extremes of the light spectrum, Lws and Uvs, correlates with the inferred light environment occupied by the different species. Unlike opsin spectral tuning, regulation of opsin gene expression allows for fast adaptive evolution of the visual system in response to natural and sexual selection, and in particular, sex-specific selection pressures.

  16. Differential sensitivity to estrogen-induced opsin expression in two poeciliid freshwater fish species.

    PubMed

    Friesen, Caitlin N; Ramsey, Mary E; Cummings, Molly E

    2016-12-21

    The sensory system shapes an individual's perception of the world, including social interactions with conspecifics, habitat selection, predator detection, and foraging behavior. Sensory signaling can be modulated by steroid hormones, making these processes particularly vulnerable to environmental perturbations. Here we examine the influence of exogenous estrogen manipulation on the visual physiology of female western mosquitofish (Gambusia affinis) and sailfin mollies (Poecilia latipinna), two poeciliid species that inhabit freshwater environments across the southern United States. We conducted two experiments to address this aim. First, we exposed females from both species to a one-week dose response experiment with three treatments of waterborne β-estradiol. Next, we conducted a one-week estrogen manipulation experiment with a waterborne estrogen (β-Estradiol), a selective estrogen receptor modulator (tamoxifen), or combination estrogen and tamoxifen treatment. We used quantitative PCR (qPCR) to examine the expression of cone opsins (SWS1, SWS2b, SWS2a, Rh2, LWS), rhodopsin (Rh1), and steroid receptor genes (ARα, ARβ, ERα, ERβ2, GPER) in the eyes of individual females from each species. Results from the dose response experiment revealed estradiol-sensitivity in opsin (SWS2a, Rh2, Rh1) and androgen receptor (ARα, ARβ) gene expression in mosquitofish females, but not sailfins. Meanwhile, our estrogen receptor modulation experiments revealed estrogen sensitivity in LWS opsin expression in both species, along with sensitivity in SWS1, SWS2b, and Rh2 opsins in mosquitofish. Comparisons of control females across experiments reveal species-level differences in opsin expression, with mosquitofish retinas dominated by short-wavelength sensitive opsins (SWS2b) and sailfins retinas dominated by medium- and long-wavelength sensitive opsins (Rh2 and LWS). Our research suggests that variation in exogenous levels of sex hormones within freshwater environments can modify

  17. Euarchontan Opsin Variation Brings New Focus to Primate Origins

    PubMed Central

    Melin, Amanda D.; Wells, Konstans; Moritz, Gillian L.; Kistler, Logan; Orkin, Joseph D.; Timm, Robert M.; Bernard, Henry; Lakim, Maklarin B.; Perry, George H.; Kawamura, Shoji; Dominy, Nathaniel J.

    2016-01-01

    Debate on the adaptive origins of primates has long focused on the functional ecology of the primate visual system. For example, it is hypothesized that variable expression of short- (SWS1) and middle-to-long-wavelength sensitive (M/LWS) opsins, which confer color vision, can be used to infer ancestral activity patterns and therefore selective ecological pressures. A problem with this approach is that opsin gene variation is incompletely known in the grandorder Euarchonta, that is, the orders Scandentia (treeshrews), Dermoptera (colugos), and Primates. The ancestral state of primate color vision is therefore uncertain. Here, we report on the genes (OPN1SW and OPN1LW) that encode SWS1 and M/LWS opsins in seven species of treeshrew, including the sole nocturnal scandentian Ptilocercus lowii. In addition, we examined the opsin genes of the Central American woolly opossum (Caluromys derbianus), an enduring ecological analogue in the debate on primate origins. Our results indicate: 1) retention of ultraviolet (UV) visual sensitivity in C. derbianus and a shift from UV to blue spectral sensitivities at the base of Euarchonta; 2) ancient pseudogenization of OPN1SW in the ancestors of P. lowii, but a signature of purifying selection in those of C. derbianus; and, 3) the absence of OPN1LW polymorphism among diurnal treeshrews. These findings suggest functional variation in the color vision of nocturnal mammals and a distinctive visual ecology of early primates, perhaps one that demanded greater spatial resolution under light levels that could support cone-mediated color discrimination. PMID:26739880

  18. Short- and long-wavelength-sensitive opsins are involved in photoreception both in the retina and throughout the central nervous system of crayfish.

    PubMed

    Kingston, Alexandra C N; Cronin, Thomas W

    2015-12-01

    Crayfish have two classes of photoreceptors in the retinas of their reflecting superposition eyes. Long-wavelength-sensitive photoreceptors, comprised of microvilli from R1-7 cells, make up the main rhabdoms. Eighth retinular cells, located distal to the main rhabdoms, house short-wavelength-sensitive photoreceptors. While the opsin involved in long-wavelength sensitivity has long been known, we present the first description of the short-wavelength-sensitive opsin in the retina of the red swamp crayfish, Procambarus clarkii. The expression patterns of these SWS and LWS opsin proteins in the retina are consistent with the previously described locations of SWS and LWS receptors. Crayfish also have a well-characterized extraocular photoreceptor, called the caudal photoreceptor, located in the sixth abdominal ganglion. To search for retinal opsins in the caudal photoreceptor (and elsewhere in the CNS), we used RT-PCR and immunohistochemical labeling. We found both SWS and LWS opsin transcripts not only in the sixth abdominal ganglion, but also in all ganglia of the nerve cord. Immunolabeling shows that both opsins are expressed in nerve fibers that extend from the brain through the entire length of the CNS. Thus, the same two photopigments are used both for vision in the retina and for extraocular functions throughout the CNS of crayfish.

  19. Opsin evolution in the Ambulacraria.

    PubMed

    D'Aniello, S; Delroisse, J; Valero-Gracia, A; Lowe, E K; Byrne, M; Cannon, J T; Halanych, K M; Elphick, M R; Mallefet, J; Kaul-Strehlow, S; Lowe, C J; Flammang, P; Ullrich-Lüter, E; Wanninger, A; Arnone, M I

    2015-12-01

    Opsins--G-protein coupled receptors involved in photoreception--have been extensively studied in the animal kingdom. The present work provides new insights into opsin-based photoreception and photoreceptor cell evolution with a first analysis of opsin sequence data for a major deuterostome clade, the Ambulacraria. Systematic data analysis, including for the first time hemichordate opsin sequences and an expanded echinoderm dataset, led to a robust opsin phylogeny for this cornerstone superphylum. Multiple genomic and transcriptomic resources were surveyed to cover each class of Hemichordata and Echinodermata. In total, 119 ambulacrarian opsin sequences were found, 22 new sequences in hemichordates and 97 in echinoderms (including 67 new sequences). We framed the ambulacrarian opsin repertoire within eumetazoan diversity by including selected reference opsins from non-ambulacrarians. Our findings corroborate the presence of all major ancestral bilaterian opsin groups in Ambulacraria. Furthermore, we identified two opsin groups specific to echinoderms. In conclusion, a molecular phylogenetic framework for investigating light-perception and photobiological behaviors in marine deuterostomes has been obtained.

  20. Correlation between nuptial colors and visual sensitivities tuned by opsins leads to species richness in sympatric Lake Victoria cichlid fishes.

    PubMed

    Miyagi, Ryutaro; Terai, Yohey; Aibara, Mitsuto; Sugawara, Tohru; Imai, Hiroo; Tachida, Hidenori; Mzighani, Semvua Isa; Okitsu, Takashi; Wada, Akimori; Okada, Norihiro

    2012-11-01

    Reproductive isolation that prevents interspecific hybridization between closely related coexisting species maintains sympatric species diversity. One of the reproductive isolations is mate choice based on color signals (breeding color perceived by color vision). This is well known in several animal taxa, yet little is known about its genetic and molecular mechanism. Lake Victoria cichlid fishes are thought to be an example of sympatric species diversity. In the species inhabiting different light environments in rocky shore, speciation by sensory drive through color signals has been proposed by analyses of the long wavelength-sensitive (LWS) opsin gene and the male nuptial coloration. However, the genetic and molecular mechanism of how diversity of sympatric species occurring in the same habitat is maintained remains unknown. To address this issue, we determined nucleotide sequences of eight opsins of six sympatric species collected from a sandy-muddy shore--an ideal model system for studying sympatric species. Among eight opsins, the LWS and RH1 alleles were diversified and one particular allele is dominant or fixed in each species, and we propose that this is due to natural selection. The functions of their LWS alleles were also diversified as shown by absorption measurements of reconstituted visual pigments. To analyze the relationship between nuptial coloration and the absorption of LWS pigments, we systematically evaluated and defined nuptial coloration. We showed that the coloration was species specific with respect to hue and significantly differentiated by the index values of hue (dominant wavelength: λ(d)). The λ(d) value of the male nuptial coloration correlated with the absorption of LWS pigments from all the species, suggesting that reproductive isolation through mate choice using color signals may prevent sympatric interspecific hybridization, thereby maintaining the species diversity in sympatric species in Lake Victoria.

  1. SWS and LWS observations of Cassiopeia A

    NASA Technical Reports Server (NTRS)

    Unger, S. J.; Pequignot, D.; Cox, P.; Haas, M. R.; Baluteau, J. P.; Lahuis, F.; Emery, R. J.; Morisset, C.

    1997-01-01

    The observations of the Casssiopeia A supernova remnant performed with the short wavelength spectrometer (SWS) and the long wavelength spectrometer (LWS), onboard the Infrared Space Observatory (ISO), are reported on. Broad O III 52 micrometer and 88 micrometer and O I 63 micrometer emission lines were detected. The far infrared O III lines fit the model of a spherical shell with central velocity redshifted by 770 +/- 40 km/s. A pronounced density contrast between the front and back of the shell was detected.

  2. Spectral sensitivity of cone photoreceptors and opsin expression in two colour-divergent lineages of the lizard Ctenophorus decresii.

    PubMed

    Yewers, Madeleine S; McLean, Claire A; Moussalli, Adnan; Stuart-Fox, Devi; Bennett, Andrew T D; Knott, Ben

    2015-05-15

    Intraspecific differences in sensory perception are rarely reported but may occur when a species range extends across varying sensory environments, or there is coevolution between the sensory system and a varying signal. Examples in colour vision and colour signals are rare in terrestrial systems. The tawny dragon lizard Ctenophorus decresii is a promising candidate for such intraspecific variation, because the species comprises two geographically and genetically distinct lineages in which throat colour (a social signal used in intra- and inter-specific interactions) is locally adapted to the habitat and differs between lineages. Male lizards from the southern lineage have UV-blue throats, whereas males from the northern lineage are polymorphic with four discrete throat colours that all show minimal UV reflectance. Here, we determine the cone photoreceptor spectral sensitivities and opsin expression of the two lineages, to test whether they differ, particularly in the UV wavelengths. Using microspectrophotometry on retinal cone photoreceptors, we identified a long-wavelength-sensitive (LWS) visual pigment, a 'short' and 'long' medium-wavelength-sensitive (MWS) pigment and a short-wavelength-sensitive (SWS) pigment, all of which did not differ in λmax between lineages. Through transcriptome analysis of opsin genes we found that both lineages express four cone opsin genes, including the SWS1 opsin with peak sensitivity in the UV range, and that amino acid sequences did not differ between lineages with the exception of a single leucine to valine substitution in the RH2 opsin. Counts of yellow and transparent oil droplets associated with LWS+MWS and SWS+UVS cones, respectively, showed no difference in relative cone proportions between lineages. Therefore, contrary to predictions, we find no evidence of differences between lineages in single cone photoreceptor spectral sensitivity or opsin expression. However, we confirm the presence of four single cone classes

  3. Why UV vision and red vision are important for damselfish (Pomacentridae): structural and expression variation in opsin genes.

    PubMed

    Stieb, Sara M; Cortesi, Fabio; Sueess, Lorenz; Carleton, Karen L; Salzburger, Walter; Marshall, N J

    2017-03-01

    Coral reefs belong to the most diverse ecosystems on our planet. The diversity in coloration and lifestyles of coral reef fishes makes them a particularly promising system to study the role of visual communication and adaptation. Here, we investigated the evolution of visual pigment genes (opsins) in damselfish (Pomacentridae) and examined whether structural and expression variation of opsins can be linked to ecology. Using DNA sequence data of a phylogenetically representative set of 31 damselfish species, we show that all but one visual opsin are evolving under positive selection. In addition, selection on opsin tuning sites, including cases of divergent, parallel, convergent and reversed evolution, has been strong throughout the radiation of damselfish, emphasizing the importance of visual tuning for this group. The highest functional variation in opsin protein sequences was observed in the short- followed by the long-wavelength end of the visual spectrum. Comparative gene expression analyses of a subset of the same species revealed that with SWS1, RH2B and RH2A always being expressed, damselfish use an overall short-wavelength shifted expression profile. Interestingly, not only did all species express SWS1 - a UV-sensitive opsin - and possess UV-transmitting lenses, most species also feature UV-reflective body parts. This suggests that damsels might benefit from a close-range UV-based 'private' communication channel, which is likely to be hidden from 'UV-blind' predators. Finally, we found that LWS expression is highly correlated to feeding strategy in damsels with herbivorous feeders having an increased LWS expression, possibly enhancing the detection of benthic algae.

  4. Evolution and functional diversity of jellyfish opsins.

    PubMed

    Suga, Hiroshi; Schmid, Volker; Gehring, Walter J

    2008-01-08

    Cnidaria are the most basal animal phylum possessing complex eyes [1]. Their eyes predominantly use ciliary photoreceptor cells (c-PRCs) like vertebrates, whereas insect eyes use rhabdomeric photoreceptor cells (r-PRCs) [1-4]. These two cell types show not only different cytoarchitectures but distinct phototransduction cascades, which are triggered by the respective types of opsins (e.g., [5]), ciliary opsins (c-opsins) and rhabdomeric opsins (r-opsins) [6]. Recent reports suggested that the c- and r-PRCs and their respective opsins diverged at least before the deuterostome-protostome split [7-9]. To study the earlier evolution of animal PRCs and opsins, we investigated two hydrozoan jellyfishes. We report here the first-characterized cnidarian opsins. Molecular phylogeny revealed that the cloned 20 jellyfish opsins, together with all the opsins from a hydra and some from a sea anemone, are more closely related to the c-opsins than to any other major opsin subfamily, indicating that the divergence of c- and r-opsins antedates the Cnidaria-Bilateria split. Possible scenarios of animal PRC evolution are discussed. Furthermore, Cladonema opsins show several distinct tissue- and stage-specific expression patterns. The expression of specific opsins in the eyes suggests a role in vision, whereas that in the gonads suggests a role in light-controlled release of gametes.

  5. Variable light environments induce plastic spectral tuning by regional opsin coexpression in the African cichlid fish, Metriaclima zebra

    PubMed Central

    Dalton, Brian E.; Lu, Jessica; Leips, Jeff; Cronin, Thomas W.; Carleton, Karen L.

    2015-01-01

    Critical behaviors such as predation and mate choice often depend on vision. Visual systems are sensitive to the spectrum of light in their environment, which can vary extensively both within and among habitats. Evolutionary changes in spectral sensitivity contribute to divergence and speciation. Spectral sensitivity of the retina is primarily determined by visual pigments, which are opsin proteins bound to a chromophore. We recently discovered that photoreceptors in different regions of the retina, which view objects against distinct environmental backgrounds, coexpress different pairs of opsins in an African cichlid fish, Metriaclima zebra. This coexpression tunes the sensitivity of the retinal regions to the corresponding backgrounds and may aid detection of dark objects, such as predators. Although intraretinal regionalization of spectral sensitivity in many animals correlates with their light environments, it is unknown whether variation in the light environment induces developmentally plastic alterations of intraretinal sensitivity regions. Here, we demonstrate with fluorescent in situ hybridization and qPCR that the spectrum and angle of environmental light both influence the development of spectral sensitivity regions by altering the distribution and level of opsins across the retina. Normally M. zebra coexpresses LWS opsin with RH2Aα opsin in double cones of the ventral but not the dorsal retina. However, when illuminated from below throughout development, adult M. zebra coexpressed LWS and RH2Aα in double cones both dorsally and ventrally. Thus, environmental background spectra alter the spectral sensitivity pattern that develops across the retina, potentially influencing behaviors and related evolutionary processes such as courtship and speciation. PMID:26175094

  6. LWS/SET Technology Experiment Carrier

    NASA Technical Reports Server (NTRS)

    Sherman, Barry; Giffin, Geoff

    2002-01-01

    This paper examines the approach taken to building a low-cost, modular spacecraft bus that can be used to support a variety of technology experiments in different space environments. It describes the techniques used and design drivers considered to ensure experiment independence from as yet selected host spacecraft. It describes the technology experiment carriers that will support NASA's Living With a Star Space Environment Testbed space missions. NASA has initiated the Living With a Star (LWS) Program to develop a better scientific understanding to address the aspects of the connected Sun-Earth system that affect life and society. A principal goal of the program is to bridge the gap between science, engineering, and user application communities. The Space Environment Testbed (SET) Project is one element of LWS. The Project will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The SET Project is highly budget constrained and must seek to take advantage of as yet undetermined partnering opportunities for access to space. SET will conduct technology validation experiments hosted on available flight opportunities. The SET Testbeds will be developed in a manner that minimizes the requirements for accommodation, and will be flown as flight opportunities become available. To access the widest range of flight opportunities, two key development requirements are to maintain flexibility with respect to accommodation constraints and to have the capability to respond quickly to flight opportunities. Experiments, already developed to the technology readiness level of needing flight validation in the variable Sun-Earth environment, will be selected on the basis of the need for the subject technology, readiness for flight, need for flight resources and particular orbit. Experiments will be

  7. Intraspecific cone opsin expression variation in the cichlids of Lake Malawi.

    PubMed

    Smith, Adam R; D'Annunzio, Lindsay; Smith, Abbi E; Sharma, Anit; Hofmann, Christopher M; Marshall, N J; Carleton, Karen L

    2011-01-01

    The expression of cone opsin genes is a primary determinant of the characteristics of colour vision. Interspecific variation in opsin expression is common in African cichlids. It is correlated with foraging among cichlids from Lake Malawi, and with ambient light environment among cichlids from Lake Victoria. In this study, we tested whether gene expression varied within species such that it might be important in contributing to divergence. We hypothesized that light attenuation with depth would be correlated with predictable changes in gene expression in Lake Malawi, and that this variation would tune visual sensitivities to match the ambient light environment. We observed significant differences in cone opsin expression in three different comparisons among populations of the same species. Higher LWS expression was found in shallow versus deep Copadichromis eucinostomus. In Metriaclima zebra, individuals from Zimbawe Rock expressed significantly more SWS2B than those from Thumbi West Island, although these locales have similar ambient light environments. Finally, Tropheops gracilior from deeper water had significantly more variation in expression than their shallow counterparts. These results support that gene expression varies significantly between populations of the same species. Surprisingly, these results could not be explained by predicted visual performance as models predicted that differential expression patterns did not confer sensitivity advantages at different depths. This suggested that expression variation did not confer a local sensitivity advantage. Therefore, our findings were contrary to a primary requirement of the sensory bias hypothesis. As such, other explanations for intraspecific gene expression variation need to be tested.

  8. Vision for the Future of Lws TR&T

    NASA Astrophysics Data System (ADS)

    Schwadron, N.; Mannucci, A. J.; Antiochos, S. K.; Bhattacharjee, A.; Gombosi, T. I.; Gopalswamy, N.; Kamalabadi, F.; Linker, J.; Pilewskie, P.; Pulkkinen, A. A.; Spence, H. E.; Tobiska, W. K.; Weimer, D. R.; Withers, P.; Bisi, M. M.; Kuznetsova, M. M.; Miller, K. L.; Moretto, T.; Onsager, T. G.; Roussev, I. I.; Viereck, R. A.

    2014-12-01

    The Living With a Star (LWS) program addresses acute societal needs for understanding the effects of space weather and developing scientific knowledge to support predictive capabilities. Our society's heavy reliance on technologies affected by the space environment, an enormous number of airline customers, interest in space tourism, and the developing plans for long-duration human exploration space missions are clear examples that demonstrate urgent needs for space weather models and detailed understanding of space weather effects and risks. Since its inception, the LWS program has provided a vehicle to innovate new mechanisms for conducting research, building highly effective interdisciplinary teams, and ultimately in developing the scientific understanding needed to transition research tools into operational models that support the predictive needs of our increasingly space-reliant society. The advances needed require broad-based observations that cannot be obtained by large missions alone. The Decadal Survey (HDS, 2012) outlines the nation's needs for scientific development that will build the foundation for tomorrow's space weather services. Addressing these goals, LWS must develop flexible pathways to space utilizing smaller, more diverse and rapid development of observational platforms. Expanding utilization of ground-based assets and shared launches will also significantly enhance opportunities to fulfill the growing LWS data needs. Partnerships between NASA divisions, national/international agencies, and with industry will be essential for leveraging resources to address increasing societal demand for space weather advances. Strengthened connections to user communities will enhance the quality and impact of deliverables from LWS programs. Thus, we outline the developing vision for the future of LWS, stressing the need for deeper scientific understanding to improve forecasting capabilities, for more diverse data resources, and for project deliverables that

  9. Diversity of Active States in TMT Opsins.

    PubMed

    Sakai, Kazumi; Yamashita, Takahiro; Imamoto, Yasushi; Shichida, Yoshinori

    2015-01-01

    Opn3/TMT opsins belong to one of the opsin groups with vertebrate visual and non-visual opsins, and are widely distributed in eyes, brains and other internal organs in various vertebrates and invertebrates. Vertebrate Opn3/TMT opsins are further classified into four groups on the basis of their amino acid identities. However, there is limited information about molecular properties of these groups, due to the difficulty in preparing the recombinant proteins. Here, we successfully expressed recombinant proteins of TMT1 and TMT2 opsins of medaka fish (Oryzias latipes) in cultured cells and characterized their molecular properties. Spectroscopic and biochemical studies demonstrated that TMT1 and TMT2 opsins functioned as blue light-sensitive Gi/Go-coupled receptors, but exhibited spectral properties and photo-convertibility of the active state different from each other. TMT1 opsin forms a visible light-absorbing active state containing all-trans-retinal, which can be photo-converted to 7-cis- and 9-cis-retinal states in addition to the original 11-cis-retinal state. In contrast, the active state of TMT2 opsin is a UV light-absorbing state having all-trans-retinal and does not photo-convert to any other state, including the original 11-cis-retinal state. Thus, TMT opsins are diversified so as to form a different type of active state, which may be responsible for their different functions.

  10. Shedding new light on opsin evolution

    PubMed Central

    Porter, Megan L.; Blasic, Joseph R.; Bok, Michael J.; Cameron, Evan G.; Pringle, Thomas; Cronin, Thomas W.; Robinson, Phyllis R.

    2012-01-01

    Opsin proteins are essential molecules in mediating the ability of animals to detect and use light for diverse biological functions. Therefore, understanding the evolutionary history of opsins is key to understanding the evolution of light detection and photoreception in animals. As genomic data have appeared and rapidly expanded in quantity, it has become possible to analyse opsins that functionally and histologically are less well characterized, and thus to examine opsin evolution strictly from a genetic perspective. We have incorporated these new data into a large-scale, genome-based analysis of opsin evolution. We use an extensive phylogeny of currently known opsin sequence diversity as a foundation for examining the evolutionary distributions of key functional features within the opsin clade. This new analysis illustrates the lability of opsin protein-expression patterns, site-specific functionality (i.e. counterion position) and G-protein binding interactions. Further, it demonstrates the limitations of current model organisms, and highlights the need for further characterization of many of the opsin sequence groups with unknown function. PMID:22012981

  11. Diversity of Active States in TMT Opsins

    PubMed Central

    Sakai, Kazumi; Yamashita, Takahiro; Imamoto, Yasushi; Shichida, Yoshinori

    2015-01-01

    Opn3/TMT opsins belong to one of the opsin groups with vertebrate visual and non-visual opsins, and are widely distributed in eyes, brains and other internal organs in various vertebrates and invertebrates. Vertebrate Opn3/TMT opsins are further classified into four groups on the basis of their amino acid identities. However, there is limited information about molecular properties of these groups, due to the difficulty in preparing the recombinant proteins. Here, we successfully expressed recombinant proteins of TMT1 and TMT2 opsins of medaka fish (Oryzias latipes) in cultured cells and characterized their molecular properties. Spectroscopic and biochemical studies demonstrated that TMT1 and TMT2 opsins functioned as blue light-sensitive Gi/Go-coupled receptors, but exhibited spectral properties and photo-convertibility of the active state different from each other. TMT1 opsin forms a visible light-absorbing active state containing all-trans-retinal, which can be photo-converted to 7-cis- and 9-cis-retinal states in addition to the original 11-cis-retinal state. In contrast, the active state of TMT2 opsin is a UV light-absorbing state having all-trans-retinal and does not photo-convert to any other state, including the original 11-cis-retinal state. Thus, TMT opsins are diversified so as to form a different type of active state, which may be responsible for their different functions. PMID:26491964

  12. Analysis of the Opsin Repertoire in the Tardigrade Hypsibius dujardini Provides Insights into the Evolution of Opsin Genes in Panarthropoda

    PubMed Central

    Hering, Lars; Mayer, Georg

    2014-01-01

    Screening of a deeply sequenced transcriptome using Illumina sequencing as well as the genome of the tardigrade Hypsibius dujardini revealed a set of five opsin genes. To clarify the phylogenetic position of these genes and to elucidate the evolutionary history of opsins in Panarthropoda (Onychophora + Tardigrada + Arthropoda), we reconstructed the phylogeny of broadly sampled metazoan opsin genes using maximum likelihood and Bayesian inference methods in conjunction with carefully selected substitution models. According to our findings, the opsin repertoire of H. dujardini comprises representatives of all three major bilaterian opsin clades, including one r-opsin, three c-opsins, and a Group 4 opsin (neuropsin/opsin-5). The identification of the tardigrade ortholog of neuropsin/opsin-5 is the first record of this opsin type in a protostome, but our screening of available metazoan genomes revealed that it is also present in other protostomes. Our opsin phylogeny further suggests that two r-opsins, including an “arthropsin,” were present in the last common ancestor of Panarthropoda. Although both r-opsin lineages were retained in Onychophora and Arthropoda, the arthropsin was lost in Tardigrada. The single (most likely visual) r-opsin found in H. dujardini supports the hypothesis of monochromatic vision in the panarthropod ancestor, whereas two duplications of the ancestral panarthropod c-opsin have led to three c-opsins in tardigrades. Although the early-branching nodes are unstable within the metazoans, our findings suggest that the last common ancestor of Bilateria possessed six opsins: Two r-opsins, one c-opsin, and three Group 4 opsins, one of which (Go opsin) was lost in the ecdysozoan lineage. PMID:25193307

  13. Analysis of the opsin repertoire in the tardigrade Hypsibius dujardini provides insights into the evolution of opsin genes in panarthropoda.

    PubMed

    Hering, Lars; Mayer, Georg

    2014-09-04

    Screening of a deeply sequenced transcriptome using Illumina sequencing as well as the genome of the tardigrade Hypsibius dujardini revealed a set of five opsin genes. To clarify the phylogenetic position of these genes and to elucidate the evolutionary history of opsins in Panarthropoda (Onychophora + Tardigrada + Arthropoda), we reconstructed the phylogeny of broadly sampled metazoan opsin genes using maximum likelihood and Bayesian inference methods in conjunction with carefully selected substitution models. According to our findings, the opsin repertoire of H. dujardini comprises representatives of all three major bilaterian opsin clades, including one r-opsin, three c-opsins, and a Group 4 opsin (neuropsin/opsin-5). The identification of the tardigrade ortholog of neuropsin/opsin-5 is the first record of this opsin type in a protostome, but our screening of available metazoan genomes revealed that it is also present in other protostomes. Our opsin phylogeny further suggests that two r-opsins, including an "arthropsin," were present in the last common ancestor of Panarthropoda. Although both r-opsin lineages were retained in Onychophora and Arthropoda, the arthropsin was lost in Tardigrada. The single (most likely visual) r-opsin found in H. dujardini supports the hypothesis of monochromatic vision in the panarthropod ancestor, whereas two duplications of the ancestral panarthropod c-opsin have led to three c-opsins in tardigrades. Although the early-branching nodes are unstable within the metazoans, our findings suggest that the last common ancestor of Bilateria possessed six opsins: Two r-opsins, one c-opsin, and three Group 4 opsins, one of which (Go opsin) was lost in the ecdysozoan lineage.

  14. The Microbial Opsin Family of Optogenetic Tools

    SciTech Connect

    Zhang, Feng; Vierock, Johannes; Yizhar, Ofer; Fenno, Lief E.; Tsunoda, Satoshi; Kianianmomeni, Arash; Prigge, Matthias; Berndt, Andre; Cushman, John C.; Polle, Juergen E.; Magnuson, Jon K.; Hegemann, Peter; Deisseroth, Karl

    2011-12-23

    The capture and utilization of light is an exquisitely evolved process. The single-component microbial opsins, although more limited than multicomponent cascades in processing, display unparalleled compactness and speed. Recent advances in understanding microbial opsins have been driven by molecular engineering for optogenetics and by comparative genomics. Here we provide a Primer on these light-activated ion channels and pumps, describe a group of opsins bridging prior categories, and explore the convergence of molecular engineering and genomic discovery for the utilization and understanding of these remarkable molecular machines.

  15. Involvement of opsins in mammalian sperm thermotaxis

    PubMed Central

    Pérez-Cerezales, Serafín; Boryshpolets, Sergii; Afanzar, Oshri; Brandis, Alexander; Nevo, Reinat; Kiss, Vladimir; Eisenbach, Michael

    2015-01-01

    A unique characteristic of mammalian sperm thermotaxis is extreme temperature sensitivity, manifested by the capacity of spermatozoa to respond to temperature changes of <0.0006 °C as they swim their body-length distance. The identity of the sensing system that confers this exceptional sensitivity on spermatozoa is not known. Here we show that the temperature-sensing system of mammalian spermatozoa involves opsins, known to be G-protein-coupled receptors that act as photosensors in vision. We demonstrate by molecular, immunological, and functional approaches that opsins are present in human and mouse spermatozoa at specific sites, which depend on the species and the opsin type, and that they are involved in sperm thermotaxis via two signalling pathways—the phospholipase C and the cyclic-nucleotide pathways. Our results suggest that, depending on the context and the tissue, mammalian opsins act not only as photosensors but also as thermosensors. PMID:26537127

  16. Broad-Band Activatable White-Opsin

    PubMed Central

    Batabyal, Subrata; Cervenka, Gregory; Ha, Ji Hee; Kim, Young-tae; Mohanty, Samarendra

    2015-01-01

    Currently, the use of optogenetic sensitization of retinal cells combined with activation/inhibition has the potential to be an alternative to retinal implants that would require electrodes inside every single neuron for high visual resolution. However, clinical translation of optogenetic activation for restoration of vision suffers from the drawback that the narrow spectral sensitivity of an opsin requires active stimulation by a blue laser or a light emitting diode with much higher intensities than ambient light. In order to allow an ambient light-based stimulation paradigm, we report the development of a ‘white-opsin’ that has broad spectral excitability in the visible spectrum. The cells sensitized with white-opsin showed excitability at an order of magnitude higher with white light compared to using only narrow-band light components. Further, cells sensitized with white-opsin produced a photocurrent that was five times higher than Channelrhodopsin-2 under similar photo-excitation conditions. The use of fast white-opsin may allow opsin-sensitized neurons in a degenerated retina to exhibit a higher sensitivity to ambient white light. This property, therefore, significantly lowers the activation threshold in contrast to conventional approaches that use intense narrow-band opsins and light to activate cellular stimulation. PMID:26360377

  17. C-opsin expressing photoreceptors in echinoderms.

    PubMed

    Ullrich-Lüter, Esther M; D'Aniello, Salvatore; Arnone, Maria I

    2013-07-01

    Today's progress in molecular analysis and, in particular, the increased availability of genome sequences have enabled us to investigate photoreceptor cells (PRCs) in organisms that were formerly inaccessible to experimental manipulation. Our studies of marine non-chordate deuterostomes thus aim to bridge a gap of knowledge regarding the evolution of deuterostome PRCs prior to the emergence of vertebrates' eyes. In this contribution, we will show evidence for expression of a c-opsin photopigment, which, according to our phylogenetic analysis, is closely related to an assemblage of chordate visual c-opsins. An antibody raised against sea urchins' c-opsin protein (Sp-Opsin1) recognizes epitopes in a variety of tissues of different echinoderms. While in sea urchins this c-opsin is expressed in locomotory and buccal tube feet, spines, pedicellaria, and epidermis, in brittlestars and starfish we found the immuno-reaction to be located exclusively in cells within the animals' spines. Structural characteristics of these c-opsin+ PRC types include the close vicinity/connection to nerve strands and a, so far unexplored, conspicuous association with the animals' calcite skeleton, which previously has been hypothesized to play a role in echinoderm photobiology. These features are discussed within the context of the evolution of photoreceptors in echinoderms and in deuterostomes generally.

  18. Opsin gene repertoires in northern archaic hominids.

    PubMed

    Taylor, John S; Reimchen, Thomas E

    2016-08-01

    The Neanderthals' northern distribution, hunting techniques, and orbit breadths suggest that they were more active in dim light than modern humans. We surveyed visual opsin genes from four Neanderthals and two other archaic hominids to see if they provided additional support for this hypothesis. This analysis was motivated by the observation that alleles responsible for anomalous trichromacy in humans are more common in northern latitudes, by data suggesting that these variants might enhance vision in mesopic conditions, and by the observation that dim light active species often have fewer opsin genes than diurnal relatives. We also looked for evidence of convergent amino acid substitutions in Neanderthal opsins and orthologs from crepuscular or nocturnal species. The Altai Neanderthal, the Denisovan, and the Ust'-Ishim early modern human had opsin genes that encoded proteins identical to orthologs in the human reference genome. Opsins from the Vindija Cave Neanderthals (three females) had many nonsynonymous substitutions, including several predicted to influence colour vision (e.g., stop codons). However, the functional implications of these observations were difficult to assess, given that "control" loci, where no substitutions were expected, differed from humans to the same extent. This left unresolved the test for colour vision deficiencies in Vindija Cave Neanderthals.

  19. The Living With a Star (LWS) Sentinels Mission

    NASA Technical Reports Server (NTRS)

    Szabo, A.

    2005-01-01

    The Sentinels Mission, the heliospheric element of the NASA Living With a Star (LWS) program, is still rapidly evolving, especially as the Sentinels Science and Technology Definition Team is progressing with its work. With the Solar Dynamics Observatory, the solar component, and the Geospace elements taking a more finalized form, it becomes clearer what scientific and measurement objectives will be necessary to establish the solar-geospace connection in order to achieve the goals of the LWS program. Possible, early formulation designs of the Sentinels mission will be presented that includes the Inner Heliospheric Mappers, a four spacecraft mission to observe the inner heliosphere between 0.25 and 1.0 AUs along with a Far Side Sentinel that will perform remote solar observations from nearly the opposite side of the Sun. Moreover, the complementarity of the various planned international missions (e.g., ESA Solar Orbiter, and Beppi Colombo) along with NASA planetary projects (e.g., Mars program and MESSENGER) will be discussed and how they can form a coherent system. Finally, the importance of already available heliospheric data will be emphasized.

  20. The NASA living with a star (LWS) sentinels mission

    NASA Astrophysics Data System (ADS)

    Lin, R. P.; Szabo, A.

    2005-08-01

    The NASA Living With a Star (LWS) Sentinels mission is presently being defined by its Science and Technology Definition Team (STDT). Sentinels is the third element of the LWS program. Its primary scientific objective is to discover, understand and model the connection between solar phenomena and the interplanetary/geospace disturbances, specifically, the heliospheric initiation, propagation and solar connection of those energetic phenomena that adversely affect space exploration and life and society here on Earth. Sentinels will play a particularly important role in support of NASA's new Vision for Space Exploration (VSE), in providing key new measurements required to understand the production of Solar Energetic Particles (SEPs) that are hazardous to human and robotic missions to the Moon and Mars. Here we describe the planning for Sentinels, and the preliminary design of the first phase, the Inner Heliosphere Sentinels, a four spacecraft mission to provide multi-point longitudinally and radially distributed in situ observations of SEPs, plasma, fields, and X-rays/gamma-rays/neutrons in the inner heliosphere (~0.25-0.76 AU), close to the site of SEP acceleration and rapid transient evolution.

  1. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications

    PubMed Central

    2013-01-01

    Background Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (GNAT) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). Results Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one GNAT, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three GNAT and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R. Conclusions We present an extensive analysis of the paralogon housing the visual opsin, GNAT and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the

  2. The comb jelly opsins and the origins of animal phototransduction.

    PubMed

    Feuda, Roberto; Rota-Stabelli, Omar; Oakley, Todd H; Pisani, Davide

    2014-07-24

    Opsins mediate light detection in most animals, and understanding their evolution is key to clarify the origin of vision. Despite the public availability of a substantial collection of well-characterized opsins, early opsin evolution has yet to be fully understood, in large part because of the high level of divergence observed among opsins belonging to different subfamilies. As a result, different studies have investigated deep opsin evolution using alternative data sets and reached contradictory results. Here, we integrated the data and methods of three, key, recent studies to further clarify opsin evolution. We show that the opsin relationships are sensitive to outgroup choice; we generate new support for the existence of Rhabdomeric opsins in Cnidaria (e.g., corals and jellyfishes) and show that all comb jelly opsins belong to well-recognized opsin groups (the Go-coupled opsins or the Ciliary opsins), which are also known in Bilateria (e.g., humans, fruit flies, snails, and their allies) and Cnidaria. Our results are most parsimoniously interpreted assuming a traditional animal phylogeny where Ctenophora are not the sister group of all the other animals.

  3. The Comb Jelly Opsins and the Origins of Animal Phototransduction

    PubMed Central

    Feuda, Roberto; Rota-Stabelli, Omar; Oakley, Todd H.; Pisani, Davide

    2014-01-01

    Opsins mediate light detection in most animals, and understanding their evolution is key to clarify the origin of vision. Despite the public availability of a substantial collection of well-characterized opsins, early opsin evolution has yet to be fully understood, in large part because of the high level of divergence observed among opsins belonging to different subfamilies. As a result, different studies have investigated deep opsin evolution using alternative data sets and reached contradictory results. Here, we integrated the data and methods of three, key, recent studies to further clarify opsin evolution. We show that the opsin relationships are sensitive to outgroup choice; we generate new support for the existence of Rhabdomeric opsins in Cnidaria (e.g., corals and jellyfishes) and show that all comb jelly opsins belong to well-recognized opsin groups (the Go-coupled opsins or the Ciliary opsins), which are also known in Bilateria (e.g., humans, fruit flies, snails, and their allies) and Cnidaria. Our results are most parsimoniously interpreted assuming a traditional animal phylogeny where Ctenophora are not the sister group of all the other animals. PMID:25062921

  4. Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution.

    PubMed

    Liegertová, Michaela; Pergner, Jiří; Kozmiková, Iryna; Fabian, Peter; Pombinho, Antonio R; Strnad, Hynek; Pačes, Jan; Vlček, Čestmír; Bartůněk, Petr; Kozmik, Zbyněk

    2015-07-08

    Animals sense light primarily by an opsin-based photopigment present in a photoreceptor cell. Cnidaria are arguably the most basal phylum containing a well-developed visual system. The evolutionary history of opsins in the animal kingdom has not yet been resolved. Here, we study the evolution of animal opsins by genome-wide analysis of the cubozoan jellyfish Tripedalia cystophora, a cnidarian possessing complex lens-containing eyes and minor photoreceptors. A large number of opsin genes with distinct tissue- and stage-specific expression were identified. Our phylogenetic analysis unequivocally classifies cubozoan opsins as a sister group to c-opsins and documents lineage-specific expansion of the opsin gene repertoire in the cubozoan genome. Functional analyses provided evidence for the use of the Gs-cAMP signaling pathway in a small set of cubozoan opsins, indicating the possibility that the majority of other cubozoan opsins signal via distinct pathways. Additionally, these tests uncovered subtle differences among individual opsins, suggesting possible fine-tuning for specific photoreceptor tasks. Based on phylogenetic, expression and biochemical analysis we propose that rapid lineage- and species-specific duplications of the intron-less opsin genes and their subsequent functional diversification promoted evolution of a large repertoire of both visual and extraocular photoreceptors in cubozoans.

  5. Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution

    PubMed Central

    Liegertová, Michaela; Pergner, Jiří; Kozmiková, Iryna; Fabian, Peter; Pombinho, Antonio R.; Strnad, Hynek; Pačes, Jan; Vlček, Čestmír; Bartůněk, Petr; Kozmik, Zbyněk

    2015-01-01

    Animals sense light primarily by an opsin-based photopigment present in a photoreceptor cell. Cnidaria are arguably the most basal phylum containing a well-developed visual system. The evolutionary history of opsins in the animal kingdom has not yet been resolved. Here, we study the evolution of animal opsins by genome-wide analysis of the cubozoan jellyfish Tripedalia cystophora, a cnidarian possessing complex lens-containing eyes and minor photoreceptors. A large number of opsin genes with distinct tissue- and stage-specific expression were identified. Our phylogenetic analysis unequivocally classifies cubozoan opsins as a sister group to c-opsins and documents lineage-specific expansion of the opsin gene repertoire in the cubozoan genome. Functional analyses provided evidence for the use of the Gs-cAMP signaling pathway in a small set of cubozoan opsins, indicating the possibility that the majority of other cubozoan opsins signal via distinct pathways. Additionally, these tests uncovered subtle differences among individual opsins, suggesting possible fine-tuning for specific photoreceptor tasks. Based on phylogenetic, expression and biochemical analysis we propose that rapid lineage- and species-specific duplications of the intron-less opsin genes and their subsequent functional diversification promoted evolution of a large repertoire of both visual and extraocular photoreceptors in cubozoans. PMID:26154478

  6. Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: Evidence from visual opsin gene expression

    USGS Publications Warehouse

    Simoe, Bruno F; Sampaio, Filipa L.; Loew, Ellis R.; Sanders, Kate L.; Fisher, Robert N.; Hart, Nathan S.; Hunt, David M.; Partridge, Julian C.; Gower, David J.

    2016-01-01

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor ‘transmutation’. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels.

  7. Multiple rod-cone and cone-rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression.

    PubMed

    Simões, Bruno F; Sampaio, Filipa L; Loew, Ellis R; Sanders, Kate L; Fisher, Robert N; Hart, Nathan S; Hunt, David M; Partridge, Julian C; Gower, David J

    2016-01-27

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor 'transmutation'. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels.

  8. Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression

    PubMed Central

    Sampaio, Filipa L.; Loew, Ellis R.; Sanders, Kate L.; Fisher, Robert N.; Hart, Nathan S.; Hunt, David M.; Partridge, Julian C.

    2016-01-01

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor ‘transmutation’. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels. PMID:26817768

  9. The Dynamic Evolutionary History of Pancrustacean Eyes and Opsins.

    PubMed

    Henze, Miriam J; Oakley, Todd H

    2015-11-01

    Pancrustacea (Hexapoda plus Crustacea) display an enormous diversity of eye designs, including multiple types of compound eyes and single-chambered eyes, often with color vision and/or polarization vision. Although the eyes of some pancrustaceans are well-studied, there is still much to learn about the evolutionary paths to this amazing visual diversity. Here, we examine the evolutionary history of eyes and opsins across the principle groups of Pancrustacea. First, we review the distribution of lateral and median eyes, which are found in all major pancrustacean clades (Oligostraca, Multicrustacea, and Allotriocarida). At the same time, each of those three clades has taxa that lack lateral and/or median eyes. We then compile data on the expression of visual r-opsins (rhabdomeric opsins) in lateral and median eyes across Pancrustacea and find no evidence for ancient opsin clades expressed in only one type of eye. Instead, opsin clades with eye-specific expression are products of recent gene duplications, indicating a dynamic past, during which opsins often changed expression from one type of eye to another. We also investigate the evolutionary history of peropsins and r-opsins, which are both known to be expressed in eyes of arthropods. By searching published transcriptomes, we discover for the first time crustacean peropsins and suggest that previously reported odonate opsins may also be peropsins. Finally, from analyzing a reconciled, phylogenetic tree of arthropod r-opsins, we infer that the ancestral pancrustacean had four visual opsin genes, which we call LW2, MW1, MW2, and SW. These are the progenitors of opsin clades that later were variously duplicated or lost during pancrustacean evolution. Together, our results reveal a particularly dynamic history, with losses of eyes, duplication and loss of opsin genes, and changes in opsin expression between types of eyes.

  10. Carrier Plus: A Sensor Payload for Living With a Star Space Environment Testbed (LWS/SET)

    NASA Technical Reports Server (NTRS)

    Marshall, Cheryl; Moss, Steven; Howard, Regan; LaBel, Kenneth; Grycewicz, Tom; Barth, Janet; Brewer, Dana

    2003-01-01

    The paper discusses the following: 1. Living with a Star (LWS) program: space environment testbed (SET); natural space environment. 2. Carrier plus: goals and benefits. 3. ON-orbit sensor measurements. 4. Carrier plus architecture. 5. Participation in carrier plus.

  11. Far-infrared spectroscopy of normal galaxies with LWS

    NASA Astrophysics Data System (ADS)

    Malhotra, S.; Helou, G.; Hollenbach, D.; Kaufman, M. J.; Lord, S. D.; Brauher, J. R.; Dale, D.; Lu, N. Y.; Beichman, C. A.; Dinerstein, H.; Hunter, D. A.; Lo, K. Y.; Rubin, R. H.; Silbermann, N.; Stacey, G. J.; Thronson, H. A.; Werner, M. W.

    1999-03-01

    The deficiency of [CII] (158 μ m) line emission in many normal and ultraluminous galaxies is one of the major surprises from ISO-LWS observations. We show that this is not an isolated phenomenon: there is a smooth decline in L[CII]/LFIR ratio with increasing dust temperature(as indicated by far-infrared colors Fν(60 μ m)/Fν(100 μ m), i.e. F60/F100) and star-formation activity (indicated by LFIR/LB), independent of their luminosity or morphology. In a sample of 60 normal galaxies, these trends span a factor of 100. Of the numerous explanations proposed for the L[CII]/LFIR variation the leading ones are (a) optical depth and extinction, (b) softer radiation field from old stellar populations (c) inefficient photoelectric heating by charged grains when the UV radiation density per gas atom (G0/n) is high. We can rule out hypothesis (a) with the observations that the [OI]/[CII] line ratio increases for galaxies with higher F60/F100. This is contrary to the expectation that [OI] at 63 μ m should be more severely affected by extinction because it is at a shorter wavelength. Optical depth should also affect [OI] 63 μ m line more strongly because OI exists deeper (to Av=10) in the interior of clouds than [CII]. Hypothesis (b) explains the slight decrease in L[CII]/LFIR seen in early type galaxies with low rates of star-formation and the lowest LFIR/LB in the sample. The dramatic fall in L[CII]/LFIR for the warmest and most actively star-forming galaxies is best explained by hypothesis (c). In galaxies with warmer dust, there is less cooling via the [CII] line, while [OI] remains a major coolant. This trend is qualitatively explained in PDR models by an increase in radiation field G0, which raises the dust temperature and the [OI]/[CII] line ratio.

  12. Variable Rates of Evolution among Drosophila Opsin Genes

    PubMed Central

    Carulli, J. P.; Hartl, D. L.

    1992-01-01

    DNA sequences and chromosomal locations of four Drosophila pseudoobscura opsin genes were compared with those from Drosophila melanogaster, to determine factors that influence the evolution of multigene families. Although the opsin proteins perform the same primary functions, the comparisons reveal a wide range of evolutionary rates. Amino acid identities for the opsins range from 90% for Rh2 to more than 95% for Rh1 and Rh4. Variation in the rate of synonymous site substitution is especially striking: the major opsin, encoded by the Rh1 locus, differs at only 26.1% of synonymous sites between D. pseudoobscura and D. melanogaster, while the other opsin loci differ by as much as 39.2% at synonymous sites. Rh3 and Rh4 have similar levels of synonymous nucleotide substitution but significantly different amounts of amino acid replacement. This decoupling of nucleotide substitution and amino acid replacement suggests that different selective pressures are acting on these similar genes. There is significant heterogeneity in base composition and codon usage bias among the opsin genes in both species, but there are no consistent relationships between these factors and the rate of evolution of the opsins. In addition to exhibiting variation in evolutionary rates, the opsin loci in these species reveal rearrangements of chromosome elements. PMID:1398053

  13. Carrier Plus: A sensor payload for Living With a Star Space Environment Testbed (LWS/SET)

    NASA Technical Reports Server (NTRS)

    Marshall, Cheryl J.; Moss, Steven; Howard, Regan; LaBel, Kenneth A.; Grycewicz, Tom; Barth, Janet L.; Brewer, Dana

    2003-01-01

    The Defense Threat Reduction Agency (DTR4) and National Aeronautics and Space Administration (NASA) Goddard Space Flight Center are collaborating to develop the Carrier Plus sensor experiment platform as a capability of the Space Environments Testbed (SET). The Space Environment Testbed (SET) provides flight opportunities for technology experiments as part of NASA's Living With a Star (LWS) program. The Carrier Plus will provide new capability to characterize sensor technologies such as state-of-the-art visible focal plane arrays (FPAs) in a natural space radiation environment. The technical objectives include on-orbit validation of recently developed FPA technologies and performance prediction methodologies, as well as characterization of the FPA radiation response to total ionizing dose damage, displacement damage and transients. It is expected that the sensor experiment will carry 4-6 FPAs and associated radiation correlative environment monitors (CEMs) for a 2006-2007 launch. Sensor technology candidates may include n- and p-charge coupled devices (CCDs), active pixel sensors (APS), and hybrid CMOS arrays. The presentation will describe the Carrier Plus goals and objectives, as well as provide details about the architecture and design. More information on the LWS program can be found at http://lws.gsfc.nasa.gov/. Business announcements for LWS/SET and program briefings are posted at http://lws-set.gsfc.nasa.gov

  14. Living with a Star (LWS) Space Environment Testbeds (SET), Mission Carrier Overview and Capabilities

    NASA Technical Reports Server (NTRS)

    Patschke, Robert; Barth, Janet; Label, Ken; Mariano, Carolyn; Pham, Karen; Brewer, Dana; Cuviello, Michael; Kobe, David; Wu, Carl; Jarosz, Donald

    2004-01-01

    NASA has initiated the Living With a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The three program elements of the LWS Program are Science Missions; Targeted Research and Technology; and Space Environment Testbeds (SETS). SET is an ideal platform for small experiments performing research on space environment effects on technologies and on the mitigation of space weather effects. A short description of the LWS Program will be given, and the SET will be described in detail, giving the mission objectives, available carrier services, and upcoming flight opportunities.

  15. Opsin-induced experimental autoimmune retinitis in rats.

    PubMed

    Broekhuyse, R M; Winkens, H J; Kuhlmann, E D; van Vugt, A H

    1984-12-01

    Experimental autoimmune retinitis has been induced in Lewis rats by injection of opsin in mycobacterial adjuvant and Hemophilus pertussis adjuvant. Clinical, histopathological and immunological parameters of the disease are reported. Two types of opsin were prepared from purified bovine retina outer segments, one type in Triton X-100 and the other in lithium dodecyl sulfate. Both preparations were free from S-antigen. Dodecyl sulfate-denaturated-opsin displayed lower antigenicity and pathogenicity than Triton-opsin. Triton-opsin (250 micrograms) induced moderate to severe non-granulomatous uveitis (predominantly retinitis) in 70% of the Lewis rats at the end of the second week after injection. The photoreceptor cell layer was destructed within a few days. This group displayed high responses to opsin in the lymphocyte transformation test. In view of observed histological features, the possible early involvement of vasoactive factors is discussed. Low opsin doses (50 or 100 micrograms) seldomly induced severe retinitis, while the incidence of mild pathology was low. Lewis rats appeared to be more susceptible for the development of experimental autoimmune retinitis than Wistar rats.

  16. Opsin gene duplication and divergence in ray-finned fish.

    PubMed

    Rennison, Diana J; Owens, Gregory L; Taylor, John S

    2012-03-01

    Opsin gene sequences were first reported in the 1980s. The goal of that research was to test the hypothesis that human opsins were members of a single gene family and that variation in human color vision was mediated by mutations in these genes. While the new data supported both hypotheses, the greatest contribution of this work was, arguably, that it provided the data necessary for PCR-based surveys in a diversity of other species. Such studies, and recent whole genome sequencing projects, have uncovered exceptionally large opsin gene repertoires in ray-finned fishes (taxon, Actinopterygii). Guppies and zebrafish, for example, have 10 visual opsin genes each. Here we review the duplication and divergence events that have generated these gene collections. Phylogenetic analyses revealed that large opsin gene repertories in fish have been generated by gene duplication and divergence events that span the age of the ray-finned fishes. Data from whole genome sequencing projects and from large-insert clones show that tandem duplication is the primary mode of opsin gene family expansion in fishes. In some instances gene conversion between tandem duplicates has obscured evolutionary relationships among genes and generated unique key-site haplotypes. We mapped amino acid substitutions at so-called key-sites onto phylogenies and this exposed many examples of convergence. We found that dN/dS values were higher on the branches of our trees that followed gene duplication than on branches that followed speciation events, suggesting that duplication relaxes constraints on opsin sequence evolution. Though the focus of the review is opsin sequence evolution, we also note that there are few clear connections between opsin gene repertoires and variation in spectral environment, morphological traits, or life history traits.

  17. Photoionization modeling of the LWS fine-structure lines in IR bright galaxies

    NASA Technical Reports Server (NTRS)

    Satyapal, S.; Luhman, M. L.; Fischer, J.; Greenhouse, M. A.; Wolfire, M. G.

    1997-01-01

    The long wavelength spectrometer (LWS) fine structure line spectra from infrared luminous galaxies were modeled using stellar evolutionary synthesis models combined with photoionization and photodissociation region models. The calculations were carried out by using the computational code CLOUDY. Starburst and active galactic nuclei models are presented. The effects of dust in the ionized region are examined.

  18. Misfolded opsin mutants display elevated β-sheet structure.

    PubMed

    Miller, Lisa M; Gragg, Megan; Kim, Tae Gyun; Park, Paul S-H

    2015-10-07

    Mutations in rhodopsin can cause misfolding and aggregation of the receptor, which leads to retinitis pigmentosa, a progressive retinal degenerative disease. The structure adopted by misfolded opsin mutants and the associated cell toxicity is poorly understood. Förster resonance energy transfer (FRET) and Fourier transform infrared (FTIR) microspectroscopy were utilized to probe within cells the structures formed by G188R and P23H opsins, which are misfolding mutants that cause autosomal dominant retinitis pigmentosa. Both mutants formed aggregates in the endoplasmic reticulum and exhibited altered secondary structure with elevated β-sheet and reduced α-helical content. The newly formed β-sheet structure may facilitate the aggregation of misfolded opsin mutants. The effects observed for the mutants were unrelated to retention of opsin molecules in the endoplasmic reticulum itself.

  19. Misfolded opsin mutants display elevated β -sheet structure

    DOE PAGES

    Miller, Lisa M.; Gragg, Megan; Kim, Tae Gyun; ...

    2015-09-07

    Mutations in rhodopsin can cause misfolding and aggregation of the receptor, which leads to retinitis pigmentosa, a progressive retinal degenerative disease. The structure adopted by misfolded opsin mutants and the associated cell toxicity is poorly understood. Förster resonance energy transfer (FRET) and Fourier transform infrared (FTIR) microspectroscopy were utilized to probe within cells the structures formed by G188R and P23H opsins, which are misfolding mutants that cause autosomal dominant retinitis pigmentosa. Also, both mutants formed aggregates in the endoplasmic reticulum and exhibited altered secondary structure with elevated β-sheet and reduced α-helical content. The newly formed β-sheet structure may facilitate themore » aggregation of misfolded opsin mutants. In conclusion, the effects observed for the mutants were unrelated to retention of opsin molecules in the endoplasmic reticulum itself.« less

  20. Parallel evolution of opsin gene expression in African cichlid fishes.

    PubMed

    O'Quin, Kelly E; Hofmann, Christopher M; Hofmann, Hans A; Carleton, Karen L

    2010-12-01

    Phenotypic evolution may occur either through alterations to the structure of protein-coding genes or their expression. Evidence for which of these two mechanisms more commonly contribute to the evolution of a phenotype can be garnered from examples of parallel and convergent evolution. The visual system of East African cichlid fishes is an excellent system with which to address this question. Cichlid fishes from Lakes Malawi (LM) and Victoria together exhibit three diverse palettes of coexpressed opsins and several important protein-coding mutations that both shift spectral sensitivity. Here we assess both opsin expression and protein-coding diversity among cichlids from a third rift lake, Lake Tanganyika (LT). We found that Tanganyikan cichlids exhibit three palettes of coexpressed opsins that largely overlap the short-, middle-, and long-wavelength-sensitive palettes of LM cichlids. Bayesian phenotypic clustering and ancestral state reconstructions both support the parallel evolution of the short- and middle-wavelength palettes among cichlids from LT and LM. In each case, these transitions occurred from different ancestors that expressed the same long-wavelength palette. We also identified similar but distinct patterns of correlated evolution between opsin expression, diet, and lens transmittance among cichlids from LT and LM as well. In contrast to regulatory changes, we identified few functional or potentially functional mutations in the protein-coding sequences of three variable opsins, with the possible exception of the SWS1 (ultraviolet) opsin. These results underscore the important contribution that gene regulation can make to rapid phenotypic evolution and adaptation.

  1. Novel opsin gene variation in large-bodied, diurnal lemurs.

    PubMed

    Jacobs, Rachel L; MacFie, Tammie S; Spriggs, Amanda N; Baden, Andrea L; Morelli, Toni Lyn; Irwin, Mitchell T; Lawler, Richard R; Pastorini, Jennifer; Mayor, Mireya; Lei, Runhua; Culligan, Ryan; Hawkins, Melissa T R; Kappeler, Peter M; Wright, Patricia C; Louis, Edward E; Mundy, Nicholas I; Bradley, Brenda J

    2017-03-01

    Some primate populations include both trichromatic and dichromatic (red-green colour blind) individuals due to allelic variation at the X-linked opsin locus. This polymorphic trichromacy is well described in day-active New World monkeys. Less is known about colour vision in Malagasy lemurs, but, unlike New World monkeys, only some day-active lemurs are polymorphic, while others are dichromatic. The evolutionary pressures underlying these differences in lemurs are unknown, but aspects of species ecology, including variation in activity pattern, are hypothesized to play a role. Limited data on X-linked opsin variation in lemurs make such hypotheses difficult to evaluate. We provide the first detailed examination of X-linked opsin variation across a lemur clade (Indriidae). We sequenced the X-linked opsin in the most strictly diurnal and largest extant lemur, Indri indri, and nine species of smaller, generally diurnal indriids (Propithecus). Although nocturnal Avahi (sister taxon to Propithecus) lacks a polymorphism, at least eight species of diurnal indriids have two or more X-linked opsin alleles. Four rainforest-living taxa-I. indri and the three largest Propithecus species-have alleles not previously documented in lemurs. Moreover, we identified at least three opsin alleles in Indri with peak spectral sensitivities similar to some New World monkeys.

  2. Extraordinary diversity of visual opsin genes in dragonflies.

    PubMed

    Futahashi, Ryo; Kawahara-Miki, Ryouka; Kinoshita, Michiyo; Yoshitake, Kazutoshi; Yajima, Shunsuke; Arikawa, Kentaro; Fukatsu, Takema

    2015-03-17

    Dragonflies are colorful and large-eyed animals strongly dependent on color vision. Here we report an extraordinary large number of opsin genes in dragonflies and their characteristic spatiotemporal expression patterns. Exhaustive transcriptomic and genomic surveys of three dragonflies of the family Libellulidae consistently identified 20 opsin genes, consisting of 4 nonvisual opsin genes and 16 visual opsin genes of 1 UV, 5 short-wavelength (SW), and 10 long-wavelength (LW) type. Comprehensive transcriptomic survey of the other dragonflies representing an additional 10 families also identified as many as 15-33 opsin genes. Molecular phylogenetic analysis revealed dynamic multiplications and losses of the opsin genes in the course of evolution. In contrast to many SW and LW genes expressed in adults, only one SW gene and several LW genes were expressed in larvae, reflecting less visual dependence and LW-skewed light conditions for their lifestyle under water. In this context, notably, the sand-burrowing or pit-dwelling species tended to lack SW gene expression in larvae. In adult visual organs: (i) many SW genes and a few LW genes were expressed in the dorsal region of compound eyes, presumably for processing SW-skewed light from the sky; (ii) a few SW genes and many LW genes were expressed in the ventral region of compound eyes, probably for perceiving terrestrial objects; and (iii) expression of a specific LW gene was associated with ocelli. Our findings suggest that the stage- and region-specific expressions of the diverse opsin genes underlie the behavior, ecology, and adaptation of dragonflies.

  3. Extraordinary diversity of visual opsin genes in dragonflies

    PubMed Central

    Futahashi, Ryo; Kawahara-Miki, Ryouka; Kinoshita, Michiyo; Yoshitake, Kazutoshi; Yajima, Shunsuke; Arikawa, Kentaro; Fukatsu, Takema

    2015-01-01

    Dragonflies are colorful and large-eyed animals strongly dependent on color vision. Here we report an extraordinary large number of opsin genes in dragonflies and their characteristic spatiotemporal expression patterns. Exhaustive transcriptomic and genomic surveys of three dragonflies of the family Libellulidae consistently identified 20 opsin genes, consisting of 4 nonvisual opsin genes and 16 visual opsin genes of 1 UV, 5 short-wavelength (SW), and 10 long-wavelength (LW) type. Comprehensive transcriptomic survey of the other dragonflies representing an additional 10 families also identified as many as 15–33 opsin genes. Molecular phylogenetic analysis revealed dynamic multiplications and losses of the opsin genes in the course of evolution. In contrast to many SW and LW genes expressed in adults, only one SW gene and several LW genes were expressed in larvae, reflecting less visual dependence and LW-skewed light conditions for their lifestyle under water. In this context, notably, the sand-burrowing or pit-dwelling species tended to lack SW gene expression in larvae. In adult visual organs: (i) many SW genes and a few LW genes were expressed in the dorsal region of compound eyes, presumably for processing SW-skewed light from the sky; (ii) a few SW genes and many LW genes were expressed in the ventral region of compound eyes, probably for perceiving terrestrial objects; and (iii) expression of a specific LW gene was associated with ocelli. Our findings suggest that the stage- and region-specific expressions of the diverse opsin genes underlie the behavior, ecology, and adaptation of dragonflies. PMID:25713365

  4. The Evolution and Expression of the Moth Visual Opsin Family

    PubMed Central

    Fu, Xiaowei; Murphy, Robert W.; Wu, Kongming

    2013-01-01

    Because visual genes likely evolved in response to their ambient photic environment, the dichotomy between closely related nocturnal moths and diurnal butterflies forms an ideal basis for investigating their evolution. To investigate whether the visual genes of moths are associated with nocturnal dim-light environments or not, we cloned long-wavelength (R), blue (B) and ultraviolet (UV) opsin genes from 12 species of wild-captured moths and examined their evolutionary functions. Strong purifying selection appeared to constrain the functions of the genes. Dark-treatment altered the levels of mRNA expression in Helicoverpa armigera such that R and UV opsins were up-regulated after dark-treatment, the latter faster than the former. In contrast, B opsins were not significantly up-regulated. Diel changes of opsin mRNA levels in both wild-captured and lab-reared individuals showed no significant fluctuation within the same group. However, the former group had significantly elevated levels of expression compared with the latter. Consequently, environmental conditions appeared to affect the patterns of expression. These findings and the proportional expression of opsins suggested that moths potentially possessed color vision and the visual system played a more important role in the ecology of moths than previously appreciated. This aspect did not differ much from that of diurnal butterflies. PMID:24205129

  5. The evolution and expression of the moth visual opsin family.

    PubMed

    Xu, Pengjun; Lu, Bin; Xiao, Haijun; Fu, Xiaowei; Murphy, Robert W; Wu, Kongming

    2013-01-01

    Because visual genes likely evolved in response to their ambient photic environment, the dichotomy between closely related nocturnal moths and diurnal butterflies forms an ideal basis for investigating their evolution. To investigate whether the visual genes of moths are associated with nocturnal dim-light environments or not, we cloned long-wavelength (R), blue (B) and ultraviolet (UV) opsin genes from 12 species of wild-captured moths and examined their evolutionary functions. Strong purifying selection appeared to constrain the functions of the genes. Dark-treatment altered the levels of mRNA expression in Helicoverpa armigera such that R and UV opsins were up-regulated after dark-treatment, the latter faster than the former. In contrast, B opsins were not significantly up-regulated. Diel changes of opsin mRNA levels in both wild-captured and lab-reared individuals showed no significant fluctuation within the same group. However, the former group had significantly elevated levels of expression compared with the latter. Consequently, environmental conditions appeared to affect the patterns of expression. These findings and the proportional expression of opsins suggested that moths potentially possessed color vision and the visual system played a more important role in the ecology of moths than previously appreciated. This aspect did not differ much from that of diurnal butterflies.

  6. Ant opsins: sequences from the Saharan silver ant and the carpenter ant.

    PubMed

    Popp, M P; Grisshammer, R; Hargrave, P A; Smith, W C

    1996-03-01

    cDNA clones encoding opsins from compound eyes of carpenter ant, Camponotus abdominalis, and Saharan silver ant, Cataglyphis bombycina, were isolated from cDNA libraries. The opsin cDNAs from each species code for deduced proteins with 378 amino acids which are 92% identical. Of the 30 amino acid differences between the two proteins, 13 are non-conservative. Eight of these non-conservative substitutions are within the membrane spanning domain. The presence of a potential Schiff-base counterion in helix III in both species suggests that these opsins are the protein moiety of the visible range pigments. When compared to all known opsins, these opsins are most similar to the opsin from preying mantis (76% identity at the amino acid level). Phyletic comparisons group the two ant opsins with the other arthropod long wavelength opsins.

  7. Implications of the ISO LWS spectrum of the prototypical ultraluminous galaxy: ARP 220

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Satyapal, S.; Luhman, M. L.; Melnick, G.; Cox, P.; Cernicharo, J.; Stacey, G. J.; Smith, H. A.; Lord, S. D.; Greenhouse, M. A.

    1997-01-01

    The low resolution far infrared spectrum of the galaxy Arp 220, obtained with the low wavelength spectrometer (LWS) onboard the Infrared Space Observatory (ISO), is presented. The spectrum is dominated by the OH, H2O, CH, NH3 and O I absorption lines. The upper limits on the far infrared fine structure lines indicate a softer radiation in Arp 220 than in starburst galaxies.

  8. PDR modeling of the LWS fine-structure lines in ultraluminous galaxies

    NASA Technical Reports Server (NTRS)

    Luhman, M. L.; Satyapal, S.; Fischer, J.; Wolfire, M. G.

    1997-01-01

    The observations performed onboard the Infrared Space Observatory (ISO) long wavelength spectrometer (LWS) on the fine structure lines in ultraluminous galaxies are reported on. The C II 158 micrometer, the O I 63 and 146 micrometer fine structure lines were detected. These lines were compared to the results of the revised theoretical models of extragalactic photodissociation regions (PDRs). The PDR origin of the fine structure lines and the physical properties of the PDR component are discussed.

  9. Neuronal Organization of Deep Brain Opsin Photoreceptors in Adult Teleosts

    PubMed Central

    Hang, Chong Yee; Kitahashi, Takashi; Parhar, Ishwar S.

    2016-01-01

    Biological impacts of light beyond vision, i.e., non-visual functions of light, signify the need to better understand light detection (or photoreception) systems in vertebrates. Photopigments, which comprise light-absorbing chromophores bound to a variety of G-protein coupled receptor opsins, are responsible for visual and non-visual photoreception. Non-visual opsin photopigments in the retina of mammals and extra-retinal tissues of non-mammals play an important role in non-image-forming functions of light, e.g., biological rhythms and seasonal reproduction. This review highlights the role of opsin photoreceptors in the deep brain, which could involve conserved neurochemical systems that control different time- and light-dependent physiologies in in non-mammalian vertebrates including teleost fish. PMID:27199680

  10. Making the gradient: Thyroid hormone regulates cone opsin expression in the developing mouse retina

    PubMed Central

    Roberts, Melanie R.; Srinivas, Maya; Forrest, Douglas; Morreale de Escobar, Gabriella; Reh, Thomas A.

    2006-01-01

    Most mammals have two types of cone photoreceptors, which contain either medium wavelength (M) or short wavelength (S) opsin. The number and spatial organization of cone types varies dramatically among species, presumably to fine-tune the retina for different visual environments. In the mouse, S- and M-opsin are expressed in an opposing dorsal–ventral gradient. We previously reported that cone opsin patterning requires thyroid hormone β2, a nuclear hormone receptor that regulates transcription in conjunction with its ligand, thyroid hormone (TH). Here we show that exogenous TH inhibits S-opsin expression, but activates M-opsin expression. Binding of endogenous TH to TRβ2 is required to inhibit S-opsin and to activate M-opsin. TH is symmetrically distributed in the retina at birth as S-opsin expression begins, but becomes elevated in the dorsal retina at the time of M-opsin onset (postnatal day 10). Our results show that TH is a critical regulator of both S-opsin and M-opsin, and suggest that a TH gradient may play a role in establishing the gradient of M-opsin. These results also suggest that the ratio and patterning of cone types may be determined by TH availability during retinal development. PMID:16606843

  11. Variations in Opsin Coding Sequences Cause X-Linked Cone Dysfunction Syndrome with Myopia and Dichromacy

    PubMed Central

    McClements, Michelle; Davies, Wayne I. L.; Michaelides, Michel; Young, Terri; Neitz, Maureen; MacLaren, Robert E.; Moore, Anthony T.; Hunt, David M.

    2013-01-01

    Purpose. To determine the role of variant L opsin haplotypes in seven families with Bornholm Eye Disease (BED), a cone dysfunction syndrome with dichromacy and myopia. Methods. Analysis of the opsin genes within the L/M opsin array at Xq28 included cloning and sequencing of an exon 3-5 gene fragment, long range PCR to establish gene order, and quantitative PCR to establish gene copy number. In vitro expression of normal and variant opsins was performed to examine cellular trafficking and spectral sensitivity of pigments. Results. All except one of the BED families possessed L opsin genes that contained a rare exon 3 haplotype. The exception was a family with the deleterious Cys203Arg substitution. Two rare exon 3 haplotypes were found and, where determined, these variant opsin genes were in the first position in the array. In vitro expression in transfected cultured neuronal cells showed that the variant opsins formed functional pigments, which trafficked to the cell membranes. The variant opsins were, however, less stable than wild type. Conclusions. It is concluded that the variant L opsin haplotypes underlie BED. The reduction in the amount of variant opsin produced in vitro compared with wild type indicates a possible disease mechanism. Alternatively, the recently identified defective splicing of exon 3 of the variant opsin transcript may be involved. Both mechanisms explain the presence of dichromacy and cone dystrophy. Abnormal pigment may also underlie the myopia that is invariably present in BED subjects. PMID:23322568

  12. A Large and Phylogenetically Diverse Class of Type 1 Opsins Lacking a Canonical Retinal Binding Site.

    PubMed

    Becker, Erin A; Yao, Andrew I; Seitzer, Phillip M; Kind, Tobias; Wang, Ting; Eigenheer, Rich; Shao, Katie S Y; Yarov-Yarovoy, Vladimir; Facciotti, Marc T

    2016-01-01

    Opsins are photosensitive proteins catalyzing light-dependent processes across the tree of life. For both microbial (type 1) and metazoan (type 2) opsins, photosensing depends upon covalent interaction between a retinal chromophore and a conserved lysine residue. Despite recent discoveries of potential opsin homologs lacking this residue, phylogenetic dispersal and functional significance of these abnormal sequences have not yet been investigated. We report discovery of a large group of putatively non-retinal binding opsins, present in a number of fungal and microbial genomes and comprising nearly 30% of opsins in the Halobacteriacea, a model clade for opsin photobiology. We report phylogenetic analyses, structural modeling, genomic context analysis and biochemistry, to describe the evolutionary relationship of these recently described proteins with other opsins, show that they are expressed and do not bind retinal in a canonical manner. Given these data, we propose a hypothesis that these abnormal opsin homologs may represent a novel family of sensory opsins which may be involved in taxis response to one or more non-light stimuli. If true, this finding would challenge our current understanding of microbial opsins as a light-specific sensory family, and provides a potential analogy with the highly diverse signaling capabilities of the eukaryotic G-protein coupled receptors (GPCRs), of which metazoan type 2 opsins are a light-specific sub-clade.

  13. A Large and Phylogenetically Diverse Class of Type 1 Opsins Lacking a Canonical Retinal Binding Site

    PubMed Central

    Becker, Erin A.; Yao, Andrew I.; Seitzer, Phillip M.; Kind, Tobias; Wang, Ting; Eigenheer, Rich; Shao, Katie S. Y.; Yarov-Yarovoy, Vladimir; Facciotti, Marc T.

    2016-01-01

    Opsins are photosensitive proteins catalyzing light-dependent processes across the tree of life. For both microbial (type 1) and metazoan (type 2) opsins, photosensing depends upon covalent interaction between a retinal chromophore and a conserved lysine residue. Despite recent discoveries of potential opsin homologs lacking this residue, phylogenetic dispersal and functional significance of these abnormal sequences have not yet been investigated. We report discovery of a large group of putatively non-retinal binding opsins, present in a number of fungal and microbial genomes and comprising nearly 30% of opsins in the Halobacteriacea, a model clade for opsin photobiology. We report phylogenetic analyses, structural modeling, genomic context analysis and biochemistry, to describe the evolutionary relationship of these recently described proteins with other opsins, show that they are expressed and do not bind retinal in a canonical manner. Given these data, we propose a hypothesis that these abnormal opsin homologs may represent a novel family of sensory opsins which may be involved in taxis response to one or more non-light stimuli. If true, this finding would challenge our current understanding of microbial opsins as a light-specific sensory family, and provides a potential analogy with the highly diverse signaling capabilities of the eukaryotic G-protein coupled receptors (GPCRs), of which metazoan type 2 opsins are a light-specific sub-clade. PMID:27327432

  14. Absorption Characteristics of Vertebrate Non-Visual Opsin, Opn3

    PubMed Central

    Sugihara, Tomohiro; Nagata, Takashi; Mason, Benjamin; Koyanagi, Mitsumasa; Terakita, Akihisa

    2016-01-01

    Most animals possess multiple opsins which sense light for visual and non-visual functions. Here, we show spectral characteristics of non-visual opsins, vertebrate Opn3s, which are widely distributed among vertebrates. We successfully expressed zebrafish Opn3 in mammalian cultured cells and measured its absorption spectrum spectroscopically. When incubated with 11-cis retinal, zebrafish Opn3 formed a blue-sensitive photopigment with an absorption maximum around 465 nm. The Opn3 converts to an all-trans retinal-bearing photoproduct with an absorption spectrum similar to the dark state following brief blue-light irradiation. The photoproduct experienced a remarkable blue-shift, with changes in position of the isosbestic point, during further irradiation. We then used a cAMP-dependent luciferase reporter assay to investigate light-dependent cAMP responses in cultured cells expressing zebrafish, pufferfish, anole and chicken Opn3. The wild type opsins did not produce responses, but cells expressing chimera mutants (WT Opn3s in which the third intracellular loops were replaced with the third intracellular loop of a Gs-coupled jellyfish opsin) displayed light-dependent changes in cAMP. The results suggest that Opn3 is capable of activating G protein(s) in a light-dependent manner. Finally, we used this assay to measure the relative wavelength-dependent response of cells expressing Opn3 chimeras to multiple quantally-matched stimuli. The inferred spectral sensitivity curve of zebrafish Opn3 accurately matched the measured absorption spectrum. We were unable to estimate the spectral sensitivity curve of mouse or anole Opn3, but, like zebrafish Opn3, the chicken and pufferfish Opn3-JiL3 chimeras also formed blue-sensitive pigments. These findings suggest that vertebrate Opn3s may form blue-sensitive G protein-coupled pigments. Further, we suggest that the method described here, combining a cAMP-dependent luciferase reporter assay with chimeric opsins possessing the third

  15. The Galactic Centre - A spectroscopic and imaging study with the LWS

    NASA Astrophysics Data System (ADS)

    White, G. J.; Smith, H. A.; Stacey, G. J.; Fischer, J.; Spinoglio, L.; Baluteau, J. P.; Cernicharo, J.; Bradford, C. M.

    1999-03-01

    We report observations of a fully sampled (spatially and spectrally) mapping of the central few arcminutes around the Galactic Centre, using the ISO LWS. The maps show the relative spatial distributions in about 20 different emission and absorption lines. The circumnuclear disc is clearly traced by some molecular lines, whilst the central region dominates in other atomic and ionised lines. Spectra are also be shown of several other interesting sources within the Galactic Centre cloud ensemble, including Sgr A West and the `Sickle' cluster.

  16. Visual sensitivities tuned by heterochronic shifts in opsin gene expression

    PubMed Central

    Carleton, Karen L; Spady, Tyrone C; Streelman, J Todd; Kidd, Michael R; McFarland, William N; Loew, Ellis R

    2008-01-01

    Background Cichlid fishes have radiated into hundreds of species in the Great Lakes of Africa. Brightly colored males display on leks and vie to be chosen by females as mates. Strong discrimination by females causes differential male mating success, rapid evolution of male color patterns and, possibly, speciation. In addition to differences in color pattern, Lake Malawi cichlids also show some of the largest known shifts in visual sensitivity among closely related species. These shifts result from modulated expression of seven cone opsin genes. However, the mechanisms for this modulated expression are unknown. Results In this work, we ask whether these differences might result from changes in developmental patterning of cone opsin genes. To test this, we compared the developmental pattern of cone opsin gene expression of the Nile tilapia, Oreochromis niloticus, with that of several cichlid species from Lake Malawi. In tilapia, quantitative polymerase chain reaction showed that opsin gene expression changes dynamically from a larval gene set through a juvenile set to a final adult set. In contrast, Lake Malawi species showed one of two developmental patterns. In some species, the expressed gene set changes slowly, either retaining the larval pattern or progressing only from larval to juvenile gene sets (neoteny). In the other species, the same genes are expressed in both larvae and adults but correspond to the tilapia adult genes (direct development). Conclusion Differences in visual sensitivities among species of Lake Malawi cichlids arise through heterochronic shifts relative to the ontogenetic pattern of the tilapia outgroup. Heterochrony has previously been shown to be a powerful mechanism for change in morphological evolution. We found that altering developmental expression patterns is also an important mechanism for altering sensory systems. These resulting sensory shifts will have major impacts on visual communication and could help drive cichlid speciation

  17. Short wavelength-sensitive opsins from the Saharan silver and carpenter ants.

    PubMed

    Smith, W C; Ayers, D M; Popp, M P; Hargrave, P A

    1997-06-01

    We have previously cloned the opsins coding for the long-wavelength visual pigments from the Saharan silver ant and carpenter ant. Here we report two new cDNA clones isolated from cDNA libraries which also code for opsin proteins. These cDNAs code for deduced proteins with 369 amino acids which are 91% identical to each other, but only 38% identical to the previously cloned opsins. Phyletic comparisons suggest that these opsins are likely the ultraviolet sensitive visual pigments, a conclusion that is supported by the presence of a phenylalanine at the counterion position in the third transmembrane segment.

  18. Modeling Active Region Evolution - A New LWS TR and T Strategic Capability Model Suite

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter

    2012-01-01

    In 2006 the LWS TR&T Program funded us to develop a strategic capability model of slowly evolving coronal active regions. In this poster we report on the overall design, and status of our new modeling suite. Our design features two coronal field models, a non-linear force free field model and a global 3D MHD code. The suite includes supporting tools and a user friendly GUI which will enable users to query the web for relevant magnetograms, download them, process them to synthesize a sequence of photospheric magnetograms and associated photospheric flow field which can then be applied to drive the coronal model innner boundary, run the coronal models and finally visualize the results.

  19. Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes.

    PubMed

    Sison-Mangus, Marilou P; Bernard, Gary D; Lampel, Jochen; Briscoe, Adriana D

    2006-08-01

    Although previous investigations have shown that wing coloration is an important component of social signaling in butterflies, the contribution of opsin evolution to sexual wing color dichromatism and interspecific divergence remains largely unexplored. Here we report that the butterfly Lycaena rubidus has evolved sexually dimorphic eyes due to changes in the regulation of opsin expression patterns to match the contrasting life histories of males and females. The L. rubidus eye contains four visual pigments with peak sensitivities in the ultraviolet (UV; lambdamax=360 nm), blue (B; lambdamax=437 nm and 500 nm, respectively) and long (LW; lambdamax=568 nm) wavelength range. By combining in situ hybridization of cloned opsin-encoding cDNAs with epi-microspectrophotometry, we found that all four opsin mRNAs and visual pigments are expressed in the eyes in a sex-specific manner. The male dorsal eye, which contains only UV and B (lambdamax=437 nm) visual pigments, indeed expresses two short wavelength opsin mRNAs, UVRh and BRh1. The female dorsal eye, which also has the UV and B (lambdamax=437 nm) visual pigments, also contains the LW visual pigment, and likewise expresses UVRh, BRh1 and LWRh mRNAs. Unexpectedly, in the female dorsal eye, we also found BRh1 co-expressed with LWRh in the R3-8 photoreceptor cells. The ventral eye of both sexes, on the other hand, contains all four visual pigments and expresses all four opsin mRNAs in a non-overlapping fashion. Surprisingly, we found that the 500 nm visual pigment is encoded by a duplicate blue opsin gene, BRh2. Further, using molecular phylogenetic methods we trace this novel blue opsin gene to a duplication event at the base of the Polyommatine+Thecline+Lycaenine radiation. The blue opsin gene duplication may help explain the blueness of blue lycaenid butterflies.

  20. ISO-LWS Observations Of Gas And Dust In The Galactic Centre

    NASA Astrophysics Data System (ADS)

    Etxaluze Azkonaga, Mireya; Smith, H.; Gonzalez-Alfonso, E.; White, G. J.

    2011-01-01

    The ISO-LWS observed Sagittarius A* over the wavelength range of 46-197 μm. These previously unpublished spectra contain about 22 spectral lines in emission of atomic and ionic species (OI, OIII, CII, NII and NIII), as well as emission and absorption lines from molecular species (OH, CH, CO and o-H2O). ISO mapped the region in a 40 position, half-beam sampled grid, and used both the grating and Fabry-Perot modules. We have prepared spectral maps of most of the lines, but here discuss primarily the radiative transfer modelling of radiation within the central beam on Sgr A*. We used ISO-LWS spectra to constrain the physical conditions in Sgr A* by comparing the observed spectra with the emission and the absorption line intensities predicted via radiative transfer simulations. Preliminary results show that the spectral energy distribution of Sgr A* within the 80" ISO beam that includes the CND is due to thermal dust emission that can be fitted by the sum of an 85 K modified blackbody arising from a central cavity of r=1.2 pc in radius with a low column density of N(H2)=4.0x1021 cm2, and a 40.5 K modified blackbody curve and a higher column density, N(H2)= 3.0x1022 cm2. This simple model is able to reproduce most of the ionic lines, which are excited in the CND; the central cavity provides only a small contribution to the intensity of the spectral lines. The molecular lines, and in particular the OH absorption features, require substantive additional contributions from foreground absorption that is consistent with a visual extinction AV 30, the same value that is derived from other studies.

  1. Gas and dust in the Galactic Centre - ISO LWS, submillimetre line and continuum observations.

    NASA Astrophysics Data System (ADS)

    Etxaluze, M.; White, G. J.; Smith, H. A.; Gonzalez-Alfonso, E.; Stark, A. A.; Stacey, G. J.; Leeks, S. J.; Gatley, I.; Fisher, J.; Pierce-Price, D.; Richer, J. S.; Grundy, T. W.; Polehampton, E. T.

    2011-05-01

    The Infrared Space Observatory (ISO) Long wavelength Spectrometer (LWS) has been used to map distribution of the emission from a sample of 22 atomic, molecular and ionised lines toward the Circumnuclear Disk at the Galactic Centre. The circumnuclear disc is clearly seen in the maps of molecular lines such as CO and OH, whilst the central region dominates in other atomic and ionised lines such as [O III] and [N III]. The ISO-LWS spectrum toward Sgr A^* is best represented by the sum of three blackbody curves of 90, 44.5 and 16 K, superposed with 22 lines, including CO, OH, [O I], [O III], [N II], [C II] and H_2O. The CO 4.7 μm absorption band head observed with the ISO SWS spectrometer toward SgrA^* is modeled as having a cold component with Trot = 10 K, for which we estimate N(CO)=7.7× 1018 cm-2, N(13CO) = 1.7× 1017 cm-2 and N(C18O)= 2.1× 1016 cm-2, and a warm component by n(H_2) = 1× 10^5 cm-3, T_k = 70 K, N(CO) = 3.9× 1018 cm-2, N(13CO)= N(CO)/40, N(C18O)= N(CO). Observations of hydrogen recombination lines toward SgrA^* are moddeled as representing a line of sight extiction A_V˜ 24 -28 magnitudes. The SCUBA data at 450 and 850 μm are used in this paper in order to make an estimation of the CND mass of ˜ 2.3× 10^4 M⊙, after removal of the free-free contribution and the local background.

  2. Coexpression of three opsins in cone photoreceptors of the salamander Ambystoma tigrinum.

    PubMed

    Isayama, Tomoki; Chen, Ying; Kono, Masahiro; Fabre, Eduard; Slavsky, Michael; DeGrip, Willem J; Ma, Jian-Xing; Crouch, Rosalie K; Makino, Clint L

    2014-07-01

    Although more than one type of visual opsin is present in the retina of most vertebrates, it was thought that each type of photoreceptor expresses only one opsin. However, evidence has accumulated that some photoreceptors contain more than one opsin, in many cases as a result of a developmental transition from the expression of one opsin to another. The salamander UV-sensitive (UV) cone is particularly notable because it contains three opsins (Makino and Dodd [1996] J Gen Physiol 108:27-34). Two opsin types are expressed at levels more than 100 times lower than the level of the primary opsin. Here, immunohistochemical experiments identified the primary component as a UV cone opsin and the two minor components as the short wavelength-sensitive (S) and long wavelength-sensitive (L) cone opsins. Based on single-cell recordings of 156 photoreceptors, the presence of three components in UV cones of hatchlings and terrestrial adults ruled out a developmental transition. There was no evidence for multiple opsin types within rods or S cones, but immunohistochemistry and partial bleaching in conjunction with single-cell recording revealed that both single and double L cones contained low levels of short wavelength-sensitive pigments in addition to the main L visual pigment. These results raise the possibility that coexpression of multiple opsins in other vertebrates was overlooked because a minor component absorbing at short wavelengths was masked by the main visual pigment or because the expression level of a component absorbing at long wavelengths was exceedingly low.

  3. Ocular and extraocular expression of opsins in the rhopalium of Tripedalia cystophora (Cnidaria: Cubozoa).

    PubMed

    Bielecki, Jan; Zaharoff, Alexander K; Leung, Nicole Y; Garm, Anders; Oakley, Todd H

    2014-01-01

    A growing body of work on the neuroethology of cubozoans is based largely on the capabilities of the photoreceptive tissues, and it is important to determine the molecular basis of their light sensitivity. The cubozoans rely on 24 special purpose eyes to extract specific information from a complex visual scene to guide their behavior in the habitat. The lens eyes are the most studied photoreceptive structures, and the phototransduction in the photoreceptor cells is based on light sensitive opsin molecules. Opsins are photosensitive transmembrane proteins associated with photoreceptors in eyes, and the amino acid sequence of the opsins determines the spectral properties of the photoreceptors. Here we show that two distinct opsins (Tripedalia cystophora-lens eye expressed opsin and Tripedalia cystophora-neuropil expressed opsin, or Tc-leo and Tc-neo) are expressed in the Tripedalia cystophora rhopalium. Quantitative PCR determined the level of expression of the two opsins, and we found Tc-leo to have a higher amount of expression than Tc-neo. In situ hybridization located Tc-leo expression in the retinal photoreceptors of the lens eyes where the opsin is involved in image formation. Tc-neo is expressed in a confined part of the neuropil and is probably involved in extraocular light sensation, presumably in relation to diurnal activity.

  4. Opsin evolution and expression in Arthropod compound Eyes and Ocelli: Insights from the cricket Gryllus bimaculatus

    PubMed Central

    2012-01-01

    Background Opsins are key proteins in animal photoreception. Together with a light-sensitive group, the chromophore, they form visual pigments which initiate the visual transduction cascade when photoactivated. The spectral absorption properties of visual pigments are mainly determined by their opsins, and thus opsins are crucial for understanding the adaptations of animal eyes. Studies on the phylogeny and expression pattern of opsins have received considerable attention, but our knowledge about insect visual opsins is still limited. Up to now, researchers have focused on holometabolous insects, while general conclusions require sampling from a broader range of taxa. We have therefore investigated visual opsins in the ocelli and compound eyes of the two-spotted cricket Gryllus bimaculatus, a hemimetabolous insect. Results Phylogenetic analyses place all identified cricket sequences within the three main visual opsin clades of insects. We assign three of these opsins to visual pigments found in the compound eyes with peak absorbances in the green (515 nm), blue (445 nm) and UV (332 nm) spectral range. Their expression pattern divides the retina into distinct regions: (1) the polarization-sensitive dorsal rim area with blue- and UV-opsin, (2) a newly-discovered ventral band of ommatidia with blue- and green-opsin and (3) the remainder of the compound eye with UV- and green-opsin. In addition, we provide evidence for two ocellar photopigments with peak absorbances in the green (511 nm) and UV (350 nm) spectral range, and with opsins that differ from those expressed in the compound eyes. Conclusions Our data show that cricket eyes are spectrally more specialized than has previously been assumed, suggesting that similar adaptations in other insect species might have been overlooked. The arrangement of spectral receptor types within some ommatidia of the cricket compound eyes differs from the generally accepted pattern found in holometabolous insect taxa and awaits a

  5. The retinal mosaics of opsin expression in invertebrates and vertebrates

    PubMed Central

    Rister, Jens; Desplan, Claude

    2011-01-01

    Colour vision is found in many invertebrate and vertebrate species. It is the ability to discriminate objects based on the wavelength of emitted light independent of intensity. As it requires the comparison of at least two photoreceptor types with different spectral sensitivities, this process is often mediated by a mosaic made of several photoreceptor types. In this review, we summarize the current knowledge about the formation of retinal mosaics and the regulation of photopigment (opsin) expression in the fly, mouse and human retina. Despite distinct evolutionary origins, as well as major differences in morphology and phototransduction machineries, there are significant similarities in the stepwise cell-fate decisions that lead from progenitor cells to terminally differentiated photoreceptors that express a particular opsin. Common themes include i) the use of binary transcriptional switches that distinguish classes of photoreceptors, ii) the use of gradients of signaling molecules for regional specializations, iii) stochastic choices that pattern the retina and iv) the use of permissive factors with multiple roles in different photoreceptor types. PMID:21557510

  6. Diverse Distributions of Extraocular Opsins in Crustaceans, Cephalopods, and Fish.

    PubMed

    Kingston, Alexandra C N; Cronin, Thomas W

    2016-11-01

    Non-visual and extraocular photoreceptors are common among animals, but current understanding linking molecular pathways to physiological function of these receptors is lacking. Opsin diversity in extraocular tissues suggests that many putative extraocular photoreceptors utilize the "visual" phototransduction pathway-the same phototransduction pathway as photoreceptors within the retina dedicated to light detection for image sensing. Here, we provide a brief overview of the current understanding of non-visual and extraocular photoreceptors, and contribute a synopsis of several novel putative extraocular photoreceptors that use both visual and non-visual phototransduction pathways. Crayfish, cephalopods, and flat fish express opsins in diverse tissues, suggesting the presence of extraocular photoreceptors. In most cases, we find that these animals use the same phototransduction pathway that is utilized in the retinas for image-formation. However, we also find the presence of non-visual phototransduction components in the skin of flounders. Our evidence suggests that extraocular photoreceptors may employ a number of phototransduction pathways that do not appear to correlate with purpose or location of the photoreceptor.

  7. Evolution and Expression Plasticity of Opsin Genes in a Fig Pollinator, Ceratosolen solmsi

    PubMed Central

    Bian, Sheng-Nan; Niu, Li-Ming; Murphy, Robert W.; Huang, Da-Wei

    2013-01-01

    Figs and fig pollinators have co-evolved species-specific systems of mutualism. So far, it was unknown how visual opsin genes of pollinators have evolved in the light conditions inside their host figs. We cloned intact full-length mRNA sequences of four opsin genes from a species of fig pollinator, Ceratosolen solmsi, and tested for selective pressure and expressional plasticity of these genes. Molecular evolutionary analysis indicated that the four opsin genes evolved under different selective constraints. Subsets of codons in the two long wavelength sensitive opsin (LW1, LW2) genes were positively selected in ancestral fig pollinators. The ultraviolet sensitive opsin (UV) gene was under strong purifying selection, whereas a relaxation of selective constrains occurred on several amino acids in the blue opsin. RT-qPCR analysis suggested that female and male fig pollinators had different expression patterns possibly due to their distinct lifestyles and different responses to light within the syconia. Co-evolutionary history with figs might have influenced the evolution and expression plasticity of opsin genes in fig pollinators. PMID:23342036

  8. Variation in opsin genes correlates with signalling ecology in North American fireflies.

    PubMed

    Sander, S E; Hall, D W

    2015-09-01

    Genes underlying signal reception should evolve to maximize signal detection in a particular environment. In animals, opsins, the protein component of visual pigments, are predicted to evolve according to this expectation. Fireflies are known for their bioluminescent mating signals. The eyes of nocturnal species are expected to maximize the detection of conspecific signal colours emitted in the typical low-light environment. This is not expected for species that have transitioned to diurnal activity in bright daytime environments. Here, we test the hypothesis that opsin gene sequence plays a role in modifying firefly eye spectral sensitivity. We use genome and transcriptome sequencing in four firefly species, transcriptome sequencing in six additional species and targeted gene sequencing in 28 other species to identify all opsin genes present in North American fireflies and to elucidate amino acid sites under positive selection. We also determine whether amino acid substitutions in opsins are linked to evolutionary changes in signal mode, signal colour and light environment. We find only two opsins, one long wavelength and one ultraviolet, in all firefly species and identify 25 candidate sites that may be involved in determining spectral sensitivity. In addition, we find elevated rates of evolution at transitions to diurnal activity, and changes in selective constraint on long wavelength opsin associated with changes in light environment. Our results suggest that changes in eye spectral sensitivity are at least partially due to opsin sequence. Fireflies continue to be a promising system in which to investigate the evolution of signals, receptors and signalling environments.

  9. Variation in opsin genes correlates with signaling ecology in North American fireflies

    PubMed Central

    Sander, Sarah E.; Hall, David W.

    2015-01-01

    Genes underlying signal reception should evolve to maximize signal detection in a particular environment. In animals, opsins, the protein component of visual pigments, are predicted to evolve according to this expectation. Fireflies are known for their bioluminescent mating signals. The eyes of nocturnal species are expected to maximize detection of conspecific signal colors emitted in the typical low-light environment. This is not expected for species that have transitioned to diurnal activity in bright daytime environments. Here we test the hypothesis that opsin gene sequence plays a role in modifying firefly eye spectral sensitivity. We use genome and transcriptome sequencing in four firefly species, transcriptome sequencing in six additional species, and targeted gene sequencing in 28 other species to identify all opsin genes present in North American fireflies and to elucidate amino acid sites under positive selection. We also determine whether amino acid substitutions in opsins are linked to evolutionary changes in signal mode, signal color, and light environment. We find only two opsins, one long wavelength and one ultraviolet, in all firefly species and identify 25 candidate sites that may be involved in determining spectral sensitivity. In addition, we find elevated rates of evolution at transitions to diurnal activity, and changes in selective constraint on LW opsin associated with changes in light environment. Our results suggest that changes in eye spectral sensitivity are at least partially due to opsin sequence. Fireflies continue to be a promising system in which to investigate the evolution of signals, receptors, and signaling environments. PMID:26289828

  10. Molecular expression of opsin gene in growing juvenile mackerel ( Scomber japonicus Houttuyn)

    NASA Astrophysics Data System (ADS)

    Kim, Eung-Oh; Yoon, Seong-Jong; Park, Kyoung-Hyun; Kim, Dae-Hyun; Do, Jeung-Wan; Cho, Eun-Seob

    2009-12-01

    Fish have developed color vision that is closely adapted to their photic environments, where both spectral sensitivity and the number of visual opsins are influenced. The mackerel used in this study is one of the most important fishery stocks in Korea. The opsin gene of the mackerel juveniles after 20 days in hatching was isolated and characterized based on the molecular study of visual photoreceptor. The full-length mackerel opsin gene was obtained by PCR amplification of genomic DNA, as well as cDNA synthesis. Sequence analysis of the opsin gene showed that it contained a 1,080 bp open reading frame encoding 360 amino acids. Based on Schiff’s base formation (S114, K119), glycosylation (E3, F37) and palmitoylation (S281, 282), the deduced amino acid sequence had a typical rod opsin. The mackerel and Gempylus serpens showed 73.7% DNA homology on opsin gene, which was higher than any other of investigated species. In the analysis of phylogenetic relationship, the genetic placement of the mackerel is closer to that of Scombroidei than Labroidei, with supporting somewhat strong bootstrap value. In the analysis of Northern and RT-PCR, the probed products were observed only in rapidly growing juveniles. These findings indicate that in mackerel opsin mRNA expression can be detected in day-20 hatching larvae. It may play an important role in stimulating growth hormone.

  11. Evolution and expression plasticity of opsin genes in a fig pollinator, Ceratosolen solmsi.

    PubMed

    Wang, Bo; Xiao, Jin-Hua; Bian, Sheng-Nan; Niu, Li-Ming; Murphy, Robert W; Huang, Da-Wei

    2013-01-01

    Figs and fig pollinators have co-evolved species-specific systems of mutualism. So far, it was unknown how visual opsin genes of pollinators have evolved in the light conditions inside their host figs. We cloned intact full-length mRNA sequences of four opsin genes from a species of fig pollinator, Ceratosolen solmsi, and tested for selective pressure and expressional plasticity of these genes. Molecular evolutionary analysis indicated that the four opsin genes evolved under different selective constraints. Subsets of codons in the two long wavelength sensitive opsin (LW1, LW2) genes were positively selected in ancestral fig pollinators. The ultraviolet sensitive opsin (UV) gene was under strong purifying selection, whereas a relaxation of selective constrains occurred on several amino acids in the blue opsin. RT-qPCR analysis suggested that female and male fig pollinators had different expression patterns possibly due to their distinct lifestyles and different responses to light within the syconia. Co-evolutionary history with figs might have influenced the evolution and expression plasticity of opsin genes in fig pollinators.

  12. Low-frequency vibrational modes and infrared absorbance of red, blue and green opsin.

    PubMed

    Thirumuruganandham, Saravana Prakash; Urbassek, Herbert M

    2009-08-01

    Vibrational excitations of low-frequency collective modes are essential for functionally important conformational transitions in proteins. We carried out an analysis of the low-frequency modes in the G protein coupled receptors (GPCR) family of cone opsins based on both normal-mode analysis and molecular dynamics (MD) simulations. Power spectra obtained by MD can be compared directly with normal modes. In agreement with existing experimental evidence related to transmembrane proteins, cone opsins have functionally important transitions that correspond to approximately 950 modes and are found below 80 cm(-1). This is in contrast to bacteriorhodopsin and rhodopsin, where the important low-frequency transition modes are below 50 cm(-1). We find that the density of states (DOS) profile of blue opsin in a solvent (e.g. water) has increased populations in the very lowest frequency modes (<15 cm(-1)); this is indicative of the increased thermostability of blue opsin. From our work we found that, although light absorption behaves differently in blue, green and red opsins, their low-frequency vibrational motions are similar. The similarities and differences in the domain motions of blue, red and green opsins are discussed for several representative modes. In addition, the influence of the presence of a solvent is reported and compared with vacuum spectra. We thus demonstrate that terahertz spectroscopy of low-frequency modes might be relevant for identifying those vibrational degrees of freedom that correlate to known conformational changes in opsins.

  13. Optogenetics: 10 years of microbial opsins in neuroscience

    PubMed Central

    Deisseroth, Karl

    2016-01-01

    Over the past 10 years, the development and convergence of microbial opsin engineering, modular genetic methods for cell-type targeting and optical strategies for guiding light through tissue have enabled versatile optical control of defined cells in living systems, defining modern optogenetics. Despite widespread recognition of the importance of spatiotemporally precise causal control over cellular signaling, for nearly the first half (2005–2009) of this 10-year period, as optogenetics was being created, there were difficulties in implementation, few publications and limited biological findings. In contrast, the ensuing years have witnessed a substantial acceleration in the application domain, with the publication of thousands of discoveries and insights into the function of nervous systems and beyond. This Historical Commentary reflects on the scientific landscape of this decade-long transition. PMID:26308982

  14. LWS Investigation of Middle-Latitude Topside Ionospheric Vertical Electron-Density Profiles

    NASA Astrophysics Data System (ADS)

    Benson, R. F.; Grebowsky, J. M.; Webb, P. A.

    2005-05-01

    A Living With a Star (LWS) Targeted Research and Technology (TR&T) proposal has been selected to determine the dependence of the mid-latitude topside ionospheric electron-density (Ne) altitude distributions on long-term solar-cycle variations and short-term solar-wind and magnetic disturbances. The main focus is on Ne profiles from the height of the ionospheric Ne maximum to ~3,000 km as deduced from ISIS (International Satellites for Ionospheric Studies) topside-sounder data. These data, obtained over an 18-year time interval, can be used to investigate secular changes in the topside Ne profiles, which reflect altitude changes in plasma temperature and ion composition, over more than a solar cycle. In addition to providing average distributions the data, which extend from the O+ dominated high-altitude F region to the H+ dominated plasmasphere, provide a unique framework for delineating the altitude dependence of mid-latitude ionospheric structures associated with the plasmapause, plasmaspheric tails and Storm Enhanced Densities (SEDs). The approach used is to determine the locations of mid-latitude O+/H+ transition altitudes by fitting the topside Ne profiles with modeled H+ and O+ profiles that have the base electron temperature and temperature gradient at 400 km as variables. The investigation makes use of existing topside Ne profiles obtained from 1960's manual scaling of 35-mm film-format ionograms, available from ftp://nssdcftp.gsfc.nasa.gov/, and profiles deduced from digital topside ionograms available from http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html.

  15. Misfolded opsin mutants display elevated β -sheet structure

    SciTech Connect

    Miller, Lisa M.; Gragg, Megan; Kim, Tae Gyun; Park, Paul S. -H.

    2015-09-07

    Mutations in rhodopsin can cause misfolding and aggregation of the receptor, which leads to retinitis pigmentosa, a progressive retinal degenerative disease. The structure adopted by misfolded opsin mutants and the associated cell toxicity is poorly understood. Förster resonance energy transfer (FRET) and Fourier transform infrared (FTIR) microspectroscopy were utilized to probe within cells the structures formed by G188R and P23H opsins, which are misfolding mutants that cause autosomal dominant retinitis pigmentosa. Also, both mutants formed aggregates in the endoplasmic reticulum and exhibited altered secondary structure with elevated β-sheet and reduced α-helical content. The newly formed β-sheet structure may facilitate the aggregation of misfolded opsin mutants. In conclusion, the effects observed for the mutants were unrelated to retention of opsin molecules in the endoplasmic reticulum itself.

  16. Cone opsins, colour blindness and cone dystrophy: Genotype-phenotype correlations.

    PubMed

    Gardner, J C; Michaelides, M; Hardcastle, A J

    2016-05-25

    X-linked cone photoreceptor disorders caused by mutations in the OPN1LW (L) and OPN1MW (M) cone opsin genes on chromosome Xq28 include a range of conditions from mild stable red-green colour vision deficiencies to severe cone dystrophies causing progressive loss of vision and blindness. Advances in molecular genotyping and functional analyses of causative variants, combined with deep retinal phenotyping, are unravelling genetic mechanisms underlying the variability of cone opsin disorders.

  17. Broadband activation by white-opsin lowers intensity threshold for cellular stimulation.

    PubMed

    Batabyal, Subrata; Cervenka, Gregory; Birch, David; Kim, Young-tae; Mohanty, Samarendra

    2015-12-14

    Photoreceptors, which initiate the conversion of ambient light to action potentials via retinal circuitry, degenerate in retinal diseases such as retinitis pigmentosa and age related macular degeneration leading to loss of vision. Current prosthetic devices using arrays consisting of electrodes or LEDs (for optogenetic activation of conventional narrow-band opsins) have limited spatial resolution and can cause damage to retinal circuits by mechanical or photochemical (by absorption of intense narrow band light) means. Here, we describe a broad-band light activatable white-opsin for generating significant photocurrent at white light intensity levels close to ambient daylight conditions. White-opsin produced an order of magnitude higher photocurrent in response to white light as compared to narrow-band opsin channelrhodopsin-2, while maintaining the ms-channel kinetics. High fidelity of peak-photocurrent (both amplitude and latency) of white-opsin in response to repetitive white light stimulation of varying pulse width was observed. The significantly lower intensity stimulation required for activating white-opsin sensitized cells may facilitate ambient white light-based restoration of vision for patients with widespread photoreceptor degeneration.

  18. Broadband activation by white-opsin lowers intensity threshold for cellular stimulation

    PubMed Central

    Batabyal, Subrata; Cervenka, Gregory; Birch, David; Kim, Young-tae; Mohanty, Samarendra

    2015-01-01

    Photoreceptors, which initiate the conversion of ambient light to action potentials via retinal circuitry, degenerate in retinal diseases such as retinitis pigmentosa and age related macular degeneration leading to loss of vision. Current prosthetic devices using arrays consisting of electrodes or LEDs (for optogenetic activation of conventional narrow-band opsins) have limited spatial resolution and can cause damage to retinal circuits by mechanical or photochemical (by absorption of intense narrow band light) means. Here, we describe a broad-band light activatable white-opsin for generating significant photocurrent at white light intensity levels close to ambient daylight conditions. White-opsin produced an order of magnitude higher photocurrent in response to white light as compared to narrow-band opsin channelrhodopsin-2, while maintaining the ms-channel kinetics. High fidelity of peak-photocurrent (both amplitude and latency) of white-opsin in response to repetitive white light stimulation of varying pulse width was observed. The significantly lower intensity stimulation required for activating white-opsin sensitized cells may facilitate ambient white light-based restoration of vision for patients with widespread photoreceptor degeneration. PMID:26658483

  19. Overcoming the loss of blue sensitivity through opsin duplication in the largest animal group, beetles.

    PubMed

    Sharkey, Camilla R; Fujimoto, M Stanley; Lord, Nathan P; Shin, Seunggwan; McKenna, Duane D; Suvorov, Anton; Martin, Gavin J; Bybee, Seth M

    2017-12-01

    Opsin proteins are fundamental components of animal vision whose structure largely determines the sensitivity of visual pigments to different wavelengths of light. Surprisingly little is known about opsin evolution in beetles, even though they are the most species rich animal group on Earth and exhibit considerable variation in visual system sensitivities. We reveal the patterns of opsin evolution across 62 beetle species and relatives. Our results show that the major insect opsin class (SW) that typically confers sensitivity to "blue" wavelengths was lost ~300 million years ago, before the origin of modern beetles. We propose that UV and LW opsin gene duplications have restored the potential for trichromacy (three separate channels for colour vision) in beetles up to 12 times and more specifically, duplications within the UV opsin class have likely led to the restoration of "blue" sensitivity up to 10 times. This finding reveals unexpected plasticity within the insect visual system and highlights its remarkable ability to evolve and adapt to the available light and visual cues present in the environment.

  20. Opsin Repertoire and Expression Patterns in Horseshoe Crabs: Evidence from the Genome of Limulus polyphemus (Arthropoda: Chelicerata)

    PubMed Central

    Battelle, Barbara-Anne; Ryan, Joseph F.; Kempler, Karen E.; Saraf, Spencer R.; Marten, Catherine E.; Warren, Wesley C.; Minx, Patrick J.; Montague, Michael J.; Green, Pamela J.; Schmidt, Skye A.; Fulton, Lucinda; Patel, Nipam H.; Protas, Meredith E.; Wilson, Richard K.; Porter, Megan L.

    2016-01-01

    Horseshoe crabs are xiphosuran chelicerates, the sister group to arachnids. As such, they are important for understanding the most recent common ancestor of Euchelicerata and the evolution and diversification of Arthropoda. Limulus polyphemus is the most investigated of the four extant species of horseshoe crabs, and the structure and function of its visual system have long been a major focus of studies critical for understanding the evolution of visual systems in arthropods. Likewise, studies of genes encoding Limulus opsins, the protein component of the visual pigments, are critical for understanding opsin evolution and diversification among chelicerates, where knowledge of opsins is limited, and more broadly among arthropods. In the present study, we sequenced and assembled a high quality nuclear genomic sequence of L. polyphemus and used these data to annotate the full repertoire of Limulus opsins. We conducted a detailed phylogenetic analysis of Limulus opsins, including using gene structure and synteny information to identify relationships among different opsin classes. We used our phylogeny to identify significant genomic events that shaped opsin evolution and therefore the visual system of Limulus. We also describe the tissue expression patterns of the 18 opsins identified and show that transcripts encoding a number, including a peropsin, are present throughout the central nervous system. In addition to significantly extending our understanding of photosensitivity in Limulus and providing critical insight into the genomic evolution of horseshoe crab opsins, this work provides a valuable genomic resource for addressing myriad questions related to xiphosuran physiology and arthropod evolution. PMID:27189985

  1. Opsin Repertoire and Expression Patterns in Horseshoe Crabs: Evidence from the Genome of Limulus polyphemus (Arthropoda: Chelicerata).

    PubMed

    Battelle, Barbara-Anne; Ryan, Joseph F; Kempler, Karen E; Saraf, Spencer R; Marten, Catherine E; Warren, Wesley C; Minx, Patrick J; Montague, Michael J; Green, Pamela J; Schmidt, Skye A; Fulton, Lucinda; Patel, Nipam H; Protas, Meredith E; Wilson, Richard K; Porter, Megan L

    2016-06-03

    Horseshoe crabs are xiphosuran chelicerates, the sister group to arachnids. As such, they are important for understanding the most recent common ancestor of Euchelicerata and the evolution and diversification of Arthropoda. Limulus polyphemus is the most investigated of the four extant species of horseshoe crabs, and the structure and function of its visual system have long been a major focus of studies critical for understanding the evolution of visual systems in arthropods. Likewise, studies of genes encoding Limulus opsins, the protein component of the visual pigments, are critical for understanding opsin evolution and diversification among chelicerates, where knowledge of opsins is limited, and more broadly among arthropods. In the present study, we sequenced and assembled a high quality nuclear genomic sequence of L. polyphemus and used these data to annotate the full repertoire of Limulus opsins. We conducted a detailed phylogenetic analysis of Limulus opsins, including using gene structure and synteny information to identify relationships among different opsin classes. We used our phylogeny to identify significant genomic events that shaped opsin evolution and therefore the visual system of Limulus We also describe the tissue expression patterns of the 18 opsins identified and show that transcripts encoding a number, including a peropsin, are present throughout the central nervous system. In addition to significantly extending our understanding of photosensitivity in Limulus and providing critical insight into the genomic evolution of horseshoe crab opsins, this work provides a valuable genomic resource for addressing myriad questions related to xiphosuran physiology and arthropod evolution.

  2. Honeybee blue- and ultraviolet-sensitive opsins: cloning, heterologous expression in Drosophila, and physiological characterization.

    PubMed

    Townson, S M; Chang, B S; Salcedo, E; Chadwell, L V; Pierce, N E; Britt, S G

    1998-04-01

    The honeybee (Apis mellifera) visual system contains three classes of retinal photoreceptor cells that are maximally sensitive to light at 440 nm (blue), 350 nm (ultraviolet), and 540 nm (green). We performed a PCR-based screen to identify the genes encoding the Apis blue- and ultraviolet (UV)-sensitive opsins. We obtained cDNAs that encode proteins having a high degree of sequence and structural similarity to other invertebrate and vertebrate visual pigments. The Apis blue opsin cDNA encodes a protein of 377 amino acids that is most closely related to other invertebrate visual pigments that are thought to be blue-sensitive. The UV opsin cDNA encodes a protein of 371 amino acids that is most closely related to the UV-sensitive Drosophila Rh3 and Rh4 opsins. To test whether these novel Apis opsin genes encode functional visual pigments and to determine their spectral properties, we expressed them in the R1-6 photoreceptor cells of blind ninaE mutant Drosophila, which lack the major opsin of the fly compound eye. We found that the expression of either the Apis blue- or UV-sensitive opsin in transgenic flies rescued the visual defect of ninaE mutants, indicating that both genes encode functional visual pigments. Spectral sensitivity measurements of these flies demonstrated that the blue and UV visual pigments are maximally sensitive to light at 439 and 353 nm, respectively. These maxima are in excellent agreement with those determined previously by single-cell recordings from Apis photoreceptor cells and provide definitive evidence that the genes described here encode visual pigments having blue and UV sensitivity.

  3. Diurnal lighting patterns and habitat alter opsin expression and colour preferences in a killifish

    PubMed Central

    Johnson, Ashley M.; Stanis, Shannon; Fuller, Rebecca C.

    2013-01-01

    Spatial variation in lighting environments frequently leads to population variation in colour patterns, colour preferences and visual systems. Yet lighting conditions also vary diurnally, and many aspects of visual systems and behaviour vary over this time scale. Here, we use the bluefin killifish (Lucania goodei) to compare how diurnal variation and habitat variation (clear versus tannin-stained water) affect opsin expression and the preference to peck at different-coloured objects. Opsin expression was generally lowest at midnight and dawn, and highest at midday and dusk, and this diurnal variation was many times greater than variation between habitats. Pecking preference was affected by both diurnal and habitat variation but did not correlate with opsin expression. Rather, pecking preference matched lighting conditions, with higher preferences for blue at noon and for red at dawn/dusk, when these wavelengths are comparatively scarce. Similarly, blue pecking preference was higher in tannin-stained water where blue wavelengths are reduced. In conclusion, L. goodei exhibits strong diurnal cycles of opsin expression, but these are not tightly correlated with light intensity or colour. Temporally variable pecking preferences probably result from lighting environment rather than from opsin production. These results may have implications for the colour pattern diversity observed in these fish. PMID:23698009

  4. Spectral sensitivity in Onychophora (velvet worms) revealed by electroretinograms, phototactic behaviour and opsin gene expression.

    PubMed

    Beckmann, Holger; Hering, Lars; Henze, Miriam J; Kelber, Almut; Stevenson, Paul A; Mayer, Georg

    2015-03-01

    Onychophorans typically possess a pair of simple eyes, inherited from the last common ancestor of Panarthropoda (Onychophora+Tardigrada+Arthropoda). These visual organs are thought to be homologous to the arthropod median ocelli, whereas the compound eyes probably evolved in the arthropod lineage. To gain insights into the ancestral function and evolution of the visual system in panarthropods, we investigated phototactic behaviour, opsin gene expression and the spectral sensitivity of the eyes in two representative species of Onychophora: Euperipatoides rowelli (Peripatopsidae) and Principapillatus hitoyensis (Peripatidae). Our behavioural analyses, in conjunction with previous data, demonstrate that both species exhibit photonegative responses to wavelengths ranging from ultraviolet to green light (370-530 nm), and electroretinograms reveal that the onychophoran eye is maximally sensitive to blue light (peak sensitivity ∼480 nm). Template fits to these sensitivities suggest that the onychophoran eye is monochromatic. To clarify which type of opsin the single visual pigment is based on, we localised the corresponding mRNA in the onychophoran eye and brain using in situ hybridization. Our data show that the r-opsin gene (onychopsin) is expressed exclusively in the photoreceptor cells of the eye, whereas c-opsin mRNA is confined to the optic ganglion cells and the brain. Together, our findings suggest that the onychopsin is involved in vision, whereas c-opsin might have a photoreceptive, non-visual function in onychophorans.

  5. Regeneration of bovine and octopus opsins in situ with natural and artificial retinals

    SciTech Connect

    Koutalos, Y.; Ebrey, T.G.; Tsuda, M.; Odashima, K.; Lien, T.; Park, M.H.; Shimizu, N.; Derguini, F.; Nakanishi, K.; Gilson, H.R.; Honig, B. )

    1989-03-21

    The authors consider the problem of color regulation in visual pigments for both bovine rhodopsin and octopus rhodopsin. Both pigments have 11-cis-retinal as their chromophore. These rhodopsins were bleached in their native membranes, and the opsins were regenerated with natural and artificial chromophores. Both bovine and octopus opsins were regenerated with the 9-cis- and 11-cis-retinal isomers, but the octopus opsin was additionally regenerated with the 13-cis and all-trans isomers. Titration of the octopus opsin with 11-cis-retinal gave an extinction coefficient for octopus rhodopsin of 27,000 {plus minus} 3,000 M{sup {minus}1} cm{sup {minus}1} at 475 nm. The absorption maxima of bovine artificial pigments formed by regenerating opsin with the 11-cis dihydro series of chromophores support a color regulation model for bovine rhodopsin in which the chromophore-binding site of the protein has two negative charges: one directly hydrogen bonded to the Schiff base nitrogen and another near carbon-13. Formation of octopus artificial pigments with both all-trans and 11-cis dihydro chromophores leads to a similar model for octopus rhodopsin and metarhodopsin: there are two negative charges in the chromophore-binding site, one directly hydrogen bonded to the Schiff base nitrogen and a second near carbon-13. The interaction of this second charge with the chromophore in octopus rhodopsin is weaker than in bovine, while in metarhodopsin it is as strong as in bovine.

  6. Diurnal lighting patterns and habitat alter opsin expression and colour preferences in a killifish.

    PubMed

    Johnson, Ashley M; Stanis, Shannon; Fuller, Rebecca C

    2013-07-22

    Spatial variation in lighting environments frequently leads to population variation in colour patterns, colour preferences and visual systems. Yet lighting conditions also vary diurnally, and many aspects of visual systems and behaviour vary over this time scale. Here, we use the bluefin killifish (Lucania goodei) to compare how diurnal variation and habitat variation (clear versus tannin-stained water) affect opsin expression and the preference to peck at different-coloured objects. Opsin expression was generally lowest at midnight and dawn, and highest at midday and dusk, and this diurnal variation was many times greater than variation between habitats. Pecking preference was affected by both diurnal and habitat variation but did not correlate with opsin expression. Rather, pecking preference matched lighting conditions, with higher preferences for blue at noon and for red at dawn/dusk, when these wavelengths are comparatively scarce. Similarly, blue pecking preference was higher in tannin-stained water where blue wavelengths are reduced. In conclusion, L. goodei exhibits strong diurnal cycles of opsin expression, but these are not tightly correlated with light intensity or colour. Temporally variable pecking preferences probably result from lighting environment rather than from opsin production. These results may have implications for the colour pattern diversity observed in these fish.

  7. A spinal opsin controls early neural activity and drives a behavioral light response

    PubMed Central

    Friedmann, Drew; Hoagland, Adam; Berlin, Shai; Isacoff, Ehud Y.

    2014-01-01

    Non-visual detection of light by the vertebrate hypothalamus, pineal, and retina is known to govern seasonal and circadian behaviors [1]. However, the expression of opsins in multiple other brain structures [2–4] suggests a more expansive repertoire for light-regulation of physiology, behavior, and development. Translucent zebrafish embryos express extra-retinal opsins early on [5, 6], at a time when spontaneous activity in the developing central nervous system plays a role in neuronal maturation and circuit formation [7]. Though the presence of extra-retinal opsins is well documented, the function of direct photoreception by the central nervous system remains largely unknown. Here we show that early activity in the zebrafish spinal central pattern generator (CPG) and the earliest locomotory behavior are dramatically inhibited by physiological levels of environmental light. We find that the photo-sensitivity of this circuit is conferred by vertebrate ancient long opsin (VALopA), which we show to be a Gαi-coupled receptor that is expressed in the neurons of the spinal network. Sustained photo-activation of VALopA not only suppresses spontaneous activity but also alters the maturation of time-locked correlated network patterns. These results uncover a novel role for non-visual opsins and a mechanism for environmental regulation of spontaneous motor behavior and neural activity in a circuit previously thought to be governed only by intrinsic developmental programs. PMID:25484291

  8. The Verriest Lecture: Short-wave-sensitive cone pathways across the life span

    PubMed Central

    Werner, John S.

    2017-01-01

    Structurally and functionally, the short-wave-sensitive (S) cone pathways are thought to decline more rapidly with normal aging than the middle- and long-wave-sensitive cone pathways. This would explain the celebrated results by Verriest and others demonstrating that the largest age-related color discrimination losses occur for stimuli on a tritan axis. Here, we challenge convention, arguing from psychophysical data that selective S-cone pathway losses do not cause declines in color discrimination. We show substantial declines in chromatic detection and discrimination, as well as in temporal and spatial vision tasks, that are mediated by S-cone pathways. These functional losses are not, however, unique to S-cone pathways. Finally, despite reduced photon capture by S cones, their postreceptoral pathways provide robust signals for the visual system to renormalize itself to maintain nearly stable color perception across the life span. PMID:26974914

  9. Opsin expression in Limulus eyes: a UV opsin is expressed in each eye type and co-expressed with a visible light-sensitive opsin in ventral larval eyes

    PubMed Central

    Battelle, Barbara-Anne; Kempler, Karen E.; Harrison, Alexandra; Dugger, Donald R.; Payne, Richard

    2014-01-01

    The eyes of the horseshoe crab, Limulus polyphemus, are a model for studies of visual function and the visual systems of euarthropods. Much is known about the structure and function of L. polyphemus photoreceptors, much less about their photopigments. Three visible-light-sensitive L. polyphemus opsins were characterized previously (LpOps1, 2 and 5). Here we characterize a UV opsin (LpUVOps1) that is expressed in all three types of L. polyphemus eyes. It is expressed in most photoreceptors in median ocelli, the only L. polyphemus eyes in which UV sensitivity was previously detected, and in the dendrite of eccentric cells in lateral compound eyes. Therefore, eccentric cells, previously thought to be non-photosensitive second-order neurons, may actually be UV-sensitive photoreceptors. LpUVOps1 is also expressed in small photoreceptors in L. polyphemus ventral larval eyes, and intracellular recordings from these photoreceptors confirm that LpUVOps1 is an active, UV-sensitive photopigment. These photoreceptors also express LpOps5, which we demonstrate is an active, long-wavelength-sensitive photopigment. Thus small photoreceptors in ventral larval eyes, and probably those of the other larval eyes, have dual sensitivity to UV and visible light. Interestingly, the spectral tuning of small ventral photoreceptors may change day to night, because the level of LpOps5 in their rhabdoms is lower during the day than during the night, whereas LpUVOps1 levels show no diurnal change. These and previous findings show that opsin co-expression and the differential regulation of co-expressed opsins in rhabdoms is a common feature of L. polyphemus photoreceptors. PMID:24948643

  10. Opsin expression in Limulus eyes: a UV opsin is expressed in each eye type and co-expressed with a visible light-sensitive opsin in ventral larval eyes.

    PubMed

    Battelle, Barbara-Anne; Kempler, Karen E; Harrison, Alexandra; Dugger, Donald R; Payne, Richard

    2014-09-01

    The eyes of the horseshoe crab, Limulus polyphemus, are a model for studies of visual function and the visual systems of euarthropods. Much is known about the structure and function of L. polyphemus photoreceptors, much less about their photopigments. Three visible-light-sensitive L. polyphemus opsins were characterized previously (LpOps1, 2 and 5). Here we characterize a UV opsin (LpUVOps1) that is expressed in all three types of L. polyphemus eyes. It is expressed in most photoreceptors in median ocelli, the only L. polyphemus eyes in which UV sensitivity was previously detected, and in the dendrite of eccentric cells in lateral compound eyes. Therefore, eccentric cells, previously thought to be non-photosensitive second-order neurons, may actually be UV-sensitive photoreceptors. LpUVOps1 is also expressed in small photoreceptors in L. polyphemus ventral larval eyes, and intracellular recordings from these photoreceptors confirm that LpUVOps1 is an active, UV-sensitive photopigment. These photoreceptors also express LpOps5, which we demonstrate is an active, long-wavelength-sensitive photopigment. Thus small photoreceptors in ventral larval eyes, and probably those of the other larval eyes, have dual sensitivity to UV and visible light. Interestingly, the spectral tuning of small ventral photoreceptors may change day to night, because the level of LpOps5 in their rhabdoms is lower during the day than during the night, whereas LpUVOps1 levels show no diurnal change. These and previous findings show that opsin co-expression and the differential regulation of co-expressed opsins in rhabdoms is a common feature of L. polyphemus photoreceptors.

  11. The Microbial Opsin Homolog Sop1 is involved in Sclerotinia sclerotiorum Development and Environmental Stress Response

    PubMed Central

    Lyu, Xueliang; Shen, Cuicui; Fu, Yanping; Xie, Jiatao; Jiang, Daohong; Li, Guoqing; Cheng, Jiasen

    2016-01-01

    Microbial opsins play a crucial role in responses to various environmental signals. Here, we report that the microbial opsin homolog gene sop1 from the necrotrophic phytopathogenic fungus Sclerotinia sclerotiorum was dramatically up-regulated during infection and sclerotial development compared with the vegetative growth stage. Further, study showed that sop1 was essential for growth, sclerotial development and full virulence of S. sclerotiorum. Sop1-silenced transformants were more sensitive to high salt stress, fungicides and high osmotic stress. However, they were more tolerant to oxidative stress compared with the wild-type strain, suggesting that sop1 is involved in different stress responses and fungicide resistance, which plays a role in the environmental adaptability of S. sclerotiorum. Furthermore, a Delta blast search showed that microbial opsins are absent from the genomes of animals and most higher plants, indicating that sop1 is a potential drug target for disease control of S. sclerotiorum. PMID:26779159

  12. Maps of cone opsin input to mouse V1 and higher visual areas.

    PubMed

    Rhim, Issac; Coello-Reyes, Gabriela; Ko, Hee-Kyoung; Nauhaus, Ian

    2017-04-01

    Studies in the mouse retina have characterized the spatial distribution of an anisotropic ganglion cell and photoreceptor mosaic, which provides a solid foundation to study how the cortex pools from afferent parallel color channels. In particular, the mouse's retinal mosaic exhibits a gradient of wavelength sensitivity along its dorsoventral axis. Cones at the ventral extreme mainly express S opsin, which is sensitive to ultraviolet (UV) wavelengths. Then, moving toward the retina's dorsal extreme, there is a transition to M-opsin dominance. Here, we tested the hypothesis that the retina's opsin gradient is recapitulated in cortical visual areas as a functional map of wavelength sensitivity. We first identified visual areas in each mouse by mapping retinotopy with intrinsic signal imaging (ISI). Next, we measured ISI responses to stimuli along different directions of the S- and M-color plane to quantify the magnitude of S and M input to each location of the retinotopic maps in five visual cortical areas (V1, AL, LM, PM, and RL). The results illustrate a significant change in the S:M-opsin input ratio along the axis of vertical retinotopy that is consistent with the gradient along the dorsoventral axis of the retina. In particular, V1 populations encoding the upper visual field responded to S-opsin contrast with 6.1-fold greater amplitude than to M-opsin contrast. V1 neurons encoding lower fields responded with 4.6-fold greater amplitude to M- than S-opsin contrast. The maps in V1 and higher visual areas (HVAs) underscore the significance of a wavelength sensitivity gradient for guiding the mouse's behavior.NEW & NOTEWORTHY Two elements of this study are particularly novel. For one, it is the first to quantify cone inputs to mouse visual cortex; we have measured cone input in five visual areas. Next, it is the first study to identify a feature map in the mouse visual cortex that is based on well-characterized anisotropy of cones in the retina; we have identified

  13. Molecular Evidence that Only Two Opsin Subfamilies, the Blue Light- (SWS2) and Green Light-Sensitive (RH2), Drive Color Vision in Atlantic Cod (Gadus morhua)

    PubMed Central

    Søviknes, Anne Mette; Drivenes, Øyvind; Helvik, Jon Vidar

    2014-01-01

    Teleosts show a great variety in visual opsin complement, due to both gene duplication and gene loss. The repertoire ranges from one subfamily of visual opsins (scotopic vision) including rod opsin only retinas seen in many deep-sea species to multiple subfamilies of visual opsins in some pelagic species. We have investigated the opsin repertoire of Atlantic cod (Gadus morhua) using information in the recently sequenced cod genome and found that despite cod not being a deep sea species it lacks visual subfamilies sensitive towards the most extreme parts of the light spectra representing UV and red light. Furthermore, we find that Atlantic cod has duplicated paralogs of both blue-sensitive SWS2 and green-sensitive RH2 subfamilies, with members belonging to each subfamily linked in tandem within the genome (two SWS2-, and three RH2A genes, respectively). The presence of multiple cone opsin genes indicates that there have been duplication events in the cod ancestor SWS2 and RH2 opsins producing paralogs that have been retained in Atlantic. Our results are supported by expressional analysis of cone opsins, which further revealed an ontogenetic change in the array of cone opsins expressed. These findings suggest life stage specific programs for opsin regulation which could be linked to habitat changes and available light as the larvae is transformed into an early juvenile. Altogether we provide the first molecular evidence for color vision driven by only two families of cone opsins due to gene loss in a teleost. PMID:25551396

  14. Crx activates opsin transcription by recruiting HAT-containing co-activators and promoting histone acetylation

    PubMed Central

    Peng, Guang-Hua; Chen, Shiming

    2008-01-01

    The homeodomain transcription factor Crx is required for expression of many photoreceptor genes in the mammalian retina. The mechanism by which Crx activates transcription remains to be determined. Using protein–protein interaction assays, Crx was found to interact with three co-activator proteins (complexes): STAGA, Cbp and p300, all of which possess histone acetyl-transferase (HAT) activity. To determine the role of Crx–HAT interactions in target gene chromatin modification and transcriptional activation, quantitative RT–PCR and chromatin immunoprecipitation were performed on Crx target genes, rod and cone opsins, in developing mouse retina. Although cone opsins are transcribed earlier than rhodopsin during development, the transcription of each gene is preceded by the same sequence of events in their promoter and enhancer regions: (i) binding of Crx, followed by (ii) binding of HATs, (iii) the acetylation of histone H3, then (iv) binding of other photoreceptor transcription factors (Nrl and Nr2e3) and RNA polymerase II. In Crx knockout mice (Crx−/−), the association of HATs and AcH3 with target promoter/enhancer regions was significantly decreased, which correlates with aberrant opsin transcription and photoreceptor dysfunction in these mice. Similar changes to the opsin chromatin were seen in Y79 retinoblastoma cells, where opsin genes are barely transcribed. These defects in Y79 cells can be reversed by expressing a recombinant Crx or applying histone deacetylase inhibitors. Altogether, these results suggest that one mechanism for Crx-mediated transcriptional activation is to recruit HATs to photoreceptor gene chromatin for histone acetylation, thereby inducing and maintaining appropriate chromatin configurations for transcription. PMID:17656371

  15. Opsins in Limulus eyes: characterization of three visible light-sensitive opsins unique to and co-expressed in median eye photoreceptors and a peropsin/RGR that is expressed in all eyes

    PubMed Central

    Battelle, Barbara-Anne; Kempler, Karen E.; Saraf, Spencer R.; Marten, Catherine E.; Dugger, Donald R.; Speiser, Daniel I.; Oakley, Todd H.

    2015-01-01

    The eyes of the horseshoe crab Limulus polyphemus have long been used for studies of basic mechanisms of vision, and the structure and physiology of Limulus photoreceptors have been examined in detail. Less is known about the opsins Limulus photoreceptors express. We previously characterized a UV opsin (LpUVOps1) that is expressed in all three types of Limulus eyes (lateral compound eyes, median ocelli and larval eyes) and three visible light-sensitive rhabdomeric opsins (LpOps1, -2 and -5) that are expressed in Limulus lateral compound and larval eyes. Physiological studies showed that visible light-sensitive photoreceptors are also present in median ocelli, but the visible light-sensitive opsins they express were unknown. In the current study we characterize three newly identified, visible light-sensitive rhabdomeric opsins (LpOps6, -7 and -8) that are expressed in median ocelli. We show that they are ocellar specific and that all three are co-expressed in photoreceptors distinct from those expressing LpUVOps1. Our current findings show that the pattern of opsin expression in Limulus eyes is much more complex than previously thought and extend our previous observations of opsin co-expression in visible light-sensitive Limulus photoreceptors. We also characterize a Limulus peropsin/RGR (LpPerOps1). We examine the phylogenetic relationship of LpPerOps1 with other peropsins and RGRs, demonstrate that LpPerOps1 transcripts are expressed in each of the three types of Limulus eyes and show that the encoded protein is expressed in membranes of cells closely associated with photoreceptors in each eye type. These finding suggest that peropsin was in the opsin repertoire of euchelicerates. PMID:25524988

  16. Opsins in Limulus eyes: characterization of three visible light-sensitive opsins unique to and co-expressed in median eye photoreceptors and a peropsin/RGR that is expressed in all eyes.

    PubMed

    Battelle, Barbara-Anne; Kempler, Karen E; Saraf, Spencer R; Marten, Catherine E; Dugger, Donald R; Speiser, Daniel I; Oakley, Todd H

    2015-02-01

    The eyes of the horseshoe crab Limulus polyphemus have long been used for studies of basic mechanisms of vision, and the structure and physiology of Limulus photoreceptors have been examined in detail. Less is known about the opsins Limulus photoreceptors express. We previously characterized a UV opsin (LpUVOps1) that is expressed in all three types of Limulus eyes (lateral compound eyes, median ocelli and larval eyes) and three visible light-sensitive rhabdomeric opsins (LpOps1, -2 and -5) that are expressed in Limulus lateral compound and larval eyes. Physiological studies showed that visible light-sensitive photoreceptors are also present in median ocelli, but the visible light-sensitive opsins they express were unknown. In the current study we characterize three newly identified, visible light-sensitive rhabdomeric opsins (LpOps6, -7 and -8) that are expressed in median ocelli. We show that they are ocellar specific and that all three are co-expressed in photoreceptors distinct from those expressing LpUVOps1. Our current findings show that the pattern of opsin expression in Limulus eyes is much more complex than previously thought and extend our previous observations of opsin co-expression in visible light-sensitive Limulus photoreceptors. We also characterize a Limulus peropsin/RGR (LpPerOps1). We examine the phylogenetic relationship of LpPerOps1 with other peropsins and RGRs, demonstrate that LpPerOps1 transcripts are expressed in each of the three types of Limulus eyes and show that the encoded protein is expressed in membranes of cells closely associated with photoreceptors in each eye type. These finding suggest that peropsin was in the opsin repertoire of euchelicerates.

  17. Genomic and gene regulatory signatures of cryptozoic adaptation: Loss of blue sensitive photoreceptors through expansion of long wavelength-opsin expression in the red flour beetle Tribolium castaneum

    PubMed Central

    Jackowska, Magdalena; Bao, Riyue; Liu, Zhenyi; McDonald, Elizabeth C; Cook, Tiffany A; Friedrich, Markus

    2007-01-01

    Background Recent genome sequence analysis in the red flour beetle Tribolium castaneum indicated that this highly crepuscular animal encodes only two single opsin paralogs: a UV-opsin and a long wavelength (LW)-opsin; however, these animals do not encode a blue (B)-opsin as most other insects. Here, we studied the spatial regulation of the Tribolium single LW- and UV-opsin gene paralogs in comparison to that of the five opsin paralogs in the retina of Drosophila melanogaster. Results In situ hybridization analysis reveals that the Tribolium retina, in contrast with other insect retinas, constitutes a homogenous field of ommatidia that have seven LW-opsin expressing photoreceptors and one UV-/LW-opsin co-expressing photoreceptor per eye unit. This pattern is consistent with the loss of photoreceptors sensitive to blue wavelengths. It also identifies Tribolium as the first example of a species in insects that co-expresses two different opsins across the entire retina in violation of the widely observed "one receptor rule" of sensory cells. Conclusion Broader studies of opsin evolution in darkling beetles and other coleopteran groups have the potential to pinpoint the permissive and adaptive forces that played a role in the evolution of vision in Tribolium castaneum. PMID:18154648

  18. De Novo Adult Transcriptomes of Two European Brittle Stars: Spotlight on Opsin-Based Photoreception

    PubMed Central

    Mallefet, Jérôme; Flammang, Patrick

    2016-01-01

    Next generation sequencing (NGS) technology allows to obtain a deeper and more complete view of transcriptomes. For non-model or emerging model marine organisms, NGS technologies offer a great opportunity for rapid access to genetic information. In this study, paired-end Illumina HiSeqTM technology has been employed to analyse transcriptomes from the arm tissues of two European brittle star species, Amphiura filiformis and Ophiopsila aranea. About 48 million Illumina reads were generated and 136,387 total unigenes were predicted from A. filiformis arm tissues. For O. aranea arm tissues, about 47 million reads were generated and 123,324 total unigenes were obtained. Twenty-four percent of the total unigenes from A. filiformis show significant matches with sequences present in reference online databases, whereas, for O. aranea, this percentage amounts to 23%. In both species, around 50% of the predicted annotated unigenes were significantly similar to transcripts from the purple sea urchin, the closest species to date that has undergone complete genome sequencing and annotation. GO, COG and KEGG analyses were performed on predicted brittle star unigenes. We focused our analyses on the phototransduction actors involved in light perception. Firstly, two new echinoderm opsins were identified in O. aranea: one rhabdomeric opsin (homologous to vertebrate melanopsin) and one RGR opsin. The RGR-opsin is supposed to be involved in retinal regeneration while the r-opsin is suspected to play a role in visual-like behaviour. Secondly, potential phototransduction actors were identified in both transcriptomes using the fly (rhabdomeric) and mammal (ciliary) classical phototransduction pathways as references. Finally, the sensitivity of O.aranea to monochromatic light was investigated to complement data available for A. filiformis. The presence of microlens-like structures at the surface of dorsal arm plate of O. aranea could potentially explain phototactic behaviour differences

  19. Transcriptome analysis and RNA interference of cockroach phototransduction indicate three opsins and suggest a major role for TRPL channels

    PubMed Central

    French, Andrew S.; Meisner, Shannon; Liu, Hongxia; Weckström, Matti; Torkkeli, Päivi H.

    2015-01-01

    Our current understanding of insect phototransduction is based on a small number of species, but insects occupy many different visual environments. We created the retinal transcriptome of a nocturnal insect, the cockroach, Periplaneta americana to identify proteins involved in the earliest stages of compound eye phototransduction, and test the hypothesis that different visual environments are reflected in different molecular contributions to function. We assembled five novel mRNAs: two green opsins, one UV opsin, and one each TRP and TRPL ion channel homologs. One green opsin mRNA (pGO1) was 100–1000 times more abundant than the other opsins (pGO2 and pUVO), while pTRPL mRNA was 10 times more abundant than pTRP, estimated by transcriptome analysis or quantitative PCR (qPCR). Electroretinograms were used to record photoreceptor responses. Gene-specific in vivo RNA interference (RNAi) was achieved by injecting long (596–708 bp) double-stranded RNA into head hemolymph, and verified by qPCR. RNAi of the most abundant green opsin reduced both green opsins by more than 97% without affecting UV opsin, and gave a maximal reduction of 75% in ERG amplitude 7 days after injection that persisted for at least 19 days. RNAi of pTRP and pTRPL genes each specifically reduced the corresponding mRNA by 90%. Electroretinogram (ERG) reduction by pTRPL RNAi was slower than for opsin, reaching 75% attenuation by 21 days, without recovery at 29 days. pTRP RNAi attenuated ERG much less; only 30% after 21 days. Combined pTRP plus pTRPL RNAi gave only weak evidence of any cooperative interactions. We conclude that silencing retinal genes by in vivo RNAi using long dsRNA is effective, that visible light transduction in Periplaneta is dominated by pGO1, and that pTRPL plays a major role in cockroach phototransduction. PMID:26257659

  20. Nonvisual Opsins and the Regulation of Peripheral Clocks by Light and Hormones.

    PubMed

    Poletini, Maristela O; Ramos, Bruno C; Moraes, Maria Nathalia; Castrucci, Ana Maria L

    2015-01-01

    The molecular clock machinery is conserved throughout evolution. However, how environmental cues are perceived has evolved in such a way that peripheral clocks in mammals require a variety of signals, including hormones. On the other hand, in nonmammalian cells able to directly detect light, light seems to play a major role in the synchronization of the clock. The interaction between perception of circadian light by nonvisual opsins and hormones will be discussed under the perspective of clock synchronization at the molecular level.

  1. Atomistic design of microbial opsin-based blue-shifted optogenetics tools

    PubMed Central

    Kato, Hideaki E.; Kamiya, Motoshi; Sugo, Seiya; Ito, Jumpei; Taniguchi, Reiya; Orito, Ayaka; Hirata, Kunio; Inutsuka, Ayumu; Yamanaka, Akihiro; Maturana, Andrés D.; Ishitani, Ryuichiro; Sudo, Yuki; Hayashi, Shigehiko; Nureki, Osamu

    2015-01-01

    Microbial opsins with a bound chromophore function as photosensitive ion transporters and have been employed in optogenetics for the optical control of neuronal activity. Molecular engineering has been utilized to create colour variants for the functional augmentation of optogenetics tools, but was limited by the complexity of the protein–chromophore interactions. Here we report the development of blue-shifted colour variants by rational design at atomic resolution, achieved through accurate hybrid molecular simulations, electrophysiology and X-ray crystallography. The molecular simulation models and the crystal structure reveal the precisely designed conformational changes of the chromophore induced by combinatory mutations that shrink its π-conjugated system which, together with electrostatic tuning, produce large blue shifts of the absorption spectra by maximally 100 nm, while maintaining photosensitive ion transport activities. The design principle we elaborate is applicable to other microbial opsins, and clarifies the underlying molecular mechanism of the blue-shifted action spectra of microbial opsins recently isolated from natural sources. PMID:25975962

  2. Targeting gene expression to cones with human cone opsin promoters in recombinant AAV.

    PubMed

    Komáromy, A M; Alexander, J J; Cooper, A E; Chiodo, V A; Glushakova, L G; Acland, G M; Hauswirth, W W; Aguirre, G D

    2008-07-01

    Specific cone-directed therapy is of high priority in the treatment of human hereditary retinal diseases. However, not much information exists about the specific targeting of photoreceptor subclasses. Three versions of the human red cone opsin promoter (PR0.5, 3LCR-PR0.5 and PR2.1), and the human blue cone opsin promoter HB569, were evaluated for their specificity and robustness in targeting green fluorescent protein (GFP) gene expression to subclasses of cones in the canine retina when used in recombinant adeno-associated viral vectors of serotype 5. The vectors were administered by subretinal injection. The promoter PR2.1 led to most effective and specific expression of GFP in the long- and medium-wavelength-absorbing cones (L/M cones) of normal and diseased retinas. The PR0.5 promoter was not effective. Adding three copies of the 35-bp LCR in front of PR0.5 lead to weak GFP expression in L/M cones. The HB569 promoter was not specific, and GFP was expressed in a few L/M cones, some rods and the retinal pigment epithelium. These results suggest that L/M cones, the predominant class of cone photoreceptors in the retinas of dogs and most mammalian species can be successfully targeted using the human red cone opsin promoter.

  3. Evolving visual pigments: hints from the opsin-based proteins in a phylogenetically old "eyeless" invertebrate.

    PubMed

    Santillo, Silvia; Orlando, Pierangelo; De Petrocellis, Luciano; Cristino, Luigia; Guglielmotti, Vittorio; Musio, Carlo

    2006-01-01

    Visual pigments are photosensitive receptor proteins that trigger the transduction process producing the visual excitation once they have absorbed photons. In spite of the molecular and morpho-functional complexity that has characterized the development of animal eyes and eyeless photoreceptive systems, opsin-based protein family appears ubiquous along metazoan visual systems. Moreover, in addition to classic rhodopsin photoreceptors, all Metazoa have supplementary non-visual photosensitive structures, mainly located in the central nervous system, that sense light without forming an image and that rather regulate the organism's temporal physiology. The investigation of novel non-visual photopigments exerting extraretinal photoreception is a challenging field in vision research. Here we propose the cnidarian Hydra as a useful tool of investigation for molecular and functional differences between these pigment families. Hydra is the first metazoan owning a nervous system and it is an eyeless invertebrate showing only an extraocular photoreception, as it has no recognized visual or photosensitive structures. In this paper we provide an overview of the molecular and functional features of the opsin-based protein subfamilies and preliminary evidences in a phylogenetically old species of both image-forming and non-visual opsins. Then we give new insights on the molecular biology of Hydra photoreception and on the evolutionary pathways of visual pigments.

  4. Atomistic design of microbial opsin-based blue-shifted optogenetics tools

    NASA Astrophysics Data System (ADS)

    Kato, Hideaki E.; Kamiya, Motoshi; Sugo, Seiya; Ito, Jumpei; Taniguchi, Reiya; Orito, Ayaka; Hirata, Kunio; Inutsuka, Ayumu; Yamanaka, Akihiro; Maturana, Andrés D.; Ishitani, Ryuichiro; Sudo, Yuki; Hayashi, Shigehiko; Nureki, Osamu

    2015-05-01

    Microbial opsins with a bound chromophore function as photosensitive ion transporters and have been employed in optogenetics for the optical control of neuronal activity. Molecular engineering has been utilized to create colour variants for the functional augmentation of optogenetics tools, but was limited by the complexity of the protein-chromophore interactions. Here we report the development of blue-shifted colour variants by rational design at atomic resolution, achieved through accurate hybrid molecular simulations, electrophysiology and X-ray crystallography. The molecular simulation models and the crystal structure reveal the precisely designed conformational changes of the chromophore induced by combinatory mutations that shrink its π-conjugated system which, together with electrostatic tuning, produce large blue shifts of the absorption spectra by maximally 100 nm, while maintaining photosensitive ion transport activities. The design principle we elaborate is applicable to other microbial opsins, and clarifies the underlying molecular mechanism of the blue-shifted action spectra of microbial opsins recently isolated from natural sources.

  5. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation

    PubMed Central

    Berglund, Ken; Clissold, Kara; Li, Haofang E.; Wen, Lei; Park, Sung Young; Gleixner, Jan; Klein, Marguerita E.; Lu, Dongye; Barter, Joseph W.; Rossi, Mark A.; Augustine, George J.; Yin, Henry H.; Hochgeschwender, Ute

    2016-01-01

    Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type Gaussia luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright Gaussia luciferase variants with either channelrhodopsin to excite neurons (luminescent opsin, LMO) or a proton pump to inhibit neurons (inhibitory LMO, iLMO). These improved LMOs could reliably activate or silence neurons in vitro and in vivo. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra in vivo produced not only the expected bidirectional control of single unit activity but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, although preserving the ability to be activated by external light sources, LMOs expand the use of optogenetics by making the same opsins accessible to noninvasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales. PMID:26733686

  6. Point mutations in bovine opsin can be classified in four groups with respect to their effect on the biosynthetic pathway of opsin.

    PubMed Central

    DeCaluwé, G L; DeGrip, W J

    1996-01-01

    Expression in vitro with the recombinant baculovirus expression system showed correct biosynthesis and post-translational processing of "wild-type' bovine opsin with regard to translocation, glycosylation, palmitoylation and targeting. However, several of these processes were severely affected by point mutations. From the overall results of 16 mutants reported here, four groups were distinguished. One group significantly affected neither biosynthesis nor folding of opsin (D83N, P291A, A299C-V300A-P303G). A second group produced a truncated protein (R69H, Y301F), suggesting that these positions are essential for a correct translational process. A third group affected membrane translocation as well as glycosylation, which can be interpreted as interference with the function of a transfer signal. Substitutions at positions Glu-113, Glu-122, Glu-134, Arg-135 and Lys-248 belong to this category. A fourth group induced structural changes in the protein that led to heterogeneous distribution in the plasma membrane (E113Q/D, W265F, Y268S). Taking any functional consequences of these mutations into consideration, it seems that point mutations can have mosaic effects and therefore should be examined at several levels (folding, targeting, functional parameters). PMID:9003366

  7. P23H opsin knock-in mice reveal a novel step in retinal rod disc morphogenesis

    PubMed Central

    Sakami, Sanae; Kolesnikov, Alexander V.; Kefalov, Vladimir J.; Palczewski, Krzysztof

    2014-01-01

    Retinal rod photoreceptor cells have double membrane discs located in their outer segments (ROS) that are continuously formed proximally from connecting cilia (CC) and phagocytized distally by the retinal pigmented epithelium. The major component of these rod discs, the light-sensitive visual pigment rhodopsin (Rho), consists of an opsin protein linked to 11-cis-retinal. The P23H mutation of rod opsin (P23H opsin) is the most common cause of human blinding autosomal dominant retinitis pigmentosa (adRP). A mouse model of adRP with this mutation (RhoP23H/+) shows low levels of P23H opsin protein, partial misalignment of discs and progressive retinal degeneration. However, the impact of mutant P23H opsin on the formation of abnormal discs is unclear and it is still unknown whether this mutant pigment can mediate phototransduction. Using transretinal ERG recordings, we demonstrate that P23H mutant Rho can trigger phototransduction but RhoP23H/P23H rods are ∼17 000-fold less sensitive to light than Rho+/+ rods and produce abnormally fast photo-responses. By analyzing homozygous RhoP23H/P23H knock-in mice, we show that P23H opsin is transported to ciliary protrusions where it forms sagittally elongated discs. Transmission electron microscopy of postnatal day (PND) 14 RhoP23H/+ mouse retina revealed disordered sagittally oriented discs before the onset of retinal degeneration. Surprisingly, we also observed smaller, immature sagittally oriented discs in PND14 Rho+/− and Rho+/+ mice that were not seen in older animals. These findings provide fundamental insights into the pathogenesis of the P23H mutant opsin and reveal a novel early sagittally aligned disc formation step in normal ROS disc expansion. PMID:24214395

  8. Evolutionary renovation of L/M opsin polymorphism confers a fruit discrimination advantage to ateline New World monkeys

    PubMed Central

    Matsumoto, Yoshifumi; Hiramatsu, Chihiro; Matsushita, Yuka; Ozawa, Norihiro; Ashino, Ryuichi; Nakata, Makiko; Kasagi, Satoshi; Di Fiore, Anthony; Schaffner, Colleen M; Aureli, Filippo; Melin, Amanda D; Kawamura, Shoji

    2014-01-01

    New World monkeys exhibit prominent colour vision variation due to allelic polymorphism of the long-to-middle wavelength (L/M) opsin gene. The known spectral variation of L/M opsins in primates is broadly determined by amino acid composition at three sites: 180, 277 and 285 (the ‘three-sites’ rule). However, two L/M opsin alleles found in the black-handed spider monkeys (Ateles geoffroyi) are known exceptions, presumably due to novel mutations. The spectral separation of the two L/M photopigments is 1.5 times greater than expected based on the ‘three-sites’ rule. Yet the consequence of this for the visual ecology of the species is unknown, as is the evolutionary mechanism by which spectral shift was achieved. In this study, we first examine L/M opsins of two other Atelinae species, the long-haired spider monkeys (A. belzebuth) and the common woolly monkeys (Lagothrix lagotricha). By a series of site-directed mutagenesis, we show that a mutation Y213D (tyrosine to aspartic acid at site 213) in the ancestral opsin of the two alleles enabled N294K, which occurred in one allele of the ateline ancestor and increased the spectral separation between the two alleles. Second, by modelling the chromaticity of dietary fruits and background leaves in a natural habitat of spider monkeys, we demonstrate that chromatic discrimination of fruit from leaves is significantly enhanced by these mutations. This evolutionary renovation of L/M opsin polymorphism in atelines illustrates a previously unappreciated dynamism of opsin genes in shaping primate colour vision. PMID:24612406

  9. Two Opsin 3-Related Proteins in the Chicken Retina and Brain: A TMT-Type Opsin 3 Is a Blue-Light Sensor in Retinal Horizontal Cells, Hypothalamus, and Cerebellum

    PubMed Central

    Kato, Mutsuko; Sugiyama, Takashi; Sakai, Kazumi; Yamashita, Takahiro; Fujita, Hirofumi; Sato, Keita; Tomonari, Sayuri; Shichida, Yoshinori; Ohuchi, Hideyo

    2016-01-01

    Opsin family genes encode G protein-coupled seven-transmembrane proteins that bind a retinaldehyde chromophore in photoreception. Here, we sought potential as yet undescribed avian retinal photoreceptors, focusing on Opsin 3 homologs in the chicken. We found two Opsin 3-related genes in the chicken genome: one corresponding to encephalopsin/panopsin (Opn3) in mammals, and the other belonging to the teleost multiple tissue opsin (TMT) 2 group. Bioluminescence imaging and G protein activation assays demonstrated that the chicken TMT opsin (cTMT) functions as a blue light sensor when forced-expressed in mammalian cultured cells. We did not detect evidence of light sensitivity for the chicken Opn3 (cOpn3). In situ hybridization demonstrated expression of cTMT in subsets of differentiating cells in the inner retina and, as development progressed, predominant localization to retinal horizontal cells (HCs). Immunohistochemistry (IHC) revealed cTMT in HCs as well as in small numbers of cells in the ganglion and inner nuclear layers of the post-hatch chicken retina. In contrast, cOpn3-IR cells were found in distinct subsets of cells in the inner nuclear layer. cTMT-IR cells were also found in subsets of cells in the hypothalamus. Finally, we found differential distribution of cOpn3 and cTMT proteins in specific cells of the cerebellum. The present results suggest that a novel TMT-type opsin 3 may function as a photoreceptor in the chicken retina and brain. PMID:27861495

  10. Opsins in onychophora (velvet worms) suggest a single origin and subsequent diversification of visual pigments in arthropods.

    PubMed

    Hering, Lars; Henze, Miriam J; Kohler, Martin; Kelber, Almut; Bleidorn, Christoph; Leschke, Maren; Nickel, Birgit; Meyer, Matthias; Kircher, Martin; Sunnucks, Paul; Mayer, Georg

    2012-11-01

    Multiple visual pigments, prerequisites for color vision, are found in arthropods, but the evolutionary origin of their diversity remains obscure. In this study, we explore the opsin genes in five distantly related species of Onychophora, using deep transcriptome sequencing and screening approaches. Surprisingly, our data reveal the presence of only one opsin gene (onychopsin) in each onychophoran species, and our behavioral experiments indicate a maximum sensitivity of onychopsin to blue-green light. In our phylogenetic analyses, the onychopsins represent the sister group to the monophyletic clade of visual r-opsins of arthropods. These results concur with phylogenomic support for the sister-group status of the Onychophora and Arthropoda and provide evidence for monochromatic vision in velvet worms and in the last common ancestor of Onychophora and Arthropoda. We conclude that the diversification of visual pigments and color vision evolved in arthropods, along with the evolution of compound eyes-one of the most sophisticated visual systems known.

  11. Deletion of the X-linked Opsin Gene Array Locus Control Region (LCR) Results in Disruption of the Cone Mosaic

    PubMed Central

    Carroll, Joseph; Rossi, Ethan A.; Porter, Jason; Neitz, Jay; Roorda, Austin; Williams, David; Neitz, Maureen

    2010-01-01

    Blue-cone monochromacy (BCM) is an X-linked condition in which long- (L−) and middle- (M−) wavelength-sensitive cone function is absent. Due to the X-linked nature of the condition, female carriers are spared from a full manifestation of the associated defects but can show visual symptoms, including abnormal cone electroretinograms. Here we imaged the cone mosaic in four females carrying an L/M array with deletion of the locus control region, resulting in an absence of L/M opsin gene expression (effectively acting as a cone opsin knockout). On average, they had cone mosaics with reduced density and disrupted organization compared to normal trichromats. This suggests that the absence of opsin in a subset of cones results in their early degeneration, with X-inactivation the likely mechanism underlying phenotypic variability in BCM carriers. PMID:20638402

  12. NinaB is essential for Drosophila vision but induces retinal degeneration in opsin-deficient photoreceptors.

    PubMed

    Voolstra, Olaf; Oberhauser, Vitus; Sumser, Emerich; Meyer, Nina E; Maguire, Michael E; Huber, Armin; von Lintig, Johannes

    2010-01-15

    In animals, visual pigments are essential for photoreceptor function and survival. These G-protein-coupled receptors consist of a protein moiety (opsin) and a covalently bound 11-cis-retinylidene chromophore. The chromophore is derived from dietary carotenoids by oxidative cleavage and trans-to-cis isomerization of double bonds. In vertebrates, the necessary chemical transformations are catalyzed by two distinct but structurally related enzymes, the carotenoid oxygenase beta-carotenoid-15,15'-monooxygenase and the retinoid isomerase RPE65 (retinal pigment epithelium protein of 65 kDa). Recently, we provided biochemical evidence that these reactions in insects are catalyzed by a single enzyme family member named NinaB. Here we show that in the fly pathway, carotenoids are mandatory precursors of the chromophore. After chromophore formation, the retinoid-binding protein Pinta acts downstream of NinaB and is required to supply photoreceptors with chromophore. Like ninaE encoding the opsin, ninaB expression is eye-dependent and is activated as a downstream target of the eyeless/pax6 and sine oculis master control genes for eye development. The requirement for coordinated synthesis of chromophore and opsin is evidenced by analysis of ninaE mutants. Retinal degeneration in opsin-deficient photoreceptors is caused by the chromophore and can be prevented by restricting its supply as seen in an opsin and chromophore-deficient double mutant. Thus, our study identifies NinaB as a key component for visual pigment production and provides evidence that chromophore in opsin-deficient photoreceptors can elicit retinal degeneration.

  13. The involvement of ATF4 and S-opsin in retinal photoreceptor cell damage induced by blue LED light

    PubMed Central

    Ooe, Emi; Tsuruma, Kazuhiro; Kuse, Yoshiki; Kobayashi, Saori; Shimazawa, Masamitsu

    2017-01-01

    Purpose Blue light is a high-energy emitting light with a short wavelength in the visible light spectrum. Blue light induces photoreceptor apoptosis and causes age-related macular degeneration or retinitis pigmentosa. In the present study, we investigated the roles of endoplasmic reticulum (ER) stress induced by blue light-emitting diode (LED) light exposure in murine photoreceptor cells. Methods The murine photoreceptor cell line was incubated and exposed to blue LED light (464 nm blue LED light, 450 lx, 3 to 24 h). The expression of the factors involved in the unfolded protein response pathway was examined using quantitative real-time reverse transcription (RT)-PCR and immunoblot analysis. The aggregation of short-wavelength opsin (S-opsin) in the murine photoreceptor cells was observed with immunostaining. The effect of S-opsin knockdown on ATF4 expression in the murine photoreceptor cell line was also investigated. Results Exposure to blue LED light increased the bip, atf4, and grp94 mRNA levels, induced the expression of ATF4 protein, and increased the levels of ubiquitinated proteins. Exposure to blue LED light in combination with ER stress inducers (tunicamycin and dithiothreitol) induced the aggregation of S-opsin. S-opsin mRNA knockdown prevented the induction of ATF4 expression in response to exposure to blue LED light. Conclusions These findings indicate that the aggregation of S-opsin induced by exposure to blue LED light causes ER stress, and ATF4 activation in particular. PMID:28331281

  14. Co-Expression of VAL- and TMT-Opsins Uncovers Ancient Photosensory Interneurons and Motorneurons in the Vertebrate Brain

    PubMed Central

    Fischer, Ruth M.; Fontinha, Bruno M.; Kirchmaier, Stephan; Steger, Julia; Bloch, Susanne; Inoue, Daigo; Panda, Satchidananda; Rumpel, Simon; Tessmar-Raible, Kristin

    2013-01-01

    The functional principle of the vertebrate brain is often paralleled to a computer: information collected by dedicated devices is processed and integrated by interneuron circuits and leads to output. However, inter- and motorneurons present in today's vertebrate brains are thought to derive from neurons that combined sensory, integration, and motor function. Consistently, sensory inter­motorneurons have been found in the simple nerve nets of cnidarians, animals at the base of the evolutionary lineage. We show that light-sensory motorneurons and light-sensory interneurons are also present in the brains of vertebrates, challenging the paradigm that information processing and output circuitry in the central brain is shielded from direct environmental influences. We investigated two groups of nonvisual photopigments, VAL- and TMT-Opsins, in zebrafish and medaka fish; two teleost species from distinct habitats separated by over 300 million years of evolution. TMT-Opsin subclasses are specifically expressed not only in hypothalamic and thalamic deep brain photoreceptors, but also in interneurons and motorneurons with no known photoreceptive function, such as the typeXIV interneurons of the fish optic tectum. We further show that TMT-Opsins and Encephalopsin render neuronal cells light-sensitive. TMT-Opsins preferentially respond to blue light relative to rhodopsin, with subclass-specific response kinetics. We discovered that tmt-opsins co-express with val-opsins, known green light receptors, in distinct inter- and motorneurons. Finally, we show by electrophysiological recordings on isolated adult tectal slices that interneurons in the position of typeXIV neurons respond to light. Our work supports “sensory-inter-motorneurons” as ancient units for brain evolution. It also reveals that vertebrate inter- and motorneurons are endowed with an evolutionarily ancient, complex light-sensory ability that could be used to detect changes in ambient light spectra, possibly

  15. Visual pigments and opsin expression in the juveniles of three species of fish (rainbow trout, zebrafish, and killifish) following prolonged exposure to thyroid hormone or retinoic acid.

    PubMed

    Suliman, Tarek; Novales Flamarique, Iñigo

    2014-01-01

    Thyroid hormone (TH) and retinoic acid (RA) are powerful modulators of photoreceptor differentiation during vertebrate retinal development. In the embryos and young juveniles of salmonid fishes and rodents, TH induces switches in opsin expression within individual cones, a phenomenon that also occurs in adult rodents following prolonged (12 week) hypothyroidism. Whether changes in TH levels also modulate opsin expression in the differentiated retina of fish is unknown. Like TH, RA is essential for retinal development, but its role in inducing opsin switches, if any, has not been studied. Here we investigate the action of TH and RA on single-cone opsin expression in juvenile rainbow trout, zebrafish, and killifish and on the absorbance of visual pigments in rainbow trout and zebrafish. Prolonged TH exposure increased the wavelength of maximum absorbance (λmax ) of the rod and the medium (M, green) and long (L, red) wavelength visual pigments in all fish species examined. However, unlike the opsin switch that occurred following TH exposure in the single cones of small juvenile rainbow trout (alevin), opsin expression in large juvenile rainbow trout (smolt), zebrafish, or killifish remained unchanged. RA did not induce any opsin switches or change the visual pigment absorbance of photoreceptors. Neither ligand altered cone photoreceptor densities. We conclude that RA has no effect on opsin expression or visual pigment properties in the differentiated retina of these fishes. In contrast, TH affected both single-cone opsin expression and visual pigment absorbance in the rainbow trout alevin but only visual pigment absorbance in the smolt and in zebrafish. The latter results could be explained by a combination of opsin switches and chromophore shifts from vitamin A1 to vitamin A2.

  16. Metal Mesh Fabrication and Testing for Infrared Astronomy and ISO Science Programs; ISO GO Data Analysis and LWS Instrument Team Activities

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Oliversen, Ronald J. (Technical Monitor)

    2001-01-01

    This research program addresses astrophysics research with the Infrared Space Observatory's Long Wavelength Spectrometer (ISO-LWS), including efforts to supply ISO-LWS with superior metal mesh filters. This grant has, over the years, enabled Dr. Smith in his role as a Co-Investigator on the satellite, the PI (Principal Investigator) on the Extragalactic Science Team, and a member of the Calibration and performance working groups. The emphasis of the budget in this proposal is in support of Dr. Smith's Infrared Space Observatory research. This program began (under a different grant number) while Dr. Smith was at the Smithsonian's National Air and Space Museum, and was transferred to SAO with a change in number. While Dr. Smith was a visiting Discipline Scientist at NASA HQ the program was in abeyance, but it has resumed in full since his return to SAO. The Infrared Space Observatory mission was launched in November, 1996, and since then has successfully completed its planned lifetime mission. Data are currently being calibrated to the 2% level.

  17. Blue-light-receptive cryptochrome is expressed in a sponge eye lacking neurons and opsin.

    PubMed

    Rivera, Ajna S; Ozturk, Nuri; Fahey, Bryony; Plachetzki, David C; Degnan, Bernard M; Sancar, Aziz; Oakley, Todd H

    2012-04-15

    Many larval sponges possess pigment ring eyes that apparently mediate phototactic swimming. Yet sponges are not known to possess nervous systems or opsin genes, so the unknown molecular components of sponge phototaxis must differ fundamentally from those in other animals, inspiring questions about how this sensory system functions. Here we present molecular and biochemical data on cryptochrome, a candidate gene for functional involvement in sponge pigment ring eyes. We report that Amphimedon queenslandica, a demosponge, possesses two cryptochrome/photolyase genes, Aq-Cry1 and Aq-Cry2. The mRNA of one gene (Aq-Cry2) is expressed in situ at the pigment ring eye. Additionally, we report that Aq-Cry2 lacks photolyase activity and contains a flavin-based co-factor that is responsive to wavelengths of light that also mediate larval photic behavior. These results suggest that Aq-Cry2 may act in the aneural, opsin-less phototaxic behavior of a sponge.

  18. Reproducible and sustained regulation of Gαs signalling using a metazoan opsin as an optogenetic tool.

    PubMed

    Bailes, Helena J; Zhuang, Ling-Yu; Lucas, Robert J

    2012-01-01

    Originally developed to regulate neuronal excitability, optogenetics is increasingly also used to control other cellular processes with unprecedented spatiotemporal resolution. Optogenetic modulation of all major G-protein signalling pathways (Gq, Gi and Gs) has been achieved using variants of mammalian rod opsin. We show here that the light response driven by such rod opsin-based tools dissipates under repeated exposure, consistent with the known bleaching characteristics of this photopigment. We continue to show that replacing rod opsin with a bleach resistant opsin from Carybdea rastonii, the box jellyfish, (JellyOp) overcomes this limitation. Visible light induced high amplitude, reversible, and reproducible increases in cAMP in mammalian cells expressing JellyOp. While single flashes produced a brief cAMP spike, repeated stimulation could sustain elevated levels for 10s of minutes. JellyOp was more photosensitive than currently available optogenetic tools, responding to white light at irradiances ≥1 µW/cm(2). We conclude that JellyOp is a promising new tool for mimicking the activity of Gs-coupled G protein coupled receptors with fine spatiotemporal resolution.

  19. Evolution of color vision in pierid butterflies: blue opsin duplication, ommatidial heterogeneity and eye regionalization in Colias erate.

    PubMed

    Awata, Hiroko; Wakakuwa, Motohiro; Arikawa, Kentaro

    2009-04-01

    This paper documents the molecular organization of the eye of the Eastern Pale Clouded Yellow butterfly, Colias erate (Pieridae). We cloned four cDNAs encoding visual pigment opsins, corresponding to one ultraviolet, two blue and one long wavelength-absorbing visual pigments. Duplication of the blue visual pigment class occurs also in another pierid species, Pieris rapae, suggesting that blue duplication is a general feature in the family Pieridae. We localized the opsin mRNAs in the Colias retina by in situ hybridization. Among the nine photoreceptor cells in an ommatidium, R1-9, we found that R3-8 expressed the long wavelength class mRNA in all ommatidia. R1 and R2 expressed mRNAs of the short wavelength opsins in three fixed combinations, corresponding to three types of ommatidia. While the duplicated blue opsins in Pieris are separately expressed in two subsets of R1-2 photoreceptors, one blue sensitive and another violet sensitive, those of Colias appear to be always coexpressed.

  20. Vertebrate cone opsins enable sustained and highly sensitive rapid control of Gi/o signaling in anxiety circuitry.

    PubMed

    Masseck, Olivia A; Spoida, Katharina; Dalkara, Deniz; Maejima, Takashi; Rubelowski, Johanna M; Wallhorn, Lutz; Deneris, Evan S; Herlitze, Stefan

    2014-03-19

    G protein-coupled receptors (GPCRs) coupling to Gi/o signaling pathways are involved in the control of important physiological functions, which are difficult to investigate because of the limitation of tools to control the signaling pathway with precise kinetics and specificity. We established two vertebrate cone opsins, short- and long-wavelength opsin, for long-lasting and repetitive activation of Gi/o signaling pathways in vitro and in vivo. We demonstrate for both opsins the repetitive fast, membrane-delimited, ultra light-sensitive, and wavelength-dependent activation of the Gi/o pathway in HEK cells. We also show repetitive control of Gi/o pathway activation in 5-HT1A receptor domains in the dorsal raphe nucleus (DRN) in brain slices and in vivo, which is sufficient to modulate anxiety behavior in mice. Thus, vertebrate cone opsins represent a class of tools for understanding the role of Gi/o-coupled GPCRs in health and disease.

  1. A Naturally Occurring Mutation of the Opsin Gene (T4R) in Dogs Affects Glycosylation and Stability of the G Protein-coupled Receptor*

    PubMed Central

    Zhu, Li; Jang, Geeng-Fu; Jastrzebska, Beata; Filipek, Sławomir; Pearce-Kelling, Susan E.; Aguirre, Gustavo D.; Stenkamp, Ronald E.; Acland, Gregory M.; Palczewski, Krzysztof

    2005-01-01

    Rho (rhodopsin; opsin plus 11-cis-retinal) is a prototypical G protein-coupled receptor responsible for the capture of a photon in retinal photoreceptor cells. A large number of mutations in the opsin gene associated with autosomal dominant retinitis pigmentosa have been identified. The naturally occurring T4R opsin mutation in the English mastiff dog leads to a progressive retinal degeneration that closely resembles human retinitis pigmentosa caused by the T4K mutation in the opsin gene. Using genetic approaches and biochemical assays, we explored the properties of the T4R mutant protein. Employing immunoaffinity-purified Rho from affected RHOT4R/T4R dog retina, we found that the mutation abolished glycosylation at Asn2, whereas glycosylation at Asn15 was unaffected, and the mutant opsin localized normally to the rod outer segments. Moreover, we found that T4R Rho* lost its chromophore faster as measured by the decay of meta-rhodopsin II and that it was less resistant to heat denaturation. Detergent-solubilized T4R opsin regenerated poorly and interacted abnormally with the G protein transducin (Gt). Structurally, the mutation affected mainly the “plug” at the intradiscal (extracellular) side of Rho, which is possibly responsible for protecting the chromophore from the access of bulk water. The T4R mutation may represent a novel molecular mechanism of degeneration where the unliganded form of the mutant opsin exerts a detrimental effect by losing its structural integrity. PMID:15459196

  2. A naturally occurring mutation of the opsin gene (T4R) in dogs affects glycosylation and stability of the G protein-coupled receptor.

    PubMed

    Zhu, Li; Jang, Geeng-Fu; Jastrzebska, Beata; Filipek, Slawomir; Pearce-Kelling, Susan E; Aguirre, Gustavo D; Stenkamp, Ronald E; Acland, Gregory M; Palczewski, Krzysztof

    2004-12-17

    Rho (rhodopsin; opsin plus 11-cis-retinal) is a prototypical G protein-coupled receptor responsible for the capture of a photon in retinal photoreceptor cells. A large number of mutations in the opsin gene associated with autosomal dominant retinitis pigmentosa have been identified. The naturally occurring T4R opsin mutation in the English mastiff dog leads to a progressive retinal degeneration that closely resembles human retinitis pigmentosa caused by the T4K mutation in the opsin gene. Using genetic approaches and biochemical assays, we explored the properties of the T4R mutant protein. Employing immunoaffinity-purified Rho from affected RHO(T4R/T4R) dog retina, we found that the mutation abolished glycosylation at Asn(2), whereas glycosylation at Asn(15) was unaffected, and the mutant opsin localized normally to the rod outer segments. Moreover, we found that T4R Rho(*) lost its chromophore faster as measured by the decay of meta-rhodopsin II and that it was less resistant to heat denaturation. Detergent-solubilized T4R opsin regenerated poorly and interacted abnormally with the G protein transducin (G(t)). Structurally, the mutation affected mainly the "plug" at the intradiscal (extracellular) side of Rho, which is possibly responsible for protecting the chromophore from the access of bulk water. The T4R mutation may represent a novel molecular mechanism of degeneration where the unliganded form of the mutant opsin exerts a detrimental effect by losing its structural integrity.

  3. Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes

    PubMed Central

    2012-01-01

    Background Calcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria) and comb jellies (Phylum Ctenophora). The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis. Results The Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis, and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro, absorbing light at wavelengths that overlap with peak photoprotein light emission, raising the hypothesis

  4. Spatial distribution of opsin-encoding mRNAs in the tiered larval retinas of the sunburst diving beetle Thermonectus marmoratus (Coleoptera: Dytiscidae).

    PubMed

    Maksimovic, Srdjan; Cook, Tiffany A; Buschbeck, Elke K

    2009-12-01

    Larvae of the sunburst diving beetle, Thermonectus marmoratus, have a cluster of six stemmata (E1-6) and one eye patch on each side of the head. Each eye has two retinas: a distal retina that is closer to the lens, and a proximal retina that lies directly underneath. The distal retinas of E1 and E2 are made of a dorsal and a ventral stack of at least twelve photoreceptor layers. Could this arrangement be used to compensate for lens chromatic aberration, with shorter wavelengths detected by the distal layers and longer wavelengths by the proximal layers? To answer this question we molecularly identified opsins and their expression patterns in these eyes. We found three opsin-encoding genes. The distal retinas of all six eyes express long-wavelength opsin (TmLW) mRNA, whereas the proximal retinas express ultraviolet opsin (TmUV I) mRNA. In the proximal retinas of E1 and E2, the TmUV I mRNA is expressed only in the dorsal stack. A second ultraviolet opsin mRNA (TmUV II), is expressed in the proximal retinas of E1 and E2 (both stacks). The finding that longer-wavelength opsins are expressed distally to shorter-wavelength opsins makes it unlikely that this retinal arrangement is used to compensate for lens chromatic aberration. In addition, we also described opsin expression patterns in the medial retina of E1 and in the non-tiered retina of the lensless eye patch. To our knowledge, this is also the first report of multiple UV opsins being expressed in the same stemma.

  5. Parallel reduction in expression, but no loss of functional constraint, in two opsin paralogs within cave populations of Gammarus minus (Crustacea: Amphipoda)

    PubMed Central

    2013-01-01

    Background Gammarus minus, a freshwater amphipod living in the cave and surface streams in the eastern USA, is a premier candidate for studying the evolution of troglomorphic traits such as pigmentation loss, elongated appendages, and reduced eyes. In G. minus, multiple pairs of genetically related, physically proximate cave and surface populations exist which exhibit a high degree of intraspecific morphological divergence. The morphology, ecology, and genetic structure of these sister populations are well characterized, yet the genetic basis of their morphological divergence remains unknown. Results We used degenerate PCR primers designed to amplify opsin genes within the subphylum Crustacea and discovered two distinct opsin paralogs (average inter-paralog protein divergence ≈ 20%) in the genome of three independently derived pairs of G. minus cave and surface populations. Both opsin paralogs were found to be related to other crustacean middle wavelength sensitive opsins. Low levels of nucleotide sequence variation (< 1% within populations) were detected in both opsin genes, regardless of habitat, and dN/dS ratios did not indicate a relaxation of functional constraint in the cave populations with reduced or absent eyes. Maximum likelihood analyses using codon-based models also did not detect a relaxation of functional constraint in the cave lineages. We quantified expression level of both opsin genes and found that the expression of both paralogs was significantly reduced in all three cave populations relative to their sister surface populations. Conclusions The concordantly lowered expression level of both opsin genes in cave populations of G. minus compared to sister surface populations, combined with evidence for persistent purifying selection in the cave populations, is consistent with an unspecified pleiotropic function of opsin proteins. Our results indicate that phototransduction proteins such as opsins may have retained their function in cave

  6. Spatial distribution of opsin-encoding mRNAs in the tiered larval retinas of the sunburst diving beetle Thermonectus marmoratus (Coleoptera: Dytiscidae)

    PubMed Central

    Maksimovic, Srdjan; Cook, Tiffany A.; Buschbeck, Elke K.

    2009-01-01

    Larvae of the sunburst diving beetle, Thermonectus marmoratus, have a cluster of six stemmata (E1-6) and one eye patch on each side of the head. Each eye has two retinas: a distal retina that is closer to the lens, and a proximal retina that lies directly underneath. The distal retinas of E1 and E2 are made of a dorsal and a ventral stack of at least twelve photoreceptor layers. Could this arrangement be used to compensate for lens chromatic aberration, with shorter wavelengths detected by the distal layers and longer wavelengths by the proximal layers? To answer this question we molecularly identified opsins and their expression patterns in these eyes. We found three opsin-encoding genes. The distal retinas of all six eyes express long-wavelength opsin (TmLW) mRNA, whereas the proximal retinas express ultraviolet opsin (TmUV I) mRNA. In the proximal retinas of E1 and E2, the TmUV I mRNA is expressed only in the dorsal stack. A second ultraviolet opsin mRNA (TmUV II), is expressed in the proximal retinas of E1 and E2 (both stacks). The finding that longer-wavelength opsins are expressed distally to shorter-wavelength opsins makes it unlikely that this retinal arrangement is used to compensate for lens chromatic aberration. In addition, we also described opsin expression patterns in the medial retina of E1 and in the non-tiered retina of the lensless eye patch. To our knowledge, this is also the first report of multiple UV opsins being expressed in the same stemma. PMID:19915119

  7. Synergy in the spectral tuning of retinal pigments: complete accounting of the opsin shift in bacteriorhodopsin.

    PubMed Central

    Hu, J; Griffin, R G; Herzfeld, J

    1994-01-01

    UV-visible and solid-state NMR studies of a series of 6-s-trans protonated Schiff bases of retinal with aniline show that the bathochromic shift induced by weakening the imine counterion is significantly greater in the 6-s-trans conformation than in the 6-s-cis conformation. Based on the observed magnitude of this coupling between the electronic effects of 6-s isomerization and imine counterion strength in the model compounds, the large opsin shift and unusual chemical shifts in light-adapted bacteriorhodopsin can be fully explained. These phenomena therefore do not require a negative point charge or polarizability effects in the chromophore binding pocket. The results are consistent with an effective center-to-center distance between the Schiff base and its counterion of about 4 A in light-adapted bacteriorhodopsin. PMID:8090738

  8. Optical control of neuronal excitation and inhibition using a single opsin protein, ChR2

    NASA Astrophysics Data System (ADS)

    Liske, Holly; Qian, Xiang; Anikeeva, Polina; Deisseroth, Karl; Delp, Scott

    2013-10-01

    The effect of electrical stimulation on neuronal membrane potential is frequency dependent. Low frequency electrical stimulation can evoke action potentials, whereas high frequency stimulation can inhibit action potential transmission. Optical stimulation of channelrhodopsin-2 (ChR2) expressed in neuronal membranes can also excite action potentials. However, it is unknown whether optical stimulation of ChR2-expressing neurons produces a transition from excitation to inhibition with increasing light pulse frequencies. Here we report optical inhibition of motor neuron and muscle activity in vivo in the cooled sciatic nerves of Thy1-ChR2-EYFP mice. We also demonstrate all-optical single-wavelength control of neuronal excitation and inhibition without co-expression of inhibitory and excitatory opsins. This all-optical system is free from stimulation-induced electrical artifacts and thus provides a new approach to investigate mechanisms of high frequency inhibition in neuronal circuits in vivo and in vitro.

  9. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins

    PubMed Central

    Mattis, Joanna; Tye, Kay M; Ferenczi, Emily A; Ramakrishnan, Charu; O’Shea, Daniel J; Prakash, Rohit; Gunaydin, Lisa A; Hyun, Minsuk; Fenno, Lief E; Gradinaru, Viviana; Yizhar, Ofer; Deisseroth, Karl

    2014-01-01

    Diverse optogenetic tools have allowed versatile control over neural activity. Many depolarizing and hyperpolarizing tools have now been developed in multiple laboratories and tested across different preparations, presenting opportunities but also making it difficult to draw direct comparisons. This challenge has been compounded by the dependence of performance on parameters such as vector, promoter, expression time, illumination, cell type and many other variables. As a result, it has become increasingly complicated for end users to select the optimal reagents for their experimental needs. For a rapidly growing field, critical figures of merit should be formalized both to establish a framework for further development and so that end users can readily understand how these standardized parameters translate into performance. Here we systematically compared microbial opsins under matched experimental conditions to extract essential principles and identify key parameters for the conduct, design and interpretation of experiments involving optogenetic techniques. PMID:22179551

  10. Opsin-G11-mediated signaling pathway for photic entrainment of the chicken pineal circadian clock.

    PubMed

    Kasahara, Takaoki; Okano, Toshiyuki; Haga, Tatsuya; Fukada, Yoshitaka

    2002-09-01

    Light is a major environmental signal for entrainment of the circadian clock, but little is known about the intracellular phototransduction pathway triggered by light activation of the photoreceptive molecule(s) responsible for the phase shift of the clock in vertebrates. The chicken pineal gland and retina contain the autonomous circadian oscillators together with the photic entrainment pathway, and hence they represent useful experimental models for the clock system. Here we show the expression of G11alpha, an alpha subunit of heterotrimeric G-protein, in both tissues by cDNA cloning, Northern blot, and Western blot analyses. G11alpha immunoreactivity was colocalized with pinopsin in the chicken pineal cells and also with rhodopsin in the outer segments of retinal photoreceptor cells, suggesting functional coupling of G11alpha with opsins in the clock-containing photosensitive tissues. The physical interaction was examined by coimmunoprecipitation experiments, the results of which provided evidence for light- and GTP-dependent coupling between rhodopsin and G11alpha. To examine whether activation of endogenous G11 leads to a phase shift of the oscillator, Gq/11-coupled m1-type muscarinic acetylcholine receptor (mAChR) was ectopically expressed in the cultured pineal cells. Subsequent treatment of the cells with carbamylcholine (CCh), an agonist of mAChR, induced phase-dependent phase shifts of the melatonin rhythm in a manner very similar to the effect of light. In contrast, CCh treatment induced no measurable effect on the rhythm of nontransfected (control) cells or cells expressing G(i/o)-coupled m2-type mAChR, indicating selectivity of the G-protein activation. Together, our results demonstrate the existence of a G11-mediated opsin-signaling pathway contributing to the photic entrainment of the circadian clock.

  11. Functional preservation and variation in the cone opsin genes of nocturnal tarsiers.

    PubMed

    Moritz, Gillian L; Ong, Perry S; Perry, George H; Dominy, Nathaniel J

    2017-04-05

    The short-wavelength sensitive (S-) opsin gene OPN1SW is pseudogenized in some nocturnal primates and retained in others, enabling dichromatic colour vision. Debate on the functional significance of this variation has focused on dark conditions, yet many nocturnal species initiate activity under dim (mesopic) light levels that can support colour vision. Tarsiers are nocturnal, twilight-active primates and exemplary visual predators; they also express different colour vision phenotypes, raising the possibility of discrete adaptations to mesopic conditions. To explore this premise, we conducted a field study in two stages. First, to estimate the level of functional constraint on colour vision, we sequenced OPN1SW in 12 wild-caught Philippine tarsiers (Tarsius syrichta). Second, to explore whether the dichromatic visual systems of Philippine and Bornean (Tarsius bancanus) tarsiers-which express alternate versions of the medium/long-wavelength sensitive (M/L-) opsin gene OPN1MW/OPN1LW-confer differential advantages specific to their respective habitats, we used twilight and moonlight conditions to model the visual contrasts of invertebrate prey. We detected a signature of purifying selection for OPN1SW, indicating that colour vision confers an adaptive advantage to tarsiers. However, this advantage extends to a relatively small proportion of prey-background contrasts, and mostly brown arthropod prey amid leaf litter. We also found that the colour vision of T. bancanus is advantageous for discriminating prey under twilight that is enriched in shorter (bluer) wavelengths, a plausible idiosyncrasy of understorey habitats in Borneo.This article is part of the themed issue 'Vision in dim light'.

  12. Constraints of opsin structure on the ligand-binding site: studies with ring-fused retinals.

    PubMed

    Hirano, Takahiro; Lim, In Taek; Kim, Don Moon; Zheng, Xiang-Guo; Yoshihara, Kazuo; Oyama, Yoshiaki; Imai, Hiroo; Shichida, Yoshinori; Ishiguro, Masaji

    2002-12-01

    Ring-fused retinal analogs were designed to examine the hula-twist mode of the photoisomerization of the 9-cis retinylidene chromophore. Two 9-cis retinal analogs, the C11-C13 five-membered ring-fused and the C12-C14 five-membered ring-fused retinal derivatives, formed the pigments with opsin. The C11-C13 ring-fused analog was isomerized to a relaxed all-trans chromophore (lambda(max) > 400 nm) at even -269 degrees C and the Schiff base was kept protonated at 0 degrees C. The C12-C14 ring-fused analog was converted photochemically to a bathorhodopsin-like chromophore (lambda(max) = 583 nm) at -196 degrees C, which was further converted to the deprotonated Schiff base at 0 degrees C. The model-building study suggested that the analogs do not form pigments in the retinal-binding site of rhodopsin but form pigments with opsin structures, which have larger binding space generated by the movement of transmembrane helices. The molecular dynamics simulation of the isomerization of the analog chromophores provided a twisted C11-C12 double bond for the C12-C14 ring-fused analog and all relaxed double bonds with a highly twisted C10-C11 bond for the C11-C13 ring-fused analog. The structural model of the C11-C13 ring-fused analog chromophore showed a characteristic flip of the cyclohexenyl moiety toward transmembrane segments 3 and 4. The structural models suggested that hula twist is a primary process for the photoisomerization of the analog chromophores.

  13. The Expression of Three Opsin Genes from the Compound Eye of Helicoverpa armigera (Lepidoptera: Noctuidae) Is Regulated by a Circadian Clock, Light Conditions and Nutritional Status

    PubMed Central

    Yan, Shuo; Zhu, Jialin; Zhu, Weilong; Zhang, Xinfang; Li, Zhen; Liu, Xiaoxia; Zhang, Qingwen

    2014-01-01

    Visual genes may become inactive in species that inhabit poor light environments, and the function and regulation of opsin components in nocturnal moths are interesting topics. In this study, we cloned the ultraviolet (UV), blue (BL) and long-wavelength-sensitive (LW) opsin genes from the compound eye of the cotton bollworm and then measured their mRNA levels using quantitative real-time PCR. The mRNA levels fluctuated over a daily cycle, which might be an adaptation of a nocturnal lifestyle, and were dependent on a circadian clock. Cycling of opsin mRNA levels was disturbed by constant light or constant darkness, and the UV opsin gene was up-regulated after light exposure. Furthermore, the opsin genes tended to be down-regulated upon starvation. Thus, this study illustrates that opsin gene expression is determined by multiple endogenous and exogenous factors and is adapted to the need for nocturnal vision, suggesting that color vision may play an important role in the sensory ecology of nocturnal moths. PMID:25353953

  14. The effect of white light on normal and malignant murine melanocytes: A link between opsins, clock genes, and melanogenesis.

    PubMed

    de Assis, L V M; Moraes, M N; da Silveira Cruz-Machado, S; Castrucci, A M L

    2016-06-01

    The skin possesses a photosensitive system comprised of opsins whose function is not fully understood, and clock genes which exert an important regulatory role in skin biology. Here, we evaluated the presence of opsins in normal (Melan-a cells) and malignant (B16-F10 cells) murine melanocytes. Both cell lines express Opn2, Opn4--for the first time reported in these cell types--as well as S-opsin. OPN4 protein was found in a small area capping the cell nuclei of B16-F10 cells kept in constant dark (DD); twenty-four hours after the white light pulse (WLP), OPN4 was found in the cell membrane. Despite the fact that B16-F10 cells expressed less Opn2 and Opn4 than Melan-a cells, our data indicate that the malignant melanocytes exhibited increased photoresponsiveness. The clock gene machinery is also severely downregulated in B16-F10 cells as compared to Melan-a cells. Per1, Per2, and Bmal1 expression increased in B16-F10 cells in response to WLP. Although no response in clock gene expression to WLP was observed in Melan-a cells, gene correlational data suggest a minor effect of WLP. In contrast to opsins and clock genes, melanogenesis is significantly upregulated in malignant melanocytes in comparison to Melan-a cells. Tyrosinase expression increased after WLP only in B16-F10 cells; however no increase in melanin content after WLP was seen in either cell line. Our findings may prove useful in the treatment and the development of new pharmacological approaches of depigmentation diseases and skin cancer.

  15. Characterization of Opsin Gene Alleles Affecting Color Vision in a Wild Population of Titi Monkeys (Callicebus brunneus)

    PubMed Central

    Bunce, John A.; Isbell, Lynne A.; Neitz, Maureen; Bonci, Daniela; Surridge, Alison K.; Jacobs, Gerald H.; Smith, David Glenn

    2011-01-01

    The color vision of most platyrrhine primates is determined by alleles at the polymorphic X-linked locus coding for the opsin responsible for the middle- to long-wavelength (M/L) cone photopigment. Females who are heterozygous at the locus have trichromatic vision while homozygous females and all males are dichromatic. This study characterized the opsin alleles in a wild population of the socially monogamous platyrrhine monkey Callicebus brunneus (the brown titi monkey), a primate that an earlier study suggests may possess an unusual number of alleles at this locus and thus may be a subject of special interest in the study of primate color vision. Direct sequencing of regions of the M/L opsin gene using feces-, blood-, and saliva-derived DNA obtained from 14 individuals yielded evidence for the presence of three functionally distinct alleles, corresponding to the most common M/L photopigment variants inferred from a physiological study of cone spectral sensitivity in captive Callicebus. PMID:20938927

  16. Evolutionary dynamics of Rh2 opsins in birds demonstrate an episode of accelerated evolution in the New World warblers (Setophaga)

    PubMed Central

    Price, Trevor D.

    2015-01-01

    Low rates of sequence evolution associated with purifying selection can be interrupted by episodic changes in selective regimes. Visual pigments are a unique system in which we can investigate the functional consequences of genetic changes, therefore connecting genotype to phenotype in the context of natural and sexual selection pressures. We study the RH2 and RH1 visual pigments (opsins) across 22 bird species belonging to two ecologically convergent clades, the New World warblers (Parulidae) and Old World warblers (Phylloscopidae), and evaluate rates of evolution in these clades along with data from 21 additional species. We demonstrate generally slow evolution of these opsins: both Rh1 and Rh2 are highly conserved across Old World and New World warblers. However, Rh2 underwent a burst of evolution within the New World genus Setophaga, where it accumulated substitutions at 6 amino acid sites across the species we studied. Evolutionary analyses revealed a significant increase in dN/dS in Setophaga, implying relatively strong selective pressures to overcome long-standing purifying selection. We studied the effects of each substitution on spectral tuning and found they do not cause large spectral shifts. Thus substitutions may reflect other aspects of opsin function, such as those affecting photosensitivity and/or dark-light adaptation. Although it is unclear what these alterations mean for color perception, we suggest that rapid evolution is linked to sexual selection, given the exceptional plumage colour diversification in Setophaga. PMID:25827331

  17. First Insights into the Subterranean Crustacean Bathynellacea Transcriptome: Transcriptionally Reduced Opsin Repertoire and Evidence of Conserved Homeostasis Regulatory Mechanisms

    PubMed Central

    Kim, Bo-Mi; Kang, Seunghyun; Ahn, Do-Hwan; Kim, Jin-Hyoung; Ahn, Inhye; Lee, Chi-Woo; Cho, Joo-Lae; Min, Gi-Sik; Park, Hyun

    2017-01-01

    Bathynellacea (Crustacea, Syncarida, Parabathynellidae) are subterranean aquatic crustaceans that typically inhabit freshwater interstitial spaces (e.g., groundwater) and are occasionally found in caves and even hot springs. In this study, we sequenced the whole transcriptome of Allobathynella bangokensis using RNA-seq. De novo sequence assembly produced 74,866 contigs including 28,934 BLAST hits. Overall, the gene sequences were most similar to those of the waterflea Daphnia pulex. In the A. bangokensis transcriptome, no opsin or related sequences were identified, and no contig aligned to the crustacean visual opsins and non-visual opsins (i.e. arthropsins, peropsins, and melaopsins), suggesting potential regressive adaptation to the dark environment. However, A. bangokensis expressed conserved gene family sets, such as heat shock proteins and those related to key innate immunity pathways and antioxidant defense systems, at the transcriptional level, suggesting that this species has evolved adaptations involving molecular mechanisms of homeostasis. The transcriptomic information of A. bangokensis will be useful for investigating molecular adaptations and response mechanisms to subterranean environmental conditions. PMID:28107438

  18. Constraints on the Bulk Composition of Uranus from Herschel PACS and ISO LWS Photometry, SOFIA FORCAST Photometry and Spectroscopy, and Ground-Based Photometry of its Thermal Emission

    NASA Astrophysics Data System (ADS)

    Orton, Glenn; Mueller, Thomas; Burgdorf, Martin; Fletcher, Leigh; de Pater, Imke; Atreya, Sushil; Adams, Joseph; Herter, Terry; Keller, Luke; Sidher, Sunil; Sinclair, James; Fujiyoshi, Takuya

    2016-04-01

    We present thermal infrared observations of the disk of Uranus at 17-200 μm to deduce its global thermal structure and bulk composition. We combine 17-200 μm filtered photometric measurements by the Herschel PACS and ISO LWS instruments and 19-35 μm filtered photometry and spectroscopy by the SOFIA FORCAST instrument, supplemented by 17-25 μm ground-based photometric filtered imaging of Uranus. Previous analysis of infrared spectroscopic measurements of the disk of Uranus made by the Spitzer IRS instrument yielded a model for the disk-averaged temperature profile and stratospheric composition (Orton et al. 2014a Icarus 243,494; 2014b Icarus 243, 471) that were consistent with submillimeter spectroscopy by the Herschel SPIRE instrument (Swinyard et al. 2014, MNRAS 440, 3658). Our motivation to observe the 17-35 μm spectrum was to place more stringent constraints on the global para-H2 / ortho-H2 ratio in the upper troposphere and lower stratosphere than the ISO SWS results of Fouchet et al. (2003, Icarus 161, 127), who examined H2 quadrupole lines. We will discuss the consistency of these observations with a higher para-H2 fraction than implied by local thermal equilibrium, which would resolve a discrepancy between the Spitzer-based model and observations of HD lines by the Herschel PACS experiment (Feuchtgruber et al. 2013 Astron. & Astrophys. 551, A126). Constraints on the global para-H2 fraction allow for more precise analysis of the far-infrared spectrum, which is sensitive to the He:H2 ratio, a quantity that was not constrained by the Spitzer IRS spectra. The derived model, which assumed the ratio derived by the Voyager-2 IRIS/radio-science occultation experiment (Conrath et al. 1987 J. Geophys. Res. 92, 15003), is inconsistent with 70-200 μm PACS photometry (Mueller et al. 2016 Astron. & Astrophys. submittted) and ISO LWS photometric measurements. However, the model can be made consistent with the observations if the fraction of He relative to H2 were

  19. Identification of G protein coupled receptors for opsines and neurohormones in Rhodnius prolixus. Genomic and transcriptomic analysis.

    PubMed

    Ons, Sheila; Lavore, Andrés; Sterkel, Marcos; Wulff, Juan Pedro; Sierra, Ivana; Martínez-Barnetche, Jesús; Rodriguez, Mario Henry; Rivera-Pomar, Rolando

    2016-02-01

    The importance of Chagas disease motivated the scientific effort to obtain the complete genomic sequence of the vector species Rhodnius prolixus, this information is also relevant to the understanding of triatomine biology in general. The central nervous system is the key regulator of insect physiology and behavior. Neurohormones (neuropeptides and biogenic amines) are the chemical messengers involved in the regulation and integration of neuroendocrine signals. In insects, this signaling is mainly mediated by the interaction of neurohormone ligands with G protein coupled receptors (GPCRs). The recently sequenced R. prolixus genome provides us with the opportunity to analyze this important family of genes in triatomines, supplying relevant information for further functional studies. Next-generation sequencing methods offer an excellent opportunity for transcriptomic exploration in key organs and tissues in the presence of a reference genome as well as when a reference genome is not available. We undertook a genomic analysis to obtain a genome-wide inventory of opsines and the GPCRs for neurohormones in R. prolixus. Furthermore, we performed a transcriptomic analysis of R. prolixus central nervous system, focusing on neuropeptide precursor genes and neurohormone and opsines GPCRs. In addition, we mined the whole transcriptomes of Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis - three sanitary relevant triatomine species - to identify neuropeptide precursors and GPCRs genes. Our study reveals a high degree of sequence conservation in the molecular components of the neuroendocrine system of triatomines.

  20. Possible Involvement of Cone Opsins in Distinct Photoresponses of Intrinsically Photosensitive Dermal Chromatophores in Tilapia Oreochromis niloticus

    PubMed Central

    Chen, Shyh-Chi; Robertson, R. Meldrum; Hawryshyn, Craig W.

    2013-01-01

    Dermal specialized pigment cells (chromatophores) are thought to be one type of extraretinal photoreceptors responsible for a wide variety of sensory tasks, including adjusting body coloration. Unlike the well-studied image-forming function in retinal photoreceptors, direct evidence characterizing the mechanism of chromatophore photoresponses is less understood, particularly at the molecular and cellular levels. In the present study, cone opsin expression was detected in tilapia caudal fin where photosensitive chromatophores exist. Single-cell RT-PCR revealed co-existence of different cone opsins within melanophores and erythrophores. By stimulating cells with six wavelengths ranging from 380 to 580 nm, we found melanophores and erythrophores showed distinct photoresponses. After exposed to light, regardless of wavelength presentation, melanophores dispersed and maintained cell shape in an expansion stage by shuttling pigment granules. Conversely, erythrophores aggregated or dispersed pigment granules when exposed to short- or middle/long-wavelength light, respectively. These results suggest that diverse molecular mechanisms and light-detecting strategies may be employed by different types of tilapia chromatophores, which are instrumental in pigment pattern formation. PMID:23940562

  1. X-linked cone dystrophy and colour vision deficiency arising from a missense mutation in a hybrid L/M cone opsin gene

    PubMed Central

    McClements, Michelle; Davies, Wayne I L; Michaelides, Michel; Carroll, Joseph; Rha, Jungate; Mollon, John D; Neitz, Maureen; MacLaren, Robert E; Moore, Anthony T; Hunt, David M

    2013-01-01

    In this report, we describe a male subject who presents with a complex phenotype of myopia associated with cone dysfunction and a protan vision deficiency. Retinal imaging demonstrates extensive cone disruption, including the presence of non-waveguiding cones, an overall thinning of the retina, and an irregular mottled appearance of the hyper reflective band associated with the inner segment ellipsoid portion of the photoreceptor. Mutation screening revealed a novel p.Glu41Lys missense mutation in a hybrid L/M opsin gene. Spectral analysis shows that the mutant opsin fails to form a pigment in vitro and fails to be trafficked to the cell membrane in transfected Neuro2a cells. Extensive sequence and quantitative PCR analysis identifies this mutant gene as the only gene present in the affected subject’s L/M opsin gene array, yet the presence of protanopia indicates that the mutant opsin must retain some activity in vivo. To account for this apparent contradiction, we propose that a limited amount of functional pigment is formed within the normal cellular environment of the intact photoreceptor, and that this requires the presence of chaperone proteins that promote stability and normal folding of the mutant protein. PMID:23337435

  2. Probing Mechanisms of Photoreceptor Degeneration in a New Mouse Model of the Common Form of Autosomal Dominant Retinitis Pigmentosa due to P23H Opsin Mutations*♦

    PubMed Central

    Sakami, Sanae; Maeda, Tadao; Bereta, Grzegorz; Okano, Kiichiro; Golczak, Marcin; Sumaroka, Alexander; Roman, Alejandro J.; Cideciyan, Artur V.; Jacobson, Samuel G.; Palczewski, Krzysztof

    2011-01-01

    Rhodopsin, the visual pigment mediating vision under dim light, is composed of the apoprotein opsin and the chromophore ligand 11-cis-retinal. A P23H mutation in the opsin gene is one of the most prevalent causes of the human blinding disease, autosomal dominant retinitis pigmentosa. Although P23H cultured cell and transgenic animal models have been developed, there remains controversy over whether they fully mimic the human phenotype; and the exact mechanism by which this mutation leads to photoreceptor cell degeneration remains unknown. By generating P23H opsin knock-in mice, we found that the P23H protein was inadequately glycosylated with levels 1–10% that of wild type opsin. Moreover, the P23H protein failed to accumulate in rod photoreceptor cell endoplasmic reticulum but instead disrupted rod photoreceptor disks. Genetically engineered P23H mice lacking the chromophore showed accelerated photoreceptor cell degeneration. These results indicate that most synthesized P23H protein is degraded, and its retinal cytotoxicity is enhanced by lack of the 11-cis-retinal chromophore during rod outer segment development. PMID:21224384

  3. Deep Brain Photoreceptor (val-opsin) Gene Knockout Using CRISPR/Cas Affects Chorion Formation and Embryonic Hatching in the Zebrafish

    PubMed Central

    Hang, Chong Yee; Moriya, Shogo; Ogawa, Satoshi; Parhar, Ishwar S.

    2016-01-01

    Non-rod non-cone photopigments in the eyes and the brain can directly mediate non-visual functions of light in non-mammals. This was supported by our recent findings on vertebrate ancient long (VAL)-opsin photopigments encoded by the val-opsinA (valopa) and val-opsinB (valopb) genes in zebrafish. However, the physiological functions of valop isoforms remain unknown. Here, we generated valop-mutant zebrafish using CRISPR/Cas genome editing, and examined the phenotypes of loss-of-function mutants. F0 mosaic mutations and germline transmission were confirmed via targeted insertions and/or deletions in the valopa or valopb gene in F1 mutants. Based on in silico analysis, frameshift mutations converted VAL-opsin proteins to non-functional truncated forms with pre-mature stop codons. Most F1 eggs or embryos from F0 female valopa/b mutants showed either no or only partial chorion elevation, and the eggs or embryos died within 26 hour-post-fertilization. However, most F1 embryos from F0 male valopa mutant developed but hatched late compared to wild-type embryos, which hatched at 4 day-post-fertilization. Late-hatched F1 offspring included wild-type and mutants, indicating the parental effects of valop knockout. This study shows valop gene knockout affects chorion formation and embryonic hatching in the zebrafish. PMID:27792783

  4. X-linked cone dystrophy and colour vision deficiency arising from a missense mutation in a hybrid L/M cone opsin gene.

    PubMed

    McClements, Michelle; Davies, Wayne I L; Michaelides, Michel; Carroll, Joseph; Rha, Jungtae; Mollon, John D; Neitz, Maureen; MacLaren, Robert E; Moore, Anthony T; Hunt, David M

    2013-03-22

    In this report, we describe a male subject who presents with a complex phenotype of myopia associated with cone dysfunction and a protan vision deficiency. Retinal imaging demonstrates extensive cone disruption, including the presence of non-waveguiding cones, an overall thinning of the retina, and an irregular mottled appearance of the hyper-reflective band associated with the inner segment ellipsoid portion of the photoreceptor. Mutation screening revealed a novel p.Glu41Lys missense mutation in a hybrid L/M opsin gene. Spectral analysis shows that the mutant opsin fails to form a pigment in vitro and fails to be trafficked to the cell membrane in transfected Neuro2a cells. Extensive sequence and quantitative PCR analysis identifies this mutant gene as the only gene present in the affected subject's L/M opsin gene array, yet the presence of protanopia indicates that the mutant opsin must retain some activity in vivo. To account for this apparent contradiction, we propose that a limited amount of functional pigment is formed within the normal cellular environment of the intact photoreceptor, and that this requires the presence of chaperone proteins that promote stability and normal folding of the mutant protein.

  5. Loss of ift122, a Retrograde Intraflagellar Transport (IFT) Complex Component, Leads to Slow, Progressive Photoreceptor Degeneration Due to Inefficient Opsin Transport.

    PubMed

    Boubakri, Meriam; Chaya, Taro; Hirata, Hiromi; Kajimura, Naoko; Kuwahara, Ryusuke; Ueno, Akiko; Malicki, Jarema; Furukawa, Takahisa; Omori, Yoshihiro

    2016-11-18

    In the retina, aberrant opsin transport from cell bodies to outer segments leads to retinal degenerative diseases such as retinitis pigmentosa. Opsin transport is facilitated by the intraflagellar transport (IFT) system that mediates the bidirectional movement of proteins within cilia. In contrast to functions of the anterograde transport executed by IFT complex B (IFT-B), the precise functions of the retrograde transport mediated by IFT complex A (IFT-A) have not been well studied in photoreceptor cilia. Here, we analyzed developing zebrafish larvae carrying a null mutation in ift122 encoding a component of IFT-A. ift122 mutant larvae show unexpectedly mild phenotypes, compared with those of mutants defective in IFT-B. ift122 mutants exhibit a slow onset of progressive photoreceptor degeneration mainly after 7 days post-fertilization. ift122 mutant larvae also develop cystic kidney but not curly body, both of which are typically observed in various ciliary mutants. ift122 mutants display a loss of cilia in the inner ear hair cells and nasal pit epithelia. Loss of ift122 causes disorganization of outer segment discs. Ectopic accumulation of an IFT-B component, ift88, is observed in the ift122 mutant photoreceptor cilia. In addition, pulse-chase experiments using GFP-opsin fusion proteins revealed that ift122 is required for the efficient transport of opsin and the distal elongation of outer segments. These results show that IFT-A is essential for the efficient transport of outer segment proteins, including opsin, and for the survival of retinal photoreceptor cells, rendering the ift122 mutant a unique model for human retinal degenerative diseases.

  6. Full-Quantum chemical calculation of the absorption maximum of bacteriorhodopsin: a comprehensive analysis of the amino acid residues contributing to the opsin shift

    PubMed Central

    Hayashi, Tomohiko; Matsuura, Azuma; Sato, Hiroyuki; Sakurai, Minoru

    2012-01-01

    Herein, the absorption maximum of bacteriorhodopsin (bR) is calculated using our recently developed method in which the whole protein can be treated quantum mechanically at the level of INDO/S-CIS//ONIOM (B3LYP/6-31G(d,p): AMBER). The full quantum mechanical calculation is shown to reproduce the so-called opsin shift of bR with an error of less than 0.04 eV. We also apply the same calculation for 226 different bR mutants, each of which was constructed by replacing any one of the amino acid residues of the wild-type bR with Gly. This substitution makes it possible to elucidate the extent to which each amino acid contributes to the opsin shift and to estimate the inter-residue synergistic effect. It was found that one of the most important contributions to the opsin shift is the electron transfer from Tyr185 to the chromophore upon excitation. We also indicate that some aromatic (Trp86, Trp182) and polar (Ser141, Thr142) residues, located in the vicinity of the retinal polyene chain and the β-ionone ring, respectively, play an important role in compensating for the large blue-shift induced by both the counterion residues (Asp85, Asp212) and an internal water molecule (W402) located near the Schiff base linkage. In particular, the effect of Trp86 is comparable to that of Tyr185. In addition, Ser141 and Thr142 were found to contribute to an increase in the dipole moment of bR in the excited state. Finally, we provide a complete energy diagram for the opsin shift together with the contribution of the chromophore-protein steric interaction. PMID:27493528

  7. Development of Lead Hammerhead Ribozyme Candidates against Human Rod Opsin mRNA for Retinal Degeneration Therapy

    PubMed Central

    Abdelmaksoud, Heba E.; Yau, Edwin H.; Zuker, Michael; Sullivan, Jack M.

    2011-01-01

    To identify lead candidate allele-independent hammerhead ribozymes (hhRz) for the treatment of autosomal dominant mutations in the human rod opsin (RHO) gene, we tested a series of hhRzs for potential to significantly knockdown human RHO gene expression in a human cell expression system. Multiple computational criteria were used to select target mRNA regions likely to be single stranded and accessible to hhRz annealing and cleavage. Target regions are tested for accessibility in a human cell culture expression system where the hhRz RNA and target mRNA and protein are coexpressed. The hhRz RNA is embedded in an adenoviral VAI RNA chimeric RNA of established structure and properties which are critical to the experimental paradigm. The chimeric hhRz-VAI RNA is abundantly transcribed so that the hhRzs are expected to be in great excess over substrate mRNA. HhRz-VAI traffics predominantly to the cytoplasm to colocalize with the RHO mRNA target. Colocalization is essential for second-order annealing reactions. The VAI chimera protects the hhRz RNA from degradation and provides for a long half life. With cell lines chosen for high transfection efficiency and a molar excess of hhRz plasmid over target plasmid, the conditions of this experimental paradigm are specifically designed to evaluate for regions of accessibility of the target mRNA in cellulo. Western analysis was used to measure the impact of hhRz expression on RHO protein expression. Three lead candidate hhRz designs were identified that significantly knockdown target protein expression relative to control (p < 0.05). Successful lead candidates (hhRz CUC↓ 266, hhRz CUC↓ 1411, hhRz AUA↓ 1414) targeted regions of human RHO mRNA that were predicted to be accessible by a bioinformatics approach, whereas regions predicted to be inaccessible supported no knockdown. The maximum opsin protein level knockdown is approximately 30% over a 48 hr paradigm of testing. These results validate a rigorous computational

  8. The influence of L-opsin gene polymorphisms and neural ageing on spatio-chromatic contrast sensitivity in 20-71 year olds.

    PubMed

    Dees, Elise W; Gilson, Stuart J; Neitz, Maureen; Baraas, Rigmor C

    2015-11-01

    Chromatic contrast sensitivity may be a more sensitive measure of an individual's visual function than achromatic contrast sensitivity. Here, the first aim was to quantify individual- and age-related variations in chromatic contrast sensitivity to a range of spatial frequencies for stimuli along two complementary directions in color space. The second aim was to examine whether polymorphisms at specific amino acid residues of the L- and M-opsin genes (OPN1LW and OPN1MW) known to affect spectral tuning of the photoreceptors could influence spatio-chromatic contrast sensitivity. Chromatic contrast sensitivity functions were measured in 50 healthy individuals (20-71 years) employing a novel pseudo-isochromatic grating stimulus. The spatio-chromatic contrast sensitivity functions were found to be low pass for all subjects, independent of age and color vision. The results revealed a senescent decline in spatio-chromatic contrast sensitivity. There were considerable between-individual differences in sensitivity within each age decade for individuals 49 years old or younger, and age did not predict sensitivity for these age decades alone. Forty-six subjects (including a color deficient male and eight female carriers) were genotyped for L- and M-opsin genes. The Ser180Ala polymorphisms on the L-opsin gene were found to influence the subject's color discrimination and their sensitivity to spatio-chromatic patterns. The results expose the significant role of neural and genetic factors in the deterioration of visual function with increasing age.

  9. Estimating Neural Background Input with Controlled and Fast Perturbations: A Bandwidth Comparison between Inhibitory Opsins and Neural Circuits

    PubMed Central

    Eriksson, David

    2016-01-01

    To test the importance of a certain cell type or brain area it is common to make a “lack of function” experiment in which the neuronal population of interest is inhibited. Here we review physiological and methodological constraints for making controlled perturbations using the corticothalamic circuit as an example. The brain with its many types of cells and rich interconnectivity offers many paths through which a perturbation can spread within a short time. To understand the side effects of the perturbation one should record from those paths. We find that ephaptic effects, gap-junctions, and fast chemical synapses are so fast that they can react to the perturbation during the few milliseconds it takes for an opsin to change the membrane potential. The slow chemical synapses, astrocytes, extracellular ions and vascular signals, will continue to give their physiological input for around 20 ms before they also react to the perturbation. Although we show that some pathways can react within milliseconds the strength/speed reported in this review should be seen as an upper bound since we have omitted how polysynaptic signals are attenuated. Thus the number of additional recordings that has to be made to control for the perturbation side effects is expected to be fewer than proposed here. To summarize, the reviewed literature not only suggests that it is possible to make controlled “lack of function” experiments, but, it also suggests that such a “lack of function” experiment can be used to measure the context of local neural computations. PMID:27574506

  10. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution.

    PubMed

    Emerling, Christopher A; Huynh, Hieu T; Nguyen, Minh A; Meredith, Robert W; Springer, Mark S

    2015-11-22

    Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage.

  11. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution

    PubMed Central

    Emerling, Christopher A.; Huynh, Hieu T.; Nguyen, Minh A.; Meredith, Robert W.; Springer, Mark S.

    2015-01-01

    Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage. PMID:26582021

  12. Bacterioopsin, haloopsin, and sensory opsin I of the halobacterial isolate Halobacterium sp. strain SG1: three new members of a growing family.

    PubMed Central

    Soppa, J; Duschl, J; Oesterhelt, D

    1993-01-01

    The genes coding for bacterioopsin, haloopsin, and sensory opsin I of a halobacterial isolate from the Red Sea called Halobacterium sp. strain SG1 have been cloned and sequenced. The deduced protein sequences were aligned to the previously known halobacterial retinal proteins. The addition of these new sequences lowered the number of conserved residues to only 23 amino acids, or 8% of the alignment. Data base searches with two highly conserved peptides as well as with an alignment profile yielded no significant similarity to any other protein, so the halobacterial retinal proteins should be regarded as a distinct protein family. The protein alignment was used to make predictions about the structure of the retinal proteins as well as about the amino acids in contact with retinal proteins. These results were in excellent agreement with the structural model of bacteriorhodopsin of Halobacterium halobium as well as with mutant studies, indicating that (i) structure predictions based on the sequences of a membrane protein family can be quite accurate; (ii) halorhodopsin and sensory rhodopsin I have tertiary structures similar to that of bacteriorhodopsin; (iii) conserved amino acids do not take part in reactions specific for one group of proteins, e.g., proton translocation for bacteriorhodopsins, but have a crucial role in determining the conformation and reactions of the chromophore; and (iv) the general mode of action (light-induced chromophore and protein movements) is the same for all halobacterial retinal proteins, ion pumps as well as sensors. PMID:8478333

  13. Targeting the Cyclophilin Domain of Ran-binding Protein 2 (Ranbp2) with Novel Small Molecules to Control the Proteostasis of STAT3, hnRNPA2B1 and M-Opsin

    PubMed Central

    Cho, Kyoung-in; Orry, Andrew; Park, Se Eun; Ferreira, Paulo A.

    2015-01-01

    Cyclophilins are peptidyl cis-trans prolyl isomerases (PPIases), whose activity is typically inhibited by cyclosporine A (CsA), a potent immunosuppressor. Cyclophilins are also chaperones. Emerging evidence supports that cyclophilins present non-overlapping PPIase and chaperone activities. The proteostasis of the disease-relevant substrates, signal transducer and activator of transcription 3 and 5 (STAT3/STAT5), heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) and M-opsin, are regulated by non-overlapping chaperone and PPIase activities of the cyclophilin domain (CY) of Ranbp2, a multifunctional and modular scaffold which controls nucleocytoplasmic shuttling and proteostasis of selective substrates. Although highly homologous, CY and the archetypal cyclophilin A (CyPA) present distinct catalytic and CsA-binding activities owing to unique structural features between these cylophilins. We explored structural idiosyncrasies between CY and CyPA to screen in silico nearly 9 million small molecules (SM) against the CY PPIase pocket and identify SMs with selective bioactivity toward STAT3, hnRNPA2B1 and/or M-opsin proteostasis. We found three classes of SMs that enhance the cytokine-stimulated transcriptional activity of STAT3 without changing latent and activated STAT3 levels, down-regulate hnRNPA2B1 or M-opsin proteostasis, or a combination of these. Further, a SM which suppresses hnRNPA2B1 proteostasis also inhibits strongly and selectively the PPIase activity of CY. This study unravels chemical probes for multimodal regulation of CY of Ranbp2 and its substrates and this regulation likely results in the allosterism stemming from the interconversion of conformational substates of cyclophilins. The results also demonstrate the feasibility of CY in drug discovery against disease-relevant substrates controlled by Ranbp2 and they open new opportunities for therapeutic interventions. PMID:26030368

  14. Long-wave sensitivity in deep-sea stomiid dragonfish with far-red bioluminescence: evidence for a dietary origin of the chlorophyll-derived retinal photosensitizer of Malacosteus niger.

    PubMed

    Douglas, R H; Mullineaux, C W; Partridge, J C

    2000-09-29

    Both residual downwelling sunlight and bioluminescence, which are the two main sources of illumination available in the deep sea, have limited wavebands concentrated around 450-500 nm. Consequently, the wavelengths of maximum absorption (lambdamax) of the vast majority of deep-sea fish visual pigments also cluster in this part of the spectrum. Three genera of deep-sea loose-jawed dragonfish (Aristostomias, Pachystomias and Malacosteus), however, in addition to the blue bioluminescence typical of most deep-sea animals, also produce far-red light (maximum emission >700 nm) from suborbital photophores. All three genera are sensitive in this part of the spectrum, to which all other animals of the deep sea are blind, potentially affording them a private waveband for illuminating prey and for interspecific communication that is immune from detection by predators and prey. Aristostomias and Pachystomias enhance their long-wave visual sensitivity by the possession of at least three visual pigments that are long-wave shifted (lambdamax values ca. 515, 550 and 590 nm) compared with those of other deep-sea fishes. Malacosteus, on the other hand, although it does possess two of these red-shifted pigments (lambdamax values ca. 520 and 540 nm), lacks the most long-wave-sensitive pigments found in the other two genera. However, it further enhances its long-wave sensitivity with a chlorophyll-derived photosensitizer within its outer segments. The fluorescence emission and excitation spectra of this pigment are very similar to spectra obtained from mesopelagic copepods, which are an important component of diet of Malacosteus, suggesting a dietary origin for this pigment.

  15. Studies for Improved Gravitational Wave Sensitivity

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.

    2003-01-01

    The main purpose of this study was to investigate the possible accuracy of the Laser Interferometer Space Antenna (LISA) for studying gravitational waves at frequencies below the usually quoted frequency range of 100 microHz to 1 Hz. The extended frequency range of most interest is from 3 to 100 microHz. During this work, a new source of spurious accelerations of the test masses for LISA that had been overlooked previously was identified. It is one of the main noise contributors at 100 microHz, and rises as the inverse of the frequency to become probably the largest error source at 3 microHz. The new error source is fluctuations in the charge on the test mass due to cosmic ray charging interacting with the electric fields inside the housing that carries the capacitive electrodes for sensing relative motion of the test mass with respect to the housing. Even for zero charge on the test mass, there will be electrical fields acting on each face due to work function differences between the capacitive electrodes and the test mass.

  16. The fungal opsin gene nop-1 is negatively-regulated by a component of the blue light sensing pathway and influences conidiation-specific gene expression in Neurospora crassa.

    PubMed

    Bieszke, Jennifer A; Li, Liande; Borkovich, Katherine A

    2007-09-01

    We previously demonstrated that the nop-1 gene encodes a putative green-light opsin photoreceptor that is highly expressed in cultures that support asexual sporulation (conidiation) in Neurospora crassa. In this study, we demonstrate that nop-1 is a late-stage conidiation gene, through analysis of nop-1 transcript levels in wild-type strains and mutants blocked at various stages of conidiation. nop-1 message amounts are similar with constant illumination or darkness during conidiation, consistent with developmental, but not light, regulation of nop-1 expression. Furthermore, photoinduction experiments using wild type and mutants defective in components of the blue light sensing pathway (wc-1 and wc-2) indicate that nop-1 mRNA levels are not appreciably affected by brief light exposure during conidiation. Surprisingly, nop-1 message amounts are greatly elevated in wc-2 mutants in light or dark, suggesting that the wc-2 gene product regulates nop-1 expression in a light-independent manner. Analysis of expression patterns for al-2, con-10 and con-13, genes regulated by conidiation and/or blue light, showed that nop-1 has significant and reproducible effects on all three genes during various stages of conidiation. The results suggest that NOP-1 directly or indirectly modulates carotenogenesis and repression of conidiation-specific gene expression in N. crassa.

  17. Extending the LWS Data Environment: Distributed Data Processing and Analysis

    NASA Technical Reports Server (NTRS)

    Narock, Thomas

    2005-01-01

    The final stages of this work saw changes to the original framework, as well as the completion and integration of several data processing services. Initially, it was thought that a peer-to-peer architecture was necessary to make this work possible. The peer-to-peer architecture provided many benefits including the dynamic discovery of new services that would be continually added. A prototype example was built and while it showed promise, a major disadvantage was seen in that it was not easily integrated into the existing data environment. While the peer-to-peer system worked well for finding and accessing distributed data processing services, it was found that its use was limited by the difficulty in calling it from existing tools and services. After collaborations with members of the data community, it was determined that our data processing system was of high value and that a new interface should be pursued in order for the community to take full advantage of it. As such; the framework was modified from a peer-to-peer architecture to a more traditional web service approach. Following this change multiple data processing services were added. These services include such things as coordinate transformations and sub setting of data. Observatory (VHO), assisted with integrating the new architecture into the VHO. This allows anyone using the VHO to search for data, to then pass that data through our processing services prior to downloading it. As a second attempt at demonstrating the new system, a collaboration was established with the Collaborative Sun Earth Connector (CoSEC) group at Lockheed Martin. This group is working on a graphical user interface to the Virtual Observatories and data processing software. The intent is to provide a high-level easy-to-use graphical interface that will allow access to the existing Virtual Observatories and data processing services from one convenient application. Working with the CoSEC group we provided access to our data processing tools from within their software. This now allows the CoSEC community to take advantage of our services and also demonstrates another means of accessing our system.

  18. ISO Guest Observer Data Analysis and LWS Instrument Team Activities

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Smith, Howard A.

    2003-01-01

    We have designed and fabricated infrared filters for use at wavelengths greater than or equal to 15 microns. Unlike conventional dielectric filters used at the short wavelengths, ours are made from stacked metal grids, spaced at a very small fraction of the performance wavelengths. The individual lattice layers are gold, the spacers are polyimide, and they are assembled using integrated circuit processing techniques; they resemble some metallic photonic band-gap structures. We simulate the filter performance accurately, including the coupling of the propagating, near-field electromagnetic modes, using computer aided design codes. We find no anomalous absorption. The geometrical parameters of the grids are easily altered in practice, allowing for the production of tuned filters with predictable useful transmission characteristics. Although developed for astronomical instrumentation, the filters are broadly applicable in systems across infrared and terahertz bands.

  19. ISO Guest Observer Data Analysis and LWS Instrument Team Activities

    NASA Technical Reports Server (NTRS)

    Smith, Howard

    2002-01-01

    This project was granted a no-cost extension prompted by the request of the major subcontractor, the Naval Research Laboratory, which had not yet completed its tasks. As of July 2002, they had made substantial progress. They have successfully fabricated a metal mesh grid on polyimide, and also successfully fabricated a 2-layer metal mesh infrared filter using stacks of these metal mesh grids on polyimide; the actual layering was done at SAO. Both warm and cold spectroscopic tests were done on these fabricated devices. The measurements were in good agreement with the theory, and also reasonable performance in absolute terms. NRL is now working on fabricating a 3-layer metal mesh infrared filter, and a prototype is expected in the next month. Testing should occur before the end of the fiscal year. Finally, NRL has preliminarily agreed to hire a new postdoctoral person to refine the modeling of the filters based on the new measurements. The person should arrive this fall. NRL has a new Fourier Transform Spectrometer which will be delivered in the next month, and which will be used to facilitate the testing which has up to now been done in collaboration with NASA Goddard Space Flight Space Center.

  20. ISO Guest Observer Data Analysis and LWS Instrument Team Activities

    NASA Technical Reports Server (NTRS)

    Smith, Howard

    2001-01-01

    The following is an interim annual report. Dr. Smith is currently on an extended TDY to the Istituto di Fisica dello Spazio Interplanetario (IFSI) at the Consilio Nazionale delle Richerche (CNR) in Rome, Italy, where he has been working on a related NASA grant in support of analysis of Infrared Space Observatory (ISO) data on star formation in Ultra Luminous Infrared Galaxies and our galaxy. Work emphasizes development of metal mesh grids for use in spacecraft, and the design and fabrication of test elements by the Naval Research Laboratory, Washington D.C. Work has progressed well, but slowly, on that program due to the departure of a key engineer. NASA has been advised of the delay, and granted a no-cost extension, whereby SAO has authorized a delay in the final report from NRL. Nevertheless NRL has continued to make progress. Two papers have been submitted to refereed journals related to this program, and a new design for mesh operating in the 20-40 micron region has been developed. Meetings continue through the summer on these items. A new technical scientist has been made a job offer and hopefully will be on board NRL shortly, although most of the present grant work is already completed. A more complete report, with copies of the submitted papers, designs, and other measures of progress, will be submitted to NASA in September when Dr. Smith returns from his current TDY.

  1. ISO LWS Spectroscopy of M82: A Unified Evolutionary Model

    DTIC Science & Technology

    1999-01-01

    LORD,6 MICHAEL LUHMAN ,5,7 SHOBITA SATYAPAL,8,9 HOWARD A. SMITH,10 LUIGI SPINOGLIO,11 GORDON STACEY,12 AND SARAH J. UNGER3 Received 1998 May 29...MNRAS, 270, 641 Kaufman, M., WolÐre, M., Hollenbach, D., & Luhman , M. 1998, in prep- aration Kenney, J. D. P., Wilson, C. D., Scoville, N. Z., Devereux, N

  2. LWS Observations of the Colliding Galaxies NGC 4038/39

    DTIC Science & Technology

    1996-01-01

    cor- related ( Luhman & Jaffe 1996). If the H2 emission in NGC 4038/39 arises in UV exposed gas (PDRs), then applying this correlation to the ISO far...Leitherer, C., Heckman, T.M. 1995, ApJS, 96, 9 Lord, S.D., Hollenbach, D.J., et al. 1996, ApJ, 465, 703 Luhman , M.L., Jaffe, D.T. 1996, ApJ, 463, 191

  3. Targeting of exon VI-skipping human RGR-opsin to the plasma membrane of pigment epithelium and co-localization with terminal complement complex C5b-9

    PubMed Central

    Kochounian, Harold; Zhang, Zhaoxia; Spee, Christine; Hinton, David R.

    2016-01-01

    Purpose Rare mutations in the human RGR gene lead to autosomal recessive retinitis pigmentosa or dominantly inherited peripapillary choroidal atrophy. Here, we analyze a common exon-skipping isoform of the human retinal G protein-coupled receptor opsin (RGR-d) to determine differences in subcellular targeting between RGR-d and normal RGR and possible association with abnormal traits in the human eye. Methods The terminal complement complex (C5b-9), vitronectin, CD46, syntaxin-4, and RGR-d were analyzed in human eye tissue from young and old donors or in cultured fetal RPE cells by means of immunofluorescent labeling and high-resolution confocal microscopy or immunohistochemical staining. Results We observed that RGR-d is targeted to the basolateral plasma membrane of the RPE. RGR-d, but not normal RGR, is expressed in cultured human fetal RPE cells in which the protein also trafficks to the plasma membrane. In young donors, the amount of RGR-d protein in the basolateral plasma membrane was much higher than that in the RPE cells of older subjects. In older donor eyes, the level of immunoreactive RGR-d within RPE cells was often low or undetectable, and immunostaining of RGR-d was consistently strongest in extracellular deposits in Bruch’s membrane. Double immunofluorescent labeling in the basal deposits revealed significant aggregate and small punctate co-localization of RGR-d with C5b-9 and vitronectin. Conclusions RGR-d may escape endoplasmic reticulum-associated degradation and in contrast to full-length RGR, traffick to the basolateral plasma membrane, particularly in younger subjects. RGR-d in the plasma membrane indicates that the protein is properly folded, as misfolded membrane proteins cannot otherwise sort to the plasma membrane. The close association of extracellular RGR-d with both vitronectin and C5b-9 suggests a potential role of RGR-d-containing deposits in complement activation. PMID:27011730

  4. Non-image Forming Light Detection by Melanopsin, Rhodopsin, and Long-Middlewave (L/W) Cone Opsin in the Subterranean Blind Mole Rat, Spalax Ehrenbergi: Immunohistochemical Characterization, Distribution, and Connectivity

    PubMed Central

    Esquiva, Gema; Avivi, Aaron; Hannibal, Jens

    2016-01-01

    The blind mole rat, Spalax ehrenbergi, can, despite severely degenerated eyes covered by fur, entrain to the daily light/dark cycle and adapt to seasonal changes due to an intact circadian timing system. The present study demonstrates that the Spalax retina contains a photoreceptor layer, an outer nuclear layer (ONL), an outer plexiform layer (OPL), an inner nuclear layer (INL), an inner plexiform layer (IPL), and a ganglion cell layer (GCL). By immunohistochemistry, the number of melanopsin (mRGCs) and non-melanopsin bearing retinal ganglion cells was analyzed in detail. Using the ganglion cell marker RNA-binding protein with multiple splicing (RBPMS) it was shown that the Spalax eye contains 890 ± 62 RGCs. Of these, 87% (752 ± 40) contain melanopsin (cell density 788 melanopsin RGCs/mm2). The remaining RGCs were shown to co-store Brn3a and calretinin. The melanopsin cells were located mainly in the GCL with projections forming two dendritic plexuses located in the inner part of the IPL and in the OPL. Few melanopsin dendrites were also found in the ONL. The Spalax retina is rich in rhodopsin and long/middle wave (L/M) cone opsin bearing photoreceptor cells. By using Ctbp2 as a marker for ribbon synapses, both rods and L/M cone ribbons containing pedicles in the OPL were found in close apposition with melanopsin dendrites in the outer plexus suggesting direct synaptic contact. A subset of cone bipolar cells and all photoreceptor cells contain recoverin while a subset of bipolar and amacrine cells contain calretinin. The calretinin expressing amacrine cells seemed to form synaptic contacts with rhodopsin containing photoreceptor cells in the OPL and contacts with melanopsin cell bodies and dendrites in the IPL. The study demonstrates the complex retinal circuitry used by the Spalax to detect light, and provides evidence for both melanopsin and non-melanopsin projecting pathways to the brain. PMID:27375437

  5. A novel molecular marker for the study of Neotropical cichlid phylogeny.

    PubMed

    Fabrin, T M C; Gasques, L S; Prioli, S M A P; Prioli, A J

    2015-12-22

    The use of molecular markers has contributed to phylogeny and to the reconstruction of species' evolutionary history. Each region of the genome has different evolution rates, which may or may not identify phylogenetic signal at different levels. Therefore, it is important to assess new molecular markers that can be used for phylogenetic reconstruction. Regions that may be associated with species characteristics and are subject to selective pressure, such as opsin genes, which encode proteins related to the visual system and are widely expressed by Cichlidae family members, are interesting. Our aim was to identify a new nuclear molecular marker that could establish the phylogeny of Neotropical cichlids and is potentially correlated with the visual system. We used Bayesian inference and maximum likelihood analysis to support the use of the nuclear opsin LWS gene in the phylogeny of eight Neotropical cichlid species. Their use concatenated to the mitochondrial gene COI was also tested. The LWS gene fragment comprised the exon 2-4 region, including the introns. The LWS gene provided good support for both analyses up to the genus level, distinguishing the studied species, and when concatenated to the COI gene, there was a good support up to the species level. Another benefit of utilizing this region, is that some polymorphisms are associated with changes in spectral properties of the LWS opsin protein, which constitutes the visual pigment that absorbs red light. Thus, utilization of this gene as a molecular marker to study the phylogeny of Neotropical cichlids is promising.

  6. The visual pigments of the West Indian manatee (Trichechus manatus).

    PubMed

    Newman, Lucy A; Robinson, Phyllis R

    2006-10-01

    Manatees are unique among the fully aquatic marine mammals in that they are herbivorous creatures, with hunting strategies restricted to grazing on sea-grasses. Since the other groups of (carnivorous) marine mammals have been found to possess various visual system adaptations to their unique visual environments, it was of interest to investigate the visual capability of the manatee. Previous work, both behavioral (Griebel & Schmid, 1996), and ultrastructural (Cohen, Tucker, & Odell, 1982; unpublished work cited by Griebel & Peichl, 2003), has suggested that manatees have the dichromatic color vision typical of diurnal mammals. This study uses molecular techniques to investigate the cone visual pigments of the manatee. The aim was to clone and sequence cone opsins from the retina, and, if possible, express and reconstitute functional visual pigments to perform spectral analysis. Both LWS and SWS cone opsins were cloned and sequenced from manatee retinae, which, upon expression and spectral analysis, had lambda(max) values of 555 and 410 nm, respectively. The expression of both the LWS and SWS cone opsin in the manatee retina is unique as both pinnipeds and cetaceans only express a cone LWS opsin.

  7. Genetic analyses of visual pigments of the pigeon (Columba livia).

    PubMed Central

    Kawamura, S; Blow, N S; Yokoyama, S

    1999-01-01

    We isolated five classes of retinal opsin genes rh1(Cl), rh2(Cl), sws1(Cl), sws2(Cl), and lws(Cl) from the pigeon; these encode RH1(Cl), RH2(Cl), SWS1(Cl), SWS2(Cl), and LWS(Cl) opsins, respectively. Upon binding to 11-cis-retinal, these opsins regenerate the corresponding photosensitive molecules, visual pigments. The absorbance spectra of visual pigments have a broad bell shape with the peak, being called lambdamax. Previously, the SWS1(Cl) opsin cDNA was isolated from the pigeon retinal RNA, expressed in cultured COS1 cells, reconstituted with 11-cis-retinal, and the lambdamax of the resulting SWS1(Cl) pigment was shown to be 393 nm. In this article, using the same methods, the lambdamax values of RH1(Cl), RH2(Cl), SWS2(Cl), and LWS(Cl) pigments were determined to be 502, 503, 448, and 559 nm, respectively. The pigeon is also known for its UV vision, detecting light at 320-380 nm. Being the only pigments that absorb light below 400 nm, the SWS1(Cl) pigments must mediate its UV vision. We also determined that a nonretinal P(Cl) pigment in the pineal gland of the pigeon has a lambdamax value at 481 nm. PMID:10581289

  8. Multiple Genetic Mechanisms Contribute to Visual Sensitivity Variation in the Labridae

    PubMed Central

    Phillips, Genevieve A.C.; Carleton, Karen L.; Marshall, N. Justin

    2016-01-01

    Coral reefs are one of the most spectrally diverse environments, both in terms of habitat and animal color. Species identity, sex, and camouflage are drivers of the phenotypic diversity seen in coral reef fishes, but how the phenotypic diversity is reflected in the genotype remains to be answered. The labrids are a large, polyphyletic family of coral reef fishes that display a diverse range of colors, including developmental color morphs and extensive behavioral ecologies. Here, we assess the opsin sequence and expression diversity among labrids from the Great Barrier Reef, Australia. We found that labrids express a diverse palette of visual opsins, with gene duplications in both RH2 and LWS genes. The majority of opsins expressed were within the mid-to-long wavelength sensitive classes (RH2 and LWS). Three of the labrid species expressed SWS1 (ultra-violet sensitive) opsins with the majority expressing the violet-sensitive SWS2B gene and none expressing SWS2A. We used knowledge about spectral tuning sites to calculate approximate spectral sensitivities (λmax) for individual species’ visual pigments, which corresponded well with previously published λmax values for closely related species (SWS1: 356–370 nm; SWS2B: 421–451 nm; RH2B: 452–492 nm; RH2A: 516–528 nm; LWS1: 554–555 nm; LWS2: 561–562 nm). In contrast to the phenotypic diversity displayed via color patterns and feeding ecology, there was little amino acid diversity within the known opsin sequence tuning sites. However, gene duplications and differential expression provide alternative mechanisms for tuning visual pigments, resulting in variable visual sensitivities among labrid species. PMID:26464127

  9. Visual system evolution and the nature of the ancestral snake.

    PubMed

    Simões, B F; Sampaio, F L; Jared, C; Antoniazzi, M M; Loew, E R; Bowmaker, J K; Rodriguez, A; Hart, N S; Hunt, D M; Partridge, J C; Gower, D J

    2015-07-01

    The dominant hypothesis for the evolutionary origin of snakes from 'lizards' (non-snake squamates) is that stem snakes acquired many snake features while passing through a profound burrowing (fossorial) phase. To investigate this, we examined the visual pigments and their encoding opsin genes in a range of squamate reptiles, focusing on fossorial lizards and snakes. We sequenced opsin transcripts isolated from retinal cDNA and used microspectrophotometry to measure directly the spectral absorbance of the photoreceptor visual pigments in a subset of samples. In snakes, but not lizards, dedicated fossoriality (as in Scolecophidia and the alethinophidian Anilius scytale) corresponds with loss of all visual opsins other than RH1 (λmax 490-497 nm); all other snakes (including less dedicated burrowers) also have functional sws1 and lws opsin genes. In contrast, the retinas of all lizards sampled, even highly fossorial amphisbaenians with reduced eyes, express functional lws, sws1, sws2 and rh1 genes, and most also express rh2 (i.e. they express all five of the visual opsin genes present in the ancestral vertebrate). Our evidence of visual pigment complements suggests that the visual system of stem snakes was partly reduced, with two (RH2 and SWS2) of the ancestral vertebrate visual pigments being eliminated, but that this did not extend to the extreme additional loss of SWS1 and LWS that subsequently occurred (probably independently) in highly fossorial extant scolecophidians and A. scytale. We therefore consider it unlikely that the ancestral snake was as fossorial as extant scolecophidians, whether or not the latter are para- or monophyletic.

  10. Cone visual pigments of monotremes: filling the phylogenetic gap.

    PubMed

    Wakefield, Matthew J; Anderson, Mark; Chang, Ellen; Wei, Ke-Jun; Kaul, Rajinder; Graves, Jennifer A Marshall; Grützner, Frank; Deeb, Samir S

    2008-01-01

    We have determined the sequence and genomic organization of the genes encoding the cone visual pigment of the platypus (Ornithorhynchus anatinus) and the echidna (Tachyglossus aculeatus), and inferred their spectral properties and evolutionary pathways. We prepared platypus and echidna retinal RNA and used primers of the middle-wave-sensitive (MWS), long-wave-sensitive (LWS), and short-wave sensitive (SWS1) pigments corresponding to coding sequences that are highly conserved among mammals; to PCR amplify the corresponding pigment sequences. Amplification from the retinal RNA revealed the expression of LWS pigment mRNA that is homologous in sequence and spectral properties to the primate LWS visual pigments. However, we were unable to amplify the mammalian SWS1 pigment from these two species, indicating this gene was lost prior to the echidna-platypus divergence (21 MYA). Subsequently, when the platypus genome sequence became available, we found an LWS pigment gene in a conserved genomic arrangement that resembles the primate pigment, but, surprisingly we found an adjacent (20 kb) SWS2 pigment gene within this conserved genomic arrangement. We obtained the same result after sequencing the echidna genes. The encoded SWS2 pigment is predicted to have a wavelength of maximal absorption of about 440 nm, and is paralogous to SWS pigments typically found in reptiles, birds, and fish but not in mammals. This study suggests the locus control region (LCR) has played an important role in the conservation of photo receptor gene arrays and the control of their spatial and temporal expression in the retina in all mammals. In conclusion, a duplication event of an ancestral cone visual pigment gene, followed by sequence divergence and selection gave rise to the LWS and SWS2 visual pigments. So far, the echidna and platypus are the only mammals that share the gene structure of the LWS-SWS2 pigment gene complex with reptiles, birds and fishes.

  11. Flight Experiments for Living With a Star Space Environment Testbed (LWS-SET): Relationship to Technology

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Barth, Janet L.; Brewer, Dana A.

    2003-01-01

    This viewgraph presentation provides information on flight validation experiments for technologies to determine solar effects. The experiments are intended to demonstrate tolerance to a solar variant environment. The technologies tested are microelectronics, photonics, materials, and sensors.

  12. LWS Proposal to Provide Scientific Guidance and Modeling Support for the Ionospheric Mapping Mission. Part 1

    NASA Technical Reports Server (NTRS)

    Richmond, Arthur D.

    2005-01-01

    A data assimilation system for specifying the thermospheric density has been developed over the last several years. This system ingests GRACE/CHAMP-type in situ as well as SSULI/SSUSI remote sensing observations while making use of a physical model, the Coupled Thermosphere-Ionosphere Model (CTIM) (Fuller-Rowel1 et al., 1996). The Kalman filter was implemented as the backbone to the data assimilation system, which provides a statistically 'best' estimate as well as an estimate of the error in its state. The system was tested using a simulated thermosphere and observations. CHAMP data were then used to provide the system with a real data source. The results of this study are herein.

  13. The LWS Geospace Storm Investigations Exploring the Extremes of Space Weather

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Geospace mission of the Living With a Star program is a family of investigations focusing on the compelling science questions that advance our ability to specify, understand, and predict the societal impact of solar variance. Two key areas have been identified as combining both importance to society and potential for scientific progress: 1) characterization and understanding of the acceleration, global distribution, and variability of energetic electrons and ions in the inner magnetosphere, and 2) characterization and understanding of the ionosphere and irregularities that affect communications, navigation and radar systems. Under these broad categories specific science questions have emerged as the priority science objectives for the first Geospace Investigations: How and why do relativistic electrons in the outer zone and slot region vary during geomagnetic storms? How does the long- and short-term variability of the Sun affect the global-scale behavior of the ionospheric electron density and irregularities, especially during magnetic storms and at mid-latitudes? The first Geospace mission will attempt to answer these questions.

  14. Cone monochromacy and visual pigment spectral tuning in wobbegong sharks.

    PubMed

    Theiss, Susan M; Davies, Wayne I L; Collin, Shaun P; Hunt, David M; Hart, Nathan S

    2012-12-23

    Much is known regarding the evolution of colour vision in nearly every vertebrate class, with the notable exception of the elasmobranchs. While multiple spectrally distinct cone types are found in some rays, sharks appear to possess only a single class of cone and, therefore, may be colour blind. In this study, the visual opsin genes of two wobbegong species, Orectolobus maculatus and Orectolobus ornatus, were isolated to verify the molecular basis of their monochromacy. In both species, only two opsin genes are present, RH1 (rod) and LWS (cone), which provide further evidence to support the concept that sharks possess only a single cone type. Examination of the coding sequences revealed substitutions that account for interspecific variation in the photopigment absorbance spectra, which may reflect the difference in visual ecology between these species.

  15. Modelling rock-avalanche induced impact waves: Sensitivity of the model chains to model parameters

    NASA Astrophysics Data System (ADS)

    Schaub, Yvonne; Huggel, Christian

    2014-05-01

    New lakes are forming in high-mountain areas all over the world due to glacier recession. Often they will be located below steep, destabilized flanks and are therefore exposed to impacts from rock-/ice-avalanches. Several events worldwide are known, where an outburst flood has been triggered by such an impact. In regions such as in the European Alps or in the Cordillera Blanca in Peru, where valley bottoms are densely populated, these far-travelling, high-magnitude events can result in major disasters. Usually natural hazards are assessed as single hazardous processes, for the above mentioned reasons, however, development of assessment and reproduction methods of the hazardous process chain for the purpose of hazard map generation have to be brought forward. A combination of physical process models have already been suggested and illustrated by means of lake outburst in the Cordillera Blanca, Peru, where on April 11th 2010 an ice-avalanche of approx. 300'000m3 triggered an impact wave, which overtopped the 22m freeboard of the rock-dam for 5 meters and caused and outburst flood which travelled 23 km to the city of Carhuaz. We here present a study, where we assessed the sensitivity of the model chain from ice-avalanche and impact wave to single parameters considering rock-/ice-avalanche modeling by RAMMS and impact wave modeling by IBER. Assumptions on the initial rock-/ice-avalanche volume, calibration of the friction parameters in RAMMS and assumptions on erosion considered in RAMMS were parameters tested regarding their influence on overtopping parameters that are crucial for outburst flood modeling. Further the transformation of the RAMMS-output (flow height and flow velocities on the shoreline of the lake) into an inflow-hydrograph for IBER was also considered a possible source of uncertainties. Overtopping time, volume, and wave height as much as mean and maximum discharge were considered decisive parameters for the outburst flood modeling and were therewith assumed dependent values. The resulting 54 runs were evaluated by an ANOVA-analysis for each dependent variable. Results show, that the model chain is able to correctly reproduce the 5m-overtopping wave. Further the dependency from the input parameters could be assessed for every dependent variable. It was e.g. shown, that RAMMS-calibration has the strongest influence on all variations, it is more crucial then the uncertainties introduced by assumptions on the initial rock-avalanche volume. The study shows, that from a hazard-assessment point of view, combinations of model chains are acceptable and permissible.

  16. Bridging particle and wave sensitivity in a configurable detector of positive operator-valued measures.

    PubMed

    Puentes, Graciana; Lundeen, Jeff S; Branderhorst, Matthijs P A; Coldenstrodt-Ronge, Hendrik B; Smith, Brian J; Walmsley, Ian A

    2009-02-27

    We report an optical detector with tunable positive operator-valued measures. The device is based on a combination of weak-field homodyne techniques and photon-number-resolving detection. The resulting positive operator-valued measures can be continuously tuned from Fock-state projectors to a variety of phase-dependent quantum-state measurements by adjusting different system parameters such as local oscillator coupling, amplitude, and phase, allowing thus not only detection but also preparation of exotic quantum states. Experimental tomographic reconstructions of classical benchmark states are presented as a demonstration of the detector capabilities.

  17. Parallel and convergent evolution of the dim-light vision gene RH1 in bats (Order: Chiroptera).

    PubMed

    Shen, Yong-Yi; Liu, Jie; Irwin, David M; Zhang, Ya-Ping

    2010-01-21

    Rhodopsin, encoded by the gene Rhodopsin (RH1), is extremely sensitive to light, and is responsible for dim-light vision. Bats are nocturnal mammals that inhabit poor light environments. Megabats (Old-World fruit bats) generally have well-developed eyes, while microbats (insectivorous bats) have developed echolocation and in general their eyes were degraded, however, dramatic differences in the eyes, and their reliance on vision, exist in this group. In this study, we examined the rod opsin gene (RH1), and compared its evolution to that of two cone opsin genes (SWS1 and M/LWS). While phylogenetic reconstruction with the cone opsin genes SWS1 and M/LWS generated a species tree in accord with expectations, the RH1 gene tree united Pteropodidae (Old-World fruit bats) and Yangochiroptera, with very high bootstrap values, suggesting the possibility of convergent evolution. The hypothesis of convergent evolution was further supported when nonsynonymous sites or amino acid sequences were used to construct phylogenies. Reconstructed RH1 sequences at internal nodes of the bat species phylogeny showed that: (1) Old-World fruit bats share an amino acid change (S270G) with the tomb bat; (2) Miniopterus share two amino acid changes (V104I, M183L) with Rhinolophoidea; (3) the amino acid replacement I123V occurred independently on four branches, and the replacements L99M, L266V and I286V occurred each on two branches. The multiple parallel amino acid replacements that occurred in the evolution of bat RH1 suggest the possibility of multiple convergences of their ecological specialization (i.e., various photic environments) during adaptation for the nocturnal lifestyle, and suggest that further attention is needed on the study of the ecology and behavior of bats.

  18. LWS FST: Determine and Quantify the Responses of Atmospheric/Ionospheric Composition and Temperature to Solar XUV Spectral Variability

    NASA Astrophysics Data System (ADS)

    Talaat, E. R.; Fuller-Rowell, T. J.; Qian, L.; Richards, P. G.; Ridley, A. J.

    2010-12-01

    We present a summary of the research plans and preliminary results of our 2009 Living With a Star Focus Science Team. Focus Area Description: With the recent availability of comprehensive solar spectral measurements at X-ray and ultraviolet (XUV) wavelengths, together with upper atmospheric chemistry and transport models, quantification of the full range of solar effects on chemically active minor constituents and ion composition in the ionospherethermosphere- mesosphere (I-T-M) system is now possible. Additional solar-driven variation is caused by the energetic particle environment, ranging from auroral fluxes to galactic cosmic rays. These sources have important influences on the chemistry, energetics, and dynamics of the lower thermosphere and ionosphere (e.g., on nitric oxide and ozone) via direct energy deposition and modulation of ion-neutral frictional heating. Observations of neutral composition and temperature for different phases of the solar cycle and for sporadic events are available through NASA missions like the Upper Atmosphere Research Satellite (UARS) and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics mission (TIMED), as well as from other space- and groundbased instruments. Observations of ionospheric electron density are available through a variety of sources. In view of these advances, models of atmospheric/ionospheric composition and energetics that fully exploit the available estimates of external energetic inputs can now be developed to more accurately quantify solar effects in the middle and upper atmosphere. We seek to determine how well our understanding of atmospheric/ionospheric processes, as incorporated in state-of-the-art models, is able to explain observed compositional and temperature effects in the middle and upper atmosphere caused by external energetic inputs, in order to be able to predict these effects under both normal and extreme conditions.

  19. The activation of directional stem cell motility by green light-emitting diode irradiation.

    PubMed

    Ong, Wei-Kee; Chen, How-Foo; Tsai, Cheng-Ting; Fu, Yun-Ju; Wong, Yi-Shan; Yen, Da-Jen; Chang, Tzu-Hao; Huang, Hsien-Da; Lee, Oscar Kuang-Sheng; Chien, Shu; Ho, Jennifer Hui-Chun

    2013-03-01

    Light-emitting diode (LED) irradiation is potentially a photostimulator to manipulate cell behavior by opsin-triggered phototransduction and thermal energy supply in living cells. Directional stem cell motility is critical for the efficiency and specificity of stem cells in tissue repair. We explored that green LED (530 nm) irradiation directed the human orbital fat stem cells (OFSCs) to migrate away from the LED light source through activation of extracellular signal-regulated kinases (ERK)/MAP kinase/p38 signaling pathway. ERK inhibitor selectively abrogated light-driven OFSC migration. Phosphorylation of these kinases as well as green LED irradiation-induced cell migration was facilitated by increasing adenosine triphosphate (ATP) production in OFSCs after green LED exposure, and which was thermal stress-independent mechanism. OFSCs, which are multi-potent mesenchymal stem cells isolated from human orbital fat tissue, constitutionally express three opsins, i.e. retinal pigment epithelium-derived rhodopsin homolog (RRH), encephalopsin (OPN3) and short-wave-sensitive opsin 1 (OPN1SW). However, only two non-visual opsins, i.e. RRH and OPN3, served as photoreceptors response to green LED irradiation-induced OFSC migration. In conclusion, stem cells are sensitive to green LED irradiation-induced directional cell migration through activation of ERK signaling pathway via a wavelength-dependent phototransduction.

  20. S cones: Evolution, retinal distribution, development, and spectral sensitivity.

    PubMed

    Hunt, David M; Peichl, Leo

    2014-03-01

    S cones expressing the short wavelength-sensitive type 1 (SWS1) class of visual pigment generally form only a minority type of cone photoreceptor within the vertebrate duplex retina. Hence, their primary role is in color vision, not in high acuity vision. In mammals, S cones may be present as a constant fraction of the cones across the retina, may be restricted to certain regions of the retina or may form a gradient across the retina, and in some species, there is coexpression of SWS1 and the long wavelength-sensitive (LWS) class of pigment in many cones. During retinal development, SWS1 opsin expression generally precedes that of LWS opsin, and evidence from genetic studies indicates that the S cone pathway may be the default pathway for cone development. With the notable exception of the cartilaginous fishes, where S cones appear to be absent, they are present in representative species from all other vertebrate classes. S cone loss is not, however, uncommon; they are absent from most aquatic mammals and from some but not all nocturnal terrestrial species. The peak spectral sensitivity of S cones depends on the spectral characteristics of the pigment present. Evidence from the study of agnathans and teleost fishes indicates that the ancestral vertebrate SWS1 pigment was ultraviolet (UV) sensitive with a peak around 360 nm, but this has shifted into the violet region of the spectrum (>380 nm) on many separate occasions during vertebrate evolution. In all cases, the shift was generated by just one or a few replacements in tuning-relevant residues. Only in the avian lineage has tuning moved in the opposite direction, with the reinvention of UV-sensitive pigments.

  1. Opsin switch reveals function of the ultraviolet cone in fish foraging

    PubMed Central

    Novales Flamarique, Iñigo

    2013-01-01

    Although several studies have shown that ultraviolet (UV) wavelengths are important in naturally occurring, visually guided behaviours of vertebrates, the function of the UV cone in such behaviours is unknown. Here, I used thyroid hormone to transform the UV cones of young rainbow trout into blue cones, a phenomenon that occurs naturally as the animal grows, to test whether the resulting loss of UV sensitivity affected the animal's foraging performance on Daphnia magna, a prey zooplankton. The distances and angles at which prey were located (variables that are known indicators of foraging performance) were significantly reduced for UV knock-out fish compared with controls. Optical measurements and photon-catch calculations revealed that the contrast of Daphnia was greater when perceived by the visual system of control versus that of thyroid-hormone-treated fish, demonstrating that the UV cone enhanced the foraging performance of young rainbow trout. Because most juvenile fishes have UV cones and feed on zooplankton, this finding has wide implications for understanding the visual ecology of fishes. The enhanced target contrast provided by UV cones could be used by other vertebrates in various behaviours, including foraging, mate selection and communication. PMID:23222448

  2. Gene conversion between red and defective green opsin gene in blue cone monochromacy

    SciTech Connect

    Reyniers, E.; Van Thienen, M.N.; De Boulle, K.; Willems, P.J.

    1995-09-20

    Blue cone monochromacy is an X-linked condition in which the function of both the red pigment gene (RCP) and the green pigment gene (GCP) is impaired. Blue cone monochromacy can be due to a red/green gene array rearrangement existing of a single red/green hybrid gene and an inactivating C203R point mutation in both RCP and GCP. The flanking sequences of the C230R mutation in exon 4 of RCP were characteristic for GCP, indicating that this mutation was transferred from GCP into RCP by gene conversion. 23 refs., 3 figs., 1 tab.

  3. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup.

    PubMed

    Lamb, Trevor D; Collin, Shaun P; Pugh, Edward N

    2007-12-01

    Charles Darwin appreciated the conceptual difficulty in accepting that an organ as wonderful as the vertebrate eye could have evolved through natural selection. He reasoned that if appropriate gradations could be found that were useful to the animal and were inherited, then the apparent difficulty would be overcome. Here, we review a wide range of findings that capture glimpses of the gradations that appear to have occurred during eye evolution, and provide a scenario for the unseen steps that have led to the emergence of the vertebrate eye.

  4. Functional map of arrestin binding to phosphorylated opsin, with and without agonist

    PubMed Central

    Peterhans, Christian; Lally, Ciara C. M.; Ostermaier, Martin K.; Sommer, Martha E.; Standfuss, Jörg

    2016-01-01

    Arrestins desensitize G protein-coupled receptors (GPCRs) and act as mediators of signalling. Here we investigated the interactions of arrestin-1 with two functionally distinct forms of the dim-light photoreceptor rhodopsin. Using unbiased scanning mutagenesis we probed the individual contribution of each arrestin residue to the interaction with the phosphorylated apo-receptor (Ops-P) and the agonist-bound form (Meta II-P). Disruption of the polar core or displacement of the C-tail strengthened binding to both receptor forms. In contrast, mutations of phosphate-binding residues (phosphosensors) suggest the phosphorylated receptor C-terminus binds arrestin differently for Meta II-P and Ops-P. Likewise, mutations within the inter-domain interface, variations in the receptor-binding loops and the C-edge of arrestin reveal different binding modes. In summary, our results indicate that arrestin-1 binding to Meta II-P and Ops-P is similarly dependent on arrestin activation, although the complexes formed with these two receptor forms are structurally distinct. PMID:27350090

  5. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup

    PubMed Central

    Lamb, Trevor D.; Collin, Shaun P.; Pugh, Edward N.

    2011-01-01

    Charles Darwin appreciated the conceptual difficulty in accepting that an organ as wonderful as the vertebrate eye could have evolved through natural selection. He reasoned that if appropriate gradations could be found that were useful to the animal and were inherited, then the apparent difficulty would be overcome. Here, we review a wide range of findings that capture glimpses of the gradations that appear to have occurred during eye evolution, and provide a scenario for the unseen steps that have led to the emergence of the vertebrate eye. PMID:18026166

  6. Temperature profile analysis for Amargosa Valley wells LWS-A, ASH-B, and MSH-C. DOE UGTA RI/FS geothermal gradient study results FY 1995

    SciTech Connect

    Gillespie, D.

    1995-09-01

    The purpose of this investigation is to estimate vertical fluid flux rates in saturated units penetrated by selected wells at the Nevada Test Site (NTS) using geothermal gradient data. Estimates of vertical fluid flux rates are critical in developing models for contaminate flow within, recharge potential to, and discharge from the groundwater system at the NTS. If temperature in the well is in equilibrium with the surrounding rocks, it is possible to detect the vertical flow of groundwater from the well`s thermal profile. Heat in the subsurface is transported by conduction through the rock and by advection caused by subsurface water movement. Units in which vertical flow is occurring will produce a curve in the thermal profile within the well. Prior to the implementation of the Underground Test Area Remedial Investigation/Feasibility Study (UGTA RI/FS), investigation of thermal data from wells at the NTS was hindered by the completion of wells as open holes or without casing cemented in place. The open-hole type of completion allows cross-flow within the wellbore which can yield information about relative pressures between connected aquifers, but which renders thermal gradient data essentially useless, or at best highly suspect for interpreting in situ groundwater movement. Wells recently completed in the Department of Energy (DOE) Environmental Restoration (ER) Program have been completed with casing cemented to the surface (to prohibit cross-flow between units in the annular space between the casing and the wellbore) and with completion zones open to a single hydrologic horizon. This type of completion results in temperature gradient profiles more representative of actual thermal conditions in the units penetrated by the well. Results are presented of temperature profiles of 3 wells located in the Death Valley Groundwater Basin, outside the southern border of the NTS.

  7. Eye spectral sensitivity in fresh- and brackish-water populations of three glacial-relict Mysis species (Crustacea): physiology and genetics of differential tuning.

    PubMed

    Donner, Kristian; Zak, Pavel; Viljanen, Martta; Lindström, Magnus; Feldman, Tatiana; Ostrovsky, Mikhail

    2016-04-01

    Absorbance spectra of single rhabdoms were studied by microspectrophotometry (MSP) and spectral sensitivities of whole eyes by electroretinography (ERG) in three glacial-relict species of opossum shrimps (Mysis). Among eight populations from Fennoscandian fresh-water lakes (L) and seven populations from the brackish-water Baltic Sea (S), L spectra were systematically red-shifted by 20-30 nm compared with S spectra, save for one L and one S population. The difference holds across species and bears no consistent adaptive relation to the current light environments. In the most extensively studied L-S pair, two populations of M. relicta (L(p) and S(p)) separated for less than 10,000 years, no differences translating into amino acid substitutions have been found in the opsin genes, and the chromophore of the visual pigments as analyzed by HPLC is pure A1. However, MSP experiments with spectrally selective bleaching show the presence of two rhodopsins (λ(max) ≈ 525-530 nm, MWS, and 565-570 nm, LWS) expressed in different proportions. ERG recordings of responses to "red" and "blue" light linearly polarized at orthogonal angles indicate segregation of the pigments into different cells differing in polarization sensitivity. We propose that the pattern of development of LWS and MWS photoreceptors is governed by an ontogenetic switch responsive to some environmental signal(s) other than light that generally differ(s) between lakes and sea, and that this reaction norm is conserved from a common ancestor of all three species.

  8. From CIE 2006 physiological model to improved age-dependent and average colorimetric observers.

    PubMed

    Sarkar, Abhijit; Autrusseau, Florent; Viénot, Françoise; Le Callet, Patrick; Blondé, Laurent

    2011-10-01

    In the context of color perception on modern wide-gamut displays with narrowband spectral primaries, we performed a theoretical analysis on various aspects of physiological observers proposed by CIE TC 1-36 (CIEPO06). We allowed certain physiological factors to vary, which was not considered in the CIEPO06 framework. For example, we analyzed that the long-wave-sensitive (LWS) or medium-wave-sensitive (MWS) peak wavelength shift in the photopigment absorption spectra, a factor not modeled in CIEPO06, contributed more toward observer variability than some of the factors considered in the model. Further, we compared the color-matching functions derived from the CIEPO06 model and the CIE 10° standard colorimetric observer to the average observer data from three distinct subgroups of Stiles-Burch observers, formed on the basis of observer ages (22-23 years, 27-29 years, and 49-50 years). The errors in predicting the x(λ) and y(λ) color-matching functions of the intragroup average observers in the long-wave range and in the medium-wave range, respectively, were generally more in the case of the CIEPO06 model compared to the 10° standard colorimetric observer and manifested in both spectral and chromaticity space. In contrast, the short-wave-sensitive z₁₀(λ) function of the 10° standard colorimetric observer performed poorly compared to the CIEPO06 model for all three subgroups. Finally, a constrained nonlinear optimization on the CIEPO06 model outputs showed that a peak wavelength shift of photopigment density alone could not improve the model prediction errors at higher wavelengths. As an alternative, two optimized weighting functions for each of the LWS and MWS cone photopigment densities led to significant improvement in the prediction of intra-age-group average data for both the 22-23 year and 49-50 year age groups. We hypothesize that the assumption in the CIEPO06 model that the peak optical density of visual pigments does not vary with age is false and is

  9. Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves.

    PubMed

    Colosi, John A

    2008-09-01

    While many results have been intuited from numerical simulation studies, the precise connections between shallow-water acoustic variability and the space-time scales of nonlinear internal waves (NLIWs) as well as the background environmental conditions have not been clearly established analytically. Two-dimensional coupled mode propagation through NLIWs is examined using a perturbation series solution in which each order n is associated with nth-order multiple scattering. Importantly, the perturbation solution gives resonance conditions that pick out specific NLIW scales that cause coupling, and seabed attenuation is demonstrated to broaden these resonances, fundamentally changing the coupling behavior at low frequency. Sound-speed inhomogeneities caused by internal solitary waves (ISWs) are primarily considered and the dependence of mode coupling on ISW amplitude, range width, depth structure, location relative to the source, and packet characteristics are delineated as a function of acoustic frequency. In addition, it is seen that significant energy transfer to modes with initially low or zero energy involves at least a second order scattering process. Under moderate scattering conditions, comparisons of first order, single scattering theoretical predictions to direct numerical simulation demonstrate the accuracy of the approach for acoustic frequencies upto 400 Hz and for single as well as multiple ISW wave packets.

  10. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats

    PubMed Central

    Jones, Gareth; Teeling, Emma C.; Rossiter, Stephen J.

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a “birth-and death” evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences. PMID

  11. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats.

    PubMed

    Jones, Gareth; Teeling, Emma C; Rossiter, Stephen J

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a "birth-and death" evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences.

  12. Group benefit associated with polymorphic trichromacy in a Malagasy primate (Propithecus verreauxi)

    PubMed Central

    Veilleux, Carrie C.; Scarry, Clara J.; Di Fiore, Anthony; Kirk, E. Christopher; Bolnick, Deborah A.; Lewis, Rebecca J.

    2016-01-01

    In some primate lineages, polymorphisms in the X-linked M/LWS opsin gene have produced intraspecific variation in color vision. In these species, heterozygous females exhibit trichromacy, while males and homozygous females exhibit dichromacy. The evolutionary persistence of these polymorphisms suggests that balancing selection maintains color vision variation, possibly through a ‘trichromat advantage’ in detecting yellow/orange/red foods against foliage. We identified genetic evidence of polymorphic trichromacy in a population of Verreaux’s sifaka (Propithecus verreauxi) at Kirindy Mitea National Park in Madagascar, and explored effects of color vision on reproductive success and feeding behavior using nine years of morphological, demographic, and feeding data. We found that trichromats and dichromats residing in social groups with trichromats exhibit higher body mass indices than individuals in dichromat-only groups. Additionally, individuals in a trichromat social group devoted significantly more time to fruit feeding and had longer fruit feeding bouts than individuals in dichromat-only groups. We hypothesize that, due to small, cohesive sifaka social groups, a trichromat advantage in detecting productive fruit patches during the energetically stressful dry season also benefits dichromats in a trichromat’s group. Our results offer the first support for the ‘mutual benefit of association’ hypothesis regarding the maintenance of polymorphic trichromacy in primates. PMID:27910919

  13. Retinal transcriptome sequencing sheds light on the adaptation to nocturnal and diurnal lifestyles in raptors

    PubMed Central

    Wu, Yonghua; Hadly, Elizabeth A.; Teng, Wenjia; Hao, Yuyang; Liang, Wei; Liu, Yu; Wang, Haitao

    2016-01-01

    Owls (Strigiformes) represent a fascinating group of birds that are the ecological night-time counterparts to diurnal raptors (Accipitriformes). The nocturnality of owls, unusual within birds, has favored an exceptional visual system that is highly tuned for hunting at night, yet the molecular basis for this adaptation is lacking. Here, using a comparative evolutionary analysis of 120 vision genes obtained by retinal transcriptome sequencing, we found strong positive selection for low-light vision genes in owls, which contributes to their remarkable nocturnal vision. Not surprisingly, we detected gene loss of the violet/ultraviolet-sensitive opsin (SWS1) in all owls we studied, but two other color vision genes, the red-sensitive LWS and the blue-sensitive SWS2, were found to be under strong positive selection, which may be linked to the spectral tunings of these genes toward maximizing photon absorption in crepuscular conditions. We also detected the only other positively selected genes associated with motion detection in falcons and positively selected genes associated with bright-light vision and eye protection in other diurnal raptors (Accipitriformes). Our results suggest the adaptive evolution of vision genes reflect differentiated activity time and distinct hunting behaviors. PMID:27645106

  14. How parrots see their colours: novelty in the visual pigments of Platycercus elegans.

    PubMed

    Knott, Ben; Davies, Wayne I L; Carvalho, Livia S; Berg, Mathew L; Buchanan, Katherine L; Bowmaker, James K; Bennett, Andrew T D; Hunt, David M

    2013-12-01

    Intraspecific differences in retinal physiology have been demonstrated in several vertebrate taxa and are often subject to adaptive evolution. Nonetheless, such differences are currently unknown in birds, despite variations in habitat, behaviour and visual stimuli that might influence spectral sensitivity. The parrot Platycercus elegans is a species complex with extreme plumage colour differences between (and sometimes within) subspecies, making it an ideal candidate for intraspecific differences in spectral sensitivity. Here, the visual pigments of P. elegans were fully characterised through molecular sequencing of five visual opsin genes and measurement of their absorbance spectra using microspectrophotometry. Three of the genes, LWS, SW1 and SWS2, encode for proteins similar to those found in other birds; however, both the RH1 and RH2 pigments had polypeptides with carboxyl termini of different lengths and unusual properties that are unknown previously for any vertebrate visual pigment. Specifically, multiple RH2 transcripts and protein variants (short, medium and long) were identified for the first time that are generated by alternative splicing of downstream coding and non-coding exons. Our work provides the first complete characterisation of the visual pigments of a parrot, perhaps the most colourful order of birds, and moreover suggests more variability in avian eyes than hitherto considered.

  15. Age-related deterioration of rod vision in mice.

    PubMed

    Kolesnikov, Alexander V; Fan, Jie; Crouch, Rosalie K; Kefalov, Vladimir J

    2010-08-18

    Even in healthy individuals, aging leads to deterioration in visual acuity, contrast sensitivity, visual field, and dark adaptation. Little is known about the neural mechanisms that drive the age-related changes of the retina and, more specifically, photoreceptors. According to one hypothesis, the age-related deterioration in rod function is due to the limited availability of 11-cis-retinal for rod pigment formation. To determine how aging affects rod photoreceptors and to test the retinoid-deficiency hypothesis, we compared the morphological and functional properties of rods of adult and aged B6D2F1/J mice. We found that the number of rods and the length of their outer segments were significantly reduced in 2.5-year-old mice compared with 4-month-old animals. Aging also resulted in a twofold reduction in the total level of opsin in the retina. Behavioral tests revealed that scotopic visual acuity and contrast sensitivity were decreased by twofold in aged mice, and rod ERG recordings demonstrated reduced amplitudes of both a- and b-waves. Sensitivity of aged rods determined from single-cell recordings was also decreased by 1.5-fold, corresponding to not more than 1% free opsin in these photoreceptors, and kinetic parameters of dim flash response were not altered. Notably, the rate of rod dark adaptation was unaffected by age. Thus, our results argue against age-related deficiency of 11-cis-retinal in the B6D2F1/J mouse rod visual cycle. Surprisingly, the level of cellular dark noise was increased in aged rods, providing an alternative mechanism for their desensitization.

  16. Evolving the Living With a Star Data System Definition

    NASA Astrophysics Data System (ADS)

    Otranto, J.; Dijoseph, M.; Worrall, W.

    2003-04-01

    NASA’s Living With a Star (LWS) Program is a space weather-focused and applications-driven research program. The LWS Program is soliciting input from the solar, space physics, space weather, and climate science communities to develop a system that enables access to science data associated with these disciplines, and advances the development of discipline and interdisciplinary findings. The LWS Program will implement a data system that builds upon the existing and planned data capture, processing, and storage components put in place by individual spacecraft missions and also inter-project data management systems, such as active archives, deep archives, and multi-mission repositories. It is technically feasible for the LWS Program to integrate data from a broad set of resources, assuming they are either publicly accessible or access is permitted by the system’s administrators. The LWS Program data system will work in coordination with spacecraft mission data systems and science data repositories, integrating them into a common data representation. This common representation relies on a robust metadata definition that provides journalistic and technical data descriptions, plus linkages to supporting data products and tools. The LWS Program intends to become an enabling resource to PIs, interdisciplinary scientists, researchers, and students facilitating both access to a broad collection of science data, as well as the necessary supporting components to understand and make productive use of the data. For the LWS Program to represent science data that is physically distributed across various ground system elements, information about the data products stored on each system is collected through a series of LWS-created active agents. These active agents are customized to interface or interact with each one of these data systems, collect information, and forward updates to a single LWS-developed metadata broker. This broker, in turn, updates a centralized repository of

  17. Immunolocalization of Arthropsin in the Onychophoran Euperipatoides rowelli (Peripatopsidae).

    PubMed

    Schumann, Isabell; Hering, Lars; Mayer, Georg

    2016-01-01

    Opsins are light-sensitive proteins that play a key role in animal vision and are related to the ancient photoreceptive molecule rhodopsin found in unicellular organisms. In general, opsins involved in vision comprise two major groups: the rhabdomeric (r-opsins) and the ciliary opsins (c-opsins). The functionality of opsins, which is dependent on their protein structure, may have changed during evolution. In arthropods, typically r-opsins are responsible for vision, whereas in vertebrates c-opsins are components of visual photoreceptors. Recently, an enigmatic r-opsin-like protein called arthropsin has been identified in various bilaterian taxa, including arthropods, lophotrochozoans, and chordates, by performing transcriptomic and genomic analyses. Since the role of arthropsin and its distribution within the body are unknown, we immunolocalized this protein in a representative of Onychophora - Euperipatoides rowelli - an ecdysozoan taxon which is regarded as one of the closest relatives of Arthropoda. Our data show that arthropsin is expressed in the central nervous system of E. rowelli, including the brain and the ventral nerve cords, but not in the eyes. These findings are consistent with previous results based on reverse transcription PCR in a closely related onychophoran species and suggest that arthropsin is a non-visual protein. Based on its distribution in the central brain region and the mushroom bodies, we speculate that the onychophoran arthropsin might be either a photosensitive molecule playing a role in the circadian clock, or a non-photosensitive protein involved in olfactory pathways, or both.

  18. Immunolocalization of Arthropsin in the Onychophoran Euperipatoides rowelli (Peripatopsidae)

    PubMed Central

    Schumann, Isabell; Hering, Lars; Mayer, Georg

    2016-01-01

    Opsins are light-sensitive proteins that play a key role in animal vision and are related to the ancient photoreceptive molecule rhodopsin found in unicellular organisms. In general, opsins involved in vision comprise two major groups: the rhabdomeric (r-opsins) and the ciliary opsins (c-opsins). The functionality of opsins, which is dependent on their protein structure, may have changed during evolution. In arthropods, typically r-opsins are responsible for vision, whereas in vertebrates c-opsins are components of visual photoreceptors. Recently, an enigmatic r-opsin-like protein called arthropsin has been identified in various bilaterian taxa, including arthropods, lophotrochozoans, and chordates, by performing transcriptomic and genomic analyses. Since the role of arthropsin and its distribution within the body are unknown, we immunolocalized this protein in a representative of Onychophora – Euperipatoides rowelli – an ecdysozoan taxon which is regarded as one of the closest relatives of Arthropoda. Our data show that arthropsin is expressed in the central nervous system of E. rowelli, including the brain and the ventral nerve cords, but not in the eyes. These findings are consistent with previous results based on reverse transcription PCR in a closely related onychophoran species and suggest that arthropsin is a non-visual protein. Based on its distribution in the central brain region and the mushroom bodies, we speculate that the onychophoran arthropsin might be either a photosensitive molecule playing a role in the circadian clock, or a non-photosensitive protein involved in olfactory pathways, or both. PMID:27540356

  19. A comparison of the efficiency of G protein activation by ligand-free and light-activated forms of rhodopsin.

    PubMed Central

    Melia, T J; Cowan, C W; Angleson, J K; Wensel, T G

    1997-01-01

    Activation of the photoreceptor G protein transducin (Gt) by opsin, the ligand-free form of rhodopsin, was measured using rod outer segment membranes with densities of opsin and Gt similar to those found in rod cells. When GTPgammaS was used as the activating nucleotide, opsin catalyzed transducin activation with an exponential time course with a rate constant k(act) on the order of 2 x 10(-3)s(-1). Comparison under these conditions to activation by flash-generated metarhodopsin II (MII) revealed that opsin- and R*-catalyzed activation showed similar kinetics when MII was present at a surface density approximately 10(-6) lower than that of opsin. Thus, in contrast to some previous reports, we find that the catalytic potency of opsin is only approximately 10(-6) that of MII. In the presence of residual retinaldehyde-derived species present in membranes treated with hydroxylamine after bleaching, the apparent k(act) observed was much higher than that for opsin, suggesting a possible explanation for previous reports of more efficient activation by opsin. These results are important for considering the possible role of opsin in the diverse phenomena in which it has been suggested to play a key role, such as bleaching desensitization and retinal degeneration induced by continuous light or vitamin A deprivation. PMID:9414230

  20. Evolving the Living With a Star Data System Definition

    NASA Astrophysics Data System (ADS)

    Otranto, J. F.; Dijoseph, M.

    2003-12-01

    NASA's Living With a Star (LWS) Program is a space weather-focused and applications-driven research program. The LWS Program is soliciting input from the solar, space physics, space weather, and climate science communities to develop a system that enables access to science data associated with these disciplines, and advances the development of discipline and interdisciplinary findings. The LWS Program will implement a data system that builds upon the existing and planned data capture, processing, and storage components put in place by individual spacecraft missions and also inter-project data management systems, including active and deep archives, and multi-mission data repositories. It is technically feasible for the LWS Program to integrate data from a broad set of resources, assuming they are either publicly accessible or allow access by permission. The LWS Program data system will work in coordination with spacecraft mission data systems and science data repositories, integrating their holdings using a common metadata representation. This common representation relies on a robust metadata definition that provides journalistic and technical data descriptions, plus linkages to supporting data products and tools. The LWS Program intends to become an enabling resource to PIs, interdisciplinary scientists, researchers, and students facilitating both access to a broad collection of science data, as well as the necessary supporting components to understand and make productive use of these data. For the LWS Program to represent science data that are physically distributed across various ground system elements, information will be collected about these distributed data products through a series of LWS Program-created agents. These agents will be customized to interface or interact with each one of these data systems, collect information, and forward any new metadata records to a LWS Program-developed metadata library. A populated LWS metadata library will function as a

  1. Fluid-Rock Interaction at the Slab-Mantle Interface: Insights from the High Pressure Rocks of the Sivrihisar Massif, Turkey

    NASA Astrophysics Data System (ADS)

    Fornash, K.; Whitney, D. L.; Cosca, M. A.

    2013-12-01

    Water is transported into the deep parts of the subduction system via hydrous phases such as lawsonite (lws, 11 wt.% H2O), phengite (ph, 4%), amphibole (4%), epidote-group minerals (2-4%), talc (5%), and chlorite (12%). These hydrous phases are abundant in the metabasaltic (lws eclogite and blueschist) and metasedimentary (marble, quartzite) rocks of the Sivrihisar Massif (Turkey), where they can exceed 40% modal abundance. The hydrous nature of these rocks (~5-6 wt.% H2O) likely reflects the effects of prolonged fluid-rock interaction at or near the slab-mantle interface at depths up to ~80 km for at least ~10 Ma, as indicated by the difference in 40Ar/39Ar phengite ages for lws eclogite and lws blueschist that formed from eclogite during decompression. To document the conditions, scale, and mechanism of fluid-mineral interaction at 80-45 km depth in a Late Cretaceous subduction zone, we integrate geochemical (major and trace element compositions, zoning patterns), geochronologic (40Ar/39Ar phengite), and microstructural (EBSD, XRCT) data. These techniques are applied to minerals in different textural positions (grt inclusions, fabric-forming minerals in matrix, HP veins) to investigate changes as a function of P-T conditions and to minerals in different structural positions (proximity to fault contact with overlying ultramafic unit, serpentinite lenses, lithologic contacts) to evaluate the effects of deformation and identify fluid sources and pathways. Microprobe analysis and mapping shows that lawsonite is commonly zoned in Fe, Ti, and (less common) Cr. Cr zoning is typically oscillatory and occurs in lws+grt+ph veins at lws-ecl pod margins or in blueschist located along lithologic or structural contacts. Blueschist/eclogite lws zoned in Fe typically has a Fe-poor core and Fe-richer rim, but oscillatory Fe zoning is also observed in lws veins and coarse-grained lws at pod margins. Fe-poor cores are enriched in Ti. Hourglass Ti sector zoning is common in

  2. Targeted Research and Technology Within NASA's Living With a Star Program

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro; Baker, Kile; Bellaire, Paul; Blake, Bern; Crowley, Geoff; Eddy, Jack; Goodrich, Charles; Gopalswamy, Nat; Gosling, Jack; Hesse, Michael

    2004-01-01

    Targeted Research & Technology (TR&T) NASA's Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.

  3. TARGETED RESEARCH AND TECHNOLOGY WITHIN NASA'S LIVING WITH A STAR PROGRAM.

    SciTech Connect

    Gosling, J. T.; Antiochos, Spiro; Baker, Kile; Bellaire, Paul; Blake, Bern; Crowley, Geoff; Eddy, Jack; Goodrich, Charles; Gopalswamy, Nat; Hesse, Michael; Hurlburt, Neal; Jackman, Charles; Kozyra, Janet; Labonte, Barry; Lean, Judith; Linker, Jon; Mazur, Joe; Onsager, Terry; Sibeck, David

    2003-07-10

    NASA’s Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.

  4. The Living With a Star Space Environment Testbed Payload

    NASA Technical Reports Server (NTRS)

    Xapsos, Mike

    2015-01-01

    This presentation outlines a brief description of the Living With a Star (LWS) Program missions and detailed information about the Space Environment Testbed (SET) payload consisting of a space weather monitor and carrier containing 4 board experiments.

  5. Chickens from lines artificially selected for juvenile low and high body weight differ in glucose homeostasis and pancreas physiology.

    PubMed

    Sumners, L H; Zhang, W; Zhao, X; Honaker, C F; Zhang, S; Cline, M A; Siegel, P B; Gilbert, E R

    2014-06-01

    Artificial selection of White Plymouth Rock chickens for juvenile (day 56) body weight resulted in two divergent genetic lines: hypophagic low weight (LWS) chickens and hyperphagic obese high weight (HWS) chickens, with the latter more than 10-fold heavier than the former at selection age. A study was designed to investigate glucose regulation and pancreas physiology at selection age in LWS chickens and HWS chickens. Oral glucose tolerance and insulin sensitivity tests revealed differences in threshold sensitivity to insulin and glucose clearance rate between the lines. Results from real-time PCR showed greater pancreatic mRNA expression of four glucose regulatory genes (preproinsulin, PPI; preproglucagon, PPG; glucose transporter 2, GLUT2; and pancreatic duodenal homeobox 1, Pdx1) in LWS chickens, than HWS chickens. Histological analysis of the pancreas revealed that HWS chickens have larger pancreatic islets, less pancreatic islet mass, and more pancreatic inflammation than LWS chickens, all of which presumably contribute to impaired glucose metabolism.

  6. Targeted Research and Technology Within NASA's Living With a Star Program

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2003-01-01

    NASA's Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.

  7. Dimerization of visual pigments in vivo

    PubMed Central

    Zhang, Tao; Cao, Li-Hui; Kumar, Sandeep; Enemchukwu, Nduka O.; Zhang, Ning; Lambert, Alyssia; Zhao, Xuchen; Jones, Alex; Wang, Shixian; Dennis, Emily M.; Fnu, Amrita; Ham, Sam; Rainier, Jon; Yau, King-Wai; Fu, Yingbin

    2016-01-01

    It is a deeply engrained notion that the visual pigment rhodopsin signals light as a monomer, even though many G protein-coupled receptors are now known to exist and function as dimers. Nonetheless, recent studies (albeit all in vitro) have suggested that rhodopsin and its chromophore-free apoprotein, R-opsin, may indeed exist as a homodimer in rod disk membranes. Given the overwhelmingly strong historical context, the crucial remaining question, therefore, is whether pigment dimerization truly exists naturally and what function this dimerization may serve. We addressed this question in vivo with a unique mouse line (S-opsin+Lrat−/−) expressing, transgenically, short-wavelength–sensitive cone opsin (S-opsin) in rods and also lacking chromophore to exploit the fact that cone opsins, but not R-opsin, require chromophore for proper folding and trafficking to the photoreceptor’s outer segment. In R-opsin’s absence, S-opsin in these transgenic rods without chromophore was mislocalized; in R-opsin’s presence, however, S-opsin trafficked normally to the rod outer segment and produced functional S-pigment upon subsequent chromophore restoration. Introducing a competing R-opsin transmembrane helix H1 or helix H8 peptide, but not helix H4 or helix H5 peptide, into these transgenic rods caused mislocalization of R-opsin and S-opsin to the perinuclear endoplasmic reticulum. Importantly, a similar peptide-competition effect was observed even in WT rods. Our work provides convincing evidence for visual pigment dimerization in vivo under physiological conditions and for its role in pigment maturation and targeting. Our work raises new questions regarding a potential mechanistic role of dimerization in rhodopsin signaling. PMID:27462111

  8. The Degeneration and Apoptosis Patterns of Cone Photoreceptors in rd11 Mice

    PubMed Central

    Li, Xia; Dai, Xufeng; Han, Juanjuan; Qi, Yan; Liu, Yan; Chang, Bo

    2017-01-01

    The retinal degeneration 11 (rd11) mouse is a new animal model with rapid photoreceptor degeneration. The long-term efficacy of gene therapy has a direct relationship with the onset of photoreceptor degeneration or apoptosis, whereas the degeneration or apoptosis patterns of photoreceptors are still unclear in rd11 mice. The distribution patterns of cone function-related L- and S-opsin were examined by immunofluorescence staining, and the apoptosis was performed by TUNEL assay in rd11 mice. The expression pattern of L-opsin or S-opsin in rd11 retina at postnatal day (P) 14 was similar to the pattern observed in wildtype retina. With increasing age, the expression of L-opsin and S-opsin, especially S-opsin, decreased significantly in rd11 mice. The degeneration of L-opsin began around the optic nerve and expanded to the periphery of the retina, from the ventral/nasal to dorsal/temporal retina, whereas the expression of S-opsin gradually decreased from the dorsal/temporal to ventral/nasal retina. Apoptotic signal appeared at P14 and was strongest at P28 of rd11 mice. The key genes associated with apoptosis confirmed those changes. These indicated that the degeneration and apoptosis of cone photoreceptors began at P14 of rd11 mice, which was a key point for gene therapy. PMID:28168050

  9. Identification and characterization of a protostome homologue of peropsin from a jumping spider.

    PubMed

    Nagata, Takashi; Koyanagi, Mitsumasa; Tsukamoto, Hisao; Terakita, Akihisa

    2010-01-01

    Peropsin, a member of the opsin family, has characteristics of two functionally distinct opsin-groups, that is, amino acid residues conserved among opsins for light-sensing and a retinal-photoisomerase-like molecular property. Although such a bilateral feature of peropsin seems to be important for understanding the diversity of the opsin family, previous studies have been limited to higher deuterostome, vertebrate and amphioxus peropsins. Here, we report a protostome peropsin homologue from a jumping spider. We found a spider opsin that shares amino acid homology and conserved amino acid residues with known peropsins. The spider opsin-based pigment heterologously expressed in cultured cells exhibited photoisomerase-like isomerization characteristics and a bistable nature. Based on the characteristics of both the amino acid homology and its photochemical properties, we concluded that the spider opsin is the first protostome peropsin homologue. These results show that peropsin existed before the deuterostome-protostome split like other members of the opsin family. In addition, the spider peropsin was localized to non-visual cells in the retina, and fluorescence from reduced retinal chromophore was also observed in the region where peropsin was localized. These findings provide the first demonstration that the peropsin can form a photosensitive pigment in vivo and underlie non-visual function.

  10. Evolution under pressure and the adaptation of visual pigment compressibility in deep-sea environments.

    PubMed

    Porter, Megan L; Roberts, Nicholas W; Partridge, Julian C

    2016-12-01

    Understanding the link between how proteins function in animals that live in extreme environments and selection on specific properties of amino acids has proved extremely challenging. Here we present the discovery of how the compressibility of opsin proteins in two evolutionarily distinct animal groups, teleosts and cephalopods, appears to be adapted to the high-pressure environment of the deep-sea. We report how in both groups, opsins in deeper living species are calculated to be less compressible. This is largely due to a common set of amino acid sites (bovRH# 159, 196, 213, 275) undergoing positive destabilizing selection in six of the twelve amino acid physiochemical properties that determine protein compressibility. This suggests a common evolutionary mechanism to reduce the adiabatic compressibility of opsin proteins. Intriguingly, the sites under selection are on the proteins' outer faces at locations known to be involved in opsin-opsin dimer interactions.

  11. Quantity of glucose transporter and appetite-associated factor mRNA in various tissues after insulin injection in chickens selected for low or high body weight.

    PubMed

    Zhang, Wei; Sumners, Lindsay H; Siegel, Paul B; Cline, Mark A; Gilbert, Elizabeth R

    2013-11-15

    Chickens from lines selected for low (LWS) or high (HWS) body weight differ by 10-fold in body weight at 56 days old with differences in food intake, glucose regulation, and body composition. To evaluate if there are differences in appetite-regulatory factor and glucose transporter (GLUT) mRNA that are accentuated by hypoglycemia, blood glucose was measured, and hypothalamus, liver, pectoralis major, and abdominal fat collected at 90 days of age from female HWS and LWS chickens, and reciprocal crosses, HL and LH, at 60 min after intraperitoneal injection of insulin. Neuropeptide Y (NPY) and receptor (NPYR) subtypes 1 and 5 mRNA were greater in LWS compared with HWS hypothalamus (P < 0.05), but greater in HWS than LWS in fat (P < 0.05). Expression of NPYR2 was greater in LWS than HWS in pectoralis major (P < 0.05). There was greater expression in HWS than LWS for GLUT1 in hypothalamus and liver (P < 0.05), GLUT2 in fat and liver (P < 0.05), and GLUT9 in liver (P < 0.05). Insulin was associated with reduced blood glucose in all populations (P < 0.05) and reduced mRNA of insulin receptor (IR) and GLUT 2 and 3 in liver (P < 0.05). There was heterosis for mRNA, most notably NPYR1 (-78%) and NPYR5 (-81%) in fat and GLUT2 (-70%) in liver. Results suggest that NPY and GLUTs are associated with differences in energy homeostasis in LWS and HWS. Reduced GLUT and IR mRNA after insulin injection suggest a compensatory mechanism to prevent further hypoglycemia.

  12. Into the blue: gene duplication and loss underlie color vision adaptations in a deep-sea chimaera, the elephant shark Callorhinchus milii.

    PubMed

    Davies, Wayne L; Carvalho, Livia S; Tay, Boon-Hui; Brenner, Sydney; Hunt, David M; Venkatesh, Byrappa

    2009-03-01

    The cartilaginous fishes reside at the base of the gnathostome lineage as the oldest extant group of jawed vertebrates. Recently, the genome of the elephant shark, Callorhinchus milii, a chimaerid holocephalan, has been sequenced and therefore becomes the first cartilaginous fish to be analyzed in this way. The chimaeras have been largely neglected and very little is known about the visual systems of these fishes. By searching the elephant shark genome, we have identified gene fragments encoding a rod visual pigment, Rh1, and three cone visual pigments, the middle wavelength-sensitive or Rh2 pigment, and two isoforms of the long wavelength-sensitive or LWS pigment, LWS1 and LWS2, but no evidence for the two short wavelength-sensitive cone classes, SWS1 and SWS2. Expression of these genes in the retina was confirmed by RT-PCR. Full-length coding sequences were used for in vitro expression and gave the following peak absorbances: Rh1 496 nm, Rh2 442 nm, LWS1 499 nm, and LWS2 548 nm. Unusually, therefore, for a deep-sea fish, the elephant shark possesses cone pigments and the potential for trichromacy. Compared with other vertebrates, the elephant shark Rh2 and LWS1 pigments are the shortest wavelength-shifted pigments of their respective classes known to date. The mechanisms for this are discussed and we provide experimental evidence that the elephant shark LWS1 pigment uses a novel tuning mechanism to achieve the short wavelength shift to 499 nm, which inactivates the chloride-binding site. Our findings have important implications for the present knowledge of color vision evolution in early vertebrates.

  13. Archelosaurian color vision, parietal eye loss and the crocodylian nocturnal bottleneck.

    PubMed

    Emerling, Christopher A

    2016-12-08

    Vertebrate color vision has evolved partly through the modification of five ancestral visual opsin proteins via gene duplication, loss and shifts in spectral sensitivity. While many vertebrates, particularly mammals, birds and fishes, have had their visual opsin repertoires studied in great detail, testudines (turtles) and crocodylians have largely been neglected. Here I examine the genomic basis for color vision in four species of turtles and four species of crocodylians, and demonstrate that while turtles appear to vary in their number of visual opsins, crocodylians experienced a reduction in their color discrimination capacity after their divergence from Aves. Based on the opsin sequences present in their genomes and previous measurements of crocodylian cones, I provide evidence that crocodylians have co-opted the rod opsin (RH1) for cone function. This suggests that some crocodylians might have reinvented trichromatic color vision in a novel way, analogous to several primate lineages. The loss of visual opsins in crocodylians paralleled the loss of various anatomical features associated with photoreception, attributed to a 'nocturnal bottleneck' similar to that hypothesized for Mesozoic mammals. I further queried crocodylian genomes for non-visual opsins and genes associated with protection from ultraviolet light, and found evidence for gene inactivation or loss for several of these genes. Two genes, encoding parietopsin and parapinopsin, were additionally inactivated in birds and turtles, likely co-occurring with the loss of the parietal eye in these lineages.

  14. Insulin-induced hypoglycemia associations with gene expression changes in liver and hypothalamus of chickens from lines selected for low or high body weight.

    PubMed

    Rice, Brittany B; Zhang, Wei; Bai, Shiping; Siegel, Paul B; Cline, Mark A; Gilbert, Elizabeth R

    2014-11-01

    Chickens selected for low (LWS) or high (HWS) body weight for more than 56 generations now have a 10-fold difference in body weight at 56 days of age and correlated responses in appetite and glucose regulation. The LWS chickens are lean and some are anorexic, while the HWS are compulsive feeders and have a different threshold sensitivity of food intake and blood glucose to both central and peripheral insulin, respectively. We previously demonstrated that at 90-days of age, insulin-induced hypoglycemia was associated with reduced glucose transporter expression in the liver of both lines, and differences in expression of neuropeptide Y (NPY) and NPY receptor sub-type genes between LWS and HWS in the hypothalamus. The objective of this study was to determine effects of insulin-induced hypoglycemia on gene expression in the hypothalamus and liver of early post-hatch LWS and HWS chicks. On day 5 post-hatch chicks from each line were fasted for 3h and injected intraperitoneally with insulin or vehicle. At 1h post-injection, chicks were euthanized, blood glucose was measured, and hypothalamus and liver were removed. Total RNA was isolated and real time PCR performed. Insulin injection was associated with a more pronounced reduction in blood glucose in HWS compared with LWS chicks (two-way interaction; P<0.05). Aromatic L-amino acid decarboxylase, NPY, and NPY receptor sub-types 2 and 5 mRNA quantities were greater in LWS than HWS chicks in the hypothalamus (P<0.05), whereas pro-opiomelanocortin mRNA was greater in the hypothalamus of HWS than LWS (P<0.05). In the liver, glucose transporter 1, 2 and 3 (GLUT 1, 2 and 3, respectively) mRNA abundance was greater in HWS than LWS chicks (P<0.05). Compared to the vehicle, insulin treatment was associated with an increase in tryptophan hydroxylase 2 mRNA in the hypothalamus of both lines (P=0.02). In the liver of both lines, insulin treatment was associated with decreased (P=0.01) GLUT2 mRNA and increased (P=0.01) GLUT1 m

  15. Differential appetite-related responses to central neuropeptide S in lines of chickens divergently selected for low or high body weight.

    PubMed

    Cline, M A; Prall, B C; Smith, M L; Calchary, W A; Siegel, P B

    2008-07-01

    The anorexigenic 20 amino acid neuropeptide S (NPS) has not been studied in an animal model of hypo- or hyperphagia. The present study aimed to elucidate whether central NPS appetite-related effects are different in lines of chickens that had undergone long-term divergent selection for low (LWS) or high (HWS) body weight and that were hypo- and hyperphagic, respectively. It took a longer time for food intake to be reduced in LWS than HWS chicks administered the lowest dose of NPS tested (0.14 nmol) and, at the highest dose tested (0.56 nmol), they had a greater reduction in food intake than did HWS chicks. HWS chicks responded with a similar magnitude of food intake reduction that was independent of NPS dose. Although water intake was reduced concurrently with food intake after central NPS in both lines, blood glucose concentrations were not affected. Hypothalamic signalling was different between the lines. Although both lines respond to central NPS with decreased c-Fos immunoreactivity in the lateral hypothalamus, the periventricular nucleus had increased c-Fos immunoreactivity in LWS but not HWS chicks. After central NPS treatment, there was increased c-Fos immunoreactivity in the paraventricular nucleus in HWS but not LWS chicks. These data support the notion of differences in the central NPS system between the LWS and HWS lines and infer that central NPS may differentially affect appetite-related processes in other species that contain hypo- and hyperphagic individuals.

  16. Living With a Star, the Geospace Mission Definition Team and Aeronomy

    NASA Technical Reports Server (NTRS)

    Kintner, Paul M., Jr.; Meier, R. R.; Spann, Jim; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    To gain an understanding of the Sun-Earth system, including how and why the sun varies, how the earth responds, and the impacts on humanity, research is needed that has a integrated and systematic approach. The Living With a Star (LWS) program represents an important element in this regard both to continued progress in space science in general and in Aeronomy in particular. A fundamental question in Aeronomy is how the variable sun affects the ionosphere, thermosphere, and mesosphere. The LWS program focuses on those areas of scientific understanding that promote progress in areas that have human impact and can be investigated with space borne instruments. The Geospace Mission Definition Team is charged with investigating the science priorities identified by the LWS Science Architecture Team and developing an approach to making the necessary measurements in concert with other missions and programs. An important aspect of this approach is that all LWS measurement programs are operating simultaneously for several years. We will review some of the areas that the LWS SAT have emphasized in Aeronomy, including understanding the effects of solar variability on ionospheric density and irregularities, the effects of solar variability on the mass density of the atmosphere at LEO altitudes, and the effects of solar variability on near-surface temperatures and on ozone distribution.

  17. Strategic Science to Address Current and Future Space Weather Needs

    NASA Astrophysics Data System (ADS)

    Mannucci, A. J.; Schwadron, N.; Antiochos, S. K.; Bhattacharjee, A.; Bisi, M. M.; Gopalswamy, N.; Kamalabadi, F.; Pulkkinen, A. A.; Tobiska, W. K.; Weimer, D. R.; Withers, P.

    2014-12-01

    NASA's Living With a Star (LWS) program has contributed a wealth of scientific knowledge that is relevant to space weather and user needs. A targeted approach to science questions has resulted in leveraging new scientific knowledge to improve not only our understanding of the Heliophysics domain, but also to develop predictive capabilities in key areas of LWS science. This fascinating interplay between science and applications promises to benefit both domains. Scientists providing feedback to the LWS program are now discussing an evolution of the targeted approach that explicitly considers how new science improves, or enables, predictive capability directly. Long-term program goals are termed "Strategic Science Areas" (SSAs) that address predictive capabilities in six specific areas: geomagnetically induced currents, satellite drag, solar energetic particles, ionospheric total electron content, radio frequency scintillation induced by the ionosphere, and the radiation environment. SSAs are organized around user needs and the impacts of space weather on society. Scientists involved in the LWS program identify targeted areas of research that reference (or bear upon) societal needs. Such targeted science leads to new discoveries and is one of the valid forms of exploration. In this talk we describe the benefits of targeted science, and how addressing societal impacts in an appropriate way maintains the strong science focus of LWS, while also leading to its broader impacts.

  18. Tunable interdigital transducers made of piezoelectric macro-fiber composite

    NASA Astrophysics Data System (ADS)

    Mańka, Michał; Martowicz, Adam; Rosiek, Mateusz; Stepinski, Tadeusz; Uhl, Tadeusz

    2016-11-01

    The number of applications of Lamb waves (LWs) based structural health monitoring (SHM) has significantly increased in recent decades. The growth of interest results from several advantages of this diagnostic technique, that is, considerable mode selectivity and directivity that allow for the assessment of the technical condition of a monitored structure. Successful applications of LWs in the field of SHM stimulate continuous improvement of the transducers’ design to enable capturing more reliable diagnostic data. The paper introduces a new type of transducer that may be used in the LWs based SHM systems, namely tunable-interdigital transducer (T-IDT) based on macro-fiber composites (MFC). The authors provide a short overview on different types of transducers that may be used in SHM applications, followed by a detailed description of the structure of proposed T-IDT. Finally, the results of numerical and experimental tests carried out employing the proposed transducer are discussed and compared to those obtained with a traditional IDT.

  19. Total Land Water Storage Change over 2003 - 2013 Estimated from a Global Mass Budget Approach

    NASA Technical Reports Server (NTRS)

    Dieng, H. B.; Champollion, N.; Cazenave, A.; Wada, Y.; Schrama, E.; Meyssignac, B.

    2015-01-01

    We estimate the total land water storage (LWS) change between 2003 and 2013 using a global water mass budget approach. Hereby we compare the ocean mass change (estimated from GRACE space gravimetry on the one hand, and from the satellite altimetry-based global mean sea level corrected for steric effects on the other hand) to the sum of the main water mass components of the climate system: glaciers, Greenland and Antarctica ice sheets, atmospheric water and LWS (the latter being the unknown quantity to be estimated). For glaciers and ice sheets, we use published estimates of ice mass trends based on various types of observations covering different time spans between 2003 and 2013. From the mass budget equation, we derive a net LWS trend over the study period. The mean trend amounts to +0.30 +/- 0.18 mm/yr in sea level equivalent. This corresponds to a net decrease of -108 +/- 64 cu km/yr in LWS over the 2003-2013 decade. We also estimate the rate of change in LWS and find no significant acceleration over the study period. The computed mean global LWS trend over the study period is shown to be explained mainly by direct anthropogenic effects on land hydrology, i.e. the net effect of groundwater depletion and impoundment of water in man-made reservoirs, and to a lesser extent the effect of naturally-forced land hydrology variability. Our results compare well with independent estimates of human-induced changes in global land hydrology.

  20. Genetic selection for body weight in chickens has altered responses of the brain's AMPK system to food intake regulation effect of ghrelin, but not obestatin.

    PubMed

    Xu, Pingwen; Siegel, Paul B; Denbow, D Michael

    2011-08-01

    The effects of ghrelin and obestatin regulation of food intake are different in mammals and chickens. We investigated central effects of ghrelin and obestatin in lines of chickens selected 50 generations for high (HWS) or low (LWS) body weight. We hypothesized that the effect of ghrelin and obestatin on food intake in 5-day-old chicks is mediated by the AMP-activated protein kinase (AMPK) system and selection for body weight alters the brain's response to ghrelin and obestatin by changing the neuronal AMPK system. Although intracerebroventricular (ICV) ghrelin injection decreased food intake in both lines, the threshold for the anorexigenic effect of central ghrelin was lower in LWS than HWS chicks. Obestatin caused a linear dose-dependent increase in food intake in HWS but not LWS chicks. ICV injection of 0.4 nmol ghrelin inhibited hypothalamic AMPK related gene expression and phosphorylation of AMPK α and acetyl-CoA carboxylase (ACC) with the magnitude of inhibition different in the two lines. In contrast, ICV injection of 4 nmol obestatin did not affect mRNA expression of AMPK system or phosphorylation of AMPK and ACC in either line. These data support the premise of a lower threshold for anorexigenic effect of central ghrelin in LWS than HWS chicks, and this difference may be associated with differential hypothalamic AMPK signaling. Additionally, the hypothalamic mRNA level of ghrelin was significantly higher in LWS than HWS, which may have also contributed to the different threshold response to ghrelin in these two lines. The expression of the ghrelin receptor was also higher in the LWS line, but not until 56 days of age. In summary, selection for body weight has resulted in differences in the central ghrelin and obestatin system, and an altered brain AMPK system may contribute to the different neuronal response to ghrelin, but not obestatin.

  1. Hypothalamic differences in expression of genes involved in monoamine synthesis and signaling pathways after insulin injection in chickens from lines selected for high and low body weight.

    PubMed

    Zhang, Wei; Kim, Sungwon; Settlage, Robert; McMahon, Wyatt; Sumners, Lindsay H; Siegel, Paul B; Dorshorst, Benjamin J; Cline, Mark A; Gilbert, Elizabeth R

    2015-04-01

    Long-term selection for juvenile body weight from a common founder population resulted in two divergent chicken lines (low-weight selected line (LWS), high-weight selected line (HWS)) that display distinct food intake and blood glucose responses to exogenous neuropeptides and insulin. The objective of this study was to elucidate putative targets affecting food intake and energy homeostasis by sequencing hypothalamic RNA from LWS and HWS chickens after insulin injection. Ninety-day-old female LWS and HWS chickens were injected with either vehicle or insulin and hypothalamus collected at 1 h postinjection. Through RNA sequencing, a total of 361 differentially expressed genes (DEGs) were identified. There was greater expression of genes, mainly tyrosine hydroxylase (TH), L-aromatic amino acid decarboxylase (DDC), and vesicular monoamine transporter (VMAT), involved in serotonin and dopamine biosynthesis and signaling in LWS than in HWS vehicle-injected chickens. In contrast, after insulin injection, these genes were more highly expressed in HWS than in LWS. We identified 90 single nucleotide polymorphisms (SNPs) existing only in the HWS and 121 SNPs specific to LWS and 5119 SNPs close to fixation (with absolute frequency difference ≥0.9). Four were located in genes encoding enzymes associated with serotonergic and dopaminergic pathways, such as DDC, TH, and solute carrier family 18, member 2 (VMAT). These data implicate differences in biogenic amines such as serotonin and dopamine in hypothalamic physiology between the chicken lines, and these differences might be associated with polymorphisms during long-term selection. Changes in serotonergic and dopaminergic signaling pathways in response to insulin injection suggest a role in whole-body energy homeostasis.

  2. A systematic literature review of psychological factors and the development of late whiplash syndrome.

    PubMed

    Williamson, Esther; Williams, Mark; Gates, Simon; Lamb, Sarah E

    2008-03-01

    This systematic literature review aims to assess the prognostic value of psychological factors in the development of late whiplash syndrome (LWS). We included prospective cohort studies that provided a baseline measure of at least one psychological variable and used outcome measures relating to LWS (i.e. pain or disability persisting 6 months post injury). A search of electronic databases (Pubmed, Medline, Cinahl, Embase and Psychinfo) up to August 2006 was done using a predetermined search strategy. Methodological quality was assessed independently by two assessors. Data extraction were carried out using a standardised data extraction form. Twenty-five articles representing data from 17 cohorts were included. Fourteen articles were rated as low quality with 11 rated as adequate quality. Meta-analysis was not undertaken due to the heterogeneity of prognostic factors, outcome measures and methods used. Results were tabulated and predefined criterion applied to rate the overall strength of evidence for associations between psychological factors and LWS. Data on 21 possible psychological risk factors were included. The majority of findings were inconclusive. Limited evidence was found to support an association between lower self-efficacy and greater post-traumatic stress with the development of LWS. No association was found between the development of LWS and personality traits, general psychological distress, wellbeing, social support, life control and psychosocial work factors. The lack of conclusive findings and poor methodological quality of the studies reviewed highlights the need for better quality research. Self-efficacy and post-traumatic distress may be associated with the development of LWS but this needs further investigation.

  3. The photochemical determinants of color vision

    PubMed Central

    Wang, Wenjing; Geiger, James H; Borhan, Babak

    2014-01-01

    The evolution of a variety of important chromophore-dependent biological processes, including microbial light sensing and mammalian color vision, relies on protein modifications that alter the spectral characteristics of a bound chromophore. Three different color opsins share the same chromophore, but have three distinct absorptions that together cover the entire visible spectrum, giving rise to trichromatic vision. The influence of opsins on the absorbance of the chromophore has been studied through methods such as model compounds, opsin mutagenesis, and computational modeling. The recent development of rhodopsin mimic that uses small soluble proteins to recapitulate the binding and wavelength tuning of the native opsins provides a new platform for studying protein-regulated spectral tuning. The ability to achieve far-red shifted absorption in the rhodopsin mimic system was attributed to a combination of the lack of a counteranion proximal to the iminium, and a uniformly neutral electrostatic environment surrounding the chromophore. PMID:24323922

  4. The Living With a Star Program Space Environment Testbed

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Day, John H. (Technical Monitor)

    2001-01-01

    This viewgraph presentation describes the objective, approach, and scope of the Living With a Star (LWS) program at the Marshall Space Flight Center. Scientists involved in the project seek to refine the understanding of space weather and the role of solar variability in terrestrial climate change. Research and the development of improved analytic methods have led to increased predictive capabilities and the improvement of environment specification models. Specifically, the Space Environment Testbed (SET) project of LWS is responsible for the implementation of improved engineering approaches to observing solar effects on climate change. This responsibility includes technology development, ground test protocol development, and the development of a technology application model/engineering tool.

  5. Living with a Star Space Environment Testbed

    NASA Technical Reports Server (NTRS)

    Barth, Janet

    2003-01-01

    Summary of activities: (1) FYO1 NRA - Model development and data mining. (2) FY03 NRA - Flight investigations. (3) SET carrier development. (4) Study for accommodation of SET carrier to support advanced detectors. (5) Collaboration with other programs: LWS TR&T to maximize synergy between TR&T space environment research and SET space environment effects research. LWS Data System to optimize dissemination of SET data. NASA Electronic Parts and Packaging Program to leverage ground testing of technologies. Defense Threat Reduction Agency to leverage ground testing and common interests in advanced detectors. and Air Force Research Laboratory to leverage flight opportunities. (6) Education and Public Outreach.

  6. NASA space shuttle lightweight seat

    NASA Technical Reports Server (NTRS)

    Hansen, Chris; Jermstad, Wayne; Lewis, James; Colangelo, Todd

    1996-01-01

    The Space Shuttle Lightweight Seat-Mission Specialist (LWS-MS) is a crew seat for the mission specialists who fly aboard the Space Shuttle. The LWS-MS is a lightweight replacement for the mission specialist seats currently flown on the Shuttle. Using state-of-the-art analysis techniques, a team of NASA and Lockheed engineers from the Johnson Space Center (JSC) designed a seat that met the most stringent requirements demanded of the new seats by the Shuttle program, and reduced the weight of the seats by 52%.

  7. Activation of Transducin by Bistable Pigment Parapinopsin in the Pineal Organ of Lower Vertebrates

    PubMed Central

    Kawano-Yamashita, Emi; Koyanagi, Mitsumasa; Wada, Seiji; Tsukamoto, Hisao; Nagata, Takashi; Terakita, Akihisa

    2015-01-01

    Pineal organs of lower vertebrates contain several kinds of photosensitive molecules, opsins that are suggested to be involved in different light-regulated physiological functions. We previously reported that parapinopsin is an ultraviolet (UV)-sensitive opsin that underlies hyperpolarization of the pineal photoreceptor cells of lower vertebrates to achieve pineal wavelength discrimination. Although, parapinopsin is phylogenetically close to vertebrate visual opsins, it exhibits a property similar to invertebrate visual opsins and melanopsin: the photoproduct of parapinopsin is stable and reverts to the original dark states, demonstrating the nature of bistable pigments. Therefore, it is of evolutionary interest to identify a phototransduction cascade driven by parapinopsin and to compare it with that in vertebrate visual cells. Here, we showed that parapinopsin is coupled to vertebrate visual G protein transducin in the pufferfish, zebrafish, and lamprey pineal organs. Biochemical analyses demonstrated that parapinopsins activated transducin in vitro in a light-dependent manner, similar to vertebrate visual opsins. Interestingly, transducin activation by parapinopsin was provoked and terminated by UV- and subsequent orange-lights irradiations, respectively, due to the bistable nature of parapinopsin, which could contribute to a wavelength-dependent control of a second messenger level in the cell as a unique optogenetic tool. Immunohistochemical examination revealed that parapinopsin was colocalized with Gt2 in the teleost, which possesses rod and cone types of transducin, Gt1, and Gt2. On the other hand, in the lamprey, which does not possess the Gt2 gene, in situ hybridization suggested that parapinopsin-expressing photoreceptor cells contained Gt1 type transducin GtS, indicating that lamprey parapinopsin may use GtS in place of Gt2. Because it is widely accepted that vertebrate visual opsins having a bleaching nature have evolved from non-bleaching opsins

  8. Activation of Transducin by Bistable Pigment Parapinopsin in the Pineal Organ of Lower Vertebrates.

    PubMed

    Kawano-Yamashita, Emi; Koyanagi, Mitsumasa; Wada, Seiji; Tsukamoto, Hisao; Nagata, Takashi; Terakita, Akihisa

    2015-01-01

    Pineal organs of lower vertebrates contain several kinds of photosensitive molecules, opsins that are suggested to be involved in different light-regulated physiological functions. We previously reported that parapinopsin is an ultraviolet (UV)-sensitive opsin that underlies hyperpolarization of the pineal photoreceptor cells of lower vertebrates to achieve pineal wavelength discrimination. Although, parapinopsin is phylogenetically close to vertebrate visual opsins, it exhibits a property similar to invertebrate visual opsins and melanopsin: the photoproduct of parapinopsin is stable and reverts to the original dark states, demonstrating the nature of bistable pigments. Therefore, it is of evolutionary interest to identify a phototransduction cascade driven by parapinopsin and to compare it with that in vertebrate visual cells. Here, we showed that parapinopsin is coupled to vertebrate visual G protein transducin in the pufferfish, zebrafish, and lamprey pineal organs. Biochemical analyses demonstrated that parapinopsins activated transducin in vitro in a light-dependent manner, similar to vertebrate visual opsins. Interestingly, transducin activation by parapinopsin was provoked and terminated by UV- and subsequent orange-lights irradiations, respectively, due to the bistable nature of parapinopsin, which could contribute to a wavelength-dependent control of a second messenger level in the cell as a unique optogenetic tool. Immunohistochemical examination revealed that parapinopsin was colocalized with Gt2 in the teleost, which possesses rod and cone types of transducin, Gt1, and Gt2. On the other hand, in the lamprey, which does not possess the Gt2 gene, in situ hybridization suggested that parapinopsin-expressing photoreceptor cells contained Gt1 type transducin GtS, indicating that lamprey parapinopsin may use GtS in place of Gt2. Because it is widely accepted that vertebrate visual opsins having a bleaching nature have evolved from non-bleaching opsins

  9. An extended family of novel vertebrate photopigments is widely expressed and displays a diversity of function

    PubMed Central

    Davies, Wayne I.L.; Tamai, T. Katherine; Zheng, Lei; Fu, Josephine K.; Rihel, Jason; Foster, Russell G.; Whitmore, David; Hankins, Mark W.

    2015-01-01

    Light affects animal physiology and behavior more than simply through classical visual, image-forming pathways. Nonvisual photoreception regulates numerous biological systems, including circadian entrainment, DNA repair, metabolism, and behavior. However, for the majority of these processes, the photoreceptive molecules involved are unknown. Given the diversity of photophysiological responses, the question arises whether a single photopigment or a greater diversity of proteins within the opsin superfamily detect photic stimuli. Here, a functional genomics approach identified the full complement of photopigments in a highly light-sensitive model vertebrate, the zebrafish (Danio rerio), and characterized their tissue distribution, expression levels, and biochemical properties. The results presented here reveal the presence of 42 distinct genes encoding 10 classical visual photopigments and 32 nonvisual opsins, including 10 novel opsin genes comprising four new pigment classes. Consistent with the presence of light-entrainable circadian oscillators in zebrafish, all adult tissues examined expressed two or more opsins, including several novel opsins. Spectral and electrophysiological analyses of the new opsins demonstrate that they form functional photopigments, each with unique chromophore-binding and wavelength specificities. This study has revealed a remarkable number and diversity of photopigments in zebrafish, the largest number so far discovered for any vertebrate. Found in amphibians, reptiles, birds, and all three mammalian clades, most of these genes are not restricted to teleosts. Therefore, nonvisual light detection is far more complex than initially appreciated, which has significant biological implications in understanding photoreception in vertebrates. PMID:26450929

  10. Evidence for distributed light sensing in the skin of cuttlefish, Sepia officinalis.

    PubMed

    Mäthger, Lydia M; Roberts, Steven B; Hanlon, Roger T

    2010-10-23

    We report that the skin of cuttlefish, Sepia officinalis, contains opsin transcripts suggesting a possible role of distributed light sensing for dynamic camouflage and signalling. The mRNA coding for opsin from various body regions was amplified and sequenced, and gene expression was detected in fin and ventral skin samples. The amino acid sequence of the opsin polypeptide that these transcripts would produce was identical in retina and fin tissue samples, but the ventral skin opsin transcripts differed by a single amino acid. The diverse camouflage and signalling body patterns of cephalopods are visually controlled, and these findings suggest a possible additional mechanism of light sensing and subsequent skin patterning. Cuttlefish, along with a number of other cephalopod species, have been shown to be colour-blind. Since the opsin in the fin is identical to that of the retina (λmax=492 nm), and the ventral transcripts are also unlikely to be spectrally different, colour discrimination by the skin opsins is unlikely. However, spectral discrimination could be provided by involving other skin structures (chromatophores and iridophores), which produce changeable colours and patterns. This 'distributed sensing' could supplement the otherwise visually driven dynamic camouflage system by assisting with colour or brightness matching to adjacent substrates.

  11. The molecular genetics and evolution of colour and polarization vision in stomatopod crustaceans.

    PubMed

    Cronin, T W; Porter, M L; Bok, M J; Wolf, J B; Robinson, P R

    2010-09-01

    Stomatopod crustaceans have the most complex assemblage of visual receptor classes known; retinas of many species are thought to express up to 16 different visual pigments. Physiological studies indicate that stomatopods contain up to six distinct middle-wavelength-sensitive (MWS) photoreceptor classes, suggesting that no more than six different MWS opsin gene copies exist per species. However, we previously reported the unexpected expression of 6-15 different MWS genes in retinas of each of five stomatopod species (Visual Neurosci 26: 255-266, 2009). Here, we present a review of the results reported in this publication, plus new results that shed light on the origins of the diverse colour and polarization visual capabilities of stomatopod crustaceans. Using in situ hybridization of opsins in photoreceptor cells, we obtained new results that support the hypothesis of an ancient functional division separating spatial and polarizational vision from colour vision in the stomatopods. Since evolutionary trace analysis indicates that stomatopod MWS opsins have diverged both with respect to spectral tuning and to cytoplasmic interactions, we have now further analyzed these data in an attempt to uncover the origins, diversity and potential specializations among clades for specific visual functions. The presence of many clusters of highly similar transcripts suggests exuberant opsin gene duplication has occurred in the stomatopods, together with more conservative, ancient gene duplication events within the stem crustacean lineage. Phylogenetic analysis of opsin relatedness suggests that opsins specialized for colour vision have diverged from those devoted to polarization vision, and possibly motion and spatial vision.

  12. Human cone visual pigment deletions spare sufficient photoreceptors to warrant gene therapy.

    PubMed

    Cideciyan, Artur V; Hufnagel, Robert B; Carroll, Joseph; Sumaroka, Alexander; Luo, Xunda; Schwartz, Sharon B; Dubra, Alfredo; Land, Megan; Michaelides, Michel; Gardner, Jessica C; Hardcastle, Alison J; Moore, Anthony T; Sisk, Robert A; Ahmed, Zubair M; Kohl, Susanne; Wissinger, Bernd; Jacobson, Samuel G

    2013-12-01

    Human X-linked blue-cone monochromacy (BCM), a disabling congenital visual disorder of cone photoreceptors, is a candidate disease for gene augmentation therapy. BCM is caused by either mutations in the red (OPN1LW) and green (OPN1MW) cone photoreceptor opsin gene array or large deletions encompassing portions of the gene array and upstream regulatory sequences that would predict a lack of red or green opsin expression. The fate of opsin-deficient cone cells is unknown. We know that rod opsin null mutant mice show rapid postnatal death of rod photoreceptors. Using in vivo histology with high-resolution retinal imaging, we studied a cohort of 20 BCM patients (age range 5-58) with large deletions in the red/green opsin gene array. Already in the first years of life, retinal structure was not normal: there was partial loss of photoreceptors across the central retina. Remaining cone cells had detectable outer segments that were abnormally shortened. Adaptive optics imaging confirmed the existence of inner segments at a spatial density greater than that expected for the residual blue cones. The evidence indicates that human cones in patients with deletions in the red/green opsin gene array can survive in reduced numbers with limited outer segment material, suggesting potential value of gene therapy for BCM.

  13. A butterfly eye's view of birds.

    PubMed

    Frentiu, Francesca D; Briscoe, Adriana D

    2008-11-01

    The striking color patterns of butterflies and birds have long interested biologists. But how these animals see color is less well understood. Opsins are the protein components of the visual pigments of the eye. Color vision has evolved in butterflies through opsin gene duplications, through positive selection at individual opsin loci, and by the use of filtering pigments. By contrast, birds have retained the same opsin complement present in early-jawed vertebrates, and their visual system has diversified primarily through tuning of the short-wavelength-sensitive photoreceptors, rather than by opsin duplication or the use of filtering elements. Butterflies and birds have evolved photoreceptors that might use some of the same amino acid sites for generating similar spectral phenotypes across approximately 540 million years of evolution, when rhabdomeric and ciliary-type opsins radiated during the early Cambrian period. Considering the similarities between the two taxa, it is surprising that the eyes of birds are not more diverse. Additional taxonomic sampling of birds may help clarify this mystery.

  14. Evidence for distributed light sensing in the skin of cuttlefish, Sepia officinalis

    PubMed Central

    Mäthger, Lydia M.; Roberts, Steven B.; Hanlon, Roger T.

    2010-01-01

    We report that the skin of cuttlefish, Sepia officinalis, contains opsin transcripts suggesting a possible role of distributed light sensing for dynamic camouflage and signalling. The mRNA coding for opsin from various body regions was amplified and sequenced, and gene expression was detected in fin and ventral skin samples. The amino acid sequence of the opsin polypeptide that these transcripts would produce was identical in retina and fin tissue samples, but the ventral skin opsin transcripts differed by a single amino acid. The diverse camouflage and signalling body patterns of cephalopods are visually controlled, and these findings suggest a possible additional mechanism of light sensing and subsequent skin patterning. Cuttlefish, along with a number of other cephalopod species, have been shown to be colour-blind. Since the opsin in the fin is identical to that of the retina (λmax = 492 nm), and the ventral transcripts are also unlikely to be spectrally different, colour discrimination by the skin opsins is unlikely. However, spectral discrimination could be provided by involving other skin structures (chromatophores and iridophores), which produce changeable colours and patterns. This ‘distributed sensing’ could supplement the otherwise visually driven dynamic camouflage system by assisting with colour or brightness matching to adjacent substrates. PMID:20392722

  15. Encephalic photoreception and phototactic response in the troglobiont Somalian blind cavefish Phreatichthys andruzzii

    PubMed Central

    Tarttelin, Emma E.; Frigato, Elena; Bellingham, James; Di Rosa, Viviana; Berti, Roberto; Foulkes, Nicholas S.; Lucas, Robert J.; Bertolucci, Cristiano

    2012-01-01

    SUMMARY Many physiological and behavioural responses to changes in environmental lighting conditions are mediated by extraocular photoreceptors. Here we investigate encephalic photoreception in Phreatichthys andruzzii, a typical cave-dwelling fish showing an extreme phenotype with complete anophthalmy and a reduction in size of associated brain structures. We firstly identified two P. andruzzii photopigments, orthologues of rod opsin and exo-rod opsin. In vitro, both opsins serve as light-absorbing photopigments with λmax around 500 nm when reconstituted with an A1 chromophore. When corrected for the summed absorption from the skin and skull, the spectral sensitivity profiles shifted to longer wavelengths (rod opsin: 521 nm; exo-rod opsin: 520 nm). We next explored the involvement of both opsins in the negative phototaxis reported for this species. A comparison of the spectral sensitivity of the photophobic response with the putative A2 absorbance spectra corrected for skin/skull absorbance indicates that the A2 versions of either or both of these pigments could explain the observed behavioural spectral sensitivity. PMID:22837464

  16. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BURNERS VOLUME V. BURNER EVALUATION DATA APPENDICES

    EPA Science Inventory

    The report gives a detailed summary of data which were generated during the testing of experimental burners on EPA's Large Watertube Simulator (LWS) test facility. The test data are presented as a series of appendices. Appendix A describe the data quality assurance procedures whi...

  17. Near infrared imaging and {o I} spectroscopy of IC 443 using two micron all sky survey and infrared space observatory

    NASA Technical Reports Server (NTRS)

    Rho, J.; Jarrett, T. H.; Cutri, C. M.; Reach, W. T.

    2001-01-01

    We present near-infrared J (1.25 mum), H (1.65 mum), and K-s (2.17 mum) imaging of the entire supernova remnant IC 443 from the Two Micron All Sky Survey (2MASS), and Infrared Space Observatory (ISO) LWS observations of [O I] for 11 positions in the northeast.

  18. 75 FR 15418 - Laminated Woven Sacks from the People's Republic of China: Rescission of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... International Trade Administration Laminated Woven Sacks from the People's Republic of China: Rescission of... review of the countervailing duty order on laminated woven sacks (LWS) from the People's Republic of... request, and the review of Changshu was rescinded on December 4, 2009. See Laminated Woven Sacks From...

  19. Primate genotyping via high resolution melt analysis: rapid and reliable identification of color vision status in wild lemurs.

    PubMed

    Jacobs, Rachel L; Spriggs, Amanda N; MacFie, Tammie S; Baden, Andrea L; Irwin, Mitchell T; Wright, Patricia C; Louis, Edward E; Lawler, Richard R; Mundy, Nicholas I; Bradley, Brenda J

    2016-10-01

    Analyses of genetic polymorphisms can aid our understanding of intra- and interspecific variation in primate sociality, ecology, and behavior. Studies of primate opsin genes are prime examples of this, as single nucleotide variants (SNVs) in the X-linked opsin gene underlie variation in color vision. For primate species with polymorphic trichromacy, genotyping opsin SNVs can generally indicate whether individual primates are red-green color-blind (denoted homozygous M or homozygous L) or have full trichromatic color vision (heterozygous ML). Given the potential influence of color vision on behavior and fitness, characterizing the color vision status of study subjects is becoming commonplace for many primate field projects. Such studies traditionally involve a multi-step sequencing-based method that can be costly and time-consuming. Here we present a new reliable, rapid, and relatively inexpensive method for characterizing color vision in primate populations using high resolution melt analysis (HRMA). Using lemurs as a case study, we characterized variation at exons 3 and/or 5 of the X-linked opsin gene for 87 individuals representing nine species. We scored opsin genotypes and color vision status using both traditional sequencing-based methods as well as our novel melting-curve based HRMA protocol. For each species, the melting curves of varying genotypes (homozygous M, homozygous L, heterozygous ML) differed in melting temperature and/or shape. Melting curves for each sample were consistent across replicates, and genotype-specific melting curves were consistent across DNA sources (blood vs. feces). We show that opsin genotypes can be quickly and reliably scored using HRMA once lab-specific reference curves have been developed based on known genotypes. Although the protocol presented here focuses on genotyping lemur opsin loci, we also consider the larger potential for applying this approach to various types of genetic studies of primate populations.

  20. Fed and fasted chicks from lines divergently selected for low or high body weight have differential hypothalamic appetite-associated factor mRNA expression profiles.

    PubMed

    Yi, Jiaqing; Gilbert, Elizabeth R; Siegel, Paul B; Cline, Mark A

    2015-06-01

    We have demonstrated that chicken lines which have undergone intense divergent selection for either low (LWS) or high (HWS) body weight (anorexic and obese containing, respectively) have differential food intake threshold responses to a range of intracerebroventricular injected neurotransmitters. The study reported herein was designed to measure endogenous appetite-associated factor mRNA profiles between these lines in an effort to further understand the molecular mechanisms involved in their differential eating patterns. Whole hypothalamus was collected from 5 day-old chicks that had been fasted for 180 min or had free access to food. Total RNA was isolated, reverse transcribed, and real-time PCR performed. Although mRNAs encoding orexigenic neuropeptides including agouti-related peptide, neuropeptide Y (NPY), prolactin-releasing peptide, and visfatin did not differ in expression between the lines, NPY receptor 5 mRNA was greater in fed LWS than HWS chicks, but fasting decreased the magnitude of difference. Anorexigenic factors including amylin, corticotropin releasing factor (CRF) and ghrelin were not differentially expressed between lines, while mRNA abundance of calcitonin, CRF receptor 1, leptin receptor, neuropeptide S, melanocortin receptor 3, and oxytocin were greater in LWS than HWS chicks. Pro-opiomelanocortin mRNA was lower in LWS than HWS chicks, while fasting decreased its expression in both lines. These results suggest that there are differences in gene expression of appetite-associated factors between LWS and HWS lines that might be associated with their differential food intake and thus contribute to differences in severity of anorexia, body weight, adiposity, and development of obesity.

  1. A Cluster Randomized Trial to Evaluate a Health Education Programme “Living with Sun at School”

    PubMed Central

    Sancho-Garnier, Hélène; Pereira, Bruno; Césarini, Pierre

    2012-01-01

    Over-exposure to sunlight increases the risk of skin cancers, particularly when exposure occurs during childhood. School teachers can play an active role in providing an education programme that can help prevent this. “Living with the Sun,” (LWS) is a sun safety education program for school children based on a handy guide for classroom activities designed to improve children’s knowledge, but moreover to positively modify their sun safety attitudes and behaviours. The goal of our study was to determine the effectiveness of this programme by examining children’s knowledge, attitude and sun exposure behaviours prior to and after the completion of the programme. We carried out a cluster randomised trial in which the classes were randomly assigned to one of two groups; one using the LWS programme and another that didn’t, serving as the control. Data was collected before completion of the programme and an additional three times in the year after completion. The 70 participating classes (1,365 schoolchildren) were distributed throughout France. Statistical analysis confirmed that knowledge of sun risk increased significantly in the LWS classes (p < 0.001). Both groups positively changed their attitudes when considering the best sun protection, but the LWS group proved to consistently be more convinced (p = 0.04). After the summer holidays, differences between the two groups decreased throughout the year but stayed globally significant. We also observed some significant behaviour modification during the holidays. For instance, the LWS group applied sunscreen more frequently than the control group, and were more likely to wear a hat (72% versus 59%) and use a sun umbrella on the beach (75% versus 64%). PMID:22851947

  2. Photoreceptor topography and spectral sensitivity in the common brushtail possum (Trichosurus vulpecula).

    PubMed

    Vlahos, Lisa M; Knott, Ben; Valter, Krisztina; Hemmi, Jan M

    2014-10-15

    Marsupials are believed to be the only non-primate mammals with both trichromatic and dichromatic color vision. The diversity of color vision systems present in marsupials remains mostly unexplored. Marsupials occupy a diverse range of habitats, which may have led to considerable variation in the presence, density, distribution, and spectral sensitivity of retinal photoreceptors. In this study we analyzed the distribution of photoreceptors in the common brushtail possum (Trichosurus vulpecula). Immunohistochemistry in wholemounts revealed three cone subpopulations recognized within two spectrally distinct cone classes. Long-wavelength sensitive (LWS) single cones were the largest cone subgroup (67-86%), and formed a weak horizontal visual streak (peak density 2,106 ± 435/mm2) across the central retina. LWS double cones were strongly concentrated ventrally (569 ± 66/mm2), and created a "negative" visual streak (134 ± 45/mm2) in the central retina. The strong regionalization between LWS cone topographies suggests differing visual functions. Short-wavelength sensitive (SWS) cones were present in much lower densities (3-10%), mostly located ventrally (179 ± 101/mm2). A minority population of cones (0-2.4%) remained unlabeled by both SWS- and LWS-specific antibodies, and may represent another cone population. Microspectrophotometry of LWS cone and rod visual pigments shows peak spectral sensitivities at 544 nm and 500 nm, respectively. Cone to ganglion cell convergences remain low and constant across the retina, thereby maintaining good visual acuity, but poor contrast sensitivity during photopic vision. Given that brushtail possums are so strongly nocturnal, we hypothesize that their acuity is set by the scotopic visual system, and have minimized the number of cones necessary to serve the ganglion cells for photopic vision.

  3. Delayed feeding after hatch caused compensatory increases in blood glucose concentration in fed chicks from low but not high body weight lines.

    PubMed

    Zhao, Xiaoling; Sumners, Lindsay H; Gilbert, Elizabeth R; Siegel, Paul B; Zhang, Wei; Cline, Mark

    2014-03-01

    This experiment used 2 lines of chickens that have been selected 54 generations for either low (LWS) or high (HWS) 8-wk BW from the same founder population, sublines (HWR and LWR) in which selection was relaxed in generation 43 in the selected lines, and crosses (HL and LH) made from generation 54 of HWS and LWS. For 8-wk BW, the difference between lines LWS and HWS in generation 54 was approximately 10-fold, whereas for the relaxed contemporary lines they were approximately 7-fold. Three trials were designed to measure developmental, nutritional, and genetic aspects of blood glucose homeostasis during the first 2 wk posthatch. In trial 1, we measured BW, whole blood glucose (BG), and weights (relative to BW) of liver, pancreas, and yolk sac of chicks fed from day of hatch to d 15. In trial 2, we compared those traits in chicks feed-delayed 72 h posthatch and in chicks without feed delay. In trial 3, we evaluated the effect of a 16-h fast on BW and BG on d 3, 8, and 15. There were higher levels of BG in HWS than LWS, and males than females in the fed state. Delayed access to feed for 72 h after hatch was associated with a dramatic reduction in BG. Feeding triggered a compensatory response whereby LWS displayed greater BG but smaller pancreases (% BW; d 15), compared with the controls. There were maternal effects for BW in both fed and fasted states and the reciprocal crosses exhibited heterosis for BG in the fasted state. These results show that chickens selected for high or low BW differ in BG regulation during the early posthatch period.

  4. The evolution of complexity in the visual systems of stomatopods: insights from transcriptomics.

    PubMed

    Porter, Megan L; Speiser, Daniel I; Zaharoff, Alexander K; Caldwell, Roy L; Cronin, Thomas W; Oakley, Todd H

    2013-07-01

    Stomatopod crustaceans have complex visual systems containing up to 16 different spectral classes of photoreceptors, more than described for any other animal. A previous molecular study of this visual system focusing on the expression of opsin genes found many more transcripts than predicted on the basis of physiology, but was unable to fully document the expressed opsin genes responsible for this diversity. Furthermore, questions remain about how other components of phototransduction cascades are involved. This study continues prior investigations by examining the molecular function of stomatopods' visual systems using new whole eye 454 transcriptome datasets from two species, Hemisquilla californiensis and Pseudosquilla ciliata. These two species represent taxonomic diversity within the order Stomatopoda, as well as variations in the anatomy and physiology of the visual system. Using an evolutionary placement algorithm to annotate the transcriptome, we identified the presence of nine components of the stomatopods' G-protein-coupled receptor (GPCR) phototransduction cascade, including two visual arrestins, subunits of the heterotrimeric G-protein, phospholipase C, transient receptor potential channels, and opsin transcripts. The set of expressed transduction genes suggests that stomatopods utilize a Gq-mediated GPCR-signaling cascade. The most notable difference in expression between the phototransduction cascades of the two species was the number of opsin contigs recovered, with 18 contigs found in retinas of H. californiensis, and 49 contigs in those of P. ciliata. Based on phylogenetic placement and fragment overlap, these contigs were estimated to represent 14 and 33 expressed transcripts, respectively. These data expand the known opsin diversity in stomatopods to clades of arthropod opsins that are sensitive to short wavelengths and ultraviolet wavelengths and confirm the results of previous studies recovering more opsin transcripts than spectrally distinct

  5. The Eyes Have It: Regulatory and Structural Changes Both Underlie Cichlid Visual Pigment Diversity

    PubMed Central

    Marshall, N. Justin; Cronin, Thomas W.; Seehausen, Ole; Carleton, Karen L.

    2009-01-01

    A major goal of evolutionary biology is to unravel the molecular genetic mechanisms that underlie functional diversification and adaptation. We investigated how changes in gene regulation and coding sequence contribute to sensory diversification in two replicate radiations of cichlid fishes. In the clear waters of Lake Malawi, differential opsin expression generates diverse visual systems, with sensitivities extending from the ultraviolet to the red regions of the spectrum. These sensitivities fall into three distinct clusters and are correlated with foraging habits. In the turbid waters of Lake Victoria, visual sensitivity is constrained to longer wavelengths, and opsin expression is correlated with ambient light. In addition to regulatory changes, we found that the opsins coding for the shortest- and longest-wavelength visual pigments have elevated numbers of potentially functional substitutions. Thus, we present a model of sensory evolution in which both molecular genetic mechanisms work in concert. Changes in gene expression generate large shifts in visual pigment sensitivity across the collective opsin spectral range, but changes in coding sequence appear to fine-tune visual pigment sensitivity at the short- and long-wavelength ends of this range, where differential opsin expression can no longer extend visual pigment sensitivity. PMID:20027211

  6. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides.

    PubMed

    Ramirez, M Desmond; Oakley, Todd H

    2015-05-15

    Cephalopods are renowned for changing the color and pattern of their skin for both camouflage and communication. Yet, we do not fully understand how cephalopods control the pigmented chromatophore organs in their skin and change their body pattern. Although these changes primarily rely on eyesight, we found that light causes chromatophores to expand in excised pieces of Octopus bimaculoides skin. We call this behavior light-activated chromatophore expansion (or LACE). To uncover how octopus skin senses light, we used antibodies against r-opsin phototransduction proteins to identify sensory neurons that express r-opsin in the skin. We hypothesized that octopus LACE relies on the same r-opsin phototransduction cascade found in octopus eyes. By creating an action spectrum for the latency to LACE, we found that LACE occurred most quickly in response to blue light. We fit our action spectrum data to a standard opsin curve template and estimated the λmax of LACE to be 480 nm. Consistent with our hypothesis, the maximum sensitivity of the light sensors underlying LACE closely matches the known spectral sensitivity of opsin from octopus eyes. LACE in isolated preparations suggests that octopus skin is intrinsically light sensitive and that this dispersed light sense might contribute to their unique and novel patterning abilities. Finally, our data suggest that a common molecular mechanism for light detection in eyes may have been co-opted for light sensing in octopus skin and then used for LACE.

  7. The eyes have it: regulatory and structural changes both underlie cichlid visual pigment diversity.

    PubMed

    Hofmann, Christopher M; O'Quin, Kelly E; Marshall, N Justin; Cronin, Thomas W; Seehausen, Ole; Carleton, Karen L

    2009-12-01

    A major goal of evolutionary biology is to unravel the molecular genetic mechanisms that underlie functional diversification and adaptation. We investigated how changes in gene regulation and coding sequence contribute to sensory diversification in two replicate radiations of cichlid fishes. In the clear waters of Lake Malawi, differential opsin expression generates diverse visual systems, with sensitivities extending from the ultraviolet to the red regions of the spectrum. These sensitivities fall into three distinct clusters and are correlated with foraging habits. In the turbid waters of Lake Victoria, visual sensitivity is constrained to longer wavelengths, and opsin expression is correlated with ambient light. In addition to regulatory changes, we found that the opsins coding for the shortest- and longest-wavelength visual pigments have elevated numbers of potentially functional substitutions. Thus, we present a model of sensory evolution in which both molecular genetic mechanisms work in concert. Changes in gene expression generate large shifts in visual pigment sensitivity across the collective opsin spectral range, but changes in coding sequence appear to fine-tune visual pigment sensitivity at the short- and long-wavelength ends of this range, where differential opsin expression can no longer extend visual pigment sensitivity.

  8. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides

    PubMed Central

    Ramirez, M. Desmond; Oakley, Todd H.

    2015-01-01

    ABSTRACT Cephalopods are renowned for changing the color and pattern of their skin for both camouflage and communication. Yet, we do not fully understand how cephalopods control the pigmented chromatophore organs in their skin and change their body pattern. Although these changes primarily rely on eyesight, we found that light causes chromatophores to expand in excised pieces of Octopus bimaculoides skin. We call this behavior light-activated chromatophore expansion (or LACE). To uncover how octopus skin senses light, we used antibodies against r-opsin phototransduction proteins to identify sensory neurons that express r-opsin in the skin. We hypothesized that octopus LACE relies on the same r-opsin phototransduction cascade found in octopus eyes. By creating an action spectrum for the latency to LACE, we found that LACE occurred most quickly in response to blue light. We fit our action spectrum data to a standard opsin curve template and estimated the λmax of LACE to be 480 nm. Consistent with our hypothesis, the maximum sensitivity of the light sensors underlying LACE closely matches the known spectral sensitivity of opsin from octopus eyes. LACE in isolated preparations suggests that octopus skin is intrinsically light sensitive and that this dispersed light sense might contribute to their unique and novel patterning abilities. Finally, our data suggest that a common molecular mechanism for light detection in eyes may have been co-opted for light sensing in octopus skin and then used for LACE. PMID:25994633

  9. Isomerization and Oxidation of Vitamin A in Cone-Dominant Retinas: A Novel Pathway for Visual-Pigment Regeneration in Daylight

    PubMed Central

    Mata, Nathan L.; Radu, Roxana A.; Clemmons, Richard S.; Travis, Gabriel H.

    2010-01-01

    Summary The first step toward light perception is 11-cis to all-trans photoisomerization of the retinaldehyde chromophore in a rod or cone opsin-pigment molecule. Light sensitivity of the opsin pigment is restored through a multistep pathway called the visual cycle, which effects all-trans to 11-cis re-isomerization of the retinoid chromophore. The maximum throughput of the known visual cycle, however, is too slow to explain sustained photosensitivity in bright light. Here, we demonstrate three novel enzymatic activities in cone-dominant ground-squirrel and chicken retinas: an all-trans-retinol isomerase, an 11-cis-retinyl-ester synthase, and an 11-cis-retinol dehydrogenase. Together these activities comprise a novel pathway that regenerates opsin photopigments at a rate 20-fold faster than the known visual cycle. We suggest that this pathway is responsible for sustained daylight vision in vertebrates. PMID:12367507

  10. PyRhO: A Multiscale Optogenetics Simulation Platform.

    PubMed

    Evans, Benjamin D; Jarvis, Sarah; Schultz, Simon R; Nikolic, Konstantin

    2016-01-01

    Optogenetics has become a key tool for understanding the function of neural circuits and controlling their behavior. An array of directly light driven opsins have been genetically isolated from several families of organisms, with a wide range of temporal and spectral properties. In order to characterize, understand and apply these opsins, we present an integrated suite of open-source, multi-scale computational tools called PyRhO. The purpose of developing PyRhO is three-fold: (i) to characterize new (and existing) opsins by automatically fitting a minimal set of experimental data to three-, four-, or six-state kinetic models, (ii) to simulate these models at the channel, neuron and network levels, and (iii) provide functional insights through model selection and virtual experiments in silico. The module is written in Python with an additional IPython/Jupyter notebook based GUI, allowing models to be fit, simulations to be run and results to be shared through simply interacting with a webpage. The seamless integration of model fitting algorithms with simulation environments (including NEURON and Brian2) for these virtual opsins will enable neuroscientists to gain a comprehensive understanding of their behavior and rapidly identify the most suitable variant for application in a particular biological system. This process may thereby guide not only experimental design and opsin choice but also alterations of the opsin genetic code in a neuro-engineering feed-back loop. In this way, we expect PyRhO will help to significantly advance optogenetics as a tool for transforming biological sciences.

  11. Characterization of Channelrhodopsin and Archaerhodopsin in Cholinergic Neurons of Cre-Lox Transgenic Mice

    PubMed Central

    Hedrick, Tristan; Danskin, Bethanny; Larsen, Rylan S.; Ollerenshaw, Doug; Groblewski, Peter; Valley, Matthew; Olsen, Shawn; Waters, Jack

    2016-01-01

    The study of cholinergic signaling in the mammalian CNS has been greatly facilitated by the advent of mouse lines that permit the expression of reporter proteins, such as opsins, in cholinergic neurons. However, the expression of opsins could potentially perturb the physiology of opsin-expressing cholinergic neurons or mouse behavior. Indeed, the published literature includes examples of cellular and behavioral perturbations in preparations designed to drive expression of opsins in cholinergic neurons. Here we investigate expression of opsins, cellular physiology of cholinergic neurons and behavior in two mouse lines, in which channelrhodopsin-2 (ChR2) and archaerhodopsin (Arch) are expressed in cholinergic neurons using the Cre-lox system. The two mouse lines were generated by crossing ChAT-Cre mice with Cre-dependent reporter lines Ai32(ChR2-YFP) and Ai35(Arch-GFP). In most mice from these crosses, we observed expression of ChR2 and Arch in only cholinergic neurons in the basal forebrain and in other putative cholinergic neurons in the forebrain. In small numbers of mice, off-target expression occurred, in which fluorescence did not appear limited to cholinergic neurons. Whole-cell recordings from fluorescently-labeled basal forebrain neurons revealed that both proteins were functional, driving depolarization (ChR2) or hyperpolarization (Arch) upon illumination, with little effect on passive membrane properties, spiking pattern or spike waveform. Finally, performance on a behavioral discrimination task was comparable to that of wild-type mice. Our results indicate that ChAT-Cre x reporter line crosses provide a simple, effective resource for driving indicator and opsin expression in cholinergic neurons with few adverse consequences and are therefore an valuable resource for studying the cholinergic system. PMID:27243816

  12. Molecular evidence for color discrimination in the Atlantic sand fiddler crab, Uca pugilator.

    PubMed

    Rajkumar, Premraj; Rollmann, Stephanie M; Cook, Tiffany A; Layne, John E

    2010-12-15

    Fiddler crabs are intertidal brachyuran crabs that belong to the genus Uca. Approximately 97 different species have been identified, and several of these live sympatrically. Many have species-specific body color patterns that may act as signals for intra- and interspecific communication. To understand the behavioral and ecological role of this coloration we must know whether fiddler crabs have the physiological capacity to perceive color cues. Using a molecular approach, we identified the opsin-encoding genes and determined their expression patterns across the eye of the sand fiddler crab, Uca pugilator. We identified three different opsin-encoding genes (UpRh1, UpRh2 and UpRh3). UpRh1 and UpRh2 are highly related and have similarities in their amino acid sequences to other arthropod long- and medium-wavelength-sensitive opsins, whereas UpRh3 is similar to other arthropod UV-sensitive opsins. All three opsins are expressed in each ommatidium, in an opsin-specific pattern. UpRh3 is present only in the R8 photoreceptor cell, whereas UpRh1 and UpRh2 are present in the R1-7 cells, with UpRh1 expression restricted to five cells and UpRh2 expression present in three cells. Thus, one photoreceptor in every ommatidium expresses both UpRh1 and UpRh2, providing another example of sensory receptor coexpression. These results show that U. pugilator has the basic molecular machinery for color perception, perhaps even trichromatic vision.

  13. Cone Photoreceptor Structure in Patients With X-Linked Cone Dysfunction and Red-Green Color Vision Deficiency

    PubMed Central

    Patterson, Emily J.; Wilk, Melissa; Langlo, Christopher S.; Kasilian, Melissa; Ring, Michael; Hufnagel, Robert B.; Dubis, Adam M.; Tee, James J.; Kalitzeos, Angelos; Gardner, Jessica C.; Ahmed, Zubair M.; Sisk, Robert A.; Larsen, Michael; Sjoberg, Stacy; Connor, Thomas B.; Dubra, Alfredo; Neitz, Jay; Hardcastle, Alison J.; Neitz, Maureen; Michaelides, Michel; Carroll, Joseph

    2016-01-01

    Purpose Mutations in the coding sequence of the L and M opsin genes are often associated with X-linked cone dysfunction (such as Bornholm Eye Disease, BED), though the exact color vision phenotype associated with these disorders is variable. We examined individuals with L/M opsin gene mutations to clarify the link between color vision deficiency and cone dysfunction. Methods We recruited 17 males for imaging. The thickness and integrity of the photoreceptor layers were evaluated using spectral-domain optical coherence tomography. Cone density was measured using high-resolution images of the cone mosaic obtained with adaptive optics scanning light ophthalmoscopy. The L/M opsin gene array was characterized in 16 subjects, including at least one subject from each family. Results There were six subjects with the LVAVA haplotype encoded by exon 3, seven with LIAVA, two with the Cys203Arg mutation encoded by exon 4, and two with a novel insertion in exon 2. Foveal cone structure and retinal thickness was disrupted to a variable degree, even among related individuals with the same L/M array. Conclusions Our findings provide a direct link between disruption of the cone mosaic and L/M opsin variants. We hypothesize that, in addition to large phenotypic differences between different L/M opsin variants, the ratio of expression of first versus downstream genes in the L/M array contributes to phenotypic diversity. While the L/M opsin mutations underlie the cone dysfunction in all of the subjects tested, the color vision defect can be caused either by the same mutation or a gene rearrangement at the same locus. PMID:27447086

  14. Molecular evidence for color discrimination in the Atlantic sand fiddler crab, Uca pugilator

    PubMed Central

    Rajkumar, Premraj; Rollmann, Stephanie M.; Cook, Tiffany A.; Layne, John E.

    2010-01-01

    SUMMARY Fiddler crabs are intertidal brachyuran crabs that belong to the genus Uca. Approximately 97 different species have been identified, and several of these live sympatrically. Many have species-specific body color patterns that may act as signals for intra- and interspecific communication. To understand the behavioral and ecological role of this coloration we must know whether fiddler crabs have the physiological capacity to perceive color cues. Using a molecular approach, we identified the opsin-encoding genes and determined their expression patterns across the eye of the sand fiddler crab, Uca pugilator. We identified three different opsin-encoding genes (UpRh1, UpRh2 and UpRh3). UpRh1 and UpRh2 are highly related and have similarities in their amino acid sequences to other arthropod long- and medium-wavelength-sensitive opsins, whereas UpRh3 is similar to other arthropod UV-sensitive opsins. All three opsins are expressed in each ommatidium, in an opsin-specific pattern. UpRh3 is present only in the R8 photoreceptor cell, whereas UpRh1 and UpRh2 are present in the R1-7 cells, with UpRh1 expression restricted to five cells and UpRh2 expression present in three cells. Thus, one photoreceptor in every ommatidium expresses both UpRh1 and UpRh2, providing another example of sensory receptor coexpression. These results show that U. pugilator has the basic molecular machinery for color perception, perhaps even trichromatic vision. PMID:21113005

  15. PyRhO: A Multiscale Optogenetics Simulation Platform

    PubMed Central

    Evans, Benjamin D.; Jarvis, Sarah; Schultz, Simon R.; Nikolic, Konstantin

    2016-01-01

    Optogenetics has become a key tool for understanding the function of neural circuits and controlling their behavior. An array of directly light driven opsins have been genetically isolated from several families of organisms, with a wide range of temporal and spectral properties. In order to characterize, understand and apply these opsins, we present an integrated suite of open-source, multi-scale computational tools called PyRhO. The purpose of developing PyRhO is three-fold: (i) to characterize new (and existing) opsins by automatically fitting a minimal set of experimental data to three-, four-, or six-state kinetic models, (ii) to simulate these models at the channel, neuron and network levels, and (iii) provide functional insights through model selection and virtual experiments in silico. The module is written in Python with an additional IPython/Jupyter notebook based GUI, allowing models to be fit, simulations to be run and results to be shared through simply interacting with a webpage. The seamless integration of model fitting algorithms with simulation environments (including NEURON and Brian2) for these virtual opsins will enable neuroscientists to gain a comprehensive understanding of their behavior and rapidly identify the most suitable variant for application in a particular biological system. This process may thereby guide not only experimental design and opsin choice but also alterations of the opsin genetic code in a neuro-engineering feed-back loop. In this way, we expect PyRhO will help to significantly advance optogenetics as a tool for transforming biological sciences. PMID:27148037

  16. CRYPTOCHROME mediates behavioral executive choice in response to UV light

    PubMed Central

    Baik, Lisa S.; Fogle, Keri J.; Roberts, Logan; Galschiodt, Alexis M.; Chevez, Joshua A.; Recinos, Yocelyn; Nguy, Vinh; Holmes, Todd C.

    2017-01-01

    Drosophila melanogaster CRYPTOCHROME (CRY) mediates behavioral and electrophysiological responses to blue light coded by circadian and arousal neurons. However, spectroscopic and biochemical assays of heterologously expressed CRY suggest that CRY may mediate functional responses to UV-A (ultraviolet A) light as well. To determine the relative contributions of distinct phototransduction systems, we tested mutants lacking CRY and mutants with disrupted opsin-based phototransduction for behavioral and electrophysiological responses to UV light. CRY and opsin-based external photoreceptor systems cooperate for UV light-evoked acute responses. CRY mediates behavioral avoidance responses related to executive choice, consistent with its expression in central brain neurons. PMID:28062690

  17. In Vivo Application of Optogenetics for Neural Circuit Analysis

    PubMed Central

    2012-01-01

    Optogenetics combines optical and genetic methods to rapidly and reversibly control neural activities or other cellular functions. Using genetic methods, specific cells or anatomical pathways can be sensitized to light through exogenous expression of microbial light activated opsin proteins. Using optical methods, opsin expressing cells can be rapidly and reversibly controlled by pulses of light of specific wavelength. With the high spatial temporal precision, optogenetic tools have enabled new ways to probe the causal role of specific cells in neural computation and behavior. Here, we overview the current state of the technology, and provide a brief introduction to the practical considerations in applying optogenetics in vivo to analyze neural circuit functions. PMID:22896801

  18. NASA's Living with a Star Program: The Geospace Mission Concept

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Giles, Barbara; Zanetti, Lawrence; Spann, James; Day, John H. (Technical Monitor)

    2002-01-01

    NASA has initiated the Living with a Star Program (LWS) to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. Three program elements are the Science Missions; a Theory, Modeling, and Data Analysis program; and a Space Environment Testbeds program. Because many of the effects of solar variability on humanity are observed in Geospace regions of space, the science research for all three elements of the LWS Program have significant components in Geospace regions.

  19. The Living With a Star CDAW on the Solar and Geospace Connections of Solar Energetic Particles

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara J.; Gopalswamy, Nat; Colon, Gilberto (Technical Monitor)

    2002-01-01

    The Living With a Star Program is sponsoring its first CDAW (Coordinated Data Analysis Workshop) to be held July 23-26, 2002 at a conference support location near the NASA Goddard Space Flight Center. This CDAW's topic is Solar Energetic Particle events. The topic was chosen due to the breadth of the impact of SEP's on the space environment and terrestrial climate. General goals of the LWS CDAW are a) Stimulate LWS Science on the near term, b) Facilitate cross-disciplinary interaction between the LWS scientific and space environment communities, c) Produce science products for all potential users, and d) Assist in the development of the LWS data system. The workshop will proceed similar to a previous CDAW held in 1999 on Interplanetary Type 11 Shocks. A list of target events has been compiled, which can be found at the workshop home page. The page lists all of the SEP events from 1996 January to 2001 December with energy > 10 MeV particle intensities exceeding 10 PFU. Preparation for the workshop consists of identifying relevant data from a wide variety of sources (solar, interplanetary, magnetospheric and climatary), accumulating the data (frequently this consists of both raw data, processed data and plots to ease perusal during the workshop) and gathering the software tools. Participants in the workshop are expected to complete their contributions of data or models prior to arriving at the workshop. Most of the CDAW consists of joint analysis of this data; only a few introductory talks are given at the beginning of the workshop, with the rest of the time being devoted to producing scientific results. Additional symposia may be scheduled at a later date, which will allow a venue for scientific talks on the CDAW results and associated science. The poster will list the scientific goals of the workshop, as well as a scientific discussion of the data which has been accumulated thus far.

  20. Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report

    SciTech Connect

    Jain, V.; Occhipinti, J.; Shah, H.; Wilmarth, B.; Edwards, R.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  1. Evaluation of mercury in the liquid waste processing facilities

    SciTech Connect

    Jain, Vijay; Shah, Hasmukh; Occhipinti, John E.; Wilmarth, William R.; Edwards, Richard E.

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  2. Evaluation of mercury in liquid waste processing facilities - Phase I report

    SciTech Connect

    Jain, V.; Occhipinti, J. E.; Shah, H.; Wilmarth, W. R.; Edwards, R. E.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  3. Learnability of Red-Green Opponency

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.

    1997-01-01

    Lennie, Haake, and Williams found that in the lateral geniculate nucleus (LGN), parvocellular unit responses are consistent with the hypothesis that their input connectivity is blind to the difference between middle-wavelength-sensitive (MWS) and long-wavelength-sensitive (LWS) cones. Most of their cells have a total MWS input weight opposite in sign and similar in magnitude to their total LWS input weight. If these weights are exactly balanced, the construction of a red-green opponent system from such units is simple: such units need only be aligned so the signs of their outputs agree. Ahumada and Mulligan described an associative learning process which can accomplish this alignment. If the units are not balanced (carry some luminance information), the strong overlap between the MWS and LWS spectral responses can cause units to agree more on the basis of luminance, and the associative process fails to produce red-green opponency. The learning theory requires that the LGN units be nearly balanced (more strongly encode chromaticity than luminance) and quantitatively expresses the requirement: the principal component of the LGN outputs must be in the red-green rather than the luminance direction. We show that the cone weights of the monkey LGN cells measured by Derrington, Krauskopf, and Lennie can satisfy this learnability criterion even if the MWS spectral response is close to the LWS spectral response, simulating anomalous trichromacy. The learnability theory provides a source of visual system variation for explaining why different anomalous trichromats may make the same average anomaloscope match (same pigments), but have either narrow (good opponent learning) or wide (poor learning) ranges of acceptable matches.

  4. Linear response, fluctuation-dissipation, and finite-system-size effects in superdiffusion

    NASA Astrophysics Data System (ADS)

    Godec, Aljaž; Metzler, Ralf

    2013-07-01

    Lévy walks (LWs) are a popular stochastic tool to model anomalous diffusion and have recently been used to describe a variety of phenomena. We study the linear response behavior of this generic model of superdiffusive LWs in finite systems to an external force field under both stationary and nonstationary conditions. These finite-size LWs are based on power-law waiting time distributions with a finite-time regularization at τc, such that the physical requirements are met to apply linear response theory and derive the power spectrum with the correct short frequency limit, without the introduction of artificial cutoffs. We obtain the generalized Einstein relation for both ensemble and time averages over the entire process time and determine the turnover to normal Brownian motion when the full system is explored. In particular, we obtain an exact expression for the long time diffusion constant as a function of the scaling exponent of the waiting time density and the characteristic time scale τc.

  5. Assessing Lévy walks as models of animal foraging

    PubMed Central

    James, Alex; Plank, Michael J.; Edwards, Andrew M.

    2011-01-01

    The hypothesis that the optimal search strategy is a Lévy walk (LW) or Lévy flight, originally suggested in 1995, has generated an explosion of interest and controversy. Long-standing empirical evidence supporting the LW hypothesis has been overturned, while new models and data are constantly being published. Statistical methods have been criticized and new methods put forward. In parallel with the empirical studies, theoretical search models have been developed. Some theories have been disproved while others remain. Here, we gather together the current state of the art on the role of LWs in optimal foraging theory. We examine the body of theory underpinning the subject. Then we present new results showing that deviations from the idealized one-dimensional search model greatly reduce or remove the advantage of LWs. The search strategy of an LW with exponent μ = 2 is therefore not as robust as is widely thought. We also review the available techniques, and their potential pitfalls, for analysing field data. It is becoming increasingly recognized that there is a wide range of mechanisms that can lead to the apparent observation of power-law patterns. The consequence of this is that the detection of such patterns in field data implies neither that the foragers in question are performing an LW, nor that they have evolved to do so. We conclude that LWs are neither a universal optimal search strategy, nor are they as widespread in nature as was once thought. PMID:21632609

  6. Matching the Spectrometers on board ISO

    NASA Astrophysics Data System (ADS)

    Burgdorf, M.; Feuchtgruber, H.; Salama, A.; García-Lario, P.; Müller, T.; Lord, S.

    We report on the findings of the Spectral Matching Working Group, the main aim of which was to investigate discontinuities between SWS and LWS in complete ISO spectra from 2 - 200 μm. In order to check in a quantitative way the agreement between the two spectrometers, a software tool was developed which automatically selected observations made with SWS and LWS on the same coordinates and which calculated the ratio of the fluxes in the overlap region from the browser products. In this way all observations suitable for this cross-calibration exercise could be selected, provided that they were performed with standard Astronomical Observing Templates and covered the wavelength range that SWS and LWS have in common. 95% of those targets which were neither extended nor variable showed an agreement better than 20% between the two spectrometers. Several problems with the data from the instruments, like saturation effects, detector transients and discontinuities between the sub-spectra from different detectors, affect both spectrometers in a similar way and require special processing steps. We show, for some solar system objects, to which extent the spectra taken with ISO from the mid- to the far-infrared agree with theoretical models. Furthermore, we discuss for the example of Neptune how the combined information from both spectrometers can be used to put new constraints on models of objects that are possible calibration standards for future missions.

  7. The linewidth-size scaling law of molecular gas revisited

    NASA Astrophysics Data System (ADS)

    Falgarone, Edith; McKee, Christopher F.

    The origin of the linewidth-size (LWS) scaling law, first noticed by Larson three decades ago and ascribed to turbulence, is still a highly debated issue. Not unexpectedly, its properties depend on the environment and on the line tracer used. When the optically thick 12CO (J=1-0) line is used, a specific medium is sampled: the translucent molecular gas of moderate density that builds up the bulk of the molecular interstellar medium in galaxies like the Milky Way. The sensitivity of the 12CO line to this gas is such that the LWS is found to hold over almost five orders of magnitude in lengthscale, although with a considerable scatter (+/- 0.5 dex). It also appears to split into two regimes, depending on the gas mass surface density: below a given threshold that is proposed to be linked to the galactic structure, it bears the signature of a turbulent cascade, while above it, the scaling law is ascribed to virial balance. Large deviations from the LWS scaling law are observed at small scales where signatures of turbulent intermittency appear. The mass-size scaling law built with the 12CO (J=1-0) line also splits into two regimes. The mass surface density is uniform (also with a large scatter) above lengthscales ~ 10pc and increases with size at smaller scales, following turbulence predictions. The two thresholds define an average gas density n H ~ 300 cm-3.

  8. Multi-Mode Electromagnetic Ultrasonic Lamb Wave Tomography Imaging for Variable-Depth Defects in Metal Plates

    PubMed Central

    Huang, Songling; Zhang, Yu; Wang, Shen; Zhao, Wei

    2016-01-01

    This paper proposes a new cross-hole tomography imaging (CTI) method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs). The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer) arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect’s thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method. PMID:27144571

  9. Statistical and molecular analyses of evolutionary significance of red-green color vision and color blindness in vertebrates.

    PubMed

    Yokoyama, Shozo; Takenaka, Naomi

    2005-04-01

    Red-green color vision is strongly suspected to enhance the survival of its possessors. Despite being red-green color blind, however, many species have successfully competed in nature, which brings into question the evolutionary advantage of achieving red-green color vision. Here, we propose a new method of identifying positive selection at individual amino acid sites with the premise that if positive Darwinian selection has driven the evolution of the protein under consideration, then it should be found mostly at the branches in the phylogenetic tree where its function had changed. The statistical and molecular methods have been applied to 29 visual pigments with the wavelengths of maximal absorption at approximately 510-540 nm (green- or middle wavelength-sensitive [MWS] pigments) and at approximately 560 nm (red- or long wavelength-sensitive [LWS] pigments), which are sampled from a diverse range of vertebrate species. The results show that the MWS pigments are positively selected through amino acid replacements S180A, Y277F, and T285A and that the LWS pigments have been subjected to strong evolutionary conservation. The fact that these positively selected M/LWS pigments are found not only in animals with red-green color vision but also in those with red-green color blindness strongly suggests that both red-green color vision and color blindness have undergone adaptive evolution independently in different species.

  10. Solar Sentinels: Report of the Science and Technology Definition Team

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The goal of NASA s Living With a Star (LWS) program is to develop the scientific understanding necessary to effectively address those aspects of the connected Sun Earth system that directly affect life and society. Along with the other elements of LWS, Solar Sentinels aims to discover, understand, and model the heliospheric initiation, propagation, and solar connection of those energetic phenomena that adversely affect space exploration and life and society here on Earth. The Solar Sentinels mission will address the following questions: (1) How, where, and under what circumstances are solar energetic particles (SEPs) accelerated to high energies and how do they propagate through the heliosphere? And (2) How are solar wind structures associated with these SEPs, like CMEs, shocks, and high-speed streams, initiated, propagate, evolve, and interact in the inner heliosphere? The Sentinels STDT recommends implementing this mission in two portions, one optimized for inner heliospheric in-situ measurements and the other for solar remote observations. Sentinels will greatly enhance the overall LWS science return.

  11. Fermentation of liquid coproducts and liquid compound diets: Part 1. Effects on chemical composition during a 6-day storage period.

    PubMed

    Scholten, R H; Rijnen, M M; Schrama, J W; Boer, H; Vesseur, P C; Den Hartog, L A; van der Peet-Schwering, C M; Verstegen, M W

    2001-06-01

    The effects of a 6-day storage period on changes in dry matter, crude ash, crude protein, true protein, crude fat, starch, soluble starch, sugar and lactose of three liquid coproducts and two liquid compound diets were studied. The three liquid coproducts studied were: liquid wheat starch (LWS), mashed potato steam peel (PSP) and cheese whey (CW), and the two liquid compound diets were: liquid grower diet (LGD) and liquid finisher diet (LFD). The loss of corrected dry matter after a 6-day storage, expressed in relation to the initial content, was 1.9, 6.2, 9.6, 4.6 and 4.2% for LWS, PSP, CW, LGD and LFD, respectively. During storage, the total amount of starch decreased 2.7, 24.0, 28.1 and 33.3% for LWS, PSP, LGD and LFD, respectively. The total amount of lactose decreased 23.5% for CW. The gross energy value of the products did not change remarkably during the 6-day storage period; gross energy losses being less than 3% of the initial gross energy content.

  12. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies

    PubMed Central

    Briscoe, Adriana D.; Bybee, Seth M.; Bernard, Gary D.; Yuan, Furong; Sison-Mangus, Marilou P.; Reed, Robert D.; Warren, Andrew D.; Llorente-Bousquets, Jorge; Chiao, Chuan-Chin

    2010-01-01

    The butterfly Heliconius erato can see from the UV to the red part of the light spectrum with color vision proven from 440 to 640 nm. Its eye is known to contain three visual pigments, rhodopsins, produced by an 11-cis-3-hydroxyretinal chromophore together with long wavelength (LWRh), blue (BRh) and UV (UVRh1) opsins. We now find that H. erato has a second UV opsin mRNA (UVRh2)—a previously undescribed duplication of this gene among Lepidoptera. To investigate its evolutionary origin, we screened eye cDNAs from 14 butterfly species in the subfamily Heliconiinae and found both copies only among Heliconius. Phylogeny-based tests of selection indicate positive selection of UVRh2 following duplication, and some of the positively selected sites correspond to vertebrate visual pigment spectral tuning residues. Epi-microspectrophotometry reveals two UV-absorbing rhodopsins in the H. erato eye with λmax = 355 nm and 398 nm. Along with the additional UV opsin, Heliconius have also evolved 3-hydroxy-DL-kynurenine (3-OHK)-based yellow wing pigments not found in close relatives. Visual models of how butterflies perceive wing color variation indicate this has resulted in an expansion of the number of distinguishable yellow colors on Heliconius wings. Functional diversification of the UV-sensitive visual pigments may help explain why the yellow wing pigments of Heliconius are so colorful in the UV range compared to the yellow pigments of close relatives lacking the UV opsin duplicate. PMID:20133601

  13. Spectral sensitivity of the principal eyes of sunburst diving beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae), larvae.

    PubMed

    Maksimovic, Srdjan; Layne, John E; Buschbeck, Elke K

    2011-11-01

    The principal eyes of sunburst diving beetle, Thermonectus marmoratus, larvae are among the most unusual eyes in the animal kingdom. They are composed of long tubes connecting bifocal lenses with two retinas: a distal retina situated a few hundred micrometers behind the lens, and a proximal retina that is situated directly beneath. A recent molecular study on first instar larvae suggests that the distal retina expresses a long-wavelength-sensitive opsin (TmLW), whereas the proximal retina predominantly expresses an ultraviolet-sensitive opsin (TmUV II). Using cloning and in situ hybridization we here confirm that this opsin distribution is, for the most part, maintained in third instar larvae (with the exception of the TmUV I that is weakly expressed only in proximal retinas of first instar larvae). We furthermore use intracellular electrophysiological recordings and neurobiotin injections to determine the spectral sensitivity of individual photoreceptor cells. We find that photoreceptors of the proximal retina have a sensitivity curve that peaks at 374-375 nm. The shape of the curve is consistent with the predicted absorbance of a single-opsin template. The spectral response of photoreceptors from the distal retina confirms their maximum sensitivity to green light with the dominant λ-peak between 520 and 540 nm, and the secondary β-peak between 340 and 360 nm. These physiological measurements support molecular predictions and represent important steps towards understanding the functional organization of the unusual stemmata of T. marmoratus larvae.

  14. Comparative visual ecology of cephalopods from different habitats

    PubMed Central

    Marshall, N. Justin

    2016-01-01

    Previous investigations of vision and visual pigment evolution in aquatic predators have focused on fish and crustaceans, generally ignoring the cephalopods. Since the first cephalopod opsin was sequenced in late 1980s, we now have data on over 50 cephalopod opsins, prompting this functional and phylogenetic examination. Much of this data does not specifically examine the visual pigment spectral absorbance position (λmax) relative to environment or lifestyle, and cephalopod opsin functional adaptation and visual ecology remain largely unknown. Here we introduce a new protocol for photoreceptor microspectrophotometry (MSP) that overcomes the difficulty of bleaching the bistable visual pigment and that reveals eight coastal coleoid cephalopods to be monochromatic with λmax varying from 484 to 505 nm. A combination of current MSP results, the λmax values previously characterized using cephalopod retinal extracts (467–500 nm) and the corresponding opsin phylogenetic tree were used for systematic comparisons with an end goal of examining the adaptations of coleoid visual pigments to different light environments. Spectral tuning shifts are described in response to different modes of life and light conditions. A new spectral tuning model suggests that nine amino acid substitution sites may determine the direction and the magnitude of spectral shifts. PMID:27629028

  15. A Simplified Mass-Transfer Model for Visual Pigments in Amphibian Retinal-Cone Outer Segments

    PubMed Central

    Weber, Paul W.; Howle, Laurens E.; Murray, Mark M.; Corless, Joseph M.

    2011-01-01

    When radiolabeled precursors and autoradiography are used to investigate turnover of protein components in photoreceptive cone outer segments (COSs), the labeled components—primarily visual pigment molecules (opsins)—are diffusely distributed along the COS. To further assess this COS labeling pattern, we derive a simplified mass-transfer model for quantifying the contributions of advective and diffusive mechanisms to the distribution of opsins within COSs of the frog retina. Two opsin-containing regions of the COS are evaluated: the core axial array of disks and the plasmalemma. Numerical solutions of the mass-transfer model indicate three distinct stages of system evolution. In the first stage, plasmalemma diffusion is dominant. In the second stage, the plasmalemma density reaches a metastable state and transfer between the plasmalemma and disk region occurs, which is followed by an increase in density that is qualitatively similar for both regions. The final stage consists of both regions slowly evolving to the steady-state solution. Our results indicate that autoradiographic and cognate approaches for tracking labeled opsins in the COS cannot be effective methodologies for assessing new disk formation at the base of the COS. PMID:21281566

  16. Differential expression of photoreceptor-specific genes in the retina of a zebrafish cadherin2 mutant glass onion and zebrafish cadherin4 morphants.

    PubMed

    Liu, Q; Frey, R A; Babb-Clendenon, S G; Liu, B; Francl, J; Wilson, A L; Marrs, J A; Stenkamp, D L

    2007-01-01

    Cadherins are Ca2+ -dependent transmembrane molecules that mediate cell-cell adhesion through homophilic interactions. Cadherin2 (also called N-cadherin) and cadherin4 (also called R-cadherin), members of the classic cadherin subfamily, have been shown to be involved in development of a variety of tissues and organs including the visual system. To gain insight into cadherin2 and cadherin4 function in differentiation of zebrafish photoreceptors, we have analyzed expression patterns of several photoreceptor-specific genes (crx, gnat1, gnat2, irbp, otx5, rod opsin, rx1, and uv opsin) and/or a cone photoreceptor marker (zpr-1) in the retina of a zebrafish cadherin2 mutant, glass onion (glo) and in zebrafish embryos injected with a cadherin4 specific antisense morpholino oligonucleotide (cdh4MO). We find that expression of all these genes, and of zpr-1, is greatly reduced in the retina of both the glo and cadherin4 morphants. Moreover, in these embryos, expression of some genes (e.g. gnat1, gnat2 and irbp) is more affected than others (e.g. rod opsin and uv opsin). In embryos with both cadherins functions blocked (glo embryos injected with the cdh4MO), the eye initially formed, but became severely and progressively disintegrated and expressed little or no crx and otx5 as development proceeded. Our results suggest that cadherin2 and cadherin4 play important roles in the differentiation of zebrafish retinal photoreceptors.

  17. Regulation of photoreceptor gene expression by the retinal homeobox (Rx) gene product

    PubMed Central

    Pan, Yi; Martinez-De Luna, Reyna I.; Lou, Chih-Hong; Nekkalapudi, Srivamsi; Kelly, Lisa E.; Sater, Amy K.; El-Hodiri, Heithem M.

    2010-01-01

    The retinal homeobox (Rx) gene product is essential for eye development. However little is known about its molecular function. It has been demonstrated that Rx binds to photoreceptor conserved element (PCE-1), a highly conserved element found in the promoter region of photoreceptor-specific genes such as rhodopsin and red cone opsin. We verify that Rx is co-expressed with rhodopsin and red cone opsin in maturing photoreceptors and demonstrate that Rx binds to the rhodopsin and red cone opsin promoters in vivo. We also find that Rx can cooperate with the Xenopus analogs of Crx and Nrl, otx5b and XLMaf (respectively), to activate a Xenopus opsin promoter-dependent reporter. Finally, we demonstrate that reduction of Rx expression in tadpoles results in decreases in expression of several PCE-1 containing photoreceptor genes, abnormal photoreceptor morphology, and impaired vision. Our data suggests that Rx, in combination with other transcription factors, is necessary for normal photoreceptor gene expression, maintenance, and function. This establishes a direct role for Rx in regulation of genes expressed in a differentiated cell type. PMID:20060393

  18. Longitudinal evaluation of expression of virally delivered transgenes in gerbil cone photoreceptors

    PubMed Central

    Mauck, Matthew C.; Mancuso, Katherine; Kuchenbecker, James A.; Connor, Thomas B.; Hauswirth, William W.; Neitz, Jay; Neitz, Maureen

    2008-01-01

    Delivery of foreign opsin genes to cone photoreceptors using recombinant adeno-associated virus (rAAV) is a potential tool for studying the basic mechanisms underlying cone based vision and for treating vision disorders. We used an in vivo retinal imaging system to monitor, over time, expression of virally-delivered genes targeted to cone photoreceptors in the Mongolian gerbil (Meriones unguiculatus). Gerbils have a well-developed photopic visual system, with 11-14% of their photoreceptors being cones. We used replication deficient serotype 5 rAAV to deliver a gene for green fluorescent protein (GFP). In an effort to direct expression of the gene specifically to either S or M cones, the transgene was under the control of either the human X-chromosome opsin gene regulatory elements, i.e., an enhancer termed the Locus Control Region (LCR) and L promoter, or the human S-opsin promoter. Longitudinal fluorescence images reveal that gene expression is first detectable about 14 days post-injection, reaches a peak after about 3 months, and is observed more than a year post-injection if the initial viral concentration is sufficiently high. The regulatory elements are able to direct expression to a subpopulation of cones while excluding expression in rods and non-photoreceptor retinal cells. When the same viral constructs are used to deliver a human long-wavelength opsin gene to gerbil cones, stimulation of the introduced human photopigment with long-wavelength light produces robust cone responses. PMID:18598398

  19. Color Representation Is Retinotopically Biased but Locally Intermingled in Mouse V1

    PubMed Central

    Aihara, Shuhei; Yoshida, Takashi; Hashimoto, Takayuki; Ohki, Kenichi

    2017-01-01

    Dichromatic vision is common in many mammals. However, color processing in the primary visual cortex (V1) of dichromatic mammals is relatively unknown compared to the trichromatic primates. In this study, we investigated the functional organization of color processing in mouse V1. The mouse retina has a graded expression pattern of two opsins along its dorsoventral axis. However, it is not clear whether and how this expression pattern is reflected in the cortical representation at local (several hundred microns) and areal (V1) level. Using in vivo two-photon calcium (Ca2+) imaging and wide-field Ca2+ imaging, we revealed that V1 neurons responded to S (UV)- and M (green)-opsin isolating stimuli with slightly biased color preference depending on retinotopic position in V1. This was consistent with the distribution of retinal opsins. At the cellular level, preferences for S- and M-opsin isolating stimuli were intermingled in a local region encompassing several hundred microns. These results suggest that functional organizations of color information are locally intermingled, but slightly biased depending on the retinotopic position in mouse V1.

  20. Inspired Biological Engineering: Detection and Production of Polarized Light by Animals

    DTIC Science & Technology

    2009-05-26

    mantis shrimps and cephalopod mollusks discovered a variety of completely unexpected polarizing mechanisms, including differential scattering and...polarizers in mantis shrimps and in cephalopod mollusks (specifically, squids and cuttlefishes). A paper by Short Chiou on cephalopod polarizers was...time colleague in projects with polarization signaling in cephalopods . It is likely that some visual, polarization-sensitive opsins normally

  1. Visual responses in mice lacking critical components of all known retinal phototransduction cascades.

    PubMed

    Allen, Annette E; Cameron, Morven A; Brown, Timothy M; Vugler, Anthony A; Lucas, Robert J

    2010-11-29

    The mammalian visual system relies upon light detection by outer-retinal rod/cone photoreceptors and melanopsin-expressing retinal ganglion cells. Gnat1(-/-);Cnga3(-/-);Opn4(-/-) mice lack critical elements of each of these photoreceptive mechanisms via targeted disruption of genes encoding rod α transducin (Gnat1); the cone-specific α3 cyclic nucleotide gated channel subunit (Cnga3); and melanopsin (Opn4). Although assumed blind, we show here that these mice retain sufficiently widespread retinal photoreception to drive a reproducible flash electroretinogram (ERG). The threshold sensitivity of this ERG is similar to that of cone-based responses, however it is lost under light adapted conditions. Its spectral efficiency is consistent with that of rod opsin, but not cone opsins or melanopsin, indicating that it originates with light absorption by the rod pigment. The TKO light response survives intravitreal injection of U73122 (a phospholipase C antagonist), but is inhibited by a missense mutation of cone α transducin (Gnat2(cpfl3)), suggesting Gnat2-dependence. Visual responses in TKO mice extend beyond the retina to encompass the lateral margins of the lateral geniculate nucleus and components of the visual cortex. Our data thus suggest that a Gnat1-independent phototransduction mechanism downstream of rod opsin can support relatively widespread responses in the mammalian visual system. This anomalous rod opsin-based vision should be considered in experiments relying upon Gnat1 knockout to silence rod phototransduction.

  2. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    SciTech Connect

    Jain, V.; Shah, H.; Bannochie, C. J.; Wilmarth, W. R.

    2016-07-25

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  3. Alouatta trichromatic color vision: cone spectra and physiological responses studied with microspectrophotometry and single unit retinal electrophysiology.

    PubMed

    Silveira, Luiz Carlos L; Saito, Cézar A; da Silva Filho, Manoel; Kremers, Jan; Bowmaker, James K; Lee, Barry B

    2014-01-01

    The howler monkeys (Alouatta sp.) are the only New World primates to exhibit routine trichromacy. Both males and females have three cone photopigments. However, in contrast to Old World monkeys, Alouatta has a locus control region upstream of each opsin gene on the X-chromosome and this might influence the retinal organization underlying its color vision. Post-mortem microspectrophotometry (MSP) was performed on the retinae of two male Alouatta to obtain rod and cone spectral sensitivities. The MSP data were consistent with only a single opsin being expressed in each cone and electrophysiological data were consistent with this primate expressing full trichromacy. To study the physiological organization of the retina underlying Alouatta trichromacy, we recorded from retinal ganglion cells of the same animals used for MSP measurements with a variety of achromatic and chromatic stimulus protocols. We found MC cells and PC cells in the Alouatta retina with similar properties to those previously found in the retina of other trichromatic primates. MC cells showed strong phasic responses to luminance changes and little response to chromatic pulses. PC cells showed strong tonic response to chromatic changes and small tonic response to luminance changes. Responses to other stimulus protocols (flicker photometry; changing the relative phase of red and green modulated lights; temporal modulation transfer functions) were also similar to those recorded in other trichromatic primates. MC cells also showed a pronounced frequency double response to chromatic modulation, and with luminance modulation response saturation accompanied by a phase advance between 10-20 Hz, characteristic of a contrast gain mechanism. This indicates a very similar retinal organization to Old-World monkeys. Cone-specific opsin expression in the presence of a locus control region for each opsin may call into question the hypothesis that this region exclusively controls opsin expression.

  4. Effects of live weight at slaughter on fatty acid composition of Longissimus dorsi and Biceps femoris muscles of indigenous Lori goat.

    PubMed

    Kiani, Ali; Fallah, Rozbeh

    2016-01-01

    This study aimed to determine fatty acid (FA) composition of Longissimus dorsi (LD) and Biceps femoris (BF) muscles of an Iranian indigenous goat (Lori goat) at two live weights at slaughter (LWS). Twenty male Lori goats (5 to 8 months) raised in nomadic system were slaughtered either at LWS less than 20 kg (light) or LWS more than 30 kg (heavy). Carcass dressing and FA composition of intramuscular fat of LD and BF muscles as well as cholesterol content of LD muscle were determined. Heavy goats had higher dressing percentage than light ones (42.7vs.39.3%, P < 0.01). The predominant n-6 FA were C18:2, and C20:4 while C22:5, C20:5, C18:3, C20:3, and C22:6 were the n-3 FA detected. Polyunsaturated and saturated FA contributed 22% and 36% of the total FA in both muscles, respectively. Palmitic acid (C16:0) of LD was higher in heavy compared to the light goats (P < 0.05). BF muscle had higher α-linolenic acid (18:3 n-3) as percentage than LD muscle (P < 0.05). The ratio of n-6/n-3 FA and polyunsaturated/saturated FA were 3.8 and 0.6, respectively. Cholesterol content of LD muscle of light and heavy goats were 71.2 ± 16 and 59.5 ± 14 mg per 100 g fresh meat respectively. In conclusion, desirable PUFA/SFA (0.6) and n-3/n-6 ratio (3.8) found in indigenous Lori goat propose healthy source of lean meat for the consumers.

  5. The Living with a Star Radiation Belt Storm Probes Mission and Related Missions of Opportunity

    NASA Technical Reports Server (NTRS)

    Sibeck, David G.; Mauk, Barry H.; Grebowsky, Joseph M.; Fox, Nicola J.

    2006-01-01

    This presentation provides an overview of the Living With a Star (LWS) Radiation Belt Storm Probes (RBSP) mission in the context of the broader Geospace program. Missions to Geospace offer an opportunity to observe in situ the fundamental processes that operate throughout the solar system and in particular those that generate hazardous space weather effects in the vicinity of Earth. The recently selected investigations on NASA's LWS program's RBSP will provide the measurements needed to characterize and quantify the processes that supply and remove energetic particles from the Earth's Van Allen radiation belts. Instruments on the RBSP spacecraft will observe charged particles that comprise the Earth's radiation belts over the full energy range from 1 eV to more than 10 MeV (including composition), the plasma waves which energize them, the electric fields which transport them, and the magnetic fields which guide their motion. The two-point measurements by the RBSP spacecraft will enable researchers to discriminate between spatial and temporal effects, and therefore between the various proposed mechanisms for particle acceleration and loss. The measurements taken by the RBSP spacecraft will be used in data modeling projects in order to improve the understanding of these fundamental processes and allow better predictions to be made. NASA's LWS program has also recently selected three teams to study concepts for Missions of Opportunity that will augment the RBSP program, by (1) providing an instrument for a Canadian spacecraft in the Earth's radiation belts, (2) quantifying the flux of particles precipitating into the Earth's atmosphere from the Earth's radiation belts, and (3) remotely sensing both spatial and temporal variations in the Earth's ionosphere and thermosphere.

  6. Breeding objectives for pigs in Kenya. II: economic values incorporating risks in different smallholder production systems.

    PubMed

    Mbuthia, Jackson Mwenda; Rewe, Thomas Odiwuor; Kahi, Alexander Kigunzu

    2015-02-01

    This study estimated economic values for production traits (dressing percentage (DP), %; live weight for growers (LWg), kg; live weight for sows (LWs), kg) and functional traits (feed intake for growers (FEEDg), feed intake for sow (FEEDs), preweaning survival rate (PrSR), %; postweaning survival (PoSR), %; sow survival rate (SoSR), %, total number of piglets born (TNB) and farrowing interval (FI), days) under different smallholder pig production systems in Kenya. Economic values were estimated considering two production circumstances: fixed-herd and fixed-feed. Under the fixed-herd scenario, economic values were estimated assuming a situation where the herd cannot be increased due to other constraints apart from feed resources. The fixed-feed input scenario assumed that the herd size is restricted by limitation of feed resources available. In addition to the tradition profit model, a risk-rated bio-economic model was used to derive risk-rated economic values. This model accounted for imperfect knowledge concerning risk attitude of farmers and variance of input and output prices. Positive economic values obtained for traits DP, LWg, LWs, PoSR, PrSR, SoSR and TNB indicate that targeting them in improvement would positively impact profitability in pig breeding programmes. Under the fixed-feed basis, the risk-rated economic values for DP, LWg, LWs and SoSR were similar to those obtained under the fixed-herd situation. Accounting for risks in the EVs did not yield errors greater than ±50 % in all the production systems and basis of evaluation meaning there would be relatively little effect on the real genetic gain of a selection index. Therefore, both traditional and risk-rated models can be satisfactorily used to predict profitability in pig breeding programmes.

  7. Impedance-matching analysis in IR leaky-wave antennas

    NASA Astrophysics Data System (ADS)

    Premkumar, Navaneeth; Xu, Yuancheng; Lail, Brian A.

    2015-08-01

    Planar leaky-wave antennas (LWA) that are capable of full-space scanning have long since been the pursuit for applications including, but not limited to, integration onto vehicles and into cameras for wide-angle of view beam-steering. Such a leaky-wave surface (LWS) was designed for long-wave infrared frequencies with frequency scanning capability. The LWS is based on a microstrip patch array design of a leaky-wave impedance surface and is made up of gold microstrip patches on a grounded zinc sulphide substrate. A 1D composite right/left-handed (CRLH) metamaterial made by periodically stacking a unit cell of the LWS in the longitudinal direction to form a LWA was designed. This paper deals with loading the LWA with a nickel bolometer to collect leaky-wave signals. The LWA radiates a backward leaking wave at 30 degrees at 28.3THz and scans through broadside for frequencies 20THz through 40THz. The paper deals with effectively placing the bolometer in order for the collected signal to exhibit the designed frequency regime. An effective way to maximize the power coupling into the load from the antenna is also explored. The benefit of such a metamaterial/holographic antennacoupled detector is its ability to provide appreciable capture cross-sections while delivering smart signals to subwavelength sized detectors. Due to their high-gain, low-profile, fast response time of the detector and ease of fabrication, this IR LWA-coupled bolometer harbors great potential in the areas of high resolution, uncooled, infrared imaging.

  8. Rhabdom evolution in butterflies: insights from the uniquely tiered and heterogeneous ommatidia of the Glacial Apollo butterfly, Parnassius glacialis.

    PubMed

    Matsushita, Atsuko; Awata, Hiroko; Wakakuwa, Motohiro; Takemura, Shin-ya; Arikawa, Kentaro

    2012-09-07

    The eye of the Glacial Apollo butterfly, Parnassius glacialis, a 'living fossil' species of the family Papilionidae, contains three types of spectrally heterogeneous ommatidia. Electron microscopy reveals that the Apollo rhabdom is tiered. The distal tier is composed exclusively of photoreceptors expressing opsins of ultraviolet or blue-absorbing visual pigments, and the proximal tier consists of photoreceptors expressing opsins of green or red-absorbing visual pigments. This organization is unique because the distal tier of other known butterflies contains two green-sensitive photoreceptors, which probably function in improving spatial and/or motion vision. Interspecific comparison suggests that the Apollo rhabdom retains an ancestral tiered pattern with some modification to enhance its colour vision towards the long-wavelength region of the spectrum.

  9. Cl-out is a novel cooperative optogenetic tool for extruding chloride from neurons.

    PubMed

    Alfonsa, Hannah; Lakey, Jeremy H; Lightowlers, Robert N; Trevelyan, Andrew J

    2016-11-17

    Chloride regulation affects brain function in many ways, for instance, by dictating the GABAergic reversal potential, and thereby influencing neuronal excitability and spike timing. Consistent with this, there is increasing evidence implicating chloride in a range of neurological conditions. Investigations about these conditions, though, are made difficult by the limited range of tools available to manipulate chloride levels. In particular, there has been no way to actively remove chloride from neurons; we now describe an optogenetic strategy, 'Cl-out', to do exactly this. Cl-out achieves its effect by the cooperative action of two different component opsins: the proton pump, Archaerhodopsin and a chloride channel opsin. The removal of chloride happens when both are activated together, using Archaerhodopsin as an optical voltage clamp to provide the driving force for chloride removal through the concurrently opened, chloride channels. We further show that this novel optogenetic strategy can reverse an in vitro epileptogenic phenotype.

  10. WP1: transgenic opto-animals

    NASA Astrophysics Data System (ADS)

    UŻarowska, E.; Czajkowski, Rafał; Konopka, W.

    2014-11-01

    We aim to create a set of genetic tools where permanent opsin expression (ChR or NpHR) is precisely limited to the population of neurons that express immediate early gene c-fos during a specific temporal window of behavioral training. Since the c-fos gene is only expressed in neurons that form experience-dependent ensemble, this approach will result in specific labeling of a small subset of cells that create memory trace for the learned behavior. To this end we employ two alternative inducible gene expression systems: Tet Expression System and Cre/lox System. In both cases, the temporal window for opsin induction is controlled pharmacologically, by doxycycline or tamoxifen, respectively. Both systems will be used for creating lines of transgenic animals.

  11. One-step optogenetics with multifunctional flexible polymer fibers.

    PubMed

    Park, Seongjun; Guo, Yuanyuan; Jia, Xiaoting; Choe, Han Kyoung; Grena, Benjamin; Kang, Jeewoo; Park, Jiyeon; Lu, Chi; Canales, Andres; Chen, Ritchie; Yim, Yeong Shin; Choi, Gloria B; Fink, Yoel; Anikeeva, Polina

    2017-04-01

    Optogenetic interrogation of neural pathways relies on delivery of light-sensitive opsins into tissue and subsequent optical illumination and electrical recording from the regions of interest. Despite the recent development of multifunctional neural probes, integration of these modalities in a single biocompatible platform remains a challenge. We developed a device composed of an optical waveguide, six electrodes and two microfluidic channels produced via fiber drawing. Our probes facilitated injections of viral vectors carrying opsin genes while providing collocated neural recording and optical stimulation. The miniature (<200 μm) footprint and modest weight (<0.5 g) of these probes allowed for multiple implantations into the mouse brain, which enabled opto-electrophysiological investigation of projections from the basolateral amygdala to the medial prefrontal cortex and ventral hippocampus during behavioral experiments. Fabricated solely from polymers and polymer composites, these flexible probes minimized tissue response to achieve chronic multimodal interrogation of brain circuits with high fidelity.

  12. Heterologous expression of the adenosine A1 receptor in transgenic mouse retina.

    PubMed

    Li, Ning; Salom, David; Zhang, Li; Harris, Tim; Ballesteros, Juan A; Golczak, Marcin; Jastrzebska, Beata; Palczewski, Krzysztof; Kurahara, Carole; Juan, Todd; Jordan, Steven; Salon, John A

    2007-07-17

    Traditional cell-based systems used to express integral membrane receptors have yet to produce protein samples of sufficient quality for structural study. Herein we report an in vivo method that harnesses the photoreceptor system of the retina to heterologously express G protein-coupled receptors in a biochemically homogeneous and pharmacologically functional conformation. As an example we show that the adenosine A1 receptor, when placed under the influence of the mouse opsin promoter and rhodopsin rod outer segment targeting sequence, localized to the photoreceptor cells of transgenic retina. The resulting receptor protein was uniformly glycosylated and pharmacologically well behaved. By comparison, we demonstrated in a control experiment that opsin, when expressed in the liver, had a complex pattern of glycosylation. Upon solubilization, the retinal adenosine A1 receptor retained binding characteristics similar to its starting material. This expression method may prove generally useful for generating high-quality G protein-coupled receptors for structural studies.

  13. Color vision and color formation in dragonflies.

    PubMed

    Futahashi, Ryo

    2016-10-01

    Dragonflies including damselflies are colorful and large-eyed insects, which show remarkable sexual dimorphism, color transition, and color polymorphism. Recent comprehensive visual transcriptomics has unveiled an extraordinary diversity of opsin genes within the lineage of dragonflies. These opsin genes are differentially expressed between aquatic larvae and terrestrial adults, as well as between dorsal and ventral regions of adult compound eyes. Recent topics of color formation in dragonflies are also outlined. Non-iridescent blue color is caused by coherent light scattering from the quasiordered nanostructures, whereas iridescent color is produced by multilayer structures. Wrinkles or wax crystals sometimes enhances multilayer structural colors. Sex-specific and stage-specific color differences in red dragonflies is attributed to redox states of ommochrome pigments.

  14. Cl-out is a novel cooperative optogenetic tool for extruding chloride from neurons

    PubMed Central

    Alfonsa, Hannah; Lakey, Jeremy H.; Lightowlers, Robert N.; Trevelyan, Andrew J.

    2016-01-01

    Chloride regulation affects brain function in many ways, for instance, by dictating the GABAergic reversal potential, and thereby influencing neuronal excitability and spike timing. Consistent with this, there is increasing evidence implicating chloride in a range of neurological conditions. Investigations about these conditions, though, are made difficult by the limited range of tools available to manipulate chloride levels. In particular, there has been no way to actively remove chloride from neurons; we now describe an optogenetic strategy, ‘Cl-out', to do exactly this. Cl-out achieves its effect by the cooperative action of two different component opsins: the proton pump, Archaerhodopsin and a chloride channel opsin. The removal of chloride happens when both are activated together, using Archaerhodopsin as an optical voltage clamp to provide the driving force for chloride removal through the concurrently opened, chloride channels. We further show that this novel optogenetic strategy can reverse an in vitro epileptogenic phenotype. PMID:27853135

  15. Combined Optogenetic and Chemogenetic Control of Neurons

    PubMed Central

    Berglund, Ken; Tung, Jack K.; Higashikubo, Bryan; Gross, Robert E.; Moore, Christopher I.; Hochgeschwender, Ute

    2016-01-01

    Optogenetics provides an array of elements for specific biophysical control, while designer chemogenetic receptors provide a minimally invasive method to control circuits in vivo by peripheral injection. We developed a strategy for selective regulation of activity in specific cells that integrates opto- and chemogenetic approaches, and thus allows manipulation of neuronal activity over a range of spatial and temporal scales in the same experimental animal. Light-sensing molecules (opsins) are activated by biologically produced light through luciferases upon peripheral injection of a small molecule substrate. Such luminescent opsins, luminopsins, allow conventional fiber optic use of optogenetic sensors, while at the same time providing chemogenetic access to the same sensors. We describe applications of this approach in cultured neurons in vitro, in brain slices ex vivo, and in awake and anesthetized animals in vivo. PMID:26965125

  16. Optogenetic Approaches for Mesoscopic Brain Mapping.

    PubMed

    Kyweriga, Michael; Mohajerani, Majid H

    2016-01-01

    Recent advances in identifying genetically unique neuronal proteins has revolutionized the study of brain circuitry. Researchers are now able to insert specific light-sensitive proteins (opsins) into a wide range of specific cell types via viral injections or by breeding transgenic mice. These opsins enable the activation, inhibition, or modulation of neuronal activity with millisecond control within distinct brain regions defined by genetic markers. Here we present a useful guide to implement this technique into any lab. We first review the materials needed and practical considerations and provide in-depth instructions for acute surgeries in mice. We conclude with all-optical mapping techniques for simultaneous recording and manipulation of population activity of many neurons in vivo by combining arbitrary point optogenetic stimulation and regional voltage-sensitive dye imaging. It is our intent to make these methods available to anyone wishing to use them.

  17. Connecting the navigational clock to sun compass input in monarch butterfly brain.

    PubMed

    Sauman, Ivo; Briscoe, Adriana D; Zhu, Haisun; Shi, Dingding; Froy, Oren; Stalleicken, Julia; Yuan, Quan; Casselman, Amy; Reppert, Steven M

    2005-05-05

    Migratory monarch butterflies (Danaus plexippus) use a time-compensated sun compass to navigate to their overwintering grounds in Mexico. Although polarized light is one of the celestial cues used for orientation, the spectral content (color) of that light has not been fully explored. We cloned the cDNAs of three visual pigment-encoding opsins (ultraviolet [UV], blue, and long wavelength) and found that all three are expressed uniformly in main retina. The photoreceptors of the polarization-specialized dorsal rim area, on the other hand, are monochromatic for the UV opsin. Behavioral studies support the importance of polarized UV light for flight orientation. Next, we used clock protein expression patterns to identify the location of a circadian clock in the dorsolateral protocerebrum of butterfly brain. To provide a link between the clock and the sun compass, we identified a CRYPTOCHROME-staining neural pathway that likely connects the circadian clock to polarized light input entering brain.

  18. Phototransduction and the Evolution of Photoreceptors

    PubMed Central

    Fain, Gordon L.; Hardie, Roger; Laughlin, Simon B.

    2010-01-01

    Photoreceptors in metazoans can be grouped into two classes, with their photoreceptive membrane derived either from cilia or microvilli. Both classes use some form of the visual pigment protein opsin, which together with 11-cis retinaldehyde absorbs light and activates a G-protein cascade, resulting in the opening or closing of ion channels. Considerable attention has recently been given to the molecular evolution of the opsins and other photoreceptor proteins; much is also known about transduction in the various photoreceptor types. Here we combine this knowledge in an attempt to understand why certain photoreceptors might have conferred particular selective advantages during evolution. We suggest that microvillar photoreceptors became predominant in most invertebrate species because of their single-photon sensitivity, high temporal resolution, and large dynamic range, and that rods and a duplex retina provided primitive chordates and vertebrates with similar sensitivity and dynamic range, but with a smaller expenditure of ATP. PMID:20144772

  19. UV wavelengths experienced during development affect larval newt visual sensitivity and predation efficiency.

    PubMed

    Martin, Mélissa; Théry, Marc; Rodgers, Gwendolen; Goven, Delphine; Sourice, Stéphane; Mège, Pascal; Secondi, Jean

    2016-02-01

    We experimentally investigated the influence of developmental plasticity of ultraviolet (UV) visual sensitivity on predation efficiency of the larval smooth newt, Lissotriton vulgaris. We quantified expression of SWS1 opsin gene (UV-sensitive protein of photoreceptor cells) in the retinas of individuals who had developed in the presence (UV+) or absence (UV-) of UV light (developmental treatments), and tested their predation efficiency under UV+ and UV- light (testing treatments). We found that both SWS1 opsin expression and predation efficiency were significantly reduced in the UV- developmental group. Larvae in the UV- testing environment displayed consistently lower predation efficiency regardless of their developmental treatment. These results prove for the first time, we believe, functional UV vision and developmental plasticity of UV sensitivity in an amphibian at the larval stage. They also demonstrate that UV wavelengths enhance predation efficiency and suggest that the magnitude of the behavioural response depends on retinal properties induced by the developmental lighting environment.

  20. Evidence from Chlamydomonas on the photoactivation of rhodopsins without isomerization of their chromophore

    PubMed Central

    Foster, Kenneth W.; Saranak, Jureepan; Krane, Sonja; Johnson, Randy L.; Nakanishi, Koji

    2011-01-01

    SUMMARY Attachment of retinal to opsin forms the chromophore N-retinylidene which isomerizes during photoactivation of rhodopsins. To test whether isomerization is crucial, custom-tailored chromophores lacking the β-ionone ring and any isomerizable bonds were incorporated in vivo into the opsin of a blind mutant of the eukaryote Chlamydomonas reinhardtii. The analogues restored phototaxis with the anticipated action spectra, ruling out the need for isomerization in photoactivation. To further elucidate photoactivation, responses to chromophores formed from naphthalene aldehydes were studied. The resulting action spectral shifts suggest that charge separation within the excited chromophore leads to electric field induced polarization of nearby amino-acid residues and altered hydrogen bonding. This redistribution of charge faciliates the reported multiple bond rotations and protein rearrangements of rhodopsin activation. These results provide new insight into the activation of rhodopsins and related GPCRs. PMID:21700209

  1. Thermal Evolution of Juvenile Subduction Zones ' New Constraints from Lu-Hf Geochronology on HP oceanic rocks (Halilbaǧi, Central Anatolia)

    NASA Astrophysics Data System (ADS)

    Pourteau, Amaury; Scherer, Erik; Schmidt, Alexander; Bast, Rebecca

    2015-04-01

    The thermal structure of subduction zones plays a key role on mechanical and chemical processes taking place along the slab-mantle interface. Until now, changes through time of this thermal structure have been explored mostly by the means of numerical simulations. However, both "warm" (i.e., epidote-bearing), and "cold" (i.e., lawsonite-bearing) HP oceanic rocks have been reported in some fossil subduction complexes exposed at the Earth's surface (e.g., Franciscan Complex, California; Rio San Juan Complex, Hispañola; Halilbağı Unit, Central Anatolia). These a-priori "incompatible" rocks witness different thermal stages of ancient subduction zones and their study might provide complementary constraints to numerical models. To decipher the meaning of these contrasting metamorphic rocks in the Halilbağı Unit, we are carrying out Lu-Hf geochronology on garnet (grt) and lws from a variety of HP oceanic rocks, as well as the metamorphic sole of the overlying ophiolite. We selected five samples that are representative of the variety of metamorphic evolutions (i.e. peak conditions and P-T paths) encountered in this area. Preliminary analyses yielded 110 Ma (grt-hbl isochron) for a sub-ophiolitic grt amphibolite; 92 Ma (grt-omp) for an eclogite with prograde and retrograde ep; 90 Ma (grt-omp) for an eclogitic metabasite with prograde ep and retrograde ep+lws; 87 Ma (grt-gln) for a lws eclogite with prograde ep; and 86 Ma (grt-gln) for a blueschist with prograde and retrograde lws. These ages are mainly two-point isochrons. Further-refined data will be presented at the EGU General Assembly 2015, in Vienna. The consistent younging trend from "warm" to "cold" metamorphic rocks revealed by these first-order results points to metamorphic-sole formation during the initiation of intra-oceanic subduction at ~110 Ma, and subsequent cooling of the slab-mantle interface between 92 and 86 Ma. Therefore, the contrasting metamorphic evolutions encountered in the Halilbağı Unit

  2. The Living With a Star Space Environment Testbed Program

    NASA Technical Reports Server (NTRS)

    Barth, Janet; LaBel, Kenneth; Day, John H. (Technical Monitor)

    2001-01-01

    NASA has initiated the Living with a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affects life and society. The Program Architecture includes science missions, theory and modeling and Space Environment Testbeds (SET). This current paper discusses the Space Environment Testbeds. The goal of the SET program is to improve the engineering approach to accomodate and/or mitigate the effects of solar variability on spacecraft design and operations. The SET Program will infuse new technologies into the space programs through collection of data in space and subsequent design and validation of technologies. Examples of these technologies are cited and discussed.

  3. WASTE CERTIFICATION PROGRAM PLAN - REVISION 7

    SciTech Connect

    MORGAN, LK

    2002-01-08

    The primary changes that have been made to this revision reflect the relocation of the Waste Certification Official (WCO) organizationally from the Quality Services Division (QSD) into the Laboratory Waste Services (LWS) Organization. Additionally, the responsibilities for program oversight have been differentiated between the QSD and LWS. The intent of this effort is to ensure that those oversight functions, which properly belonged to the WCO, moved with that function; but retain an independent oversight function outside of the LWS Organization ensuring the potential for introduction of organizational bias, regarding programmatic and technical issues, is minimized. The Waste Certification Program (WCP) itself has been modified to allow the waste certification function to be performed by any of the personnel within the LWS Waste Acceptance/Certification functional area. However, a single individual may not perform both the technical waste acceptance review and the final certification review on the same 2109 data package. Those reviews must be performed by separate individuals in a peer review process. There will continue to be a designated WCO who will have lead programmatic responsibility for the WCP and will exercise overall program operational oversite as well as determine the overall requirements of the certification program. The quality assurance organization will perform independent, outside oversight to ensure that any organizational bias does not degrade the integrity of the waste certification process. The core elements of the previous WCP have been retained, however, the terms and process structure have been modified.. There are now two ''control points,'' (1) the data package enters the waste certification process with the signature of the Generator Interface/Generator Interface Equivalent (GI/GIE), (2) the package is ''certified'', thus exiting the process. The WCP contains three steps, (1) the technical review for waste acceptance, (2) a review of the

  4. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    NASA Astrophysics Data System (ADS)

    Beaulieu, S. E.; Brickley, A.; Emery, M.; Spargo, A.; Patterson, K.; Joyce, K.; Silva, T.; Madin, K.

    2014-12-01

    Digital globes are new technologies increasingly used in both informal and formal education to display global datasets. By creating a narrative using multiple datasets, linkages between Earth systems - lithosphere, hydrosphere, atmosphere, and biosphere - can be conveyed. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question in developing new content for digital globes that interweaves imagery obtained by deep-diving vehicles with global datasets, including a new dataset locating the world's known hydrothermal vents. Our two narratives, "Life Without Sunlight" (LWS) and "Smoke and Fire Underwater" (SFU), each focus on STEM (science, technology, engineering, and mathematics) principles related to geology, biology, and exploration. We are preparing a summative evaluation for our content delivered on NOAA's Science on a Sphere as interactive presentations and as movies. We tested knowledge gained with respect to the STEM principles and the level of excitement generated by the virtual deep-sea exploration. We conducted a Post-test Only Design with quantitative data based on self-reporting on a Likert scale. A total of 75 adults and 48 youths responded to our questionnaire, distributed into test groups that saw either one of the two narratives delivered either as a movie or as an interactive presentation. Here, we report preliminary results for the youths, the majority (81%) of which live in towns with lower income and lower levels of educational attainment as compared to other towns in Massachusetts. For both narratives, there was knowledge gained for all 6 STEM principles and "Quite a Bit" of excitement. The mode in responses for knowledge gained was "Quite a Bit" for both the movie and the interactive presentation for 4 of the STEM principles (LWS geology, LWS biology, SFU geology, and SFU exploration) and "Some" for SFU biology. Only for LWS exploration was there a difference in mode between the

  5. The Living With a Star Space Environment Testbed Experiments

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.

    2014-01-01

    The focus of the Living With a Star (LWS) Space Environment Testbed (SET) program is to improve the performance of hardware in the space radiation environment. The program has developed a payload for the Air Force Research Laboratory (AFRL) Demonstration and Science Experiments (DSX) spacecraft that is scheduled for launch in August 2015 on the SpaceX Falcon Heavy rocket. The primary structure of DSX is an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring. DSX will be in a Medium Earth Orbit (MEO). This oral presentation will describe the SET payload.

  6. High Angular Resolution Mid-Infrared Imaging of Young Stars in Orion BN/KL

    NASA Technical Reports Server (NTRS)

    Greenhill, L. J.; Gezari, D. Y.; Danchi, W. C.; Najita, J.; Monnier, J. D.

    2004-01-01

    The authors present Keck LWS images of the Orion BN/KL star forming region obtained in the first multi-wavelength study to have 0.3--0.5 resolution from 4.7 (micro)m to 22 (micro)m. The young stellar objects designed infrared source n and radio source I are believed to dominate the BN/KL region. They have detected extended emission from a probable accretion disk around source n but infer a stellar luminosity on the order of only 2000 L(sub (center-dot)).

  7. ISM Parameters in the Normal Galaxy NGC 5713

    NASA Technical Reports Server (NTRS)

    Lord, S. D.; Malhotra, S.; Lim, T.; Helou, G.; Beichman, C. A.; Dinerstein, H.; Hollenbach, D. J.; Hunter, D. A.; Lo, K. Y.; Lu, N. Y.; Rubin, R. H.; Stacey, G. J.; Thronson, H. A., Jr.; Werner, M. W.

    1996-01-01

    We report ISO Long Wavelength Spectrometer (LWS) observations fo the Sbc(s) pec galaxy NGC 5713. We have obtained strong detections of the fine-structure forbidden transitions [C(sub ii)] 158(micro)m, [O(sub i)]63(micro)m, and [O(sub iii)] 88(micro)m, and significant upper limits for[N(sub ii)]122(micro)m, [O(sub iii)] 52(micro)m, and [N(sub iii)] 57(micro)m. We also detect the galaxy's dust continuum emission between 43 and 197 microns.

  8. The Promise of First Spectroscopy of Normal and Dwarf Galaxies

    DTIC Science & Technology

    2001-07-01

    The [C II]158µm line flux versus FIR flux for 12 ULIGs observed with the LWS ( Luhman et al. 1998; 2001) com- pared with a sample of normal and...starburst galaxies ( Luhman et al. 1998; Lord et al. 1996; Colbert et al. 1999; Stacey et al. 1999; Bradford et al. 1999). In the symbol key, the galaxies are...defined as in Sanders & Mirabel (1996). The dashed lines mark the regime typical of normal and star- burst galaxies. From Luhman et al. (2001). feature

  9. Comparative retinal morphology of the platypus.

    PubMed

    Zeiss, Caroline J; Schwab, Ivan R; Murphy, Christopher J; Dubielzig, Richard W

    2011-08-01

    The purpose of this study is to identify evolutionary origin and fate of anatomic features of the duck-billed platypus eye. Eyes from the duck-billed platypus and four key evolutionary basal vertebrates (Pacific hagfish, north hemisphere sea lamprey, and Australian and South American lungfishes) were prepared for light microscopy. In addition to a standard panel of stains, tissues were immunostained against a variety of rod and cone opsins. Finally, published opsin sequences of platypus and several other vertebrate species were aligned and compared with immunohistochemical results. A complete scleral cartilage similar to that seen in birds, reptiles and amphibians encloses the platypus eye. This feature is present in sharks and rays, and in extant relatives of tetrapods, the lungfishes. The choroid lacks a tapetum. The retina is largely avascular and is rod-dominated, with a minority of red- and blue- cone immunoreactive photoreceptors. Like marsupials and many nonmammalian vertebrates, cones contain clear inner segment droplets. Double cones were present, a feature not found in eutherian mammals or marsupials. Evaluation of opsins indicates that red and blue immunoreactive cone opsins, but not rhodopsin, are present in the most basal of the extant species examined, the Pacific hagfish. Rhodopsin appears in the Australian and South American lungfishes, establishing emergence of this pigment in an extant relative of tetrapods. Unlike eyes of eutherian mammals, the platypus eye has retained morphologic features present in early tetrapods such as amphibians and their evolutionarily basal sister group, the lungfishes. These include scleral cartilage, double cones and cone droplets. In the platypus, as in other mammals, rod rhodopsin is the predominant photoreceptor pigment, at expense of the cone system.

  10. Immunocytochemical analysis of photoreceptors in the tiger salamander retina.

    PubMed

    Zhang, Jian; Wu, Samuel M

    2009-01-01

    In the tiger salamander retina, visual signals are transmitted to the inner retina via six morphologically distinct types of photoreceptors: large/small rods, large/small single cones, and double cones composed of principal and accessory members. The objective of this study was to determine the morphology of these photoreceptors and their synaptic interconnection with bipolar cells and horizontal cells in the outer plexiform layer (OPL). Here we showed that glutamate antibodies labeled all photoreceptors and recovering antibodies strongly labeled all cones and weakly labeled all rods. Antibodies against calbindin selectively stained accessory members of double cones. Antibodies against S-cone opsin stained small rods, a subpopulation of small single cones, and the outer segments of accessory double cones and a subtype of unidentified single cones. On average, large rods and small S-cone opsin positive rods accounted for 98.6% and 1.4% of all rods, respectively. Large/small cones, principle/accessory double cones, S-cone opsin positive small single cones, and S-cone opsin positive unidentified single cones accounted for about 66.9%, 23%, 4.5%, and 5.6% of the total cones, respectively. Moreover, the differential connection between rods/cones and bipolar/horizontal cells and the wide distribution of AMPA receptor subunits GluR2/3 and GluR4 at the rod/cone synapses were observed. These results provide anatomical evidence for the physiological findings that bipolar/horizontal cells in the salamander retina are driven by rod/cone inputs of different weights, and that AMPA receptors play an important role in glutamatergic neurotransmission at the first visual synapses. The different photoreceptors selectively contacting bipolar and horizontal cells support the idea that visual signals may be conveyed to the inner retina by different functional pathways in the outer retina.

  11. Unique system of photoreceptors in sea urchin tube feet

    PubMed Central

    Ullrich-Lüter, Esther M; Dupont, Sam; Arboleda, Enrique; Hausen, Harald; Arnone, Maria Ina

    2011-01-01

    Different sea urchin species show a vast variety of responses to variations in light intensity; however, despite this behavioral evidence for photosensitivity, light sensing in these animals has remained an enigma. Genome information of the recently sequenced purple sea urchin (Strongylocentrotus purpuratus) allowed us to address this question from a previously unexplored molecular perspective by localizing expression of the rhabdomeric opsin Sp-opsin4 and Sp-pax6, two genes essential for photoreceptor function and development, respectively. Using a specifically designed antibody against Sp-Opsin4 and in situ hybridization for both genes, we detected expression in two distinct groups of photoreceptor cells (PRCs) located in the animal's numerous tube feet. Specific reactivity of the Sp-Opsin4 antibody with sea star optic cushions, which regulate phototaxis, suggests a similar visual function in sea urchins. Ultrastructural characterization of the sea urchin PRCs revealed them to be of a microvillar receptor type. Our data suggest that echinoderms, in contrast to chordates, deploy a microvillar, r-opsin–expressing PRC type for vision, a feature that has been so far documented only in protostome animals. Surprisingly, sea urchin PRCs lack any associated screening pigment. Indeed, one of the tube foot PRC clusters may account for directional vision by being shaded through the opaque calcite skeleton. The PRC axons connect to the animal internal nervous system, suggesting an integrative function beyond local short circuits. Because juveniles display no phototaxis until skeleton completion, we suggest a model in which the entire sea urchin, deploying its skeleton as PRC screening device, functions as a huge compound eye. PMID:21536888

  12. Color vision in an elderly patient with protanopic genotype and successfully treated unilateral age-related macular degeneration.

    PubMed

    Kitakawa, Takaaki; Hayashi, Takaaki; Tsuzuranuki, Satoshi; Kubo, Akiko; Tsuneoka, Hiroshi

    2011-12-01

    We investigated differences in color discrimination between the fellow eye and the affected eye successfully treated for unilateral age-related macular degeneration (AMD) in a 69-year-old male patient with protanopia. His best-corrected visual acuity (BCVA) was 1.2 in the right eye (RE) and 0.2 in the left eye (LE). Fundus and angiographic findings showed classic choroidal neovascularization (CNV) secondary to AMD in the LE. BCVA of the LE improved to 0.4, and CNV resolved by 15 months after initiating combined anti-vascular endothelial growth factor and photodynamic therapies. After CNV closure, the Farnsworth dichotomous was performed, showing confusion patterns of the protan axis in either eye. The Farnsworth-Munsell 100-hue test showed a total error score of 520 in the LE, much higher than the score of 348 in the RE. Complete genotypes of the long-wavelength-sensitive (L-) cone and middle-wavelength-sensitive (M-) cone opsin genes were determined by polymerase chain reaction, revealing that the patient had a single 5' L-M 3' hybrid gene (encoding an M-cone opsin), with this genotype responsible for protanopia (the L-cone opsin gene was non-functional), instead of the L-cone and M-cone opsin gene arrays. Poorer color vision discrimination in the LE than the RE remained present despite closure of CNV. The presence and type of congenital color vision defect can be confirmed using molecular genetic testing even if complications of acquired retinal diseases such as AMD are identified.

  13. The Giant Mottled Eel, Anguilla marmorata, Uses Blue-Shifted Rod Photoreceptors during Upstream Migration

    PubMed Central

    Wang, Feng-Yu; Fu, Wen-Chun; Wang, I-Li

    2014-01-01

    Catadromous fishes migrate between ocean and freshwater during particular phases of their life cycle. The dramatic environmental changes shape their physiological features, e.g. visual sensitivity, olfactory ability, and salinity tolerance. Anguilla marmorata, a catadromous eel, migrates upstream on dark nights, following the lunar cycle. Such behavior may be correlated with ontogenetic changes in sensory systems. Therefore, this study was designed to identify changes in spectral sensitivity and opsin gene expression of A. marmorata during upstream migration. Microspectrophotometry analysis revealed that the tropical eel possesses a duplex retina with rod and cone photoreceptors. The λmax of rod cells are 493, 489, and 489 nm in glass, yellow, and wild eels, while those of cone cells are 508, and 517 nm in yellow, and wild eels, respectively. Unlike European and American eels, Asian eels exhibited a blue-shifted pattern of rod photoreceptors during upstream migration. Quantitative gene expression analyses of four cloned opsin genes (Rh1f, Rh1d, Rh2, and SWS2) revealed that Rh1f expression is dominant at all three stages, while Rh1d is expressed only in older yellow eel. Furthermore, sequence comparison and protein modeling studies implied that a blue shift in Rh1d opsin may be induced by two known (N83, S292) and four putative (S124, V189, V286, I290) tuning sites adjacent to the retinal binding sites. Finally, expression of blue-shifted Rh1d opsin resulted in a spectral shift in rod photoreceptors. Our observations indicate that the giant mottled eel is color-blind, and its blue-shifted scotopic vision may influence its upstream migration behavior and habitat choice. PMID:25101636

  14. Rhodopsin photoactivation dynamics revealed by quasi-elastic neutron scattering

    DOE PAGES

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchithranga M.d.c.; ...

    2015-01-27

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision under dim light conditions. During rhodopsin photoactivation, the chromophore retinal undergoes cis-trans isomerization, and subsequently dissociates from the protein yielding the opsin apoprotein [1]. What are the changes in protein dynamics that occur during the rhodopsin photoactivation process? Here, we studied the microscopic dynamics of the dark-state rhodopsin and the ligand-free opsin using quasi-elastic neutron scattering (QENS). The QENS technique tracks the individual hydrogen atom motions in the protein molecules, because the neutron scattering cross-section of hydrogen is much higher than other atoms [2-4]. We used protein (rhodopsin/opsin) samples with CHAPSmore » detergent hydrated with heavy water. The solvent signal is suppressed due to the heavy water, so that only the signals from proteins and detergents are detected. The activation of proteins is confirmed at low temperatures up to 300 K by the mean-square displacement (MSD) analysis. Our QENS experiments conducted at temperatures ranging from 220 K to 300 K clearly indicate that the protein dynamic behavior increases with temperature. The relaxation time for the ligand-bound protein rhodopsin was longer compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which forms a band around the protein molecule in the micelle. Unlike the protein, the CHAPS detergent manifests localized motions that are the same as in the bulk empty micelles. Furthermore QENS provides unique understanding of the key dynamics involved in the activation of the GPCR involved in the visual process.« less

  15. Rhodopsin photoactivation dynamics revealed by quasi-elastic neutron scattering

    SciTech Connect

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchithranga M.d.c.; Chawla, Udeep; Mamontov, Eugene; Brown, Michael F.; Chu, Xiang -Qiang

    2015-01-27

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision under dim light conditions. During rhodopsin photoactivation, the chromophore retinal undergoes cis-trans isomerization, and subsequently dissociates from the protein yielding the opsin apoprotein [1]. What are the changes in protein dynamics that occur during the rhodopsin photoactivation process? Here, we studied the microscopic dynamics of the dark-state rhodopsin and the ligand-free opsin using quasi-elastic neutron scattering (QENS). The QENS technique tracks the individual hydrogen atom motions in the protein molecules, because the neutron scattering cross-section of hydrogen is much higher than other atoms [2-4]. We used protein (rhodopsin/opsin) samples with CHAPS detergent hydrated with heavy water. The solvent signal is suppressed due to the heavy water, so that only the signals from proteins and detergents are detected. The activation of proteins is confirmed at low temperatures up to 300 K by the mean-square displacement (MSD) analysis. Our QENS experiments conducted at temperatures ranging from 220 K to 300 K clearly indicate that the protein dynamic behavior increases with temperature. The relaxation time for the ligand-bound protein rhodopsin was longer compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which forms a band around the protein molecule in the micelle. Unlike the protein, the CHAPS detergent manifests localized motions that are the same as in the bulk empty micelles. Furthermore QENS provides unique understanding of the key dynamics involved in the activation of the GPCR involved in the visual process.

  16. Molecular ecology and adaptation of visual photopigments in craniates.

    PubMed

    Davies, Wayne I L; Collin, Shaun P; Hunt, David M

    2012-07-01

    In craniates, opsin-based photopigments expressed in the eye encode molecular 'light sensors' that constitute the initial protein in photoreception and the activation of the phototransduction cascade. Since the cloning and sequencing of the first vertebrate opsin gene (bovine rod opsin) nearly 30 years ago (Ovchinnikov Yu 1982, FEBS Letters, 148, 179-191; Hargrave et al. 1983, Biophysics of Structure & Mechanism, 9, 235-244; Nathans & Hogness 1983, Cell, 34, 807-814), it is now well established that variation in the subtypes and spectral properties of the visual pigments that mediate colour and dim-light vision is a prevalent mechanism for the molecular adaptation to diverse light environments. In this review, we discuss the origins and spectral tuning of photopigments that first arose in the agnathans to sample light within the ancient aquatic landscape of the Early Cambrian, detailing the molecular changes that subsequently occurred in each of the opsin classes independently within the main branches of extant jawed gnathostomes. Specifically, we discuss the adaptive changes that have occurred in the photoreceptors of craniates as they met the ecological challenges to survive in quite differing photic niches, including brightly lit aquatic surroundings; the deep sea; the transition to and from land; diurnal, crepuscular and nocturnal environments; and light-restricted fossorial settings. The review ends with a discussion of the limitations inherent to the 'nocturnal-bottleneck' hypothesis relevant to the evolution of the mammalian visual system and a proposition that transition through a 'mesopic-bottleneck' may be a more appropriate model.

  17. The giant mottled eel, Anguilla marmorata, uses blue-shifted rod photoreceptors during upstream migration.

    PubMed

    Wang, Feng-Yu; Fu, Wen-Chun; Wang, I-Li; Yan, Hong Young; Wang, Tzi-Yuan

    2014-01-01

    Catadromous fishes migrate between ocean and freshwater during particular phases of their life cycle. The dramatic environmental changes shape their physiological features, e.g. visual sensitivity, olfactory ability, and salinity tolerance. Anguilla marmorata, a catadromous eel, migrates upstream on dark nights, following the lunar cycle. Such behavior may be correlated with ontogenetic changes in sensory systems. Therefore, this study was designed to identify changes in spectral sensitivity and opsin gene expression of A. marmorata during upstream migration. Microspectrophotometry analysis revealed that the tropical eel possesses a duplex retina with rod and cone photoreceptors. The λmax of rod cells are 493, 489, and 489 nm in glass, yellow, and wild eels, while those of cone cells are 508, and 517 nm in yellow, and wild eels, respectively. Unlike European and American eels, Asian eels exhibited a blue-shifted pattern of rod photoreceptors during upstream migration. Quantitative gene expression analyses of four cloned opsin genes (Rh1f, Rh1d, Rh2, and SWS2) revealed that Rh1f expression is dominant at all three stages, while Rh1d is expressed only in older yellow eel. Furthermore, sequence comparison and protein modeling studies implied that a blue shift in Rh1d opsin may be induced by two known (N83, S292) and four putative (S124, V189, V286, I290) tuning sites adjacent to the retinal binding sites. Finally, expression of blue-shifted Rh1d opsin resulted in a spectral shift in rod photoreceptors. Our observations indicate that the giant mottled eel is color-blind, and its blue-shifted scotopic vision may influence its upstream migration behavior and habitat choice.

  18. Photoreceptor Cells Influence Retinal Vascular Degeneration in Mouse Models of Retinal Degeneration and Diabetes

    PubMed Central

    Liu, Haitao; Tang, Jie; Du, Yunpeng; Saadane, Aicha; Tonade, Deoye; Samuels, Ivy; Veenstra, Alex; Palczewski, Krzysztof; Kern, Timothy S.

    2016-01-01

    Purpose Loss of photoreceptor cells is associated with retinal vascular degeneration in retinitis pigmentosa, whereas the presence of photoreceptor cells is implicated in vascular degeneration in diabetic retinopathy. To investigate how both the absence and presence of photoreceptors could damage the retinal vasculature, we compared two mouse models of photoreceptor degeneration (opsin−/− and RhoP23H/P23H ) and control C57Bl/5J mice, each with and without diabetes. Methods Retinal thickness, superoxide, expression of inflammatory proteins, ERG and optokinetic responses, leukocyte cytotoxicity, and capillary degeneration were evaluated at 1 to 10 months of age using published methods. Results Retinal photoreceptor cells degenerated completely in the opsin mutants by 2 to 4 months of age, and visual function subsided correspondingly. Retinal capillary degeneration was substantial while photoreceptors were still present, but slowed after the photoreceptors degenerated. Diabetes did not further exacerbate capillary degeneration in these models of photoreceptor degeneration, but did cause capillary degeneration in wild-type animals. Photoreceptor cells, however, did not degenerate in wild-type diabetic mice, presumably because the stress responses in these cells were less than in the opsin mutants. Retinal superoxide and leukocyte damage to retinal endothelium contributed to the degeneration of retinal capillaries in diabetes, and leukocyte-mediated damage was increased in both opsin mutants during photoreceptor cell degeneration. Conclusions Photoreceptor cells affect the integrity of the retinal microvasculature. Deterioration of retinal capillaries in opsin mutants was appreciable while photoreceptor cells were present and stressed, but was less after photoreceptors degenerated. This finding proves relevant to diabetes, where persistent stress in photoreceptors likewise contributes to capillary degeneration. PMID:27548901

  19. Rhodopsin in the rod surface membrane regenerates more rapidly than bulk rhodopsin in the disc membranes in vivo

    PubMed Central

    Kessler, Christopher; Tillman, Megan; Burns, Marie E; Pugh, Edward N

    2014-01-01

    Sustained vertebrate vision requires that opsin chromophores isomerized by light to the all-trans form be replaced with 11-cis retinal to regenerate the visual pigment. We have characterized the early receptor potential (ERP), a component of the electroretinogram arising from photoisomerization-induced charge displacements in plasma membrane visual pigment, and used it to measure pigment bleaching and regeneration in living mice. The mouse ERP was characterized by an outward ‘R2’ charge displacement with a time constant of 215 μs that discharged through a membrane with an apparent time constant of ∼0.6 ms. After complete bleaching of rhodopsin, the ERP recovered in two phases. The initial, faster phase had a time constant of ∼1 min, accounted for ∼20% of the total, and was not dependent on the level of expression of the retinal pigment epithelium isomerase, Rpe65. The slower, complementary phase had a time constant of 23 min in wild-type (WT) mice (C57Bl/6) and was substantially slowed in Rpe65+/− mice. Comparison of the ERPs of a mouse line expressing 150% of the normal level of cone M-opsin with those of WT mice revealed that M-opsin contributed 26% of the total WT ERP in these experiments, with the remaining 74% arising from rhodopsin. Thus, the fast regenerating fraction (20%) corresponds approximately to the fraction of the total ERP independently estimated to arise from M-opsin. Because both phases of the ERP recover substantially faster than previous measurements of bulk rhodopsin regeneration in living mice, we conclude that delivery of the highly hydrophobic 11-cis retinal to the interior of rod photoreceptors appears to be retarded by transit across the cytoplasmic gap between plasma and disc membranes. PMID:24801306

  20. [Inherited colour vision deficiencies--from Dalton to molecular genetics].

    PubMed

    Cvetković, Dragana; Cvetković, Dobrosav

    2005-01-01

    In recent years, great advances have been made in our understanding of the molecular basis of colour vision defects, as well as of the patterns of genetic variation in individuals with normal colour vision. Molecular genetic analyses have explained the diversity of types and degrees of severity in colour vision anomalies, their frequencies, pronounced individual variations in test results, etc. New techniques have even enabled the determination of John Dalton's real colour vision defect, 150 years after his death. Inherited colour vision deficiencies most often result from the mutations of genes that encode cone opsins. Cone opsin genes are linked to chromosomes 7 (the S or "blue" gene) and X (the L or "red" gene and the M or "green" gene). The L and M genes are located on the q arm of the X chromosome in a head-to-tail array, composed of 2 to 6 (typically 3) genes--a single L is followed by one or more M genes. Only the first two genes of the array are expressed and contribute to the colour vision phenotype. The high degree of homology (96%) between the L and M genes predisposes them to unequal recombination, leading to gene deletion or the formation of hybrid genes (comprising portions of both the L and M genes), explaining the majority of the common red-green colour vision deficiencies. The severity of any deficiency is influenced by the difference in spectral sensitivity between the opsins encoded by the first two genes of the array. A rare defect, S monochromacy, is caused either by the deletion of the regulatory region of the array or by mutations that inactivate the L and M genes. Most recent research concerns the molecular basis of complete achromatopsia, a rare disorder that involves the complete loss of all cone function. This is not caused by mutations in opsin genes, but in other genes that encode cone-specific proteins, e.g. channel proteins and transducin.

  1. Chemical and Biological Sensing Utilizing Fused Bacteriorhodopsin Protein Hybrids

    DTIC Science & Technology

    2008-12-01

    Utilizing this purified DNA and a plasmid expression vector system, a fused protein hybrid consisting of maltose binding protein and bacterio-opsin has...prior to transcription, or post-expression. Therefore, for the development of the current proof of concept biosensor, maltose binding protein has...been chosen for attachment to the N-terminus of bR by genetic fusion and subsequent expression in E. coli. The maltose binding protein is a

  2. The molecular basis for UV vision in birds: spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (Melopsittacus undulatus).

    PubMed

    Wilkie, S E; Vissers, P M; Das, D; Degrip, W J; Bowmaker, J K; Hunt, D M

    1998-02-15

    Microspectrophotometric (msp) studies have shown that the colour-vision system of many bird species is based on four pigments with absorption peaks in the red, green, blue and UV regions of the spectrum. The existence of a fourth pigment (UV) is the major difference between the trichromacy of humans and the tetrachromacy of such birds, and recent studies have shown that it may play a determining role in such diverse aspects of behaviour as mate selection and detection of food. Avian visual pigments are composed of an opsin protein covalently bound via a Schiff-base linkage to the chromophore 11-cis-retinal. Here we report the cDNA sequence of a UV opsin isolated from an avian species, Melopsittacus undulatus (budgerigar or small parakeet). This sequence has been expressed using the recombinant baculovirus system; the pigment generated from the expressed protein on addition of 11-cis-retinal yielded an absorption spectrum typical of a UV photopigment, with lambdamax 365+/-3 nm. This is the first UV opsin from an avian species to be sequenced and expressed in a heterologous system. In situ hybridization of this sequence to budgerigar retinas selectively labelled a sub-set of UV cones, representing approx. 9% of the total cone population, that are distributed in a semi-regular pattern across the entire retina.

  3. Signatures of Selection and Gene Conversion Associated with Human Color Vision Variation

    PubMed Central

    Verrelli, Brian C.; Tishkoff, Sarah A.

    2004-01-01

    Trichromatic color vision in humans results from the combination of red, green, and blue photopigment opsins. Although color vision genes have been the targets of active molecular and psychophysical research on color vision abnormalities, little is known about patterns of normal genetic variation in these genes among global human populations. The current study presents nucleotide sequence analyses and tests of neutrality for a 5.5-kb region of the X-linked long-wave “red” opsin gene (OPN1LW) in 236 individuals from ethnically diverse human populations. Our analysis of the recombination landscape across OPN1LW reveals an unusual haplotype structure associated with amino acid replacement variation in exon 3 that is consistent with gene conversion. Compared with the absence of OPN1LW amino acid replacement fixation since divergence from chimpanzee, the human population exhibits a significant excess of high-frequency OPN1LW replacements. Our results suggest that subtle changes in L-cone opsin wavelength absorption may have been adaptive during human evolution. PMID:15252758

  4. Cone-Specific Promoters for Gene Therapy of Achromatopsia and Other Retinal Diseases.

    PubMed

    Ye, Guo-Jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T Michael; Sheibani, Nader; Gurel, Zafer; Boye, Sanford L; Peterson, James J; Boye, Shannon E; Hauswirth, William W; Chulay, Jeffrey D

    2016-01-01

    Adeno-associated viral (AAV) vectors containing cone-specific promoters have rescued cone photoreceptor function in mouse and dog models of achromatopsia, but cone-specific promoters have not been optimized for use in primates. Using AAV vectors administered by subretinal injection, we evaluated a series of promoters based on the human L-opsin promoter, or a chimeric human cone transducin promoter, for their ability to drive gene expression of green fluorescent protein (GFP) in mice and nonhuman primates. Each of these promoters directed high-level GFP expression in mouse photoreceptors. In primates, subretinal injection of an AAV-GFP vector containing a 1.7-kb L-opsin promoter (PR1.7) achieved strong and specific GFP expression in all cone photoreceptors and was more efficient than a vector containing the 2.1-kb L-opsin promoter that was used in AAV vectors that rescued cone function in mouse and dog models of achromatopsia. A chimeric cone transducin promoter that directed strong GFP expression in mouse and dog cone photoreceptors was unable to drive GFP expression in primate cones. An AAV vector expressing a human CNGB3 gene driven by the PR1.7 promoter rescued cone function in the mouse model of achromatopsia. These results have informed the design of an AAV vector for treatment of patients with achromatopsia.

  5. Eyes with basic dorsal and specific ventral regions in the glacial Apollo, Parnassius glacialis (Papilionidae).

    PubMed

    Awata, Hiroko; Matsushita, Atsuko; Wakakuwa, Motohiro; Arikawa, Kentaro

    2010-12-01

    Recent studies on butterflies have indicated that their colour vision system is almost species specific. To address the question of how this remarkable diversity evolved, we investigated the eyes of the glacial Apollo, Parnassius glacialis, a living fossil species belonging to the family Papilionidae. We identified four opsins in the Parnassius eyes--an ultraviolet- (PgUV), a blue- (PgB), and two long wavelength (PgL2, PgL3)-absorbing types--and localized their mRNAs within the retina. We thus found ommatidial heterogeneity and a clear dorso-ventral regionalization of the eye. The dorsal region consists of three basic types of ommatidia that are similar to those found in other insects, indicating that this dorsal region retains the ancestral state. In the ventral region, we identified two novel phenomena: co-expression of the opsins of the UV- and B-absorbing type in a subset of photoreceptors, and subfunctionalization of long-wavelength receptors in the distal tier as a result of differential expression of the PgL2 and PgL3 mRNAs. Interestingly, butterflies from the closely related genus Papilio (Papilionidae) have at least three long-wavelength opsins, L1-L3. The present study indicates that the duplication of L2 and L3 occurred before the Papilio lineage diverged from the rest, whereas L1 was produced from L3 in the Papilio lineage.

  6. Optogenetics in Mice Performing a Visual Discrimination Task: Measurement and Suppression of Retinal Activation and the Resulting Behavioral Artifact.

    PubMed

    Danskin, Bethanny; Denman, Daniel; Valley, Matthew; Ollerenshaw, Douglas; Williams, Derric; Groblewski, Peter; Reid, Clay; Olsen, Shawn; Blanche, Timothy; Waters, Jack

    2015-01-01

    Optogenetic techniques are used widely to perturb and interrogate neural circuits in behaving animals, but illumination can have additional effects, such as the activation of endogenous opsins in the retina. We found that illumination, delivered deep into the brain via an optical fiber, evoked a behavioral artifact in mice performing a visually guided discrimination task. Compared with blue (473 nm) and yellow (589 nm) illumination, red (640 nm) illumination evoked a greater behavioral artifact and more activity in the retina, the latter measured with electrical recordings. In the mouse, the sensitivity of retinal opsins declines steeply with wavelength across the visible spectrum, but propagation of light through brain tissue increases with wavelength. Our results suggest that poor retinal sensitivity to red light was overcome by relatively robust propagation of red light through brain tissue and stronger illumination of the retina by red than by blue or yellow light. Light adaptation of the retina, via an external source of illumination, suppressed retinal activation and the behavioral artifact without otherwise impacting behavioral performance. In summary, long wavelength optogenetic stimuli are particularly prone to evoke behavioral artifacts via activation of retinal opsins in the mouse, but light adaptation of the retina can provide a simple and effective mitigation of the artifact.

  7. Beyond spectral tuning: human cone visual pigments adopt different transient conformations for chromophore regeneration.

    PubMed

    Srinivasan, Sundaramoorthy; Cordomí, Arnau; Ramon, Eva; Garriga, Pere

    2016-03-01

    Human red and green visual pigments are seven transmembrane receptors of cone photoreceptor cells of the retina that mediate color vision. These pigments share a very high degree of homology and have been assumed to feature analogous structural and functional properties. We report on a different regeneration mechanism among red and green cone opsins with retinal analogs using UV-Vis/fluorescence spectroscopic analyses, molecular modeling and site-directed mutagenesis. We find that photoactivated green cone opsin adopts a transient conformation which regenerates via an unprotonated Schiff base linkage with its natural chromophore, whereas red cone opsin forms a typical protonated Schiff base. The chromophore regeneration kinetics is consistent with a secondary retinal uptake by the cone pigments. Overall, our findings reveal, for the first time, structural differences in the photoactivated conformation between red and green cone pigments that may be linked to their molecular evolution, and support the proposal of secondary retinal binding to visual pigments, in addition to binding to the canonical primary site, which may serve as a regulatory mechanism of dark adaptation in the phototransduction process.

  8. Non-invasive activation of optogenetic actuators

    NASA Astrophysics Data System (ADS)

    Birkner, Elisabeth; Berglund, Ken; Klein, Marguerita E.; Augustine, George J.; Hochgeschwender, Ute

    2014-03-01

    The manipulation of genetically targeted neurons with light (optogenetics) continues to provide unprecedented avenues into studying the function of the mammalian brain. However, potential translation into the clinical arena faces a number of significant hurdles, foremost among them the need for insertion of optical fibers into the brain to deliver light to opsins expressed on neuronal membranes. In order to overcome these hardware-related problems, we have developed an alternative strategy for delivering light to opsins which does not involve fiber implants. Rather, the light is produced by a protein, luciferase, which oxidizes intravenously applied substrate, thereby emitting bioluminescence. In proof-ofprinciple studies employing a fusion protein of a light-generating luciferase to a light-sensing opsin (luminopsin), we showed that light emitted by Gaussia luciferase is indeed able to activate channelrhodopsin, allowing modulation of neuronal activity when expressed in cultured neurons. Here we assessed applicability of the concept in vivo in mice expressing luminopsins from viral vectors and from genetically engineered transgenes. The experiments demonstrate that intravenously applied substrate reaches neurons in the brain, causing the luciferase to produce bioluminescence which can be imaged in vivo, and that activation of channelrhodopsin by bioluminescence is sufficient to affect behavior. Further developments of such technology based on combining optogenetics with bioluminescence - i.e. combining lightsensing molecules with biologically produced light through luciferases - should bring optogenetics closer to clinical applications.

  9. Photoreceptor cell death, proliferation and formation of hybrid rod/S-cone photoreceptors in the degenerating STK38L mutant retina.

    PubMed

    Berta, Ágnes I; Boesze-Battaglia, Kathleen; Genini, Sem; Goldstein, Orly; O'Brien, Paul J; Szél, Ágoston; Acland, Gregory M; Beltran, William A; Aguirre, Gustavo D

    2011-01-01

    A homozygous mutation in STK38L in dogs impairs the late phase of photoreceptor development, and is followed by photoreceptor cell death (TUNEL) and proliferation (PCNA, PHH3) events that occur independently in different cells between 7-14 weeks of age. During this period, the outer nuclear layer (ONL) cell number is unchanged. The dividing cells are of photoreceptor origin, have rod opsin labeling, and do not label with markers specific for macrophages/microglia (CD18) or Müller cells (glutamine synthetase, PAX6). Nestin labeling is absent from the ONL although it labels the peripheral retina and ciliary marginal zone equally in normals and mutants. Cell proliferation is associated with increased cyclin A1 and LATS1 mRNA expression, but CRX protein expression is unchanged. Coincident with photoreceptor proliferation is a change in the photoreceptor population. Prior to cell death the photoreceptor mosaic is composed of L/M- and S-cones, and rods. After proliferation, both cone types remain, but the majority of rods are now hybrid photoreceptors that express rod opsin and, to a lesser extent, cone S-opsin, and lack NR2E3 expression. The hybrid photoreceptors renew their outer segments diffusely, a characteristic of cones. The results indicate the capacity for terminally differentiated, albeit mutant, photoreceptors to divide with mutations in this novel retinal degeneration gene.

  10. Photoreceptor Cell Death, Proliferation and Formation of Hybrid Rod/S-Cone Photoreceptors in the Degenerating STK38L Mutant Retina

    PubMed Central

    Berta, Ágnes I.; Boesze-Battaglia, Kathleen; Genini, Sem; Goldstein, Orly; O'Brien, Paul J.; Szél, Ágoston; Acland, Gregory M.; Beltran, William A.; Aguirre, Gustavo D.

    2011-01-01

    A homozygous mutation in STK38L in dogs impairs the late phase of photoreceptor development, and is followed by photoreceptor cell death (TUNEL) and proliferation (PCNA, PHH3) events that occur independently in different cells between 7–14 weeks of age. During this period, the outer nuclear layer (ONL) cell number is unchanged. The dividing cells are of photoreceptor origin, have rod opsin labeling, and do not label with markers specific for macrophages/microglia (CD18) or Müller cells (glutamine synthetase, PAX6). Nestin labeling is absent from the ONL although it labels the peripheral retina and ciliary marginal zone equally in normals and mutants. Cell proliferation is associated with increased cyclin A1 and LATS1 mRNA expression, but CRX protein expression is unchanged. Coincident with photoreceptor proliferation is a change in the photoreceptor population. Prior to cell death the photoreceptor mosaic is composed of L/M- and S-cones, and rods. After proliferation, both cone types remain, but the majority of rods are now hybrid photoreceptors that express rod opsin and, to a lesser extent, cone S-opsin, and lack NR2E3 expression. The hybrid photoreceptors renew their outer segments diffusely, a characteristic of cones. The results indicate the capacity for terminally differentiated, albeit mutant, photoreceptors to divide with mutations in this novel retinal degeneration gene. PMID:21980341

  11. Volvoxrhodopsin, a light-regulated sensory photoreceptor of the spheroidal green alga Volvox carteri.

    PubMed Central

    Ebnet, E; Fischer, M; Deininger, W; Hegemann, P

    1999-01-01

    Somatic cells of the multicellular alga Volvox carteri contain a visual rhodopsin that controls the organism's phototactic behavior via two independent photoreceptor currents. Here, we report the identification of an opsinlike gene, designated as volvoxopsin (vop). The encoded protein exhibits homologies to the opsin of the unicellular alga Chlamydomonas reinhardtii (chlamyopsin) and to the entire animal opsin family, thus providing new perspectives on opsin evolution. Volvoxopsin accumulates within the eyes of somatic cells. However, the vop transcript is detectable only in the reproductive eyeless gonidia and embryos. vop mRNA levels increase 400-fold during embryogenesis, when embryos develop in darkness, whereas the vop transcript does not accumulate when embryos develop in the light. An antisense transformant, T3, was generated. This transformant produces 10 times less volvoxopsin than does the wild type. In T3, the vop transcript is virtually absent, whereas the antisense transcript is predominant and light regulated. It follows that vop expression is under light-dependent transcriptional control but that volvoxopsin itself is not the regulatory photoreceptor. Transformant T3 is phototactic, but its phototactic sensitivity is reduced 10-fold relative to the parental wild-type strain HK10. Thus, we offer definitive genetic evidence that a rhodopsin serves as the photoreceptor for phototaxis in a green alga. PMID:10449581

  12. Differential Light-induced Responses in Sectorial Inherited Retinal Degeneration*

    PubMed Central

    Ramon, Eva; Cordomí, Arnau; Aguilà, Mònica; Srinivasan, Sundaramoorthy; Dong, Xiaoyun; Moore, Anthony T.; Webster, Andrew R.; Cheetham, Michael E.; Garriga, Pere

    2014-01-01

    Retinitis pigmentosa (RP) is a group of genetically and clinically heterogeneous inherited degenerative retinopathies caused by abnormalities of photoreceptors or retinal pigment epithelium in the retina leading to progressive sight loss. Rhodopsin is the prototypical G-protein-coupled receptor located in the vertebrate retina and is responsible for dim light vision. Here, novel M39R and N55K variants were identified as causing an intriguing sector phenotype of RP in affected patients, with selective degeneration in the inferior retina. To gain insights into the molecular aspects associated with this sector RP phenotype, whose molecular mechanism remains elusive, the mutations were constructed by site-directed mutagenesis, expressed in heterologous systems, and studied by biochemical, spectroscopic, and functional assays. M39R and N55K opsins had variable degrees of chromophore regeneration when compared with WT opsin but showed no gross structural misfolding or altered trafficking. M39R showed a faster rate for transducin activation than WT rhodopsin with a faster metarhodopsinII decay, whereas N55K presented a reduced activation rate and an altered photobleaching pattern. N55K also showed an altered retinal release from the opsin binding pocket upon light exposure, affecting its optimal functional response. Our data suggest that these sector RP mutations cause different protein phenotypes that may be related to their different clinical progression. Overall, these findings illuminate the molecular mechanisms of sector RP associated with rhodopsin mutations. PMID:25359768

  13. Rhodopsin Photoactivation Dynamics Revealed by Quasi-Elastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchhithranga M. C. D.; Chawla, Udeep; Mamontov, Eugene; Brown, Michael; Chu, Xiang-Qiang

    2015-03-01

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision. During photoactivation, the chromophore retinal dissociates from protein yielding the opsin apoprotein. What are the changes in protein dynamics that occur during the photoactivation process? Here, we studied the microscopic dynamics of dark-state rhodopsin and the ligand-free opsin using quasielastic neutron scattering (QENS). The QENS technique tracks individual hydrogen atom motion because of the much higher neutron scattering cross-section of hydrogen than other atoms. We used protein with CHAPS detergent hydrated with heavy water. The activation of proteins is confirmed at low temperatures up to 300 K by mean-square displacement (MSD) analysis. The QENS experiments at temperatures ranging from 220 K to 300 K clearly indicate an increase in protein dynamic behavior with temperature. The relaxation time for the ligand-bound protein rhodopsin is faster compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which unlike protein, manifests localized motions.

  14. Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals.

    PubMed

    Miyamoto, Y; Sancar, A

    1998-05-26

    In mammals the retina contains photoactive molecules responsible for both vision and circadian photoresponse systems. Opsins, which are located in rods and cones, are the pigments for vision but it is not known whether they play a role in circadian regulation. A subset of retinal ganglion cells with direct projections to the suprachiasmatic nucleus (SCN) are at the origin of the retinohypothalamic tract that transmits the light signal to the master circadian clock in the SCN. However, the ganglion cells are not known to contain rhodopsin or other opsins that may function as photoreceptors. We have found that the two blue-light photoreceptors, cryptochromes 1 and 2 (CRY1 and CRY2), recently discovered in mammals are specifically expressed in the ganglion cell and inner nuclear layers of the mouse retina. In addition, CRY1 is expressed at high level in the SCN and oscillates in this tissue in a circadian manner. These data, in conjunction with the established role of CRY2 in photoperiodism in plants, lead us to propose that mammals have a vitamin A-based photopigment (opsin) for vision and a vitamin B2-based pigment (cryptochrome) for entrainment of the circadian clock.

  15. Beta-ionone activates and bleaches visual pigment in salamander photoreceptors.

    PubMed

    Isayama, Tomoki; McCabe England, S L; Crouch, R K; Zimmerman, A L; Makino, C L

    2009-01-01

    Vision begins with photoisomerization of 11-cis retinal to the all-trans conformation within the chromophore-binding pocket of opsin, leading to activation of a biochemical cascade. Release of all-trans retinal from the binding pocket curtails but does not fully quench the ability of opsin to activate transducin. All-trans retinal and some other analogs, such as beta-ionone, enhance opsin's activity, presumably on binding the empty chromophore-binding pocket. By recording from isolated salamander photoreceptors and from patches of rod outer segment membrane, we now show that high concentrations of beta-ionone suppressed circulating current in dark-adapted green-sensitive rods by inhibiting the cyclic nucleotide-gated channels. There were also decreases in circulating current and flash sensitivity, and accelerated flash response kinetics in dark-adapted blue-sensitive (BS) rods and cones, and in ultraviolet-sensitive cones, at concentrations too low to inhibit the channels. These effects persisted in BS rods even after incubation with 9-cis retinal to ensure complete regeneration of their visual pigment. After long exposures to high concentrations of beta-ionone, recovery was incomplete unless 9-cis retinal was given, indicating that visual pigment had been bleached. Therefore, we propose that beta-ionone activates and bleaches some types of visual pigments, mimicking the effects of light.

  16. Identification and characterization of visual pigments in caecilians (Amphibia: Gymnophiona), an order of limbless vertebrates with rudimentary eyes.

    PubMed

    Mohun, S M; Davies, W L; Bowmaker, J K; Pisani, D; Himstedt, W; Gower, D J; Hunt, D M; Wilkinson, M

    2010-10-15

    In comparison with the other amphibian orders, the Anura (frogs) and Urodela (salamanders), knowledge of the visual system of the snake-like Gymnophiona (caecilians) is relatively sparse. Most caecilians are fossorial with, as far as is known any surface activity occurring mainly at night. They have relatively small, poorly developed eyes and might be expected to possess detectable changes in the spectral sensitivity of their visual pigments. Microspectrophotometry was used to determine the spectral sensitivities of the photoreceptors in three species of caecilian, Rhinatrema bivittatum, Geotrypetes seraphini and Typhlonectes natans. Only rod opsin visual pigment, which may be associated with scotopic (dim light) vision when accompanied by other 'rod-specific' components of the phototransduction cascade, was found to be present. Opsin sequences were obtained from the eyes of two species of caecilian, Ichthyophis cf. kohtaoensis and T. natans. These rod opsins were regenerated in vitro with 11-cis retinal to give pigments with spectral sensitivity peaks close to 500 nm. No evidence for cone photoreception, associated with diurnal and colour vision, was detected using molecular and physiological methods. Additionally, visual pigments are short-wavelength shifted in terms of the maximum absorption of light when compared with other amphibian lineages.

  17. Genetic Testing as a New Standard for Clinical Diagnosis of Color Vision Deficiencies

    PubMed Central

    Davidoff, Candice; Neitz, Maureen; Neitz, Jay

    2016-01-01

    Purpose The genetics underlying inherited color vision deficiencies is well understood: causative mutations change the copy number or sequence of the long (L), middle (M), or short (S) wavelength sensitive cone opsin genes. This study evaluated the potential of opsin gene analyses for use in clinical diagnosis of color vision defects. Methods We tested 1872 human subjects using direct sequencing of opsin genes and a novel genetic assay that characterizes single nucleotide polymorphisms (SNPs) using the MassArray system. Of the subjects, 1074 also were given standard psychophysical color vision tests for a direct comparison with current clinical methods. Results Protan and deutan deficiencies were classified correctly in all subjects identified by MassArray as having red–green defects. Estimates of defect severity based on SNPs that control photopigment spectral tuning correlated with estimates derived from Nagel anomaloscopy. Conclusions The MassArray assay provides genetic information that can be useful in the diagnosis of inherited color vision deficiency including presence versus absence, type, and severity, and it provides information to patients about the underlying pathobiology of their disease. Translational Relevance The MassArray assay provides a method that directly analyzes the molecular substrates of color vision that could be used in combination with, or as an alternative to current clinical diagnosis of color defects. PMID:27622081

  18. Virally mediated optogenetic excitation and inhibition of pain in freely moving non-transgenic mice

    PubMed Central

    Iyer, Shrivats Mohan; Montgomery, Kate L.; Towne, Chris; Lee, Soo Yeun; Ramakrishnan, Charu; Deisseroth, Karl; Delp, Scott L.

    2014-01-01

    Primary nociceptors are the first neurons involved in the complex processing system that regulates normal and pathological pain1. Our ability to excite and inhibit these neurons has been limited by pharmacological and electrical stimulation constraints; non-invasive excitation and inhibition of these neurons in freely moving non-transgenic animals has not been possible. Here we use an optogenetic2 strategy to bidirectionally control nociceptors of non-transgenic mice. Intra-sciatic nerve injection of adeno-associated viruses encoding an excitatory opsin enabled light-inducible stimulation of acute pain, place aversion, and optogenetically mediated reductions in withdrawal thresholds to mechanical and thermal stimuli. In contrast, viral delivery of an inhibitory opsin enabled light-inducible inhibition of acute pain perception, and reversed mechanical allodynia and thermal hyperalgesia in a model of neuropathic pain. Light was delivered transdermally enabling these behaviors to be induced in freely moving animals. This approach may have utility in basic and translational pain research, and enable rapid drug screening and testing of newly engineered opsins. PMID:24531797

  19. Identification and distribution of photoreceptor subtypes in the neotenic tiger salamander retina.

    PubMed

    Sherry, D M; Bui, D D; Degrip, W J

    1998-01-01

    The neotenic tiger salamander retina is a major model system for the study of retinal physiology and circuitry, yet there are unresolved issues regarding the organization of the photoreceptors and the photoreceptor mosaic. The rod and cone subtypes in the salamander retina were identified using a combination of morphological and immunocytochemical markers for specific rod and cone opsin epitopes. Because the visual pigment mechanisms present in the tiger salamander retina are well characterized and the antibodies employed in these studies are specific for particular rod and cone opsin epitopes, we also were able to identify the spectral class of the various rod and cone subtypes. Two classes of rods corresponding to the "red" and "green" rods previously reported in amphibian retinas were identified. In serial semithin section analyses, rods and cones comprised 62.4+/-1.4% and 37.6+/-1.4% of all photoreceptors, respectively. One rod type comprising 98.0+/-0.7% of all rods showed the immunological and morphological characteristics of "red" rods, which are maximally sensitive to middle wavelengths. The second rod subtype comprised 2.0+/-0.7% of all rods and possessed the immunological and morphological characteristics of "green" rods, which are maximally sensitive to short wavelengths. By morphology four cone types were identified, showing three distinct immunological signatures. Most cones (84.8+/-1.5% of all cones), including most large single cones, the accessory and principal members of the double cone, and some small single cones, showed immunolabeling by antisera that recognize long wavelength-sensitive cone opsins. A subpopulation of small single cones (8.4+/-1.7% of all cones) showed immunolabeling for short wavelength-sensitive cone opsin. A separate subpopulation of single cones which included both large and small types (6.8+/-1.4% of all cones) was identified as the UV-Cone population and showed immunolabeling by antibodies that recognize rod opsin epitopes

  20. Unique photoreceptor arrangements in a fish with polarized light discrimination.

    PubMed

    Novales Flamarique, Iñigo

    2011-03-01

    In contrast to other vertebrates, some anchovies have cone photoreceptors with longitudinally oriented outer segment lamellae. These photoreceptors are axially dichroic (i.e., they are sensitive to the polarization of axially incident light) and form the basis of a polarization detection system in the northern anchovy, Engraulis mordax. Whether other cone types exist in the retina of this animal, and whether multiple cone opsins are expressed in the retinas of anchovies, is unknown. Likewise, a detailed examination of photoreceptor ultrastructure in nondichroic photoreceptors has not been carried out despite its importance to understand visual specializations within the retina and its use in the formulation of models to explain cellular structure. Here, I combined light and electron microscopy with immunohistochemical studies of opsin expression to infer mechanisms of lamellar formation and to evaluate the potential for color vision in the northern anchovy retina. Morphological observations revealed three cone formations: 1) continuous rows made up of alternating long and short (bilobed) cones with longitudinally oriented lamellae that are orthogonal between cone types; 2) continuous rows of alternating long and short cones in which only the short cones have longitudinally oriented lamellae; and 3) rows of triple cones with transversely oriented lamellae, each triple cone consisting of two lateral cones flanking a small central cone. Ultrastructure investigations supported two models of outer segment formation resulting in the longitudinally oriented lamellae of long and short cones. In the case of the long cone, lateral compression of the outer segment, potentially via the formation of guanine platelet stacks in neighboring pigment epithelium cells, results in a shape transformation from conical to cunate and a tilt from transverse to longitudinal lamellae. In the case of the short (bilobed) cone, membrane invaginations from the connecting ciliary structure grow

  1. Bending loss characterization in nodeless hollow-core anti-resonant fiber.

    PubMed

    Gao, Shou-Fei; Wang, Ying-Ying; Liu, Xiao-Lu; Ding, Wei; Wang, Pu

    2016-06-27

    We report high performance nodeless hollow-core anti-resonant fibers (HARFs) with broadband guidance from 850 nm to >1700 nm and transmission attenuation of ~100 dB/km. We systematically investigate their bending loss behaviors using both theoretical and experimental approaches. While a low bending loss value of 0.2 dB/m at 5 cm bending radius is attained in the long wavelength side (LWS) of the spectrum, in this paper, we pursue light guidance in the short wavelength side (SWS) under tight bending, which is yet to be explored. We analytically predict and experimentally verify a sub transmission band in the SWS with a broad bandwidth of 110 THz and an acceptable loss of 4.5 dB/m at 2 cm bending radius, indicating that light can be simultaneously guided in LWS and SWS even under tight bending condition. This provides an unprecedented degree of freedom to tailor the transmission spectrum under a tight bending state and opens new opportunities for HARFs to march into practical applications where broadband guidance under small bending radius is a prerequisite.

  2. [Current views on vision of mammals].

    PubMed

    Khokhlova, T V

    2012-01-01

    In the review, research data are presented on mammals' vision including visual pigments, color and contrast vision, and visual behaviour in different species. It is shown that in course of evolution mammals were gradually losing the elements of daylight cone vision system that are typical of other vertebrates. In monotremes, visual pigments SWS2 (cone blue-sensitive 2) and MWS/LWS (green/red-sensitive) are still present, as well as rod RH1. Theria, except some primates, also have two cone visual pigments: SWS1 (ultraviolet/violet or blue-sensitive 1) and MWS/LWS along with rod RH1. Humans and some other higher primates evolved the new visual pigment, MWS, and acquired trichromatic vision. Marine mammals (cetaceans and pinnipeds) and some species of other orders have lost also the visual pigment SWS1, probably due to specificity of processing the information received by these cones. Current view on mammals' vision with two cone pigments and rods is presented. Data on maximum spectral sensitivity of visual pigments in different species and orders are given along with data on spatial contrast sensation. High visual acuity has been acquired by ungulates, artiodactyls, and primates, while the highest one--by humans with their specialized fovea.

  3. Data reduction pipelines for the Keck Observatory Archive

    NASA Astrophysics Data System (ADS)

    Tran, H. D.; Cohen, R.; Colson, A.; Mader, J. A.; Swain, M.; Laity, A. C.; Kong, M.; Gelino, C. R.; Berriman, G. B.

    2016-07-01

    The Keck Observatory Archive (KOA) currently serves 42 TB of data spanning over 20 years from all ten past and current facility instruments at Keck. Although most of the available data are in the raw form, for four instruments (HIRES, NIRC2, OSIRIS, LWS), quick-look, browse products generated by automated pipelines are also offered to facilitate assessment of the scientific content and quality of the data. KOA underwrote the update of the MAKEE package to support reduction of the CCD upgrade to HIRES, developed scripts for reduction of NIRC2 data and automated the existing OSIRIS and LWS data reduction packages. We describe in some detail the recently completed automated pipeline for NIRSPEC, which will be used to create browse products in KOA and made available for quicklook of the data by the observers at the telescope. We review the currently available data reduction tools for Keck data, and present our plans and anticipated priorities for the development of automated pipelines and release of reduced data products for the rest of the current and future instruments. We also anticipate that Keck's newest instrument, NIRES, which will be delivered with a fully automated pipeline, will be the first to have both raw and level-1 data ingested at commissioning.

  4. Fermentation of liquid coproducts and liquid compound diets: Part 2. Effects on pH, acid-binding capacity, organic acids and ethanol during a 6-day storage period.

    PubMed

    Scholten, R H; Rijnen, M M; Schrama, J W; Boer, H; van der Peet-Schwering, C M; Den Hartog, L A; Vesseur, P C; Verstegen, M W

    2001-06-01

    The effects of a 6-day storage period on changes in pH, acid-binding capacity, level of organic acids and ethanol of three liquid coproducts [liquid wheat starch (LWS), mashed potato steam peel (PSP) and cheese whey (CW)] and two liquid compound diets [liquid grower diet (LGD) and liquid finisher diet (LFD)] were studied. All products, except LWS, showed a significant decrease in pH and acid-binding capacity during storage. At the end of the storage period, all products reached a pH of between 3.5 and 3.9. In general, it can be concluded that the lactic acid content, and to a lesser extent the acetic acid content, increased dramatically during storage. In contrast, the ethanol content increased significantly in the liquid compound diets only. The pattern of changes in pH and organic acids during the 6-day storage period was different between the liquid coproducts and the liquid compound diets. At the start of storage, liquid coproducts are already in the 'middle' of the fermentation process, while liquid compound diets need approximately 24-36 h before fermentation begins. Consequently, in practice a different approach to obtain fermented diets is needed for liquid coproducts and liquid compound diets.

  5. The Objectives of NASA's Living with a Star Space Environment Testbed

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; LaBel, Kenneth A.; Brewer, Dana; Kauffman, Billy; Howard, Regan; Griffin, Geoff; Day, John H. (Technical Monitor)

    2001-01-01

    NASA is planning to fly a series of Space Environment Testbeds (SET) as part of the Living With A Star (LWS) Program. The goal of the testbeds is to improve and develop capabilities to mitigate and/or accommodate the affects of solar variability in spacecraft and avionics design and operation. This will be accomplished by performing technology validation in space to enable routine operations, characterize technology performance in space, and improve and develop models, guidelines and databases. The anticipated result of the LWS/SET program is improved spacecraft performance, design, and operation for survival of the radiation, spacecraft charging, meteoroid, orbital debris and thermosphere/ionosphere environments. The program calls for a series of NASA Research Announcements (NRAs) to be issued to solicit flight validation experiments, improvement in environment effects models and guidelines, and collateral environment measurements. The selected flight experiments may fly on the SET experiment carriers and flights of opportunity on other commercial and technology missions. This paper presents the status of the project so far, including a description of the types of experiments that are intended to fly on SET-1 and a description of the SET-1 carrier parameters.

  6. Draft Science Topics for ROSES 2017 NASA Living with a Star Targeted Research and Technology Program

    NASA Astrophysics Data System (ADS)

    Linton, Mark; Zesta, Eftyhia

    2016-05-01

    The NASA Living with a Star Targeted Research and Technology (LWS TR&T) steering committee would like to present a draft of the TR&T science topics being developed for ROSES 2017 to the science community for comment at this conference. These topics will be drafted before this conference at the May 2016 steering committee meeting, based on community input and LWS TR&T goals. The committee is seeking community comment on these draft topics before the topics are finalized at the committee's summer meeting and sent to NASA in the committee's 2016 report. The full text of these draft topics will be presented at this poster, and we aim to hold a town hall for community discussion of these topics during this conference. Please see http://lwstrt.gsfc.nasa.gov for more information on the TR&T program, the steering committee and the draft topics.This work was supported by the NASA Living with a Star program.

  7. ISO Far-Infrared Spectroscopic Observations of Jupiter

    NASA Astrophysics Data System (ADS)

    Burgdorf, M. J.; Encrenaz, Th.; Feuchtgruber, H.; Davis, G. R.; Fouchet, Th.; Gautier, D.; Lellouch, E.; Orton, G. S.; Sidher, S. D.

    2001-07-01

    We present the far-infrared spectrum of Jupiter that was measured with the Short and Long Wavelength Spectrometers (SWS and LWS) aboard the Infrared Space Observatory (ISO). The region between 38 and 44 microns was observed in grating mode, where the SWS provides a spectral resolution of about 1300. For longer waves up to 197 microns the LWS-FP (Fabry-Perot) was used to achieve a resolution of several thousand. The observations were made between 23 and 26 May 1997 during ISO's revolutions 554, 556 and 557. The Jovian spectrum in the far-infrared is compared to an atmospheric radiative transfer model using expected values for the vertical profiles of the atmospheric constituents. Rotational transitions of ammonia and phosphine are responsible for the absorption features observed: Strong ammonia absorption manifolds are obvious against the background continuum slope, appearing at 39, 42, 46, 51, 56, 63, 72, 84, 100 and 125 microns in both the data and the model. Also PH3 features are present at the expected wavelengths of 113 and 141 microns in both the data and the model. This is the first time that most of these far-infrared features have been detected. The ISO observations are therefore of interest for the preparation of the planned submillimeter studies of the atmospheres of the Jovian planets with FIRST.

  8. The linewidth-size scaling law of molecular gas in the Galaxy

    NASA Astrophysics Data System (ADS)

    Falgarone, Edith G.; McKee, Christopher

    2015-08-01

    The origin of the linewidth-size (LWS) scaling law, first noticed by Larson three decades ago and ascribed to turbulence, is still a highly debated issue. Not unexpectedly, its properties depend on the environment and on the line tracer used.When the optically thick 12CO (J=1-0) line is used, a specific medium is sampled: the translucent molecular gas of moderate density that builds up the bulk of the molecular interstellar medium in galaxies like ours. The sensitivity of the 12CO line to this gas is such that the LWS is found to hold over almost five orders of magnitude in lengthscale, although with a considerable scatter (1 dex). It reveals an invariant of the cascade, the specific kinetic energy tranfer rate. It also appears to split into two regimes, depending on the gas mass surface density: below a given threshold that is proposed to be linked to the galactic dynamics, it bears the signature of a turbulent cascade, while above that threshold, the scaling law is ascribed to virial balance between turbulent energy and gravity. Large deviations from the scaling law are observed at small scales where signatures of turbulent intermittency may be present.

  9. Current Status on NASA's Living With a Star Program

    NASA Astrophysics Data System (ADS)

    Guhathakurta, M.; Stcyr, O. C.

    Living With a Star is a space weather-focused and application-driven research program. Its goal is to develop the scientific understanding necessary to effectively address those aspects of the connected Sun-Earth system that directly affect life and society. This program is part of the Sun-Earth Connection (SEC) theme within the office of Space Science. Living With a Star is a cross-cutting program whose goals and objectives have the following links to each of the four NASA Strategic Enterprises: Space Science: LWS quantifies the physics, dynamics, and behavior of the only stellar/planetary system we can see at a close distance. Earth Science: LWS improves understanding of the effects of solar variability and disturbances on terrestrial climate change. Human Space Flight: LWS provides data and scientific understanding required for advanced warning of energetic particle events that affect the safety of humans in space. Aeronautics and Space Transportation: LWS provides detailed characterization of radiation environments useful in the design of more reliable electronic components for air and space transportation system. LWS Program is implemented by a sequence of inter-related science missions, space environment test bed and targeted research and technology. 1) A space weather research network of spacecraft will provide continuous observations of the Sun-Earth system for interlocking, dual use, scientific and applications research. Flight of a Solar Dynamics Observatory (launch 2008) to: - Probe solar interior, especially region where the dynamo is located, vs time to unravel physics of ``engine'' driving solar variability. -Track, for first time, solar active regions/solar storm regions simultaneously above and below solar surface to understand development and triggering of explosive events (Flares, Coronal Mass Ejections). Flight of Solar Sentinels, launch before and around next solar max to provide global view of the heliosphere, track solar active regions over

  10. Southern White English: The Changing Verb Phrase.

    ERIC Educational Resources Information Center

    Feagin, Louise Crawford

    In a sociolinguistic study of the verb phrase in Southern White English, a pattern of change in progress was observed. The 14 variables studied showed that certain variants were increasing, others decreasing, and yet others stable across time within the community, and that each variable's change was progressing in a wave sensitive to age, social…

  11. Hot-electron generation by ``cavitating'' Langmuir turbulence in the nonlinear stage of the two-plasmon-decay instability

    NASA Astrophysics Data System (ADS)

    Vu, H. X.; DuBois, D. F.; Russell, D. A.; Myatt, J. F.

    2012-10-01

    The kinetic reduced-description particle-in-cell simulation technique has been applied to study the nonlinear stage of two-plasmon-decay (TPD) instability in an inhomogeneous plasma driven by crossed laser beams. The TPD instability is found to be a prolific generator of "cavitating" Langmuir turbulence. Langmuir "cavitons"—localized longitudinal electric fields, oscillating near the local electron plasma frequency, trapped in ponderomotive density depressions—collapse to dimensions of a few electron Debye lengths, where the electric field energy is collisionlessly transferred to electron kinetic energy. The resulting hot electrons can attain instantaneous temperatures up to 100 keV with net suprathermal heat flux out of the system of up to a few percent of the input laser energy. Scaling laws for this hot-electron generation by TPD, in regimes motivated by recent experiments on the Omega laser, were presented recently by Vu et al. (H. X. Vu, D. F. DuBois, D. A. Russell, and J. F. Myatt, Phys. Plasmas 19, 102703 (2012)). This paper concentrates on the microscopic mechanisms for hot-electron generation. The spatial distribution of the maxima of the electric field envelope modulus is found to be very spiky, with the distribution of electric field envelope maxima obeying Gaussian statistics. The cavitons are produced in density-depletion trenches produced by the combined ponderomotive interference of the crossed laser beams and the ponderomotive beats of the primary backward-going TPD Langmuir waves (LWs) resulting from the crossed beams. The Langmuir turbulence is strongest in the electron-density region near 0.241× the laser's critical density, where the forward LWs from the crossed-beam TPD are degenerate. Nucleation of cavitons is assisted by the modulation of the electron density in the trenches, which in turn is caused by the beating of the common forward-going LW and the pair of backward-going LWs. The autocorrelation function of the LW envelope field

  12. Hot-electron generation by 'cavitating' Langmuir turbulence in the nonlinear stage of the two-plasmon-decay instability

    SciTech Connect

    Vu, H. X.; DuBois, D. F.; Russell, D. A.; Myatt, J. F.

    2012-10-15

    The kinetic reduced-description particle-in-cell simulation technique has been applied to study the nonlinear stage of two-plasmon-decay (TPD) instability in an inhomogeneous plasma driven by crossed laser beams. The TPD instability is found to be a prolific generator of 'cavitating' Langmuir turbulence. Langmuir 'cavitons'-localized longitudinal electric fields, oscillating near the local electron plasma frequency, trapped in ponderomotive density depressions-collapse to dimensions of a few electron Debye lengths, where the electric field energy is collisionlessly transferred to electron kinetic energy. The resulting hot electrons can attain instantaneous temperatures up to 100 keV with net suprathermal heat flux out of the system of up to a few percent of the input laser energy. Scaling laws for this hot-electron generation by TPD, in regimes motivated by recent experiments on the Omega laser, were presented recently by Vu et al. (H. X. Vu, D. F. DuBois, D. A. Russell, and J. F. Myatt, Phys. Plasmas 19, 102703 (2012)). This paper concentrates on the microscopic mechanisms for hot-electron generation. The spatial distribution of the maxima of the electric field envelope modulus is found to be very spiky, with the distribution of electric field envelope maxima obeying Gaussian statistics. The cavitons are produced in density-depletion trenches produced by the combined ponderomotive interference of the crossed laser beams and the ponderomotive beats of the primary backward-going TPD Langmuir waves (LWs) resulting from the crossed beams. The Langmuir turbulence is strongest in the electron-density region near 0.241 Multiplication-Sign the laser's critical density, where the forward LWs from the crossed-beam TPD are degenerate. Nucleation of cavitons is assisted by the modulation of the electron density in the trenches, which in turn is caused by the beating of the common forward-going LW and the pair of backward-going LWs. The autocorrelation function of the LW

  13. Specialized photoreceptor composition in the raptor fovea.

    PubMed

    Mitkus, Mindaugas; Olsson, Peter; Toomey, Matthew B; Corbo, Joseph C; Kelber, Almut

    2017-02-15

    The retinae of many bird species contain a depression with high photoreceptor density known as the fovea. Many species of raptors have two foveae, a deep central fovea and a shallower temporal fovea. Birds have six types of photoreceptors: rods, active in dim light, double cones that are thought to mediate achromatic discrimination, and four types of single cones mediating color vision. To maximize visual acuity, the fovea should only contain photoreceptors contributing to high-resolution vision. Interestingly, it has been suggested that raptors might lack double cones in the fovea. We used transmission electron microscopy and immunohistochemistry to evaluate this claim in five raptor species: the common buzzard (Buteo buteo), the honey buzzard (Pernis apivorus), the Eurasian sparrowhawk (Accipiter nisus), the red kite (Milvus milvus) and the peregrine falcon (Falco peregrinus). We found that all species, except the Eurasian sparrowhawk, lack double cones in the center of the central fovea. The size of the double cone-free zone differed between species. Only the common buzzard had a double cone-free zone in the temporal fovea. In three species, we examined opsin expression in the central fovea and found evidence that rod opsin positive cells were absent and violet-sensitive cone and green-sensitive cone opsin positive cells were present. We conclude that not only double cones, but also single cones may contribute to high-resolution vision in birds, and that raptors may in fact possess high-resolution tetrachromatic vision in the central fovea. This article is protected by copyright. All rights reserved.

  14. Establishing a fiber-optic-based optical neural interface.

    PubMed

    Adamantidis, Antoine R; Zhang, Feng; de Lecea, Luis; Deisseroth, Karl

    2014-08-01

    Selective expression of opsins in genetically defined neurons makes it possible to control a subset of neurons without affecting nearby cells and processes in the intact brain, but light must still be delivered to the target brain structure. Light scattering limits the delivery of light from the surface of the brain. For this reason, we have developed a fiber-optic-based optical neural interface (ONI), which allows optical access to any brain structure in freely moving mammals. The ONI system is constructed by modifying the small animal cannula system from PlasticsOne. The system for bilateral stimulation consists of a bilateral cannula guide that has been stereotactically implanted over the target brain region, a screw cap for securing the optical fiber to the animal's head, a fiber guard modified from the internal cannula adapter, and a bare fiber whose length is customized based on the depth of the target region. For unilateral stimulation, a single-fiber system can be constructed using unilateral cannula parts from PlasticsOne. We describe here the preparation of the bilateral ONI system and its use in optical stimulation of the mouse or rat brain. Delivery of opsin-expressing virus and implantation of the ONI may be conducted in the same surgical session; alternatively, with a transgenic animal no opsin virus is delivered during the surgery. Similar procedures are useful for deep or superficial injections (even for neocortical targets, although in some cases surface light-emitting diodes or cortex-apposed fibers can be used for the most superficial cortical targets).

  15. Dephosphorylation during Bleach and Regeneration of Visual Pigment in Carp Rod and Cone Membranes*

    PubMed Central

    Yamaoka, Hiromi; Tachibanaki, Shuji; Kawamura, Satoru

    2015-01-01

    On absorption of light by vertebrate visual pigment, the chromophore, 11-cis retinal, is isomerized to all-trans retinal to activate the phototransduction cascade, which leads to a hyperpolarizing light response. Activated pigment is inactivated by phosphorylation on the protein moiety, opsin. Isomerized all-trans retinal is ultimately released from opsin, and the pigment is regenerated by binding to 11-cis retinal. In this pigment regeneration cycle, the phosphates incorporated should be removed in order that the pigment regains the capability of activating the phototransduction cascade. However, it is not clear yet how pigment dephosphorylation takes place in the regeneration cycle. First in this study, we tried to estimate the dephosphorylation activity in living carp rods and cones and found that the activity, which is present mainly in the cytoplasm in both rods and cones, is three times higher in cones than in rods. Second, we examined at which stage the dephosphorylation takes place; before or after the release of all-trans retinal, during pigment regeneration, or after pigment regeneration. For this purpose we prepared three types of phosphorylated substrates in purified carp rod and cone membranes: phosphorylated bleaching intermediate, phosphorylated opsin, and phosphorylated and regenerated pigment. We also examined the effect of pigment regeneration on the dephosphorylation. The results showed that the dephosphorylation does not show substrate preference in the regeneration cycle and suggested that the dephosphorylation takes place constantly. The results also suggest that, under bright light, some of the regenerated visual pigment remains phosphorylated to reduce the light sensitivity in cones. PMID:26286749

  16. From Blue Light to Clock Genes in Zebrafish ZEM-2S Cells

    PubMed Central

    Ramos, Bruno C. R.; Moraes, Maria Nathália C. M.; Poletini, Maristela O.; Lima, Leonardo H. R. G.; Castrucci, Ana Maria L.

    2014-01-01

    Melanopsin has been implicated in the mammalian photoentrainment by blue light. This photopigment, which maximally absorbs light at wavelengths between 470 and 480 nm depending on the species, is found in the retina of all classes of vertebrates so far studied. In mammals, melanopsin activation triggers a signaling pathway which resets the circadian clock in the suprachiasmatic nucleus (SCN). Unlike mammals, Drosophila melanogaster and Danio rerio do not rely only on their eyes to perceive light, in fact their whole body may be capable of detecting light and entraining their circadian clock. Melanopsin, teleost multiple tissue (tmt) opsin and others such as neuropsin and va-opsin, are found in the peripheral tissues of Danio rerio, however, there are limited data concerning the photopigment/s or the signaling pathway/s directly involved in light detection. Here, we demonstrate that melanopsin is a strong candidate to mediate synchronization of zebrafish cells. The deduced amino acid sequence of melanopsin, although being a vertebrate opsin, is more similar to invertebrate than vertebrate photopigments, and melanopsin photostimulation triggers the phosphoinositide pathway through activation of a Gq/11-type G protein. We stimulated cultured ZEM-2S cells with blue light at wavelengths consistent with melanopsin maximal absorption, and evaluated the time course expression of per1b, cry1b, per2 and cry1a. Using quantitative PCR, we showed that blue light is capable of slightly modulating per1b and cry1b genes, and drastically increasing per2 and cry1a expression. Pharmacological assays indicated that per2 and cry1a responses to blue light are evoked through the activation of the phosphoinositide pathway, which crosstalks with nitric oxide (NO) and mitogen activated protein MAP kinase (MAPK) to activate the clock genes. Our results suggest that melanopsin may be important in mediating the photoresponse in Danio rerio ZEM-2S cells, and provide new insights about the

  17. Cone photoreceptor types in zebrafish are generated by symmetric terminal divisions of dedicated precursors

    PubMed Central

    Suzuki, Sachihiro C.; Bleckert, Adam; Williams, Philip R.; Takechi, Masaki; Kawamura, Shoji; Wong, Rachel O. L.

    2013-01-01

    Proper functioning of sensory systems requires the generation of appropriate numbers and proportions of neuronal subtypes that encode distinct information. Perception of color relies on signals from multiple cone photoreceptor types. In cone-dominated retinas, each cone expresses a single opsin type with peak sensitivity to UV, long (L) (red), medium (M) (green), or short (S) (blue) wavelengths. The modes of cell division generating distinct cone types are unknown. We report here a mechanism whereby zebrafish cone photoreceptors of the same type are produced by symmetric division of dedicated precursors. Transgenic fish in which the thyroid hormone receptor β2 (trβ2) promoter drives fluorescent protein expression before L-cone precursors themselves are produced permitted tracking of their division in vivo. Every L cone in a local region resulted from the terminal division of an L-cone precursor, suggesting that such divisions contribute significantly to L-cone production. Analysis of the fate of isolated pairs of cones and time-lapse observations suggest that other cone types can also arise by symmetric terminal divisions. Such divisions of dedicated precursors may help to rapidly attain the final numbers and proportions of cone types (L > M, UV > S) in zebrafish larvae. Loss- and gain-of-function experiments show that L-opsin expression requires trβ2 activity before cone differentiation. Ectopic expression of trβ2 after cone differentiation produces cones with mixed opsins. Temporal differences in the onset of trβ2 expression could explain why some species have mixed, and others have pure, cone types. PMID:23980162

  18. Gene Therapy Rescues Cone Structure and Function in the 3-Month-Old rd12 Mouse: A Model for Midcourse RPE65 Leber Congenital Amaurosis

    PubMed Central

    Li, Xia; Li, Wensheng; Dai, Xufeng; Kong, Fansheng; Zheng, Qinxiang; Zhou, Xiangtian; Lü, Fan; Chang, Bo; Rohrer, Bärbel; Hauswirth, William. W.; Qu, Jia; Pang, Ji-jing

    2011-01-01

    Purpose. RPE65 function is necessary in the retinal pigment epithelium (RPE) to generate chromophore for all opsins. Its absence results in vision loss and rapid cone degeneration. Recent Leber congenital amaurosis type 2 (LCA with RPE65 mutations) phase I clinical trials demonstrated restoration of vision on RPE65 gene transfer into RPE cells overlying cones. In the rd12 mouse, a naturally occurring model of RPE65-LCA early cone degeneration was observed; however, some peripheral M-cones remained. A prior study showed that AAV-mediated RPE65 expression can prevent early cone degeneration. The present study was conducted to test whether the remaining cones in older rd12 mice can be rescued. Methods. Subretinal treatment with the scAAV5-smCBA-hRPE65 vector was initiated at postnatal day (P)14 and P90. After 2 months, electroretinograms were recorded, and cone morphology was analyzed by using cone-specific peanut agglutinin and cone opsin–specific antibodies. Results. Cone degeneration started centrally and spread ventrally, with cells losing cone-opsin staining before that for the PNA-lectin–positive cone sheath. Gene therapy starting at P14 resulted in almost wild-type M- and S-cone function and morphology. Delaying gene-replacement rescued the remaining M-cones, and most important, more M-cone opsin–positive cells were identified than were present at the onset of gene therapy, suggesting that opsin expression could be reinitiated in cells with cone sheaths. Conclusions. The results support and extend those of the previous study that gene therapy can stop early cone degeneration, and, more important, they provide proof that delayed treatment can restore the function and morphology of the remaining cones. These results have important implications for the ongoing LCA2 clinical trials. PMID:21169527

  19. Functional and Anatomic Consequences of Subretinal Dosing in the Cynomolgus Macaque

    PubMed Central

    Nork, T. Michael; Murphy, Christopher J.; Kim, Charlene B. Y.; Hoeve, James N. Ver; Rasmussen, Carol A.; Miller, Paul E.; Wabers, Hugh D.; Neider, Michael W.; Dubielzig, Richard R.; McCulloh, Ryan J.; Christian, Brian J.

    2011-01-01

    Objectives To characterize functional and anatomic sequelae of a bleb induced by subretinal injection. Methods Subretinal injections (100 μl) of balance salt solution (BSS) were placed in the superotemporal macula of one eye in 3 cynomolgus macaques. Fellow eyes received intravitreal injections (100 μl) of BSS. Fundus photography, ocular coherence tomography (OCT) and multifocal electroretinography (mfERG) were obtained before and immediately after injection and again at intervals up to 3 months post injection. Histopathologic analyses included transmission electron microscopy (TEM) and immunohistochemistry (IHC) for glial fibrillary acidic protein (GFAP), rhodopsin, M/L-cone opsin and S-cone opsin. Results Retinas were re-attached by 2 days post-injection (by OCT). mfERG was suppressed post-subretinal injection within the subretinal injection bleb and surprisingly, also in regions far peripheral to this region. mfERG amplitudes were nearly completely recovered by 90 days. The spectral domain (SD)-OCT inner segment/outer segment (IS/OS) line had decreased reflectivity at 92 days. GFAP and S-cone staining were unaffected. Rhodopsin and M/L-cone opsins were partially displaced into the inner segments. TEM revealed disorganization of the outer segment rod (but not cone) disks. At all post-injection intervals, eyes with intravitreal injection were similar to baseline. Conclusions Subretinal injection is a promising route for drug delivery to the eye. Three months post subretinal injection, retinal function was nearly recovered, although reorganization of the outer segment rod disk remained disrupted. Understanding the functional and anatomic effects of subretinal injection per se is important for interpretation of the effects of compounds delivered to the subretinal space. Clinical relevance Subretinal injection is a new potential route for drug delivery to the eye. Separating drug effects from the procedural effects per se is critical. PMID:21911651

  20. The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway

    PubMed Central

    Plachetzki, David C.; Fong, Caitlin R.; Oakley, Todd H.

    2010-01-01

    The evolutionary histories of complex traits are complicated because such traits are comprised of multiple integrated and interacting components, which may have different individual histories. Phylogenetic studies of complex trait evolution often do not take this into account, instead focusing only on the history of whole, integrated traits; for example, mapping eyes as simply present or absent through history. Using the biochemistry of animal vision as a model, we demonstrate how investigating the individual components of complex systems can aid in elucidating both the origins and diversification of such systems. Opsin-based phototransduction underlies all visual phenotypes in animals, using complex protein cascades that translate light information into changes in cyclic nucleotide gated (CNG) or canonical transient receptor potential (TRPC) ion-channel activity. Here we show that CNG ion channels play a role in cnidarian phototransduction. Transcripts of a CNG ion channel co-localize with opsin in specific cell types of the eyeless cnidarian Hydra magnipapillata. Further, the CNG inhibitor cis-diltiazem ablates a stereotypical photoresponse in the hydra. Our findings in the Cnidaria, the only non-bilaterian lineage to possess functional opsins, allow us to trace the history of CNG-based photosensitivity to the very origin of animal phototransduction. Our general analytical approach, based on explicit phylogenetic analysis of individual components, contrasts the deep evolutionary history of CNG-based phototransduction, today used in vertebrate vision, with the more recent assembly of TRPC-based systems that are common to protostome (e.g. fly and mollusc) vision. PMID:20219739

  1. Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution.

    PubMed

    Backfisch, Benjamin; Veedin Rajan, Vinoth Babu; Fischer, Ruth M; Lohs, Claudia; Arboleda, Enrique; Tessmar-Raible, Kristin; Raible, Florian

    2013-01-02

    Research in eye evolution has mostly focused on eyes residing in the head. In contrast, noncephalic light sensors are far less understood and rather regarded as evolutionary innovations. We established stable transgenesis in the annelid Platynereis, a reference species for evolutionary and developmental comparisons. EGFP controlled by cis-regulatory elements of r-opsin, a characteristic marker for rhabdomeric photoreceptors, faithfully recapitulates known r-opsin expression in the adult eyes, and marks a pair of pigment-associated frontolateral eyelets in the brain. Unexpectedly, transgenic animals revealed an additional series of photoreceptors in the ventral nerve cord as well as photoreceptors that are located in each pair of the segmental dorsal appendages (notopodia) and project into the ventral nerve cord. Consistent with a photosensory function of these noncephalic cells, decapitated animals display a clear photoavoidance response. Molecular analysis of the receptors suggests that they differentiate independent of pax6, a gene involved in early eye development of many metazoans, and that the ventral cells may share origins with the Hesse organs in the amphioxus neural tube. Finally, expression analysis of opn4×-2 and opn4m-2, two zebrafish orthologs of Platynereis r-opsin, reveals that these genes share expression in the neuromasts, known mechanoreceptors of the lateral line peripheral nervous system. Together, this establishes that noncephalic photoreceptors are more widespread than assumed, and may even reflect more ancient aspects of sensory systems. Our study marks significant advance for the understanding of photoreceptor cell (PRC) evolution and development and for Platynereis as a functional lophotrochozoan model system.

  2. Dephosphorylation during bleach and regeneration of visual pigment in carp rod and cone membranes.

    PubMed

    Yamaoka, Hiromi; Tachibanaki, Shuji; Kawamura, Satoru

    2015-10-02

    On absorption of light by vertebrate visual pigment, the chromophore, 11-cis retinal, is isomerized to all-trans retinal to activate the phototransduction cascade, which leads to a hyperpolarizing light response. Activated pigment is inactivated by phosphorylation on the protein moiety, opsin. Isomerized all-trans retinal is ultimately released from opsin, and the pigment is regenerated by binding to 11-cis retinal. In this pigment regeneration cycle, the phosphates incorporated should be removed in order that the pigment regains the capability of activating the phototransduction cascade. However, it is not clear yet how pigment dephosphorylation takes place in the regeneration cycle. First in this study, we tried to estimate the dephosphorylation activity in living carp rods and cones and found that the activity, which is present mainly in the cytoplasm in both rods and cones, is three times higher in cones than in rods. Second, we examined at which stage the dephosphorylation takes place; before or after the release of all-trans retinal, during pigment regeneration, or after pigment regeneration. For this purpose we prepared three types of phosphorylated substrates in purified carp rod and cone membranes: phosphorylated bleaching intermediate, phosphorylated opsin, and phosphorylated and regenerated pigment. We also examined the effect of pigment regeneration on the dephosphorylation. The results showed that the dephosphorylation does not show substrate preference in the regeneration cycle and suggested that the dephosphorylation takes place constantly. The results also suggest that, under bright light, some of the regenerated visual pigment remains phosphorylated to reduce the light sensitivity in cones.

  3. Considering the Influence of Nonadaptive Evolution on Primate Color Vision

    PubMed Central

    Jacobs, Rachel L.; Bradley, Brenda J.

    2016-01-01

    Color vision in primates is variable across species, and it represents a rare trait in which the genetic mechanisms underlying phenotypic variation are fairly well-understood. Research on primate color vision has largely focused on adaptive explanations for observed variation, but it remains unclear why some species have trichromatic or polymorphic color vision while others are red-green color blind. Lemurs, in particular, are highly variable. While some species are polymorphic, many closely-related species are strictly dichromatic. We provide the first characterization of color vision in a wild population of red-bellied lemurs (Eulemur rubriventer, Ranomafana National Park, Madagascar) with a sample size (87 individuals; NX chromosomes = 134) large enough to detect even rare variants (0.95 probability of detection at ≥ 3% frequency). By sequencing exon 5 of the X-linked opsin gene we identified opsin spectral sensitivity based on known diagnostic sites and found this population to be dichromatic and monomorphic for a long wavelength allele. Apparent fixation of this long allele is in contrast to previously published accounts of Eulemur species, which exhibit either polymorphic color vision or only the medium wavelength opsin. This unexpected result may represent loss of color vision variation, which could occur through selective processes and/or genetic drift (e.g., genetic bottleneck). To indirectly assess the latter scenario, we genotyped 55 adult red-bellied lemurs at seven variable microsatellite loci and used heterozygosity excess and M-ratio tests to assess if this population may have experienced a recent genetic bottleneck. Results of heterozygosity excess but not M-ratio tests suggest a bottleneck might have occurred in this red-bellied lemur population. Therefore, while selection may also play a role, the unique color vision observed in this population might have been influenced by a recent genetic bottleneck. These results emphasize the need to

  4. NADPH Oxidase Contributes to Photoreceptor Degeneration in Constitutively Active RAC1 Mice

    PubMed Central

    Song, Hongman; Vijayasarathy, Camasamudram; Zeng, Yong; Marangoni, Dario; Bush, Ronald A.; Wu, Zhijian; Sieving, Paul A.

    2016-01-01

    Purpose The active form of small GTPase RAC1 is required for activation of NADPH oxidase (NOX), which in turn generates reactive oxygen species (ROS) in nonphagocytic cells. We explored whether NOX-induced oxidative stress contributes to rod degeneration in retinas expressing constitutively active (CA) RAC1. Methods Transgenic (Tg)–CA-RAC1 mice were given apocynin (10 mg/kg, intraperitoneal), a NOX inhibitor, or vehicle daily for up to 13 weeks. Superoxide production and oxidative damage were assessed by dihydroethidium staining and by protein carbonyls and malondialdehyde levels, respectively. Outer nuclear layer (ONL) cells were counted and electroretinogram (ERG) amplitudes measured in Tg-CA-RAC1 mice. Outer nuclear layer cells were counted in wild-type (WT) mice after transfer of CA-Rac1 gene by subretinal injection of AAV8-pOpsin-CA Rac1-GFP. Results Transgenic-CA-RAC1 retinas had significantly fewer photoreceptor cells and more apoptotic ONL cells than WT controls from postnatal week (Pw) 3 to Pw13. Superoxide accumulation and protein and lipid oxidation were increased in Tg-CA-RAC1 retinas and were reduced in mice treated with apocynin. Apocynin reduced the loss of photoreceptors and increased the rod ERG a- and b-wave amplitudes when compared with vehicle-injected transgenic controls. Photoreceptor loss was also observed in regions of adult WT retina transduced with AAV8-pOpsin-CA Rac1-GFP but not in neighboring regions that were not transduced or in AAV8-pOpsin-GFP–transduced retinas. Conclusions Constitutively active RAC1 promotes photoreceptor cell death by oxidative damage that occurs, at least partially, through NOX-induced ROS. Reactive oxygen species are likely involved in multiple forms of retinal degenerations, and our results support investigating RAC1 inhibition as a therapeutic approach that targets this disease pathway. PMID:27233035

  5. Optobionic vision--a new genetically enhanced light on retinal prosthesis.

    PubMed

    Degenaar, Patrick; Grossman, Nir; Memon, Muhammad Ali; Burrone, Juan; Dawson, Martin; Drakakis, Emmanuel; Neil, Mark; Nikolic, Konstantin

    2009-06-01

    The recent discovery that neurons can be photostimulated via genetic incorporation of artificial opsins is creating a revolution in the field of neural stimulation. In this paper we show its potential in the field of retinal prosthesis. We show that we need typically 100 mW cm(-2) in instantaneous light intensity on the neuron in order to stimulate action potentials. We also show how this can be reduced down to safe levels in order to negate thermal and photochromic damage to the eye. We also describe a gallium nitride LED light source which is also able to generate patterns of the required intensity in order to transfer reliable images.

  6. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri.

    PubMed

    Zhang, Feng; Prigge, Matthias; Beyrière, Florent; Tsunoda, Satoshi P; Mattis, Joanna; Yizhar, Ofer; Hegemann, Peter; Deisseroth, Karl

    2008-06-01

    The introduction of two microbial opsin-based tools, channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), to neuroscience has generated interest in fast, multimodal, cell type-specific neural circuit control. Here we describe a cation-conducting channelrhodopsin (VChR1) from Volvox carteri that can drive spiking at 589 nm, with excitation maximum red-shifted approximately 70 nm compared with ChR2. These results demonstrate fast photostimulation with yellow light, thereby defining a functionally distinct third category of microbial rhodopsin proteins.

  7. Light and the evolution of vision

    PubMed Central

    Williams, D L

    2016-01-01

    It might seem a little ridiculous to cover the period over which vision evolved, perhaps 1.5 billion years, in only 3000 words. Yet, if we examine the photoreceptor molecules of the most basic eukaryote protists and even before that, in those of prokaryote bacteria and cyanobacteria, we see how similar they are to those of mammalian rod and cone photoreceptor opsins and the photoreceptive molecules of light sensitive ganglion cells. This shows us much with regard the development of vision once these proteins existed, but there is much more to discover about the evolution of even more primitive vision systems. PMID:26541087

  8. Direct measurement of the isomerization barrier of the isolated retinal chromophore.

    PubMed

    Dilger, Jonathan; Musbat, Lihi; Sheves, Mordechai; Bochenkova, Anastasia V; Clemmer, David E; Toker, Yoni

    2015-04-13

    Isomerizations of the retinal chromophore were investigated using the IMS-IMS technique. Four different structural features of the chromophore were observed, isolated, excited collisionally, and the resulting isomer and fragment distributions were measured. By establishing the threshold activation voltages for isomerization for each of the reaction pathways, and by measuring the threshold activation voltage for fragmentation, the relative energies of the isomers as well as the energy barriers for isomerization were determined. The energy barrier for a single cis-trans isomerization is (0.64±0.05) eV, which is significantly lower than that observed for the reaction within opsin proteins.

  9. The ecoresponsive genome of Daphnia pulex

    SciTech Connect

    Colbourne, John K.; Pfrender, Michael E.; Gilbert, Donald; Thomas, W. Kelley; Tucker, Abraham; Oakley, Todd H.; Tokishita, Shinichi; Aerts, Andrea; Arnold, Georg J.; Basu, Malay Kumar; Bauer, Darren J.; Caceres, Carla E.; Carmel, Liran; Casola, Claudio; Choi, Jeong-Hyeon; Detter, John C.; Dong, Qunfeng; Dusheyko, Serge; Eads, Brian D.; Frohlich, Thomas; Geiler-Samerotte, Kerry A.; Gerlach, Daniel; Hatcher, Phil; Jogdeo, Sanjuro; Krijgsveld, Jeroen; Kriventseva, Evgenia V; Kültz, Dietmar; Laforsch, Christian; Lindquist, Erika; Lopez, Jacqueline; Manak, Robert; Muller, Jean; Pangilinan, Jasmyn; Patwardhan, Rupali P.; Pitluck, Samuel; Pritham, Ellen J.; Rechtsteiner, Andreas; Rho, Mina; Rogozin, Igor B.; Sakarya, Onur; Salamov, Asaf; Schaack, Sarah; Shapiro, Harris; Shiga, Yasuhiro; Skalitzky, Courtney; Smith, Zachary; Souvorov, Alexander; Sung, Way; Tang, Zuojian; Tsuchiya, Dai; Tu, Hank; Vos, Harmjan; Wang, Mei; Wolf, Yuri I.; Yamagata, Hideo; Yamada, Takuji; Ye, Yuzhen; Shaw, Joseph R.; Andrews, Justen; Crease, Teresa J.; Tang, Haixu; Lucas, Susan M.; Robertson, Hugh M.; Bork, Peer; Koonin, Eugene V.; Zdobnov, Evgeny M.; Grigoriev, Igor V.; Lynch, Michael; Boore, Jeffrey L.

    2011-02-04

    This document provides supporting material related to the sequencing of the ecoresponsive genome of Daphnia pulex. This material includes information on materials and methods and supporting text, as well as supplemental figures, tables, and references. The coverage of materials and methods addresses genome sequence, assembly, and mapping to chromosomes, gene inventory, attributes of a compact genome, the origin and preservation of Daphnia pulex genes, implications of Daphnia's genome structure, evolutionary diversification of duplicated genes, functional significance of expanded gene families, and ecoresponsive genes. Supporting text covers chromosome studies, gene homology among Daphnia genomes, micro-RNA and transposable elements and the 46 Daphnia pulex opsins. 36 figures, 50 tables, 183 references.

  10. Photoreceptor organisation and phenotypic characterization in retinas of two diurnal rodent species: potential use as experimental animal models for human vision research.

    PubMed

    Bobu, Corina; Lahmam, Mohamed; Vuillez, Patrick; Ouarour, Ali; Hicks, David

    2008-02-01

    To characterize rod and cone distribution and composition in two diurnal mouse-like rodents, retinas from adult Arvicanthis ansorgei and Lemniscomys barbarus were processed for immunohistochemistry using multiple rod- and cone-specific antibodies. Antibodies tested included rhodopsin, cone opsins, pan-arrestin and cone arrestin, recoverin, and cGMP dependent ion channel. In both species, retinas were composed of approximately 33% cones, and most antibodies gave similar staining patterns. Data show these two diurnal rodents possess large numbers of cones, organised in a strict anatomical array. This suggests that diurnal rodents in general possess elevated cone numbers and could constitute valuable models for investigating cone pathophysiology.

  11. Geospace Missions

    NASA Technical Reports Server (NTRS)

    Spann, James

    2005-01-01

    Geospace Missions - Understanding and being able to predict the behavior of the Earth's near space environment, called Geospace, is important for several reasons. These include the fact that most of the space-based commercial, military, and space research assets are exposed to this environment and that investigating fundamental plasma processes at work through out the solar system can most readily be accomplished in Geospace, the only place we can access the processes. NASA missions that are directed toward understanding, characterizing, and predicting the Geospace environment are described in this presentation. Emphasis is placed on those missions that investigate those phenomena that most affect life and society. The significance of investigating ionospheric irregularities, the radiation belt dynamics with the LWS Geospace Mission will be discussed.

  12. Development of a long wavelength spectrometer for the 24-channel multispectral scanner: Instructions for installation, start-up, and adjustment

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The basic information is presented, which is required for start-up and operation of two long-wavelength focal-plane and cooler assemblies, including the amplifiers and temperature control systems. The focal plane systems, referred to as the long wavelength spectrometer (LWS) were developed for direct replacement of Arrays 3 and 4 into the multispectral scanner presently being operated by the NASA Manned Spacecraft Center Facility, and Laboratory Support Branch. The equipment is comprised of two major sub-assemblies: Array 3 with three indium antimonide detector channels and Array 4 with seven mercury doped Germanium detector channels. Each array is mounted on a cryogenic cooler and includes the vacuum housings, mounting hardware (x, y, z translation and rotation stages) and detector signal conditioning, temperature control and monitoring electronics. The two arrays were designed to operate independently and do not share common equipment (viz power supplies, housings, mounts, etc.).

  13. Fluxon Modeling of Eruptive Events With and Without Reconnection

    NASA Astrophysics Data System (ADS)

    DeForest, Craig; Rachmeler, L.; Davey, A.; Kankelborg, C.

    2007-05-01

    Fluxon MHD models represent the coronal magnetic field as a "skeleton" of discretized field lines. This quasi-Lagrangian approach eliminates numerical resistivity and allows 3-D time-dependent plasma simulation in a desktop workstation.Using our fluxon code, FLUX, we have demonstrated that ideal MHD instabilities can drive fast eruptive events even in the complete absence of magnetic reconnection. The mechanism ("herniation") is probably not the main driver of fast CMEs but may be applicable to microjets, macrospicules, or other small scale events where vortical flows are present in the solar atmosphere. In this presentation, we use time-dependent simulations to demonstrate energy release in several idealized plasma systems with and without magnetic reconnection.This work was funded by NASA's LWS and SHP-SR&T programs.

  14. Mid-IR Imaging of Orion BN/KL: Modeling of Physical Conditions and Energy Balance

    NASA Astrophysics Data System (ADS)

    Gezari, Daniel; Varosi, Frank; Dwek, Eli; Danchi, William; Tan, Jonathan; Okumura, Shin-Ichiro

    We have modeled two mid-infrared imaging photometry data sets to determine the spatial distribution of physical conditions in the BN/KL infrared complex. We observed the BN/KL region using the 10-m Keck I telescope and the LWS in the direct imaging mode, over a 13'' × 19'' field (Figure 1, left). We also modeled images obtained with COMICS (Kataza et al. 2000) at the 8.2-m SUBARU telescope, over a total field of view is 31'' × 41'' (Figure 1, right), in a total of nine bands: 7.8, 8.8, 9.7, 10.5, 11.7, 12.4, 18.5, 20.8 and 24.8 μm with ~1 μm bandwidth interference filters.

  15. MHD modeling of the solar corona: Progress and challenges

    NASA Astrophysics Data System (ADS)

    Linker, Jon; Mikic, Zoran; Lionello, Roberto; Riley, Pete; Titov, Viacheslav; Torok, Tibor

    2012-07-01

    The Sun and its activity is the ultimate driver of space weather at Earth. This influence occurs not only via eruptive phenomena such as coronal mass ejections, but also through the structure of the corona itself, which forms the genesis of fast solar wind streams that trigger recurrent geomagnetic activity. Coronal structure also determines the connection of the ambient interplanetary magnetic field to CME-related shocks and impulsive solar flares, and thus controls where solar energetic particles propagate. In this talk we describe both the present state of the art and new directions in coronal modeling for both dynamic and slowly varying phenomena. We discuss the challenges to incorporating these capabilities into future space weather forecasting and specification models. Supported by NASA through the HTP, LWS, and SR&T programs, by NSF through the FESD and CISM programs, and by the AFOSR Space Science program.

  16. Effect of Energetic Electrons Produced by Raman Scattering on Hohlraum Dynamics

    NASA Astrophysics Data System (ADS)

    Strozzi, D. J.; Bailey, D. S.; Doeppner, T.; Divol, L.; Harte, J. A.; Michel, P.; Thomas, C. A.

    2016-10-01

    A reduced model of laser-plasma interactions, namely crossed-beam energy transfer and stimulated Raman scattering (SRS), has recently been implemented in a self-consistent or ``inline'' way in radiation-hydrodynamics codes. We extend this work to treat the energetic electrons produced by Langmuir waves (LWs) from SRS by a suprathermal, multigroup diffusion model. This gives less spatially localized heating than depositing the LW energy into the local electron fluid. We compare the resulting hard x-ray production to imaging data on the National Ignition Facility, which indicate significant emission around the laser entrance hole. We assess the effects of energetic electrons, as well as background electron heat flow, on hohlraum dynamics and capsule implosion symmetry. Work performed under the auspices of the U.S. D.O.E. by LLNL under Contract No. DE-AC52-07NA27344.

  17. Cryogenic mechanisms for scanning and interchange of the Fabry-Perot interferometers in the ISO long wavelength spectrometer

    NASA Technical Reports Server (NTRS)

    Davis, G. R.; Furniss, I.; Patrick, T. J.; Sidey, R. C.; Towlson, W. A.

    1991-01-01

    The Infrared Space Observatory (ISO) is an ESA cornerstone mission for infrared astronomy. Schedules for launch in 1993, its four scientific instruments will provide unprecedented sensitivity and spectral resolution at wavelengths which are inaccessible using ground-based techniques. One of these, the Long Wavelength Spectrometer (LWS), will operate in the 45 to 180 micron region (Emery et. al., 1985) and features two Fabry-Perot interferometers mounted on an interchange mechanism. The entire payload module of the spacecraft, comprising the 60 cm telescope and the four focal plane instruments, is maintained at 2 to 4 K by an onboard supply of liquid helium. The mechanical design and testing of the cryogenic interferometer and interchange mechanisms are described.

  18. RAD750 SBC Usage for the Solar Dynamics Observatory (SDO) Program

    NASA Technical Reports Server (NTRS)

    Li, Kenneth

    2005-01-01

    This presentation focuses on the first space weather research mission in the Living with a Star (LWS) Program. The science objective of the mission is to understand the solar variations that influence life on Earth. The mission is developed and managed by NASA/GSFC with a launch date in 2008 on a five-year mission using a geosynchronous inclined orbit. Involved with the mission are three science instruments: a helloseisic and magnetic imagery (HMI), extreme ultraviolet variability experiment (EVE), and solar helispheric activity research prediction program (SHARPP). 6U qualification Vib test has been completed with successful results (no interrupts detected at 1 nanosecond). Other test result to be reported at workshop.

  19. Solar EUV Variability from FISM and SDO/EVE During Solar Minimum, Active, and Flaring Time Periods

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2011-01-01

    The Living With a Star (LWS) Focus Science Team has identified three periods of different solar activity levels for which they will be determining the Earth's Ionosphere and Thermosphere response. Not only will the team be comparing individual models (e.g. FLIP, T1MEGCM, GLOW) outcome driven by the various levels of solar activity, but the models themselves will also be compared. These models all rely on the input solar EUV (0.1 -190 nm) irradiance to drive the variability. The Flare Irradiance Spectral Model (FISM) and the EUV Variability Experiment (EVE) onboard provide the Solar Dynamics Observatory (SDO) provide the most accurate quantification of these irradiances. Presented and discussed are how much the solar EUV irradiance changes during these three scenarios, both as a function of activity and wavelength.

  20. Characterizing the Properties of Coronal Magnetic Null Points

    NASA Astrophysics Data System (ADS)

    Barnes, Graham; DeRosa, Marc; Wagner, Eric

    2015-08-01

    The topology of the coronal magnetic field plays a role in a wide range of phenomena, from Coronal Mass Ejections (CMEs) through heating of the corona. One fundamental topological feature is the null point, where the magnetic field vanishes. These points are natural sites of magnetic reconnection, and hence the release of energy stored in the magnetic field. We present preliminary results of a study using data from the Helioseismic and Magnetic Imager aboard NASA's Solar Dynamics Observatory to characterize the properties and evolution of null points in a Potential Field Source Surface model of the coronal field. The main properties considered are the lifetime of the null points, their distribution with height, and how they form and subsequently vanish.This work is supported by NASA/LWS Grant NNX14AD45G, and by NSF/SHINE grant 1357018.

  1. The NIRSPEC Data Reduction Pipeline for the Keck Observatory Archive

    NASA Astrophysics Data System (ADS)

    Tran, Hien D.; Cohen, R.; Mader, J. A.; Colson, A.; Berriman, G. Bruce; Gelino, Christopher R.; KOA Team

    2016-01-01

    The Keck Observatory Archive (KOA), a collaboration between the NASA Exoplanet Science Institute and the W. M. Keck Observatory, serves science and calibration data for all current and retired instruments from the twin Keck Telescopes. In addition to the raw data, we publicly serve quick-look, reduced data products for four instruments (HIRES, LWS, NIRC2 and OSIRIS), so that KOA users can easily assess the quality and scientific content of the data. In this paper we present the design and implementation of the data reduction pipeline (DRP) for the NIRSPEC instrument for use with KOA. We discuss the publicly available reduction packages for NIRSPEC, the challenges encountered when designing this fully automated DRP and the algorithm used to determine wavelength calibration from sky lines. The reduced data products from the NIRSPEC DRP are expected to be available in KOA by mid-2016.

  2. Long wavelength infrared camera (LWIRC): a 10 micron camera for the Keck Telescope

    SciTech Connect

    Wishnow, E.H.; Danchi, W.C.; Tuthill, P.; Wurtz, R.; Jernigan, J.G.; Arens, J.F.

    1998-05-01

    The Long Wavelength Infrared Camera (LWIRC) is a facility instrument for the Keck Observatory designed to operate at the f/25 forward Cassegrain focus of the Keck I telescope. The camera operates over the wavelength band 7-13 {micro}m using ZnSe transmissive optics. A set of filters, a circular variable filter (CVF), and a mid-infrared polarizer are available, as are three plate scales: 0.05``, 0.10``, 0.21`` per pixel. The camera focal plane array and optics are cooled using liquid helium. The system has been refurbished with a 128 x 128 pixel Si:As detector array. The electronics readout system used to clock the array is compatible with both the hardware and software of the other Keck infrared instruments NIRC and LWS. A new pre-amplifier/A-D converter has been designed and constructed which decreases greatly the system susceptibility to noise.

  3. Living with a Star: New Opportunities in Sun-Climate Research

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Living With a Star is a NASA initiative employing the combination of dedicated spacecraft with targeted research and modeling efforts to improve what we know of solar effects of all kinds on the Earth and its surrounding space environment, with particular emphasis on those that have significant practical impacts on life and society. The highest priority among these concerns is the subject of this report: the potential effects of solar variability on regional and global climate, including the extent to which solar variability has contributed to the well-documented warming of the Earth in the last 100 years. Understanding how the climate system reacts to external forcing from the Sun will also greatly improve our knowledge of how climate will respond to other climate drivers, including those of anthropogenic origin. A parallel element of the LWS program addresses solar effects on space weather : the impulsive emissions of charged particles, short-wave electromagnetic radiation and magnetic disturbances in the upper atmosphere and near-Earth environment that also affect life and society. These include a wide variety of solar impacts on aeronautics, astronautics, electric power transmission, and national defense. Specific examples are (1) the impacts of potentially- damaging high energy radiation and atomic particles of solar origin on satellites and satellite operations, spacecraft electronics systems and components, electronic communications, electric power distribution grids, navigational and GPS systems, and high altitude aircraft; and (2) the threat of sporadic, high-energy solar radiation to astronauts and high altitude aircraft passengers and crews. Elements of the LWS program include an array of dedicated spacecraft in near- Earth and near-Sun orbits that will closely study and observe both the Sun itself and the impacts of its variations on the Earth's radiation belts and magnetosphere, the upper atmosphere, and ionosphere. These spacecraft, positioned to

  4. 90 GHz and 150 GHz Observations of the Orion M42 Region. A Submillimeter to Radio Analysis

    NASA Technical Reports Server (NTRS)

    Dicker, S. R.; Mason, B. S.; Korngut, P. M.; Cotton, W. D.; Compiegne, M.; Devlin, M. J.; Martin, P. G.; Ade, P. A. R; Benford, D. J.; Irwin, K. D.; Maddalena, R. J.; McMullin, J. P.; Shepherd, D. S.; Sievers, A.; Staguhn, J. G.; Tucker, C.

    2009-01-01

    We have used the new 90GHz MUSTANG camera on the Robert C. Green Bank Telescope (GBT)to map the bright Huygens region of the star-forming region M42 with a resolution of 9" and a sensitivity of 2.8 mJy/beam. Ninety GHz is an interesting transition frequency, as MUSTANG detects both the free-free emission characteristic of the H II region created by the Trapezium stars, normally seen at lower frequencies, and thermal dust emission from the background OMCI molecular cloud, normally mapped at higher frequencies. We also present similar data from the 150 GHz GISMO camera taken on the IRAM 30 m telescope. This map has 15" resolution. By combining the MUSTANG data with 1.4, 8. and 31 GHz radio data from the VLA and GBT, we derive a new estimate of the emission measure averaged electron temperature of T(sub e) = 11376+/-1050 K by an original method relating free-free emission intensities at optically thin and optically thick frequencies. Combining Infrared Space Observatory-long wavelength spectrometer (ISO-LWS) data with our data, we derive a new estimate of the dust temperature and spectral emissivity index within the 80" ISO-LWS beam toward Orion KL/BN, T(sub d) = 42+/-3 K and Beta(sub d) = 1.3+/-0.1. We show that both T(sub d) and Beta(sub d) decrease when going from the H II region and excited OMCI interface to the denser UV shielded part OMCI (Orion KL/BN, Orion S). With a model consisting of only free-free and thermal dust emission, we are able to fit data taken at frequencies from 1.5 GHz to 854 GHz (350 micrometers).

  5. Solar Cycle Variation and Multipoint Studies of ICME Properties

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    2005-01-01

    The goal of the Living With a Star program is to understand the Sun-Earth connection sufficiently well that we can solve problems critical to life and society. This can most effectively be done in the short term using observations from our past and on-going programs. Not only can this approach solve some of the pressing issues but also it can provide ideas for the deployment of future spacecraft in the LWS program. The proposed effort uses data from NEAR, SOHO, Wind, ACE and Pioneer Venus in quadrature, multipoint, and solar cycle studies to study the interplanetary coronal mass ejection and its role in the magnetic flux cycle of the Sun. ICMEs are most important to the LWS objectives because the solar wind conditions associated with these structures are the most geoeffective of any solar wind phenomena. Their ability to produce strong geomagnetic disturbances arises first because of their high speed. This high speed overtakes the ambient solar wind producing a bow shock wave similar to the terrestrial bow shock. In the new techniques we develop as part of this effort we exploit this feature of ICMEs. This shocked plasma has a greater velocity, higher density and stronger magnetic field than the ambient solar wind, conditions that can enhance geomagnetic activity. The driving ICME is a large magnetic structure expanding outward in the solar wind [Gosling, 19961. The ICMEs magnetic field is generally much higher than that in the ambient solar wind and the velocity is high. The twisted nature of the magnetic field in an ICME almost ensures that sometime during the ICME conditions favorable for geomagnetic storm initiation will occur.

  6. The Far Infrared Lines of OH as Molecular Cloud Diagnostics

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.

    2004-01-01

    Future IR missions should give some priority to high resolution spectroscopic observations of the set of far-IR transitions of OH. There are 15 far-IR lines arising between the lowest eight rotational levels of OH, and ISO detected nine of them. Furthermore, ISO found the OH lines, sometimes in emission and sometimes in absorption, in a wide variety of galactic and extragalactic objects ranging from AGB stars to molecular clouds to active galactic nuclei and ultra-luminous IR galaxies. The ISO/LWS Fabry-Perot resolved the 119 m doublet line in a few of the strong sources. This set of OH lines provides a uniquely important diagnostic for many reasons: the lines span a wide wavelength range (28.9 m to 163.2 m); the transitions have fast radiative rates; the abundance of the species is relatively high; the IR continuum plays an important role as a pump; the contribution from shocks is relatively minor; and, not least, the powerful centimeter-wave radiation from OH allows comparison with radio and VLBI datasets. The problem is that the large number of sensitive free parameters, and the large optical depths of the strongest lines, make modeling the full set a difficult job. The SWAS montecarlo radiative transfer code has been used to analyze the ISO/LWS spectra of a number of objects with good success, including in both the lines and the FIR continuum; the DUSTY radiative transfer code was used to insure a self-consistent continuum. Other far IR lines including those from H2O, CO, and [OI] are also in the code. The OH lines all show features which future FIR spectrometers should be able to resolve, and which will enable further refinements in the details of each cloud's structure. Some examples are given, including the case of S140, for which independent SWAS data found evidence for bulk flows.

  7. High blood pressure and visual sensitivity

    NASA Astrophysics Data System (ADS)

    Eisner, Alvin; Samples, John R.

    2003-09-01

    The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.

  8. Producing acoustic 'Frozen Waves': simulated experiments with diffraction/attenuation resistant beams in lossy media.

    PubMed

    Prego-Borges, José L; Zamboni-Rached, Michel; Recami, Erasmo; Costa, Eduardo Tavares

    2014-08-01

    The so-called Localized Waves (LW), and the "Frozen Waves" (FW), have raised significant attention in the areas of Optics and Ultrasound, because of their surprising energy localization properties. The LWs resist the effects of diffraction for large distances, and possess an interesting self-reconstruction -self-healing- property (after obstacles with size smaller than the antenna's); while the FWs, a sub-class of LWs, offer the possibility of arbitrarily modeling the longitudinal field intensity pattern inside a prefixed interval, for instance 0⩽z⩽L, of the wave propagation axis. More specifically, the FWs are localized fields "at rest", that is, with a static envelope (within which only the carrier wave propagates), and can be endowed moreover with a high transverse localization. In this paper we investigate, by simulated experiments, various cases of generation of ultrasonic FW fields, with the frequency of f0=1 MHz in a water-like medium, taking account of the effects of attenuation. We present results of FWs for distances up to L=80 mm, in attenuating media with absorption coefficient α in the range 70⩽α⩽170 dB/m. Such simulated FW fields are constructed by using a procedure developed by us, via appropriate finite superpositions of monochromatic ultrasonic Bessel beams. We pay due attention to the selection of the FW parameters, constrained by the rather tight restrictions imposed by experimental Acoustics, as well as to some practical implications of the transducer design. The energy localization properties of the Frozen Waves can find application even in many medical apparatus, such as bistouries or acoustic tweezers, as well as for treatment of diseased tissues (in particular, for the destruction of tumor cells, without affecting the surrounding tissues; also for kidney stone shuttering, etc.).

  9. Wetland treatment of oil and gas well waste waters. Final report

    SciTech Connect

    Kadlec, R.; Srinivasan, K.

    1995-08-01

    Constructed wetlands are small on-site systems that possess three of the most desirable components of an industrial waste water treatment scheme: low cost, low maintenance and upset resistance. The main objective of the present study is to extend the knowledge base of wetland treatment systems to include processes and substances of particular importance to small, on-site systems receiving oil and gas well wastewaters. A list of the most relevant and comprehensive publications on the design of wetlands for water quality improvement was compiled and critically reviewed. Based on our literature search and conversations with researchers in the private sector, toxic organics such as Phenolics and b-naphthoic acid, (NA), and metals such as CU(II) and CR(VI) were selected as target adsorbates. A total of 90 lysimeters equivalent to a laboratory-scale wetland were designed and built to monitor the uptake and transformation of toxic organics and the immobilization of metal ions. Studies on the uptake of toxic organics such as phenol and b-naphthoic acid (NA) and heavy metals such as Cu(II) and Cr(VI), the latter two singly or as non-stoichiometric mixtures by laboratory-type wetlands (LWs) were conducted. These LWs were designed and built during the first year of this study. A road map and guidelines for a field-scale implementation of a wetland system for the treatment of oil and gas wastewaters have been suggested. Two types of wetlands, surface flow (SF) and sub surface flow (SSF), have been considered, and the relative merits of each configuration have been reviewed.

  10. ISO Key Project: Exploring the Full Range of Quasar/Agn Properties

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda; Oliversen, Ronald J. (Technical Monitor)

    2003-01-01

    While most of the work on this program has been completed, as previously reported, the portion of the program dealing with the subtopic of ISO LWS data analysis and reduction for the LWS Extragalactic Science Team and its leader, Dr. Howard Smith, is still active. This program in fact continues to generate results, and newly available computer modeling has extended the value of the datasets. As a result the team requests a one-year no-cost extension to this program, through 31 December 2004. The essence of the proposal is to perform ISO spectroscopic studies, including data analysis and modeling, of star-formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, but including as well some other spectroscopic databases. Four kinds of regions are considered in the studies: (1) disks around more evolved objects; (2) young, low or high mass pre-main sequence stars in star-formation regions; (3) star formation in external, bright IR galaxies; and (4) the galactic center. One prime focus of the program is the OH lines in the far infrared. The program has the following goals: 1) Refine the data analysis of ISO observations to obtain deeper and better SNR results on selected sources. The ISO data itself underwent 'pipeline 10' reductions in early 2001, and additional 'hands-on data reduction packages' were supplied by the ISO teams in 2001. The Fabry-Perot database is particularly sensitive to noise and slight calibration errors; 2) Model the atomic and molecular line shapes, in particular the OH lines, using revised Monte-Carlo techniques developed by the SWAS team at the Center for Astrophysics; 3) Attend scientific meetings and workshops; 4) Perform E&PO activities related to infrared astrophysics and/or spectroscopy.

  11. ISO Key Project: Exploring The Full Range of Quasar/AGN Properties

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda; West, Donald K. (Technical Monitor)

    2002-01-01

    While most of the work on this program has been completed, as previously reported, the portion of the program dealing with the sub topic of ISO LWS data analysis and reduction for the LWS Extragalactic Science Team and its leader, Dr. Howard Smith, is still active. This program in fact continues to generate results, and newly available computer modeling has extended the value of the datasets, As a result the team has requested and been granted an obtained a no-cost extension to this program, through December 31, 2003. The essence of the proposal is to perform ISO spectroscopic studies, including data analysis and modeling, of star formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, but including as well some other spectroscopic data bases. Four kinds of regions are considered in the studies: (1) disks around more evolved objects; (2) young, low or high mass pre-main sequence stars in star formation regions; (3) star formation in external, bright IR galaxies; and (4) the galactic center. One prime focus of the program is the OH lines in the far infrared. The program has the following goals: (1) refine the data analysis of ISO observations, to obtain deeper and better SNR results on selected sources. The ISO data itself underwent "pipeline 10" reductions in early 2001, and additional "hands-on data reduction packages" were supplied by the ISO teams in 2001. The Fabry-Perot database in particularly sensitive to noise can slight calibration errors. (2) model the atomic and molecular line shapes, in particular the OH lines, using revised Monte-Carlo techniques developed by the SWAS team at the Center for Astrophysics; (3) attend scientific meetings and workshops; (4) do E&PO activities related to infrared astrophysics and/or spectroscopy.

  12. Near- and mid-Infrared Resolved Imaging of Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Roe, H. G.; de Pater, I.; Gibbard, S. G.; Macintosh, B.; Max, C. E.; McKay, C. P.

    2000-10-01

    We present spatially resolved images of Titan in the near-infrared (1-2.5 μ m) with the W.M. Keck Observatory Adaptive Optics (AO) system and in the mid-infrared (8-13 μ m) with the Keck Long Wave Spectometer (LWS). On 30 October 1999 (UT) we observed a bright cloud band at 70° S latitude in two narrowband filters (each ~1% bandwidth centered on 1.158 μ m and 1.702 μ m) chosen such that they selectively probe the atmosphere above the tropopause. The feature was spatially unresolved in latitude and extended over all visible longitudes. From measurements of a star, the AO system achieved a spatial resolution at 1.158 μ m of 0.032'', or 190 km on Titan. Further, we observed a broad haze band extending over approximately 60o of latitude centered slightly south of Titan's equator. This feature is apparent in near-infrared AO images from October 1999. Mid-infrared LWS images from September and November 1999 with a resolution of ~0.2'' show structure across the disk of Titan, and we compare these with models of haze thermal emission in order to determine the haze distribution. HGR is funded by a NASA-GSRP fellowship. This research was supported in part by the STC Program of the National Science Foundation under Agreement No. AST-9876783, and in part under the auspices of the US Department of Energy at Lawrence Livermore National Laboratory, Univ. of Calif. under contract No. W-7405-Eng-48.

  13. Hot-electron production and suprathermal heat flux scaling with laser intensity from the two-plasmon-decay instability

    SciTech Connect

    Vu, H. X.; DuBois, D. F.; Myatt, J. F.; Russell, D. A.

    2012-10-15

    The fully kinetic reduced-description particle-in-cell (RPIC) method has been applied to simulations of two-plasmon-decay (TPD) instability, driven by crossed laser beams, in an inhomogeneous plasma for parameters consistent with recent direct-drive experiments related to laser-driven inertial fusion. The nonlinear saturated state is characterized by very spiky electric fields, with Langmuir cavitation occurring preferentially inside density channels produced by the ponderomotive beating of the crossed laser beams and the primary TPD Langmuir waves (LWs). The heated electron distribution function is, in all cases, bi-Maxwellian, with instantaneous hot-electron temperatures in the range 60-100 keV. The net hot-electron energy flux out of the system is a small fraction ({approx}1% to 2%) of the input laser intensity in these simulations. Scalings of the hot-electron temperature and suprathermal heat flux as functions of the laser intensity are obtained numerically from RPIC simulations. These simulations lead to the preliminary conclusion that Langmuir cavitation and collapse provide dissipation by producing suprathermal electrons, which stabilize the system in saturation and drive the LW spectrum to the small dissipation scales at the Landau cutoff. The Langmuir turbulence originates at an electron density 0.241 Multiplication-Sign the laser's critical density, where the crossed laser beams excite a 'triad' mode-a common forward LW plus a pair of backward LWs. Remnants of this 'triad' evolve in k-space and dominate the time-averaged energy spectrum. At times exceeding 10 ps, the excited Langmuir turbulence spreads toward lower densities. Comparisons of RPIC simulations with the extended Zakharov model are presented in appropriate regimes, and the necessary requirements for the validity of a quasi-linear Zakharov model (where the spatially averaged electron-velocity distribution is evolved) are verified by RPIC simulation results.

  14. ISO spectroscopic observations of short-period comets

    NASA Astrophysics Data System (ADS)

    Crovisier, J.; Encrenaz, Th.; Lellouch, E.; Bockelée-Morvan, D.; Altieri, B.; Leech, K.; Salama, A.; Griffin, M. J.; de Graauw, Th.; van Dishoeck, E. F.; Knacke, R.; Brooke, T. Y.

    1999-03-01

    Two Infrared Space Observatory programmes (guaranteed time and open time) were devoted to high-resolution spectroscopic observations of short-period comets. 22P/Kopff was observed on October-December 1996 with SWS and LWS. Due to the weakness of the object, only the ν3 ro-vibrational lines of water were detected, with SWS. Comet 103P/Hartley 2 was observed close to its perihelion (at 1.04 AU from Sun and 0.82 AU from Earth) on January 1998 with SWS, LWS and CAM. The bands of H2O and CO2 at 2.7 and 4.3 μm are detected, with [CO2]/[H2O] = 10 %. The 2.7 μm band of H2O is observed with a high signal-to-noise ratio with SWS, which permits to evaluate the rotational temperature of water to 16-20 K and its ortho-to-para ratio to ~ 2.7, corresponding to a spin temperature of ~ 35 K. The 5-17 μm spectrum of comet Hartley 2 observed with CAM-CVF shows the 9-12 μm signature of silicates. Silicate emission around 10 μm is present at a level of about 20 % of the continuum, with a peak at 11.3 μm indicative of crystalline silicates. This is the first time crystalline silicates are found in a short-period comet. The ISO observations of the Jupiter-family comet P/Hartley 2, presumably originating from the Edgeworth-Kuiper belt, are compared to those of comet Hale-Bopp which came from the Oort cloud.

  15. 90 GHz AND 150 GHz OBSERVATIONS OF THE ORION M42 REGION. A SUBMILLIMETER TO RADIO ANALYSIS

    SciTech Connect

    Dicker, S. R.; Korngut, P. M.; Devlin, M. J.; Mason, B. S.; Cotton, W. D.; Compiegne, M.; Martin, P. G.; Ade, P. A. R; Tucker, C.; Benford, D. J.; Staguhn, J. G.; Irwin, K. D.; Maddalena, R. J.; McMullin, J. P.; Shepherd, D.S.; Sievers, A.

    2009-11-01

    We have used the new 90 GHz MUSTANG camera on the Robert C. Byrd Green Bank Telescope (GBT) to map the bright Huygens region of the star-forming region M42 with a resolution of 9'' and a sensitivity of 2.8 mJy beam{sup -1}. Ninety GHz is an interesting transition frequency, as MUSTANG detects both the free-free emission characteristic of the H II region created by the Trapezium stars, normally seen at lower frequencies, and thermal dust emission from the background OMC1 molecular cloud, normally mapped at higher frequencies. We also present similar data from the 150 GHz GISMO camera taken on the IRAM 30 m telescope. This map has 15'' resolution. By combining the MUSTANG data with 1.4, 8, and 21 GHz radio data from the VLA and GBT, we derive a new estimate of the emission measure averaged electron temperature of T{sub e} = 11376 +- 1050 K by an original method relating free-free emission intensities at optically thin and optically thick frequencies. Combining Infrared Space Observatory-long wavelength spectrometer (ISO-LWS) data with our data, we derive a new estimate of the dust temperature and spectral emissivity index within the 80'' ISO-LWS beam toward Orion KL/BN, T{sub d} = 42 +- 3 K and beta {sub d} = 1.3 +- 0.1. We show that both T{sub d} and beta {sub d} decrease when going from the H II region and excited OMC1 interface to the denser UV shielded part of OMC1 (Orion KL/BN, Orion S). With a model consisting of only free-free and thermal dust emission, we are able to fit data taken at frequencies from 1.5 GHz to 854 GHz (350 mum).

  16. Sensory genes identification with head transcriptome of the migratory armyworm, Mythimna separata

    PubMed Central

    Liu, Zhenxing; Wang, Xiaoyun; Lei, Chaoliang; Zhu, Fen

    2017-01-01

    Sensory system plays important roles in a wide array of insect’s behavior and physiological events, including the host landing and locating, feeding, flying, sex responding, mating and oviposition which happen independently and in sequence. The armyworm Mythimna separata (Lepidoptera: Noctuidae) of migratory insect is destructive for alimentarn crop and economic crop throughout the world. Here we present the high throughput sequencing of the head transcriptome and identify members of the major sensory genes which are crucial for armyworm’s success worldwide, including 8 opsins, 22 chemosensory proteins, 50 odorant binding proteins, 60 odorant receptors, 8 gustatory receptors, 24 ionotropic receptors, and 2 sensory neuron membrane proteins. It is worth noting that a duplication of the LW opsin gene exists in this insect. Several genes were clustered with functionally validated genes, such as Co-receptors of OR and IR, PBPs, PRs, CO2 GRs, bitter GRs and sweet GRs, were also identified. The transcriptome gene library provided the basis for further studies that elucidate the fundamental molecular mechanism of biology and control in M. separata. Our research exhibits the first comprehensive catalogue of the sensory genes fundamental for success and distribution in M. separata, which are potential novel targets for pest control strategies. PMID:28387246

  17. Photoreceptor types and distributions in the retinae of insectivores.

    PubMed

    Peichl, L; Künzle, H; Vogel, P

    2000-01-01

    The retinae of insectivores have been rarely studied, and their photoreceptor arrangements and expression patterns of visual pigments are largely unknown. We have determined the presence and distribution of cones in three species of shrews (common shrew Sorex araneus, greater white-toothed shrew Crocidura russula, dark forest shrew Crocidura poensis; Soricidae) and in the lesser hedgehog tenrec Echinops telfairi (Tenrecidae). Special cone types were identified and quantified in flattened whole retinae by antisera/antibodies recognizing the middle-to-long-wavelength-sensitive (M/L-)cone opsin and the short-wavelength-sensitive (S-)cone opsin, respectively. A combination of immunocytochemistry with conventional histology was used to assess rod densities and cone/rod ratios. In all four species the rods dominate at densities of about 230,000-260,000/mm2. M/L- and S-cones are present, comprising between 2% of the photoreceptors in the nocturnal Echinops telfairi and 13% in Sorex araneus that has equal diurnal and nocturnal activity phases. This suggests dichromatic color vision like in many other mammals. A striking feature in all four species are dramatically higher S-cone proportions in ventral than in dorsal retina (0.5% vs. 2.5-12% in Sorex, 5-15% vs. 30-45% in Crocidura poensis, 3-12% vs. 20-50% in Crocidura russula, 10-30% vs. 40-70% in Echinops). The functional and comparative aspects of these structural findings are discussed.

  18. Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter.

    PubMed

    Levenson, David H; Ponganis, Paul J; Crognale, Michael A; Deegan, Jess F; Dizon, Andy; Jacobs, Gerald H

    2006-08-01

    Rod and cone visual pigments of 11 marine carnivores were evaluated. Rod, middle/long-wavelength sensitive (M/L) cone, and short-wavelength sensitive (S) cone opsin (if present) sequences were obtained from retinal mRNA. Spectral sensitivity was inferred through evaluation of known spectral tuning residues. The rod pigments of all but one of the pinnipeds were similar to those of the sea otter, polar bear, and most other terrestrial carnivores with spectral peak sensitivities (lambda(max)) of 499 or 501 nm. Similarly, the M/L cone pigments of the pinnipeds, polar bear, and otter had inferred lambda(max) of 545 to 560 nm. Only the rod opsin sequence of the elephant seal had sensitivity characteristic of adaptation for vision in the marine environment, with an inferred lambda(max) of 487 nm. No evidence of S cones was found for any of the pinnipeds. The polar bear and otter had S cones with inferred lambda(max) of approximately 440 nm. Flicker-photometric ERG was additionally used to examine the in situ sensitivities of three species of pinniped. Despite the use of conditions previously shown to evoke cone responses in other mammals, no cone responses could be elicited from any of these pinnipeds. Rod photoreceptor responses for all three species were as predicted by the genetic data.

  19. The optogenetic (r)evolution.

    PubMed

    Rein, Martin L; Deussing, Jan M

    2012-02-01

    Optogenetics is a rapidly evolving field of technology that allows optical control of genetically targeted biological systems at high temporal and spatial resolution. By heterologous expression of light-sensitive microbial membrane proteins, opsins, cell type-specific depolarization or silencing can be optically induced on a millisecond time scale. What started in a petri dish is applicable today to more complex systems, ranging from the dissection of brain circuitries in vitro to behavioral analyses in freely moving animals. Persistent technical improvement has focused on the identification of new opsins, suitable for optogenetic purposes and genetic engineering of existing ones. Optical stimulation can be combined with various readouts defined by the desired resolution of the experimental setup. Although recent developments in optogenetics have largely focused on neuroscience it has lately been extended to other targets, including stem cell research and regenerative medicine. Further development of optogenetic approaches will not only highly increase our insight into health and disease states but might also pave the way for a future use in therapeutic applications.

  20. Electrophysiological study of Drosophila rhodopsin mutants

    PubMed Central

    1986-01-01

    Electrophysiological investigations were carried out on several independently isolated mutants of the ninaE gene, which encodes opsin in R1-6 photoreceptors, and a mutant of the ninaD gene, which is probably important in the formation of the rhodopsin chromophore. In these mutants, the rhodopsin content in R1-6 photoreceptors is reduced by 10(2)-10(6)-fold. Light-induced bumps recorded from even the most severely affected mutants are physiologically normal. Moreover, a detailed noise analysis shows that photoreceptor responses of both a ninaE mutant and a ninaD mutant follow the adapting bump model. Since any extensive rhodopsin-rhodopsin interactions are not likely in these mutants, the above results suggest that such interactions are not needed for the generation and adaptation of light-induced bumps. Mutant bumps are strikingly larger in amplitude than wild-type bumps. This difference is observed both in ninaD and ninaE mutants, which suggests that it is due to severe depletion of rhodopsin content, rather than to any specific alterations in the opsin protein. Lowering or buffering the intracellular calcium concentration by EGTA injection mimics the effects of the mutations on the bump amplitude, but, unlike the mutations, it also affects the latency and kinetics of light responses. PMID:3097245

  1. Gene therapy rescues cone function in congenital achromatopsia

    PubMed Central

    Komáromy, András M.; Alexander, John J.; Rowlan, Jessica S.; Garcia, Monique M.; Chiodo, Vince A.; Kaya, Asli; Tanaka, Jacqueline C.; Acland, Gregory M.; Hauswirth, William W.; Aguirre, Gustavo D.

    2010-01-01

    The successful restoration of visual function with recombinant adeno-associated virus (rAAV)-mediated gene replacement therapy in animals and humans with an inherited disease of the retinal pigment epithelium has ushered in a new era of retinal therapeutics. For many retinal disorders, however, targeting of therapeutic vectors to mutant rods and/or cones will be required. In this study, the primary cone photoreceptor disorder achromatopsia served as the ideal translational model to develop gene therapy directed to cone photoreceptors. We demonstrate that rAAV-mediated gene replacement therapy with different forms of the human red cone opsin promoter led to the restoration of cone function and day vision in two canine models of CNGB3 achromatopsia, a neuronal channelopathy that is the most common form of achromatopsia in man. The robustness and stability of the observed treatment effect was mutation independent, but promoter and age dependent. Subretinal administration of rAAV5–hCNGB3 with a long version of the red cone opsin promoter in younger animals led to a stable therapeutic effect for at least 33 months. Our results hold promise for future clinical trials of cone-directed gene therapy in achromatopsia and other cone-specific disorders. PMID:20378608

  2. Analysis of Conserved Glutamate and Aspartate Residues in Drosophila Rhodopsin 1 and Their Influence on Spectral Tuning.

    PubMed

    Zheng, Lijun; Farrell, David M; Fulton, Ruth M; Bagg, Eve E; Salcedo, Ernesto; Manino, Meridee; Britt, Steven G

    2015-09-04

    The molecular mechanisms that regulate invertebrate visual pigment absorption are poorly understood. Studies of amphioxus Go-opsin have demonstrated that Glu-181 functions as the counterion in this pigment. This finding has led to the proposal that Glu-181 may function as the counterion in other invertebrate visual pigments as well. Here we describe a series of mutagenesis experiments to test this hypothesis and to also test whether other conserved acidic amino acids in Drosophila Rhodopsin 1 (Rh1) may serve as the counterion of this visual pigment. Of the 5 Glu and Asp residues replaced by Gln or Asn in our experiments, none of the mutant pigments shift the absorption of Rh1 by more than 6 nm. In combination with prior studies, these results suggest that the counterion in Drosophila Rh1 may not be located at Glu-181 as in amphioxus, or at Glu-113 as in bovine rhodopsin. Conversely, the extremely low steady state levels of the E194Q mutant pigment (bovine opsin site Glu-181), and the rhabdomere degeneration observed in flies expressing this mutant demonstrate that a negatively charged residue at this position is essential for normal rhodopsin function in vivo. This work also raises the possibility that another residue or physiologic anion may compensate for the missing counterion in the E194Q mutant.

  3. Light-dependent activation of G proteins by two isoforms of chicken melanopsins.

    PubMed

    Torii, Masaki; Kojima, Daisuke; Nishimura, Akiyuki; Itoh, Hiroshi; Fukada, Yoshitaka

    2015-11-01

    In the chicken pineal gland, light stimuli trigger signaling pathways mediated by two different subtypes, Gt and G11. These G proteins may be activated by any of the three major pineal opsins, pinopsin, OPN4-1 and OPN4-2, but biochemical evidence for the coupling has been missing except for functional coupling between pinopsin and Gt. Here we investigated the relative expression levels and the functional difference among the three pineal opsins. In the chicken pineal gland, the pinopsin mRNA level was significantly more abundant than the others, of which the OPN4-2 mRNA level was higher than that of OPN4-1. In G protein activation assays, Gt was strongly activated by pinopsin in a light-dependent manner, being consistent with previous studies, and weakly activated by OPN4-2. Unexpectedly, illuminated OPN4-2 more efficiently activated G protein(s) that was endogenously expressed in HEK293T cells in culture. On the other hand, Gq, the closest analogue of G11, was activated only by OPN4-1 although the activity was relatively weak under these conditions. These results suggest that OPN4-1 and OPN4-2 couple with Gq and Gt, respectively. Two melanopsins, OPN4-1 and OPN4-2, appear to have acquired mutually different functions through the evolution.

  4. Novel functions for Period 3 and Exo-rhodopsin in rhythmic transcription and melatonin biosynthesis within the zebrafish pineal organ.

    PubMed

    Pierce, Lain X; Noche, Ramil R; Ponomareva, Olga; Chang, Christopher; Liang, Jennifer O

    2008-08-05

    Entrainment of circadian clocks to environmental cues such as photoperiod ensures that daily biological rhythms stay in synchronization with the Earth's rotation. The vertebrate pineal organ has a conserved role in circadian regulation as the primary source of the nocturnal hormone melatonin. In lower vertebrates, the pineal has an endogenous circadian clock as well as photoreceptive cells that regulate this clock. The zebrafish opsin protein Exo-rhodopsin (Exorh) is expressed in pineal photoreceptors and is a candidate to mediate the effects of environmental light on pineal rhythms and melatonin synthesis. We demonstrate that Exorh has an important role in regulating gene transcription within the pineal. In developing embryos that lack Exorh, expression of the exorh gene itself and of the melatonin synthesis gene serotonin N-acetyl transferase 2 (aanat2) are significantly reduced. This suggests that the Exorh protein at the cell membrane is part of a signaling pathway that positively regulates transcription of these genes, and ultimately melatonin production, in the pineal. Like many other opsin genes, exorh is expressed with a daily rhythm: mRNA levels are higher at night than during the day. We found that the transcription factor Orthodenticle homeobox 5 (Otx5) activates exorh transcription, while the putative circadian clock component Period 3 (Per3) represses expression during the day, thereby contributing to the rhythm of transcription. This work identifies novel roles for Exorh and Per3, and gives insight into potential interactions between the sensory and circadian systems within the pineal.

  5. Two-Photon Holographic Stimulation of ReaChR

    PubMed Central

    Chaigneau, Emmanuelle; Ronzitti, Emiliano; Gajowa, Marta A.; Soler-Llavina, Gilberto J.; Tanese, Dimitrii; Brureau, Anthony Y. B.; Papagiakoumou, Eirini; Zeng, Hongkui; Emiliani, Valentina

    2016-01-01

    Optogenetics provides a unique approach to remotely manipulate brain activity with light. Reaching the degree of spatiotemporal control necessary to dissect the role of individual cells in neuronal networks, some of which reside deep in the brain, requires joint progress in opsin engineering and light sculpting methods. Here we investigate for the first time two-photon stimulation of the red-shifted opsin ReaChR. We use two-photon (2P) holographic illumination to control the activation of individually chosen neurons expressing ReaChR in acute brain slices. We demonstrated reliable action potential generation in ReaChR-expressing neurons and studied holographic 2P-evoked spiking performances depending on illumination power and pulse width using an amplified laser and a standard femtosecond Ti:Sapphire oscillator laser. These findings provide detailed knowledge of ReaChR's behavior under 2P illumination paving the way for achieving in depth remote control of multiple cells with high spatiotemporal resolution deep within scattering tissue. PMID:27803649

  6. Isolation and characterization of melanopsin and pinopsin expression within photoreceptive sites of reptiles

    NASA Astrophysics Data System (ADS)

    Frigato, Elena; Vallone, Daniela; Bertolucci, Cristiano; Foulkes, Nicholas S.

    2006-08-01

    Non-mammalian vertebrates have multiple extraocular photoreceptors, mainly localised in the pineal complex and the brain, to mediate irradiance detection. In this study, we report the full-length cDNA cloning of ruin lizard melanopsin and pinopsin. The high level of identity with opsins in both the transmembrane regions, where the chromophore binding site is located, and the intracellular loops, where the G-proteins interact, suggests that both melanopsin and pinopsin should be able to generate a stable photopigment, capable of triggering a transduction cascade mediated by G-proteins. Phylogenetic analysis showed that both opsins are located on the expected branches of the corresponding sequences of ortholog proteins. Subsequently, using RT-PCR and RPA analysis, we verified the expression of ruin lizard melanopsin and pinopsin in directly photosensitive organs, such as the lateral eye, brain, pineal gland and parietal eye. Melanopsin expression was detected in the lateral eye and all major regions of the brain. However, different from the situation in Xenopus and chicken, melanopsin is not expressed in the ruin lizard pineal. Pinopsin mRNA expression was only detected in the pineal complex. As a result of their phylogenetic position and ecology, reptiles provide the circadian field with some of the most interesting models for understanding the evolution of the vertebrate circadian timing system and its response to light. This characterization of melanopsin and pinopsin expression in the ruin lizard will be important for future studies aimed at understanding the molecular basis of circadian light detection in reptiles.

  7. Candidate genes for colour and vision exhibit signals of selection across the pied flycatcher (Ficedula hypoleuca) breeding range.

    PubMed

    Lehtonen, P K; Laaksonen, T; Artemyev, A V; Belskii, E; Berg, P R; Both, C; Buggiotti, L; Bureš, S; Burgess, M D; Bushuev, A V; Krams, I; Moreno, J; Mägi, M; Nord, A; Potti, J; Ravussin, P-A; Sirkiä, P M; Sætre, G-P; Winkel, W; Primmer, C R

    2012-04-01

    The role of natural selection in shaping adaptive trait differentiation in natural populations has long been recognized. Determining its molecular basis, however, remains a challenge. Here, we search for signals of selection in candidate genes for colour and its perception in a passerine bird. Pied flycatcher plumage varies geographically in both its structural and pigment-based properties. Both characteristics appear to be shaped by selection. A single-locus outlier test revealed 2 of 14 loci to show significantly elevated signals of divergence. The first of these, the follistatin gene, is expressed in the developing feather bud and is found in pathways with genes that determine the structure of feathers and may thus be important in generating variation in structural colouration. The second is a gene potentially underlying the ability to detect this variation: SWS1 opsin. These two loci were most differentiated in two Spanish pied flycatcher populations, which are also among the populations that have the highest UV reflectance. The follistatin and SWS1 opsin genes thus provide strong candidates for future investigations on the molecular basis of adaptively significant traits and their co-evolution.

  8. Formation and Decay of the Arrestin·Rhodopsin Complex in Native Disc Membranes*

    PubMed Central

    Beyrière, Florent; Sommer, Martha E.; Szczepek, Michal; Bartl, Franz J.; Hofmann, Klaus Peter; Heck, Martin; Ritter, Eglof

    2015-01-01

    In the G protein-coupled receptor rhodopsin, light-induced cis/trans isomerization of the retinal ligand triggers a series of distinct receptor states culminating in the active Metarhodopsin II (Meta II) state, which binds and activates the G protein transducin (Gt). Long before Meta II decays into the aporeceptor opsin and free all-trans-retinal, its signaling is quenched by receptor phosphorylation and binding of the protein arrestin-1, which blocks further access of Gt to Meta II. Although recent crystal structures of arrestin indicate how it might look in a precomplex with the phosphorylated receptor, the transition into the high affinity complex is not understood. Here we applied Fourier transform infrared spectroscopy to monitor the interaction of arrestin-1 and phosphorylated rhodopsin in native disc membranes. By isolating the unique infrared signature of arrestin binding, we directly observed the structural alterations in both reaction partners. In the high affinity complex, rhodopsin adopts a structure similar to Gt-bound Meta II. In arrestin, a modest loss of β-sheet structure indicates an increase in flexibility but is inconsistent with a large scale structural change. During Meta II decay, the arrestin-rhodopsin stoichiometry shifts from 1:1 to 1:2. Arrestin stabilizes half of the receptor population in a specific Meta II protein conformation, whereas the other half decays to inactive opsin. Altogether these results illustrate the distinct binding modes used by arrestin to interact with different functional forms of the receptor. PMID:25847250

  9. Pathogenesis of progressive rod-cone degeneration in miniature poodles

    SciTech Connect

    Aguirre, G.; Alligood, J.; O'Brien, P.; Buyukmihci, N.

    1982-11-01

    Visual cell pathologic changes and outer segment renewal were investigated in miniature poodles with progressive rod-cone degeneration. Early in this disease, visual cells in the posterior pole and equatorial regions show outer segment lamellar disorientation and vesicular profiles. Visual cells are normal in the periphery. Outer segment renewal determined after intravitreal injection of /sup 3/H-leucine was abnormally slower in affected animals than in controls. This renewal abnormality was similar in structurally normal and diseased photoreceptors, suggesting that the renewal defect is the earliest recognizable abnormality in the disease. The pigment epithelium was normal; the presence and density of pigment did not appear to affect the extent and severity of the disease or modify the abnormal renewal rate. As the disease progressed, photoreceptor outer segments were lost, and the remaining diminutive photoreceptors accumulated label in the inner segment and perinuclear zones. Sodium dodecyl sulfate gel electrophoresis of crude rod outer segment preparations showed no differences in opsin synthesis between normal and affected retinas early in the disease, but opsin synthesis decreased in the late stage of the disease.

  10. Exorhodopsin and melanopsin systems in the pineal complex and brain at early developmental stages of Atlantic halibut (Hippoglossus hippoglossus).

    PubMed

    Eilertsen, Mariann; Drivenes, Oyvind; Edvardsen, Rolf B; Bradley, Clarrisa A; Ebbesson, Lars O E; Helvik, Jon Vidar

    2014-12-15

    The complexity of the nonvisual photoreception systems in teleosts has just started to be appreciated, with colocalization of multiple photoreceptor types with unresolved functions. Here we describe an intricate expression pattern of melanopsins in early life stages of the marine flat fish Atlantic halibut (Hippoglossus hippoglossus), a period when the unpigmented brain is directly exposed to environmental photons. We show a refined and extensive expression of melanopsins in the halibut brain already at the time of hatching, long before the eyes are functional. We detect melanopsin in the habenula, suprachiasmatic nucleus, dorsal thalamus, and lateral tubular nucleus of first feeding larvae, suggesting conserved functions of the melanopsins in marine teleosts. The complex expression of melanopsins already at larval stages indicates the importance of nonvisual photoreception early in development. Most strikingly, we detect expression of both exorhodopsin and melanopsin in the pineal complex of halibut larvae. Double-fluorescence labeling showed that two clusters of melanopsin-positive cells are located lateral to the central rosette of exorhodopsin-positive cells. The localization of different photopigments in the pineal complex suggests that two parallel photoreceptor systems may be active. Furthermore, the dispersed melanopsin-positive cells in the spinal cord of halibut larvae at the time of hatching may be primary sensory cells or interneurons representing the first example of dispersed high-order photoreceptor cells. The appearance of nonvisual opsins early in the development of halibut provides an alternative model for studying the evolution and functional significance of nonvisual opsins.

  11. In vivo Optogenetic Stimulation of the Rodent Central Nervous System

    PubMed Central

    Sidor, Michelle M.; Davidson, Thomas J.; Tye, Kay M.; Warden, Melissa R.; Diesseroth, Karl; McClung, Colleen A.

    2015-01-01

    The ability to probe defined neural circuits in awake, freely-moving animals with cell-type specificity, spatial precision, and high temporal resolution has been a long sought tool for neuroscientists in the systems-level search for the neural circuitry governing complex behavioral states. Optogenetics is a cutting-edge tool that is revolutionizing the field of neuroscience and represents one of the first systematic approaches to enable causal testing regarding the relation between neural signaling events and behavior. By combining optical and genetic approaches, neural signaling can be bi-directionally controlled through expression of light-sensitive ion channels (opsins) in mammalian cells. The current protocol describes delivery of specific wavelengths of light to opsin-expressing cells in deep brain structures of awake, freely-moving rodents for neural circuit modulation. Theoretical principles of light transmission as an experimental consideration are discussed in the context of performing in vivo optogenetic stimulation. The protocol details the design and construction of both simple and complex laser configurations and describes tethering strategies to permit simultaneous stimulation of multiple animals for high-throughput behavioral testing. PMID:25651158

  12. Archaebacterial rhodopsin sequences: Implications for evolution

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1991-01-01

    It was proposed over 10 years ago that the archaebacteria represent a separate kingdom which diverged very early from the eubacteria and eukaryotes. It follows that investigations of archaebacterial characteristics might reveal features of early evolution. So far, two genes, one for bacteriorhodopsin and another for halorhodopsin, both from Halobacterium halobium, have been sequenced. We cloned and sequenced the gene coding for the polypeptide of another one of these rhodopsins, a halorhodopsin in Natronobacterium pharaonis. Peptide sequencing of cyanogen bromide fragments, and immuno-reactions of the protein and synthetic peptides derived from the C-terminal gene sequence, confirmed that the open reading frame was the structural gene for the pharaonis halorhodopsin polypeptide. The flanking DNA sequences of this gene, as well as those of other bacterial rhodopsins, were compared to previously proposed archaebacterial consensus sequences. In pairwise comparisons of the open reading frame with DNA sequences for bacterio-opsin and halo-opsin from Halobacterium halobium, silent divergences were calculated. These indicate very considerable evolutionary distance between each pair of genes, even in the dame organism. In spite of this, three protein sequences show extensive similarities, indicating strong selective pressures.

  13. Gene therapy rescues cone function in congenital achromatopsia.

    PubMed

    Komáromy, András M; Alexander, John J; Rowlan, Jessica S; Garcia, Monique M; Chiodo, Vince A; Kaya, Asli; Tanaka, Jacqueline C; Acland, Gregory M; Hauswirth, William W; Aguirre, Gustavo D

    2010-07-01

    The successful restoration of visual function with recombinant adeno-associated virus (rAAV)-mediated gene replacement therapy in animals and humans with an inherited disease of the retinal pigment epithelium has ushered in a new era of retinal therapeutics. For many retinal disorders, however, targeting of therapeutic vectors to mutant rods and/or cones will be required. In this study, the primary cone photoreceptor disorder achromatopsia served as the ideal translational model to develop gene therapy directed to cone photoreceptors. We demonstrate that rAAV-mediated gene replacement therapy with different forms of the human red cone opsin promoter led to the restoration of cone function and day vision in two canine models of CNGB3 achromatopsia, a neuronal channelopathy that is the most common form of achromatopsia in man. The robustness and stability of the observed treatment effect was mutation independent, but promoter and age dependent. Subretinal administration of rAAV5-hCNGB3 with a long version of the red cone opsin promoter in younger animals led to a stable therapeutic effect for at least 33 months. Our results hold promise for future clinical trials of cone-directed gene therapy in achromatopsia and other cone-specific disorders.

  14. Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area.

    PubMed

    Stalleicken, Julia; Labhart, Thomas; Mouritsen, Henrik

    2006-03-01

    The spectral, angular and polarization sensitivities of photoreceptors in the compound eye of the monarch butterfly (Danaus plexippus) are examined using electrophysiological methods. Intracellular recordings reveal a spectrally homogenous population of UV receptors with optical axes directed upwards and >or=10 degrees to the contralateral side. Based on optical considerations and on the opsin expression pattern (Sauman et al. 2005), we conclude that these UV receptors belong to the anatomically specialized dorsal rim area (DRA) of the eye. Photoreceptors in the main retina with optical axes <10 degrees contralateral or ipsilateral have maximal sensitivities in the UV (lambda(max)opsin expression patterns described in these eye regions. The data are discussed in the light of present knowledge about polarized skylight navigation in Lepidopterans.

  15. Docosahexaenoic acid phospholipid differentially modulates the conformation of G90V and N55K rhodopsin mutants associated with retinitis pigmentosa.

    PubMed

    Dong, Xiaoyun; Herrera-Hernández, María Guadalupe; Ramon, Eva; Garriga, Pere

    2017-05-01

    Rhodopsin is the visual photoreceptor of the retinal rod cells that mediates dim light vision and a prototypical member of the G protein-coupled receptor superfamily. The structural stability and functional performance of rhodopsin are modulated by membrane lipids. Docosahexaenoic acid has been shown to interact with native rhodopsin but no direct evidence has been established on the effect of such lipid on the stability and regeneration of rhodopsin mutants associated with retinal diseases. The stability and regeneration of two thermosensitive mutants G90V and N55K, associated with the retinal degenerative disease retinitis pigmentosa, have been analyzed in docosohexaenoic phospholipid (1,2-didocosa-hexaenoyl-sn-glycero-3-phosphocholine; DDHA-PC) liposomes. G90V mutant reconstituted in DDHA-PC liposomes significantly increased its thermal stability, but N55K mutant showed similar thermal sensitivity both in dodecyl maltoside detergent solution and in DDHA-PC liposomes. The retinal release process, measured by fluorescence spectroscopy, became faster in the lipid system for the two mutants. The opsin conformation was stabilized for the G90V mutant allowing improved retinal uptake whereas no chromophore binding could be detected for N55K opsin after photoactivation. The results emphasize the distinct role of DHA on different phenotypic rhodopsin mutations associated with classical (G90V) and sector (N55K) retinitis pigmentosa.

  16. Genetic evidence for the ancestral loss of short-wavelength-sensitive cone pigments in mysticete and odontocete cetaceans.

    PubMed Central

    Levenson, D H; Dizon, A

    2003-01-01

    All mammals ancestrally possessed two types of cone pigments, an arrangement that persists in nearly all contemporary species. However, the absence of one of these cone types, the short-wavelength-sensitive (SWS) cone, has recently been established in several delphinoid cetacean species, indicating that the loss of this pigment type may be widespread among cetaceans. To evaluate the functional condition of SWS cones in cetaceans, partial SWS cone-opsin gene sequences were obtained from nuclear DNA for 16 species representing 12 out of the 14 extant mysticete (baleen) and odontocete (toothed) families. For all these species one or more mutations were identified that indicate that their SWS cone-opsin genes are pseudogenes and thus do not code for functional visual pigment proteins. Parsimonious interpretation of the distribution of some of these mis-sense mutations indicates that the conversion of cetacean SWS coneopsin genes to pseudogenes probably occurred before the divergences of the mysticete and odontocete suborders. Thus, in the absence of dramatic homoplasy, all modern cetaceans lack functional SWS cone visual pigments and, by extension, the visual capacities that such pigments typically support. PMID:12713740

  17. Kinetics of slow thermal reactions during the bleaching of rhodopsin in the perfused frog retina

    PubMed Central

    Baumann, C.

    1972-01-01

    1. Slow thermal reactions occurring in the rhodopsin rods of flash-irradiated frog retinas were investigated spectrophotometrically. 2. Five substances were identified as reactants: metarhodopsin II, metarhodopsin III, all-trans-retinal, opsin, and all-trans-retinol. 3. Quantitative analysis showed that the transition between these substances are not a series of three consecutive reactions. 4. An alternative scheme, compatible with the results, consisted of four reactions and involved two parallel pathways for the decay of metarhodopsin II, viz. conversion into metarhodopsin III, and hydrolysis into retinal and opsin. 5. The first-order rate constants for the four reactions were as follows: 1·4 × 10-2 sec-1 for the conversion of metarhodopsin II into metarhodopsin III; 7·9 × 10-3 sec-1 for the hydrolysis of metarhodopsin II; 1·4 × 10-3 sec-1 for the hydrolysis of metarhodopsin III; and 2·6 × 10-3 sec-1 for the reduction of retinal into retinol (21° C). 6. Two other four-parameter schemes involving an equilibrium between metarhodopsin II and metarhodopsin III were also considered. One was found to be incompatible with the results. The other, though adequate, did not describe the data as well as the model summarized in 4 and 5. It also had the peculiar property of requiring that two apparently independent parameters be equated. PMID:4537508

  18. Illuminating the Undergraduate Behavioral Neuroscience Laboratory: A Guide for the in vivo Application of Optogenetics in Mammalian Model Organisms.

    PubMed

    Roberts, Bradley M; Jarrin, Sarah E; Mathur, Brian N; Bailey, Aileen M

    2016-01-01

    Optogenetics is a technology that is growing rapidly in neuroscience, establishing itself as a fundamental investigative tool. As this tool is increasingly utilized across the neuroscience community and is one of the primary research techniques being presented at neuroscience conferences and in journals, we believe that it is important that this technology is introduced into the undergraduate neuroscience research laboratory. While there has been a significant body of work concentrated to deploy optogenetics in invertebrate model organisms, little to no work has focused on brining this technology to mammalian model organisms in undergraduate neuroscience laboratories. The establishment of in vivo optogenetics could provide for high-impact independent research projects for upper-level undergraduate students. Here we review the considerations for establishing in vivo optogenetics with the use of rodents in an undergraduate laboratory setting and provide some cost-saving guidelines to assist in making optogenetic technologies financially accessible. We discuss opsin selection, cell-specific opsin expression strategies, species selection, experimental design, selection of light delivery systems, and the construction of implantable optical fibers for the application of in vivo optogenetics in rodents.

  19. Photoreceptors in the dark: A functional white collar-like complex and other putative light-sensing components encoded by the genome of the subterranean fungus Tuber melanosporum.

    PubMed

    Gerace, Raffaele; Montanini, Barbara; Proietto, Marco; Levati, Elisabetta; De Luca, Cristina; Brenna, Andrea; Filetici, Patrizia; Kohler, Annegret; Ottonello, Simone; Ballario, Paola

    2017-03-01

    Light is perceived and transduced by fungi, where it modulates processes as diverse as growth and morphogenesis, sexual development and secondary metabolism. A special case in point is that of fungi with a subterranean, light-shielded habitat such as Tuber spp. Using as reference the genome sequence of the black truffle Tuber melanosporum, we used bioinformatic prediction tools and expression data to gain insight on the photoreceptor systems of this hypogeous ectomycorrhizal fungus. These include a chromophore-less opsin, a putative red-light-sensing phytochrome not expressed at detectable levels in any of the examined lifecycle stages, and a nearly canonical two-component (WC-1/WC-2) photoreceptor system similar to the Neurospora white collar complex (WCC). Multiple evidence, including expression at relatively high levels in all lifecycle stages except for fruiting-bodies and the results of heterologous functional complementation experiments conducted in Neurospora, suggests that the Tuber WCC is likely functional and capable of responding to blue-light. The other putative T. melanosporum photoreceptor components, especially the chromophore-less opsin and the likely non-functional phytochrome, may instead represent signatures of adaptation to a hypogeous (light-shielded) lifestyle.

  20. Melanopsin and the Non-visual Photochemistry in the Inner Retina of Vertebrates.

    PubMed

    Díaz, Nicolás M; Morera, Luis P; Guido, Mario E

    2016-01-01

    Melanopsin (Opn4), a member of the G-protein-coupled receptor family, is a vitamin A-based opsin in the vertebrate retina that has been shown to be involved in the synchronization of circadian rhythms, pupillary light reflexes, melatonin suppression and other light-regulated tasks. In nonmammalian vertebrates there are two Opn4 genes, Opn4m and Opn4x, the mammalian and Xenopus orthologs respectively. Opn4x is only expressed in nonmammalian vertebrates including reptiles, fish and birds, while Opn4m is found in a subset of retinal ganglion cells (RGCs), the intrinsically photosensitive (ip) RGCs of the inner retina of both mammals and nonmammalian vertebrates. All opsins described utilize retinaldehyde as chromophore, photoisomerized from 11-cis- to all-trans-retinal upon light exposure. Visual retinal photoreceptor cones and rods, responsible for day and night vision respectively, recycle retinoids through a process called the visual cycle that involves the retinal pigment epithelium or glial Müller cells. Although Opn4 has been characterized as a bistable photopigment, little is known about the mechanism/s involved in its chromophore regeneration. In this review, we will attempt to shed light on the visual cycle taking place in the inner retina and discuss the state of the art in the nonvisual photochemistry of vertebrates.

  1. Evolution and the origin of the visual retinoid cycle in vertebrates.

    PubMed

    Kusakabe, Takehiro G; Takimoto, Noriko; Jin, Minghao; Tsuda, Motoyuki

    2009-10-12

    Absorption of a photon by visual pigments induces isomerization of 11-cis-retinaldehyde (RAL) chromophore to all-trans-RAL. Since the opsins lacking 11-cis-RAL lose light sensitivity, sustained vision requires continuous regeneration of 11-cis-RAL via the process called 'visual cycle'. Protostomes and vertebrates use essentially different machinery of visual pigment regeneration, and the origin and early evolution of the vertebrate visual cycle is an unsolved mystery. Here we compare visual retinoid cycles between different photoreceptors of vertebrates, including rods, cones and non-visual photoreceptors, as well as between vertebrates and invertebrates. The visual cycle systems in ascidians, the closest living relatives of vertebrates, show an intermediate state between vertebrates and non-chordate invertebrates. The ascidian larva may use retinochrome-like opsin as the major isomerase. The entire process of the visual cycle can occur inside the photoreceptor cells with distinct subcellular compartmentalization, although the visual cycle components are also present in surrounding non-photoreceptor cells. The adult ascidian probably uses RPE65 isomerase, and trans-to-cis isomerization may occur in distinct cellular compartments, which is similar to the vertebrate situation. The complete transition to the sophisticated retinoid cycle of vertebrates may have required acquisition of new genes, such as interphotoreceptor retinoid-binding protein, and functional evolution of the visual cycle genes.

  2. Hybridization leads to sensory repertoire expansion in a gynogenetic fish, the Amazon molly (poecilia formosa): a test of the hybrid-sensory expansion hypothesis.

    PubMed

    Sandkam, Benjamin A; Joy, Jeffrey B; Watson, Corey T; Gonzalez-Bendiksen, Pablo; Gabor, Caitlin R; Breden, Felix

    2013-01-01

    Expansions in sensory systems usually require processes such as gene duplication and divergence, and thus evolve slowly. We evaluate a novel mechanism leading to rapid sensory repertoire expansion: hybrid-sensory expansion (HSE). HSE occurs when two species with differently tuned sensory systems form a hybrid, bringing together alleles from each of the parental species. In one generation, a sensory repertoire is created that is the sum of the variance between parental species. The Amazon molly presents a unique opportunity to test the HSE hypothesis in a "frozen" hybrid. We compared opsin sequences of the Amazon molly, Poecilia formosa, to those of the parental species. Both parental species are homozygous at the RH2-1 locus and each of the four long wavelength sensitive loci, while P. formosa possess two different alleles at these loci; one matching each parental allele. Gene expression analysis showed P. formosa use the expanded opsin repertoire that was the result of HSE. Additionally, behavioral tests revealed P. formosa respond to colored stimuli in a manner similar or intermediate to the parental species P. mexicana and P. latipinna. Together these results strongly support the HSE hypothesis. Hybrid-sensory repertoire expansion is likely important in other hybrid species and in other sensory systems.

  3. Multiple shifts between violet and ultraviolet vision in a family of passerine birds with associated changes in plumage coloration

    PubMed Central

    Ödeen, Anders; Pruett-Jones, Stephen; Driskell, Amy C.; Armenta, Jessica K.; Håstad, Olle

    2012-01-01

    Colour vision in diurnal birds falls into two discrete classes, signified by the spectral sensitivity of the violet- (VS) or ultraviolet-sensitive (UVS) short wavelength-sensitive type 1 (SWS1) single cone. Shifts between sensitivity classes are rare; three or four are believed to have happened in the course of avian evolution, one forming UVS higher passerines. Such shifts probably affect the expression of shortwave-dominated plumage signals. We have used genomic DNA sequencing to determine VS or UVS affinity in fairy-wrens and allies, Maluridae, a large passerine family basal to the known UVS taxa. We have also spectrophotometrically analysed male plumage coloration as perceived by the VS and UVS vision systems. Contrary to any other investigated avian genus, Malurus (fairy-wrens) contains species with amino acid residues typical of either VS or UVS cone opsins. Three bowerbird species (Ptilonorhynchidae) sequenced for outgroup comparison carry VS opsin genes. Phylogenetic reconstructions render one UVS gain followed by one or more losses as the most plausible evolutionary scenario. The evolution of avian ultraviolet sensitivity is hence more complex, as a single shift no longer explains its distribution in Passeriformes. Character correlation analysis proposes that UVS vision is associated with shortwave-reflecting plumage, which is widespread in Maluridae. PMID:21976683

  4. Light-induced currents in Xenopus oocytes expressing bovine rhodopsin.

    PubMed Central

    Knox, B E; Khorana, H G; Nasi, E

    1993-01-01

    1. We have investigated the functioning of bovine rod opsin, which is efficiently synthesized from RNA made by in vitro transcription, following injection into Xenopus oocytes. We found that oocytes expressing the gene for opsin exhibit light-dependent ionic currents only after pigment generation by incubation with 11-cis-retinal. These currents are similar to the endogenous muscarinic acetylcholine (ACh) response of oocytes, but their amplitude is substantially smaller. 2. In order to optimize the conditions for obtaining light-induced currents in RNA-injected oocytes, the native ACh response was examined under several conditions. It was found that elevated external calcium markedly enhances the muscarinic response and that these currents have a non-linear dependence on membrane voltage, increasing substantially with depolarization. 3. Using the optimal conditions for evoking the largest ACh responses, (28 mM [Ca2+]o, 0 mV, omission of serum and Hepes from the media), the light-evoked currents obtained in RNA-injected oocytes were remarkably enhanced, and responses to multiple light stimuli could be obtained. 4. The light response appeared to desensitize, even after long periods of recovery and pigment regeneration. By contrast, the ACh responses continued to appear normal. These results suggest that desensitization of photoresponses expressed in Xenopus oocytes involve changes at early stages of the pathway, resulting in a reduced ability of rhodopsin to couple to the endogenous signalling system. Images Fig. 3 PMID:7692039

  5. Hearing the light: neural and perceptual encoding of optogenetic stimulation in the central auditory pathway

    PubMed Central

    Guo, Wei; Hight, Ariel E.; Chen, Jenny X.; Klapoetke, Nathan C.; Hancock, Kenneth E.; Shinn-Cunningham, Barbara G.; Boyden, Edward S.; Lee, Daniel J.; Polley, Daniel B.

    2015-01-01

    Optogenetics provides a means to dissect the organization and function of neural circuits. Optogenetics also offers the translational promise of restoring sensation, enabling movement or supplanting abnormal activity patterns in pathological brain circuits. However, the inherent sluggishness of evoked photocurrents in conventional channelrhodopsins has hampered the development of optoprostheses that adequately mimic the rate and timing of natural spike patterning. Here, we explore the feasibility and limitations of a central auditory optoprosthesis by photoactivating mouse auditory midbrain neurons that either express channelrhodopsin-2 (ChR2) or Chronos, a channelrhodopsin with ultra-fast channel kinetics. Chronos-mediated spike fidelity surpassed ChR2 and natural acoustic stimulation to support a superior code for the detection and discrimination of rapid pulse trains. Interestingly, this midbrain coding advantage did not translate to a perceptual advantage, as behavioral detection of midbrain activation was equivalent with both opsins. Auditory cortex recordings revealed that the precisely synchronized midbrain responses had been converted to a simplified rate code that was indistinguishable between opsins and less robust overall than acoustic stimulation. These findings demonstrate the temporal coding benefits that can be realized with next-generation channelrhodopsins, but also highlight the challenge of inducing variegated patterns of forebrain spiking activity that support adaptive perception and behavior. PMID:26000557

  6. Neurosensory and neuromuscular organization in tube feet of the sea urchin Strongylocentrotus purpuratus.

    PubMed

    Agca, Cavit; Elhajj, Milad C; Klein, William H; Venuti, Judith M

    2011-12-01

    Several behavioral and electrophysiological studies indicate that all classes of echinoderms, including Echinoidia, the class to which sea urchins belong, are photosensitive and exhibit complex behavioral responses to light or changes in light intensity. However, no discrete photosensitive structure has been identified in sea urchins. The purpose of this study was to provide new insights into eye evolution by determining whether distinct photosensory structures are present in adult sea urchins. Recently, we showed that the Strongylocentrotus purpuratus genome contains orthologs of many mammalian retinal genes and that these genes are expressed in tube feet, suggesting the presence of photoreceptor neurons. To determine whether this is so, we identified several features of tube feet that relate to a possible invertebrate phototransduction system. We show that rhabdomeric opsin is expressed severalfold higher within the disk region of the tube feet and is the most abundant opsin. Immunostaining identified βIII-tubulin-expressing cells at the periphery of disk in the vicinity of the synaptotagmin-expressing nerve fibers. We also showed that Pax6 expression in the disk was restricted to the periphery, where small clusters of putative sensory neurons reside. Our results reveal neuromuscular organization of the tube foot neuromuscular system. They further support earlier studies suggesting the presence of a photosensory system in tube feet.

  7. Illuminating the Undergraduate Behavioral Neuroscience Laboratory: A Guide for the in vivo Application of Optogenetics in Mammalian Model Organisms

    PubMed Central

    Roberts, Bradley M.; Jarrin, Sarah E.; Mathur, Brian N.; Bailey, Aileen M.

    2016-01-01

    Optogenetics is a technology that is growing rapidly in neuroscience, establishing itself as a fundamental investigative tool. As this tool is increasingly utilized across the neuroscience community and is one of the primary research techniques being presented at neuroscience conferences and in journals, we believe that it is important that this technology is introduced into the undergraduate neuroscience research laboratory. While there has been a significant body of work concentrated to deploy optogenetics in invertebrate model organisms, little to no work has focused on brining this technology to mammalian model organisms in undergraduate neuroscience laboratories. The establishment of in vivo optogenetics could provide for high-impact independent research projects for upper-level undergraduate students. Here we review the considerations for establishing in vivo optogenetics with the use of rodents in an undergraduate laboratory setting and provide some cost-saving guidelines to assist in making optogenetic technologies financially accessible. We discuss opsin selection, cell-specific opsin expression strategies, species selection, experimental design, selection of light delivery systems, and the construction of implantable optical fibers for the application of in vivo optogenetics in rodents. PMID:27385919

  8. The molecular genetics of red and green color vision in mammals.

    PubMed Central

    Yokoyama, S; Radlwimmer, F B

    1999-01-01

    To elucidate the molecular mechanisms of red-green color vision in mammals, we have cloned and sequenced the red and green opsin cDNAs of cat (Felis catus), horse (Equus caballus), gray squirrel (Sciurus carolinensis), white-tailed deer (Odocoileus virginianus), and guinea pig (Cavia porcellus). These opsins were expressed in COS1 cells and reconstituted with 11-cis-retinal. The purified visual pigments of the cat, horse, squirrel, deer, and guinea pig have lambdamax values at 553, 545, 532, 531, and 516 nm, respectively, which are precise to within +/-1 nm. We also regenerated the "true" red pigment of goldfish (Carassius auratus), which has a lambdamax value at 559 +/- 4 nm. Multiple linear regression analyses show that S180A, H197Y, Y277F, T285A, and A308S shift the lambdamax values of the red and green pigments in mammals toward blue by 7, 28, 7, 15, and 16 nm, respectively, and the reverse amino acid changes toward red by the same extents. The additive effects of these amino acid changes fully explain the red-green color vision in a wide range of mammalian species, goldfish, American chameleon (Anolis carolinensis), and pigeon (Columba livia). PMID:10511567

  9. Development of transgenic animals for optogenetic manipulation of mammalian nervous system function: progress and prospects for behavioral neuroscience.

    PubMed

    Ting, Jonathan T; Feng, Guoping

    2013-10-15

    Here we review the rapidly growing toolbox of transgenic mice and rats that exhibit functional expression of engineered opsins for neuronal activation and silencing with light. Collectively, these transgenic animals are enabling neuroscientists to access and manipulate the many diverse cell types in the mammalian nervous system in order to probe synaptic and circuitry connectivity, function, and dysfunction. The availability of transgenic lines affords important advantages such as stable and heritable transgene expression patterns across experimental cohorts. As such, the use of transgenic lines precludes the need for other costly and labor-intensive procedures to achieve functional transgene expression in each individual experimental animal. This represents an important consideration when large cohorts of experimental animals are desirable as in many common behavioral assays. We describe the diverse strategies that have been implemented for developing transgenic mouse and rat lines and highlight recent advances that have led to dramatic improvements in achieving functional transgene expression of engineered opsins. Furthermore, we discuss considerations and caveats associated with implementing recently developed transgenic lines for optogenetics-based experimentation. Lastly, we propose strategies that can be implemented to develop and refine the next generation of genetically modified animals for behaviorally-focused optogenetics-based applications.

  10. Cone pigments in a North American marsupial, the opossum (Didelphis virginiana).

    PubMed

    Jacobs, Gerald H; Williams, Gary A

    2010-05-01

    Only two of the four cone opsin gene families found in vertebrates are represented in contemporary eutherian and marsupial species. Recent genetic studies of two species of South American marsupial detected the presence of representatives from two of the classes of cone opsin genes and the structures of these genes predicted cone pigments with respective peaks in the ultraviolet and long-wavelength portions of the spectrum. The Virginia opossum (Didelphis virginiana), a profoundly nocturnal animal, is the only marsupial species found in North America. The prospects for cone-based vision in this species were examined through recordings of the electroretinogram (ERG), a commonly examined retinal response to photic stimulation. Recorded under flickering-light conditions that elicit signals from cone photoreceptors, the spectral sensitivity of the opossum eye is well accounted for by contributions from the presence of a single cone pigment having peak absorption at 561-562 nm. A series of additional experiments that employed various chromatic adaptation paradigms were conducted in a search for possible contributions from a second (short-wavelength sensitive) cone pigment. We found no evidence that such a mechanism contributes to the ERG in this marsupial.

  11. An Ultrastructural and Immunohistochemical Analysis of the Outer Plexiform Layer of the Retina of the European Silver Eel (Anguilla anguilla L)

    PubMed Central

    Klooster, Jan; Kamermans, Maarten

    2016-01-01

    Here we studied the ultrastructural organization of the outer retina of the European silver eel, a highly valued commercial fish species. The retina of the European eel has an organization very similar to most vertebrates. It contains both rod and cone photoreceptors. Rods are abundantly present and immunoreactive for rhodopsin. Cones are sparsely present and only show immunoreactivity for M-opsin and not for L-, S- or UV-cone opsins. As in all other vertebrate retinas, Müller cells span the width of the retina. OFF-bipolar cells express the ionotropic glutamate receptor GluR4 and ON-bipolar cells, as identified by their PKCα immunoreactivity, express the metabotropic receptor mGluR6. Both the ON- and the OFF-bipolar cell dendrites innervate the cone pedicle and rod spherule. Horizontal cells are surrounded by punctate Cx53.8 immunoreactivity indicating that the horizontal cells are strongly electrically coupled by gap-junctions. Connexin-hemichannels were found at the tips of the horizontal cell dendrites invaginating the photoreceptor synapse. Such hemichannels are implicated in the feedback pathway from horizontal cells to cones. Finally, horizontal cells are surrounded by tyrosine hydroxylase immunoreactivity, illustrating a strong dopaminergic input from interplexiform cells. PMID:27032102

  12. Bax-induced apoptosis in Leber's congenital amaurosis: a dual role in rod and cone degeneration.

    PubMed

    Hamann, Séverine; Schorderet, Daniel F; Cottet, Sandra

    2009-08-12

    Pathogenesis in the Rpe65(-/-) mouse model of Leber's congenital amaurosis (LCA) is characterized by a slow and progressive degeneration of the rod photoreceptors. On the opposite, cones degenerate rapidly at early ages. Retinal degeneration in Rpe65(-/-) mice, showing a null mutation in the gene encoding the retinal pigment epithelium 65-kDa protein (Rpe65), was previously reported to depend on continuous activation of a residual transduction cascade by unliganded opsin. However, the mechanisms of apoptotic signals triggered by abnormal phototransduction remain elusive. We previously reported that activation of a Bcl-2-dependent pathway was associated with apoptosis of rod photoreceptors in Rpe65(-/-) mice during the course of the disease. In this study we first assessed whether activation of Bcl-2-mediated apoptotic pathway was dependent on constitutive activation of the visual cascade through opsin apoprotein. We then challenged the direct role of pro-apoptotic Bax protein in triggering apoptosis of rod and cone photoreceptors.Quantitative PCR analysis showed that increased expression of pro-apoptotic Bax and decreased level of anti-apoptotic Bcl-2 were restored in Rpe65(-/-)/Gnat1(-/-) mice lacking the Gnat1 gene encoding rod transducin. Moreover, photoreceptor apoptosis was prevented as assessed by TUNEL assay. These data indicate that abnormal activity of opsin apoprotein induces retinal cell apoptosis through the Bcl-2-mediated pathway. Following immunohistological and real-time PCR analyses, we further observed that decreased expression of rod genes in Rpe65-deficient mice was rescued in Rpe65(-/-)/Bax(-/-) mice. Histological and TUNEL studies confirmed that rod cell demise and apoptosis in diseased Rpe65(-/-) mice were dependent on Bax-induced pathway. Surprisingly, early loss of cones was not prevented in Rpe65(-/-)/Bax(-/-) mice, indicating that pro-apoptotic Bax was not involved in the pathogenesis of cone cell death in Rpe65-deficient mice.This is the

  13. Two UV-Sensitive Photoreceptor Proteins, Opn5m and Opn5m2 in Ray-Finned Fish with Distinct Molecular Properties and Broad Distribution in the Retina and Brain

    PubMed Central

    Sato, Keita; Yamashita, Takahiro; Haruki, Yoshihiro; Ohuchi, Hideyo; Kinoshita, Masato; Shichida, Yoshinori

    2016-01-01

    Opn5 is a group within the opsin family of proteins that is responsible for visual and non-visual photoreception in animals. It consists of several subgroups, including Opn5m, the only subgroup containing members found in most vertebrates, including mammals. In addition, recent genomic information has revealed that some ray-finned fishes carry paralogous genes of Opn5m while other fishes have no such genes. Here, we report the molecular properties of the opsin now called Opn5m2 and its distributions in both the retina and brain. Like Opn5m, Opn5m2 exhibits UV light-sensitivity when binding to 11-cis-retinal and forms a stable active state that couples with Gi subtype of G protein. However, Opn5m2 does not bind all-trans-retinal and exhibits exclusive binding to 11-cis-retinal, whereas many bistable opsins, including fish Opn5m, can bind directly to all-trans-retinal as well as 11-cis-retinal. Because medaka fish has lost the Opn5m2 gene from its genome, we compared the tissue distribution patterns of Opn5m in medaka fish, zebrafish, and spotted gar, in addition to the distribution patterns of Opn5m2 in zebrafish and spotted gar. Opn5m expression levels showed a gradient along the dorsal–ventral axis of the retina, and preferential expression was observed in the ventral retina in the three fishes. The levels of Opn5m2 showed a similar gradient with preferential expression observed in the dorsal retina. Opn5m expression was relatively abundant in the inner region of the inner nuclear layer, while Opn5m2 was expressed in the outer edge of the inner nuclear layer. Additionally, we could detect Opn5m expression in several brain regions, including the hypothalamus, of these fish species. Opn5m2 expression could not be detected in zebrafish brain, but was clearly observed in limited brain regions of spotted gar. These results suggest that ray-finned fishes can generally utilize UV light information for non-image-forming photoreception in a wide range of cells in the

  14. Topographical characterization of cone photoreceptors and the area centralis of the canine retina

    PubMed Central

    Mowat, Freya M.; Petersen-Jones, Simon M.; Williamson, Helen; Williams, David L.; Luthert, Philip J.; Ali, Robin R.

    2008-01-01

    Purpose The canine is an important large animal model of human retinal genetic disorders. Studies of ganglion cell distribution in the canine retina have identified a visual streak of high density superior to the optic disc with a temporal area of peak density known as the area centralis. The topography of cone photoreceptors in the canine retina has not been characterized in detail, and in contrast to the macula in humans, the position of the area centralis in dogs is not apparent on clinical funduscopic examination. The purpose of this study was to define the location of the area centralis in the dog and to characterize in detail the topography of rod and cone photoreceptors within the area centralis. This will facilitate the investigation and treatment of retinal disease in the canine. Methods We used peanut agglutinin, which labels cone matrix sheaths and antibodies against long/medium wavelength (L/M)- and short wavelength (S)-cone opsins, to stain retinal cryosections and flatmounts from beagle dogs. Retinas were imaged using differential interference contrast imaging, fluorescence, and confocal microscopy. Within the area centralis, rod and cone size and density were quantified, and the proportion of cones expressing each cone opsin subtype was calculated. Using a grid pattern of sampling in 9 retinal flatmounts, we investigated the distribution of cones throughout the retina to predict the location of the area centralis. Results We identified the area centralis as the site of maximal density of rod and cone photoreceptor cells, which have a smaller inner segment cross-sectional area in this region. L/M opsin was expressed by the majority of cones in the retina, both within the area centralis and in the peripheral retina. Using the mean of cone density distribution from 9 retinas, we calculated that the area centralis is likely to be centered at a point 1.5 mm temporal and 0.6 mm superior to the optic disc. For clinical funduscopic examination, this

  15. Pharmacological Amelioration of Cone Survival and Vision in a Mouse Model for Leber Congenital Amaurosis

    PubMed Central

    Li, Songhua; Samardzija, Marijana; Yang, Zhihui; Grimm, Christian

    2016-01-01

    RPE65, an abundant membrane-associate protein in the retinal pigment epithelium (RPE), is a key retinoid isomerase of the visual cycle necessary for generating 11-cis-retinal that functions not only as a molecular switch for activating cone and rod visual pigments in response to light stimulation, but also as a chaperone for normal trafficking of cone opsins to the outer segments. Many mutations in RPE65 are associated with Leber congenital amaurosis (LCA). A R91W substitution, the most frequent LCA-associated mutation, results in a severe decrease in protein level and enzymatic activity of RPE65, causing cone opsin mislocalization and early cone degeneration in the mutation knock-in mouse model of LCA. Here we show that R91W RPE65 undergoes ubiquitination-dependent proteasomal degradation in the knock-in mouse RPE due to misfolding. The 26S proteasome non-ATPase regulatory subunit 13 mediated degradation specifically of misfolded R91W RPE65. The mutation disrupted membrane-association and colocalization of RPE65 with lecithin:retinol acyltransferase (LRAT) that provides the hydrophobic substrate for RPE65. Systemic administration of sodium 4-phenylbutyrate (PBA), a chemical chaperone, increased protein stability, enzymatic activity, membrane-association, and colocalization of R91W RPE65 with LRAT. This rescue effect increased synthesis of 11-cis-retinal and 9-cis-retinal, a functional iso-chromophore of the visual pigments, led to alleviation of S-opsin mislocalization and cone degeneration in the knock-in mice. Importantly, PBA-treatment also improved cone-mediated vision in the mutant mice. These results indicate that PBA, a U.S. Food and Drug Administration-approved safe oral medication, may provide a noninvasive therapeutic intervention that delays daylight vision loss in patients with RPE65 mutations. SIGNIFICANCE STATEMENT LCA is a severe early onset retinal dystrophy. Recent clinical trials of gene therapy have implicated the need of an alternative or

  16. Evolution of clitellate phaosomes from rhabdomeric photoreceptor cells of polychaetes – a study in the leech Helobdella robusta (Annelida, Sedentaria, Clitellata)

    PubMed Central

    2013-01-01

    Introduction In Annelida two types of photoreceptor cells (PRCs) are regarded as generally present, rhabdomeric and ciliary PRCs. In certain taxa, however, an additional type of PRC may occur, the so called phaosomal PRC. Whereas the former two types of PRCs are always organized as an epithelium with their sensory processes projecting into an extracellular cavity formed by the PRCs and (pigmented) supportive cells, phaosomes are seemingly intracellular vacuoles housing the sensory processes. Phaosomal PRCs are the only type of PRC found in one major annelid group, Clitellata. Several hypotheses have been put forward explaining the evolutionary origin of the clitellate phaosomes. To elucidate the evolution of clitellate PRC and eyes the leech Helobdella robusta, for which a sequenced genome is available, was chosen. Results TEM observations showed that extraocular and ocular PRCs are structurally identical. Bioinformatic analyses revealed predictions for four opsin genes, three of which could be amplified. All belong to the rhabdomeric opsin family and phylogenetic analyses showed them in a derived position within annelid opsins. Gene expression studies showed two of them expressed in the eye and in the extraocular PRCs. Polychaete eye-typic key enzymes for ommochromme and pterin shading pigments synthesis are not expressed in leech eyes. Conclusions By comparative gene-expression studies we herein provide strong evidence that the phaosomal PRCs typical of Clitellata are derived from the rhabdomeric PRCs characteristic for polychaete adult eyes. Thus, they represent a highly derived type of PRC that evolved in the stem lineage of Clitellata rather than another, primitive type of PRC in Metazoa. Evolution of these PRCs in Clitellata is related to a loss of the primary eyes and most of their photoreceptive elements except for the rhabdomeric PRCs. Most likely this happened while changing to an endobenthic mode of life. This hypothesis of PRC evolution is in accordance

  17. Far-IR H2O and OH towards Orion IRc2: observations and modeling

    NASA Astrophysics Data System (ADS)

    Goicoechea, J. R.; Cernicharo, J.; Daniel, F.

    The Orion nebula is one of the nearest (~450 pc) and probably the most studied star forming region in the Sky (Genzel & Stutzki 1989; ARA&A, 27, 41). The core of the cloud is associated with several places of massive star formation, and thus, the large scale distribution of gas and dust is heavily influenced by violent phenomena such as outflows, shocks and IR radiation. Infrared observations have contributed to a better knowledge of the distribution of the warm neutral gas and to a better characterization of physical and chemical conditions. The Infrared Space Observatory (ISO), and in particular the SWS (~2.4-45.2 µm) and LWS (~43-196.7 µm) spectrometers, have provided the unique opportunity to observe the spectral signature of key molecules in astrochemistry that are difficult to observe from ground-based telescopes. This is the case of water vapor and its related species, the hydroxyl radical (OH). We have detected more than 60 and 20 pure rotational lines of H2O and OH respectively towards Orion IRc2 (see Figs. 1 and 2). These detections include several lines of the 18O and 17O substituted species. From these observations it is clear that the H2O and OH line profiles show a complicated behavior. The H216O lines detected with the LWS at wavelengths above ~100 µm are observed in emission. However for shorter wavelengths, lines arising from energy levels below ~700 K and with large line-strengths show P-Cygni profiles with an important emission velocity range, while those with weak line-strengths or arising from higher energy levels are observed in pure emission. On the other hand, most of the water lines detected with the SWS below ~45 µm are observed in pure absorption (van Dischoeck et al. 1998; ApJ, 502 L173; Wright et al. 2000; A&A, 358, 689). This means that the filling factors for the water vapor as seen by the LWS and SWS beam apertures are different (note that the spatial resolution is larger for the SWS). Hence, these observations tightly constrain

  18. Wavelength Discrimination in Drosophila Suggests a Role of Rhodopsin 1 in Color Vision