Sample records for wavefront control testbed

  1. Developmental Cryogenic Active Telescope Testbed, a Wavefront Sensing and Control Testbed for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Leboeuf, Claudia M.; Davila, Pamela S.; Redding, David C.; Morell, Armando; Lowman, Andrew E.; Wilson, Mark E.; Young, Eric W.; Pacini, Linda K.; Coulter, Dan R.

    1998-01-01

    As part of the technology validation strategy of the next generation space telescope (NGST), a system testbed is being developed at GSFC, in partnership with JPL and Marshall Space Flight Center (MSFC), which will include all of the component functions envisioned in an NGST active optical system. The system will include an actively controlled, segmented primary mirror, actively controlled secondary, deformable, and fast steering mirrors, wavefront sensing optics, wavefront control algorithms, a telescope simulator module, and an interferometric wavefront sensor for use in comparing final obtained wavefronts from different tests. The developmental. cryogenic active telescope testbed (DCATT) will be implemented in three phases. Phase 1 will focus on operating the testbed at ambient temperature. During Phase 2, a cryocapable segmented telescope will be developed and cooled to cryogenic temperature to investigate the impact on the ability to correct the wavefront and stabilize the image. In Phase 3, it is planned to incorporate industry developed flight-like components, such as figure controlled mirror segments, cryogenic, low hold power actuators, or different wavefront sensing and control hardware or software. A very important element of the program is the development and subsequent validation of the integrated multidisciplinary models. The Phase 1 testbed objectives, plans, configuration, and design will be discussed.

  2. Advanced Wavefront Sensing and Control Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell

    2010-01-01

    The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.

  3. Wavefront control performance modeling with WFIRST shaped pupil coronagraph testbed

    NASA Astrophysics Data System (ADS)

    Zhou, Hanying; Nemati, Bijian; Krist, John; Cady, Eric; Kern, Brian; Poberezhskiy, Ilya

    2017-09-01

    NASA's WFIRST mission includes a coronagraph instrument (CGI) for direct imaging of exoplanets. Significant improvement in CGI model fidelity has been made recently, alongside a testbed high contrast demonstration in a simulated dynamic environment at JPL. We present our modeling method and results of comparisons to testbed's high order wavefront correction performance for the shaped pupil coronagraph. Agreement between model prediction and testbed result at better than a factor of 2 has been consistently achieved in raw contrast (contrast floor, chromaticity, and convergence), and with that comes good agreement in contrast sensitivity to wavefront perturbations and mask lateral shear.

  4. Dynamic testbed demonstration of WFIRST coronagraph low order wavefront sensing and control (LOWFS/C)

    NASA Astrophysics Data System (ADS)

    Shi, Fang; Cady, Eric; Seo, Byoung-Joon; An, Xin; Balasubramanian, Kunjithapatham; Kern, Brian; Lam, Raymond; Marx, David; Moody, Dwight; Mejia Prada, Camilo; Patterson, Keith; Poberezhskiy, Ilya; Shields, Joel; Sidick, Erkin; Tang, Hong; Trauger, John; Truong, Tuan; White, Victor; Wilson, Daniel; Zhou, Hanying

    2017-09-01

    To maintain the required performance of WFIRST Coronagraph in a realistic space environment, a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem is necessary. The LOWFS/C uses a Zernike wavefront sensor (ZWFS) with the phase shifting disk combined with the starlight rejecting occulting mask. For wavefront error corrections, WFIRST LOWFS/C uses a fast steering mirror (FSM) for line-of-sight (LoS) correction, a focusing mirror for focus drift correction, and one of the two deformable mirrors (DM) for other low order wavefront error (WFE) correction. As a part of technology development and demonstration for WFIRST Coronagraph, a dedicated Occulting Mask Coronagraph (OMC) testbed has been built and commissioned. With its configuration similar to the WFIRST flight coronagraph instrument the OMC testbed consists of two coronagraph modes, Shaped Pupil Coronagraph (SPC) and Hybrid Lyot Coronagraph (HLC), a low order wavefront sensor (LOWFS), and an optical telescope assembly (OTA) simulator which can generate realistic LoS drift and jitter as well as low order wavefront error that would be induced by the WFIRST telescope's vibration and thermal changes. In this paper, we will introduce the concept of WFIRST LOWFS/C, describe the OMC testbed, and present the testbed results of LOWFS sensor performance. We will also present our recent results from the dynamic coronagraph tests in which we have demonstrated of using LOWFS/C to maintain the coronagraph contrast with the presence of WFIRST-like line-of-sight and low order wavefront disturbances.

  5. Hybrid Lyot coronagraph for WFIRST: high-contrast broadband testbed demonstration

    NASA Astrophysics Data System (ADS)

    Seo, Byoung-Joon; Cady, Eric; Gordon, Brian; Kern, Brian; Lam, Raymond; Marx, David; Moody, Dwight; Muller, Richard; Patterson, Keith; Poberezhskiy, Ilya; Mejia Prada, Camilo; Sidick, Erkin; Shi, Fang; Trauger, John; Wilson, Daniel

    2017-09-01

    Hybrid Lyot Coronagraph (HLC) is one of the two operating modes of the Wide-Field InfraRed Survey Telescope (WFIRST) coronagraph instrument. Since being selected by National Aeronautics and Space Administration (NASA) in December 2013, the coronagraph technology is being matured to Technology Readiness Level (TRL) 6 by 2018. To demonstrate starlight suppression in presence of expecting on-orbit input wavefront disturbances, we have built a dynamic testbed in Jet Propulsion Laboratory (JPL) in 2016. This testbed, named as Occulting Mask Coronagraph (OMC) testbed, is designed analogous to the WFIRST flight instrument architecture: It has both HLC and Shape Pupil Coronagraph (SPC) architectures, and also has the Low Order Wavefront Sensing and Control (LOWFS/C) subsystem to sense and correct the dynamic wavefront disturbances. We present upto-date progress of HLC mode demonstration in the OMC testbed. SPC results will be reported separately. We inject the flight-like Line of Sight (LoS) and Wavefront Error (WFE) perturbation to the OMC testbed and demonstrate wavefront control using two deformable mirrors while the LOWFS/C is correcting those perturbation in our vacuum testbed. As a result, we obtain repeatable convergence below 5 × 10-9 mean contrast with 10% broadband light centered at 550 nm in the 360 degrees dark hole with working angle between 3 λ/D and 9 λ/D. We present the key hardware and software used in the testbed, the performance results and their comparison to model expectations.

  6. WFIRST Coronagraph Technology Development Testbeds: Status and Recent Testbed Results

    NASA Astrophysics Data System (ADS)

    Shi, Fang; An, Xin; Balasubramanian, Kunjithapatham; cady, eric; Gordon, Brian; Greer, Frank; Kasdin, N. Jeremy; Kern, Brian; Lam, Raymond; Marx, David; Moody, Dwight; Patterson, Keith; Poberezhskiy, Ilya; mejia prada, camilo; Gersh-Range, Jessica; Eldorado Riggs, A. J.; Seo, Byoung-Joon; Shields, Joel; Sidick, Erkin; Tang, Hong; Trauger, John Terry; Truong, Tuan; White, Victor; Wilson, Daniel; Zhou, Hanying; JPL WFIRST Testbed Team, Princeton University

    2018-01-01

    As a part of technology development for the WFIRST coronagraph instrument (CGI), dedicated testbeds are built and commissioned at JPL. The coronagraph technology development testbeds include the Occulting Mask Coronagraph (OMC) testbed, the Shaped Pupil Coronagraph/Integral Field Spectrograph (SPC/IFS) testbed, and the Vacuum Surface Gauge (VSG) testbed. With its configuration similar to the WFIRST flight coronagraph instrument the OMC testbed consists of two coronagraph modes, Shaped Pupil Coronagraph (SPC) and Hybrid Lyot Coronagraph (HLC), a low order wavefront sensor (LOWFS), and an optical telescope assembly (OTA) simulator which can generate realistic LoS drift and jitter as well as low order wavefront error that would be induced by the WFIRST telescope’s vibration and thermal changes. The SPC/IFS testbed is a dedicated testbed to test the IFS working with a Shaped Pupil Coronagraph while the VSG testbed is for measuring and calibrating the deformable mirrors, a key component used for WFIRST CGI's wavefront control. In this poster, we will describe the testbed functions and status as well as the highlight of the latest testbed results from OMC, SPC/IFS and VSG testbeds.

  7. Laboratory MCAO Test-Bed for Developing Wavefront Sensing Concepts.

    PubMed

    Goncharov, A V; Dainty, J C; Esposito, S; Puglisi, A

    2005-07-11

    An experimental optical bench test-bed for developing new wavefront sensing concepts for Multi-Conjugate Adaptive Optics (MCAO) systems is described. The main objective is to resolve imaging problems associated with wavefront sensing of the atmospheric turbulence for future MCAO systems on Extremely Large Telescopes (ELTs). The test-bed incorporates five reference sources, two deformable mirrors (DMs) and atmospheric phase screens to simulate a scaled version of a 10-m adaptive telescope operating at the K band. A recently proposed compact tomographic wavefront sensor is employed for star-oriented DMs control in the MCAO system. The MCAO test-bed is used to verify the feasibility of the wavefront sensing concept utilizing a field lenslet array for multi-pupil imaging on a single detector. First experimental results of MCAO correction with the proposed tomographic wavefront sensor are presented and compared to the theoretical prediction based on the characteristics of the phase screens, actuator density of the DMs and the guide star configuration.

  8. Wavefront Control Testbed (WCT) Experiment Results

    NASA Technical Reports Server (NTRS)

    Burns, Laura A.; Basinger, Scott A.; Campion, Scott D.; Faust, Jessica A.; Feinberg, Lee D.; Hayden, William L.; Lowman, Andrew E.; Ohara, Catherine M.; Petrone, Peter P., III

    2004-01-01

    The Wavefront Control Testbed (WCT) was created to develop and test wavefront sensing and control algorithms and software for the segmented James Webb Space Telescope (JWST). Last year, we changed the system configuration from three sparse aperture segments to a filled aperture with three pie shaped segments. With this upgrade we have performed experiments on fine phasing with line-of-sight and segment-to-segment jitter, dispersed fringe visibility and grism angle;. high dynamic range tilt sensing; coarse phasing with large aberrations, and sampled sub-aperture testing. This paper reviews the results of these experiments.

  9. The low-order wavefront control system for the PICTURE-C mission: preliminary testbed results from the Shack-Hartmann sensor

    NASA Astrophysics Data System (ADS)

    Howe, Glenn A.; Mendillo, Christopher B.; Hewawasam, Kuravi; Martel, Jason; Finn, Susanna C.; Cook, Timothy A.; Chakrabarti, Supriya

    2017-09-01

    The Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) mission will directly image debris disks and exozodiacal dust around three nearby stars from a high-altitude balloon using a vector vortex coronagraph. We present experimental results of the PICTURE-C low-order wavefront control (LOWFC) system utilizing a Shack-Hartmann (SH) sensor in an instrument testbed. The SH sensor drives both the alignment of the telescope secondary mirror using a 6-axis Hexapod and a surface parallel array deformable mirror to remove residual low-order aberrations. The sensor design and actuator calibration methods are discussed and the preliminary LOWFC closed-loop performance is shown to stabilize a reference wavefront to an RMS error of 0.30 +/- 0.29 nm.

  10. James Webb Space Telescope optical simulation testbed III: first experimental results with linear-control alignment

    NASA Astrophysics Data System (ADS)

    Egron, Sylvain; Lajoie, Charles-Philippe; Leboulleux, Lucie; N'Diaye, Mamadou; Pueyo, Laurent; Choquet, Élodie; Perrin, Marshall D.; Ygouf, Marie; Michau, Vincent; Bonnefois, Aurélie; Fusco, Thierry; Escolle, Clément; Ferrari, Marc; Hugot, Emmanuel; Soummer, Rémi

    2016-07-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to study wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science and Operations Center. The design of JOST reproduces the physics of JWST's three-mirror anastigmat (TMA) using three custom aspheric lenses. It provides similar quality image as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at 633 nm. An Iris AO segmented mirror stands for the segmented primary mirror of JWST. Actuators allow us to control (1) the 18 segments of the segmented mirror in piston, tip, tilt and (2) the second lens, which stands for the secondary mirror, in tip, tilt and x, y, z positions. We present the full linear control alignment infrastructure developed for JOST, with an emphasis on multi-field wavefront sensing and control. Our implementation of the Wavefront Sensing (WFS) algorithms using phase diversity is experimentally tested. The wavefront control (WFC) algorithms, which rely on a linear model for optical aberrations induced by small misalignments of the three lenses, are tested and validated on simulations.

  11. High-contrast imager for complex aperture telescopes (HiCAT): 3. first lab results with wavefront control

    NASA Astrophysics Data System (ADS)

    N'Diaye, Mamadou; Mazoyer, Johan; Choquet, Élodie; Pueyo, Laurent; Perrin, Marshall D.; Egron, Sylvain; Leboulleux, Lucie; Levecq, Olivier; Carlotti, Alexis; Long, Chris A.; Lajoie, Rachel; Soummer, Rémi

    2015-09-01

    HiCAT is a high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. The pupil geometry of such observatories includes primary mirror segmentation, central obstruction, and spider vanes, which make the direct imaging of habitable worlds very challenging. The testbed alignment was completed in the summer of 2014, exceeding specifications with a total wavefront error of 12nm rms over a 18mm pupil. The installation of two deformable mirrors for wavefront control is to be completed in the winter of 2015. In this communication, we report on the first testbed results using a classical Lyot coronagraph. We also present the coronagraph design for HiCAT geometry, based on our recent development of Apodized Pupil Lyot Coronagraph (APLC) with shaped-pupil type optimizations. These new APLC-type solutions using two-dimensional shaped-pupil apodizer render the system quasi-insensitive to jitter and low-order aberrations, while improving the performance in terms of inner working angle, bandpass and contrast over a classical APLC.

  12. Shaped pupil coronagraphy for WFIRST: high-contrast broadband testbed demonstration

    NASA Astrophysics Data System (ADS)

    Cady, Eric; Balasubramanian, Kunjithapatham; Gersh-Range, Jessica; Kasdin, Jeremy; Kern, Brian; Lam, Raymond; Mejia Prada, Camilo; Moody, Dwight; Patterson, Keith; Poberezhskiy, Ilya; Riggs, A. J. Eldorado; Seo, Byoung-Joon; Shi, Fang; Tang, Hong; Trauger, John; Zhou, Hanying; Zimmerman, Neil

    2017-09-01

    The Shaped Pupil Coronagraph (SPC) is one of the two operating modes of the WFIRST coronagraph instrument. The SPC provides starlight suppression in a pair of wedge-shaped regions over an 18% bandpass, and is well suited for spectroscopy of known exoplanets. To demonstrate this starlight suppression in the presence of expected onorbit input wavefront disturbances, we have recently built a dynamic testbed at JPL analogous to the WFIRST flight instrument architecture, with both Hybrid Lyot Coronagraph (HLC) and SPC architectures and a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem to apply, sense, and correct dynamic wavefront disturbances. We present our best up-to-date results of the SPC mode demonstration from the testbed, in both static and dynamic conditions, along with model comparisons. HLC results will be reported separately.

  13. High-contrast imager for Complex Aperture Telescopes (HiCAT). 4. Status and wavefront control development

    NASA Astrophysics Data System (ADS)

    Leboulleux, Lucie; N'Diaye, Mamadou; Riggs, A. J. E.; Egron, Sylvain; Mazoyer, Johan; Pueyo, Laurent; Choquet, Elodie; Perrin, Marshall D.; Kasdin, Jeremy; Sauvage, Jean-François; Fusco, Thierry; Soummer, Rémi

    2016-07-01

    Segmented telescopes are a possible approach to enable large-aperture space telescopes for the direct imaging and spectroscopy of habitable worlds. However, the increased complexity of their aperture geometry, due to their central obstruction, support structures and segment gaps, makes high-contrast imaging very challenging. The High-contrast imager for Complex Aperture Telescopes (HiCAT) was designed to study and develop solutions for such telescope pupils using wavefront control and starlight suppression. The testbed design has the flexibility to enable studies with increasing complexity for telescope aperture geometries starting with off-axis telescopes, then on-axis telescopes with central obstruction and support structures (e.g. the Wide Field Infrared Survey Telescope [WFIRST]), up to on-axis segmented telescopes e.g. including various concepts for a Large UV, Optical, IR telescope (LUVOIR), such as the High Definition Space Telescope (HDST). We completed optical alignment in the summer of 2014 and a first deformable mirror was successfully integrated in the testbed, with a total wavefront error of 13nm RMS over a 18mm diameter circular pupil in open loop. HiCAT will also be provided with a segmented mirror conjugated with a shaped pupil representing the HDST configuration, to directly study wavefront control in the presence of segment gaps, central obstruction and spider. We recently applied a focal plane wavefront control method combined with a classical Lyot coronagraph on HiCAT, and we found limitations on contrast performance due to vibration effect. In this communication, we analyze this instability and study its impact on the performance of wavefront control algorithms. We present our Speckle Nulling code to control and correct for wavefront errors both in simulation mode and on testbed mode. This routine is first tested in simulation mode without instability to validate our code. We then add simulated vibrations to study the degradation of contrast performance in the presence of these effects.

  14. Optical Design of the Developmental Cryogenic Active Telescope Testbed (DCATT)

    NASA Technical Reports Server (NTRS)

    Davila, Pam; Wilson, Mark; Young, Eric W.; Lowman, Andrew E.; Redding, David C.

    1997-01-01

    In the summer of 1996, three Study teams developed conceptual designs and mission architectures for the Next Generation Space Telescope (NGST). Each group highlighted areas of technology development that need to be further advanced to meet the goals of the NGST mission. The most important areas for future study included: deployable structures, lightweight optics, cryogenic optics and mechanisms, passive cooling, and on-orbit closed loop wavefront sensing and control. NASA and industry are currently planning to develop a series of ground testbeds and validation flights to demonstrate many of these technologies. The Deployed Cryogenic Active Telescope Testbed (DCATT) is a system level testbed to be developed at Goddard Space Flight Center in three phases over an extended period of time. This testbed will combine an actively controlled telescope with the hardware and software elements of a closed loop wavefront sensing and control system to achieve diffraction limited imaging at 2 microns. We will present an overview of the system level requirements, a discussion of the optical design, and results of performance analyses for the Phase 1 ambient concept for DCATT,

  15. Testbed Demonstration of Low Order Wavefront Sensing and Control Technology for WFIRST Coronagraph

    NASA Astrophysics Data System (ADS)

    Shi, Fang; Balasubramanian, K.; Cady, E.; Kern, B.; Lam, R.; Mandic, M.; Patterson, K.; Poberezhskiy, I.; Shields, J.; Seo, J.; Tang, H.; Truong, T.; Wilson, D.

    2017-01-01

    NASA’s WFIRST-AFTA Coronagraph will be capable of directly imaging and spectrally characterizing giant exoplanets similar to Neptune and Jupiter, and possibly even super-Earths, around nearby stars. To maintain the required coronagraph performance in a realistic space environment, a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem is necessary. The LOWFS/C will use the rejected stellar light to sense and suppress the telescope pointing drift and jitter as well as low order wavefront errors due to the changes in thermal loading of the telescope and the rest of the observatory. The LOWFS/C uses a Zernike phase contrast wavefront sensor with the phase shifting disk combined with the stellar light rejecting occulting mask, a key concept to minimize the non-common path error. Developed as a part of the Dynamic High Contrast Imaging Testbed (DHCIT), the LOWFS/C subsystem also consists of an Optical Telescope Assembly Simulator (OTA-S) to generate the realistic line-of-sight (LoS) drift and jitter as well as low order wavefront error from WFIRST-AFTA telescope’s vibration and thermal drift. The entire LOWFS/C subsystem have been integrated, calibrated, and tested in the Dynamic High Contrast Imaging Testbed. In this presentation we will show the results of LOWFS/C performance during the dynamic coronagraph tests in which we have demonstrated that LOWFS/C is able to maintain the coronagraph contrast with the presence of WFIRST like line-of-sight drift and jitter as well as low order wavefront drifts.

  16. Wavefront Control Toolbox for James Webb Space Telescope Testbed

    NASA Technical Reports Server (NTRS)

    Shiri, Ron; Aronstein, David L.; Smith, Jeffery Scott; Dean, Bruce H.; Sabatke, Erin

    2007-01-01

    We have developed a Matlab toolbox for wavefront control of optical systems. We have applied this toolbox to the optical models of James Webb Space Telescope (JWST) in general and to the JWST Testbed Telescope (TBT) in particular, implementing both unconstrained and constrained wavefront optimization to correct for possible misalignments present on the segmented primary mirror or the monolithic secondary mirror. The optical models implemented in Zemax optical design program and information is exchanged between Matlab and Zemax via the Dynamic Data Exchange (DDE) interface. The model configuration is managed using the XML protocol. The optimization algorithm uses influence functions for each adjustable degree of freedom of the optical mode. The iterative and non-iterative algorithms have been developed to converge to a local minimum of the root-mean-square (rms) of wavefront error using singular value decomposition technique of the control matrix of influence functions. The toolkit is highly modular and allows the user to choose control strategies for the degrees of freedom to be adjusted on a given iteration and wavefront convergence criterion. As the influence functions are nonlinear over the control parameter space, the toolkit also allows for trade-offs between frequency of updating the local influence functions and execution speed. The functionality of the toolbox and the validity of the underlying algorithms have been verified through extensive simulations.

  17. High-contrast imager for Complex Aperture Telescopes (HiCAT): APLC/shaped-pupil hybrid coronagraph designs

    NASA Astrophysics Data System (ADS)

    N'Diaye, Mamadou; Choquet, Elodie; Carlotti, Alexis; Pueyo, Laurent; Egron, Sylvain; Leboulleux, Lucie; Levecq, Olivier; Perrin, Marshall D.; Wallace, J. Kent; Long, Chris; Lajoie, Rachel; Lajoie, Charles-Philippe; Eldorado Riggs, A. J.; Zimmerman, Neil T.; Groff, Tyler Dean; Kasdin, N. Jeremy; Vanderbei, Robert J.; Mawet, Dimitri; Macintosh, Bruce; Shaklan, Stuart; Soummer, Remi

    2015-01-01

    HiCAT is a high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. Primary mirror segmentation, central obstruction and spiders in the pupil of an on-axis telescope introduces additional diffraction features in the point spread function, which make high-contrast imaging very challenging. The testbed alignment was completed in the summer of 2014, exceeding specifications with a total wavefront error of 12nm rms with a 18mm pupil. Two deformable mirrors are to be installed for wavefront control in the fall of 2014. In this communication, we report on the first testbed results using a classical Lyot coronagraph. We have developed novel coronagraph designs combining an Apodized Pupil Lyot Coronagraph (APLC) with shaped-pupil type optimizations. We present the results of these new APLC-type solutions with two-dimensional shaped-pupil apodizers for the HiCAT geometry. These solutions render the system quasi-insensitive to jitter and low-order aberrations, while improving the performance in terms of inner working angle, bandpass and contrast over a classical APLC.

  18. Closing the contrast gap between testbed and model prediction with WFIRST-CGI shaped pupil coronagraph

    NASA Astrophysics Data System (ADS)

    Zhou, Hanying; Nemati, Bijan; Krist, John; Cady, Eric; Prada, Camilo M.; Kern, Brian; Poberezhskiy, Ilya

    2016-07-01

    JPL has recently passed an important milestone in its technology development for a proposed NASA WFIRST mission coronagraph: demonstration of better than 1x10-8 contrast over broad bandwidth (10%) on both shaped pupil coronagraph (SPC) and hybrid Lyot coronagraph (HLC) testbeds with the WFIRST obscuration pattern. Challenges remain, however, in the technology readiness for the proposed mission. One is the discrepancies between the achieved contrasts on the testbeds and their corresponding model predictions. A series of testbed diagnoses and modeling activities were planned and carried out on the SPC testbed in order to close the gap. A very useful tool we developed was a derived "measured" testbed wavefront control Jacobian matrix that could be compared with the model-predicted "control" version that was used to generate the high contrast dark hole region in the image plane. The difference between these two is an estimate of the error in the control Jacobian. When the control matrix, which includes both amplitude and phase, was modified to reproduce the error, the simulated performance closely matched the SPC testbed behavior in both contrast floor and contrast convergence speed. This is a step closer toward model validation for high contrast coronagraphs. Further Jacobian analysis and modeling provided clues to the possible sources for the mismatch: DM misregistration and testbed optical wavefront error (WFE) and the deformable mirror (DM) setting for correcting this WFE. These analyses suggested that a high contrast coronagraph has a tight tolerance in the accuracy of its control Jacobian. Modifications to both testbed control model as well as prediction model are being implemented, and future works are discussed.

  19. Linear dark field control: simulation for implementation and testing on the UA wavefront control testbed

    NASA Astrophysics Data System (ADS)

    Miller, Kelsey; Guyon, Olivier

    2016-07-01

    This paper presents the early-stage simulation results of linear dark field control (LDFC) as a new approach to maintaining a stable dark hole within a stellar post-coronagraphic PSF. In practice, conventional speckle nulling is used to create a dark hole in the PSF, and LDFC is then employed to maintain the dark field by using information from the bright speckle field. The concept exploits the linear response of the bright speckle intensity to wavefront variations in the pupil, and therefore has many advantages over conventional speckle nulling as a method for stabilizing the dark hole. In theory, LDFC is faster, more sensitive, and more robust than using conventional speckle nulling techniques, like electric field conjugation, to maintain the dark hole. In this paper, LDFC theory, linear bright speckle characterization, and first results in simulation are presented as an initial step toward the deployment of LDFC on the UA Wavefront Control testbed in the coming year.

  20. Wavefront tilt feedforward for the formation interferometer testbad (FIT)

    NASA Technical Reports Server (NTRS)

    Shields, J. F.; Liewer, K.; Wehmeier, U.

    2002-01-01

    Separated spacecraft interferometry is a candidate architecture for several future NASA missions. The Formation Interferometer Testbed (FIT) is a ground based testbed dedicated to the validation of this key technology for a formation of two spacecraft. In separated spacecraft interferometry, the residual relative motion of the component spacecraft must be compensated for by articulation of the optical components. In this paper, the design of the FIT interferometer pointing control system is described. This control system is composed of a metrology pointing loop that maintains an optical link between the two spacecraft and two stellar pointing loops for stabilizing the stellar wavefront at both the right and left apertures of the instrument. A novel feedforward algorithm is used to decouple the metrology loop from the left side stellar loop. Experimental results from the testbed are presented that verify this approach and that fully demonstrate the performance of the algorithm.

  1. The Segmented Aperture Interferometric Nulling Testbed (SAINT) I: overview and air-side system description

    NASA Astrophysics Data System (ADS)

    Hicks, Brian A.; Lyon, Richard G.; Petrone, Peter; Ballard, Marlin; Bolcar, Matthew R.; Bolognese, Jeff; Clampin, Mark; Dogoda, Peter; Dworzanski, Daniel; Helmbrecht, Michael A.; Koca, Corina; Shiri, Ron

    2016-07-01

    This work presents an overview of the Segmented Aperture Interferometric Nulling Testbed (SAINT), a project that will pair an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC). SAINT will incorporate the VNC's demonstrated wavefront sensing and control system to refine and quantify end-to-end high-contrast starlight suppression performance. This pathfinder testbed will be used as a tool to study and refine approaches to mitigating instabilities and complex diffraction expected from future large segmented aperture telescopes.

  2. Characterization of contour shapes achievable with a MEMS deformable mirror

    NASA Astrophysics Data System (ADS)

    Zhou, Yaopeng; Bifano, Thomas

    2006-01-01

    An important consideration in the design of an adaptive optics controller is the range of physical shapes required by the DM to compensate the existing aberrations. Conversely, if the range of surface shapes achievable with a DM is known, its suitability for a particular AO application can be determined. In this paper, we characterize one MEMS DM that was recently developed for vision science applications. The device has 140 actuators supporting a continuous face sheet deformable mirror having 4mm square aperture. The total range of actuation is about 4μm, achieved using electrostatic actuation in an architecture that has been described previously. We incorporated the MEMS mirror into an adaptive optics (AO) testbed to measure its capacity to transform an initially planar wavefront into a wavefront having one of thirty-six orthogonal shapes corresponding to the first seven orders of Zernike polynomials. The testbed included a superluminescent diode source emitting light with a wavelength 630nm, a MEMS DM, and a Shack Hartmann wavefront sensor (SHWS). The DM was positioned in a plane conjugate to the SHWS lenslets, using a pair of relay lenses. Wavefront slope measurements provided by the SHWS were used in an integral controller to regulate DM shape. The control software used the difference between the the wavefront measured by the SHWS and the desired (reference) wavefront as feedback for the DM. The DM is able to produce all 36 terms with a wavefront height root mean square (RMS) from 1.35μm for the lower order Zernike shapes to 0.2μm for the 7th order.

  3. Low Order Wavefront Sensing and Control for WFIRST-AFTA Coronagraph

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Balasubramanian, Kunjithapatha; Bartos, Randall; Hien, Randall; Kern, Brian; Krist, John; Lam, Raymond; Moore, Douglas; Moore, James; Patterson, Keith; hide

    2015-01-01

    To maintain the required WFIRST Coronagraph performance in a realistic space environment, a low order wavefront sensing and control (LOWFS/C) subsystem is necessary. The LOWFS/C use s the rejected stellar light from coronagraph to sense and suppress the telescope pointing drift and jitter as well as the low order wavefront errors due to changes in thermal loading of the telescope and the rest of the observatory. In this paper we will present an overview of the low order wavefront sensing and control subsystem for the WFIRST -AFTA Coronagraph. We will describe LOWFS/C's Zernike wavefront sensor concept and WFIRST LOWFS/C control design. We will present an overview of our analysis and modeling results on the Zernike wavefront sensor, the line -of-sight jitter suppression loop performance, as well as the low order wavefront error correction with the coronagraph's deformable mirror. In this paper we will also report the LOWFS/C testbed design and the preliminary in-air test results, which show a very promising performance of the Zernike wavefront sensor and FSM feedback loop.

  4. Phase retrieval algorithm for JWST Flight and Testbed Telescope

    NASA Astrophysics Data System (ADS)

    Dean, Bruce H.; Aronstein, David L.; Smith, J. Scott; Shiri, Ron; Acton, D. Scott

    2006-06-01

    An image-based wavefront sensing and control algorithm for the James Webb Space Telescope (JWST) is presented. The algorithm heritage is discussed in addition to implications for algorithm performance dictated by NASA's Technology Readiness Level (TRL) 6. The algorithm uses feedback through an adaptive diversity function to avoid the need for phase-unwrapping post-processing steps. Algorithm results are demonstrated using JWST Testbed Telescope (TBT) commissioning data and the accuracy is assessed by comparison with interferometer results on a multi-wave phase aberration. Strategies for minimizing aliasing artifacts in the recovered phase are presented and orthogonal basis functions are implemented for representing wavefronts in irregular hexagonal apertures. Algorithm implementation on a parallel cluster of high-speed digital signal processors (DSPs) is also discussed.

  5. The Fizeau Interferometer Testbed

    NASA Technical Reports Server (NTRS)

    Zhang, Xiaolei; Carpenter, Kenneth G.; Lyon, Richard G,; Huet, Hubert; Marzouk, Joe; Solyar, Gregory

    2003-01-01

    The Fizeau Interferometer Testbed (FIT) is a collaborative effort between NASA's Goddard Space Flight Center, the Naval Research Laboratory, Sigma Space Corporation, and the University of Maryland. The testbed will be used to explore the principles of and the requirements for the full, as well as the pathfinder, Stellar Imager mission concept. It has a long term goal of demonstrating closed-loop control of a sparse array of numerous articulated mirrors to keep optical beams in phase and optimize interferometric synthesis imaging. In this paper we present the optical and data acquisition system design of the testbed, and discuss the wavefront sensing and control algorithms to be used. Currently we have completed the initial design and hardware procurement for the FIT. The assembly and testing of the Testbed will be underway at Goddard's Instrument Development Lab in the coming months.

  6. The Segmented Aperture Interferometric Nulling Testbed (SAINT) I: Overview and Air-side System Description

    NASA Technical Reports Server (NTRS)

    Hicks, Brian A.; Lyon, Richard G.; Petrone, Peter, III; Bolcar, Matthew R.; Bolognese, Jeff; Clampin, Mark; Dogoda, Peter; Dworzanski, Daniel; Helmbrecht, Michael A.; Koca, Corina; hide

    2016-01-01

    This work presents an overview of the This work presents an overview of the Segmented Aperture Interferometric Nulling Testbed (SAINT), a project that will pair an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC). SAINT will incorporate the VNCs demonstrated wavefront sensing and control system to refine and quantify the end-to-end system performance for high-contrast starlight suppression. This pathfinder system will be used as a tool to study and refine approaches to mitigating instabilities and complex diffraction expected from future large segmented aperture telescopes., a project that will pair an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC). SAINT will incorporate the VNCs demonstrated wavefront sensing and control system to refine and quantify the end-to-end system performance for high-contrast starlight suppression. This pathfinder system will be used as a tool to study and refine approaches to mitigating instabilities and complex diffraction expected from future large segmented aperture telescopes.

  7. James Webb Space Telescope optical simulation testbed IV: linear control alignment of the primary segmented mirror

    NASA Astrophysics Data System (ADS)

    Egron, Sylvain; Soummer, Rémi; Lajoie, Charles-Philippe; Bonnefois, Aurélie; Long, Joseph; Michau, Vincent; Choquet, Elodie; Ferrari, Marc; Leboulleux, Lucie; Levecq, Olivier; Mazoyer, Johan; N'Diaye, Mamadou; Perrin, Marshall; Petrone, Peter; Pueyo, Laurent; Sivaramakrishnan, Anand

    2017-09-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to study wavefront sensing and control for a segmented space telescope, such as JWST. With the JWST Science and Operations Center co-located at STScI, JOST was developed to provide both a platform for staff training and to test alternate wavefront sensing and control strategies for independent validation or future improvements beyond the baseline operations. The design of JOST reproduces the physics of JWST's three-mirror anastigmat (TMA) using three custom aspheric lenses. It provides similar quality image as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at 633 nm. An Iris AO segmented mirror stands for the segmented primary mirror of JWST. Actuators allow us to control (1) the 18 segments of the segmented mirror in piston, tip, tilt and (2) the second lens, which stands for the secondary mirror, in tip, tilt and x, y, z positions. We present the most recent experimental results for the segmented mirror alignment. Our implementation of the Wavefront Sensing (WFS) algorithms using phase diversity is tested on simulation and experimentally. The wavefront control (WFC) algorithms, which rely on a linear model for optical aberrations induced by misalignment of the secondary lens and the segmented mirror, are tested and validated both on simulations and experimentally. In this proceeding, we present the performance of the full active optic control loop in presence of perturbations on the segmented mirror, and we detail the quality of the alignment correction.

  8. Technology Advancement of the Visible Nulling Coronagraph

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Thompson, Patrick; Bolcar, Matt; Madison, Timothy; Woodruff, Robert; Noecker, Charley; Kendrick, Steve

    2010-01-01

    The critical high contrast imaging technology for the Extrasolar Planetary Imaging Coronagraph (EPIC) mission concept is the visible nulling coronagraph (VNC). EPIC would be capable of imaging jovian planets, dust/debris disks, and potentially super-Earths and contribute to answering how bright the debris disks are for candidate stars. The contrast requirement for EPIC is 10(exp 9) contrast at 125 milli-arseconds inner working angle. To advance the VNC technology NASA/Goddard Space Flight Center, in collaboration with Lockheed-Martin, previously developed a vacuum VNC testbed, and achieved narrowband and broadband suppression of the core of the Airy disk. Recently our group was awarded a NASA Technology Development for Exoplanet Missions to achieve two milestones: (i) 10(exp 8) contrast in narrowband light, and, (ii) 10(ecp 9) contrast in broader band light; one milestone per year, and both at 2 Lambda/D inner working angle. These will be achieved with our 2nd generation testbed known as the visible nulling testbed (VNT). It contains a MEMS based hex-packed segmented deformable mirror known as the multiple mirror array (MMA) and coherent fiber bundle, i.e. a spatial filter array (SFA). The MMA is in one interferometric arm and works to set the wavefront differences between the arms to zero. Each of the MMA segments is optically mapped to a single mode fiber of the SFA, and the SFA passively cleans the sub-aperture wavefront error leaving only piston, tip and tilt error to be controlled. The piston degree of freedom on each segment is used to correct the wavefront errors, while the tip/tilt is used to simultaneously correct the amplitude errors. Thus the VNT controls both amplitude and wavefront errors with a single MMA in closed-loop in a vacuum tank at approx.20 Hz. Herein we will discuss our ongoing progress with the VNT.

  9. JWST testbed telescope: a functionally accurate scaled version of the flight optical telescope element used to develop the flight wavefront sensing and control algorithm

    NASA Astrophysics Data System (ADS)

    Kingsbury, Lana K.; Atcheson, Paul D.

    2004-10-01

    The Northrop-Grumman/Ball/Kodak team is building the JWST observatory that will be launched in 2011. To develop the flight wavefront sensing and control (WFS&C) algorithms and software, Ball is designing and building a 1 meter diameter, functionally accurate version of the JWST optical telescope element (OTE). This testbed telescope (TBT) will incorporate the same optical element control capability as the flight OTE. The secondary mirror will be controlled by a 6 degree of freedom (dof) hexapod and each of the 18 segmented primary mirror assemblies will have 6 dof hexapod control as well as radius of curvature adjustment capability. In addition to the highly adjustable primary and secondary mirrors, the TBT will include a rigid tertiary mirror, 2 fold mirrors (to direct light into the TBT) and a very stable supporting structure. The total telescope system configured residual wavefront error will be better than 175 nm RMS double pass. The primary and secondary mirror hexapod assemblies enable 5 nm piston resolution, 0.0014 arcsec tilt resolution, 100 nm translation resolution, and 0.04497 arcsec clocking resolution. The supporting structure (specifically the secondary mirror support structure) is designed to ensure that the primary mirror segments will not change their despace position relative to the secondary mirror (spaced > 1 meter apart) by greater than 500 nm within a one hour period of ambient clean room operation.

  10. High-Contrast Coronagraph Performance in the Presence of DM Actuator Defects

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Shaklan, Stuart; Cady, Eric

    2015-01-01

    Deformable Mirrors (DMs) are critical elements in high contrast coronagraphs, requiring precision and stability measured in picometers to enable detection of Earth-like exoplanets. Occasionally DM actuators or their associated cables or electronics fail, requiring a wavefront control algorithm to compensate for actuators that may be displaced from their neighbors by hundreds of nanometers. We have carried out experiments on our High-Contrast Imaging Testbed (HCIT) to study the impact of failed actuators in partial fulfillment of the Terrestrial Planet Finder Coronagraph optical model validation milestone. We show that the wavefront control algorithm adapts to several broken actuators and maintains dark-hole contrast in broadband light.

  11. High-contrast coronagraph performance in the presence of DM actuator defects

    NASA Astrophysics Data System (ADS)

    Sidick, Erkin; Shaklan, Stuart; Cady, Eric

    2015-09-01

    Deformable Mirrors (DMs) are critical elements in high contrast coronagraphs, requiring precision and stability measured in picometers to enable detection of Earth-like exoplanets. Occasionally DM actuators or their associated cables or electronics fail, requiring a wavefront control algorithm to compensate for actuators that may be displaced from their neighbors by hundreds of nanometers. We have carried out experiments on our High-Contrast Imaging Testbed (HCIT) to study the impact of failed actuators in partial fulfilment of the Terrestrial Planet Finder Coronagraph optical model validation milestone. We show that the wavefront control algorithm adapts to several broken actuators and maintains dark-hole contrast in broadband light.

  12. James Webb Space Telescope Optical Simulation Testbed I: overview and first results

    NASA Astrophysics Data System (ADS)

    Perrin, Marshall D.; Soummer, Rémi; Choquet, Élodie; N'Diaye, Mamadou; Levecq, Olivier; Lajoie, Charles-Philippe; Ygouf, Marie; Leboulleux, Lucie; Egron, Sylvain; Anderson, Rachel; Long, Chris; Elliott, Erin; Hartig, George; Pueyo, Laurent; van der Marel, Roeland; Mountain, Matt

    2014-08-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop workbench to study aspects of wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing optomechanical testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope, TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science & Operations Center. We have developed an optical design that reproduces the physics of JWST's three-mirror anastigmat using three aspheric lenses; it provides similar image quality as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at HeNe wavelength. A segmented deformable mirror stands in for the segmented primary mirror and allows control of the 18 segments in piston, tip, and tilt, while the secondary can be controlled in tip, tilt and x, y, z position. This will be sufficient to model many commissioning activities, to investigate field dependence and multiple field point sensing & control, to evaluate alternate sensing algorithms, and develop contingency plans. Testbed data will also be usable for cross-checking of the WFS&C Software Subsystem, and for staff training and development during JWST's five- to ten-year mission.

  13. High-contrast Imager for Complex Aperture Telescopes (HICAT): II. Design overview and first light results

    NASA Astrophysics Data System (ADS)

    N'Diaye, Mamadou; Choquet, Elodie; Egron, Sylvain; Pueyo, Laurent; Leboulleux, Lucie; Levecq, Olivier; Perrin, Marshall D.; Elliot, Erin; Wallace, J. Kent; Hugot, Emmanuel; Marcos, Michel; Ferrari, Marc; Long, Chris A.; Anderson, Rachel; DiFelice, Audrey; Soummer, Rémi

    2014-08-01

    We present a new high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. The testbed was designed to enable a wide range of studies of the effects of such telescope geometries, with primary mirror segmentation, central obstruction, and spiders. The associated diffraction features in the point spread function make high-contrast imaging more challenging. In particular the testbed will be compatible with both AFTA-like and ATLAST-like aperture shapes, respectively on-axis monolithic, and on-axis segmented telescopes. The testbed optical design was developed using a novel approach to define the layout and surface error requirements to minimize amplitude­ induced errors at the target contrast level performance. In this communication we compare the as-built surface errors for each optic to their specifications based on end-to-end Fresnel modelling of the testbed. We also report on the testbed optical and optomechanical alignment performance, coronagraph design and manufacturing, and preliminary first light results.

  14. Post-Coronagraph Wavefront Sensor for Gemini Planet Imager

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Burruss, Rick; Pueyo, Laurent; Soummer, Remi; Shelton, Chris; Bartos, Randall; Fregoso, Felipe; Nemati, Bijan; Best, Paul; Angione, John

    2009-01-01

    The calibration wavefront system for the Gemini Planet Imager (GPI) will measure the complex wavefront at the apodized pupil and provide slow phase errors to the AO system to mitigate against image plane speckles that would cause a loss in contrast. This talk describes both the low-order and high-order sensors in the calibration wavefront sensor and how the information is combined to form the wavefront estimate before the coronagraph. We will show laboratory results from our calibration testbed that demonstrate the subsystem performance at levels commensurate with those required on the final instrument.

  15. James Webb Space telescope optical simulation testbed: experimental results with linear control alignment

    NASA Astrophysics Data System (ADS)

    Egron, Sylvain; Lajoie, Charles-Philippe; Michau, Vincent; Bonnefois, Aurélie; Escolle, Clément; Leboulleux, Lucie; N'Diaye, Mamadou; Pueyo, Laurent; Choquet, Elodie; Perrin, Marshall D.; Ygouf, Marie; Fusco, Thierry; Ferrari, Marc; Hugot, Emmanuel; Soummer, Rémi

    2017-09-01

    The current generation of terrestrial telescopes has large enough primary mirror diameters that active optical control based on wavefront sensing is necessary. Similarly, in space, while the Hubble Space Telescope (HST) has a mostly passive optical design, apart from focus control, its successor the James Webb Space Telescope (JWST) has active control of many degrees of freedom in its primary and secondary mirrors.

  16. pyZELDA: Python code for Zernike wavefront sensors

    NASA Astrophysics Data System (ADS)

    Vigan, A.; N'Diaye, M.

    2018-06-01

    pyZELDA analyzes data from Zernike wavefront sensors dedicated to high-contrast imaging applications. This modular software was originally designed to analyze data from the ZELDA wavefront sensor prototype installed in VLT/SPHERE; simple configuration files allow it to be extended to support several other instruments and testbeds. pyZELDA also includes simple simulation tools to measure the theoretical sensitivity of a sensor and to compare it to other sensors.

  17. TRL-6 for JWST wavefront sensing and control

    NASA Astrophysics Data System (ADS)

    Feinberg, Lee D.; Dean, Bruce H.; Aronstein, David L.; Bowers, Charles W.; Hayden, William; Lyon, Richard G.; Shiri, Ron; Smith, J. Scott; Acton, D. Scott; Carey, Larkin; Contos, Adam; Sabatke, Erin; Schwenker, John; Shields, Duncan; Towell, Tim; Shi, Fang; Meza, Luis

    2007-09-01

    NASA's Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed.

  18. TRL-6 for JWST Wavefront Sensing and Control

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Dean, Bruce; Smith, Scott; Aronstein, David; Shiri, Ron; Lyon, Rick; Hayden, Bill; Bowers, Chuck; Acton, D. Scott; Shields, Duncan; hide

    2007-01-01

    NASA's Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed

  19. Performance Sensitivity Studies on the PIAA Implementation of the High-Contrast Imaging Testbed

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Lou, John; Shaklan, Stuart; Levine, Marie

    2010-01-01

    This slide presentation reviews the sensitivity studies on the Phase-Induced Amplitude Apodization (PIAA), or pupil mapping using the High-Contrast Imaging Testbed (HCIT). PIAA is a promising technique in high-dynamic range stellar coronagraph. This presentation reports on the investigation of the effects of the phase and rigid-body errors of various optics on the narrowband contrast performance of the PIAA/HCIT hybrid system. The results have shown that the 2-step wavefront control method utilizing 2-DMs is quite effective in compensating the effects of realistic phase and rigid-body errors of various optics

  20. Low-signal, coronagraphic wavefront estimation with Kalman filtering in the high contrast imaging testbed

    NASA Astrophysics Data System (ADS)

    Riggs, A. J. Eldorado; Cady, Eric J.; Prada, Camilo M.; Kern, Brian D.; Zhou, Hanying; Kasdin, N. Jeremy; Groff, Tyler D.

    2016-07-01

    For direct imaging and spectral characterization of cold exoplanets in reflected light, the proposed Wide-Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI) will carry two types of coronagraphs. The High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory has been testing both coronagraph types and demonstrated their abilities to achieve high contrast. Focal plane wavefront correction is used to estimate and mitigate aberrations. As the most time-consuming part of correction during a space mission, the acquisition of probed images for electric field estimation needs to be as short as possible. We present results from the HCIT of narrowband, low-signal wavefront estimation tests using a shaped pupil Lyot coronagraph (SPLC) designed for the WFIRST CGI. In the low-flux regime, the Kalman filter and iterated extended Kalman filter provide faster correction, better achievable contrast, and more accurate estimates than batch process estimation.

  1. Demonstration of the James Webb Space Telescope commissioning on the JWST testbed telescope

    NASA Astrophysics Data System (ADS)

    Acton, D. Scott; Towell, Timothy; Schwenker, John; Swensen, John; Shields, Duncan; Sabatke, Erin; Klingemann, Lana; Contos, Adam R.; Bauer, Brian; Hansen, Karl; Atcheson, Paul D.; Redding, David; Shi, Fang; Basinger, Scott; Dean, Bruce; Burns, Laura

    2006-06-01

    The one-meter Testbed Telescope (TBT) has been developed at Ball Aerospace to facilitate the design and implementation of the wavefront sensing and control (WFS&C) capabilities of the James Webb Space Telescope (JWST). The TBT is used to develop and verify the WFS&C algorithms, check the communication interfaces, validate the WFS&C optical components and actuators, and provide risk reduction opportunities for test approaches for later full-scale cryogenic vacuum testing of the observatory. In addition, the TBT provides a vital opportunity to demonstrate the entire WFS&C commissioning process. This paper describes recent WFS&C commissioning experiments that have been performed on the TBT.

  2. The low-order wavefront control system for the PICTURE-C mission: high-speed image acquisition and processing

    NASA Astrophysics Data System (ADS)

    Hewawasam, Kuravi; Mendillo, Christopher B.; Howe, Glenn A.; Martel, Jason; Finn, Susanna C.; Cook, Timothy A.; Chakrabarti, Supriya

    2017-09-01

    The Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) mission will directly image debris disks and exozodiacal dust around nearby stars from a high-altitude balloon using a vector vortex coronagraph. The PICTURE-C low-order wavefront control (LOWC) system will be used to correct time-varying low-order aberrations due to pointing jitter, gravity sag, thermal deformation, and the gondola pendulum motion. We present the hardware and software implementation of the low-order ShackHartmann and reflective Lyot stop sensors. Development of the high-speed image acquisition and processing system is discussed with the emphasis on the reduction of hardware and computational latencies through the use of a real-time operating system and optimized data handling. By characterizing all of the LOWC latencies, we describe techniques to achieve a framerate of 200 Hz with a mean latency of ˜378 μs

  3. Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.

    1989-01-01

    The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.

  4. Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)

    NASA Astrophysics Data System (ADS)

    Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.

    1989-09-01

    The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.

  5. Comparison of Simulated Contrast Performance of Different Phase Induced Amplitude Apodization (PIAA) Coronagraph Configurations

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Kern, Brian; Kuhnert, Andreas; Shaklan, Stuart

    2013-01-01

    We compare the broadband contrast performances of several Phase Induced Amplitude Apodization (PIAA) coronagraph configurations through modeling and simulations. The basic optical design of the PIAA coronagraph is the same as NASA's High Contrast Imaging Testbed (HCIT) setup at the Jet Propulsion Laboratory (JPL). Using a deformable mirror and a broadband wavefront sensing and control algorithm, we create a "dark hole" in the broadband point-spread function (PSF) with an inner working angle (IWA) of 2(f lambda/D)(sub sky). We evaluate two systems in parallel. One is a perfect system having a design PIAA output amplitude and not having any wavefront error at its exit-pupil. The other is a realistic system having a design PIAA output amplitude and the measured residual wavefront error. We also investigate the effect of Lyot stops of various sizes when a postapodizer is and is not present. Our simulations show that the best 7.5%-broadband contrast value achievable with the current PIAA coronagraph is approximately 1.5x10(exp -8).

  6. James Webb Space Telescope Optical Simulation Testbed: Segmented Mirror Phase Retrieval Testing

    NASA Astrophysics Data System (ADS)

    Laginja, Iva; Egron, Sylvain; Brady, Greg; Soummer, Remi; Lajoie, Charles-Philippe; Bonnefois, Aurélie; Long, Joseph; Michau, Vincent; Choquet, Elodie; Ferrari, Marc; Leboulleux, Lucie; Mazoyer, Johan; N’Diaye, Mamadou; Perrin, Marshall; Petrone, Peter; Pueyo, Laurent; Sivaramakrishnan, Anand

    2018-01-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a hardware simulator designed to produce JWST-like images. A model of the JWST three mirror anastigmat is realized with three lenses in form of a Cooke Triplet, which provides JWST-like optical quality over a field equivalent to a NIRCam module, and an Iris AO segmented mirror with hexagonal elements is standing in for the JWST segmented primary. This setup successfully produces images extremely similar to NIRCam images from cryotesting in terms of the PSF morphology and sampling relative to the diffraction limit.The testbed is used for staff training of the wavefront sensing and control (WFS&C) team and for independent analysis of WFS&C scenarios of the JWST. Algorithms like geometric phase retrieval (GPR) that may be used in flight and potential upgrades to JWST WFS&C will be explored. We report on the current status of the testbed after alignment, implementation of the segmented mirror, and testing of phase retrieval techniques.This optical bench complements other work at the Makidon laboratory at the Space Telescope Science Institute, including the investigation of coronagraphy for segmented aperture telescopes. Beyond JWST we intend to use JOST for WFS&C studies for future large segmented space telescopes such as LUVOIR.

  7. HiCAT Software Infrastructure: Safe hardware control with object oriented Python

    NASA Astrophysics Data System (ADS)

    Moriarty, Christopher; Brooks, Keira; Soummer, Remi

    2018-01-01

    High contrast imaging for Complex Aperture Telescopes (HiCAT) is a testbed designed to demonstrate coronagraphy and wavefront control for segmented on-axis space telescopes such as envisioned for LUVOIR. To limit the air movements in the testbed room, software interfaces for several different hardware components were developed to completely automate operations. When developing software interfaces for many different pieces of hardware, unhandled errors are commonplace and can prevent the software from properly closing a hardware resource. Some fragile components (e.g. deformable mirrors) can be permanently damaged because of this. We present an object oriented Python-based infrastructure to safely automate hardware control and optical experiments. Specifically, conducting high-contrast imaging experiments while monitoring humidity and power status along with graceful shutdown processes even for unexpected errors. Python contains a construct called a “context manager” that allows you define code to run when a resource is opened or closed. Context managers ensure that a resource is properly closed, even when unhandled errors occur. Harnessing the context manager design, we also use Python’s multiprocessing library to monitor humidity and power status without interrupting the experiment. Upon detecting a safety problem, the master process sends an event to the child process that triggers the context managers to gracefully close any open resources. This infrastructure allows us to queue up several experiments and safely operate the testbed without a human in the loop.

  8. Wavefront sensing in space: flight demonstration II of the PICTURE sounding rocket payload

    NASA Astrophysics Data System (ADS)

    Douglas, Ewan S.; Mendillo, Christopher B.; Cook, Timothy A.; Cahoy, Kerri L.; Chakrabarti, Supriya

    2018-01-01

    A NASA sounding rocket for high-contrast imaging with a visible nulling coronagraph, the Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) payload, has made two suborbital attempts to observe the warm dust disk inferred around Epsilon Eridani. The first flight in 2011 demonstrated a 5 mas fine pointing system in space. The reduced flight data from the second launch, on November 25, 2015, presented herein, demonstrate active sensing of wavefront phase in space. Despite several anomalies in flight, postfacto reduction phase stepping interferometer data provide insight into the wavefront sensing precision and the system stability for a portion of the pupil. These measurements show the actuation of a 32 × 32-actuator microelectromechanical system deformable mirror. The wavefront sensor reached a median precision of 1.4 nm per pixel, with 95% of samples between 0.8 and 12.0 nm per pixel. The median system stability, including telescope and coronagraph wavefront errors other than tip, tilt, and piston, was 3.6 nm per pixel, with 95% of samples between 1.2 and 23.7 nm per pixel.

  9. Status of the DKIST system for solar adaptive optics

    NASA Astrophysics Data System (ADS)

    Johnson, Luke C.; Cummings, Keith; Drobilek, Mark; Johansson, Erik; Marino, Jose; Richards, Kit; Rimmele, Thomas; Sekulic, Predrag; Wöger, Friedrich

    2016-07-01

    When the Daniel K. Inouye Solar Telescope (DKIST) achieves first light in 2019, it will deliver the highest spatial resolution images of the solar atmosphere ever recorded. Additionally, the DKIST will observe the Sun with unprecedented polarimetric sensitivity and spectral resolution, spurring a leap forward in our understanding of the physical processes occurring on the Sun. The DKIST wavefront correction system will provide active alignment control and jitter compensation for all six of the DKIST science instruments. Five of the instruments will also be fed by a conventional adaptive optics (AO) system, which corrects for high frequency jitter and atmospheric wavefront disturbances. The AO system is built around an extended-source correlating Shack-Hartmann wavefront sensor, a Physik Instrumente fast tip-tilt mirror (FTTM) and a Xinetics 1600-actuator deformable mirror (DM), which are controlled by an FPGA-based real-time system running at 1975 Hz. It is designed to achieve on-axis Strehl of 0.3 at 500 nm in median seeing (r0 = 7 cm) and Strehl of 0.6 at 630 nm in excellent seeing (r0 = 20 cm). The DKIST wavefront correction team has completed the design phase and is well into the fabrication phase. The FTTM and DM have both been delivered to the DKIST laboratory in Boulder, CO. The real-time controller has been completed and is able to read out the camera and deliver commands to the DM with a total latency of approximately 750 μs. All optics and optomechanics, including many high-precision custom optics, mounts, and stages, are completed or nearing the end of the fabrication process and will soon undergo rigorous acceptance testing. Before installing the wavefront correction system at the telescope, it will be assembled as a testbed in the laboratory. In the lab, performance tests beginning with component-level testing and continuing to full system testing will ensure that the wavefront correction system meets all performance requirements. Further work in the lab will focus on fine-tuning our alignment and calibration procedures so that installation and alignment on the summit will proceed as efficiently as possible.

  10. Using the ISS as a testbed to prepare for the next generation of space-based telescopes

    NASA Astrophysics Data System (ADS)

    Postman, Marc; Sparks, William B.; Liu, Fengchuan; Ess, Kim; Green, Joseph; Carpenter, Kenneth G.; Thronson, Harley; Goullioud, Renaud

    2012-09-01

    The infrastructure available on the ISS provides a unique opportunity to develop the technologies necessary to assemble large space telescopes. Assembling telescopes in space is a game-changing approach to space astronomy. Using the ISS as a testbed enables a concentration of resources on reducing the technical risks associated with integrating the technologies, such as laser metrology and wavefront sensing and control (WFS&C), with the robotic assembly of major components including very light-weight primary and secondary mirrors and the alignment of the optical elements to a diffraction-limited optical system in space. The capability to assemble the optical system and remove and replace components via the existing ISS robotic systems such as the Special Purpose Dexterous Manipulator (SPDM), or by the ISS Flight Crew, allows for future experimentation as well as repair if necessary. In 2015, first light will be obtained by the Optical Testbed and Integration on ISS eXperiment (OpTIIX), a small 1.5-meter optical telescope assembled on the ISS. The primary objectives of OpTIIX include demonstrating telescope assembly technologies and end-to-end optical system technologies that will advance future large optical telescopes.

  11. Using the ISS as a Testbed to Prepare for the Next Generation of Space-Based Telescopes

    NASA Technical Reports Server (NTRS)

    Ess, Kim; Thronson, Harley; Boyles, Mark; Sparks, William; Postman, Marc; Carpenter, Kenneth

    2012-01-01

    The ISS provides a unique opportunity to develop the technologies and operational capabilities necessary to assemble future large space telescopes that may be used to investigate planetary systems around neighboring stars. Assembling telescopes in space is a paradigm-shifting approach to space astronomy. Using the ISS as a testbed will reduce the technical risks of implementing this major scientific facility, such as laser metrology and wavefront sensing and control (WFSC). The Optical Testbed and Integration on ISS eXperiment (OpTIIX) will demonstrate the robotic assembly of major components, including the primary and secondary mirrors, to mechanical tolerances using existing ISS infrastructure, and the alignment of the optical elements to a diffraction-limited optical system in space. Assembling the optical system and removing and replacing components via existing ISS capabilities, such as the Special Purpose Dexterous Manipulator (SPDM) or the ISS flight crew, allows for future experimentation and repair, if necessary. First flight on ISS for OpTIIX, a small 1.5 meter optical telescope, is planned for 2015. In addition to demonstration of key risk-retiring technologies, the OpTIIX program includes a public outreach program to show the broad value of ISS utilization.

  12. Current Status of the High Contrast Imager for Complex Aperture Telescopes (HiCAT) Testbed

    NASA Astrophysics Data System (ADS)

    Brooks, Keira; Brady, Gregory; Brito, Arturo; Comeau, Tom; Dillon, Thomas; Choquet, Elodie; Egron, Sylvain; Rob, Gontrum; John, Hagopian; Leboulleux, Lucie; Perrin, Marshall; Petrone, Peter; Pueyo, Laurent; Mazoyer, Johan; Moriarty, Christopher; N’Diaye, Mamadou; Eldorado Riggs, A. J.; Shiri, Ron; Sivaramakrishnan, Anand; St. Laurent, Kathryn; Valenzuela, Ana Maria; Zimmerman, Neil; Soummer, Remi; JHU Mechanical Engineering Senior Design Team

    2018-01-01

    The coming decades will bring the next space telescopes to take on the ambitious goal of exoplanet discovery via direct imaging, driving the development of innovative coronagraphic solutions. High contrast imager for Complex Aperture Telescopes (HiCAT) is an optical testbed meant to test such solutions for complex aperture telescopes, such as the Large UV/Optical/InfraRed surveyor (LUVOIR), or any other segmented space observatory. High contrast imaging becomes more demanding with the addition of segments, a secondary mirror obscuration, and support structure. LUVOIR, a candidate for the next-next generation major space telescope funded in part by NASA, will have all three. In the past year, HiCAT has made significant hardware and software updates in order to meet the needs of LUVOIR. In addition to completely overhauling the software that runs the testbed, we have received the first two custom-made apodizers for the Apodized Pupil Lyot Coronagraph (APLC) that we are testing for LUVOIR, and are continuing the development of the wavefront sensing and control. This poster will serve to give an update on these, and other, changes, as well as the most recent results.

  13. ACCESS - A Science and Engineering Assessment of Space Coronagraph Concepts for the Direct Imaging and Spectroscopy of Exoplanetary Systems

    NASA Technical Reports Server (NTRS)

    Trauger, John

    2008-01-01

    Topics include and overview, science objectives, study objectives, coronagraph types, metrics, ACCESS observatory, laboratory validations, and summary. Individual slides examine ACCESS engineering approach, ACCESS gamut of coronagraph types, coronagraph metrics, ACCESS Discovery Space, coronagraph optical layout, wavefront control on the "level playing field", deformable mirror development for HCIT, laboratory testbed demonstrations, high contract imaging with the HCIT, laboratory coronagraph contrast and stability, model validation and performance predictions, HCIT coronagraph optical layout, Lyot coronagraph on the HCIT, pupil mapping (PIAA), shaped pupils, and vortex phase mask experiments on the HCIT.

  14. Results from SIM's Thermo-Opto-Mechanical (TOM3) Testbed

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Lindensmith, C. A.; Hahn, I.

    2006-01-01

    Future space-based optical interferometers, such as the Space Interferometer Mission Planet Quest (SIM), require thermal stability of the optical wavefront to the level of picometers in order to produce astrometric data at the micro-arc-second level. In SIM, the internal path of the interferometer will be measured with a small metrology beam whereas the starlight fringe position is estimated from a large concentric annular beam. To achieve the micro-arc-second observation goal for SIM, it is necessary to maintain the optical path difference between the central and the outer annulus portions of the wavefront of the front-end telescope optics to a few tens of picometers. The Thermo-Opto-Mecha nical testbed (TOM3) was developed at the Jet Propulsion Laboratory to measure thermally induced optical deformations of a full-size flight-like beam compressor and siderostat, the two largest optics on SIM, in flight-like thermal environments. A Common Path Heterodyne Interferometer (COPHI) developed at JPL was used for the fine optical path difference measurement as the metrology sensor. The system was integrated inside a large vacuum chamber in order to mitigate the atmospheric and thermal disturbances. The siderostat was installed in a temperature-controlled thermal shroud inside the vacuum chamber, creating a flight-like thermal environment. Detailed thermal and structural models of the test articles (siderostat and compressor) were also developed for model prediction and correlation of the thermal deformations. Experimental data shows SIM required thermal stability of the test articles and good agreement with the model predictions.

  15. Experimental Validation of Advanced Dispersed Fringe Sensing (ADFS) Algorithm Using Advanced Wavefront Sensing and Correction Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Wang, Xu; Shi, Fang; Sigrist, Norbert; Seo, Byoung-Joon; Tang, Hong; Bikkannavar, Siddarayappa; Basinger, Scott; Lay, Oliver

    2012-01-01

    Large aperture telescope commonly features segment mirrors and a coarse phasing step is needed to bring these individual segments into the fine phasing capture range. Dispersed Fringe Sensing (DFS) is a powerful coarse phasing technique and its alteration is currently being used for JWST.An Advanced Dispersed Fringe Sensing (ADFS) algorithm is recently developed to improve the performance and robustness of previous DFS algorithms with better accuracy and unique solution. The first part of the paper introduces the basic ideas and the essential features of the ADFS algorithm and presents the some algorithm sensitivity study results. The second part of the paper describes the full details of algorithm validation process through the advanced wavefront sensing and correction testbed (AWCT): first, the optimization of the DFS hardware of AWCT to ensure the data accuracy and reliability is illustrated. Then, a few carefully designed algorithm validation experiments are implemented, and the corresponding data analysis results are shown. Finally the fiducial calibration using Range-Gate-Metrology technique is carried out and a <10nm or <1% algorithm accuracy is demonstrated.

  16. A multi-conjugate adaptive optics testbed using two MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan R.; Martinez, Ty; Teare, Scott W.; Restaino, Sergio R.; Wilcox, Christopher C.; Santiago, Freddie; Payne, Don M.

    2011-03-01

    Adaptive optics (AO) systems are well demonstrated in the literature with both laboratory and real-world systems being developed. Some of these systems have employed MEMS deformable mirrors as their active corrective element. More recent work in AO for astronomical applications has focused on providing correction in more than one conjugate plane. Additionally, horizontal path AO systems are exploring correction in multiple conjugate planes. This provides challenges for a laboratory system as the aberrations need to be generated and corrected in more than one plane in the optical system. Our work with compact AO systems employing MEMS technology in addition to liquid crystal spatial light modulator (SLM) driven aberration generators has been scaled up to a two conjugate plane testbed. Using two SLM based aberration generators and two separate wavefront sensors, the system can apply correction with two MEMS deformable mirrors. The challenges in such a system are to properly match non-identical components and weight the correction algorithm for correcting in two planes. This paper demonstrates preliminary results and analysis with this system with wavefront data and residual error measurements.

  17. Spherical Primary Optical Telescope (SPOT): An Architecture Demonstration for Cost-effective Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.; Hagopian, John; Budinoff, Jason; Dean, Bruce; Howard, Joe

    2004-01-01

    This paper summarizes efforts underway at the Goddard Space Flight Center to demonstrate a new type of space telescope architecture that builds on the rigid segmented telescope heritage of the James Webb Space Telescope but that solves several key challenges for future space telescopes. The architecture is based on a cost-effective segmented spherical primary mirror combined with a unique wavefront sensing and control system that allows for continuous phasing of the primary mirror. The segmented spherical primary allows for cost-effective 3-meter class (e.g., Midex and Discovery) missions as well as enables 30-meter telescope solutions that can be manufactured in a reasonable amount of time and for a reasonable amount of money. The continuous wavefront sensing and control architecture enables missions in low-earth-orbit and missions that do not require expensive stable structures and thermal control systems. For the 30-meter class applications, the paper discusses considerations for assembling and testing the telescopes in space. The paper also summarizes the scientific and technological roadmap for the architecture and also gives an overview of technology development, design studies, and testbed activities underway to demonstrate its feasibility.

  18. Spherical Primary Optical Telescope (SPOT): An Architecture Demonstration for Cost-effective Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Hagopian, John; Budinoff, Jason; Dean, Bruce; Howard, Joe

    2005-01-01

    This paper summarizes efforts underway at the Goddard Space Flight Center to demonstrate a new type of space telescope architecture that builds on the rigid, segmented telescope heritage of the James Webb Space Telescope but that solves several key challenges for future space telescopes. The architecture is based on a cost-effective segmented spherical primary mirror combined with a unique wavefront sensing and control system that allows for continuous phasing of the primary mirror. The segmented spherical primary allows for cost-effective 3-meter class (eg, Midex and Discovery) missions as well as enables 30-meter telescope solutions that can be manufactured in a reasonable amount of time and for a reasonable amount of money. The continuous wavefront sensing and control architecture enables missions in low-earth-orbit and missions that do not require expensive stable structures and thermal control systems. For the 30-meter class applications, the paper discusses considerations for assembling and testing the telescopes in space. The paper also summarizes the scientific and technological roadmap for the architecture and also gives an overview of technology development, design studies, and testbed activities underway to demonstrate it s feasibility.

  19. An FPGA-based High Speed Parallel Signal Processing System for Adaptive Optics Testbed

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, Y.; Yang, Y.

    In this paper a state-of-the-art FPGA (Field Programmable Gate Array) based high speed parallel signal processing system (SPS) for adaptive optics (AO) testbed with 1 kHz wavefront error (WFE) correction frequency is reported. The AO system consists of Shack-Hartmann sensor (SHS) and deformable mirror (DM), tip-tilt sensor (TTS), tip-tilt mirror (TTM) and an FPGA-based high performance SPS to correct wavefront aberrations. The SHS is composed of 400 subapertures and the DM 277 actuators with Fried geometry, requiring high speed parallel computing capability SPS. In this study, the target WFE correction speed is 1 kHz; therefore, it requires massive parallel computing capabilities as well as strict hard real time constraints on measurements from sensors, matrix computation latency for correction algorithms, and output of control signals for actuators. In order to meet them, an FPGA based real-time SPS with parallel computing capabilities is proposed. In particular, the SPS is made up of a National Instrument's (NI's) real time computer and five FPGA boards based on state-of-the-art Xilinx Kintex 7 FPGA. Programming is done with NI's LabView environment, providing flexibility when applying different algorithms for WFE correction. It also facilitates faster programming and debugging environment as compared to conventional ones. One of the five FPGA's is assigned to measure TTS and calculate control signals for TTM, while the rest four are used to receive SHS signal, calculate slops for each subaperture and correction signal for DM. With this parallel processing capabilities of the SPS the overall closed-loop WFE correction speed of 1 kHz has been achieved. System requirements, architecture and implementation issues are described; furthermore, experimental results are also given.

  20. Coadding Techniques for Image-based Wavefront Sensing for Segmented-mirror Telescopes

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Aronstein, David; Dean, Bruce; Acton, Scott

    2007-01-01

    Image-based wavefront sensing algorithms are being used to characterize optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be coadded in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on every set of PSFs individually and average the resulting wavefronts. The choice of coadd methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using data collected on and simulations of the James Webb Space Telescope Testbed Telescope (TBT) commissioned at Ball Aerospace, we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the coadd method. Of particular interest, segment piston is more accurately recovered in "image-plane space" coadding, while segment tip/tilt is recovered in "pupil-plane space" coadding.

  1. Engineers Work on the James Webb Space Telescope

    NASA Image and Video Library

    2017-12-08

    Engineers at Ball Aerospace test the Wavefront Sensing and Control testbed to ensure that the 18 primary mirror segments and one secondary mirror on JWST work as one. The test is performed on a 1/6 scale model of the JWST mirrors. Credit: NASA/Northrop Grumman/Ball Aerospace To read more about the James Webb Space Telescope go to: www.nasa.gov/topics/technology/features/partnerships.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  2. WFIRST: Coronagraph Systems Engineering and Performance Budgets

    NASA Astrophysics Data System (ADS)

    Poberezhskiy, Ilya; cady, eric; Frerking, Margaret A.; Kern, Brian; Nemati, Bijan; Noecker, Martin; Seo, Byoung-Joon; Zhao, Feng; Zhou, Hanying

    2018-01-01

    The WFIRST coronagraph instrument (CGI) will be the first in-space coronagraph using active wavefront control to directly image and characterize mature exoplanets and zodiacal disks in reflected starlight. For CGI systems engineering, including requirements development, CGI performance is predicted using a hierarchy of performance budgets to estimate various noise components — spatial and temporal flux variations — that obscure exoplanet signals in direct imaging and spectroscopy configurations. These performance budgets are validated through a robust integrated modeling and testbed model validation efforts.We present the performance budgeting framework used by WFIRST for the flow-down of coronagraph science requirements, mission constraints, and observatory interfaces to measurable instrument engineering parameters.

  3. Analysis and experimental demonstration of conformal adaptive phase-locked fiber array for laser communications and beam projection applications

    NASA Astrophysics Data System (ADS)

    Liu, Ling

    The primary goal of this research is the analysis, development, and experimental demonstration of an adaptive phase-locked fiber array system for free-space optical communications and laser beam projection applications. To our knowledge, the developed adaptive phase-locked system composed of three fiber collimators (subapertures) with tip-tilt wavefront phase control at each subaperture represents the first reported fiber array system that implements both phase-locking control and adaptive wavefront tip-tilt control capabilities. This research has also resulted in the following innovations: (a) The first experimental demonstration of a phase-locked fiber array with tip-tilt wave-front aberration compensation at each fiber collimator; (b) Development and demonstration of the fastest currently reported stochastic parallel gradient descent (SPGD) system capable of operation at 180,000 iterations per second; (c) The first experimental demonstration of a laser communication link based on a phase-locked fiber array; (d) The first successful experimental demonstration of turbulence and jitter-induced phase distortion compensation in a phase-locked fiber array optical system; (e) The first demonstration of laser beam projection onto an extended target with a randomly rough surface using a conformal adaptive fiber array system. Fiber array optical systems, the subject of this study, can overcome some of the draw-backs of conventional monolithic large-aperture transmitter/receiver optical systems that are usually heavy, bulky, and expensive. The primary experimental challenges in the development of the adaptive phased-locked fiber-array included precise (<5 microrad) alignment of the fiber collimators and development of fast (100kHz-class) phase-locking and wavefront tip-tilt control systems. The precise alignment of the fiber collimator array is achieved through a specially developed initial coarse alignment tool based on high precision piezoelectric picomotors and a dynamic fine alignment mechanism implemented with specially designed and manufactured piezoelectric fiber positioners. Phase-locking of the fiber collimators is performed by controlling the phases of the output beams (beamlets) using integrated polarization-maintaining (PM) fiber-coupled LiNbO3 phase shifters. The developed phase-locking controllers are based on either the SPGD algorithm or the multi-dithering technique. Subaperture wavefront phase tip-tilt control is realized using piezoelectric fiber positioners that are controlled using a computer-based SPGD controller. Both coherent (phase-locked) and incoherent beam combining in the fiber array system are analyzed theoretically and experimentally. Two special fiber-based beam-combining testbeds have been built to demonstrate the technical feasibility of phase-locking compensation prior to free-space operation. In addition, the reciprocity of counter-propagating beams in a phase-locked fiber array system has been investigated. Coherent beam combining in a phase-locking system with wavefront phase tip-tilt compensation at each subaperture is successfully demonstrated when laboratory-simulated turbulence and wavefront jitters are present in the propagation path of the beamlets. In addition, coherent beam combining with a non-cooperative extended target in the control loop is successfully demonstrated.

  4. High Resolution Imaging Testbed Utilizing Sodium Laser Guide Star Adaptive Optics: The Real Time Wavefront Reconstructor Computer

    DTIC Science & Technology

    2008-07-31

    Unlike the Lyrtech, each DSP on a Bittware board offers 3 MB of on-chip memory and 3 GFLOPs of 32-bit peak processing power. Based on the performance...Each NVIDIA 8800 Ultra features 576 GFLOPS on 128 612-MHz single-precision floating-point SIMD processors, arranged in 16 clusters of eight. Each

  5. Co-adding techniques for image-based wavefront sensing for segmented-mirror telescopes

    NASA Astrophysics Data System (ADS)

    Smith, J. S.; Aronstein, David L.; Dean, Bruce H.; Acton, D. S.

    2007-09-01

    Image-based wavefront sensing algorithms are being used to characterize the optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be co-added in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on each PSF frame individually and average the resulting wavefronts. The choice of co-add methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using models and data from the James Webb Space Telescope (JWST) Testbed Telescope (TBT), we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the co-add method. Of particular interest, segment piston is more accurately recovered in "image-plane space" co-adding, while segment tip/tilt is recovered in "pupil-plane space" co-adding.

  6. Wavefront control methods for high-contrast integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Groff, Tyler D.; Mejia Prada, Camilo; Cady, Eric; Rizzo, Maxime J.; Mandell, Avi; Gong, Qian; McElwain, Michael; Zimmerman, Neil; Saxena, Prabal; Guyon, Olivier

    2017-09-01

    Direct Imaging of exoplanets using a coronagraph has become a major field of research both on the ground and in space. Key to the science of direct imaging is the spectroscopic capabilities of the instrument, our ability to fit spectra, and understanding the composition of the observed planets. Direct imaging instruments generally use an integral field spectrograph (IFS), which encodes the spectrum into a two-dimensional image on the detector. This results in more efficient detection and characterization of targets, and the spectral information is critical to achieving detection limits below the speckle floor of the imager. The most mature application of these techniques is at more modest contrast ratios on ground-based telescopes, achieving approximately 5-6 orders of magnitude suppression. In space, where we are attempting to detect Earth-analogs, the contrast requirements are more severe and the IFS must be incorporated into the wavefront control loop to reach 1e-10 detection limits required for Earth-like planet detection. We present the objectives and application of IFS imagery for both a speckle control loop and post-processing of images. Results, tested methodologies, and the future work using the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) and the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) at the JPL High Contrast Imaging Testbed are presented.

  7. End-to-end commissioning demonstration of the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Acton, D. Scott; Towell, Timothy; Schwenker, John; Shields, Duncan; Sabatke, Erin; Contos, Adam R.; Hansen, Karl; Shi, Fang; Dean, Bruce; Smith, Scott

    2007-09-01

    The one-meter Testbed Telescope (TBT) has been developed at Ball Aerospace to facilitate the design and implementation of the wavefront sensing and control (WFSC) capabilities of the James Webb Space Telescope (JWST). We have recently conducted an "end-to-end" demonstration of the flight commissioning process on the TBT. This demonstration started with the Primary Mirror (PM) segments and the Secondary Mirror (SM) in random positions, traceable to the worst-case flight deployment conditions. The commissioning process detected and corrected the deployment errors, resulting in diffraction-limited performance across the entire science FOV. This paper will describe the commissioning demonstration and the WFSC algorithms used at each step in the process.

  8. Technology development towards WFIRST-AFTA coronagraph

    NASA Astrophysics Data System (ADS)

    Poberezhskiy, Ilya; Zhao, Feng; An, Xin; Balasubramanian, Kunjithapatham; Belikov, Ruslan; Cady, Eric; Demers, Richard; Diaz, Rosemary; Gong, Qian; Gordon, Brian; Goullioud, Renaud; Greer, Frank; Guyon, Olivier; Hoenk, Michael; Kasdin, N. Jeremy; Kern, Brian; Krist, John; Kuhnert, Andreas; McElwain, Michael; Mennesson, Bertrand; Moody, Dwight; Muller, Richard; Nemati, Bijan; Patterson, Keith; Riggs, A. J.; Ryan, Daniel; Seo, Byoung-Joon; Shaklan, Stuart; Sidick, Erkin; Shi, Fang; Siegler, Nicholas; Soummer, Rémi; Tang, Hong; Trauger, John; Wallace, J. Kent; Wang, Xu; White, Victor; Wilson, Daniel; Yee, Karl; Zhou, Hanying; Zimmerman, Neil

    2014-08-01

    NASA's WFIRST-AFTA mission concept includes the first high-contrast stellar coronagraph in space. This coronagraph will be capable of directly imaging and spectrally characterizing giant exoplanets similar to Neptune and Jupiter, and possibly even super-Earths, around nearby stars. In this paper we present the plan for maturing coronagraph technology to TRL5 in 2014-2016, and the results achieved in the first 6 months of the technology development work. The specific areas that are discussed include coronagraph testbed demonstrations in static and simulated dynamic environment, design and fabrication of occulting masks and apodizers used for starlight suppression, low-order wavefront sensing and control subsystem, deformable mirrors, ultra-low-noise spectrograph detector, and data post-processing.

  9. Adaptive Cross-correlation Algorithm and Experiment of Extended Scene Shack-Hartmann Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Morgan, Rhonda M.; Green, Joseph J.; Ohara, Catherine M.; Redding, David C.

    2007-01-01

    We have developed a new, adaptive cross-correlation (ACC) algorithm to estimate with high accuracy the shift as large as several pixels in two extended-scene images captured by a Shack-Hartmann wavefront sensor (SH-WFS). It determines the positions of all of the extended-scene image cells relative to a reference cell using an FFT-based iterative image shifting algorithm. It works with both point-source spot images as well as extended scene images. We have also set up a testbed for extended0scene SH-WFS, and tested the ACC algorithm with the measured data of both point-source and extended-scene images. In this paper we describe our algorithm and present out experimental results.

  10. The precision segmented reflectors: Moderate mission figure control subsystem

    NASA Technical Reports Server (NTRS)

    Sevaston, G.; Redding, D.; Lau, K.; Breckenridge, W.; Levine, B.; Nerheim, N.; Sirlin, S.; Kadogawa, H.

    1991-01-01

    A system concept for a space based segmented reflector telescope figure control subsystem is described. The concept employs a two phase architecture in which figure initialization and figure maintenance are independent functions. Figure initialization is accomplished by image sharpening using natural reference targets. Figure maintenance is performed by monitoring the relative positions and alignments of the telescope components using an optical truss. Actuation is achieved using precision positioners. Computer simulation results of figure initialization by pairwise segment coalignment/cophasing and simulated annealing are presented along with figure maintenance results using a wavefront error regulation algorithm. Both functions are shown to perform at acceptable levels for the class of submillimeter telescopes that are serving as the focus of this technology development effort. Component breadboard work as well as plans for a system testbed are discussed.

  11. Experimental demonstration of laser tomographic adaptive optics on a 30-meter telescope at 800 nm

    NASA Astrophysics Data System (ADS)

    Ammons, S., Mark; Johnson, Luke; Kupke, Renate; Gavel, Donald T.; Max, Claire E.

    2010-07-01

    A critical goal in the next decade is to develop techniques that will extend Adaptive Optics correction to visible wavelengths on Extremely Large Telescopes (ELTs). We demonstrate in the laboratory the highly accurate atmospheric tomography necessary to defeat the cone effect on ELTs, an essential milestone on the path to this capability. We simulate a high-order Laser Tomographic AO System for a 30-meter telescope with the LTAO/MOAO testbed at UCSC. Eight Sodium Laser Guide Stars (LGSs) are sensed by 99x99 Shack-Hartmann wavefront sensors over 75". The AO system is diffraction-limited at a science wavelength of 800 nm (S ~ 6-9%) over a field of regard of 20" diameter. Openloop WFS systematic error is observed to be proportional to the total input atmospheric disturbance and is nearly the dominant error budget term (81 nm RMS), exceeded only by tomographic wavefront estimation error (92 nm RMS). The total residual wavefront error for this experiment is comparable to that expected for wide-field tomographic adaptive optics systems of similar wavefront sensor order and LGS constellation geometry planned for Extremely Large Telescopes.

  12. High-Resolution Adaptive Optics Test-Bed for Vision Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilks, S C; Thomspon, C A; Olivier, S S

    2001-09-27

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefrontmore » correction are done at different wavelengths. Issues associated with these techniques will be discussed.« less

  13. ARGOS Testbed: Study of Multidisciplinary Challenges of Future Spaceborne Interferometric Arrays

    DTIC Science & Technology

    2004-09-01

    optimized ex- tensively by ZEMAX . One drawback of the cemented dou- blet is that it has bonded glasses, therefore if there is a change of temperature, the...residual aberrations @root mean square ~rms! wavefront errors predicted by ZEMAX #. The final FK51- BaK2 design achieves 271.6 mm chromatic focal shift...of ZEMAX , a complete ARGOS optics layout is constructed based on the optical specifications of a subaperture, pyramidal mirror, and the beam combining

  14. First Year of WFIRST/AFTA Coronagraph Technology Development: Testbed Progress Update

    NASA Astrophysics Data System (ADS)

    Poberezhskiy, Ilya; Poberezhskiy, Ilya; Zhao, Feng; An, Xin; Balasubramanian, Kunjithapatham; Belikov, Rus; Cady, Eric; Diaz, Rosemary; Gordon, Brian; Guyon, Olivier; Kasdin, N. Jeremy; Kern, Brian; Kuhnert, Andreas; Moody, Dwight; Muller, Richard; Nemati, Bijan; Patterson, Keith; Riggs, A. J.; Ryan, Daniel; Seo, Byoung-Joon; Sidick, Erkin; Shi, Fang; Tang, Hong; Trauger, John; Wallace, Kent; Wang, Xu; Wilson, Daniel; White, Victor; Yee, Karl; Zhou, Hanying; Zimmerman, Neil

    2015-01-01

    NASA's WFIRST/AFTA mission study includes the first high-contrast stellar coronagraph in space. This coronagraph will be capable of imaging and spectrally characterizing giant exoplanets similar to Neptune and Jupiter and possibly super-Earths, as well as circumstellar disks. After a transparent and rigorous downselect process, NASA chose in December of 2013 a primary design called an Occulting Mask Coronagraph (OMC) that combines two technical approaches, Shaped Pupil and Hybrid Lyot, in one instrument. The Phase-Induced Amplitude Apodization Complex Mask Coronagraph was selected as the backup design.The OMC coronagraph technologies were assessed to have the highest likelihood of passing the WFIRST/AFTA flight readiness gates and the ability to produce compelling science by working with the existing 2.4-meter telescope 'as is,' including its central obscuration, expected thermal drift, and the observatory pointing jitter. NASA set us the objective of maturing the WFIRST/AFTA coronagraph to Technology Readiness Level (TRL) 5 by October 1, 2016. A set of technical milestones was agreed upon to track the progress toward achieving TRL 5.Substantial advances in WFIRST/AFTA coronagraph technology have been made during 2014, and the OMC progress is currently running ahead of the schedule laid out by the milestones. Our poster will present some of these key recent results to the community, including:(1) Fabrication and characterization of WFIRST/AFTA coronagraph pupil plane and focal plane masks designed to work with the existing 2.4 telescope.(2) Experimental results demonstrating high contrast achieved on a coronagraph testbed in narrowband and broadband light - first such results obtained with an obscured pupil.(3) Progress in the development of the low-order wavefront sensing and control subsystem that will use rejected starlight to sense and correct both high frequency pointing jitter and slow varying low order aberrations. This subsystem will be integrated with the OMC coronagraph in mid-2015 for the next phase of starlight suppression experiments with dynamic input wavefront.

  15. Using multifield measurements to eliminate alignment degeneracies in the JWST testbed telescope

    NASA Astrophysics Data System (ADS)

    Sabatke, Erin; Acton, Scott; Schwenker, John; Towell, Tim; Carey, Larkin; Shields, Duncan; Contos, Adam; Leviton, Doug

    2007-09-01

    The primary mirror of the James Webb Space Telescope (JWST) consists of 18 segments and is 6.6 meters in diameter. A sequence of commissioning steps is carried out at a single field point to align the segments. At that single field point, though, the segmented primary mirror can compensate for aberrations caused by misalignments of the remaining mirrors. The misalignments can be detected in the wavefronts of off-axis field points. The Multifield (MF) step in the commissioning process surveys five field points and uses a simple matrix multiplication to calculate corrected positions for the secondary and primary mirrors. A demonstration of the Multifield process was carried out on the JWST Testbed Telescope (TBT). The results show that the Multifield algorithm is capable of reducing the field dependency of the TBT to about 20 nm RMS, relative to the TBT design nominal field dependency.

  16. Development of an adaptive optics test-bed for relay mirror applications

    NASA Astrophysics Data System (ADS)

    Mansell, Justin D.; Jacobs, Arturo A.; Maynard, Morris

    2005-08-01

    The relay mirror concept involves deploying a passive optical station at a high altitude for relaying a beam from a laser weapon to a target. Relay mirrors have been proposed as a method of increasing the range of laser weapons that is less costly than deploying a larger number of laser weapons. Relay mirrors will only be effective if the beam spreading and beam quality degradation induced by atmospheric aberrations and thermal blooming can be mitigated. In this paper we present the first phase of a multi-year effort to develop a theoretical and experimental capability at Boeing-SVS to study these problems. A team from MZA and Boeing-SVS has developed a laboratory test-bed consisting of a distributed atmospheric path simulated by three liquid crystal phase screens, a Shack-Hartmann wavefront sensor, and a MEMS membrane deformable mirror. We present results of AO component calibration and evaluation, the system construction, and the system performance.

  17. Wavefront sensing and control aspects in a high energy laser optical train

    NASA Astrophysics Data System (ADS)

    Bartosewcz, M.; Bareket, N.

    1981-01-01

    In this paper we review the major elements of a HEL (high energy laser) wavefront sensing and control system with particular emphasis on experimental demonstrations and hardware components developed at Lockheed Missiles & Space Company, Inc. The review concentrates on three important elements of wavefront control: wavefront sampling, wavefront sensing and active mirrors. Methods of wavefront sampling by diffraction gratings are described. Some new developments in wavefront sensing are explored. Hardware development efforts of fast steering mirrors and edge controlled deformable mirrors are described.

  18. Gemini Planet Imager coronagraph testbed results

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Anand; Soummer, Rémi; Oppenheimer, Ben R.; Carr, G. Lawrence; Mey, Jacob L.; Brenner, Doug; Mandeville, Charles W.; Zimmerman, Neil; Macintosh, Bruce A.; Graham, James R.; Saddlemyer, Les; Bauman, Brian; Carlotti, Alexis; Pueyo, Laurent; Tuthill, Peter G.; Dorrer, Christophe; Roberts, Robin; Greenbaum, Alexandra

    2010-07-01

    The Gemini Planet Imager (GPI) is an extreme AO coronagraphic integral field unit YJHK spectrograph destined for first light on the 8m Gemini South telescope in 2011. GPI fields a 1500 channel AO system feeding an apodized pupil Lyot coronagraph, and a nIR non-common-path slow wavefront sensor. It targets detection and characterizion of relatively young (<2GYr), self luminous planets up to 10 million times as faint as their primary star. We present the coronagraph subsystem's in-lab performance, and describe the studies required to specify and fabricate the coronagraph. Coronagraphic pupil apodization is implemented with metallic half-tone screens on glass, and the focal plane occulters are deep reactive ion etched holes in optically polished silicon mirrors. Our JH testbed achieves H-band contrast below a million at separations above 5 resolution elements, without using an AO system. We present an overview of the coronagraphic masks and our testbed coronagraphic data. We also demonstrate the performance of an astrometric and photometric grid that enables coronagraphic astrometry relative to the primary star in every exposure, a proven technique that has yielded on-sky precision of the order of a milliarsecond.

  19. Piezocomposite Actuator Arrays for Correcting and Controlling Wavefront Error in Reflectors

    NASA Technical Reports Server (NTRS)

    Bradford, Samuel Case; Peterson, Lee D.; Ohara, Catherine M.; Shi, Fang; Agnes, Greg S.; Hoffman, Samuel M.; Wilkie, William Keats

    2012-01-01

    Three reflectors have been developed and tested to assess the performance of a distributed network of piezocomposite actuators for correcting thermal deformations and total wave-front error. The primary testbed article is an active composite reflector, composed of a spherically curved panel with a graphite face sheet and aluminum honeycomb core composite, and then augmented with a network of 90 distributed piezoelectric composite actuators. The piezoelectric actuator system may be used for correcting as-built residual shape errors, and for controlling low-order, thermally-induced quasi-static distortions of the panel. In this study, thermally-induced surface deformations of 1 to 5 microns were deliberately introduced onto the reflector, then measured using a speckle holography interferometer system. The reflector surface figure was subsequently corrected to a tolerance of 50 nm using the actuators embedded in the reflector's back face sheet. Two additional test articles were constructed: a borosilicate at window at 150 mm diameter with 18 actuators bonded to the back surface; and a direct metal laser sintered reflector with spherical curvature, 230 mm diameter, and 12 actuators bonded to the back surface. In the case of the glass reflector, absolute measurements were performed with an interferometer and the absolute surface was corrected. These test articles were evaluated to determine their absolute surface control capabilities, as well as to assess a multiphysics modeling effort developed under this program for the prediction of active reflector response. This paper will describe the design, construction, and testing of active reflector systems under thermal loads, and subsequent correction of surface shape via distributed peizeoelctric actuation.

  20. Enabling Technologies for Characterizing Exoplanet Systems with Exo-C

    NASA Astrophysics Data System (ADS)

    Cahoy, Kerri Lynn; Belikov, Ruslan; Stapelfeldt, Karl R.; Chakrabarti, Supriya; Trauger, John T.; Serabyn, Eugene; McElwain, Michael W.; Pong, Christopher M.; Brugarolas, Paul

    2015-01-01

    The Exoplanet Science and Technology Definition Team's Internal Coronagraph mission design, called 'Exo-C', utilizes several technologies that have advanced over the past decade with support from the Exoplanet Exploration Program. Following the flow of photons through the telescope, the science measurement is enabled by (i) a precision pointing system to keep the target exoplanet system precisely positioned on the detector during the integration time, (ii) high-performance coronagraphs to block the parent star's light so that the planet's reflected light can be detected, (iii) a wavefront control system to compensate for any wavefront errors such as those due to thermal or mechanical deformations in the optical path, especially errors with high spatial frequencies that could cause contrast-reducing speckles, and (iv) an integral field spectrograph (IFS) that provides moderate resolution spectra of the target exoplanets, permitting their characterization and comparison with models and other data sets. Technologies such as the wavefront control system and coronagraphs will also benefit from other funded efforts in progress, such as the Wide Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST-AFTA) program. Similarly, the Exo-C IFS will benefit from the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) demonstration. We present specific examples for each of these technologies showing that the state of the art has advanced to levels that will meet the overall scientific, cost, and schedule requirements of the Exo-C mission. These capabilities have matured with testbed and/or ground-telescope demonstrations and have reached a technological readiness level (TRL) that supports their inclusion in the baseline design for potential flight at the end of this decade. While additional work remains to build and test flight-like components (that concurrently meet science as well as size, weight, power, and environmental requirements) and to integrate these subsystems together for a hardware-in-the-loop end-to-end demonstration, the overall readiness of the suite of enabling technologies makes a compelling case for Exo-C among the exoplanet direct imaging mission candidates.

  1. OpTIIX: An ISS-Based Testbed Paving the Roadmap Toward a Next Generation Large Aperture UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Etemad, Shar; Seery, Bernard D.; Thronson, Harley; Burdick, Gary M.; Coulter, Dan; Goullioud, Renaud; Green, Joseph J.; Liu, Fengchuan; Ess, Kim; hide

    2012-01-01

    The next generation large aperture UV/Optical space telescope will need a diameter substantially larger than even that of JWST in order to address some of the most compelling unanswered scientific quests. These quests include understanding the earliest phases of the Universe and detecting life on exo-planets by studying spectra of their atmospheres. Such 8-16 meter telescopes face severe challenges in terms of cost and complexity and are unlikely to be affordable unless a new paradigm is adopted for their design and construction. The conventional approach is to use monolithic or preassembled segmented mirrors requiring complicated and risky deployments and relying on future heavy-lift vehicles, large fairings and complex geometry. The new paradigm is to launch component modules on relatively small vehicles and then perform in-orbit robotic assembly of those modules. The Optical Testbed and Integration on ISS eXperiment (OpTIIX) is designed to demonstrate, at low cost by leveraging the infrastructure provided by ISS, telescope assembly technologies and end-to-end optical system technologies. The use of ISS as a testbed permits the concentration of resources on reducing the technical risks associated with robotically integrating the components. These include laser metrology and wavefront sensing and control (WFS&C) systems, an imaging instrument, lightweight, low-cost deformable primary mirror segments and the secondary mirror. These elements are then aligned to a diffraction-limited optical system in space. The capability to assemble the optical system and remove and replace components via the existing ISS robotic systems like the Special Purpose Dexterous Manipulator (SPDM), or by the ISS flight crew, allows for future experimentation, as well as repair.

  2. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    NASA Astrophysics Data System (ADS)

    Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing

    2015-08-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).

  3. Optomechanical design of the vacuum compatible EXCEDE's mission testbed

    NASA Astrophysics Data System (ADS)

    Bendek, Eduardo A.; Belikov, Ruslan; Lozi, Julien; Schneider, Glenn; Thomas, Sandrine; Pluzhnik, Eugene; Lynch, Dana

    2014-08-01

    In this paper we describe the opto-mechanical design, tolerance error budget an alignment strategies used to build the Starlight Suppression System (SSS) for the Exoplanetary Circumstellar Environments and Disk Explorer (EXCEDE) NASA's mission. EXCEDE is a highly efficient 0.7m space telescope concept designed to directly image and spatially resolve circumstellar disks with as little as 10 zodis of circumstellar dust, as well as large planets. The main focus of this work was the design of a vacuum compatible opto-mechanical system that allows remote alignment and operation of the main components of the EXCEDE. SSS, which are: a Phase Induced Amplitude Apodization (PIAA) coronagraph to provide high throughput and high contrast at an inner working angle (IWA) equal to the diffraction limit (IWA = 1.2 l/D), a wavefront (WF) control system based on a Micro-Electro-Mechanical-System deformable mirror (MEMS DM), and low order wavefront sensor (LOWFS) for fine pointing and centering. We describe in strategy and tolerance error budget for this system, which is especially relevant to achieve the theoretical performance that PIAA coronagraph can offer. We also discuss the vacuum cabling design for the actuators, cameras and the Deformable Mirror. This design has been implemented at the vacuum chamber facility at Lockheed Martin (LM), which is based on successful technology development at the Ames Coronagraph Experiment (ACE) facility.

  4. Design and realization of adaptive optical principle system without wavefront sensing

    NASA Astrophysics Data System (ADS)

    Wang, Xiaobin; Niu, Chaojun; Guo, Yaxing; Han, Xiang'e.

    2018-02-01

    In this paper, we focus on the performance improvement of the free space optical communication system and carry out the research on wavefront-sensorless adaptive optics. We use a phase only liquid crystal spatial light modulator (SLM) as the wavefront corrector. The optical intensity distribution of the distorted wavefront is detected by a CCD. We develop a wavefront controller based on ARM and a software based on the Linux operating system. The wavefront controller can control the CCD camera and the wavefront corrector. There being two SLMs in the experimental system, one simulates atmospheric turbulence and the other is used to compensate the wavefront distortion. The experimental results show that the performance quality metric (the total gray value of 25 pixels) increases from 3037 to 4863 after 200 iterations. Besides, it is demonstrated that our wavefront-sensorless adaptive optics system based on SPGD algorithm has a good performance in compensating wavefront distortion.

  5. Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime R.

    2003-01-01

    NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.

  6. Observations of starburst galaxies: Science and supporting technology

    NASA Astrophysics Data System (ADS)

    Laag, Edward Aric

    In chapter 1 we report on the development of wavefront reconstruction and control algorithms for multi-conjugate adaptive optics (MCAO) and the results of testing them in the laboratory under conditions that simulate an 8 meter class telescope. The UCO/Lick Observatory Laboratory for Adaptive Optics Multi-Conjugate testbed allows us to test wide field of view adaptive optics systems as they might be instantiated in the near future on giant telescopes. In particular, we have been investigating the performance of MCAO using five laser beacons for wavefront sensing and a minimum variance algorithm for control of two conjugate deformable mirrors. We have demonstrated improved Strehl ratio and enlarged field of view performance when compared to conventional AO techniques. We have demonstrated improved MCAO performance with the implementation of a routine that minimizes the generalized isoplanatism when turbulent layers do not correspond to deformable mirror conjugate altitudes. Finally, we have demonstrated suitability of the system for closed-loop operation when configured to feed back conditional mean estimates of wavefront residuals rather than the directly measured residuals. This technique has recently been referred to as the "pseudo-open-loop" control law in the literature. Chapter 2 introduces the Multi-wavelength Extreme Starburst Sample (MESS), a new catalog of 138 star-forming galaxies (0.1 < z < 0.3) optically selected from the SDSS using emission line strength diagnostics to have SFR ≥ 50 M⊙ yr-1 based on a Kroupa IMF. The MESS was designed to complement samples of nearby star forming galaxies such as the luminous infrared galaxies (LIRGs), and ultraviolet luminous galaxies (UVLGs). Observations using the multiband imaging photometer (MIPS; 24, 70, and 160mum channels) on the Spitzer Space Telescope indicate the MESS galaxies have IR luminosities similar to those of LIRGs, with an estimated median LTIR ˜ 3 x 1011 L⊙ . The selection criteria for the MESS suggests they may be less obscured than typical far-IR selected galaxies with similar estimated SFRs. We estimate the SFRs based directly on luminosities to determine the agreement for these methods in the MESS.

  7. Last results of MADRAS, a space active optics demonstrator

    NASA Astrophysics Data System (ADS)

    Laslandes, Marie; Hourtoule, Claire; Hugot, Emmanuel; Ferrari, Marc; Devilliers, Christophe; Liotard, Arnaud; Lopez, Céline; Chazallet, Frédéric

    2017-11-01

    The goal of the MADRAS project (Mirror Active, Deformable and Regulated for Applications in Space) is to highlight the interest of Active Optics for the next generation of space telescope and instrumentation. Wave-front errors in future space telescopes will mainly come from thermal dilatation and zero gravity, inducing large lightweight primary mirrors deformation. To compensate for these effects, a 24 actuators, 100 mm diameter deformable mirror has been designed to be inserted in a pupil relay. Within the project, such a system has been optimized, integrated and experimentally characterized. The system is designed considering wave-front errors expected in 3m-class primary mirrors, and taking into account space constraints such as compactness, low weight, low power consumption and mechanical strength. Finite Element Analysis allowed an optimization of the system in order to reach a precision of correction better than 10 nm rms. A dedicated test-bed has been designed to fully characterize the integrated mirror performance in representative conditions. The test set up is made of three main parts: a telescope aberrations generator, a correction loop with the MADRAS mirror and a Shack-Hartman wave-front sensor, and PSF imaging. In addition, Fizeau interferometry monitors the optical surface shape. We have developed and characterized an active optics system with a limited number of actuators and a design fitting space requirements. All the conducted tests tend to demonstrate the efficiency of such a system for a real-time, in situ wave-front. It would allow a significant improvement for future space telescopes optical performance while relaxing the specifications on the others components.

  8. Correcting Thermal Deformations in an Active Composite Reflector

    NASA Technical Reports Server (NTRS)

    Bradford, Samuel C.; Agnes, Gregory S.; Wilkie, William K.

    2011-01-01

    Large, high-precision composite reflectors for future space missions are costly to manufacture, and heavy. An active composite reflector capable of adjusting shape in situ to maintain required tolerances can be lighter and cheaper to manufacture. An active composite reflector testbed was developed that uses an array of piezoelectric composite actuators embedded in the back face sheet of a 0.8-m reflector panel. Each individually addressable actuator can be commanded from 500 to +1,500 V, and the flatness of the panel can be controlled to tolerances of 100 nm. Measuring the surface flatness at this resolution required the use of a speckle holography interferometer system in the Precision Environmental Test Enclosure (PETE) at JPL. The existing testbed combines the PETE for test environment stability, the speckle holography system for measuring out-of-plane deformations, the active panel including an array of individually addressable actuators, a FLIR thermal camera to measure thermal profiles across the reflector, and a heat source. Use of an array of flat piezoelectric actuators to correct thermal deformations is a promising new application for these actuators, as is the use of this actuator technology for surface flatness and wavefront control. An isogrid of these actuators is moving one step closer to a fully active face sheet, with the significant advantage of ease in manufacturing. No extensive rib structure or other actuation backing structure is required, as these actuators can be applied directly to an easy-to-manufacture flat surface. Any mission with a surface flatness requirement for a panel or reflector structure could adopt this actuator array concept to create lighter structures and enable improved performance on orbit. The thermal environment on orbit tends to include variations in temperature during shadowing or changes in angle. Because of this, a purely passive system is not an effective way to maintain flatness at the scale of microns over several meters. This technology is specifically referring to correcting thermal deformations of a large, flat structure to a specified tolerance. However, the underlying concept (an array of actuators on the back face of a panel for correcting the flatness of the front face) could be extended to many applications, including energy harvesting, changing the wavefront of an optical system, and correcting the flatness of an array of segmented deployable panels.

  9. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

    PubMed Central

    Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason

    2011-01-01

    Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains. PMID:21934779

  10. Wavefront control of large optical systems

    NASA Technical Reports Server (NTRS)

    Meinel, Aden B.; Meinel, Marjorie P.; Breckinridge, J. B.

    1990-01-01

    Several levels of wavefront control are necessary for the optimum performance of very large telescopes, especially segmented ones like the Large Deployable Reflector. In general, the major contributors to wavefront error are the segments of the large primary mirror. Wavefront control at the largest optical surface may not be the optimum choice because of the mass and inaccessibility of the elements of this surface that require upgrading. The concept of two-stage optics was developed to permit a poor wavefront from the large optics to be upgraded by means of a wavefront corrector at a small exit pupil of the system.

  11. Dynamic wavefront creation for processing units using a hybrid compactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puthoor, Sooraj; Beckmann, Bradford M.; Yudanov, Dmitri

    A method, a non-transitory computer readable medium, and a processor for repacking dynamic wavefronts during program code execution on a processing unit, each dynamic wavefront including multiple threads are presented. If a branch instruction is detected, a determination is made whether all wavefronts following a same control path in the program code have reached a compaction point, which is the branch instruction. If no branch instruction is detected in executing the program code, a determination is made whether all wavefronts following the same control path have reached a reconvergence point, which is a beginning of a program code segment tomore » be executed by both a taken branch and a not taken branch from a previous branch instruction. The dynamic wavefronts are repacked with all threads that follow the same control path, if all wavefronts following the same control path have reached the branch instruction or the reconvergence point.« less

  12. An Improved Wavefront Control Algorithm for Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Basinger, Scott A.; Redding, David C.

    2008-01-01

    Wavefront sensing and control is required throughout the mission lifecycle of large space telescopes such as James Webb Space Telescope (JWST). When an optic of such a telescope is controlled with both surface-deforming and rigid-body actuators, the sensitivity-matrix obtained from the exit pupil wavefront vector divided by the corresponding actuator command value can sometimes become singular due to difference in actuator types and in actuator command values. In this paper, we propose a simple approach for preventing a sensitivity-matrix from singularity. We also introduce a new "minimum-wavefront and optimal control compensator". It uses an optimal control gain matrix obtained by feeding back the actuator commands along with the measured or estimated wavefront phase information to the estimator, thus eliminating the actuator modes that are not observable in the wavefront sensing process.

  13. Filter Function for Wavefront Sensing Over a Field of View

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A filter function has been derived as a means of optimally weighting the wavefront estimates obtained in image-based phase retrieval performed at multiple points distributed over the field of view of a telescope or other optical system. When the data obtained in wavefront sensing and, more specifically, image-based phase retrieval, are used for controlling the shape of a deformable mirror or other optic used to correct the wavefront, the control law obtained by use of the filter function gives a more balanced optical performance over the field of view than does a wavefront-control law obtained by use of a wavefront estimate obtained from a single point in the field of view.

  14. KAPAO-Alpha: An On-The-Sky Testbed for Adaptive Optics on Small Aperture Telescopes

    NASA Astrophysics Data System (ADS)

    Morrison, Will; Choi, P. I.; Severson, S. A.; Spjut, E.; Contreras, D. S.; Gilbreth, B. N.; McGonigle, L. P.; Rudy, A. R.; Xue, A.; Baranec, C.; Riddle, R.

    2012-05-01

    We present initial in-lab and on-sky results of a natural guide star adaptive optics instrument, KAPAO-Alpha, being deployed on Pomona College’s 1-meter telescope at Table Mountain Observatory. The instrument is an engineering prototype designed to help us identify and solve design and integration issues before building KAPAO, a low-cost, dual-band, natural guide star AO system currently in active development and scheduled for first light in 2013. The Alpha system operates at visible wavelengths, employs Shack-Hartmann wavefront sensing, and is assembled entirely from commercially available components that include: off-the-shelf optics, a 140-actuator BMC deformable mirror, a high speed SciMeasure Lil’ Joe camera, and an EMCCD for science image acquisition. Wavefront reconstruction operating at 1-kHz speeds is handled with a consumer-grade computer running custom software adopted from the Robo-AO project. The assembly and integration of the Alpha instrument has been undertaken as a Pomona College undergraduate thesis. As part of the larger KAPAO project, it is supported by the National Science Foundation under Grant No. 0960343.

  15. Wavefront control in adaptive microscopy using Shack-Hartmann sensors with arbitrarily shaped pupils.

    PubMed

    Dong, Bing; Booth, Martin J

    2018-01-22

    In adaptive optical microscopy of thick biological tissue, strong scattering and aberrations can change the effective pupil shape by rendering some Shack-Hartmann spots unusable. The change of pupil shape leads to a change of wavefront reconstruction or control matrix that should be updated accordingly. Modified slope and modal wavefront control methods based on measurements of a Shack-Hartmann wavefront sensor are proposed to accommodate an arbitrarily shaped pupil. Furthermore, we present partial wavefront control methods that remove specific aberration modes like tip, tilt and defocus from the control loop. The proposed control methods were investigated and compared by simulation using experimentally obtained aberration data. The performance was then tested experimentally through closed-loop aberration corrections using an obscured pupil.

  16. Advances in Focal Plane Wavefront Estimation for Directly Imaging Exoplanets

    NASA Astrophysics Data System (ADS)

    Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Groff, Tyler Dean

    2015-01-01

    To image cold exoplanets directly in visible light, an instrument on a telescope needs to suppress starlight by about 9 orders of magnitude at small separations from the star. A coronagraph changes the point spread function to create regions of high contrast where exoplanets or disks can be seen. Aberrations on the optics degrade the contrast by several orders of magnitude, so all high-contrast imaging systems incorporate one or more deformable mirrors (DMs) to recover regions of high contrast. With a coronagraphic instrument planned for the WFIRST-AFTA space telescope, there is a pressing need for faster, more robust estimation and control schemes for the DMs. Non-common path aberrations limit conventional phase conjugation schemes to medium star-to-planet contrast ratios of about 1e-6. High-contrast imaging requires estimation and control of both phase and amplitude in the same beam path as the science camera. Field estimation is a challenge since only intensity is measured; the most common approach, including that planned for WFIRST-AFTA, is to use DMs to create diversity, via pairs of small probe shapes, thereby allowing disambiguation of the electric field. Most implementations of DM Diversity require at least five images per electric field estimate and require narrowband measurements. This paper describes our new estimation algorithms that improve the speed (by using fewer images) and bandwidth of focal plane wavefront estimation. For narrowband estimation, we are testing nonlinear, recursive algorithms such as an iterative extended Kalman filter (IEKF) to use three images each iteration and build better, more robust estimates. We are also exploring the use of broadband estimation without the need for narrowband sub-filters and measurements. Here we present simulations of these algorithms with realistic noise and small signals to show how they might perform for WFIRST-AFTA. Once validated in simulations, we will test these algorithms experimentally in Princeton's HCIL and in the Jet Propulsion Laboratory's (JPL's) High Contrast Imaging Testbed (HCIT). Developing these faster, more robust wavefront estimators is a crucial for increasing the science yield of the WFIRST-AFTA coronagraphic instrument.

  17. The Fourier-Kelvin Stellar Interferometer a Low Complexity, Low Cost Space Mission for High-Resolution Astronomy and Direct Exoplanet Detection

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Danchi, W. C.; Deming, L. D.; Richardson, L. J.; Kuchner, M. J.; Seager, S.; Frey, B. J.; Martino, A. J.; Lee, K. A.; Zuray, M.; hide

    2006-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for a spacecraft-borne nulling interferometer for high-resolution astronomy and the direct detection of exoplanets and assay of their environments and atmospheres. FKSI is a high angular resolution system operating in the near to midinfrared spectral region and is a scientific and technological pathfinder to the Darwin and Terrestrial Planet Finder (TPF) missions. The instrument is configured with an optical system consisting, depending on configuration, of two 0.5 - 1.0 m telescopes on a 12.5 - 20 m boom feeding a symmetric, dual Mach- Zehnder beam combiner. We report on progress on our nulling testbed including the design of an optical pathlength null-tracking control system and development of a testing regime for hollow-core fiber waveguides proposed for use in wavefront cleanup. We also report results of integrated simulation studies of the planet detection performance of FKSI and results from an in-depth control system and residual optical pathlength jitter analysis.

  18. Beam wavefront and farfield control for ICF laser driver

    NASA Astrophysics Data System (ADS)

    Dai, Wanjun; Deng, Wu; Zhang, Xin; Jiang, Xuejun; Zhang, Kun; Zhou, Wei; Zhao, Junpu; Hu, Dongxia

    2010-10-01

    Five main problems of beam wavefront and farfield control in ICF laser driver are synthetically discussed, including control requirements, beam propagation principle, distortions source control, system design and adjustment optimization, active wavefront correction technology. We demonstrate that beam can be propagated well and the divergence angle of the TIL pulses can be improved to less than 60μrad with solving these problems, which meets the requirements of TIL. The results can provide theoretical and experimental support for wavefront and farfield control designing requirements of the next large scale ICF driver.

  19. Multidisciplinary Analysis of the NEXUS Precursor Space Telescope

    NASA Astrophysics Data System (ADS)

    de Weck, Olivier L.; Miller, David W.; Mosier, Gary E.

    2002-12-01

    A multidisciplinary analysis is demonstrated for the NEXUS space telescope precursor mission. This mission was originally designed as an in-space technology testbed for the Next Generation Space Telescope (NGST). One of the main challenges is to achieve a very tight pointing accuracy with a sub-pixel line-of-sight (LOS) jitter budget and a root-mean-square (RMS) wavefront error smaller than λ/50 despite the presence of electronic and mechanical disturbances sources. The analysis starts with the assessment of the performance for an initial design, which turns out not to meet the requirements. Twentyfive design parameters from structures, optics, dynamics and controls are then computed in a sensitivity and isoperformance analysis, in search of better designs. Isoperformance allows finding an acceptable design that is well "balanced" and does not place undue burden on a single subsystem. An error budget analysis shows the contributions of individual disturbance sources. This paper might be helpful in analyzing similar, innovative space telescope systems in the future.

  20. A wavefront compensation approach to segmented mirror figure control

    NASA Technical Reports Server (NTRS)

    Redding, David; Breckenridge, Bill; Sevaston, George; Lau, Ken

    1991-01-01

    We consider the 'figure-control' problem for a spaceborn sub-millimeter wave telescope, the Precision Segmented Reflector Project Focus Mission Telescope. We show that performance of any figure control system is subject to limits on the controllability and observability of the quality of the wavefront. We present a wavefront-compensation method for the Focus Mission Telescope which uses mirror-figure sensors and three-axis segment actuator to directly minimize wavefront errors due to segment position errors. This approach shows significantly better performance when compared with a panel-state-compensation approach.

  1. Initial Performance of the Keck AO Wavefront Controller System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansson, E M; Acton, D S; An, J R

    2001-03-01

    The wavefront controller for the Keck Observatory AO system consists of two separate real-time control loops: a tip-tilt control loop to remove tilt from the incoming wavefront, and a deformable mirror control loop to remove higher-order aberrations. In this paper, we describe these control loops and analyze their performance using diagnostic data acquired during the integration and testing of the AO system on the telescope. Disturbance rejection curves for the controllers are calculated from the experimental data and compared to theory. The residual wavefront errors due to control loop bandwidth are also calculated from the data, and possible improvements tomore » the controller performance are discussed.« less

  2. Wavefront Engineering with Phase Discontinuities: Designer Interfaces for High Performance Planar Optical Components

    DTIC Science & Technology

    2015-08-27

    ABSTRACT The PI and his group opened up new directions of research: the generation of vector beams with metasurfaces that control amplitude, phase...and polarization of wavefronts, the detection of wavefronts using metasurfaces , new metasurfaces for controlling surface plasmon wavefronts and high...performance device applications of metasurfaces on graphene. In the vector beam area they generated radially polarized light with a single

  3. Wavefront control system for the Keck telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J. M., LLNL

    1998-03-01

    The laser guide star adaptive optics system currently being developed for the Keck 2 telescope consists of several major subsystems: the optical bench, wavefront control, user interface and supervisory control, and the laser system. The paper describes the design and implementation of the wavefront control subsystem that controls a 349 actuator deformable mirror for high order correction and tip-tilt mirrors for stabilizing the image and laser positions.

  4. MEMS deformable mirror embedded wavefront sensing and control system

    NASA Astrophysics Data System (ADS)

    Owens, Donald; Schoen, Michael; Bush, Keith

    2006-01-01

    Electrostatic Membrane Deformable Mirror (MDM) technology developed using silicon bulk micro-machining techniques offers the potential of providing low-cost, compact wavefront control systems for diverse optical system applications. Electrostatic mirror construction using bulk micro-machining allows for custom designs to satisfy wavefront control requirements for most optical systems. An electrostatic MDM consists of a thin membrane, generally with a thin metal or multi-layer high-reflectivity coating, suspended over an actuator pad array that is connected to a high-voltage driver. Voltages applied to the array elements deflect the membrane to provide an optical surface capable of correcting for measured optical aberrations in a given system. Electrostatic membrane DM designs are derived from well-known principles of membrane mechanics and electrostatics, the desired optical wavefront control requirements, and the current limitations of mirror fabrication and actuator drive electronics. MDM performance is strongly dependent on mirror diameter and air damping in meeting desired spatial and temporal frequency requirements. In this paper, we present wavefront control results from an embedded wavefront control system developed around a commercially available high-speed camera and an AgilOptics Unifi MDM driver using USB 2.0 communications and the Linux development environment. This new product, ClariFast TM, combines our previous Clarifi TM product offering into a faster more streamlined version dedicated strictly to Hartmann Wavefront sensing.

  5. Keck adaptive optics: control subsystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J.M.; An, J.; Avicola, K.

    1996-03-08

    Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval formore » the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.« less

  6. Wavefront control with a spatial light modulator containing dual-frequency liquid crystal

    NASA Astrophysics Data System (ADS)

    Gu, Dong-Feng; Winker, Bruce; Wen, Bing; Taber, Don; Brackley, Andrew; Wirth, Allan; Albanese, Marc; Landers, Frank

    2004-10-01

    A versatile, scalable wavefront control approach based upon proven liquid crystal (LC) spatial light modulator (SLM) technology was extended for potential use in high-energy near-infrared laser applications. The reflective LC SLM module demonstrated has a two-inch diameter active aperture with 812 pixels. Using an ultra-low absorption transparent conductor in the LC SLM, a high laser damage threshold was demonstrated. Novel dual frequency liquid crystal materials and addressing schemes were implemented to achieve fast switching speed (<1ms at 1.31 microns). Combining this LCSLM with a novel wavefront sensing method, a closed loop wavefront controller is being demonstrated. Compared to conventional deformable mirrors, this non-mechanical wavefront control approach offers substantial improvements in speed (bandwidth), resolution, power consumption and system weight/volume.

  7. Advanced Wavefront Control Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S S; Brase, J M; Avicola, K

    2001-02-21

    Programs at LLNL that involve large laser systems--ranging from the National Ignition Facility to new tactical laser weapons--depend on the maintenance of laser beam quality through precise control of the optical wavefront. This can be accomplished using adaptive optics, which compensate for time-varying aberrations that are often caused by heating in a high-power laser system. Over the past two decades, LLNL has developed a broad capability in adaptive optics technology for both laser beam control and high-resolution imaging. This adaptive optics capability has been based on thin deformable glass mirrors with individual ceramic actuators bonded to the back. In themore » case of high-power lasers, these adaptive optics systems have successfully improved beam quality. However, as we continue to extend our applications requirements, the existing technology base for wavefront control cannot satisfy them. To address this issue, this project studied improved modeling tools to increase our detailed understanding of the performance of these systems, and evaluated novel approaches to low-order wavefront control that offer the possibility of reduced cost and complexity. We also investigated improved beam control technology for high-resolution wavefront control. Many high-power laser systems suffer from high-spatial-frequency aberrations that require control of hundreds or thousands of phase points to provide adequate correction. However, the cost and size of current deformable mirrors can become prohibitive for applications requiring more than a few tens of phase control points. New phase control technologies are becoming available which offer control of many phase points with small low-cost devices. The goal of this project was to expand our wavefront control capabilities with improved modeling tools, new devices that reduce system cost and complexity, and extensions to high spatial and temporal frequencies using new adaptive optics technologies. In FY 99, the second year of this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.« less

  8. Dichroic beamsplitter for high energy laser diagnostics

    DOEpatents

    LaFortune, Kai N [Livermore, CA; Hurd, Randall [Tracy, CA; Fochs, Scott N [Livermore, CA; Rotter, Mark D [San Ramon, CA; Hackel, Lloyd [Livermore, CA

    2011-08-30

    Wavefront control techniques are provided for the alignment and performance optimization of optical devices. A Shack-Hartmann wavefront sensor can be used to measure the wavefront distortion and a control system generates feedback error signal to optics inside the device to correct the wavefront. The system can be calibrated with a low-average-power probe laser. An optical element is provided to couple the optical device to a diagnostic/control package in a way that optimizes both the output power of the optical device and the coupling of the probe light into the diagnostics.

  9. Dual-thread parallel control strategy for ophthalmic adaptive optics.

    PubMed

    Yu, Yongxin; Zhang, Yuhua

    To improve ophthalmic adaptive optics speed and compensate for ocular wavefront aberration of high temporal frequency, the adaptive optics wavefront correction has been implemented with a control scheme including 2 parallel threads; one is dedicated to wavefront detection and the other conducts wavefront reconstruction and compensation. With a custom Shack-Hartmann wavefront sensor that measures the ocular wave aberration with 193 subapertures across the pupil, adaptive optics has achieved a closed loop updating frequency up to 110 Hz, and demonstrated robust compensation for ocular wave aberration up to 50 Hz in an adaptive optics scanning laser ophthalmoscope.

  10. Dual-thread parallel control strategy for ophthalmic adaptive optics

    PubMed Central

    Yu, Yongxin; Zhang, Yuhua

    2015-01-01

    To improve ophthalmic adaptive optics speed and compensate for ocular wavefront aberration of high temporal frequency, the adaptive optics wavefront correction has been implemented with a control scheme including 2 parallel threads; one is dedicated to wavefront detection and the other conducts wavefront reconstruction and compensation. With a custom Shack-Hartmann wavefront sensor that measures the ocular wave aberration with 193 subapertures across the pupil, adaptive optics has achieved a closed loop updating frequency up to 110 Hz, and demonstrated robust compensation for ocular wave aberration up to 50 Hz in an adaptive optics scanning laser ophthalmoscope. PMID:25866498

  11. Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics.

    PubMed

    Baranec, Christoph; Dekany, Richard

    2008-10-01

    We introduce a Shack-Hartmann wavefront sensor for adaptive optics that enables dynamic control of the spatial sampling of an incoming wavefront using a segmented mirror microelectrical mechanical systems (MEMS) device. Unlike a conventional lenslet array, subapertures are defined by either segments or groups of segments of a mirror array, with the ability to change spatial pupil sampling arbitrarily by redefining the segment grouping. Control over the spatial sampling of the wavefront allows for the minimization of wavefront reconstruction error for different intensities of guide source and different atmospheric conditions, which in turn maximizes an adaptive optics system's delivered Strehl ratio. Requirements for the MEMS devices needed in this Shack-Hartmann wavefront sensor are also presented.

  12. Feedback controlled optics with wavefront compensation

    NASA Technical Reports Server (NTRS)

    Breckenridge, William G. (Inventor); Redding, David C. (Inventor)

    1993-01-01

    The sensitivity model of a complex optical system obtained by linear ray tracing is used to compute a control gain matrix by imposing the mathematical condition for minimizing the total wavefront error at the optical system's exit pupil. The most recent deformations or error states of the controlled segments or optical surfaces of the system are then assembled as an error vector, and the error vector is transformed by the control gain matrix to produce the exact control variables which will minimize the total wavefront error at the exit pupil of the optical system. These exact control variables are then applied to the actuators controlling the various optical surfaces in the system causing the immediate reduction in total wavefront error observed at the exit pupil of the optical system.

  13. WFIRST: Managing Telescope Wavefront Stability to Meet Coronagraph Performance

    NASA Astrophysics Data System (ADS)

    Noecker, Martin; Poberezhskiy, Ilya; Kern, Brian; Krist, John; WFIRST System Engineering Team

    2018-01-01

    The WFIRST coronagraph instrument (CGI) needs a stable telescope and active wavefront control to perform coronagraph science with an expected sensitivity of 8x10-9 in the exoplanet-star flux ratio (SNR=10) at 200 milliarcseconds angular separation. With its subnanometer requirements on the stability of its input wavefront error (WFE), the CGI employs a combination of pointing and wavefront control loops and thermo-mechanical stability to meet budget allocations for beam-walk and low-order WFE, which enable stable starlight speckles on the science detector that can be removed by image subtraction. We describe the control strategy and the budget framework for estimating and budgeting the elements of wavefront stability, and the modeling strategy to evaluate it.

  14. The Goddard Space Flight Center (GSFC) robotics technology testbed

    NASA Technical Reports Server (NTRS)

    Schnurr, Rick; Obrien, Maureen; Cofer, Sue

    1989-01-01

    Much of the technology planned for use in NASA's Flight Telerobotic Servicer (FTS) and the Demonstration Test Flight (DTF) is relatively new and untested. To provide the answers needed to design safe, reliable, and fully functional robotics for flight, NASA/GSFC is developing a robotics technology testbed for research of issues such as zero-g robot control, dual arm teleoperation, simulations, and hierarchical control using a high level programming language. The testbed will be used to investigate these high risk technologies required for the FTS and DTF projects. The robotics technology testbed is centered around the dual arm teleoperation of a pair of 7 degree-of-freedom (DOF) manipulators, each with their own 6-DOF mini-master hand controllers. Several levels of safety are implemented using the control processor, a separate watchdog computer, and other low level features. High speed input/output ports allow the control processor to interface to a simulation workstation: all or part of the testbed hardware can be used in real time dynamic simulation of the testbed operations, allowing a quick and safe means for testing new control strategies. The NASA/National Bureau of Standards Standard Reference Model for Telerobot Control System Architecture (NASREM) hierarchical control scheme, is being used as the reference standard for system design. All software developed for the testbed, excluding some of simulation workstation software, is being developed in Ada. The testbed is being developed in phases. The first phase, which is nearing completion, and highlights future developments is described.

  15. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds †

    PubMed Central

    Frank, Jared A.; Brill, Anthony; Kapila, Vikram

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464

  16. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.

    PubMed

    Frank, Jared A; Brill, Anthony; Kapila, Vikram

    2016-08-20

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.

  17. Phase retrieval on broadband and under-sampled images for the JWST testbed telescope

    NASA Astrophysics Data System (ADS)

    Smith, J. Scott; Aronstein, David L.; Dean, Bruce H.; Acton, D. Scott

    2009-08-01

    The James Webb Space Telescope (JWST) consists of an optical telescope element (OTE) that sends light to five science instruments. The initial steps for commissioning the telescope are performed with the Near-Infrared Camera (NIRCam) instrument, but low-order optical aberrations in the remaining science instruments must be determined (using phase retrieval) in order to ensure good performance across the entire field of view. These remaining instruments were designed to collect science data, and not to serve as wavefront sensors. Thus, the science cameras are not ideal phase-retrieval imagers for several reasons: they record under-sampled data and have a limited range of diversity defocus, and only one instrument has an internal, narrowband filter. To address these issues, we developed the capability of sensing these aberrations using an extension of image-based iterative-transform phase retrieval called Variable Sampling Mapping (VSM). The results show that VSM-based phase retrieval is capable of sensing low-order aberrations to a few nm RMS from images that are consistent with the non-ideal conditions expected during JWST multi-field commissioning. The algorithm is validated using data collected from the JWST Testbed Telescope (TBT).

  18. Phase-Controlled Magnetic Mirror for Wavefront Correction

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Wollack, Edward

    2011-01-01

    Typically, light interacts with matter via the electric field and interaction with weakly bound electrons. In a magnetic mirror, a patterned nanowire is fabricated over a metallic layer with a dielectric layer in between. Oscillation of the electrons in the nanowires in response to the magnetic field of incident photons causes a re-emission of photons and operation as a "magnetic mirror." By controlling the index of refraction in the dielectric layer using a local applied voltage, the phase of the emitted radiation can be controlled. This allows electrical modification of the reflected wavefront, resulting in a deformable mirror that can be used for wavefront control. Certain applications require wavefront quality in the few-nanometer regime, which is a major challenge for optical fabrication and alignment of mirrors or lenses. The use of a deformable magnetic mirror allows for a device with no moving parts that can modify the phase of incident light over many spatial scales, potentially with higher resolution than current approaches. Current deformable mirrors modify the incident wavefront by using nano-actuation of a substrate to physically bend the mirror to a desired shape. The purpose of the innovation is to modify the incident wavefront for the purpose of correction of fabrication and alignment-induced wavefront errors at the system level. The advanced degree of precision required for some applications such as gravity wave detection (LISA - Laser Interferometer Space Antenna) or planet finding (FKSI - Fourier-Kelvin Stellar Interferometer) requires wavefront control at the limits of the current state of the art. All the steps required to fabricate a magnetic mirror have been demonstrated. The modification is to apply a bias voltage to the dielectric layer so as to change the index of refraction and modify the phase of the reflected radiation. Light is reflected off the device and collected by a phase-sensing interferometer. The interferometer determines the initial wavefront of the device and fore optics. A wavefront correction is calculated, and voltage profile for each nanowire strip is determined. The voltage is applied, modifying the local index of refraction of the dielectric under the nanowire strip. This modifies the phase of the reflected light to allow wavefront correction.

  19. Description of the SSF PMAD DC testbed control system data acquisition function

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.; Mackin, Michael; Wright, Theodore

    1992-01-01

    The NASA LeRC in Cleveland, Ohio has completed the development and integration of a Power Management and Distribution (PMAD) DC Testbed. This testbed is a reduced scale representation of the end to end, sources to loads, Space Station Freedom Electrical Power System (SSF EPS). This unique facility is being used to demonstrate DC power generation and distribution, power management and control, and system operation techniques considered to be prime candidates for the Space Station Freedom. A key capability of the testbed is its ability to be configured to address system level issues in support of critical SSF program design milestones. Electrical power system control and operation issues like source control, source regulation, system fault protection, end-to-end system stability, health monitoring, resource allocation, and resource management are being evaluated in the testbed. The SSF EPS control functional allocation between on-board computers and ground based systems is evolving. Initially, ground based systems will perform the bulk of power system control and operation. The EPS control system is required to continuously monitor and determine the current state of the power system. The DC Testbed Control System consists of standard controllers arranged in a hierarchical and distributed architecture. These controllers provide all the monitoring and control functions for the DC Testbed Electrical Power System. Higher level controllers include the Power Management Controller, Load Management Controller, Operator Interface System, and a network of computer systems that perform some of the SSF Ground based Control Center Operation. The lower level controllers include Main Bus Switch Controllers and Photovoltaic Controllers. Power system status information is periodically provided to the higher level controllers to perform system control and operation. The data acquisition function of the control system is distributed among the various levels of the hierarchy. Data requirements are dictated by the control system algorithms being implemented at each level. A functional description of the various levels of the testbed control system architecture, the data acquisition function, and the status of its implementationis presented.

  20. Optimal wavefront control for adaptive segmented mirrors

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Goodman, Joseph W.

    1989-01-01

    A ground-based astronomical telescope with a segmented primary mirror will suffer image-degrading wavefront aberrations from at least two sources: (1) atmospheric turbulence and (2) segment misalignment or figure errors of the mirror itself. This paper describes the derivation of a mirror control feedback matrix that assumes the presence of both types of aberration and is optimum in the sense that it minimizes the mean-squared residual wavefront error. Assumptions of the statistical nature of the wavefront measurement errors, atmospheric phase aberrations, and segment misalignment errors are made in the process of derivation. Examples of the degree of correlation are presented for three different types of wavefront measurement data and compared to results of simple corrections.

  1. Wavefront correction for static and dynamic aberrations to within 1 second of the system shot in the NIF Beamlet demonstration facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, R.; Kartz, M.; Behrendt, W.

    1996-10-01

    The laser wavefront of the NIF Beamlet demonstration system is corrected for static aberrations with a wavefront control system. The system operates closed loop with a probe beam prior to a shot and has a loop bandwidth of about 3 Hz. However, until recently the wavefront control system was disabled several minutes prior to the shot to allow time to manually reconfigure its attenuators and probe beam insertion mechanism to shot mode. Thermally-induced dynamic variations in gas density in the Beamlet main beam line produce significant wavefront error. After about 5-8 seconds, the wavefront error has increased to a new,more » higher level due to turbulence- induced aberrations no longer being corrected- This implies that there is a turbulence-induced aberration noise bandwidth of less than one Hertz, and that the wavefront controller could correct for the majority of turbulence-induced aberration (about one- third wave) by automating its reconfiguration to occur within one second of the shot, This modification was recently implemented on Beamlet; we call this modification the t{sub 0}-1 system.« less

  2. Telescope Multi-Field Wavefront Control with a Kalman Filter

    NASA Technical Reports Server (NTRS)

    Lou, John Z.; Redding, David; Sigrist, Norbert; Basinger, Scott

    2008-01-01

    An effective multi-field wavefront control (WFC) approach is demonstrated for an actuated, segmented space telescope using wavefront measurements at the exit pupil, and the optical and computational implications of this approach are discussed. The integration of a Kalman Filter as an optical state estimator into the wavefront control process to further improve the robustness of the optical alignment of the telescope will also be discussed. Through a comparison of WFC performances between on-orbit and ground-test optical system configurations, the connection (and a possible disconnection) between WFC and optical system alignment under these circumstances are analyzed. Our MACOS-based computer simulation results will be presented and discussed.

  3. Implementation and on-sky results of an optimal wavefront controller for the MMT NGS adaptive optics system

    NASA Astrophysics Data System (ADS)

    Powell, Keith B.; Vaitheeswaran, Vidhya

    2010-07-01

    The MMT observatory has recently implemented and tested an optimal wavefront controller for the NGS adaptive optics system. Open loop atmospheric data collected at the telescope is used as the input to a MATLAB based analytical model. The model uses nonlinear constrained minimization to determine controller gains and optimize the system performance. The real-time controller performing the adaptive optics close loop operation is implemented on a dedicated high performance PC based quad core server. The controller algorithm is written in C and uses the GNU scientific library for linear algebra. Tests at the MMT confirmed the optimal controller significantly reduced the residual RMS wavefront compared with the previous controller. Significant reductions in image FWHM and increased peak intensities were obtained in J, H and K-bands. The optimal PID controller is now operating as the baseline wavefront controller for the MMT NGS-AO system.

  4. Terrestrial Planet Finder Interferometer Technology Status and Plans

    NASA Technical Reports Server (NTRS)

    Lawson, Perter R.; Ahmed, A.; Gappinger, R. O.; Ksendzov, A.; Lay, O. P.; Martin, S. R.; Peters, R. D.; Scharf, D. P.; Wallace, J. K.; Ware, B.

    2006-01-01

    A viewgraph presentation on the technology status and plans for Terrestrial Planet Finder Interferometer is shown. The topics include: 1) The Navigator Program; 2) TPF-I Project Overview; 3) Project Organization; 4) Technology Plan for TPF-I; 5) TPF-I Testbeds; 6) Nulling Error Budget; 7) Nulling Testbeds; 8) Nulling Requirements; 9) Achromatic Nulling Testbed; 10) Single Mode Spatial Filter Technology; 11) Adaptive Nuller Testbed; 12) TPF-I: Planet Detection Testbed (PDT); 13) Planet Detection Testbed Phase Modulation Experiment; and 14) Formation Control Testbed.

  5. Wavefront error sensing for LDR

    NASA Technical Reports Server (NTRS)

    Tubbs, Eldred F.; Glavich, T. A.

    1988-01-01

    Wavefront sensing is a significant aspect of the LDR control problem and requires attention at an early stage of the control system definition and design. A combination of a Hartmann test for wavefront slope measurement and an interference test for piston errors of the segments was examined and is presented as a point of departure for further discussion. The assumption is made that the wavefront sensor will be used for initial alignment and periodic alignment checks but that it will not be used during scientific observations. The Hartmann test and the interferometric test are briefly examined.

  6. Adaptive controller for a strength testbed for aircraft structures

    NASA Astrophysics Data System (ADS)

    Laperdin, A. I.; Yurkevich, V. D.

    2017-07-01

    The problem of control system design for a strength testbed of aircraft structures is considered. A method for calculating the parameters of a proportional-integral controller (control algorithm) using the time-scale separation method for the testbed taking into account the dead time effect in the control loop is presented. An adaptive control algorithm structure is proposed which limits the amplitude of high-frequency oscillations in the control system with a change in the direction of motion of the rod of the hydraulic cylinders and provides the desired accuracy and quality of transients at all stages of structural loading history. The results of tests of the developed control system with the adaptive control algorithm on an experimental strength testbed for aircraft structures are given.

  7. Recent progress on external occulter technology for imaging exosolar planets

    NASA Astrophysics Data System (ADS)

    Kasdin, N. J.; Vanderbei, R. J.; Sirbu, D.; Samuels, J.; Shaklan, S.; Lisman, D.; Thomson, M.; Cady, E.; Martin, S.

    Imaging planets orbiting nearby stars requires a system for suppressing the host starlight by at least ten orders of magnitude. One such approach uses an external occulter, a satellite flying far from the telescope and employing a large screen, or starshade, to suppress the incoming starlight. This trades the added complexity of building the precisely shaped starshade and flying it in formation against simplifications in the telescope since extremely precise wavefront control is no longer necessary. Much progress has been made recently in designing, testing and manufacturing starshade technology. In this paper we describe the design of starshades and report on recent accomplishments in manufacturing and measuring a prototype occulter petal as part of NASA's first Technology Development for Exoplanet Missions (TDEM) program. We demonstrate that the as-built petal is consistent with a full-size occulter achieving better than 10-10 contrast. We also discuss laboratory testing at the Princeton Occulter Testbed. These experiments use sub-scale, long-distance beam propagation to verify the diffraction analysis associated with occulter starlight suppression. We demonstrate roughly 10-10 suppression in the laboratory and discuss the important challenges and limitations.

  8. The IFS for WFIRST CGI: Science Requirements to Design

    NASA Astrophysics Data System (ADS)

    Groff, Tyler; Gong, Qian; Mandell, Avi M.; Zimmerman, Neil; Rizzo, Maxime; McElwain, Michael; harvey, david; Saxena, Prabal; cady, eric; mejia prada, camilo

    2018-01-01

    Direct Imaging of exoplanets using a coronagraph has become a major field of research both on the ground and in space. Key to the science of direct imaging is the spectroscopic capabilities of the instrument, our ability to extract spectra, and measure the abundance of molecular species such as Methane. To take these spectra, the WFIRST coronagraph instrument (CGI) uses an integral field spectrograph (IFS), which encodes the spectrum into a two-dimensional image on the detector. This results in more efficient detection and characterization of targets, and the spectral information is critical to achieving detection limits below the speckle floor of the imager. The CGI IFS operates in three 18% bands spanning 600nm to 970nm at a nominal spectral resolution of R50. We present the current science and engineering requirements for the IFS design, the instrument design, anticipated performance, and how the calibration is integrated into the focal plane wavefront control algorithms. We also highlight the role of the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) at the JPL High Contrast Imaging Testbed to demonstrate performance and validate calibration methodologies for the flight instrument.

  9. Development of Hardware-in-the-loop Microgrid Testbed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Bailu; Prabakar, Kumaraguru; Starke, Michael R

    2015-01-01

    A hardware-in-the-loop (HIL) microgrid testbed for the evaluation and assessment of microgrid operation and control system has been presented in this paper. The HIL testbed is composed of a real-time digital simulator (RTDS) for modeling of the microgrid, multiple NI CompactRIOs for device level control, a prototype microgrid energy management system (MicroEMS), and a relay protection system. The applied communication-assisted hybrid control system has been also discussed. Results of function testing of HIL controller, communication, and the relay protection system are presented to show the effectiveness of the proposed HIL microgrid testbed.

  10. End-To-End performance test of the LINC-NIRVANA Wavefront-Sensor system.

    NASA Astrophysics Data System (ADS)

    Berwein, Juergen; Bertram, Thomas; Conrad, Al; Briegel, Florian; Kittmann, Frank; Zhang, Xiangyu; Mohr, Lars

    2011-09-01

    LINC-NIRVANA is an imaging Fizeau interferometer, for use in near infrared wavelengths, being built for the Large Binocular Telescope. Multi-conjugate adaptive optics (MCAO) increases the sky coverage and the field of view over which diffraction limited images can be obtained. For its MCAO implementation, Linc-Nirvana utilizes four total wavefront sensors; each of the two beams is corrected by both a ground-layer wavefront sensor (GWS) and a high-layer wavefront sensor (HWS). The GWS controls the adaptive secondary deformable mirror (DM), which is based on an DSP slope computing unit. Whereas the HWS controls an internal DM via computations provided by an off-the-shelf multi-core Linux system. Using wavefront sensor data collected from a prior lab experiment, we have shown via simulation that the Linux based system is sufficient to operate at 1kHz, with jitter well below the needs of the final system. Based on that setup we tested the end-to-end performance and latency through all parts of the system which includes the camera, the wavefront controller, and the deformable mirror. We will present our loop control structure and the results of those performance tests.

  11. Development of a scalable generic platform for adaptive optics real time control

    NASA Astrophysics Data System (ADS)

    Surendran, Avinash; Burse, Mahesh P.; Ramaprakash, A. N.; Parihar, Padmakar

    2015-06-01

    The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (AO) system, the generation of the Deformable Mirror (DM) control voltages from the Wavefront Sensor (WFS) measurements is usually through the multiplication of the wavefront slopes with a predetermined reconstructor matrix. The ability to access several hundred hard multipliers and memories concurrently in an FPGA allows performance far beyond that of a modern CPU or GPU for tasks with a well-defined structure such as Adaptive Optics control. The target of the current project is to generate a signal for a real time wavefront correction, from the signals coming from a Wavefront Sensor, wherein the system would be flexible to accommodate all the current Wavefront Sensing techniques and also the different methods which are used for wavefront compensation. The system should also accommodate for different data transmission protocols (like Ethernet, USB, IEEE 1394 etc.) for transmitting data to and from the FPGA device, thus providing a more flexible platform for Adaptive Optics control. Preliminary simulation results for the formulation of the platform, and a design of a fully scalable slope computer is presented.

  12. Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres

    NASA Astrophysics Data System (ADS)

    Tzang, Omer; Caravaca-Aguirre, Antonio M.; Wagner, Kelvin; Piestun, Rafael

    2018-06-01

    Recent progress in wavefront shaping has enabled control of light propagation inside linear media to focus and image through scattering objects. In particular, light propagation in multimode fibres comprises complex intermodal interactions and rich spatiotemporal dynamics. Control of physical phenomena in multimode fibres and its applications are in their infancy, opening opportunities to take advantage of complex nonlinear modal dynamics. Here, we demonstrate a wavefront shaping approach for controlling nonlinear phenomena in multimode fibres. Using a spatial light modulator at the fibre input, real-time spectral feedback and a genetic algorithm optimization, we control a highly nonlinear multimode stimulated Raman scattering cascade and its interplay with four-wave mixing via a flexible implicit control on the superposition of modes coupled into the fibre. We show versatile spectrum manipulations including shifts, suppression, and enhancement of Stokes and anti-Stokes peaks. These demonstrations illustrate the power of wavefront shaping to control and optimize nonlinear wave propagation.

  13. Efficacy of predictive wavefront control for compensating aero-optical aberrations

    NASA Astrophysics Data System (ADS)

    Goorskey, David J.; Schmidt, Jason; Whiteley, Matthew R.

    2013-07-01

    Imaging and laser beam propagation from airborne platforms are degraded by dynamic aberrations due to air flow around the aircraft, aero-mechanical distortions and jitter, and free atmospheric turbulence. For certain applications, like dim-object imaging, free-space optical communications, and laser weapons, adaptive optics (AO) is necessary to compensate for the aberrations in real time. Aero-optical flow is a particularly interesting source of aberrations whose flowing structures can be exploited by adaptive and predictive AO controllers, thereby realizing significant performance gains. We analyze dynamic aero-optical wavefronts to determine the pointing angles at which predictive wavefront control is more effective than conventional, fixed-gain, linear-filter control. It was found that properties of the spatial decompositions and temporal statistics of the wavefronts are directly traceable to specific features in the air flow. Furthermore, the aero-optical wavefront aberrations at the side- and aft-looking angles were the most severe, but they also benefited the most from predictive AO.

  14. Integration of advanced teleoperation technologies for control of space robots

    NASA Technical Reports Server (NTRS)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  15. Adaptive optics for high-contrast imaging of faint substellar companions

    NASA Astrophysics Data System (ADS)

    Morzinski, Katie M.

    Direct imaging of faint objects around bright stars is challenging because the primary star's diffracted light can overwhelm low-mass companions. Nevertheless, advances in adaptive optics (AO) and high-contrast imaging have revealed the first pictures of extrasolar planets. In this dissertation I employ today's high-contrast AO techniques to image brown dwarfs around stars in the nearby Hyades cluster. Furthermore, I prepare for the next generation of high-contrast AO instrumentation, by qualifying MEMS deformable mirrors for wavefront control in the Gemini Planet Imager. In Part I, I present discovery of 3 new brown dwarfs and 36 low-mass stellar companions to 85 stars in the Hyades, imaged with AO at Keck and Lick Observatories. The "locally-optimized combination of images" (LOCI) image-diversity technique filters out the primary star to reveal faint companions. This survey is complete to the hydrogen-burning limit at separations beyond 20 AU. In the complete sample, multiplicity increases as primary star mass decreases. Additionally, the brown dwarfs are at wide >150 AU separations. Finding this preference for low binding-energy systems is an unexpected result, as the Hyades is 625 Myr old and dynamically relaxed. Future work will continue to explore this trend to understand the dynamical and star formation history of the Hyades. The brown dwarfs are near interesting transition regimes for low-mass objects; therefore, characterizing their atmospheres with spectrophotometry will serve as an important benchmark for our understanding of these cool objects. In Part II, I demonstrate micro-electro-mechanical systems (MEMS) deformable mirrors for high-order wavefront control in the Gemini Planet Imager (GPI). MEMS micromirrors have thousands of degrees of freedom and represent a significant cost efficiency over conventional glass deformable mirrors, making them ideal for high-contrast AO. In Chapter 7, I present experimental evidence that MEMS actuators function well and are stable and repeatable at the sub-nm level over the course of an hour. In Chapter 8, I prove MEMS ability to correct high-order Kolmogorov turbulence and maintain the high-contrast "dark hole" in the GPI woofer-tweeter architecture. Finally, in Chapter 9, I analyze MEMS performance on sky with Villages, a telescope testbed for MEMS technology, visible-light AO, and open-loop control. The MEMS remains repeatably flat and controllable over ˜4 years and ˜800 hours of operation. Open loop control of the hysteresis-free MEMS produces a diffraction-limited core in I-band, while internal static errors dominate the on-sky error budget. This work establishes MEMS deformable mirrors as excellent wavefront correctors for high-order AO. The MEMS in GPI will produce a deeper, broader dark hole, allowing for detection and characterization of directly-imaged planets in a fainter, wider search space.

  16. Description of the control system design for the SSF PMAD DC testbed

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.; Kimnach, Greg L.

    1991-01-01

    The Power Management and Distribution (PMAD) DC Testbed Control System for Space Station Freedom was developed using a top down approach based on classical control system and conventional terrestrial power utilities design techniques. The design methodology includes the development of a testbed operating concept. This operating concept describes the operation of the testbed under all possible scenarios. A unique set of operating states was identified and a description of each state, along with state transitions, was generated. Each state is represented by a unique set of attributes and constraints, and its description reflects the degree of system security within which the power system is operating. Using the testbed operating states description, a functional design for the control system was developed. This functional design consists of a functional outline, a text description, and a logical flowchart for all the major control system functions. Described here are the control system design techniques, various control system functions, and the status of the design and implementation.

  17. The NASA/OAST telerobot testbed architecture

    NASA Technical Reports Server (NTRS)

    Matijevic, J. R.; Zimmerman, W. F.; Dolinsky, S.

    1989-01-01

    Through a phased development such as a laboratory-based research testbed, the NASA/OAST Telerobot Testbed provides an environment for system test and demonstration of the technology which will usefully complement, significantly enhance, or even replace manned space activities. By integrating advanced sensing, robotic manipulation and intelligent control under human-interactive supervision, the Testbed will ultimately demonstrate execution of a variety of generic tasks suggestive of space assembly, maintenance, repair, and telescience. The Testbed system features a hierarchical layered control structure compatible with the incorporation of evolving technologies as they become available. The Testbed system is physically implemented in a computing architecture which allows for ease of integration of these technologies while preserving the flexibility for test of a variety of man-machine modes. The development currently in progress on the functional and implementation architectures of the NASA/OAST Testbed and capabilities planned for the coming years are presented.

  18. A Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST)

    NASA Astrophysics Data System (ADS)

    Conti, Alberto; Arenberg, Jonathan; Baldauf, Brian

    2017-01-01

    The “Search for Life” (direct imaging of earth-like planets) will require extremely stable telescopes with apertures in the 10 m to 20 m range. Such apertures are larger than what can be delivered to space using current or planned future launch vehicles. Building and assembling large telescopes in space is therefore likely to require not only multiple launches but importantly assembly in spce. As a result, space-based telescopes with large apertures will require major changes to our conventional telescope design and architecture.Here we report on the concept for the Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST) to demonstrates the on-orbit robotic and/or astronaut assembly of an optical telescope in space. MODEST is a proposed International Space Station (ISS demonstration that will make use of the standard Express Logistics Carriers (ELCs) and can mounted to one of a variety of ISS pallets.MODEST will provides significant risk reduction for the next generation of space observatories, and demonstrates the technology needed to assemble a six-mirror phased telescope. Key modest features include the use of an active primary optical surface with wavefront feedback control to allow on-orbit optimization, and the precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Carbon Fiber Reinforced Polymer (CFRP) that have excellent mechanical and thermal properties, e.g. high stiffness, high modulus, high thermal conductivity, and low thermal expansion. Mirrors built from these materials can be rapidly replicated in a highly cost effective manner, making them an excellent candidate for a low cost, high performance Optical Telescope Assembly paving the way for enabling affordable solutions for the next generation of large aperture space-based telescope.MODEST post-assembly value includes space, ground, and environmental studies, a testbed for new instruments, and a tool for student’s exploration of space.

  19. Wavefront sensors for the active control of earth observation optical instruments

    NASA Astrophysics Data System (ADS)

    Velluet, Marie-Thérèse; Michau, Vincent; Rousset, Gérard

    2018-04-01

    This paper, "Wavefront sensors for the active control of earth observation optical instruments," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  20. The PALM-3000 high-order adaptive optics system for Palomar Observatory

    NASA Astrophysics Data System (ADS)

    Bouchez, Antonin H.; Dekany, Richard G.; Angione, John R.; Baranec, Christoph; Britton, Matthew C.; Bui, Khanh; Burruss, Rick S.; Cromer, John L.; Guiwits, Stephen R.; Henning, John R.; Hickey, Jeff; McKenna, Daniel L.; Moore, Anna M.; Roberts, Jennifer E.; Trinh, Thang Q.; Troy, Mitchell; Truong, Tuan N.; Velur, Viswa

    2008-07-01

    Deployed as a multi-user shared facility on the 5.1 meter Hale Telescope at Palomar Observatory, the PALM-3000 highorder upgrade to the successful Palomar Adaptive Optics System will deliver extreme AO correction in the near-infrared, and diffraction-limited images down to visible wavelengths, using both natural and sodium laser guide stars. Wavefront control will be provided by two deformable mirrors, a 3368 active actuator woofer and 349 active actuator tweeter, controlled at up to 3 kHz using an innovative wavefront processor based on a cluster of 17 graphics processing units. A Shack-Hartmann wavefront sensor with selectable pupil sampling will provide high-order wavefront sensing, while an infrared tip/tilt sensor and visible truth wavefront sensor will provide low-order LGS control. Four back-end instruments are planned at first light: the PHARO near-infrared camera/spectrograph, the SWIFT visible light integral field spectrograph, Project 1640, a near-infrared coronagraphic integral field spectrograph, and 888Cam, a high-resolution visible light imager.

  1. Wavefront sensing and adaptive control in phased array of fiber collimators

    NASA Astrophysics Data System (ADS)

    Lachinova, Svetlana L.; Vorontsov, Mikhail A.

    2011-03-01

    A new wavefront control approach for mitigation of atmospheric turbulence-induced wavefront phase aberrations in coherent fiber-array-based laser beam projection systems is introduced and analyzed. This approach is based on integration of wavefront sensing capabilities directly into the fiber-array transmitter aperture. In the coherent fiber array considered, we assume that each fiber collimator (subaperture) of the array is capable of precompensation of local (onsubaperture) wavefront phase tip and tilt aberrations using controllable rapid displacement of the tip of the delivery fiber at the collimating lens focal plane. In the technique proposed, this tip and tilt phase aberration control is based on maximization of the optical power received through the same fiber collimator using the stochastic parallel gradient descent (SPGD) technique. The coordinates of the fiber tip after the local tip and tilt aberrations are mitigated correspond to the coordinates of the focal-spot centroid of the optical wave backscattered off the target. Similar to a conventional Shack-Hartmann wavefront sensor, phase function over the entire fiber-array aperture can then be retrieved using the coordinates obtained. The piston phases that are required for coherent combining (phase locking) of the outgoing beams at the target plane can be further calculated from the reconstructed wavefront phase. Results of analysis and numerical simulations are presented. Performance of adaptive precompensation of phase aberrations in this laser beam projection system type is compared for various system configurations characterized by the number of fiber collimators and atmospheric turbulence conditions. The wavefront control concept presented can be effectively applied for long-range laser beam projection scenarios for which the time delay related with the double-pass laser beam propagation to the target and back is compared or even exceeds the characteristic time of the atmospheric turbulence change - scenarios when conventional target-in-the-loop phase-locking techniques fail.

  2. Statistical analysis of wavefront fluctuations from measurements of a wave-front sensor

    NASA Astrophysics Data System (ADS)

    Botygina, N. N.; Emaleev, O. N.; Konyaev, P. A.; Lukin, V. P.

    2017-11-01

    Measurements of the wave front aberrations at the input aperture of the Big Solar Vacuum Telescope (LSVT) were carried out by a wave-front sensor (WFS) of an adaptive optical system when the controlled deformable mirror was replaced by a plane one.

  3. Avalanche photo diodes in the observatory environment: lucky imaging at 1-2.5 microns

    NASA Astrophysics Data System (ADS)

    Vaccarella, A.; Sharp, R.; Ellis, M.; Singh, S.; Bloxham, G.; Bouchez, A.; Conan, R.; Boz, R.; Bundy, D.; Davies, J.; Espeland, B.; Hart, J.; Herrald, N.; Ireland, M.; Jacoby, G.; Nielsen, J.; Vest, C.; Young, P.; Fordham, B.; Zovaro, A.

    2016-08-01

    The recent availability of large format near-infrared detectors with sub-election readout noise is revolutionizing our approach to wavefront sensing for adaptive optics. However, as with all near-infrared detector technologies, challenges exist in moving from the comfort of the laboratory test-bench into the harsh reality of the observatory environment. As part of the broader adaptive optics program for the GMT, we are developing a near-infrared Lucky Imaging camera for operational deployment at the ANU 2.3 m telescope at Siding Spring Observatory. The system provides an ideal test-bed for the rapidly evolving Selex/SAPHIRA eAPD technology while providing scientific imaging at angular resolution rivalling the Hubble Space Telescope at wavelengths λ = 1.3-2.5 μm.

  4. Sub-pixel spatial resolution wavefront phase imaging

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip (Inventor); Mooney, James T. (Inventor)

    2012-01-01

    A phase imaging method for an optical wavefront acquires a plurality of phase images of the optical wavefront using a phase imager. Each phase image is unique and is shifted with respect to another of the phase images by a known/controlled amount that is less than the size of the phase imager's pixels. The phase images are then combined to generate a single high-spatial resolution phase image of the optical wavefront.

  5. Correction of large amplitude wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Cornelissen, S. A.; Bierden, P. A.; Bifano, T. G.; Webb, R. H.; Burns, S.; Pappas, S.

    2005-12-01

    Recently, a number of research groups around the world have developed ophthalmic instruments capable of in vivo diffraction limited imaging of the human retina. Adaptive optics was used in these systems to compensate for the optical aberrations of the eye and provide high contrast, high resolution images. Such compensation uses a wavefront sensor and a wavefront corrector (usually a deformable mirror) coordinated in a closed- loop control system that continuously works to counteract aberrations. While those experiments produced promising results, the deformable mirrors have had insufficient range of motion to permit full correction of the large amplitude aberrations of the eye expected in a normal population of human subjects. Other retinal imaging systems developed to date with MEMS (micro-electromechanical systems) DMs suffer similar limitations. This paper describes the design, manufacture and testing of a 6um stroke polysilicon surface micromachined deformable mirror that, coupled with an new optical method to double the effective stroke of the MEMS-DM, will permit diffraction-limited retinal imaging through dilated pupils in at least 90% of the human population. A novel optical design using spherical mirrors provides a double pass of the wavefront over the deformable mirror such that a 6um mirror displacement results in 12um of wavefront compensation which could correct for 24um of wavefront error. Details of this design are discussed. Testing of the effective wavefront modification was performed using a commercial wavefront sensor. Results are presented demonstrating improvement in the amplitude of wavefront control using an existing high degree of freedom MEMS deformable mirror.

  6. The telerobot testbed: An architecture for remote servicing

    NASA Technical Reports Server (NTRS)

    Matijevic, J. R.

    1990-01-01

    The NASA/OAST Telerobot Testbed will reach its next increment in development by the end of FY-89. The testbed will have the capability for: force reflection in teleoperation, shared control, traded control, operator designate and relative update. These five capabilities will be shown in a module release and exchange operation using mockups of Orbital Replacement Units (ORU). This development of the testbed shows examples of the technologies needed for remote servicing, particularly under conditions of delay in transmissions to the servicing site. Here, the following topics are presented: the system architecture of the testbed which incorporates these telerobotic technologies for servicing, the implementation of the five capabilities and the operation of the ORU mockups.

  7. Trace explosives sensor testbed (TESTbed)

    NASA Astrophysics Data System (ADS)

    Collins, Greg E.; Malito, Michael P.; Tamanaha, Cy R.; Hammond, Mark H.; Giordano, Braden C.; Lubrano, Adam L.; Field, Christopher R.; Rogers, Duane A.; Jeffries, Russell A.; Colton, Richard J.; Rose-Pehrsson, Susan L.

    2017-03-01

    A novel vapor delivery testbed, referred to as the Trace Explosives Sensor Testbed, or TESTbed, is demonstrated that is amenable to both high- and low-volatility explosives vapors including nitromethane, nitroglycerine, ethylene glycol dinitrate, triacetone triperoxide, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate, and hexahydro-1,3,5-trinitro-1,3,5-triazine. The TESTbed incorporates a six-port dual-line manifold system allowing for rapid actuation between a dedicated clean air source and a trace explosives vapor source. Explosives and explosives-related vapors can be sourced through a number of means including gas cylinders, permeation tube ovens, dynamic headspace chambers, and a Pneumatically Modulated Liquid Delivery System coupled to a perfluoroalkoxy total-consumption microflow nebulizer. Key features of the TESTbed include continuous and pulseless control of trace vapor concentrations with wide dynamic range of concentration generation, six sampling ports with reproducible vapor profile outputs, limited low-volatility explosives adsorption to the manifold surface, temperature and humidity control of the vapor stream, and a graphical user interface for system operation and testing protocol implementation.

  8. Model-Based Wavefront Control for CCAT

    NASA Technical Reports Server (NTRS)

    Redding, David; Lou, John Z.; Kissil, Andy; Bradford, Matt; Padin, Steve; Woody, David

    2011-01-01

    The 25-m aperture CCAT submillimeter-wave telescope will have a primary mirror that is divided into 162 individual segments, each of which is provided with 3 positioning actuators. CCAT will be equipped with innovative Imaging Displacement Sensors (IDS) inexpensive optical edge sensors capable of accurately measuring all segment relative motions. These measurements are used in a Kalman-filter-based Optical State Estimator to estimate wavefront errors, permitting use of a minimum-wavefront controller without direct wavefront measurement. This controller corrects the optical impact of errors in 6 degrees of freedom per segment, including lateral translations of the segments, using only the 3 actuated degrees of freedom per segment. The global motions of the Primary and Secondary Mirrors are not measured by the edge sensors. These are controlled using a gravity-sag look-up table. Predicted performance is illustrated by simulated response to errors such as gravity sag.

  9. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.

    PubMed

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V

    2015-08-24

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.

  10. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing.

    PubMed

    Allegre, O J; Jin, Y; Perrie, W; Ouyang, J; Fearon, E; Edwardson, S P; Dearden, G

    2013-09-09

    We report on new developments in wavefront and polarization control for ultrashort-pulse laser microprocessing. We use two Spatial Light Modulators in combination to structure the optical fields of a picosecond-pulse laser beam, producing vortex wavefronts and radial or azimuthal polarization states. We also carry out the first demonstration of multiple first-order beams with vortex wavefronts and radial or azimuthal polarization states, produced using Computer Generated Holograms. The beams produced are used to nano-structure a highly polished metal surface. Laser Induced Periodic Surface Structures are observed and used to directly verify the state of polarization in the focal plane and help to characterize the optical properties of the setup.

  11. Digital pyramid wavefront sensor with tunable modulation.

    PubMed

    Akondi, Vyas; Castillo, Sara; Vohnsen, Brian

    2013-07-29

    The pyramid wavefront sensor is known for its high sensitivity and dynamic range that can be tuned by mechanically altering its modulation amplitude. Here, a novel modulating digital scheme employing a reflecting phase only spatial light modulator is demonstrated. The use of the modulator allows an easy reconfigurable pyramid with digital control of the apex angle and modulation geometry without the need of any mechanically moving parts. Aberrations introduced by a 140-actuator deformable mirror were simultaneously sensed with the help of a commercial Hartmann-Shack wavefront sensor. The wavefronts reconstructed using the digital pyramid wavefront sensor matched very closely with those sensed by the Hartmann-Shack. It is noted that a tunable modulation is necessary to operate the wavefront sensor in the linear regime and to accurately sense aberrations. Through simulations, it is shown that the wavefront sensor can be extended to astronomical applications as well. This novel digital pyramid wavefront sensor has the potential to become an attractive option in both open and closed loop adaptive optics systems.

  12. Control algorithms and applications of the wavefront sensorless adaptive optics

    NASA Astrophysics Data System (ADS)

    Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen

    2017-10-01

    Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.

  13. Adaptive Optics for Industry and Medicine

    NASA Astrophysics Data System (ADS)

    Dainty, Christopher

    2008-01-01

    pt. 1. Wavefront correctors and control. Liquid crystal lenses for correction of presbyopia (Invited Paper) / Guoqiang Li and Nasser Peyghambarian. Converging and diverging liquid crystal lenses (oral paper) / Andrew X. Kirby, Philip J. W. Hands, and Gordon D. Love. Liquid lens technology for miniature imaging systems: status of the technology, performance of existing products and future trends (invited paper) / Bruno Berge. Carbon fiber reinforced polymer deformable mirrors for high energy laser applications (oral paper) / S. R. Restaino ... [et al.]. Tiny multilayer deformable mirrors (oral paper) / Tatiana Cherezova ... [et al.]. Performance analysis of piezoelectric deformable mirrors (oral paper) / Oleg Soloviev, Mikhail Loktev and Gleb Vdovin. Deformable membrane mirror with high actuator density and distributed control (oral paper) / Roger Hamelinck ... [et al.]. Characterization and closed-loop demonstration of a novel electrostatic membrane mirror using COTS membranes (oral paper) / David Dayton ... [et al.]. Electrostatic micro-deformable mirror based on polymer materials (oral paper) / Frederic Zamkotsian ... [et al.]. Recent progress in CMOS integrated MEMS A0 mirror development (oral paper) / A. Gehner ... [et al.]. Compact large-stroke piston-tip-tilt actuator and mirror (oral paper) / W. Noell ... [et al.]. MEMS deformable mirrors for high performance AO applications (oral paper) / Paul Bierden, Thomas Bifano and Steven Cornelissen. A versatile interferometric test-rig for the investigation and evaluation of ophthalmic AO systems (poster paper) / Steve Gruppetta, Jiang Jian Zhong and Luis Diaz-Santana. Woofer-tweeter adaptive optics (poster paper) / Thomas Farrell and Chris Dainty. Deformable mirrors based on transversal piezoeffect (poster paper) / Gleb Vdovin, Mikhail Loktev and Oleg Soloviev. Low-cost spatial light modulators for ophthalmic applications (poster paper) / Vincente Durán ... [et al.]. Latest MEMS DM developments and the path ahead at Iris AO (poster paper) / Michael A. Helmbrecht ... [et al.]. Electrostatic push pull mirror improvernents in visual optics (poster paper) / S. Bonora and L. Poletto. 25cm bimorph mirror for petawatt laser / S. Bonora ... [et al.]. Hysteresis compensation for piezo deformable mirror (poster paper) / H. Song ... [et al.]. Static and dynamic responses of an adaptive optics ferrofluidic mirror (poster paper) / A. Seaman ... [et al.]. New HDTV (1920 x 1080) phase-only SLM (poster paper) / Stefan Osten and Sven Krueger. Monomorph large aperture deformable mirror for laser applications (poster paper) / J-C Sinquin, J-M Lurcon, C. Guillemard. Low cost, high speed for adaptive optics control (oral paper) / Christopher D. Saunter and Gordon D. Love. Open loop woofer-tweeter adaptive control on the LAO multi-conjugate adaptive optics testbed (oral paper) / Edward Laag, Don Gavel and Mark Ammons -- pt. 2. Wavefront sensors. Wave front sensorless adaptive optics for imaging and microscopy (invited paper) / Martin J. Booth, Delphine Débarre and Tony Wilson. A fundamental limit for wavefront sensing (oral paper) / Carl Paterson. Coherent fibre-bundle wavefront sensor (oral paper) / Brian Vohnsen, I. Iglesias and Pablo Artal. Maximum-likelihood methods in wave-front sensing: nuisance parameters (oral paper) / David Lara, Harrison H. Barrett, and Chris Dainty. Real-time wavefront sensing for ultrafast high-power laser beams (oral paper) / Juan M. Bueno ... [et al.]. Wavefront sensing using a random phase screen (oral paper) / M. Loktev, G. Vdovin and O. Soloviev. Quadri-Wave Lateral Shearing Interferometry: a new mature technique for wave front sensing in adaptive optics (oral paper) / Benoit Wattellier ... [et al.]. In vivo measurement of ocular aberrations with a distorted grating wavefront sensor (oral paper) / P. Harrison ... [et al.]. Position-sensitive detector designed with unusual CMOS layout strategies for a Hartman-Shack wavefront sensor (oral Paper) / Davies W. de Lima Monteiro ... [et al.]. Adaptive optics system to compensate complex-shaped wavefronts (oral paper) / Miguel Ares, and Santiago Royo. A kind of novel linear phase retrieval wavefront sensor and its application in close-loop adaptive optics system (oral paper) / Xinyang Li ... [et al.]. Ophthalmic Shack-Hatmann wavefront sensor applications (oral paper) / Daniel R. Neal. Wave front sensing of an optical vortex and its correction with the help of bimorph mirror (poster paper) / F. A. Starikov ... [et al.]. Recent advances in laser metrology and correction of high numerical aperture laser beams using quadri-wave lateral shearing-interferometry (poster paper) / Benoit Wattellier, Ivan Doudet and William Boucher. Thin film optical metrology using principles of wavefront sensing and interference (poster paper) / D. M. Faichnie, A. H. Greenaway and I. Bain. Direct diffractive image simulation (poster paper) / A. P. Maryasov, N. P. Maryasov, A. P. Layko. High speed smart CMOS sensor for adaptive optics (poster paper) / T. D. Raymond ... [et al.]. Traceable astigmatism measurements for wavefront sensors (poster paper) / S. R. G. Hall, S. D. Knox, R. F. Stevens -- pt. 3. Adaptive optics in vision science. Dual-conjugate adaptive optics instrument for wide-field retinal imaging (oral paper) / Jörgen Thaung, Mette-Owner Petersen and Zoran Popovic. Visual simulation using electromagnetic adaptive-optics (oral paper) / Laurent Vabre ... [et al.]. High-resolution field-of-view widening in human eye retina imaging (oral paper) / Alexander V. Dubinin, Tatyana Yu. Cherezova, Alexis V. Kudryashov. Psychophysical experiments on visual performance with an ocular adaptive optics system (oral paper) / E. Dalimier, J. C. Dainty and J. Barbur. Does the accommodative mechanism of the eye calibrate itself using aberration dynamics? (oral paper) / K. M. Hampson, S. S. Chin and E. A. H. Mallen. A study of field aberrations in the human eye (oral paper) / Alexander V. Goncharov ... [et al.]. Dual wavefront corrector ophthalmic adaptive optics: design and alignment (oral paper) / Alfredo Dubra and David Williams. High speed simultaneous SLO/OCT imaging of the human retina with adaptive optics (oral paper) / M. Pircher ... [et al.]. Characterization of an AO-OCT system (oral paper) / Julia W. Evans ... [et al.]. Adaptive optics optical coherence tomography for retina imaging (oral paper) / Guohua Shi ... [et al.]. Development, calibration and performance of an electromagnetic-mirror-based adaptive optics system for visual optics (oral paper) / Enrique Gambra ... [et al.]. Adaptive eye model (poster paper) / Sergey O. Galetskzy and Alexty V. Kudryashov. Adaptive optics system for retinal imaging based on a pyramid wavefront sensor (poster paper) / Sabine Chiesa ... [et al.]. Modeling of non-stationary dynamic ocular aberrations (poster paper) / Conor Leahy and Chris Dainty. High-order aberrations and accommodation of human eye (poster paper) / Lixia Xue ... [et al.]. Electromagnetic deformable mirror: experimental assessment and first ophthalmic applications (poster paper) / L. Vabre ... [et al.]. Correcting ocular aberrations in optical coherence tomography (poster paper) / Simon Tuohy ... [et al.] -- pt. 4. Adaptive optics in optical storage and microscopy. The application of liquid crystal aberration compensator for the optical disc systems (invited paper) / Masakazu Ogasawara. Commercialization of the adaptive scanning optical microscope (ASOM) (oral paper) / Benjamin Potsaid ... [et al.]. A practical implementation of adaptive optics for aberration compensation in optical microscopy (oral paper) / A. J. Wright ... [et al.]. Active focus locking in an optically sectioning microscope using adaptive optics (poster paper) / S. Poland, A. J. Wright, J. M. Girkin. Towards four dimensional particle tracking for biological applications / Heather I. Campbell ... [et al.]. Adaptive optics for microscopy (poster paper) / Xavier Levecq -- pt. 5. Adaptive optics in lasers. Improved beam quality of a high power Yb: YAG laser (oral paper) / Dennis G. Harris ... [et al.]. Intracavity adaptive optics optimization of an end-pumped Nd:YVO4 laser (oral paper) / Petra Welp, Ulrich Wittrock. New results in high power lasers beam correction (oral paper) / Alexis Kudryashov ... [et al.]. Adaptive optical systems for the Shenguang-III prototype facility (oral paper) / Zeping Yang ... [et al.]. Adaptive optics control of solid-state lasers (poster paper) / Walter Lubeigt ... [et al.]. Gerchberg-Saxton algorithm for multimode beam reshaping (poster paper) / Inna V. Ilyina, Tatyana Yu. Cherezova. New algorithm of combining for spatial coherent beams (poster paper) / Ruofu Yang ... [et al.]. Intracavity mode control of a solid-state laser using a 19-element deformable mirror (poster paper) / Ping Yang ... [et al.] -- pt. 6. Adaptive optics in communication and atmospheric compensation. Fourier image sharpness sensor for laser communications (oral paper) / Kristin N. Walker and Robert K. Tyson. Fast closed-loop adaptive optics system for imaging through strong turbulence layers (oral paper) / Ivo Buske and Wolfgang Riede. Correction of wavefront aberrations and optical communication using aperture synthesis (oral paper) / R. J. Eastwood ... [et al.]. Adaptive optics system for a small telescope (oral paper) / G. Vdovin, M. Loktev and O. Soloviev. Fast correction of atmospheric turbulence using a membrane deformable mirror (poster paper) / Ivan Capraro, Stefano Bonora, Paolo Villoresi. Atmospheric turbulence measurements over a 3km horizontal path with a Shack-Hartmann wavefront sensor (poster paper) / Ruth Mackey, K. Murphy and Chris Dainty. Field-oriented wavefront sensor for laser guide stars (poster paper) / Lidija Bolbasova, Alexander Goncharov and Vladimir Lukin.

  14. Closed-loop focal plane wavefront control with the SCExAO instrument

    NASA Astrophysics Data System (ADS)

    Martinache, Frantz; Jovanovic, Nemanja; Guyon, Olivier

    2016-09-01

    Aims: This article describes the implementation of a focal plane based wavefront control loop on the high-contrast imaging instrument SCExAO (Subaru Coronagraphic Extreme Adaptive Optics). The sensor relies on the Fourier analysis of conventional focal-plane images acquired after an asymmetric mask is introduced in the pupil of the instrument. Methods: This absolute sensor is used here in a closed-loop to compensate for the non-common path errors that normally affects any imaging system relying on an upstream adaptive optics system.This specific implementation was used to control low-order modes corresponding to eight zernike modes (from focus to spherical). Results: This loop was successfully run on-sky at the Subaru Telescope and is used to offset the SCExAO deformable mirror shape used as a zero-point by the high-order wavefront sensor. The paper details the range of errors this wavefront-sensing approach can operate within and explores the impact of saturation of the data and how it can be bypassed, at a cost in performance. Conclusions: Beyond this application, because of its low hardware impact, the asymmetric pupil Fourier wavefront sensor (APF-WFS) can easily be ported in a wide variety of wavefront sensing contexts, for ground- as well space-borne telescopes, and for telescope pupils that can be continuous, segmented or even sparse. The technique is powerful because it measures the wavefront where it really matters, at the level of the science detector.

  15. Solar adaptive optics with the DKIST: status report

    NASA Astrophysics Data System (ADS)

    Johnson, Luke C.; Cummings, Keith; Drobilek, Mark; Gregory, Scott; Hegwer, Steve; Johansson, Erik; Marino, Jose; Richards, Kit; Rimmele, Thomas; Sekulic, Predrag; Wöger, Friedrich

    2014-08-01

    The DKIST wavefront correction system will be an integral part of the telescope, providing active alignment control, wavefront correction, and jitter compensation to all DKIST instruments. The wavefront correction system will operate in four observing modes, diffraction-limited, seeing-limited on-disk, seeing-limited coronal, and limb occulting with image stabilization. Wavefront correction for DKIST includes two major components: active optics to correct low-order wavefront and alignment errors, and adaptive optics to correct wavefront errors and high-frequency jitter caused by atmospheric turbulence. The adaptive optics system is built around a fast tip-tilt mirror and a 1600 actuator deformable mirror, both of which are controlled by an FPGA-based real-time system running at 2 kHz. It is designed to achieve on-axis Strehl of 0.3 at 500 nm in median seeing (r0 = 7 cm) and Strehl of 0.6 at 630 nm in excellent seeing (r0 = 20 cm). We present the current status of the DKIST high-order adaptive optics, focusing on system design, hardware procurements, and error budget management.

  16. Experimental study of an adaptive CFRC reflector for high order wave-front error correction

    NASA Astrophysics Data System (ADS)

    Lan, Lan; Fang, Houfei; Wu, Ke; Jiang, Shuidong; Zhou, Yang

    2018-03-01

    The recent radio frequency communication system developments are generating the need for creating space antennas with lightweight and high precision. The carbon fiber reinforced composite (CFRC) materials have been used to manufacture the high precision reflector. The wave-front errors caused by fabrication and on-orbit distortion are inevitable. The adaptive CFRC reflector has received much attention to do the wave-front error correction. Due to uneven stress distribution that is introduced by actuation force and fabrication, the high order wave-front errors such as print-through error is found on the reflector surface. However, the adaptive CFRC reflector with PZT actuators basically has no control authority over the high order wave-front errors. A new design architecture assembled secondary ribs at the weak triangular surfaces is presented in this paper. The virtual experimental study of the new adaptive CFRC reflector has conducted. The controllability of the original adaptive CFRC reflector and the new adaptive CFRC reflector with secondary ribs are investigated. The virtual experimental investigation shows that the new adaptive CFRC reflector is feasible and efficient to diminish the high order wave-front error.

  17. Optimal wavefront estimation of incoherent sources

    NASA Astrophysics Data System (ADS)

    Riggs, A. J. Eldorado; Kasdin, N. Jeremy; Groff, Tyler

    2014-08-01

    Direct imaging is in general necessary to characterize exoplanets and disks. A coronagraph is an instrument used to create a dim (high-contrast) region in a star's PSF where faint companions can be detected. All coronagraphic high-contrast imaging systems use one or more deformable mirrors (DMs) to correct quasi-static aberrations and recover contrast in the focal plane. Simulations show that existing wavefront control algorithms can correct for diffracted starlight in just a few iterations, but in practice tens or hundreds of control iterations are needed to achieve high contrast. The discrepancy largely arises from the fact that simulations have perfect knowledge of the wavefront and DM actuation. Thus, wavefront correction algorithms are currently limited by the quality and speed of wavefront estimates. Exposures in space will take orders of magnitude more time than any calculations, so a nonlinear estimation method that needs fewer images but more computational time would be advantageous. In addition, current wavefront correction routines seek only to reduce diffracted starlight. Here we present nonlinear estimation algorithms that include optimal estimation of sources incoherent with a star such as exoplanets and debris disks.

  18. Thirty Meter Telescope (TMT) Narrow Field Infrared Adaptive Optics System (NFIRAOS) real-time controller preliminary architecture

    NASA Astrophysics Data System (ADS)

    Kerley, Dan; Smith, Malcolm; Dunn, Jennifer; Herriot, Glen; Véran, Jean-Pierre; Boyer, Corinne; Ellerbroek, Brent; Gilles, Luc; Wang, Lianqi

    2016-08-01

    The Narrow Field Infrared Adaptive Optics System (NFIRAOS) is the first light Adaptive Optics (AO) system for the Thirty Meter Telescope (TMT). A critical component of NFIRAOS is the Real-Time Controller (RTC) subsystem which provides real-time wavefront correction by processing wavefront information to compute Deformable Mirror (DM) and Tip/Tilt Stage (TTS) commands. The National Research Council of Canada - Herzberg (NRC-H), in conjunction with TMT, has developed a preliminary design for the NFIRAOS RTC. The preliminary architecture for the RTC is comprised of several Linux-based servers. These servers are assigned various roles including: the High-Order Processing (HOP) servers, the Wavefront Corrector Controller (WCC) server, the Telemetry Engineering Display (TED) server, the Persistent Telemetry Storage (PTS) server, and additional testing and spare servers. There are up to six HOP servers that accept high-order wavefront pixels, and perform parallelized pixel processing and wavefront reconstruction to produce wavefront corrector error vectors. The WCC server performs low-order mode processing, and synchronizes and aggregates the high-order wavefront corrector error vectors from the HOP servers to generate wavefront corrector commands. The Telemetry Engineering Display (TED) server is the RTC interface to TMT and other subsystems. The TED server receives all external commands and dispatches them to the rest of the RTC servers and is responsible for aggregating several offloading and telemetry values that are reported to other subsystems within NFIRAOS and TMT. The TED server also provides the engineering GUIs and real-time displays. The Persistent Telemetry Storage (PTS) server contains fault tolerant data storage that receives and stores telemetry data, including data for Point-Spread Function Reconstruction (PSFR).

  19. Compact illumination optic with three freeform surfaces for improved beam control.

    PubMed

    Sorgato, Simone; Mohedano, Rubén; Chaves, Julio; Hernández, Maikel; Blen, José; Grabovičkić, Dejan; Benítez, Pablo; Miñano, Juan Carlos; Thienpont, Hugo; Duerr, Fabian

    2017-11-27

    Multi-chip and large size LEDs dominate the lighting market in developed countries these days. Nevertheless, a general optical design method to create prescribed intensity patterns for this type of extended sources does not exist. We present a design strategy in which the source and the target pattern are described by means of "edge wavefronts" of the system. The goal is then finding an optic coupling these wavefronts, which in the current work is a monolithic part comprising up to three freeform surfaces calculated with the simultaneous multiple surface (SMS) method. The resulting optic fully controls, for the first time, three freeform wavefronts, one more than previous SMS designs. Simulations with extended LEDs demonstrate improved intensity tailoring capabilities, confirming the effectiveness of our method and suggesting that enhanced performance features can be achieved by controlling additional wavefronts.

  20. Spoof surface plasmon polaritons excitation and wavefront control by Pancharatnam–Berry phase manipulating metasurface

    NASA Astrophysics Data System (ADS)

    Meng, Yueyu; Ma, Hua; Li, Yongfeng; Feng, Mingde; Wang, Jiafu; Li, Zhiqiang; Qu, Shaobo

    2018-05-01

    Realizing fine control of surface plasmon polaritons (SPPs) and spoof surface plasmon polaritons (SSPPs) is highly desired in many integrated photonic and microwave applications, but the flexibility to control the wavefront of SPPs and SSPPs still need addressing. In this paper, a Pancharatnam–Berry (PB) phase manipulating metasurface (PMM) was designed to achieve SSPPs excitation and wavefront control. Under circular polarization (CP) incidence, simply by designing the rotation angle of the unit cells the reflection phase spatial distribution can be manipulated. By means of different phase profiles on the 2D unit cells array, the SSPPs can be excited with various wavefront shapes, without the need of special excitation structure pattern. Meanwhile, a plasmonic metal is also designed to support SSPPs with both TE and TM polarizations, which can efficiently guide out the energies from the input CP waves. As a proof of concept, a PB PMM composed of N-shape metallic structure was designed. Through designing the rotation of the unit cells, two typical phase profiles were designed to excite SSPPs in arbitrary slant direction or focusing. This scheme could be used to achieve SSPPs excitation with many other wavefront shapes, and would also enable promising applications in other spectra.

  1. Non-invasive three-dimension control of light between turbid layers using a surface quasi-point light source for precorrection.

    PubMed

    Qiao, Mu; Liu, Honglin; Pang, Guanghui; Han, Shensheng

    2017-08-29

    Manipulating light non-invasively through inhomogeneous media is an attractive goal in many disciplines. Wavefront shaping and optical phase conjugation can focus light to a point. Transmission matrix method can control light on multiple output modes simultaneously. Here we report a non-invasive approach which enables three-dimension (3D) light control between two turbid layers. A digital optical phase conjugation mirror measured and conjugated the diffused wavefront, which originated from a quasi-point source on the front turbid layer and passed through the back turbid layer. And then, because of memory effect, the phase-conjugated wavefront could be used as a carrier wave to transport a pre-calculated wavefront through the back turbid layer. The pre-calculated wavefront could project a desired 3D light field inside the sample, which, in our experiments, consisted of two 220-grid ground glass plates spaced by a 20 mm distance. The controllable range of light, according to the memory effect, was calculated to be 80 mrad in solid angle and 16 mm on z-axis. Due to the 3D light control ability, our approach may find applications in photodynamic therapy and optogenetics. Besides, our approach can also be combined with ghost imaging or compressed sensing to achieve 3D imaging between turbid layers.

  2. Wavefront-Guided versus Non-Wavefront-Guided Photorefractive Keratectomy for Myopia: Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Kobashi, Hidenaga; Kamiya, Kazutaka; Hoshi, Keika; Igarashi, Akihito; Shimizu, Kimiya

    2014-01-01

    Purpose To compare the efficacy, predictability, safety, and induced higher-order aberrations (HOAs) between wavefront-guided and non-wavefront-guided photorefractive keratectomy (PRK). Methods The Cochrane Central Register of Controlled Trials, PubMED, and EMBASE were searched for randomized controlled trials. Trials meeting the selection criteria were quality appraised, and data was extracted by 2 independent authors. Measures of association were pooled quantitatively using meta-analytical methods. Comparisons between wavefront-guided and non-wavefront-guided ablations were made as pooled odds ratios (ORs) or weighted mean differences. The pooled ORs and 95% confidence intervals (CIs) were computed for efficacy, safety, and predictability. The weighted mean differences and 95% CIs were used to compare induced HOAs. Results The study covered five trials involving 298 eyes. After wavefront-guided PRK, the pooled OR of achieving an uncorrected distance visual acuity of 20/20 (efficacy) was 1.18 (95% CI, 0.53–2.60; p = 0.69), the pooled OR of achieving a result within ±0.50 diopter of the intended target (predictability) was 0.86 (95% CI, 0.40–1.84; p = 0.70). No study reported a loss of 2 or more lines of Snellen acuity (safety) with either modality. In eyes with wavefront-guided PRK, the postoperative trefoil aberrations (mean difference −0.02; 95% CI, −0.03 to −0.00; p = 0.03) were significantly lower. There were no significant differences between the two groups in the postoperative total HOAs (mean difference −0.04; 95% CI, −0.23 to 0.14; p = 0.63), spherical (mean difference 0.00; 95% CI, −0.08 to 0.09; p = 0.93), and coma (mean difference −0.06; 95% CI, −0.14 to 0.03; p = 0.20) aberrations. Conclusions According to the meta-analysis, wavefront-guided PRK offered no advantage in efficacy, predictability, or safety measures over non-wavefront-guided PRK, although it may have induced fewer trefoil aberrations. PMID:25072409

  3. Coronagraphic Wavefront Control for the ATLAST-9.2m Telescope

    NASA Technical Reports Server (NTRS)

    Lyon, RIchard G.; Oegerle, William R.; Feinberg, Lee D.; Bolcar, Matthew R.; Dean, Bruce H.; Mosier, Gary E.; Postman, Marc

    2010-01-01

    The Advanced Technology for Large Aperture Space Telescope (ATLAST) concept was assessed as one of the NASA Astrophysics Strategic Mission Concepts (ASMC) studies. Herein we discuss the 9.2-meter diameter segmented aperture version and its wavefront sensing and control (WFSC) with regards to coronagraphic detection and spectroscopic characterization of exoplanets. The WFSC would consist of at least two levels of sensing and control: (i) an outer coarser level of sensing and control to phase and control the segments and secondary mirror in a manner similar to the James Webb Space Telescope but operating at higher temporal bandwidth, and (ii) an inner, coronagraphic instrument based, fine level of sensing and control for both amplitude and wavefront errors operating at higher temporal bandwidths. The outer loop would control rigid-body actuators on the primary and secondary mirrors while the inner loop would control one or more segmented deformable mirror to suppress the starlight within the coronagraphic field-of view. Herein we discuss the visible nulling coronagraph (VNC) and the requirements it levies on wavefront sensing and control and show the results of closed-loop simulations to assess performance and evaluate the trade space of system level stability versus control bandwidth.

  4. Testbeds for Assessing Critical Scenarios in Power Control Systems

    NASA Astrophysics Data System (ADS)

    Dondossola, Giovanna; Deconinck, Geert; Garrone, Fabrizio; Beitollahi, Hakem

    The paper presents a set of control system scenarios implemented in two testbeds developed in the context of the European Project CRUTIAL - CRitical UTility InfrastructurAL Resilience. The selected scenarios refer to power control systems encompassing information and communication security of SCADA systems for grid teleoperation, impact of attacks on inter-operator communications in power emergency conditions, impact of intentional faults on the secondary and tertiary control in power grids with distributed generators. Two testbeds have been developed for assessing the effect of the attacks and prototyping resilient architectures.

  5. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens

    PubMed Central

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images. PMID:26368169

  6. Linear-constraint wavefront control for exoplanet coronagraphic imaging systems

    NASA Astrophysics Data System (ADS)

    Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean

    2017-01-01

    A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.

  7. Nonlinear Wavefront Control with All-Dielectric Metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Kruk, Sergey; Koshelev, Kirill

    Metasurfaces, two-dimensional lattices of nanoscale resonators, offer unique opportunities for functional flat optics and allow the control of the transmission, reflection, and polarization of a wavefront of light. Recently, all-dielectric metasurfaces reached remarkable efficiencies, often matching or out-performing conventional optical elements. The exploitation of the nonlinear optical response of metasurfaces offers a paradigm shift in nonlinear optics, and dielectric nonlinear metasurfaces are expected to enrich subwavelength photonics by enhancing substantially nonlinear response of natural materials combined with the efficient control of the phase of nonlinear waves. Here, we suggest a novel and rather general approach for engineering the wavefront ofmore » parametric waves of arbitrary complexity generated by a nonlinear metasurface. We design all-dielectric nonlinear metasurfaces, achieve a highly efficient wavefront control of a third-harmonic field, and demonstrate the generation of nonlinear beams at a designed angle and the generation of nonlinear focusing vortex beams. Lastly, our nonlinear metasurfaces produce phase gradients over a full 0–2π phase range with a 92% diffraction efficiency.« less

  8. Nonlinear Wavefront Control with All-Dielectric Metasurfaces.

    PubMed

    Wang, Lei; Kruk, Sergey; Koshelev, Kirill; Kravchenko, Ivan; Luther-Davies, Barry; Kivshar, Yuri

    2018-06-13

    Metasurfaces, two-dimensional lattices of nanoscale resonators, offer unique opportunities for functional flat optics and allow the control of the transmission, reflection, and polarization of a wavefront of light. Recently, all-dielectric metasurfaces reached remarkable efficiencies, often matching or out-performing conventional optical elements. The exploitation of the nonlinear optical response of metasurfaces offers a paradigm shift in nonlinear optics, and dielectric nonlinear metasurfaces are expected to enrich subwavelength photonics by enhancing substantially nonlinear response of natural materials combined with the efficient control of the phase of nonlinear waves. Here, we suggest a novel and rather general approach for engineering the wavefront of parametric waves of arbitrary complexity generated by a nonlinear metasurface. We design all-dielectric nonlinear metasurfaces, achieve a highly efficient wavefront control of a third-harmonic field, and demonstrate the generation of nonlinear beams at a designed angle and the generation of nonlinear focusing vortex beams. Our nonlinear metasurfaces produce phase gradients over a full 0-2π phase range with a 92% diffraction efficiency.

  9. Nonlinear Wavefront Control with All-Dielectric Metasurfaces

    DOE PAGES

    Wang, Lei; Kruk, Sergey; Koshelev, Kirill; ...

    2018-05-11

    Metasurfaces, two-dimensional lattices of nanoscale resonators, offer unique opportunities for functional flat optics and allow the control of the transmission, reflection, and polarization of a wavefront of light. Recently, all-dielectric metasurfaces reached remarkable efficiencies, often matching or out-performing conventional optical elements. The exploitation of the nonlinear optical response of metasurfaces offers a paradigm shift in nonlinear optics, and dielectric nonlinear metasurfaces are expected to enrich subwavelength photonics by enhancing substantially nonlinear response of natural materials combined with the efficient control of the phase of nonlinear waves. Here, we suggest a novel and rather general approach for engineering the wavefront ofmore » parametric waves of arbitrary complexity generated by a nonlinear metasurface. We design all-dielectric nonlinear metasurfaces, achieve a highly efficient wavefront control of a third-harmonic field, and demonstrate the generation of nonlinear beams at a designed angle and the generation of nonlinear focusing vortex beams. Lastly, our nonlinear metasurfaces produce phase gradients over a full 0–2π phase range with a 92% diffraction efficiency.« less

  10. Advanced turboprop testbed systems study

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.

    1982-01-01

    The proof of concept, feasibility, and verification of the advanced prop fan and of the integrated advanced prop fan aircraft are established. The use of existing hardware is compatible with having a successfully expedited testbed ready for flight. A prop fan testbed aircraft is definitely feasible and necessary for verification of prop fan/prop fan aircraft integrity. The Allison T701 is most suitable as a propulsor and modification of existing engine and propeller controls are adequate for the testbed. The airframer is considered the logical overall systems integrator of the testbed program.

  11. Fizeau interferometric cophasing of segmented mirrors: experimental validation.

    PubMed

    Cheetham, Anthony; Cvetojevic, Nick; Norris, Barnaby; Sivaramakrishnan, Anand; Tuthill, Peter

    2014-06-02

    We present an optical testbed demonstration of the Fizeau Interferometric Cophasing of Segmented Mirrors (FICSM) algorithm. FICSM allows a segmented mirror to be phased with a science imaging detector and three filters (selected among the normal science complement). It requires no specialised, dedicated wavefront sensing hardware. Applying random piston and tip/tilt aberrations of more than 5 wavelengths to a small segmented mirror array produced an initial unphased point spread function with an estimated Strehl ratio of 9% that served as the starting point for our phasing algorithm. After using the FICSM algorithm to cophase the pupil, we estimated a Strehl ratio of 94% based on a comparison between our data and simulated encircled energy metrics. Our final image quality is limited by the accuracy of our segment actuation, which yields a root mean square (RMS) wavefront error of 25 nm. This is the first hardware demonstration of coarse and fine phasing an 18-segment pupil with the James Webb Space Telescope (JWST) geometry using a single algorithm. FICSM can be implemented on JWST using any of its scientic imaging cameras making it useful as a fall-back in the event that accepted phasing strategies encounter problems. We present an operational sequence that would co-phase such an 18-segment primary in 3 sequential iterations of the FICSM algorithm. Similar sequences can be readily devised for any segmented mirror.

  12. Wavefront control of high-power laser beams in the National Ignition Facility (NIF)

    NASA Astrophysics Data System (ADS)

    Zacharias, Richard A.; Bliss, Erlan S.; Winters, Scott; Sacks, Richard A.; Feldman, Mark; Grey, Andrew; Koch, Jeffrey A.; Stolz, Christopher J.; Toeppen, John S.; Van Atta, Lewis; Woods, Bruce W.

    2000-04-01

    The use of lasers as the driver for inertial confinement fusion and weapons physics experiments is based on their ability to produce high-energy short pulses in a beam with low divergence. Indeed, the focusability of high quality laser beams far exceeds alternate technologies and is a major factor in the rationale for building high power lasers for such applications. The National Ignition Facility (NIF) is a large, 192-beam, high-power laser facility under construction at the Lawrence Livermore National Laboratory for fusion and weapons physics experiments. Its uncorrected minimum focal spot size is limited by laser system aberrations. The NIF includes a Wavefront Control System to correct these aberrations to yield a focal spot small enough for its applications. Sources of aberrations to be corrected include prompt pump-induced distortions in the laser amplifiers, previous-shot thermal distortions, beam off-axis effects, and gravity, mounting, and coating-induced optic distortions. Aberrations from gas density variations and optic-manufacturing figure errors are also partially corrected. This paper provides an overview of the NIF Wavefront Control System and describes the target spot size performance improvement it affords. It describes provisions made to accommodate the NIF's high fluence (laser beam and flashlamp), large wavefront correction range, wavefront temporal bandwidth, temperature and humidity variations, cleanliness requirements, and exception handling requirements (e.g. wavefront out-of-limits conditions).

  13. Data distribution service-based interoperability framework for smart grid testbed infrastructure

    DOE PAGES

    Youssef, Tarek A.; Elsayed, Ahmed T.; Mohammed, Osama A.

    2016-03-02

    This study presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS) is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discoverymore » feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS).« less

  14. Description of New Inflatable/Rigidizable Hexapod Structure Testbed for Shape and Vibration Control

    NASA Technical Reports Server (NTRS)

    Adetona, O.; Keel, L. H.; Horta, L. G.; Cadogan, D. P.; Sapna, G. H.; Scarborough, S. E.

    2002-01-01

    Larger and more powerful space based instruments are needed to meet increasingly sophisticated scientific demand. To support this need, concepts for telescopes with apertures of 100 meters are being investigated, but the required technologies are not in hand today. Due to the capacity limits of launch vehicles, the idea of deploying, erecting, or inflating large structures in space is being considered. Recently, rigidization concepts of large inflatable structures have demonstrated the capability of weight reductions of up to 50% from current concepts with packaging efficiencies near 80%. One of the important aspects of inflatable structures is vibration mitigation and line-of-sight control. Such control tasks are possible only after actuators/sensors are properly integrated into a rigidizable concept. To study these issues, we have developed an inflatable/rigidizable hexapod structure testbed. The testbed integrates state of the art piezo-electric self-sensing actuators into an inflatable/rigidizable structure and a flat membrane reflector. Using this testbed, we plan to experimentally demonstrate achievable vibration and line-of-sight control. This paper contains a description of the testbed and an outline of the test plan.

  15. Wavefront optimized nonlinear microscopy of ex vivo human retinas

    NASA Astrophysics Data System (ADS)

    Gualda, Emilio J.; Bueno, Juan M.; Artal, Pablo

    2010-03-01

    A multiphoton microscope incorporating a Hartmann-Shack (HS) wavefront sensor to control the ultrafast laser beam's wavefront aberrations has been developed. This instrument allowed us to investigate the impact of the laser beam aberrations on two-photon autofluorescence imaging of human retinal tissues. We demonstrated that nonlinear microscopy images are improved when laser beam aberrations are minimized by realigning the laser system cavity while wavefront controlling. Nonlinear signals from several human retinal anatomical features have been detected for the first time, without the need of fixation or staining procedures. Beyond the improved image quality, this approach reduces the required excitation power levels, minimizing the side effects of phototoxicity within the imaged sample. In particular, this may be important to study the physiology and function of the healthy and diseased retina.

  16. Closed Loop, DM Diversity-based, Wavefront Correction Algorithm for High Contrast Imaging Systems

    NASA Technical Reports Server (NTRS)

    Give'on, Amir; Belikov, Ruslan; Shaklan, Stuart; Kasdin, Jeremy

    2007-01-01

    High contrast imaging from space relies on coronagraphs to limit diffraction and a wavefront control systems to compensate for imperfections in both the telescope optics and the coronagraph. The extreme contrast required (up to 10(exp -10) for terrestrial planets) puts severe requirements on the wavefront control system, as the achievable contrast is limited by the quality of the wavefront. This paper presents a general closed loop correction algorithm for high contrast imaging coronagraphs by minimizing the energy in a predefined region in the image where terrestrial planets could be found. The estimation part of the algorithm reconstructs the complex field in the image plane using phase diversity caused by the deformable mirror. This method has been shown to achieve faster and better correction than classical speckle nulling.

  17. Real-Time Wavefront Control for the PALM-3000 High Order Adaptive Optics System

    NASA Technical Reports Server (NTRS)

    Truong, Tuan N.; Bouchez, Antonin H.; Dekany, Richard G.; Guiwits, Stephen R.; Roberts, Jennifer E.; Troy, Mitchell

    2008-01-01

    We present a cost-effective scalable real-time wavefront control architecture based on off-the-shelf graphics processing units hosted in an ultra-low latency, high-bandwidth interconnect PC cluster environment composed of modules written in the component-oriented language of nesC. The architecture enables full-matrix reconstruction of the wavefront at up to 2 KHz with latency under 250 us for the PALM-3000 adaptive optics systems, a state-of-the-art upgrade on the 5.1 meter Hale Telescope that consists of a 64 x 64 subaperture Shack-Hartmann wavefront sensor and a 3368 active actuator high order deformable mirror in series with a 241 active actuator tweeter DM. The architecture can easily scale up to support much larger AO systems at higher rates and lower latency.

  18. Embedded Sensors and Controls to Improve Component Performance and Reliability -- Loop-scale Testbed Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Kisner, Roger A.

    2016-09-01

    Embedded instrumentation and control systems that can operate in extreme environments are challenging to design and operate. Extreme environments limit the options for sensors and actuators and degrade their performance. Because sensors and actuators are necessary for feedback control, these limitations mean that designing embedded instrumentation and control systems for the challenging environments of nuclear reactors requires advanced technical solutions that are not available commercially. This report details the development of testbed that will be used for cross-cutting embedded instrumentation and control research for nuclear power applications. This research is funded by the Department of Energy's Nuclear Energy Enabling Technologymore » program's Advanced Sensors and Instrumentation topic. The design goal of the loop-scale testbed is to build a low temperature pump that utilizes magnetic bearing that will be incorporated into a water loop to test control system performance and self-sensing techniques. Specifically, this testbed will be used to analyze control system performance in response to nonlinear and cross-coupling fluid effects between the shaft axes of motion, rotordynamics and gyroscopic effects, and impeller disturbances. This testbed will also be used to characterize the performance losses when using self-sensing position measurement techniques. Active magnetic bearings are a technology that can reduce failures and maintenance costs in nuclear power plants. They are particularly relevant to liquid salt reactors that operate at high temperatures (700 C). Pumps used in the extreme environment of liquid salt reactors provide many engineering challenges that can be overcome with magnetic bearings and their associated embedded instrumentation and control. This report will give details of the mechanical design and electromagnetic design of the loop-scale embedded instrumentation and control testbed.« less

  19. LQG control of a deformable mirror adaptive optics system with time-delayed measurements

    NASA Astrophysics Data System (ADS)

    Anderson, David J.

    1991-12-01

    This thesis proposes a linear quadratic Gaussian (LQG) control law for a ground-based deformable mirror adaptive optics system. The incoming image wavefront is distorted, primarily in phase, due to the turbulent effects of the earth's atmosphere. The adaptive optics system attempts to compensate for the distortion with a deformable mirror. A Hartman wavefront sensor measures the degree of distortion in the image wavefront. The measurements are input to a Kalman filter which estimates the system states. The state estimates are processed by a linear quadratic regulator which generates the appropriate control voltages to apply to the deformable mirror actuators. The dynamics model for the atmospheric phase distortion consists of 14 Zernike coefficient states; each modeled as a first-order linear time-invariant shaping filter driven by zero-mean white Gaussian noise. The dynamics of the deformable mirror are also model as 14 Zernike coefficients with first-order deterministic dynamics. A significant reduction in total wavefront phase distortion is achieved in the presence of time-delayed measurements. Wavefront sensor sampling rate is the major factor limiting system performance. The Multimode Simulation for Optimal Filter Evaluation (MSOFE) software is the performance evaluation tool of choice for this research.

  20. Phase discrepancy induced from least squares wavefront reconstruction of wrapped phase measurements with high noise or large localized wavefront gradients

    NASA Astrophysics Data System (ADS)

    Steinbock, Michael J.; Hyde, Milo W.

    2012-10-01

    Adaptive optics is used in applications such as laser communication, remote sensing, and laser weapon systems to estimate and correct for atmospheric distortions of propagated light in real-time. Within an adaptive optics system, a reconstruction process interprets the raw wavefront sensor measurements and calculates an estimate for the unwrapped phase function to be sent through a control law and applied to a wavefront correction device. This research is focused on adaptive optics using a self-referencing interferometer wavefront sensor, which directly measures the wrapped wavefront phase. Therefore, its measurements must be reconstructed for use on a continuous facesheet deformable mirror. In testing and evaluating a novel class of branch-point- tolerant wavefront reconstructors based on the post-processing congruence operation technique, an increase in Strehl ratio compared to a traditional least squares reconstructor was noted even in non-scintillated fields. To investigate this further, this paper uses wave-optics simulations to eliminate many of the variables from a hardware adaptive optics system, so as to focus on the reconstruction techniques alone. The simulation results along with a discussion of the physical reasoning for this phenomenon are provided. For any applications using a self-referencing interferometer wavefront sensor with low signal levels or high localized wavefront gradients, understanding this phenomena is critical when applying a traditional least squares wavefront reconstructor.

  1. Bimorph deformable mirror: an appropriate wavefront corrector for retinal imaging?

    NASA Astrophysics Data System (ADS)

    Laut, Sophie; Jones, Steve; Park, Hyunkyu; Horsley, David A.; Olivier, Scot; Werner, John S.

    2005-11-01

    The purpose of this study was to evaluate the performance of a bimorph deformable mirror from AOptix, inserted into an adaptive optics system designed for in-vivo retinal imaging at high resolution. We wanted to determine its suitability as a wavefront corrector for vision science and ophthalmological instrumentation. We presented results obtained in a closed-loop system, and compared them with previous open-loop performance measurements. Our goal was to obtain precise wavefront reconstruction with rapid convergence of the control algorithm. The quality of the reconstruction was expressed in terms of root-mean-squared wavefront residual error (RMS), and number of frames required to perform compensation. Our instrument used a Hartmann-Shack sensor for the wavefront measurements. We also determined the precision and ability of the deformable mirror to compensate the most common types of aberrations present in the human eye (defocus, cylinder, astigmatism and coma), and the quality of its correction, in terms of maximum amplitude of the corrected wavefront. In addition to wavefront correction, we had also used the closed-loop system to generate an arbitrary aberration pattern by entering the desired Hartmann-Shack centroid locations as input to the AO controller. These centroid locations were computed in Matlab for a user-defined aberration pattern, allowing us to test the ability of the DM to generate and compensate for various aberrations. We conclude that this device, in combination with another DM based on Micro-Electro Mechanical Systems (MEMS) technology, may provide better compensation of the higher-order ocular wavefront aberrations of the human eye

  2. The Mini-Mast CSI testbed: Lessons learned

    NASA Technical Reports Server (NTRS)

    Tanner, Sharon E.; Belvin, W. Keith; Horta, Lucas G.; Pappa, R. S.

    1993-01-01

    The Mini-Mast testbed was one of the first large scale Controls-Structure-Interaction (CSI) systems used to evaluate state-of-the-art methodology in flexible structure control. Now that all the testing at Langley Research Center has been completed, a look back is warranted to evaluate the program. This paper describes some of the experiences and technology development studies by NASA, university, and industry investigators. Lessons learned are presented from three categories: the testbed development, control methods, and the operation of a guest investigator program. It is shown how structural safety margins provided a realistic environment to simulate on-orbit CSI research, even though they also reduced the research flexibility afforded to investigators. The limited dynamic coupling between the bending and torsion modes of the cantilevered test article resulted in highly successful SISO and MIMO controllers. However, until accurate models were obtained for the torque wheel actuators, sensors, filters, and the structure itself, most controllers were unstable. Controls research from this testbed should be applicable to cantilevered appendages of future large space structures.

  3. The Gemini Planet Imager Calibration Wavefront Sensor Instrument

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Burruss, Rick S.; Bartos, Randall D.; Trinh, Thang Q.; Pueyo, Laurent A.; Fregoso, Santos F.; Angione, John R.; Shelton, J. Chris

    2010-01-01

    The Gemini Planet Imager is an extreme adaptive optics system that will employ an apodized-pupil coronagraph to make direct detections of faint companions of nearby stars to a contrast level of the 10(exp -7) within a few lambda/D of the parent star. Such high contrasts from the ground require exquisite wavefront sensing and control both for the AO system as well as for the coronagraph. Un-sensed non-common path phase and amplitude errors after the wavefront sensor dichroic but before the coronagraph would lead to speckles which would ultimately limit the contrast. The calibration wavefront system for GPI will measure the complex wavefront at the system pupil before the apodizer and provide slow phase corrections to the AO system to mitigate errors that would cause a loss in contrast. The calibration wavefront sensor instrument for GPI has been built. We will describe the instrument and its performance.

  4. End-to-end Coronagraphic Modeling Including a Low-order Wavefront Sensor

    NASA Technical Reports Server (NTRS)

    Krist, John E.; Trauger, John T.; Unwin, Stephen C.; Traub, Wesley A.

    2012-01-01

    To evaluate space-based coronagraphic techniques, end-to-end modeling is necessary to simulate realistic fields containing speckles caused by wavefront errors. Real systems will suffer from pointing errors and thermal and motioninduced mechanical stresses that introduce time-variable wavefront aberrations that can reduce the field contrast. A loworder wavefront sensor (LOWFS) is needed to measure these changes at a sufficiently high rate to maintain the contrast level during observations. We implement here a LOWFS and corresponding low-order wavefront control subsystem (LOWFCS) in end-to-end models of a space-based coronagraph. Our goal is to be able to accurately duplicate the effect of the LOWFS+LOWFCS without explicitly evaluating the end-to-end model at numerous time steps.

  5. High-resolution wavefront control of high-power laser systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J; Brown, C; Carrano, C

    1999-07-08

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformablemore » glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more than two orders of magnitude greater than the best Deformable Mirrors currently made. Even with the increased spatial resolution, the cost of these devices is nearly two orders of magnitude less than the cost of the largest deformable mirror.« less

  6. SPHERES tethered formation flight testbed: advancements in enabling NASA's SPECS mission

    NASA Astrophysics Data System (ADS)

    Chung, Soon-Jo; Adams, Danielle; Saenz-Otero, Alvar; Kong, Edmund; Miller, David W.; Leisawitz, David; Lorenzini, Enrico; Sell, Steve

    2006-06-01

    This paper reports on efforts to control a tethered formation flight spacecraft array for NASA's SPECS mission using the SPHERES test-bed developed by the MIT Space Systems Laboratory. Specifically, advances in methodology and experimental results realized since the 2005 SPIE paper are emphasized. These include a new test-bed setup with a reaction wheel assembly, a novel relative attitude measurement system using force torque sensors, and modeling of non-ideal tethers to account for tether vibration modes. The nonlinear equations of motion of multi-vehicle tethered spacecraft with elastic flexible tethers are derived from Lagrange's equations. The controllability analysis indicates that both array resizing and spin-up are fully controllable by the reaction wheels and the tether motor, thereby saving thruster fuel consumption. Based upon this analysis, linear and nonlinear controllers have been successfully implemented on the tethered SPHERES testbed, and tested at the NASA MSFC's flat floor facility using two and three SPHERES configurations.

  7. Predictive Thermal Control Applied to HabEx

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas E.

    2017-01-01

    Exoplanet science can be accomplished with a telescope that has an internal coronagraph or with an external starshade. An internal coronagraph architecture requires extreme wavefront stability (10 pm change/10 minutes for 10(exp -10) contrast), so every source of wavefront error (WFE) must be controlled. Analysis has been done to estimate the thermal stability required to meet the wavefront stability requirement. This paper illustrates the potential of a new thermal control method called predictive thermal control (PTC) to achieve the required thermal stability. A simple development test using PTC indicates that PTC may meet the thermal stability requirements. Further testing of the PTC method in flight-like environments will be conducted in the X-ray and Cryogenic Facility (XRCF) at Marshall Space Flight Center (MSFC).

  8. Predictive thermal control applied to HabEx

    NASA Astrophysics Data System (ADS)

    Brooks, Thomas E.

    2017-09-01

    Exoplanet science can be accomplished with a telescope that has an internal coronagraph or with an external starshade. An internal coronagraph architecture requires extreme wavefront stability (10 pm change/10 minutes for 10-10 contrast), so every source of wavefront error (WFE) must be controlled. Analysis has been done to estimate the thermal stability required to meet the wavefront stability requirement. This paper illustrates the potential of a new thermal control method called predictive thermal control (PTC) to achieve the required thermal stability. A simple development test using PTC indicates that PTC may meet the thermal stability requirements. Further testing of the PTC method in flight-like environments will be conducted in the X-ray and Cryogenic Facility (XRCF) at Marshall Space Flight Center (MSFC).

  9. Versatile simulation testbed for rotorcraft speech I/O system design

    NASA Technical Reports Server (NTRS)

    Simpson, Carol A.

    1986-01-01

    A versatile simulation testbed for the design of a rotorcraft speech I/O system is described in detail. The testbed will be used to evaluate alternative implementations of synthesized speech displays and speech recognition controls for the next generation of Army helicopters including the LHX. The message delivery logic is discussed as well as the message structure, the speech recognizer command structure and features, feedback from the recognizer, and random access to controls via speech command.

  10. Technology Developments Integrating a Space Network Communications Testbed

    NASA Technical Reports Server (NTRS)

    Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee

    2006-01-01

    As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enable its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions. It can simulate entire networks and can interface with external (testbed) systems. The key technology developments enabling the integration of MACHETE into a distributed testbed are the Monitor and Control module and the QualNet IP Network Emulator module. Specifically, the Monitor and Control module establishes a standard interface mechanism to centralize the management of each testbed component. The QualNet IP Network Emulator module allows externally generated network traffic to be passed through MACHETE to experience simulated network behaviors such as propagation delay, data loss, orbital effects and other communications characteristics, including entire network behaviors. We report a successful integration of MACHETE with a space communication testbed modeling a lunar exploration scenario. This document is the viewgraph slides of the presentation.

  11. Performance Evaluation of a Data Validation System

    NASA Technical Reports Server (NTRS)

    Wong, Edmond (Technical Monitor); Sowers, T. Shane; Santi, L. Michael; Bickford, Randall L.

    2005-01-01

    Online data validation is a performance-enhancing component of modern control and health management systems. It is essential that performance of the data validation system be verified prior to its use in a control and health management system. A new Data Qualification and Validation (DQV) Test-bed application was developed to provide a systematic test environment for this performance verification. The DQV Test-bed was used to evaluate a model-based data validation package known as the Data Quality Validation Studio (DQVS). DQVS was employed as the primary data validation component of a rocket engine health management (EHM) system developed under NASA's NGLT (Next Generation Launch Technology) program. In this paper, the DQVS and DQV Test-bed software applications are described, and the DQV Test-bed verification procedure for this EHM system application is presented. Test-bed results are summarized and implications for EHM system performance improvements are discussed.

  12. Discovery Channel Telescope active optics system early integration and test

    NASA Astrophysics Data System (ADS)

    Venetiou, Alexander J.; Bida, Thomas A.

    2012-09-01

    The Discovery Channel Telescope (DCT) is a 4.3-meter telescope with a thin meniscus primary mirror (M1) and a honeycomb secondary mirror (M2). The optical design is an f/6.1 Ritchey-Chrétien (RC) with an unvignetted 0.5° Field of View (FoV) at the Cassegrain focus. We describe the design, implementation and performance of the DCT active optics system (AOS). The DCT AOS maintains collimation and controls the figure of the mirror to provide seeing-limited images across the focal plane. To minimize observing overhead, rapid settling times are achieved using a combination of feed-forward and low-bandwidth feedback control using a wavefront sensing system. In 2011, we mounted a Shack-Hartmann wavefront sensor at the prime focus of M1, the Prime Focus Test Assembly (PFTA), to test the AOS with the wavefront sensor, and the feedback loop. The incoming wavefront is decomposed using Zernike polynomials, and the mirror figure is corrected with a set of bending modes. Components of the system that we tested and tuned included the Zernike to Bending Mode transformations. We also started open-loop feed-forward coefficients determination. In early 2012, the PFTA was replaced by M2, and the wavefront sensor moved to its normal location on the Cassegrain instrument assembly. We present early open loop wavefront test results with the full optical system and instrument cube, along with refinements to the overall control loop operating at RC Cassegrain focus.

  13. Method for removing tilt control in adaptive optics systems

    DOEpatents

    Salmon, Joseph Thaddeus

    1998-01-01

    A new adaptive optics system and method of operation, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G'=(I-X(X.sup.T X).sup.-1 X.sup.T)G(I-A)

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Kisner, Roger A.; Drira, Anis

    Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings tomore » support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.« less

  15. Experiences with the JPL telerobot testbed: Issues and insights

    NASA Technical Reports Server (NTRS)

    Stone, Henry W.; Balaram, Bob; Beahan, John

    1989-01-01

    The Jet Propulsion Laboratory's (JPL) Telerobot Testbed is an integrated robotic testbed used to develop, implement, and evaluate the performance of advanced concepts in autonomous, tele-autonomous, and tele-operated control of robotic manipulators. Using the Telerobot Testbed, researchers demonstrated several of the capabilities and technological advances in the control and integration of robotic systems which have been under development at JPL for several years. In particular, the Telerobot Testbed was recently employed to perform a near completely automated, end-to-end, satellite grapple and repair sequence. The task of integrating existing as well as new concepts in robot control into the Telerobot Testbed has been a very difficult and timely one. Now that researchers have completed the first major milestone (i.e., the end-to-end demonstration) it is important to reflect back upon experiences and to collect the knowledge that has been gained so that improvements can be made to the existing system. It is also believed that the experiences are of value to the others in the robotics community. Therefore, the primary objective here will be to use the Telerobot Testbed as a case study to identify real problems and technological gaps which exist in the areas of robotics and in particular systems integration. Such problems have surely hindered the development of what could be reasonably called an intelligent robot. In addition to identifying such problems, researchers briefly discuss what approaches have been taken to resolve them or, in several cases, to circumvent them until better approaches can be developed.

  16. VLTI-PRIMA fringe tracking testbed

    NASA Astrophysics Data System (ADS)

    Abuter, Roberto; Rabien, Sebastian; Eisenhauer, Frank; Sahlmann, Johannes; Di Lieto, Nicola; Haug, Marcus; Wallander, Anders; Lévêque, Samuel; Ménardi, Serge; Delplancke, Françoise; Schuhler, Nicolas; Kellner, Stefan; Frahm, Robert

    2006-06-01

    One of the key components of the planned VLTI dual feed facility PRIMA is the Fringe Sensor Unit (FSU). Its basic function is the instantaneous measurement of the Optical Path Difference (OPD) between two beams. The FSU acts as the sensor for a complex control system involving optical delay lines and laser metrology with the aim of removing any OPD introduced by the atmosphere and the beam relay. We have initiated a cooperation between ESO and MPE with the purpose of systematically testing this Fringe Tracking Control System in a laboratory environment. This testbed facility is being built at MPE laboratories with the aim to simulate the VLTI and includes FSUs, OPD controller, metrology and in-house built delay lines. In this article we describe this testbed in detail, including the environmental conditions in the laboratory, and present the results of the testbed subsystem characterisation.

  17. Gaussian Process Kalman Filter for Focal Plane Wavefront Correction and Exoplanet Signal Extraction

    NASA Astrophysics Data System (ADS)

    Sun, He; Kasdin, N. Jeremy

    2018-01-01

    Currently, the ultimate limitation of space-based coronagraphy is the ability to subtract the residual PSF after wavefront correction to reveal the planet. Called reference difference imaging (RDI), the technique consists of conducting wavefront control to collect the reference point spread function (PSF) by observing a bright star, and then extracting target planet signals by subtracting a weighted sum of reference PSFs. Unfortunately, this technique is inherently inefficient because it spends a significant fraction of the observing time on the reference star rather than the target star with the planet. Recent progress in model based wavefront estimation suggests an alternative approach. A Kalman filter can be used to estimate the stellar PSF for correction by the wavefront control system while simultaneously estimating the planet signal. Without observing the reference star, the (extended) Kalman filter directly utilizes the wavefront correction data and combines the time series observations and model predictions to estimate the stellar PSF and planet signals. Because wavefront correction is used during the entire observation with no slewing, the system has inherently better stability. In this poster we show our results aimed at further improving our Kalman filter estimation accuracy by including not only temporal correlations but also spatial correlations among neighboring pixels in the images. This technique is known as a Gaussian process Kalman filter (GPKF). We also demonstrate the advantages of using a Kalman filter rather than RDI by simulating a real space exoplanet detection mission.

  18. Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST)

    NASA Astrophysics Data System (ADS)

    Baldauf, Brian; Conti, Alberto

    2016-01-01

    The "Search for Life" via imaging of exoplanets is a mission that requires extremely stable telescopes with apertures in the 10 m to 20 m range. The High Definition Space Telescope (HDST) envisioned for this mission would have an aperture >10 m, which is a larger payload than what can be delivered to space using a single launch vehicle. Building and assembling the mirror segments enabling large telescopes will likely require multiple launches and assembly in space. Space-based telescopes with large apertures will require major changes to system architectures.The Optical Telescope Assembly (OTA) for HDST is a primary mission cost driver. Enabling and affordable solutions for this next generation of large aperture space-based telescope are needed.This paper reports on the concept for the Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST), which demonstrates on-orbit robotic and/or astronaut assembly of a precision optical telescope in space. It will also facilitate demonstration of active correction of phase and mirror shape. MODEST is proposed to be delivered to the ISS using standard Express Logistics Carriers (ELCs) and can mounted to one of a variety of ISS pallets. Post-assembly value includes space, ground, and environmental studies, and a testbed for new instruments. This demonstration program for next generation mirror technology provides significant risk reduction and demonstrates the technology in a six-mirror phased telescope. Other key features of the demonstration include the use of an active primary optical surface with wavefront feedback control that allows on-orbit optimization and demonstration of precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Carbon Fiber Reinforced Polymer that have excellent mechanical and thermal properties, e.g. high stiffness, high modulus, high thermal conductivity, and low thermal expansion. It has been demonstrated that mirrors built from these materials can be rapidly replicated in a highly cost effective manner, making these materials excellent candidates for a low cost, high performance OTA.

  19. Modular Orbital Demonstration of an Evolvable Space Telescope

    NASA Astrophysics Data System (ADS)

    Baldauf, Brian

    2016-06-01

    The key driver for a telescope's sensitivityis directly related to the size of t he mirror area that collects light from the objects being observed.The "Search for Life" via imaging of exoplanets is a mission that requires extremely stable telescopes with apertures in the 10 m to 20 m range. The HDST envisioned for this mission would have an aperture >10 m, which is a larger payload than can be delivered to space using a single launch vehicle. Building and assembling the mirror segments enabling large telescopes will likely require multiple launches and assembly in space. The Optical Telescope Assembly for HDST is a primary mission cost driver. Enabling affordable solutions for this next generation of large aperture space-based telescope are needed.This reports on the concept for the MODEST, which demonstrates on-orbit robotic and/or astronaut assembly of a precision optical telescope in space. It will facilitate demonstration of active correction of phase and mirror shape. MODEST is proposed to be delivered to the ISS using standard Express Logistics Carriers and can mounted to one of a variety of ISS pallets. Post-assembly value includes space, ground, and environmental studies, a testbed for new instruments, and a tool for student's exploration of space. This demonstration program for next generation mirror technology provides significant risk reduction and demonstrates the technology in a six-mirror phased telescope. Key features of the demonstration include the use of an active primary optical surface with wavefront feedback control that allows on-orbit optimization and demonstration of precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Ceramic Matrix Composite that have excellent mechanical and thermal properties, e.g. high stiffness, high thermal conductivity, and low thermal expansion. It has been demonstrated that mirrors built from these materials can be rapidly replicated in a highly cost effective manner, making these materials excellent candidates for a low cost, high performance OTA.

  20. An adaptable, low cost test-bed for unmanned vehicle systems research

    NASA Astrophysics Data System (ADS)

    Goppert, James M.

    2011-12-01

    An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The creation of this test-bed allows research teams to focus on algorithm development and employ a common well-tested experimental framework. The ArduPilotOne autopilot was developed to provide the necessary level of abstraction for multiple vehicle types. The autopilot was also designed to be highly integrated with the Mavlink protocol for Micro Air Vehicle (MAV) communication. Mavlink is the native protocol for QGroundControl, a MAV ground control program. Features were added to QGroundControl to accommodate outdoor usage. Next, the Mavsim toolbox was developed for Scicoslab to allow hardware-in-the-loop testing, control design and analysis, and estimation algorithm testing and verification. In order to obtain linear models of aircraft dynamics, the JSBSim flight dynamics engine was extended to use a probabilistic Nelder-Mead simplex method. The JSBSim aircraft dynamics were compared with wind-tunnel data collected. Finally, a structured methodology for successive loop closure control design is proposed. This methodology is demonstrated along with the rest of the test-bed tools on a quadrotor, a fixed wing RC plane, and a ground vehicle. Test results for the ground vehicle are presented.

  1. Techniques for High Contrast Imaging in Multi-Star Systems II: Multi-Star Wavefront Control

    NASA Technical Reports Server (NTRS)

    Sirbu, D.; Thomas, S.; Belikov, R.

    2017-01-01

    Direct imaging of exoplanets represents a challenge for astronomical instrumentation due to the high-contrast ratio and small angular separation between the host star and the faint planet. Multi-star systems pose additional challenges for coronagraphic instruments because of the diffraction and aberration leakage introduced by the additional stars, and as a result are not planned to be on direct imaging target lists. Multi-star wavefront control (MSWC) is a technique that uses a coronagraphic instrument's deformable mirror (DM) to create high-contrast regions in the focal plane in the presence of multiple stars. Our previous paper introduced the Super-Nyquist Wavefront Control (SNWC) technique that uses a diffraction grating to enable the DM to generate high-contrast regions beyond the nominal controllable region. These two techniques can be combined to generate high-contrast regions for multi-star systems at any angular separations. As a case study, a high-contrast wavefront control (WC) simulation that applies these techniques shows that the habitable region of the Alpha Centauri system can be imaged reaching 8 times 10(exp -9) mean contrast in 10 percent broadband light in one-sided dark holes from 1.6-5.5 lambda (wavelength) divided by D (distance).

  2. Collaborative effects of wavefront shaping and optical clearing agent in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonseung; Lee, Peter; Jo, YoungJu; Lee, KyeoReh; Tuchin, Valery V.; Jeong, Yong; Park, YongKeun

    2016-12-01

    We demonstrate that simultaneous application of optical clearing agents (OCAs) and complex wavefront shaping in optical coherence tomography (OCT) can provide significant enhancement of penetration depth and imaging quality. OCA reduces optical inhomogeneity of a highly scattering sample, and the wavefront shaping of illumination light controls multiple scattering, resulting in an enhancement of the penetration depth and signal-to-noise ratio. A tissue phantom study shows that concurrent applications of OCA and wavefront shaping successfully operate in OCT imaging. The penetration depth enhancement is further demonstrated for ex vivo mouse ears, revealing hidden structures inaccessible with conventional OCT imaging.

  3. MEMS deformable mirror for wavefront correction of large telescopes

    NASA Astrophysics Data System (ADS)

    Manhart, Sigmund; Vdovin, Gleb; Collings, Neil; Sodnik, Zoran; Nikolov, Susanne; Hupfer, Werner

    2017-11-01

    A 50 mm diameter membrane mirror was designed and manufactured at TU Delft. It is made from bulk silicon by micromachining - a technology primarily used for micro-electromechanical systems (MEMS). The mirror unit is equipped with 39 actuator electrodes and can be electrostatically deformed to correct wavefront errors in optical imaging systems. Performance tests on the deformable mirror were carried out at Astrium GmbH using a breadboard setup with a wavefront sensor and a closed-loop control system. It was found that the deformable membrane mirror is well suited for correction of low order wavefront errors as they must be expected in lightweighted space telescopes.

  4. Terahertz wavefront control by tunable metasurface made of graphene ribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yatooshi, Takumi; Ishikawa, Atsushi, E-mail: a-ishikawa@okayama-u.ac.jp; Tsuruta, Kenji

    2015-08-03

    We propose a tunable metasurface consisting of an array of graphene ribbons on a silver mirror with a SiO{sub 2} gap layer to control reflected wavefront at terahertz frequencies. The graphene ribbons exhibit localized plasmon resonances depending on their Fermi levels to introduce abrupt phase shifts along the metasurface. With interference of the Fabry-Perot resonances in the SiO{sub 2} layer, phase shift through the system is largely accumulated, covering the 0-to-2π range for full control of the wavefront. Numerical simulations prove that wide-angle beam steering up to 53° with a high reflection efficiency of 60% is achieved at 5 THzmore » within a switching time shorter than 0.6 ps.« less

  5. Fitting relationship between the beam quality β factor of high-energy laser and the wavefront aberration of laser beam

    NASA Astrophysics Data System (ADS)

    Ji, Zhong-Ye; Zhang, Xiao-Fang

    2018-01-01

    The mathematical relation between the beam quality β factor of high-energy laser and the wavefront aberration of laser beam is important in beam quality control theory of the high-energy laser weapon system. In order to obtain this mathematical relation, numerical simulation is used in the research. Firstly, the Zernike representations of typically distorted atmospheric wavefront aberrations caused by the Kolmogoroff turbulence are generated. And then, the corresponding beam quality β factors of the different distorted wavefronts are calculated numerically through fast Fourier transform. Thus, the statistical distribution rule between the beam quality β factors of high-energy laser and the wavefront aberrations of the beam can be established by the calculated results. Finally, curve fitting method is chosen to establish the mathematical fitting relationship of these two parameters. And the result of the curve fitting shows that there is a quadratic curve relation between the beam quality β factor of high-energy laser and the wavefront aberration of laser beam. And in this paper, 3 fitting curves, in which the wavefront aberrations are consisted of Zernike Polynomials of 20, 36, 60 orders individually, are established to express the relationship between the beam quality β factor and atmospheric wavefront aberrations with different spatial frequency.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youssef, Tarek A.; Elsayed, Ahmed T.; Mohammed, Osama A.

    This study presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS) is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discoverymore » feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS).« less

  7. Remotely Piloted Vehicles for Experimental Flight Control Testing

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.

    2009-01-01

    A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division

  8. New Educational Modules Using a Cyber-Distribution System Testbed

    DOE PAGES

    Xie, Jing; Bedoya, Juan Carlos; Liu, Chen-Ching; ...

    2018-03-30

    At Washington State University (WSU), a modern cyber-physical system testbed has been implemented based on an industry grade distribution management system (DMS) that is integrated with remote terminal units (RTUs), smart meters, and a solar photovoltaic (PV). In addition, the real model from the Avista Utilities distribution system in Pullman, WA, is modeled in DMS. The proposed testbed environment allows students and instructors to utilize these facilities for innovations in learning and teaching. For power engineering education, this testbed helps students understand the interaction between a cyber system and a physical distribution system through industrial level visualization. The testbed providesmore » a distribution system monitoring and control environment for students. Compared with a simulation based approach, the testbed brings the students' learning environment a step closer to the real world. The educational modules allow students to learn the concepts of a cyber-physical system and an electricity market through an integrated testbed. Furthermore, the testbed provides a platform in the study mode for students to practice working on a real distribution system model. Here, this paper describes the new educational modules based on the testbed environment. Three modules are described together with the underlying educational principles and associated projects.« less

  9. New Educational Modules Using a Cyber-Distribution System Testbed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jing; Bedoya, Juan Carlos; Liu, Chen-Ching

    At Washington State University (WSU), a modern cyber-physical system testbed has been implemented based on an industry grade distribution management system (DMS) that is integrated with remote terminal units (RTUs), smart meters, and a solar photovoltaic (PV). In addition, the real model from the Avista Utilities distribution system in Pullman, WA, is modeled in DMS. The proposed testbed environment allows students and instructors to utilize these facilities for innovations in learning and teaching. For power engineering education, this testbed helps students understand the interaction between a cyber system and a physical distribution system through industrial level visualization. The testbed providesmore » a distribution system monitoring and control environment for students. Compared with a simulation based approach, the testbed brings the students' learning environment a step closer to the real world. The educational modules allow students to learn the concepts of a cyber-physical system and an electricity market through an integrated testbed. Furthermore, the testbed provides a platform in the study mode for students to practice working on a real distribution system model. Here, this paper describes the new educational modules based on the testbed environment. Three modules are described together with the underlying educational principles and associated projects.« less

  10. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope.

    PubMed

    Sulai, Yusufu N; Dubra, Alfredo

    2014-09-01

    The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth.

  11. MIT's interferometer CST testbed

    NASA Technical Reports Server (NTRS)

    Hyde, Tupper; Kim, ED; Anderson, Eric; Blackwood, Gary; Lublin, Leonard

    1990-01-01

    The MIT Space Engineering Research Center (SERC) has developed a controlled structures technology (CST) testbed based on one design for a space-based optical interferometer. The role of the testbed is to provide a versatile platform for experimental investigation and discovery of CST approaches. In particular, it will serve as the focus for experimental verification of CSI methodologies and control strategies at SERC. The testbed program has an emphasis on experimental CST--incorporating a broad suite of actuators and sensors, active struts, system identification, passive damping, active mirror mounts, and precision component characterization. The SERC testbed represents a one-tenth scaled version of an optical interferometer concept based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with attachment points at three vertices. Each aluminum leg has a 0.2 m by 0.2 m by 0.25 m triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural deflections at the vertices (site of optical components for maximum baseline) resulting in reduced stroke requirements for isolation and pointing of optics. Typical total light path length stability goals are on the order of lambda/20, with a wavelength of light, lambda, of roughly 500 nanometers. It is expected that active structural control will be necessary to achieve this goal in the presence of disturbances.

  12. Development of Ada language control software for the NASA power management and distribution test bed

    NASA Technical Reports Server (NTRS)

    Wright, Ted; Mackin, Michael; Gantose, Dave

    1989-01-01

    The Ada language software developed to control the NASA Lewis Research Center's Power Management and Distribution testbed is described. The testbed is a reduced-scale prototype of the electric power system to be used on space station Freedom. It is designed to develop and test hardware and software for a 20-kHz power distribution system. The distributed, multiprocessor, testbed control system has an easy-to-use operator interface with an understandable English-text format. A simple interface for algorithm writers that uses the same commands as the operator interface is provided, encouraging interactive exploration of the system.

  13. Space Station power system autonomy demonstration

    NASA Technical Reports Server (NTRS)

    Kish, James A.; Dolce, James L.; Weeks, David J.

    1988-01-01

    The Systems Autonomy Demonstration Program (SADP) represents NASA's major effort to demonstrate, through a series of complex ground experiments, the application and benefits of applying advanced automation technologies to the Space Station project. Lewis Research Center (LeRC) and Marshall Space Flight Center (MSFC) will first jointly develop an autonomous power system using existing Space Station testbed facilities at each center. The subsequent 1990 power-thermal demonstration will then involve the cooperative operation of the LeRC/MSFC power system with the Johnson Space Center (JSC's) thermal control and DMS/OMS testbed facilities. The testbeds and expert systems at each of the NASA centers will be interconnected via communication links. The appropriate knowledge-based technology will be developed for each testbed and applied to problems requiring intersystem cooperation. Primary emphasis will be focused on failure detection and classification, system reconfiguration, planning and scheduling of electrical power resources, and integration of knowledge-based and conventional control system software into the design and operation of Space Station testbeds.

  14. Testing of Lagrange multiplier damped least-squares control algorithm for woofer-tweeter adaptive optics

    PubMed Central

    Zou, Weiyao; Burns, Stephen A.

    2012-01-01

    A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. PMID:22441462

  15. Testing of Lagrange multiplier damped least-squares control algorithm for woofer-tweeter adaptive optics.

    PubMed

    Zou, Weiyao; Burns, Stephen A

    2012-03-20

    A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. © 2012 Optical Society of America

  16. Ocular wavefront aberrations in patients with macular diseases

    PubMed Central

    Bessho, Kenichiro; Bartsch, Dirk-Uwe G.; Gomez, Laura; Cheng, Lingyun; Koh, Hyoung Jun; Freeman, William R.

    2009-01-01

    Background There have been reports that by compensating for the ocular aberrations using adaptive optical systems it may be possible to improve the resolution of clinical retinal imaging systems beyond what is now possible. In order to develop such system to observe eyes with retinal disease, understanding of the ocular wavefront aberrations in individuals with retinal disease is required. Methods 82 eyes of 66 patients with macular disease (epiretinal membrane, macular edema, macular hole etc.) and 85 eyes of 51 patients without retinal disease were studied. Using a ray-tracing wavefront device, each eye was scanned at both small and large pupil apertures and Zernike coefficients up to 6th order were acquired. Results In phakic eyes, 3rd order root mean square errors (RMS) in macular disease group were statistically greater than control, an average of 12% for 5mm and 31% for 3mm scan diameters (p<0.021). In pseudophakic eyes, there also was an elevation of 3rd order RMS, on average 57% for 5mm and 51% for 3mm scan diameters (p<0.031). Conclusion Higher order wavefront aberrations in eyes with macular disease were greater than in control eyes without disease. Our study suggests that such aberrations may result from irregular or multiple reflecting retinal surfaces. Modifications in wavefront sensor technology will be needed to accurately determine wavefront aberration and allow correction using adaptive optics in eyes with macular irregularities. PMID:19574950

  17. Implementation of a virtual link between power system testbeds at Marshall Spaceflight Center and Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Doreswamy, Rajiv

    1990-01-01

    The Marshall Space Flight Center (MSFC) owns and operates a space station module power management and distribution (SSM-PMAD) testbed. This system, managed by expert systems, is used to analyze and develop power system automation techniques for Space Station Freedom. The Lewis Research Center (LeRC), Cleveland, Ohio, has developed and implemented a space station electrical power system (EPS) testbed. This system and its power management controller are representative of the overall Space Station Freedom power system. A virtual link is being implemented between the testbeds at MSFC and LeRC. This link would enable configuration of SSM-PMAD as a load center for the EPS testbed at LeRC. This connection will add to the versatility of both systems, and provide an environment of enhanced realism for operation of both testbeds.

  18. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-01-01

    Herein we report on our contrast assessment and the development, sensing and control of the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraphy (VNC) for exoplanet detection and characterization. Tbe VNC is one of the few approaches that works with filled, segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be flown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center has an established effort to develop VNC technologies, and an incremental sequence of testbeds to advance this approach and its critical technologies. We discuss the development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 10(exp 8), 10(exp 9) and ideally 10(exp 10) at an inner working angle of 2*lambda/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the laboratory results, optical configuration, critical technologies and the null sensing and control approach.

  19. The control panel for the joint NASA/Gulfstream Quiet Spike project, located in the backseat of NASA's F-15B testbed aircraft

    NASA Image and Video Library

    2006-08-16

    The control panel for the joint NASA/Gulfstream Quiet Spike project, located in the backseat of NASA's F-15B testbed aircraft. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.

  20. A Novel UAV Electric Propulsion Testbed for Diagnostics and Prognostics

    NASA Technical Reports Server (NTRS)

    Gorospe, George E., Jr.; Kulkarni, Chetan S.

    2017-01-01

    This paper presents a novel hardware-in-the-loop (HIL) testbed for systems level diagnostics and prognostics of an electric propulsion system used in UAVs (unmanned aerial vehicle). Referencing the all electric, Edge 540T aircraft used in science and research by NASA Langley Flight Research Center, the HIL testbed includes an identical propulsion system, consisting of motors, speed controllers and batteries. Isolated under a controlled laboratory environment, the propulsion system has been instrumented for advanced diagnostics and prognostics. To produce flight like loading on the system a slave motor is coupled to the motor under test (MUT) and provides variable mechanical resistance, and the capability of introducing nondestructive mechanical wear-like frictional loads on the system. This testbed enables the verification of mathematical models of each component of the propulsion system, the repeatable generation of flight-like loads on the system for fault analysis, test-to-failure scenarios, and the development of advanced system level diagnostics and prognostics methods. The capabilities of the testbed are extended through the integration of a LabVIEW-based client for the Live Virtual Constructive Distributed Environment (LVCDC) Gateway which enables both the publishing of generated data for remotely located observers and prognosers and the synchronization the testbed propulsion system with vehicles in the air. The developed HIL testbed gives researchers easy access to a scientifically relevant portion of the aircraft without the overhead and dangers encountered during actual flight.

  1. Method for removing tilt control in adaptive optics systems

    DOEpatents

    Salmon, J.T.

    1998-04-28

    A new adaptive optics system and method of operation are disclosed, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G{prime} = (I{minus}X(X{sup T} X){sup {minus}1}X{sup T})G(I{minus}A). 3 figs.

  2. Thirty Meter Telescope narrow-field infrared adaptive optics system real-time controller prototyping results

    NASA Astrophysics Data System (ADS)

    Smith, Malcolm; Kerley, Dan; Chapin, Edward L.; Dunn, Jennifer; Herriot, Glen; Véran, Jean-Pierre; Boyer, Corinne; Ellerbroek, Brent; Gilles, Luc; Wang, Lianqi

    2016-07-01

    Prototyping and benchmarking was performed for the Real-Time Controller (RTC) of the Narrow Field InfraRed Adaptive Optics System (NFIRAOS). To perform wavefront correction, NFIRAOS utilizes two deformable mirrors (DM) and one tip/tilt stage (TTS). The RTC receives wavefront information from six Laser Guide Star (LGS) Shack- Hartmann WaveFront Sensors (WFS), one high-order Natural Guide Star Pyramid WaveFront Sensor (PWFS) and multiple low-order instrument detectors. The RTC uses this information to determine the commands to send to the wavefront correctors. NFIRAOS is the first light AO system for the Thirty Meter Telescope (TMT). The prototyping was performed using dual-socket high performance Linux servers with the real-time (PREEMPT_RT) patch and demonstrated the viability of a commercial off-the-shelf (COTS) hardware approach to large scale AO reconstruction. In particular, a large custom matrix vector multiplication (MVM) was benchmarked which met the required latency requirements. In addition all major inter-machine communication was verified to be adequate using 10Gb and 40Gb Ethernet. The results of this prototyping has enabled a CPU-based NFIRAOS RTC design to proceed with confidence and that COTS hardware can be used to meet the demanding performance requirements.

  3. Wavefront Correction for Large, Flexible Antenna Reflector

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Jammejad, Vahraz; Rajagopalan, Harish; Xu, Shenheng

    2010-01-01

    A wavefront-correction system has been proposed as part of an outer-space radio communication system that would include a large, somewhat flexible main reflector antenna, a smaller subreflector antenna, and a small array feed at the focal plane of these two reflector antennas. Part of the wavefront-correction system would reside in the subreflector, which would be a planar patch-element reflectarray antenna in which the phase shifts of the patch antenna elements would be controlled via microelectromechanical systems (MEMS) radio -frequency (RF) switches. The system would include the following sensing-and-computing subsystems: a) An optical photogrammetric subsystem built around two cameras would estimate geometric distortions of the main reflector; b) A second subsystem would estimate wavefront distortions from amplitudes and phases of signals received by the array feed elements; and c) A third subsystem, built around small probes on the subreflector plane, would estimate wavefront distortions from differences among phases of signals received by the probes. The distortion estimates from the three subsystems would be processed to generate control signals to be fed to the MEMS RF switches to correct for the distortions, thereby enabling collimation and aiming of the received or transmitted radio beam to the required precision.

  4. Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface

    PubMed Central

    Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-Qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun

    2015-01-01

    Free controls of optic/acoustic waves for bending, focusing or steering the energy of wavefronts are highly desirable in many practical scenarios. However, the dispersive nature of the existing metamaterials/metasurfaces for wavefront manipulation necessarily results in limited bandwidth. Here, we propose the concept of dispersionless wavefront manipulation and report a theoretical, numerical and experimental work on the design of a reflective surface capable of controlling the acoustic wavefront arbitrarily without bandwidth limitation. Analytical analysis predicts the possibility to completely eliminate the frequency dependence with a specific gradient surface which can be implemented by designing a subwavelength corrugated surface. Experimental and numerical results, well consistent with the theoretical predictions, have validated the proposed scheme by demonstrating a distinct phenomenon of extraordinary acoustic reflection within an ultra-broad band. For acquiring a deeper insight into the underlying physics, a simple physical model is developed which helps to interpret this extraordinary phenomenon and predict the upper cutoff frequency precisely. Generations of planar focusing and non-diffractive beam have also been exemplified. With the dispersionless wave-steering capability and deep discrete resolution, our designed structure may open new avenue to fully steer classical waves and offer design possibilities for broadband optical/acoustical devices. PMID:26077772

  5. Terahertz adaptive optics with a deformable mirror.

    PubMed

    Brossard, Mathilde; Sauvage, Jean-François; Perrin, Mathias; Abraham, Emmanuel

    2018-04-01

    We report on the wavefront correction of a terahertz (THz) beam using adaptive optics, which requires both a wavefront sensor that is able to sense the optical aberrations, as well as a wavefront corrector. The wavefront sensor relies on a direct 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. By measuring the phase variation of the THz electric field in the crystal, we were able to minimize the geometrical aberrations of the beam, thanks to the action of a deformable mirror. This phase control will open the route to THz adaptive optics in order to optimize the THz beam quality for both practical and fundamental applications.

  6. Phase shifting interferometer

    DOEpatents

    Sommargren, Gary E.

    1999-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  7. Phase shifting interferometer

    DOEpatents

    Sommargren, G.E.

    1999-08-03

    An interferometer is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.

  8. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope

    PubMed Central

    Sulai, Yusufu N.; Dubra, Alfredo

    2014-01-01

    The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth. PMID:25401020

  9. Towards feasible and effective predictive wavefront control for adaptive optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyneer, L A; Veran, J

    We have recently proposed Predictive Fourier Control, a computationally efficient and adaptive algorithm for predictive wavefront control that assumes frozen flow turbulence. We summarize refinements to the state-space model that allow operation with arbitrary computational delays and reduce the computational cost of solving for new control. We present initial atmospheric characterization using observations with Gemini North's Altair AO system. These observations, taken over 1 year, indicate that frozen flow is exists, contains substantial power, and is strongly detected 94% of the time.

  10. Optical-beam wavefront control based on the atmospheric backscatter signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banakh, V A; Razenkov, I A; Rostov, A P

    2015-02-28

    The feasibility of compensating for aberrations of the optical-beam initial wavefront by aperture sounding, based on the atmospheric backscatter signal from an additional laser source with a different wavelength, is experimentally studied. It is shown that the adaptive system based on this principle makes it possible to compensate for distortions of the initial beam wavefront on a surface path in atmosphere. Specifically, the beam divergence decreases, while the level of the detected mean backscatter power from the additional laser source increases. (light scattering)

  11. A global spacecraft control network for spacecraft autonomy research

    NASA Technical Reports Server (NTRS)

    Kitts, Christopher A.

    1996-01-01

    The development and implementation of the Automated Space System Experimental Testbed (ASSET) space operations and control network, is reported on. This network will serve as a command and control architecture for spacecraft operations and will offer a real testbed for the application and validation of advanced autonomous spacecraft operations strategies. The proposed network will initially consist of globally distributed amateur radio ground stations at locations throughout North America and Europe. These stations will be linked via Internet to various control centers. The Stanford (CA) control center will be capable of human and computer based decision making for the coordination of user experiments, resource scheduling and fault management. The project's system architecture is described together with its proposed use as a command and control system, its value as a testbed for spacecraft autonomy research, and its current implementation.

  12. SAVA 3: A testbed for integration and control of visual processes

    NASA Technical Reports Server (NTRS)

    Crowley, James L.; Christensen, Henrik

    1994-01-01

    The development of an experimental test-bed to investigate the integration and control of perception in a continuously operating vision system is described. The test-bed integrates a 12 axis robotic stereo camera head mounted on a mobile robot, dedicated computer boards for real-time image acquisition and processing, and a distributed system for image description. The architecture was designed to: (1) be continuously operating, (2) integrate software contributions from geographically dispersed laboratories, (3) integrate description of the environment with 2D measurements, 3D models, and recognition of objects, (4) capable of supporting diverse experiments in gaze control, visual servoing, navigation, and object surveillance, and (5) dynamically reconfiguarable.

  13. Testbed-based Performance Evaluation of Attack Resilient Control for AGC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashok, Aditya; Sridhar, Siddharth; McKinnon, Archibald D.

    The modern electric power grid is a complex cyber-physical system whose reliable operation is enabled by a wide-area monitoring and control infrastructure. This infrastructure, supported by an extensive communication backbone, enables several control applications functioning at multiple time scales to ensure the grid is maintained within stable operating limits. Recent events have shown that vulnerabilities in this infrastructure may be exploited to manipulate the data being exchanged. Such a scenario could cause the associated control application to mis-operate, potentially causing system-wide instabilities. There is a growing emphasis on looking beyond traditional cybersecurity solutions to mitigate such threats. In this papermore » we perform a testbed-based validation of one such solution - Attack Resilient Control (ARC) - on Iowa State University's \\textit{PowerCyber} testbed. ARC is a cyber-physical security solution that combines domain-specific anomaly detection and model-based mitigation to detect stealthy attacks on Automatic Generation Control (AGC). In this paper, we first describe the implementation architecture of the experiment on the testbed. Next, we demonstrate the capability of stealthy attack templates to cause forced under-frequency load shedding in a 3-area test system. We then validate the performance of ARC by measuring its ability to detect and mitigate these attacks. Our results reveal that ARC is efficient in detecting stealthy attacks and enables AGC to maintain system operating frequency close to its nominal value during an attack. Our studies also highlight the importance of testbed-based experimentation for evaluating the performance of cyber-physical security and control applications.« less

  14. Closed-loop adaptive optic comparison between a Shack-Hartmann and a distorted grating wavefront sensor

    NASA Astrophysics Data System (ADS)

    Harrison, Paul; Erry, Gavin R. G.; Otten, Leonard J.; Cuevas, Desirae M.; Weaver, Lawrence D.

    2004-11-01

    Earlier research reported a comparison of the wavefronts recorded simultaneously by a Shack-Hartmann and a Distorted Grating Wavefront Sensor (DGWFS). In this paper we present the results of a continuation of this earlier work where we have now closed an adaptive optics loop under simulated propagation conditions using the Advanced Concept Laboratory (ACL) at Lincoln Laboratory. For these measurements only one wavefront sensor controlled the deformable mirror at a time. To make direct comparisons between the sensors we took advantage of the ACL's ability to exactly replicate a time varying propagation simulation. Time varying and static comparisons of the two sensors controlling the ACL adaptive system under conditions that ranged from a benign path, D/r0 = 2, to a propagation condition with significant scintillation, D/r0 =9, will be shown using the corrected far field spot as a measure of performance. The paper includes a description of the DGWFS used for these tests and describes the procedure used to align and calibrate the sensor.

  15. Closed-loop adaptive optic comparison between a Shack-Hartmann and a distorted-grating wavefront sensor

    NASA Astrophysics Data System (ADS)

    Harrison, Paul; Erry, Gavin R. G.; Otten, Leonard J., III; Cuevas, D. M.; Weaver, Lawrence D.

    2004-02-01

    Earlier research reported a comparison of the wavefronts recorded simultaneously by a Shack-Hartmann and a Distorted Grating Wavefront Sensor (DGWFS). In this paper we present the results of a continuation of this earlier work where we have now closed an adaptive optics loop under simulated propagation conditions using the Advanced Concept Laboratory (ACL) at Lincoln Laboratory. For these measurements only one wavefront sensor controlled the deformable mirror at a time. To make direct comparisons between the sensors we took advantage of the ACL"s ability to exactly replicate a time varying propagation simulation. Time varying and static comparisons of the two sensors controlling the ACL adaptive system under conditions that ranged from a benign path, D/r0 = 2, to a propagation condition with significant scintillation, D/r0 =9, will be shown using the corrected far field spot as a measure of performance. The paper includes a description of the DGWFS used for these tests and describes the procedure used to align and calibrate the sensor.

  16. Rapid and highly integrated FPGA-based Shack-Hartmann wavefront sensor for adaptive optics system

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Pin; Chang, Chia-Yuan; Chen, Shean-Jen

    2018-02-01

    In this study, a field programmable gate array (FPGA)-based Shack-Hartmann wavefront sensor (SHWS) programmed on LabVIEW can be highly integrated into customized applications such as adaptive optics system (AOS) for performing real-time wavefront measurement. Further, a Camera Link frame grabber embedded with FPGA is adopted to enhance the sensor speed reacting to variation considering its advantage of the highest data transmission bandwidth. Instead of waiting for a frame image to be captured by the FPGA, the Shack-Hartmann algorithm are implemented in parallel processing blocks design and let the image data transmission synchronize with the wavefront reconstruction. On the other hand, we design a mechanism to control the deformable mirror in the same FPGA and verify the Shack-Hartmann sensor speed by controlling the frequency of the deformable mirror dynamic surface deformation. Currently, this FPGAbead SHWS design can achieve a 266 Hz cyclic speed limited by the camera frame rate as well as leaves 40% logic slices for additionally flexible design.

  17. Hierarchical Bio-Inspired Cooperative Control for Nonlinear Dynamical Systems and Hardware Demonstration

    DTIC Science & Technology

    2013-04-03

    cooperative control, LEGO robotic testbed, non-linear dynamics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...testbed The architecture of the LEGO robots (® LEGO is a trademark and/or copyright of the LEGO Group) used in tests were based off the quick-start

  18. A Laboratory Testbed for Embedded Fuzzy Control

    ERIC Educational Resources Information Center

    Srivastava, S.; Sukumar, V.; Bhasin, P. S.; Arun Kumar, D.

    2011-01-01

    This paper presents a novel scheme called "Laboratory Testbed for Embedded Fuzzy Control of a Real Time Nonlinear System." The idea is based upon the fact that project-based learning motivates students to learn actively and to use their engineering skills acquired in their previous years of study. It also fosters initiative and focuses…

  19. On-Orbit Multi-Field Wavefront Control with a Kalman Filter

    NASA Technical Reports Server (NTRS)

    Lou, John; Sigrist, Norbert; Basinger, Scott; Redding, David

    2008-01-01

    A document describes a multi-field wavefront control (WFC) procedure for the James Webb Space Telescope (JWST) on-orbit optical telescope element (OTE) fine-phasing using wavefront measurements at the NIRCam pupil. The control is applied to JWST primary mirror (PM) segments and secondary mirror (SM) simultaneously with a carefully selected ordering. Through computer simulations, the multi-field WFC procedure shows that it can reduce the initial system wavefront error (WFE), as caused by random initial system misalignments within the JWST fine-phasing error budget, from a few dozen micrometers to below 50 nm across the entire NIRCam Field of View, and the WFC procedure is also computationally stable as the Monte-Carlo simulations indicate. With the incorporation of a Kalman Filter (KF) as an optical state estimator into the WFC process, the robustness of the JWST OTE alignment process can be further improved. In the presence of some large optical misalignments, the Kalman state estimator can provide a reasonable estimate of the optical state, especially for those degrees of freedom that have a significant impact on the system WFE. The state estimate allows for a few corrections to the optical state to push the system towards its nominal state, and the result is that a large part of the WFE can be eliminated in this step. When the multi-field WFC procedure is applied after Kalman state estimate and correction, the stability of fine-phasing control is much more certain. Kalman Filter has been successfully applied to diverse applications as a robust and optimal state estimator. In the context of space-based optical system alignment based on wavefront measurements, a KF state estimator can combine all available wavefront measurements, past and present, as well as measurement and actuation error statistics to generate a Maximum-Likelihood optimal state estimator. The strength and flexibility of the KF algorithm make it attractive for use in real-time optical system alignment when WFC alone cannot effectively align the system.

  20. Vacuum Nuller Testbed (VNT) Performance, Characterization and Null Control: Progress Report

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.; Noecker, M. Charley; Kendrick, Stephen; Helmbrecht, Michael

    2011-01-01

    Herein we report on the development. sensing and control and our first results with the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraph (VNC) for exoplanet coronagraphy. The VNC is one of the few approaches that works with filled. segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be Hown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies. and has developed an incremental sequence of VNC testbeds to advance this approach and the enabling technologies associated with it. We discuss the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). Tbe VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 10(sup 8), 10(sup 9) and ideally 10(sup 10) at an inner working angle of 2*lambda/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the initial laboratory results, the optical configuration, critical technologies and the null sensing and control approach.

  1. Development of a Rotor-Body Coupled Analysis for an Active Mount Aeroelastic Rotor Testbed. Degree awarded by George Washington Univ., May 1996

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.

    1998-01-01

    At the Langley Research Center an active mount rotorcraft testbed is being developed for use in the Langley Transonic Dynamics Tunnel. This testbed, the second generation version of the Aeroelastic Rotor Experimental System (ARES-II), can impose rotor hub motions and measure the response so that rotor-body coupling phenomena may be investigated. An analytical method for coupling an aeroelastically scaled model rotor system to the ARES-II is developed in the current study. Models of the testbed and the rotor system are developed in independent analyses, and an impedance-matching approach is used to couple the rotor system to the testbed. The development of the analytical models and the coupling method is examined, and individual and coupled results are presented for the testbed and rotor system. Coupled results are presented with and without applied hub motion, and system loads and displacements are examined. The results show that a closed-loop control system is necessary to achieve desired hub motions, that proper modeling requires including the loads at the rotor hub and rotor control system, and that the strain-gauge balance placed in the rotating system of the ARES-II provided the best loads results.

  2. A Testbed for Evaluating Lunar Habitat Autonomy Architectures

    NASA Technical Reports Server (NTRS)

    Lawler, Dennis G.

    2008-01-01

    A lunar outpost will involve a habitat with an integrated set of hardware and software that will maintain a safe environment for human activities. There is a desire for a paradigm shift whereby crew will be the primary mission operators, not ground controllers. There will also be significant periods when the outpost is uncrewed. This will require that significant automation software be resident in the habitat to maintain all system functions and respond to faults. JSC is developing a testbed to allow for early testing and evaluation of different autonomy architectures. This will allow evaluation of different software configurations in order to: 1) understand different operational concepts; 2) assess the impact of failures and perturbations on the system; and 3) mitigate software and hardware integration risks. The testbed will provide an environment in which habitat hardware simulations can interact with autonomous control software. Faults can be injected into the simulations and different mission scenarios can be scripted. The testbed allows for logging, replaying and re-initializing mission scenarios. An initial testbed configuration has been developed by combining an existing life support simulation and an existing simulation of the space station power distribution system. Results from this initial configuration will be presented along with suggested requirements and designs for the incremental development of a more sophisticated lunar habitat testbed.

  3. Voltage linear transformation circuit design

    NASA Astrophysics Data System (ADS)

    Sanchez, Lucas R. W.; Jin, Moon-Seob; Scott, R. Phillip; Luder, Ryan J.; Hart, Michael

    2017-09-01

    Many engineering projects require automated control of analog voltages over a specified range. We have developed a computer interface comprising custom hardware and MATLAB code to provide real-time control of a Thorlabs adaptive optics (AO) kit. The hardware interface includes an op amp cascade to linearly shift and scale a voltage range. With easy modifications, any linear transformation can be accommodated. In AO applications, the design is suitable to drive a range of different types of deformable and fast steering mirrors (FSM's). Our original motivation and application was to control an Optics in Motion (OIM) FSM which requires the customer to devise a unique interface to supply voltages to the mirror controller to set the mirror's angular deflection. The FSM is in an optical servo loop with a wave front sensor (WFS), which controls the dynamic behavior of the mirror's deflection. The code acquires wavefront data from the WFS and fits a plane, which is subsequently converted into its corresponding angular deflection. The FSM provides +/-3° optical angular deflection for a +/-10 V voltage swing. Voltages are applied to the mirror via a National Instruments digital-to-analog converter (DAC) followed by an op amp cascade circuit. This system has been integrated into our Thorlabs AO testbed which currently runs at 11 Hz, but with planned software upgrades, the system update rate is expected to improve to 500 Hz. To show that the FSM subsystem is ready for this speed, we conducted two different PID tuning runs at different step commands. Once 500 Hz is achieved, we plan to make the code and method for our interface solution freely available to the community.

  4. Optical interferometer testbed

    NASA Technical Reports Server (NTRS)

    Blackwood, Gary H.

    1991-01-01

    Viewgraphs on optical interferometer testbed presented at the MIT Space Research Engineering Center 3rd Annual Symposium are included. Topics covered include: space-based optical interferometer; optical metrology; sensors and actuators; real time control hardware; controlled structures technology (CST) design methodology; identification for MIMO control; FEM/ID correlation for the naked truss; disturbance modeling; disturbance source implementation; structure design: passive damping; low authority control; active isolation of lightweight mirrors on flexible structures; open loop transfer function of mirror; and global/high authority control.

  5. Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed

    NASA Technical Reports Server (NTRS)

    Tian, Ye; Song, Qi; Cattafesta, Louis

    2005-01-01

    This report summarizes the activities on "Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed." The work summarized consists primarily of two parts. The first part summarizes our previous work and the extensions to adaptive ID and control algorithms. The second part concentrates on the validation of adaptive algorithms by applying them to a vibration beam test bed. Extensions to flow control problems are discussed.

  6. Demonstration of active vibration control on a stirling-cycle cryocooler testbed

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce G.; Flynn, Frederick J.; Gaffney, Monique S.; Johnson, Dean L.; Ross, Ronald G., Jr.

    1992-01-01

    SatCon Technology Corporation has demonstrated excellent vibration reduction performance using active control on the JPL Stirling-cycle cryocooler testbed. The authors address the use of classical narrowband feedback control to meet the cryocooler vibration specifications using one cryocooler in a self-cancellation configuration. Similar vibration reduction performance was obtained using a cryocooler back-to-back configuration by actively controlling a reaction mass actuator that was used to mimic the second cooler.

  7. Mini-mast CSI testbed user's guide

    NASA Technical Reports Server (NTRS)

    Tanner, Sharon E.; Pappa, Richard S.; Sulla, Jeffrey L.; Elliott, Kenny B.; Miserentino, Robert; Bailey, James P.; Cooper, Paul A.; Williams, Boyd L., Jr.; Bruner, Anne M.

    1992-01-01

    The Mini-Mast testbed is a 20 m generic truss highly representative of future deployable trusses for space applications. It is fully instrumented for system identification and active vibrations control experiments and is used as a ground testbed at NASA-Langley. The facility has actuators and feedback sensors linked via fiber optic cables to the Advanced Real Time Simulation (ARTS) system, where user defined control laws are incorporated into generic controls software. The object of the facility is to conduct comprehensive active vibration control experiments on a dynamically realistic large space structure. A primary goal is to understand the practical effects of simplifying theoretical assumptions. This User's Guide describes the hardware and its primary components, the dynamic characteristics of the test article, the control law implementation process, and the necessary safeguards employed to protect the test article. Suggestions for a strawman controls experiment are also included.

  8. SCExAO: First Results and On-Sky Performance

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Guyon, Olivier; Martinache, Frantz; Clergeon, Christophe; McElwain, Michael; Thalmann, Christian; Jovanovic, Nemanja; Singh, Garima; Kudo, Tomoyuki

    2014-01-01

    We present new on-sky results for the Subaru Coronagraphic Extreme Adaptive Optics imager (SCExAO) verifying and quantifying the contrast gain enabled by key components: the closed-loop coronagraphic low-order wavefront sensor (CLOWFS) and focal plane wavefront control (``speckle nulling''). SCExAO will soon be coupled with a high-order, Pyramid wavefront sensor which will yield > 90% Strehl ratio and enable 106-107 contrast at small angular separations allowing us to image gas giant planets at solar system scales. Upcoming instruments like VAMPIRES, FIRST, and CHARIS will expand SCExAO's science capabilities.

  9. Advanced traffic technology test-bed.

    DOT National Transportation Integrated Search

    2004-06-01

    The goal of this project was to create a test-bed to allow the University of California to conduct advanced traffic technology research in a designated, non-public, and controlled setting. Caltrans, with its associated research facilities on UC campu...

  10. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Walters, Jerry L.; Petrik, Edward J.; Roth, Mary Ellen; Truong, Long Van; Quinn, Todd; Krawczonek, Walter M.

    1990-01-01

    The Autonomous Power Expert (APEX) system was designed to monitor and diagnose fault conditions that occur within the Space Station Freedom Electrical Power System (SSF/EPS) Testbed. APEX is designed to interface with SSF/EPS testbed power management controllers to provide enhanced autonomous operation and control capability. The APEX architecture consists of three components: (1) a rule-based expert system, (2) a testbed data acquisition interface, and (3) a power scheduler interface. Fault detection, fault isolation, justification of probable causes, recommended actions, and incipient fault analysis are the main functions of the expert system component. The data acquisition component requests and receives pertinent parametric values from the EPS testbed and asserts the values into a knowledge base. Power load profile information is obtained from a remote scheduler through the power scheduler interface component. The current APEX design and development work is discussed. Operation and use of APEX by way of the user interface screens is also covered.

  11. The Wide-Field Imaging Interferometry Testbed (WIIT): Recent Progress and Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.; Frey, Bradley J.; Leisawitz, David T.; Lyon, Richard G.; Maher, Stephen F.; Martino, Anthony J.

    2008-01-01

    Continued research with the Wide-Field Imaging Interferometry Testbed (WIIT) has achieved several important milestones. We have moved WIIT into the Advanced Interferometry and Metrology (AIM) Laboratory at Goddard, and have characterized the testbed in this well-controlled environment. The system is now completely automated and we are in the process of acquiring large data sets for analysis. In this paper, we discuss these new developments and outline our future research directions. The WIIT testbed, combined with new data analysis techniques and algorithms, provides a demonstration of the technique of wide-field interferometric imaging, a powerful tool for future space-borne interferometers.

  12. Flight Approach to Adaptive Control Research

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  13. Robust Wave-front Correction in a Small Scale Adaptive Optics System Using a Membrane Deformable Mirror

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Park, S.; Baik, S.; Jung, J.; Lee, S.; Yoo, J.

    A small scale laboratory adaptive optics system using a Shack-Hartmann wave-front sensor (WFS) and a membrane deformable mirror (DM) has been built for robust image acquisition. In this study, an adaptive limited control technique is adopted to maintain the long-term correction stability of an adaptive optics system. To prevent the waste of dynamic correction range for correcting small residual wave-front distortions which are inefficient to correct, the built system tries to limit wave-front correction when a similar small difference wave-front pattern is repeatedly generated. Also, the effect of mechanical distortion in an adaptive optics system is studied and a pre-recognition method for the distortion is devised to prevent low-performance system operation. A confirmation process for a balanced work assignment among deformable mirror (DM) actuators is adopted for the pre-recognition. The corrected experimental results obtained by using a built small scale adaptive optics system are described in this paper.

  14. Distributed wavefront reconstruction with SABRE for real-time large scale adaptive optics control

    NASA Astrophysics Data System (ADS)

    Brunner, Elisabeth; de Visser, Cornelis C.; Verhaegen, Michel

    2014-08-01

    We present advances on Spline based ABerration REconstruction (SABRE) from (Shack-)Hartmann (SH) wavefront measurements for large-scale adaptive optics systems. SABRE locally models the wavefront with simplex B-spline basis functions on triangular partitions which are defined on the SH subaperture array. This approach allows high accuracy through the possible use of nonlinear basis functions and great adaptability to any wavefront sensor and pupil geometry. The main contribution of this paper is a distributed wavefront reconstruction method, D-SABRE, which is a 2 stage procedure based on decomposing the sensor domain into sub-domains each supporting a local SABRE model. D-SABRE greatly decreases the computational complexity of the method and removes the need for centralized reconstruction while obtaining a reconstruction accuracy for simulated E-ELT turbulences within 1% of the global method's accuracy. Further, a generalization of the methodology is proposed making direct use of SH intensity measurements which leads to an improved accuracy of the reconstruction compared to centroid algorithms using spatial gradients.

  15. Wavefront sensor-driven variable-geometry pupil for ground-based aperture synthesis imaging

    NASA Astrophysics Data System (ADS)

    Tyler, David W.

    2000-07-01

    I describe a variable-geometry pupil (VGP) to increase image resolution for ground-based near-IR and optical imaging. In this scheme, a curvature-type wavefront sensor provides an estimate of the wavefront curvature to the controller of a high-resolution spatial light modulator (SLM) or micro- electromechanical (MEM) mirror, positioned at an image of the telescope pupil. This optical element, the VGP, passes or reflects the incident beam only where the wavefront phase is sufficiently smooth, viz., where the curvature is sufficiently low. Using a computer simulation, I show the VGP can sharpen and smooth the long-exposure PSF and increase the OTF SNR for tilt-only and low-order AO systems, allowing higher resolution and more stable deconvolution with dimmer AO guidestars.

  16. TEXSYS. [a knowledge based system for the Space Station Freedom thermal control system test-bed

    NASA Technical Reports Server (NTRS)

    Bull, John

    1990-01-01

    The Systems Autonomy Demonstration Project has recently completed a major test and evaluation of TEXSYS, a knowledge-based system (KBS) which demonstrates real-time control and FDIR for the Space Station Freedom thermal control system test-bed. TEXSYS is the largest KBS ever developed by NASA and offers a unique opportunity for the study of technical issues associated with the use of advanced KBS concepts including: model-based reasoning and diagnosis, quantitative and qualitative reasoning, integrated use of model-based and rule-based representations, temporal reasoning, and scale-up performance issues. TEXSYS represents a major achievement in advanced automation that has the potential to significantly influence Space Station Freedom's design for the thermal control system. An overview of the Systems Autonomy Demonstration Project, the thermal control system test-bed, the TEXSYS architecture, preliminary test results, and thermal domain expert feedback are presented.

  17. Coherent control of plasma dynamics by feedback-optimized wavefront manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Z.-H.; Hou, B.; Gao, G.

    2015-05-15

    Plasmas generated by an intense laser pulse can support coherent structures such as large amplitude wakefield that can affect the outcome of an experiment. We investigate the coherent control of plasma dynamics by feedback-optimized wavefront manipulation using a deformable mirror. The experimental outcome is directly used as feedback in an evolutionary algorithm for optimization of the phase front of the driving laser pulse. In this paper, we applied this method to two different experiments: (i) acceleration of electrons in laser driven plasma waves and (ii) self-compression of optical pulses induced by ionization nonlinearity. The manipulation of the laser wavefront leadsmore » to orders of magnitude improvement to electron beam properties such as the peak charge, beam divergence, and transverse emittance. The demonstration of coherent control for plasmas opens new possibilities for future laser-based accelerators and their applications.« less

  18. Correlation effects in focused transmission through disordered media (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hsu, Chia Wei; Liew, Seng Fatt; Goetschy, Arthur; Cao, Hui; Stone, A. Douglas

    2017-02-01

    By controlling the many degrees of freedom in the incident wavefront, one can manipulate wave propagation in complex structures. Such wavefront-shaping methods have been used extensively for controlling light transmitted into wavelength-scale regions (speckles), a property that is insensitive to correlations in the speckle pattern. Extending coherent control to larger regions is of great interest both scientifically and for applications such as optical communications, photothermal therapy, and the imaging of large objects within or behind a diffusive medium. However, waves diffusing through a disordered medium are known to exhibit non-local intensity correlations, and their effect on coherent control has not been fully understood. Here, we demonstrate the effects of correlations with wavefront-shaping experiments on a scattering sample of zinc oxide microparticles. Long-range correlations substantially increase the dynamic range of coherent control over light transmitted onto larger target regions, far beyond what would be achievable if correlations were negligible. This and other effects of correlations emerge when the number of speckles targeted, M2, exceeds the dimensionless conductance g. Using a filtered random matrix ensemble appropriate for describing coherent diffusion and the lateral spreading in an open geometry, we show analytically that M2/g appears as the controlling parameter in universal scaling laws for several statistical properties of interest--predictions that we quantitatively confirm with experimental data. Our work elucidates the roles of speckle correlations and provides a general theoretical framework for modeling open systems in wavefront-shaping experiments.

  19. Electro-optic testbed utilizing a dynamic range gated Rayleigh beacon for atmospheric turbulence profiling

    NASA Astrophysics Data System (ADS)

    Zuraski, Steven M.; Fiorino, Steven T.; Beecher, Elizabeth A.; Figlewski, Nathan M.; Schmidt, Jason D.; McCrae, Jack E.

    2016-10-01

    The Photometry Analysis and Optical Tracking and Evaluation System (PANOPTES) Quad Axis Telescope is a unique four axis mount Ritchey-Chretien 24 inch telescope capable of tracking objects through the zenith without axes rotation delay (no Dead Zone). This paper describes enhancement components added to the quad axis mount telescope that will enable measurements supporting novel research and field testing focused on `three-dimensional' characterization of turbulent atmospheres, mitigation techniques, and new sensing modalities. These all support research and operational techniques relating to astronomical imaging and electro-optical propagation though the atmosphere, relative to sub-meter class telescopes in humid, continental environments. This effort will use custom designed and commercial off the shelf hardware; sub-system components discussed will include a wavefront sensor system, a co-aligned beam launch system, and a fiber coupled research laser. The wavefront sensing system has the ability to take measurements from a dynamic altitude adjustable laser beacon scattering spot, a key concept that enables rapid turbulence structure parameter measurements over an altitude varied integrated atmospheric volume. The sub-components are integrated with the overall goal of measuring a height-resolved volumetric profile for the atmospheric turbulence structure parameter at the site, and developing mobile techniques for such measurements. The design concept, part selection optimization, baseline component lab testing, and initial field measurements, will be discussed in the main sections of this paper. This project is a collaborative effort between the Air Force Research Labs Sensors Directorate and the Air Force Institute of Technology Center for Directed Energy.

  20. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  1. A Wearable Body Controlling Device for Application of Functional Electrical Stimulation

    PubMed Central

    Jeffery, Nicholas D.

    2018-01-01

    In this research, we describe a new balancing device used to stabilize the rear quarters of a patient dog with spinal cord injuries. Our approach uses inertial measurement sensing and direct leg actuation to lay a foundation for eventual muscle control by means of direct functional electrical stimulation (FES). During this phase of development, we designed and built a mechanical test-bed to develop the control and stimulation algorithms before we use the device on our animal subjects. We designed the bionic test-bed to mimic the typical walking gait of a dog and use it to develop and test the functionality of the balancing device for stabilization of patient dogs with hindquarter paralysis. We present analysis for various muscle stimulation and balancing strategies, and our device can be used by veterinarians to tailor the stimulation strength and temporal distribution for any individual patient dog. We develop stabilizing muscle stimulation strategies using the robotic test-bed to enhance walking stability. We present experimental results using the bionic test-bed to demonstrate that the balancing device can provide an effective sensing strategy and deliver the required motion control commands for stabilizing an actual dog with a spinal cord injury. PMID:29670039

  2. A Wearable Body Controlling Device for Application of Functional Electrical Stimulation.

    PubMed

    Taghavi, Nazita; Luecke, Greg R; Jeffery, Nicholas D

    2018-04-18

    In this research, we describe a new balancing device used to stabilize the rear quarters of a patient dog with spinal cord injuries. Our approach uses inertial measurement sensing and direct leg actuation to lay a foundation for eventual muscle control by means of direct functional electrical stimulation (FES). During this phase of development, we designed and built a mechanical test-bed to develop the control and stimulation algorithms before we use the device on our animal subjects. We designed the bionic test-bed to mimic the typical walking gait of a dog and use it to develop and test the functionality of the balancing device for stabilization of patient dogs with hindquarter paralysis. We present analysis for various muscle stimulation and balancing strategies, and our device can be used by veterinarians to tailor the stimulation strength and temporal distribution for any individual patient dog. We develop stabilizing muscle stimulation strategies using the robotic test-bed to enhance walking stability. We present experimental results using the bionic test-bed to demonstrate that the balancing device can provide an effective sensing strategy and deliver the required motion control commands for stabilizing an actual dog with a spinal cord injury.

  3. VR Simulation Testbed: Improving Surface Telerobotics for the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Walker, M. E.; Burns, J. O.; Szafir, D. J.

    2018-02-01

    Design of a virtual reality simulation testbed for prototyping surface telerobotics. The goal is to create a framework with robust physics and kinematics to allow simulated teleoperation and supervised control of lunar rovers and rapid UI prototyping.

  4. Development, Demonstration, and Control of a Testbed for Multiterminal HVDC System

    DOE PAGES

    Li, Yalong; Shi, Xiaojie M.; Liu, Bo; ...

    2016-10-21

    This paper presents the development of a scaled four-terminal high-voltage direct current (HVDC) testbed, including hardware structure, communication architecture, and different control schemes. The developed testbed is capable of emulating typical operation scenarios including system start-up, power variation, line contingency, and converter station failure. Some unique scenarios are also developed and demonstrated, such as online control mode transition and station re-commission. In particular, a dc line current control is proposed, through the regulation of a converter station at one terminal. By controlling a dc line current to zero, the transmission line can be opened by using relatively low-cost HVDC disconnectsmore » with low current interrupting capability, instead of the more expensive dc circuit breaker. Utilizing the dc line current control, an automatic line current limiting scheme is developed. As a result, when a dc line is overloaded, the line current control will be automatically activated to regulate current within the allowable maximum value.« less

  5. Active member vibration control for a 4 meter primary reflector support structure

    NASA Technical Reports Server (NTRS)

    Umland, J. W.; Chen, G.-S.

    1992-01-01

    The design and testing of a new low voltage piezoelectric active member with integrated load cell and displacement sensor is described. This active member is intended for micron level vibration and structural shape control of the Precision Segmented Reflector test-bed. The test-bed is an erectable 4 meter diameter backup support truss for a 2.4 meter focal length parabolic reflector. Active damping of the test-bed is then demonstrated using the newly developed active members. The control technique used is referred to as bridge feedback. With this technique the internal sensors are used in a local feedback loop to match the active member's input impedance to the structure's load impedance, which then maximizes vibrational energy dissipation. The active damping effectiveness is then evaluated from closed loop frequency responses.

  6. Multigrid preconditioned conjugate-gradient method for large-scale wave-front reconstruction.

    PubMed

    Gilles, Luc; Vogel, Curtis R; Ellerbroek, Brent L

    2002-09-01

    We introduce a multigrid preconditioned conjugate-gradient (MGCG) iterative scheme for computing open-loop wave-front reconstructors for extreme adaptive optics systems. We present numerical simulations for a 17-m class telescope with n = 48756 sensor measurement grid points within the aperture, which indicate that our MGCG method has a rapid convergence rate for a wide range of subaperture average slope measurement signal-to-noise ratios. The total computational cost is of order n log n. Hence our scheme provides for fast wave-front simulation and control in large-scale adaptive optics systems.

  7. SCExAO: First Results and On-Sky Performance

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Guyon, Olivier; Martinache, Frantz; Clergeon, Christophe; McElwain, Michael; Thalmann, Christian; Jovanovic, Nemanja; Singh, Garima; Kudo, Tomoyuki

    2013-01-01

    We present new on-sky results for the Subaru Coronagraphic Extreme Adaptive Optics imager (SCExAO) verifying and quantifying the contrast gain enabled by key components: the closed-loop coronagraphic low-order wavefront sensor (CLOWFS) and focal plane wavefront control ("speckle nulling"). SCExAO will soon be coupled with a high-order, Pyramid wavefront sensor which will yield greater than 90% Strehl ratio and enable 10(exp 6) -10(exp 7) contrast at small angular separations allowing us to image gas giant planets at solar system scales. Upcoming instruments like VAMPIRES, FIRST, and CHARIS will expand SCExAO's science capabilities.

  8. Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems.

    PubMed

    Niederriter, Robert D; Watson, Alexander M; Zahreddine, Ramzi N; Cogswell, Carol J; Cormack, Robert H; Bright, Victor M; Gopinath, Juliet T

    2013-05-10

    We have demonstrated a one-dimensional array of individually addressable electrowetting tunable liquid lenses that compensate for more than one wave of phase distortion across a wavefront. We report a scheme for piston control using tunable liquid lens arrays in volume-bound cavities that alter the optical path length without affecting the wavefront curvature. Liquid lens arrays with separately tunable focus or phase control hold promise for laser communication systems and adaptive optics.

  9. DeMi Payload Progress Update and Adaptive Optics (AO) Control Comparisons – Meeting Space AO Requirements on a CubeSat

    NASA Astrophysics Data System (ADS)

    Grunwald, Warren; Holden, Bobby; Barnes, Derek; Allan, Gregory; Mehrle, Nicholas; Douglas, Ewan S.; Cahoy, Kerri

    2018-01-01

    The Deformable Mirror (DeMi) CubeSat mission utilizes an Adaptive Optics (AO) control loop to correct incoming wavefronts as a technology demonstration for space-based imaging missions, such as high contrast observations (Earthlike exoplanets) and steering light into core single mode fibers for amplification. While AO has been used extensively on ground based systems to correct for atmospheric aberrations, operating an AO system on-board a small satellite presents different challenges. The DeMi payload 140 actuator MEMS deformable mirror (DM) corrects the incoming wavefront in four different control modes: 1) internal observation with a Shack-Hartmann Wavefront Sensor (SHWFS), 2) internal observation with an image plane sensor, 3) external observation with a SHWFS, and 4) external observation with an image plane sensor. All modes have wavefront aberration from two main sources, time-invariant launch disturbances that have changed the optical path from the expected path when calibrated in the lab and very low temporal frequency thermal variations as DeMi orbits the Earth. The external observation modes has additional error from: the pointing precision error from the attitude control system and reaction wheel jitter. Updates on DeMi’s mechanical, thermal, electrical, and mission design are also presented. The analysis from the DeMi payload simulations and testing provides information on the design options when developing space-based AO systems.

  10. High speed real-time wavefront processing system for a solid-state laser system

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Yang, Ping; Chen, Shanqiu; Ma, Lifang; Xu, Bing

    2008-03-01

    A high speed real-time wavefront processing system for a solid-state laser beam cleanup system has been built. This system consists of a core2 Industrial PC (IPC) using Linux and real-time Linux (RT-Linux) operation system (OS), a PCI image grabber, a D/A card. More often than not, the phase aberrations of the output beam from solid-state lasers vary fast with intracavity thermal effects and environmental influence. To compensate the phase aberrations of solid-state lasers successfully, a high speed real-time wavefront processing system is presented. Compared to former systems, this system can improve the speed efficiently. In the new system, the acquisition of image data, the output of control voltage data and the implementation of reconstructor control algorithm are treated as real-time tasks in kernel-space, the display of wavefront information and man-machine conversation are treated as non real-time tasks in user-space. The parallel processing of real-time tasks in Symmetric Multi Processors (SMP) mode is the main strategy of improving the speed. In this paper, the performance and efficiency of this wavefront processing system are analyzed. The opened-loop experimental results show that the sampling frequency of this system is up to 3300Hz, and this system can well deal with phase aberrations from solid-state lasers.

  11. The ac power system testbed

    NASA Technical Reports Server (NTRS)

    Mildice, J.; Sundberg, R.

    1987-01-01

    The object of this program was to design, build, test, and deliver a high frequency (20 kHz) Power System Testbed which would electrically approximate a single, separable power channel of an IOC Space Station. That program is described, including the technical background, and the results are discussed showing that the major assumptions about the characteristics of this class of hardware (size, mass, efficiency, control, etc.) were substantially correct. This testbed equipment was completed and delivered and is being operated as part of the Space Station Power System Test Facility.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonathan Gray; Robert Anderson; Julio G. Rodriguez

    Abstract: Identifying and understanding digital instrumentation and control (I&C) cyber vulnerabilities within nuclear power plants and other nuclear facilities, is critical if nation states desire to operate nuclear facilities safely, reliably, and securely. In order to demonstrate objective evidence that cyber vulnerabilities have been adequately identified and mitigated, a testbed representing a facility’s critical nuclear equipment must be replicated. Idaho National Laboratory (INL) has built and operated similar testbeds for common critical infrastructure I&C for over ten years. This experience developing, operating, and maintaining an I&C testbed in support of research identifying cyber vulnerabilities has led the Korean Atomic Energymore » Research Institute of the Republic of Korea to solicit the experiences of INL to help mitigate problems early in the design, development, operation, and maintenance of a similar testbed. The following information will discuss I&C testbed lessons learned and the impact of these experiences to KAERI.« less

  13. Low-order wavefront sensing for coronagraphic telescopes

    NASA Astrophysics Data System (ADS)

    Subedi, Hari; Kasdin, Jeremy; Peter Varnai

    2018-01-01

    Space telescopes equipped with a coronagraph to detect and characterize exoplanets must have the ability to sense and control low-order wavefront aberrations. Most concepts for low-order wavefront sensing use the starlight rejected by the coronagraph to sense these aberrations. The sensor must be able to make precise estimates and be robust to photon and read noise. A thorough study of various differential low-order wavefront sensors (LOWFSs) would be beneficial for future space-based observatories designed for exoplanet detection and characterization. In this talk, we will expand on the comparison of different LOWFSs that use the rejected starlight either from the coronagraphic focal plane or the Lyot plane to estimate these aberrations. We will also present the experimental results of the sparse aperture mask (SAM) LOWFS that we have designed at the Princeton High Contrast Imaging Lab (PHCIL).

  14. Far field and wavefront characterization of a high-power semiconductor laser for free space optical communications

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Saif, Babak N.

    1991-01-01

    The spatial pointing angle and far field beamwidth of a high-power semiconductor laser are characterized as a function of CW power and also as a function of temperature. The time-averaged spatial pointing angle and spatial lobe width were measured under intensity-modulated conditions. The measured pointing deviations are determined to be well within the pointing requirements of the NASA Laser Communications Transceiver (LCT) program. A computer-controlled Mach-Zehnder phase-shifter interferometer is used to characterize the wavefront quality of the laser. The rms phase error over the entire pupil was measured as a function of CW output power. Time-averaged measurements of the wavefront quality are also made under intensity-modulated conditions. The measured rms phase errors are determined to be well within the wavefront quality requirements of the LCT program.

  15. Testing the pyramid truth wavefront sensor for NFIRAOS in the lab

    NASA Astrophysics Data System (ADS)

    Mieda, Etsuko; Rosensteiner, Matthias; van Kooten, Maaike; Veran, Jean-Pierre; Lardiere, Olivier; Herriot, Glen

    2016-07-01

    For today and future adaptive optics observations, sodium laser guide stars (LGSs) are crucial; however, the LGS elongation problem due to the sodium layer has to be compensated, in particular for extremely large telescopes. In this paper, we describe the concept of truth wavefront sensing as a solution and present its design using a pyramid wavefront sensor (PWFS) to improve NFIRAOS (Narrow Field InfraRed Adaptive Optics System), the first light adaptive optics system for Thirty Meter Telescope. We simulate and test the truth wavefront sensor function under a controlled environment using the HeNOS (Herzberg NFIRAOS Optical Simulator) bench, a scaled-down NFIRAOS bench at NRC-Herzberg. We also touch on alternative pyramid component options because despite recent high demands for PWFSs, we suffer from the lack of pyramid supplies due to engineering difficulties.

  16. Simultaneous calculation of three optical surfaces in the 3D SMS freeform RXI optic

    NASA Astrophysics Data System (ADS)

    Sorgato, Simone; Chaves, Julio; Mohedano, Rubén.; Hernández, Maikel; Blen, José; Benitez, Pablo; Miñano, Juan C.; Grabovickic, Dejan; Thienpont, Hugo; Duerr, Fabian

    2016-09-01

    The Freeform RXI collimator is a remarkable example of advanced nonimaging device designed with the 3D Simultaneous Multiple Surface (SMS) Method. In the original design, two (the front refracting surface and the back mirror) of the three optical surfaces of the RXI are calculated simultaneously and one (the cavity surrounding the source) is fixed by the designer. As a result, the RXI perfectly couples two input wavefronts (coming from the edges of the extended LED source) with two output wavefronts (defining the output beam). This allows for LED lamps able to produce controlled intensity distributions, which can and have been successfully applied to demanding applications like high- and low-beams for Automotive Lighting. Nevertheless, current trends in this field are moving towards smaller headlamps with more shape constraints driven by car design. We present an improved version of the 3D RXI in which also the cavity surface is computed during the design, so that there are three freeform surfaces calculated simultaneously and an additional degree of freedom for controlling the light emission: now the RXI can perfectly couple three input wavefronts with three output wavefronts. The enhanced control over ray beams allows for improved light homogeneity and better pattern definition.

  17. Validation of a Hartmann-Moiré wavefront sensor with large dynamic range.

    PubMed

    Wei, Xin; Van Heugten, Tony; Thibos, Larry

    2009-08-03

    Our goal was to validate the accuracy, repeatability, sensitivity, and dynamic range of a Hartmann-Moiré (HM) wavefront sensor (PixelOptics, Inc.) designed for ophthalmic applications. Testing apparatus injected a 4 mm diameter monochromatic (532 nm) beam of light into the wavefront sensor for measurement. Controlled amounts of defocus and astigmatism were introduced into the beam with calibrated spherical (-20D to + 18D) and cylindrical (-8D to + 8D) lenses. Repeatability was assessed with three repeated measurements within a 2-minute period. Correlation coefficients between mean wavefront measurements (n = 3) and expected wavefront vergence for both sphere and cylinder lenses were >0.999. For spherical lenses, the sensor was accurate to within 0.1D over the range from -20D to + 18D. For cylindrical lenses, the sensor was accurate to within 0.1D over the range from -8D to + 8D. The primary limitation to demonstrating an even larger dynamic range was the increasingly critical requirements for optical alignment. Sensitivity to small changes of vergence was constant over the instrument's full dynamic range. Repeatability of measurements for fixed condition was within 0.01D. The Hartmann-Moiré wavefront sensor measures defocus and astigmatism accurately and repeatedly with good sensitivity over a large dynamic range required for ophthalmic applications.

  18. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-01-01

    Herein we report on our Visible Nulling Coronagraph high-contrast result of 109 contrast averaged over a focal planeregion extending from 14 D with the Vacuum Nuller Testbed (VNT) in a vibration isolated vacuum chamber. TheVNC is a hybrid interferometriccoronagraphic approach for exoplanet science. It operates with high Lyot stopefficiency for filled, segmented and sparse or diluted-aperture telescopes, thereby spanning the range of potential futureNASA flight telescopes. NASAGoddard Space Flight Center (GSFC) has a well-established effort to develop the VNCand its technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and itsenabling technologies. These testbeds have enabled advancement of high-contrast, visible light, nulling interferometry tounprecedented levels. The VNC is based on a modified Mach-Zehnder nulling interferometer, with a W configurationto accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters.We give an overview of the VNT and discuss the high-contrast laboratory results, the optical configuration, criticaltechnologies and null sensing and control.

  19. Experimental Verification of Sparse Aperture Mask for Low Order Wavefront Sensing

    NASA Astrophysics Data System (ADS)

    Subedi, Hari; Kasdin, N. Jeremy

    2017-01-01

    To directly image exoplanets, future space-based missions are equipped with coronagraphs which manipulate the diffraction of starlight and create regions of high contrast called dark holes. Theoretically, coronagraphs can be designed to achieve the high level of contrast required to image exoplanets, which are billions of times dimmer than their host stars, however the aberrations caused by optical imperfections and thermal fluctuations cause the degradation of contrast in the dark holes. Focal plane wavefront control (FPWC) algorithms using deformable mirrors (DMs) are used to mitigate the quasi-static aberrations caused by optical imperfections. Although the FPWC methods correct the quasi-static aberrations, they are blind to dynamic errors caused by telescope jitter and thermal fluctuations. At Princeton's High Contrast Imaging Lab we have developed a new technique that integrates a sparse aperture mask with the coronagraph to estimate these low-order dynamic wavefront errors. This poster shows the effectiveness of a SAM Low-Order Wavefront Sensor in estimating and correcting these errors via simulation and experiment and compares the results to other methods, such as the Zernike Wavefront Sensor planned for WFIRST.

  20. THAI-SPICE: Testbed for High-Acuity Imaging – Stable Photometry and ImageMotion Compensation Experiment

    NASA Astrophysics Data System (ADS)

    Young, Eliot

    THAI-SPICE is the Testbed for High-Acuity Imaging - Stable Photometry and ImageMotion Compensation Experiment - It is a lead proposal, accompanied by a coInstitutional proposal from MIT LL. The overarching goal of THAI-SPICE is to advance balloonborne telescopes to the point where they can surpass HST in terms of spatial resolution in visible wavelengths and surpass the Kepler mission in terms of observing exoplanet transits. Balloon-borne telescopes are becoming an important part of NASA's observing programs - each 100-day super-pressure balloon flight will provide 1000 hours of dark time observing, equivalent to about 1/3 of the total on-target time allocated in an HST cycle across its entire portfolio of science programs. However, balloon-borne telescopes face unique challenges from the stratospheric thermal environment and the pointing stability of a suspended platform. This proposal will study and test three areas of development that will enable high-acuity image quality and stable photometry from balloon-borne telescopes. - Passive thermal control and stabilization of balloon-borne OTAs (Optical Tube Assemblies). Recent modeling suggests that an appropriate arrangement of sunshields, earth-shields and telescope insulation can reduce diurnal temperature excursions from more than 40°C to less than 2°C. Furthermore, modeling also suggests that the steadystate temperature of an OTA can be reduced to temperatures near 180 K, an advantage for infrared observing programs. However, most modeling packages (e.g., Thermal Desktop) do not accurately account for convection in the 3 torr or 8 torr environment of zeropressure or super-pressure balloons. In fact, it is hard to tell whether radiation or convection is a more significant cooling mechanism at super-pressure balloon altitudes. We propose to verify or update Thermal Desktop results with a series of experiments using an instrumented OTA and sun- and earth-shields. The payoff from this experiment will be balloon-borne telescopes that exhibit extremely stable temperatures through daynight cycles and, in turn, avoid optical misalignment due to temperature excursions. - Orthogonal Transfer CCDs as solid-state motion compensation devices. In order to stay within a wavefront error budget that is comparable to WFIRST or HST, a balloon-borne imaging system cannot afford a single mediocre optical element. Fine steering mirrors are especially problematic, since they are often thin, lightweight and mounted to a fastmoving mechanism. We will test the performance of OTCCDs on actual balloon platforms to assess how they can compensate for focal plane motion in flight. In addition, we will measure the photometric stability afforded by OTCCDs, and whether purposely moving a point source in a pattern can improve photometry by PSF-shaping and spreading the signal over many array elements. - In-flight wavefront error measurements. During a 100-day mission, it will be useful to monitor the focus and optical alignment of the telescope and the attached instruments. A Shack-Hartmann array located at an exit pupil will provide a detailed breakdown of the optical system: compact commercial units often provide over 15 Zernike polynomials. We want to test another method, the Curvature Wavefront Sensing method (aka, the Roddier method). The CWS method only requires images on either side of focus. It does not require extra hardware nor access to an exit pupil. We want to demonstrate the CWS method in flight and compare its results to a conventional Shack-Hartmann array. All of these projects leverage prior work, some supported by previous APRA projects, some part of NASA's ongoing GHAPS project (Gondola for High Altitude Planetary Science). We propose two domestic flights with a 24-in instrumented telescope and a gondola capable of coarse pointing. This project will involve students from the University of Virginia and the University of Colorado.

  1. Application of Model-based Prognostics to a Pneumatic Valves Testbed

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Kulkarni, Chetan S.; Gorospe, George

    2014-01-01

    Pneumatic-actuated valves play an important role in many applications, including cryogenic propellant loading for space operations. Model-based prognostics emphasizes the importance of a model that describes the nominal and faulty behavior of a system, and how faulty behavior progresses in time, causing the end of useful life of the system. We describe the construction of a testbed consisting of a pneumatic valve that allows the injection of faulty behavior and controllable fault progression. The valve opens discretely, and is controlled through a solenoid valve. Controllable leaks of pneumatic gas in the testbed are introduced through proportional valves, allowing the testing and validation of prognostics algorithms for pneumatic valves. A new valve prognostics approach is developed that estimates fault progression and predicts remaining life based only on valve timing measurements. Simulation experiments demonstrate and validate the approach.

  2. Gulfstream's Quiet Spike sonic boom mitigator being installed on NASA DFRC's F-15B testbed aircraft

    NASA Image and Video Library

    2006-04-17

    Gulfstream's Quiet Spike sonic boom mitigator being installed on NASA DFRC's F-15B testbed aircraft. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.

  3. Integrated Photonic Orbital Angular Momentum Multiplexing and Demultiplexing on Chip

    DTIC Science & Technology

    2014-10-31

    OAM free space coherent communication link testbed. ECL: external cavity laser . EDFA: erbium-doped fiber amplifier. PC: polarization controller. ATT...wave (cw) laser centered at 1540 nm, followed by an erbium-doped fiber amplifier (EDFA), an I/Q modulator, and another EDFA. The I/Q modulator was...communication link testbed. ECL: external cavity laser . EDFA: erbium-doped fiber amplifier. PC: polarization controller. ATT: attenuator. BPF: bandpass filter

  4. Frameworks and Tools for High-Confidence Design of Adaptive, Distributed Embedded Control Systems. Multi-University Research Initiative on High-Confidence Design for Distributed Embedded Systems

    DTIC Science & Technology

    2009-01-01

    controllers (currently using the Robostix+Gumstix pair ). The interface between the plant simulator and the controller is ‘hard real-time’, and the xPC box... simulation ) on aerobatic maneuver design for the STARMAC quadrotor helicopter testbed. In related work, we have developed a new optimization scheme...for scheduling hybrid systems, and have demonstrated the results on an autonomous car simulation testbed. We are focusing efforts this summer for

  5. High-speed adaptive optics for imaging of the living human eye

    PubMed Central

    Yu, Yongxin; Zhang, Tianjiao; Meadway, Alexander; Wang, Xiaolin; Zhang, Yuhua

    2015-01-01

    The discovery of high frequency temporal fluctuation of human ocular wave aberration dictates the necessity of high speed adaptive optics (AO) correction for high resolution retinal imaging. We present a high speed AO system for an experimental adaptive optics scanning laser ophthalmoscope (AOSLO). We developed a custom high speed Shack-Hartmann wavefront sensor and maximized the wavefront detection speed based upon a trade-off among the wavefront spatial sampling density, the dynamic range, and the measurement sensitivity. We examined the temporal dynamic property of the ocular wavefront under the AOSLO imaging condition and improved the dual-thread AO control strategy. The high speed AO can be operated with a closed-loop frequency up to 110 Hz. Experiment results demonstrated that the high speed AO system can provide improved compensation for the wave aberration up to 30 Hz in the living human eye. PMID:26368408

  6. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, Gary E.

    1996-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  7. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, G.E.

    1996-08-29

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.

  8. Generation of atmospheric wavefronts using binary micromirror arrays.

    PubMed

    Anzuola, Esdras; Belmonte, Aniceto

    2016-04-10

    To simulate in the laboratory the influence that a turbulent atmosphere has on light beams, we introduce a practical method for generating atmospheric wavefront distortions that considers digital holographic reconstruction using a programmable binary micromirror array. We analyze the efficiency of the approach for different configurations of the micromirror array and experimentally demonstrate the benchtop technique. Though the mirrors on the digital array can only be positioned in one of two states, we show that the holographic technique can be used to devise a wide variety of atmospheric wavefront aberrations in a controllable and predictable way for a fraction of the cost of phase-only spatial light modulators.

  9. Wnt-regulated dynamics of positional information in zebrafish somitogenesis

    PubMed Central

    Bajard, Lola; Morelli, Luis G.; Ares, Saúl; Pécréaux, Jacques; Jülicher, Frank; Oates, Andrew C.

    2014-01-01

    How signaling gradients supply positional information in a field of moving cells is an unsolved question in patterning and morphogenesis. Here, we ask how a Wnt signaling gradient regulates the dynamics of a wavefront of cellular change in a flow of cells during somitogenesis. Using time-controlled perturbations of Wnt signaling in the zebrafish embryo, we changed segment length without altering the rate of somite formation or embryonic elongation. This result implies specific Wnt regulation of the wavefront velocity. The observed Wnt signaling gradient dynamics and timing of downstream events support a model for wavefront regulation in which cell flow plays a dominant role in transporting positional information. PMID:24595291

  10. Modelling MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Blain, Celia

    As of July 2012, 777 exoplanets have been discovered utilizing mainly indirect detection techniques. The direct imaging of exoplanets is the next goal for astronomers, because it will reveal the diversity of planets and planetary systems, and will give access to the exoplanet's chemical composition via spectroscopy. With this spectroscopic knowledge, astronomers will be able to know, if a planet is terrestrial and, possibly, even find evidence of life. With so much potential, this branch of astronomy has also captivated the general public attention. The direct imaging of exoplanets remains a challenging task, due to (i) the extremely high contrast between the parent star and the orbiting exoplanet and (ii) their small angular separation. For ground-based observatories, this task is made even more difficult, due to the presence of atmospheric turbulence. High Contrast Imaging (HCI) instruments have been designed to meet this challenge. HCI instruments are usually composed of a coronagraph coupled with the full onaxis corrective capability of an Extreme Adaptive Optics (ExAO) system. An efficient coronagraph separates the faint planet's light from the much brighter starlight, but the dynamic boiling speckles, created by the stellar image, make exoplanet detection impossible without the help of a wavefront correction device. The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system is a high performance HCI instrument developed at Subaru Telescope. The wavefront control system of SCExAO consists of three wavefront sensors (WFS) coupled with a 1024- actuator Micro-Electro-Mechanical-System (MEMS) deformable mirror (DM). MEMS DMs offer a large actuator density, allowing high count DMs to be deployed in small size beams. Therefore, MEMS DMs are an attractive technology for Adaptive Optics (AO) systems and are particularly well suited for HCI instruments employing ExAO technologies. SCExAO uses coherent light modulation in the focal plane introduced by the DM, for both wavefront sensing and correction. In this scheme, the DM is used to introduce known aberrations (speckles in the focal plane), which interfere with existing speckles. By monitoring the interference between the pre-existing speckles and the speckles added deliberately by the DM, it is possible to reconstruct the complex amplitude (amplitude and phase) of the focal plane speckles. Thus, the DM is used for wavefront sensing, in a scheme akin to phase diversity. For SCExAO and other HCI systems using phase diversity, the wavefront compensation is a mix of closed-loop and open-loop control of the DM. The successful implementation of MEMS DMs open-loop control relies on a thorough modelling of the DM response to the control system commands. The work presented in this thesis, motivated by the need to provide accurate DM control for the wavefront control system of SCExAO, was centred around the development of MEMS DM models. This dissertation reports the characterization of MEMS DMs and the development of two efficient modelling approaches. The open-loop performance of both approaches has been investigated. The model providing the best result has been implemented within the SCExAO wavefront control software. Within SCExAO, the model was used to command the DM to create focal plane speckles. The work is now focused on using the model within a full speckle nulling process and on increasing the execution speed to make the model suitable for on-sky operation.

  11. Controlling Light Transmission Through Highly Scattering Media Using Semi-Definite Programming as a Phase Retrieval Computation Method.

    PubMed

    N'Gom, Moussa; Lien, Miao-Bin; Estakhri, Nooshin M; Norris, Theodore B; Michielssen, Eric; Nadakuditi, Raj Rao

    2017-05-31

    Complex Semi-Definite Programming (SDP) is introduced as a novel approach to phase retrieval enabled control of monochromatic light transmission through highly scattering media. In a simple optical setup, a spatial light modulator is used to generate a random sequence of phase-modulated wavefronts, and the resulting intensity speckle patterns in the transmitted light are acquired on a camera. The SDP algorithm allows computation of the complex transmission matrix of the system from this sequence of intensity-only measurements, without need for a reference beam. Once the transmission matrix is determined, optimal wavefronts are computed that focus the incident beam to any position or sequence of positions on the far side of the scattering medium, without the need for any subsequent measurements or wavefront shaping iterations. The number of measurements required and the degree of enhancement of the intensity at focus is determined by the number of pixels controlled by the spatial light modulator.

  12. Integrated Approach to Airborne Laser Communication

    DTIC Science & Technology

    2008-12-01

    deformable mirror [66, 69, 80]. Some researchers have proposed complicated wavefront control systems to sense and correct the transmitted signals in real...Sensors at the imaging system or laser transmitter measure how the turbulence affects the beacon. If the differences between the phase effects ( wavefront ...communications are severely affected by clouds, dust, and atmospheric turbulence , causing deep, long fades at the receiver. Ultimately a hybrid

  13. Investigation of Primary Mirror Segment's Residual Errors for the Thirty Meter Telescope

    NASA Technical Reports Server (NTRS)

    Seo, Byoung-Joon; Nissly, Carl; Angeli, George; MacMynowski, Doug; Sigrist, Norbert; Troy, Mitchell; Williams, Eric

    2009-01-01

    The primary mirror segment aberrations after shape corrections with warping harness have been identified as the single largest error term in the Thirty Meter Telescope (TMT) image quality error budget. In order to better understand the likely errors and how they will impact the telescope performance we have performed detailed simulations. We first generated unwarped primary mirror segment surface shapes that met TMT specifications. Then we used the predicted warping harness influence functions and a Shack-Hartmann wavefront sensor model to determine estimates for the 492 corrected segment surfaces that make up the TMT primary mirror. Surface and control parameters, as well as the number of subapertures were varied to explore the parameter space. The corrected segment shapes were then passed to an optical TMT model built using the Jet Propulsion Laboratory (JPL) developed Modeling and Analysis for Controlled Optical Systems (MACOS) ray-trace simulator. The generated exit pupil wavefront error maps provided RMS wavefront error and image-plane characteristics like the Normalized Point Source Sensitivity (PSSN). The results have been used to optimize the segment shape correction and wavefront sensor designs as well as provide input to the TMT systems engineering error budgets.

  14. Waffle mode error in the AEOS adaptive optics point-spread function

    NASA Astrophysics Data System (ADS)

    Makidon, Russell B.; Sivaramakrishnan, Anand; Roberts, Lewis C., Jr.; Oppenheimer, Ben R.; Graham, James R.

    2003-02-01

    Adaptive optics (AO) systems have improved astronomical imaging capabilities significantly over the last decade, and have the potential to revolutionize the kinds of science done with 4-5m class ground-based telescopes. However, provided sufficient detailed study and analysis, existing AO systems can be improved beyond their original specified error budgets. Indeed, modeling AO systems has been a major activity in the past decade: sources of noise in the atmosphere and the wavefront sensing WFS) control loop have received a great deal of attention, and many detailed and sophisticated control-theoretic and numerical models predicting AO performance are already in existence. However, in terms of AO system performance improvements, wavefront reconstruction (WFR) and wavefront calibration techniques have commanded relatively little attention. We elucidate the nature of some of these reconstruction problems, and demonstrate their existence in data from the AEOS AO system. We simulate the AO correction of AEOS in the I-band, and show that the magnitude of the `waffle mode' error in the AEOS reconstructor is considerably larger than expected. We suggest ways of reducing the magnitude of this error, and, in doing so, open up ways of understanding how wavefront reconstruction might handle bad actuators and partially-illuminated WFS subapertures.

  15. Focal plane based wavefront sensing with random DM probes

    NASA Astrophysics Data System (ADS)

    Pluzhnik, Eugene; Sirbu, Dan; Belikov, Ruslan; Bendek, Eduardo; Dudinov, Vladimir N.

    2017-09-01

    An internal coronagraph with an adaptive optical system for wavefront control is being considered for direct imaging of exoplanets with upcoming space missions and concepts, including WFIRST, HabEx, LUVOIR, EXCEDE and ACESat. The main technical challenge associated with direct imaging of exoplanets is to control of both diffracted and scattered light from the star so that even a dim planetary companion can be imaged. For a deformable mirror (DM) to create a dark hole with 10-10 contrast in the image plane, wavefront errors must be accurately measured on the science focal plane detector to ensure a common optical path. We present here a method that uses a set of random phase probes applied to the DM to obtain a high accuracy wavefront estimate even for a dynamically changing optical system. The presented numerical simulations and experimental results show low noise sensitivity, high reliability, and robustness of the proposed approach. The method does not use any additional optics or complex calibration procedures and can be used during the calibration stage of any direct imaging mission. It can also be used in any optical experiment that uses a DM as an active optical element in the layout.

  16. Wavefront shaping with an electrowetting liquid lens using surface harmonics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Strauch, Matthias; Konijnenberg, Sander; Shao, Yifeng; Urbach, H. Paul

    2017-02-01

    Liquid lenses are used to correct for low order wavefront aberrations. Electrowetting liquid lenses can nowadays control defocus and astigmatism effectively, so they start being used for ophthalmology applications. To increase the performance and applicability, we introduce a new driving mechanism to create, detect and correct higher order aberrations using standing waves on the liquid interface. The speed of a liquid lens is in general limited, because the liquid surface cannot follow fast voltage changes, while providing a spherical surface. Surface waves are created instead and with them undesired aberrations. We try to control those surface waves to turn them into an effective wavefront shaping tool. We introduce a model, which treats the liquid lens as a circular vibrating membrane with adjusted boundary conditions. Similar to tunable acoustic gradient (TAG) lenses, the nature of the surface modes are predicted to be Bessel functions. Since Bessel functions are a full set of orthogonal basis functions any surface can be created as a linear combination of different Bessel functions. The model was investigated experimentally in two setups. First the point spread functions were studied and compared to a simulation of the intensity distribution created by Fresnel propagated Bessel surfaces. Second the wavefronts were measured directly using a spatial light modulator. The surface resonance frequencies confirm the predictions made by the model as well as the wavefront measurements. By superposition of known surface modes, it is possible to create new surface shapes, which can be used to simulate and measure the human eye.

  17. A nonlinear OPC technique for laser beam control in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Markov, V.; Khizhnyak, A.; Sprangle, P.; Ting, A.; DeSandre, L.; Hafizi, B.

    2013-05-01

    A viable beam control technique is critical for effective laser beam transmission through turbulent atmosphere. Most of the established approaches require information on the impact of perturbations on wavefront propagated waves. Such information can be acquired by measuring the characteristics of the target-scattered light arriving from a small, preferably diffraction-limited, beacon. This paper discusses an innovative beam control approach that can support formation of a tight laser beacon in deep turbulence conditions. The technique employs Brillouin enhanced fourwave mixing (BEFWM) to generate a localized beacon spot on a remote image-resolved target. Formation of the tight beacon doesn't require a wavefront sensor, AO system, or predictive feedback algorithm. Unlike conventional adaptive optics methods which allow wavefront conjugation, the proposed total field conjugation technique is critical for beam control in the presence of strong turbulence and can be achieved by using this non-linear BEFWM technique. The phase information retrieved from the established beacon beam can then be used in conjunction with an AO system to propagate laser beams in deep turbulence.

  18. Realtime speckle sensing and suppression with project 1640 at Palomar

    NASA Astrophysics Data System (ADS)

    Vasisht, Gautam; Cady, Eric; Zhai, Chengxing; Lockhart, Thomas; Oppenheimer, Ben

    2014-08-01

    Palomar's Project 1640 (P1640) is the first stellar coronagraph to regularly use active coronagraphic wavefront control (CWFC). For this it has a hierarchy of offset wavefront sensors (WFS), the most important of which is the higher-order WFS (called CAL), which tracks quasi-static modes between 2-35 cycles-per-aperture. The wavefront is measured in the coronagraph at 0.01 Hz rates, providing slope targets to the upstream Palm 3000 adaptive optics (AO) system. The CWFC handles all non-common path distortions up to the coronagraphic focal plane mask, but does not sense second order modes between the WFSs and the science integral field unit (IFU); these modes determine the system's current limit. We have two CWFC operating modes: (1) P-mode, where we only control phases, generating double-sided darkholes by correcting to the largest controllable spatial frequencies, and (2) E-mode, where we can control amplitudes and phases, generating single-sided dark-holes in specified regions-of-interest. We describe the performance and limitations of both these modes, and discuss the improvements we are considering going forward.

  19. Description of a MIL-STD-1553B Data Bus Ada Driver for the LeRC EPS Testbed

    NASA Technical Reports Server (NTRS)

    Mackin, Michael A.

    1995-01-01

    This document describes the software designed to provide communication between control computers in the NASA Lewis Research Center Electrical Power System Testbed using MIL-STD-1553B. The software drivers are coded in the Ada programming language and were developed on a MSDOS-based computer workstation. The Electrical Power System (EPS) Testbed is a reduced-scale prototype space station electrical power system. The power system manages and distributes electrical power from the sources (batteries or photovoltaic arrays) to the end-user loads. The electrical system primary operates at 120 volts DC, and the secondary system operates at 28 volts DC. The devices which direct the flow of electrical power are controlled by a network of six control computers. Data and control messages are passed between the computers using the MIL-STD-1553B network. One of the computers, the Power Management Controller (PMC), controls the primary power distribution and another, the Load Management Controller (LMC), controls the secondary power distribution. Each of these computers communicates with two other computers which act as subsidiary controllers. These subsidiary controllers are, in turn, connected to the devices which directly control the flow of electrical power.

  20. Control structural interaction testbed: A model for multiple flexible body verification

    NASA Technical Reports Server (NTRS)

    Chory, M. A.; Cohen, A. L.; Manning, R. A.; Narigon, M. L.; Spector, V. A.

    1993-01-01

    Conventional end-to-end ground tests for verification of control system performance become increasingly complicated with the development of large, multiple flexible body spacecraft structures. The expense of accurately reproducing the on-orbit dynamic environment and the attendant difficulties in reducing and accounting for ground test effects limits the value of these tests. TRW has developed a building block approach whereby a combination of analysis, simulation, and test has replaced end-to-end performance verification by ground test. Tests are performed at the component, subsystem, and system level on engineering testbeds. These tests are aimed at authenticating models to be used in end-to-end performance verification simulations: component and subassembly engineering tests and analyses establish models and critical parameters, unit level engineering and acceptance tests refine models, and subsystem level tests confirm the models' overall behavior. The Precision Control of Agile Spacecraft (PCAS) project has developed a control structural interaction testbed with a multibody flexible structure to investigate new methods of precision control. This testbed is a model for TRW's approach to verifying control system performance. This approach has several advantages: (1) no allocation for test measurement errors is required, increasing flight hardware design allocations; (2) the approach permits greater latitude in investigating off-nominal conditions and parametric sensitivities; and (3) the simulation approach is cost effective, because the investment is in understanding the root behavior of the flight hardware and not in the ground test equipment and environment.

  1. Planning and reasoning in the JPL telerobot testbed

    NASA Technical Reports Server (NTRS)

    Peters, Stephen; Mittman, David; Collins, Carol; Omeara, Jacquie; Rokey, Mark

    1990-01-01

    The Telerobot Interactive Planning System is developed to serve as the highest autonomous-control level of the Telerobot Testbed. A recent prototype is described which integrates an operator interface for supervisory control, a task planner supporting disassembly and re-assembly operations, and a spatial planner for collision-free manipulator motion through the workspace. Each of these components is described in detail. Descriptions of the technical problem, approach, and lessons learned are included.

  2. Telescience testbed experiments for biomedical studies: fertilization potential recording of amphibian eggs using tele-manipulation under stereoscopic vision.

    PubMed

    Watanabe, S; Tanaka, M; Wada, Y; Suzuki, H; Takagi, S; Mori, S; Fukai, K; Kanazawa, Y; Takagi, M; Hirakawa, K; Ogasawara, K; Tsumura, K; Ogawa, K; Matsumoto, K; Nagaoka, S; Suzuki, T; Shimura, D; Yamashita, M; Nishio, S

    1994-07-01

    The telescience testbed experiments were carried out to test and investigate the tele-manipulation techniques in the intracellular potential recording of amphibian eggs. Implementation of telescience testbed was set up in the two separated laboratories of the Tsukuba Space center of NASDA, which were connected by tele-communication links. Manipulators respective for a microelectrode and a sample stage of microscope were moved by computers, of which command signals were transmitted from a computer in a remote control room. The computer in the control room was operated by an investigator (PI) who controlled the movement of each manipulator remotely. A stereoscopic vision of the microscope image were prepared by using a head mounted display (HMD) and were indispensable to the intracellular single cell recording. The fertilization potential of amphibian eggs was successfully obtained through the remote operating system.

  3. Optimizing focal plane electric field estimation for detecting exoplanets

    NASA Astrophysics Data System (ADS)

    Groff, T.; Kasdin, N. J.; Riggs, A. J. E.

    Detecting extrasolar planets with angular separations and contrast levels similar to Earth requires a large space-based observatory and advanced starlight suppression techniques. This paper focuses on techniques employing an internal coronagraph, which is highly sensitive to optical errors and must rely on focal plane wavefront control techniques to achieve the necessary contrast levels. To maximize the available science time for a coronagraphic mission we demonstrate an estimation scheme using a discrete time Kalman filter. The state estimate feedback inherent to the filter allows us to minimize the number of exposures required to estimate the electric field. We also show progress including a bias estimate into the Kalman filter to eliminate incoherent light from the estimate. Since the exoplanets themselves are incoherent to the star, this has the added benefit of using the control history to gain certainty in the location of exoplanet candidates as the signal-to-noise between the planets and speckles improves. Having established a purely focal plane based wavefront estimation technique, we discuss a sensor fusion concept where alternate wavefront sensors feedforward a time update to the focal plane estimate to improve robustness to time varying speckle. The overall goal of this work is to reduce the time required for wavefront control on a target, thereby improving the observatory's planet detection performance by increasing the number of targets reachable during the lifespan of the mission.

  4. Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Zhou, Chenlu; Zhao, Wenchuan; Choi, Heejoo; Graves, Logan; Kim, Daewook

    2017-06-01

    We present a high precision deflectometry system (DS) controlled deformable mirror (DM) solution for optical system. Different from wavefront and non-wavefront system, the DS and the DM are set to be an individual integrated DCDM unit and can be installed in one base plate. In the DCDM unit, the DS can directly provide the influence functions and surface shape of the DM to the industrial computer in any adaptive optics system. As an integrated adaptive unit, the DCDM unit could be put into various optical systems to realize aberration compensation. In this paper, the configuration and principle of the DCDM unit is introduced first. Theoretical simulation on the close-loop performance of the DCDM unit is carried out. Finally, a verification experiment is proposed to verify the compensation capability of the DCDM unit.

  5. Development and validation of a low-cost mobile robotics testbed

    NASA Astrophysics Data System (ADS)

    Johnson, Michael; Hayes, Martin J.

    2012-03-01

    This paper considers the design, construction and validation of a low-cost experimental robotic testbed, which allows for the localisation and tracking of multiple robotic agents in real time. The testbed system is suitable for research and education in a range of different mobile robotic applications, for validating theoretical as well as practical research work in the field of digital control, mobile robotics, graphical programming and video tracking systems. It provides a reconfigurable floor space for mobile robotic agents to operate within, while tracking the position of multiple agents in real-time using the overhead vision system. The overall system provides a highly cost-effective solution to the topical problem of providing students with practical robotics experience within severe budget constraints. Several problems encountered in the design and development of the mobile robotic testbed and associated tracking system, such as radial lens distortion and the selection of robot identifier templates are clearly addressed. The testbed performance is quantified and several experiments involving LEGO Mindstorm NXT and Merlin System MiaBot robots are discussed.

  6. Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique.

    PubMed

    Liu, Rui; Milkie, Daniel E; Kerlin, Aaron; MacLennan, Bryan; Ji, Na

    2014-01-27

    In traditional zonal wavefront sensing for adaptive optics, after local wavefront gradients are obtained, the entire wavefront can be calculated by assuming that the wavefront is a continuous surface. Such an approach will lead to sub-optimal performance in reconstructing wavefronts which are either discontinuous or undersampled by the zonal wavefront sensor. Here, we report a new method to reconstruct the wavefront by directly measuring local wavefront phases in parallel using multidither coherent optical adaptive technique. This method determines the relative phases of each pupil segment independently, and thus produces an accurate wavefront for even discontinuous wavefronts. We implemented this method in an adaptive optical two-photon fluorescence microscopy and demonstrated its superior performance in correcting large or discontinuous aberrations.

  7. A Testbed Environment for Buildings-to-Grid Cyber Resilience Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridhar, Siddharth; Ashok, Aditya; Mylrea, Michael E.

    The Smart Grid is characterized by the proliferation of advanced digital controllers at all levels of its operational hierarchy from generation to end consumption. Such controllers within modern residential and commercial buildings enable grid operators to exercise fine-grained control over energy consumption through several emerging Buildings-to-Grid (B2G) applications. Though this capability promises significant benefits in terms of operational economics and improved reliability, cybersecurity weaknesses in the supporting infrastructure could be exploited to cause a detrimental effect and this necessitates focused research efforts on two fronts. First, the understanding of how cyber attacks in the B2G space could impact grid reliabilitymore » and to what extent. Second, the development and validation of cyber-physical application-specific countermeasures that are complementary to traditional infrastructure cybersecurity mechanisms for enhanced cyber attack detection and mitigation. The PNNL B2G testbed is currently being developed to address these core research needs. Specifically, the B2G testbed combines high-fidelity buildings+grid simulators, industry-grade building automation and Supervisory Control and Data Acquisition (SCADA) systems in an integrated, realistic, and reconfigurable environment capable of supporting attack-impact-detection-mitigation experimentation. In this paper, we articulate the need for research testbeds to model various B2G applications broadly by looking at the end-to-end operational hierarchy of the Smart Grid. Finally, the paper not only describes the architecture of the B2G testbed in detail, but also addresses the broad spectrum of B2G resilience research it is capable of supporting based on the smart grid operational hierarchy identified earlier.« less

  8. Development of the CSI phase-3 evolutionary model testbed

    NASA Technical Reports Server (NTRS)

    Gronet, M. J.; Davis, D. A.; Tan, M. K.

    1994-01-01

    This report documents the development effort for the reconfiguration of the Controls-Structures Integration (CSI) Evolutionary Model (CEM) Phase-2 testbed into the CEM Phase-3 configuration. This step responds to the need to develop and test CSI technologies associated with typical planned earth science and remote sensing platforms. The primary objective of the CEM Phase-3 ground testbed is to simulate the overall on-orbit dynamic behavior of the EOS AM-1 spacecraft. Key elements of the objective include approximating the low-frequency appendage dynamic interaction of EOS AM-1, allowing for the changeout of components, and simulating the free-free on-orbit environment using an advanced suspension system. The fundamentals of appendage dynamic interaction are reviewed. A new version of the multiple scaling method is used to design the testbed to have the full-scale geometry and dynamics of the EOS AM-1 spacecraft, but at one-tenth the weight. The testbed design is discussed, along with the testing of the solar array, high gain antenna, and strut components. Analytical performance comparisons show that the CEM Phase-3 testbed simulates the EOS AM-1 spacecraft with good fidelity for the important parameters of interest.

  9. The Langley Research Center CSI phase-0 evolutionary model testbed-design and experimental results

    NASA Technical Reports Server (NTRS)

    Belvin, W. K.; Horta, Lucas G.; Elliott, K. B.

    1991-01-01

    A testbed for the development of Controls Structures Interaction (CSI) technology is described. The design philosophy, capabilities, and early experimental results are presented to introduce some of the ongoing CSI research at NASA-Langley. The testbed, referred to as the Phase 0 version of the CSI Evolutionary model (CEM), is the first stage of model complexity designed to show the benefits of CSI technology and to identify weaknesses in current capabilities. Early closed loop test results have shown non-model based controllers can provide an order of magnitude increase in damping in the first few flexible vibration modes. Model based controllers for higher performance will need to be robust to model uncertainty as verified by System ID tests. Data are presented that show finite element model predictions of frequency differ from those obtained from tests. Plans are also presented for evolution of the CEM to study integrated controller and structure design as well as multiple payload dynamics.

  10. Evaluation of power control concepts using the PMAD systems test bed. [Power Management and Distribution

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Kimnach, G. L.; Jett, T. A.; Trash, L. M.

    1989-01-01

    The Lewis Research Center's Power Management and Distribution (PMAD) System testbed and its use in the evaluation of control concepts applicable to the NASA Space Station Freedom electric power system (EPS) are described. The facility was constructed to allow testing of control hardware and software in an environment functionally similar to the space station electric power system. Control hardware and software have been developed to allow operation of the testbed power system in a manner similar to a supervisory control and data acquisition (SCADA) system employed by utility power systems for control. The system hardware and software are described.

  11. VCE testbed program planning and definition study

    NASA Technical Reports Server (NTRS)

    Westmoreland, J. S.; Godston, J.

    1978-01-01

    The flight definition of the Variable Stream Control Engine (VSCE) was updated to reflect design improvements in the two key components: (1) the low emissions duct burner, and (2) the coannular exhaust nozzle. The testbed design was defined and plans for the overall program were formulated. The effect of these improvements was evaluated for performance, emissions, noise, weight, and length. For experimental large scale testing of the duct burner and coannular nozzle, a design definition of the VCE testbed configuration was made. This included selecting the core engine, determining instrumentation requirements, and selecting the test facilities, in addition to defining control system and assembly requirements. Plans for a comprehensive test program to demonstrate the duct burner and nozzle technologies were formulated. The plans include both aeroacoustic and emissions testing.

  12. The Palomar Testbed Interferometer

    NASA Technical Reports Server (NTRS)

    Colavita, M. M.; Wallace, J. K.; Hines, B. E.; Gursel, Y.; Malbet, F.; Palmer, D. L.; Pan, X. P.; Shao, M.; Yu, J. W.; Boden, A. F.

    1999-01-01

    The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in 1995 July. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40 cm apertures can be combined pairwise to provide baselines to 110 m. The interferometer actively tracks the white-light fringe using an array detector at 2.2 microns and active delay lines with a range of +/-38 m. Laser metrology of the delay lines allows for servo control, and laser metrology of the complete optical path enables narrow-angle astrometric measurements. The instrument is highly automated, using a multiprocessing computer system for instrument control and sequencing.

  13. Zernike Wavefront Sensor Modeling Development for LOWFS on WFIRST-AFTA

    NASA Technical Reports Server (NTRS)

    Wang, Xu; Wallace, J. Kent; Shi, Fang

    2015-01-01

    WFIRST-AFTA design makes use of an existing 2.4m telescope for direct imaging of exoplanets. To maintain the high contrast needed for the coronagraph, wavefront error (WFE) of the optical system needs to be continuously sensed and controlled. Low Order Wavefront Sensing (LOWFS) uses the rejected starlight from an immediate focal plane to sense wavefront changes (mostly thermally induced low order WFE) by combining the LOWFS mask (a phase plate located at the small center region with reflective layer) with the starlight rejection masks, i.e. Hybrid Lyot Coronagraph (HLC)'s occulter or Shaped Pupil Coronagraph (SPC)'s field stop. Zernike wavefront sensor (ZWFS) measures phase via the phase-contrast method and is known to be photon noise optimal for measuring low order aberrations. Recently, ZWFS was selected as the baseline LOWFS technology on WFIST/AFTA for its good sensitivity, accuracy, and its easy integration with the starlight rejection mask. In this paper, we review the theory of ZWFS operation, describe the ZWFS algorithm development, and summarize various numerical sensitivity studies on the sensor performance. In the end, the predicted sensor performance on SPC and HLC configurations are presented.

  14. Configuration optimization of laser guide stars and wavefront correctors for multi-conjugation adaptive optics

    NASA Astrophysics Data System (ADS)

    Xuan, Li; He, Bin; Hu, Li-Fa; Li, Da-Yu; Xu, Huan-Yu; Zhang, Xing-Yun; Wang, Shao-Xin; Wang, Yu-Kun; Yang, Cheng-Liang; Cao, Zhao-Liang; Mu, Quan-Quan; Lu, Xing-Hai

    2016-09-01

    Multi-conjugation adaptive optics (MCAOs) have been investigated and used in the large aperture optical telescopes for high-resolution imaging with large field of view (FOV). The atmospheric tomographic phase reconstruction and projection of three-dimensional turbulence volume onto wavefront correctors, such as deformable mirrors (DMs) or liquid crystal wavefront correctors (LCWCs), is a very important step in the data processing of an MCAO’s controller. In this paper, a method according to the wavefront reconstruction performance of MCAO is presented to evaluate the optimized configuration of multi laser guide stars (LGSs) and the reasonable conjugation heights of LCWCs. Analytical formulations are derived for the different configurations and are used to generate optimized parameters for MCAO. Several examples are given to demonstrate our LGSs configuration optimization method. Compared with traditional methods, our method has minimum wavefront tomographic error, which will be helpful to get higher imaging resolution at large FOV in MCAO. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  15. Analysis technique for controlling system wavefront error with active/adaptive optics

    NASA Astrophysics Data System (ADS)

    Genberg, Victor L.; Michels, Gregory J.

    2017-08-01

    The ultimate goal of an active mirror system is to control system level wavefront error (WFE). In the past, the use of this technique was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for controlling system level WFE using a linear optics model is presented. An error estimate is included in the analysis output for both surface error disturbance fitting and actuator influence function fitting. To control adaptive optics, the technique has been extended to write system WFE in state space matrix form. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  16. Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control.

    PubMed

    Chong, Katie E; Staude, Isabelle; James, Anthony; Dominguez, Jason; Liu, Sheng; Campione, Salvatore; Subramania, Ganapathi S; Luk, Ting S; Decker, Manuel; Neshev, Dragomir N; Brener, Igal; Kivshar, Yuri S

    2015-08-12

    We experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0-2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the lattice spacing as a single geometric control parameter.

  17. Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.

    2001-01-01

    The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.

  18. Active vibration control activities at the LaRC - Present and future

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.

    1990-01-01

    The NASA Controls-Structures-Interaction (CSI) program is presented with a description of the ground testing element objectives and approach. The goal of the CSI program is to develop and validate the technology required to design, verify and operate space systems in which the structure and the controls interact beneficially to meet the needs of future NASA missions. The operational Mini-Mast ground testbed and some sample active vibration control experimental results are discussed along with a description of the CSI Evolutionary Model testbed presently under development. Initial results indicate that embedded sensors and actuators are effective in controlling a large truss/reflector structure.

  19. Preliminary Investigation of an Active PLZT Lens

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.; Peters, B. R.; Reardon, P. J.; Wong, J. K.

    2001-01-01

    The design, analysis and preliminary testing of a prototype Adjustable Focus Optical Correction Lens (AFOCL) is described. The AFOCL is an active optical component composed of solid state lead lanthanum-modified zirconate titanate (PLZT) ferroelectric ceramic with patterned indium tin oxide (ITO) transparent surface electrodes that modulate the refractive index of the PLZT to function as an electro-optic lens. The AFOCL was developed to perform optical re-alignment and wavefront correction to enhance the performance of Ultra-Lightweight Structures and Space Observatories (ULSSO). The AFOCL has potential application as an active optical component within a larger optical system. As such, information from a wavefront sensor would be processed to provide input to the AFOCL to drive the sensed wavefront to the desired shape and location. While offering variable and rapid focussing capability (controlled wavefront manipulation) similar to liquid crystal based spatial light modulators (SLM), the AFOCL offers some potential advantages because it is a solid-state, stationary, low-mass, rugged, and thin optical element that can produce wavefront quality comparable to the solid refractive lens it replaces. The AFOCL acts as a positive or negative lens by producing a parabolic phase-shift in the PLZT material through the application of a controlled voltage potential across the ITO electrodes. To demonstrate the technology, a 4 mm diameter lens was fabricated to produce 5-waves of optical power operating at 2.051 micrometer wavelength. Optical metrology was performed on the device to measure focal length, optical quality, and efficiency for a variety of test configurations. The data was analyzed and compared to theoretical data available from computer-based models of the AFOCL.

  20. FPGA-accelerated adaptive optics wavefront control

    NASA Astrophysics Data System (ADS)

    Mauch, S.; Reger, J.; Reinlein, C.; Appelfelder, M.; Goy, M.; Beckert, E.; Tünnermann, A.

    2014-03-01

    The speed of real-time adaptive optical systems is primarily restricted by the data processing hardware and computational aspects. Furthermore, the application of mirror layouts with increasing numbers of actuators reduces the bandwidth (speed) of the system and, thus, the number of applicable control algorithms. This burden turns out a key-impediment for deformable mirrors with continuous mirror surface and highly coupled actuator influence functions. In this regard, specialized hardware is necessary for high performance real-time control applications. Our approach to overcome this challenge is an adaptive optics system based on a Shack-Hartmann wavefront sensor (SHWFS) with a CameraLink interface. The data processing is based on a high performance Intel Core i7 Quadcore hard real-time Linux system. Employing a Xilinx Kintex-7 FPGA, an own developed PCie card is outlined in order to accelerate the analysis of a Shack-Hartmann Wavefront Sensor. A recently developed real-time capable spot detection algorithm evaluates the wavefront. The main features of the presented system are the reduction of latency and the acceleration of computation For example, matrix multiplications which in general are of complexity O(n3 are accelerated by using the DSP48 slices of the field-programmable gate array (FPGA) as well as a novel hardware implementation of the SHWFS algorithm. Further benefits are the Streaming SIMD Extensions (SSE) which intensively use the parallelization capability of the processor for further reducing the latency and increasing the bandwidth of the closed-loop. Due to this approach, up to 64 actuators of a deformable mirror can be handled and controlled without noticeable restriction from computational burdens.

  1. Techniques for High-contrast Imaging in Multi-star Systems. II. Multi-star Wavefront Control

    NASA Astrophysics Data System (ADS)

    Sirbu, D.; Thomas, S.; Belikov, R.; Bendek, E.

    2017-11-01

    Direct imaging of exoplanets represents a challenge for astronomical instrumentation due to the high-contrast ratio and small angular separation between the host star and the faint planet. Multi-star systems pose additional challenges for coronagraphic instruments due to the diffraction and aberration leakage caused by companion stars. Consequently, many scientifically valuable multi-star systems are excluded from direct imaging target lists for exoplanet surveys and characterization missions. Multi-star Wavefront Control (MSWC) is a technique that uses a coronagraphic instrument’s deformable mirror (DM) to create high-contrast regions in the focal plane in the presence of multiple stars. MSWC uses “non-redundant” modes on the DM to independently control speckles from each star in the dark zone. Our previous paper also introduced the Super-Nyquist wavefront control technique, which uses a diffraction grating to generate high-contrast regions beyond the Nyquist limit (nominal region correctable by the DM). These two techniques can be combined as MSWC-s to generate high-contrast regions for multi-star systems at wide (Super-Nyquist) angular separations, while MSWC-0 refers to close (Sub-Nyquist) angular separations. As a case study, a high-contrast wavefront control simulation that applies these techniques shows that the habitable region of the Alpha Centauri system can be imaged with a small aperture at 8× {10}-9 mean raw contrast in 10% broadband light in one-sided dark holes from 1.6-5.5 λ/D. Another case study using a larger 2.4 m aperture telescope such as the Wide-Field Infrared Survey Telescope uses these techniques to image the habitable zone of Alpha Centauri at 3.2× {10}-9 mean raw contrast in monochromatic light.

  2. Ocular wavefront analysis of aspheric compared with spherical monofocal intraocular lenses in cataract surgery: Systematic review with metaanalysis.

    PubMed

    Schuster, Alexander K; Tesarz, Jonas; Vossmerbaeumer, Urs

    2015-05-01

    This review was conducted to compare the physical effect of aspheric IOL implantation on wavefront properties with that of spherical IOL implantation. The peer-reviewed literature was systematically searched in Medline, Embase, Web of Science, Biosis, and the Cochrane Library according to the Cochrane Collaboration method. Inclusion criteria were randomized controlled trials comparing the use of aspheric versus spherical monofocal IOL implantation that assessed visual acuity, contrast sensitivity, or quality of vision. A secondary outcome was ocular wavefront analysis; spherical aberration, higher-order aberrations (HOAs), coma, and trefoil were evaluated. Effects were calculated as standardized mean differences (Hedges g) and were pooled using random-effect models. Thirty-four of 43 studies provided data for wavefront analysis. Aspheric monofocal IOL implantation resulted in less ocular spherical aberration and fewer ocular HOAs than spherical IOLs. This might explain the better contrast sensitivity in patients with aspheric IOLs. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  3. Comparison of different 3D wavefront sensing and reconstruction techniques for MCAO

    NASA Astrophysics Data System (ADS)

    Bello, Dolores; Vérinaud, Christophe; Conan, Jean-Marc; Fusco, Thierry; Carbillet, Marcel; Esposito, Simone

    2003-02-01

    The vertical distribution of the turbulence limits the field of view of classical adaptive optics due to the anisoplanatism. Multiconjugate adaptive optics (MCAO) uses several deformable mirrors conjugated to different layers in the atmosphere to overcome this effect. In the last few years, many studies and developments have been done regarding the analysis of the turbulence volume, and the choice of the wavefront reconstruction techniques.An extensive study of MCAO modelisation and performance estimation has been done at OAA and ONERA. The developed Monte Carlo codes allow to simulate and investigate many aspects: comparison of turbulence analysis strategies (tomography or layer oriented) and comparison of different reconstruction approaches. For instance in the layer oriented approach, the control for a given deformable mirror can be either deduced from the whole set of wavefront sensor measurements or only using the associated wavefront sensor. Numerical simulations are presented showing the advantages and disadvantages of these different options for several cases depending on the number, geometry and magnitude of the guide stars.

  4. NASA's F-15B testbed aircraft in flight during the first evaluation flight of the joint NASA/Gulfstream Quiet Spike project

    NASA Image and Video Library

    2006-08-10

    NASA's F-15B testbed aircraft in flight during the first evaluation flight of the joint NASA/Gulfstream Quiet Spike project. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.

  5. NASA's F-15B testbed aircraft with Gulfstream Quiet Spike sonic boom mitigator attached

    NASA Image and Video Library

    2006-07-06

    Gulfstream Aerospace and NASA's Dryden Flight Research Center are testing the structural integrity of a telescopic 'Quiet Spike' sonic boom mitigator on the F-15B testbed. The Quiet Spike was developed as a means of controlling and reducing the sonic boom caused by an aircraft 'breaking' the sound barrier.

  6. Comparison of wavefront sensor models for simulation of adaptive optics.

    PubMed

    Wu, Zhiwen; Enmark, Anita; Owner-Petersen, Mette; Andersen, Torben

    2009-10-26

    The new generation of extremely large telescopes will have adaptive optics. Due to the complexity and cost of such systems, it is important to simulate their performance before construction. Most systems planned will have Shack-Hartmann wavefront sensors. Different mathematical models are available for simulation of such wavefront sensors. The choice of wavefront sensor model strongly influences computation time and simulation accuracy. We have studied the influence of three wavefront sensor models on performance calculations for a generic, adaptive optics (AO) system designed for K-band operation of a 42 m telescope. The performance of this AO system has been investigated both for reduced wavelengths and for reduced r(0) in the K band. The telescope AO system was designed for K-band operation, that is both the subaperture size and the actuator pitch were matched to a fixed value of r(0) in the K-band. We find that under certain conditions, such as investigating limiting guide star magnitude for large Strehl-ratios, a full model based on Fraunhofer propagation to the subimages is significantly more accurate. It does however require long computation times. The shortcomings of simpler models based on either direct use of average wavefront tilt over the subapertures for actuator control, or use of the average tilt to move a precalculated point spread function in the subimages are most pronounced for studies of system limitations to operating parameter variations. In the long run, efficient parallelization techniques may be developed to overcome the problem.

  7. Satellite Testbed for Evaluating Cryogenic-Liquid Behavior in Microgravity

    NASA Technical Reports Server (NTRS)

    Putman, Philip Travis (Inventor)

    2017-01-01

    Provided is a testbed for conducting an experiment on a substance in a cryogenic liquid state in a microgravity environment. The testbed includes a frame with rectangular nominal dimensions, and a source section including a supply of the substance to be evaluated in the cryogenic liquid state. An experiment section includes an experiment vessel in fluid communication with the storage section to receive the substance from the storage section and condense the substance into the cryogenic liquid state. A sensor is adapted to sense a property of the substance in the cryogenic liquid state in the experiment vessel as part of the experiment. A bus section includes a controller configured to control delivery of the substance from the storage section to the experiment vessel, and receive property data indicative of the property sensed by the sensor for subsequent evaluation on Earth.

  8. An architecture for integrating distributed and cooperating knowledge-based Air Force decision aids

    NASA Technical Reports Server (NTRS)

    Nugent, Richard O.; Tucker, Richard W.

    1988-01-01

    MITRE has been developing a Knowledge-Based Battle Management Testbed for evaluating the viability of integrating independently-developed knowledge-based decision aids in the Air Force tactical domain. The primary goal for the testbed architecture is to permit a new system to be added to a testbed with little change to the system's software. Each system that connects to the testbed network declares that it can provide a number of services to other systems. When a system wants to use another system's service, it does not address the server system by name, but instead transmits a request to the testbed network asking for a particular service to be performed. A key component of the testbed architecture is a common database which uses a relational database management system (RDBMS). The RDBMS provides a database update notification service to requesting systems. Normally, each system is expected to monitor data relations of interest to it. Alternatively, a system may broadcast an announcement message to inform other systems that an event of potential interest has occurred. Current research is aimed at dealing with issues resulting from integration efforts, such as dealing with potential mismatches of each system's assumptions about the common database, decentralizing network control, and coordinating multiple agents.

  9. Status on Iterative Transform Phase Retrieval Applied to the GBT Data

    NASA Technical Reports Server (NTRS)

    Dean, Bruce; Aronstein, David; Smith, Scott; Shiri, Ron; Hollis, Jan M.; Lyons, Richard; Prestage, Richard; Hunter, Todd; Ghigo, Frank; Nikolic, Bojan

    2007-01-01

    This slide presentation reviews the use of iterative transform phase retrieval in the analysis of the Green Bank Radio Telescope (GBT) Data. It reviews the NASA projects that have used phase retrieval, and the testbed for the algorithm to be used for the James Webb Space Telescope. It shows the comparison of phase retrieval with an interferometer, and reviews the two approaches used for phase retrieval, iterative transform (ITA) or parametric (non-linear least squares model fitting). The concept of ITA Phase Retrieval is reviewed, and the application to Radio Antennas is reviewed. The presentation also examines the National Radio Astronomy Observatory (NRAO) data from the GBT, and the Fourier model that NRAO uses to analyze the data. The challenge for ITA phase retrieval is reviewed, and the coherent approximation for incoherent data is shown. The validity of the approximation is good for a large tilt. There is a review of the proof of concept of the Phase Review simulation using the input wavefront, and the initial sampling parameters estimate from the focused GBT data.

  10. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

    PubMed Central

    Jian, Yifan; Xu, Jing; Gradowski, Martin A.; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2014-01-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo. PMID:24575347

  11. Adaptive optics for array telescopes using piston-and-tilt wave-front sensing

    NASA Technical Reports Server (NTRS)

    Wizinowich, P.; Mcleod, B.; Lloyd-Yhart, M.; Angel, J. R. P.; Colucci, D.; Dekany, R.; Mccarthy, D.; Wittman, D.; Scott-Fleming, I.

    1992-01-01

    A near-infrared adaptive optics system operating at about 50 Hz has been used to control phase errors adaptively between two mirrors of the Multiple Mirror Telescope by stabilizing the position of the interference fringe in the combined unresolved far-field image. The resultant integrated images have angular resolutions of better than 0.1 arcsec and fringe contrasts of more than 0.6. Measurements of wave-front tilt have confirmed the wavelength independence of image motion. These results show that interferometric sensing of phase errors, when combined with a system for sensing the wave-front tilt of the individual telescopes, will provide a means of achieving a stable diffraction-limited focus with segmented telescopes or arrays of telescopes.

  12. Numerical analysis of wavefront measurement characteristics by using plenoptic camera

    NASA Astrophysics Data System (ADS)

    Lv, Yang; Ma, Haotong; Zhang, Xuanzhe; Ning, Yu; Xu, Xiaojun

    2016-01-01

    To take advantage of the large-diameter telescope for high-resolution imaging of extended targets, it is necessary to detect and compensate the wave-front aberrations induced by atmospheric turbulence. Data recorded by Plenoptic cameras can be used to extract the wave-front phases associated to the atmospheric turbulence in an astronomical observation. In order to recover the wave-front phase tomographically, a method of completing the large Field Of View (FOV), multi-perspective wave-front detection simultaneously is urgently demanded, and it is plenoptic camera that possesses this unique advantage. Our paper focuses more on the capability of plenoptic camera to extract the wave-front from different perspectives simultaneously. In this paper, we built up the corresponding theoretical model and simulation system to discuss wave-front measurement characteristics utilizing plenoptic camera as wave-front sensor. And we evaluated the performance of plenoptic camera with different types of wave-front aberration corresponding to the occasions of applications. In the last, we performed the multi-perspective wave-front sensing employing plenoptic camera as wave-front sensor in the simulation. Our research of wave-front measurement characteristics employing plenoptic camera is helpful to select and design the parameters of a plenoptic camera, when utilizing which as multi-perspective and large FOV wave-front sensor, which is expected to solve the problem of large FOV wave-front detection, and can be used for AO in giant telescopes.

  13. MOEMs devices designed and tested for future astronomical instrumentation in space

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Waldis, Severin; Noell, Wilfried; Conedera, Veronique; Fabre, Norbert; Viard, Thierry; Buisset, Christophe

    2017-11-01

    Next generation of astronomical instrumentation for space telescopes requires Micro-Opto-Electro- Mechanical Systems (MOEMS) with remote control capability and cryogenic operation. MOEMS devices have the capability to tailor the incoming light in terms of intensity and object selection with programmable slit masks, in terms of phase and wavefront control with micro-deformable mirrors, and finally in terms of spectrum with programmable diffraction gratings. Applications are multi-object spectroscopy (MOS), wavefront correction and programmable spectrographs. We are engaged since several years in the design, realization and characterization of MOEMS devices suited for astronomical instrumentation.

  14. BACT Simulation User Guide (Version 7.0)

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1997-01-01

    This report documents the structure and operation of a simulation model of the Benchmark Active Control Technology (BACT) Wind-Tunnel Model. The BACT system was designed, built, and tested at NASA Langley Research Center as part of the Benchmark Models Program and was developed to perform wind-tunnel experiments to obtain benchmark quality data to validate computational fluid dynamics and computational aeroelasticity codes, to verify the accuracy of current aeroservoelasticity design and analysis tools, and to provide an active controls testbed for evaluating new and innovative control algorithms for flutter suppression and gust load alleviation. The BACT system has been especially valuable as a control system testbed.

  15. Autonomous Flying Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2005-01-01

    The Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis,Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights.

  16. Dynamic Modeling, Controls, and Testing for Electrified Aircraft

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph; Stalcup, Erik

    2017-01-01

    Electrified aircraft have the potential to provide significant benefits for efficiency and emissions reductions. To assess these potential benefits, modeling tools are needed to provide rapid evaluation of diverse concepts and to ensure safe operability and peak performance over the mission. The modeling challenge for these vehicles is the ability to show significant benefits over the current highly refined aircraft systems. The STARC-ABL (single-aisle turbo-electric aircraft with an aft boundary layer propulsor) is a new test proposal that builds upon previous N3-X team hybrid designs. This presentation describes the STARC-ABL concept, the NASA Electric Aircraft Testbed (NEAT) which will allow testing of the STARC-ABL powertrain, and the related modeling and simulation efforts to date. Modeling and simulation includes a turbofan simulation, Numeric Propulsion System Simulation (NPSS), which has been integrated with NEAT; and a power systems and control model for predicting testbed performance and evaluating control schemes. Model predictions provide good comparisons with testbed data for an NPSS-integrated test of the single-string configuration of NEAT.

  17. Implementing transmission eigenchannels of disordered media by a binary-control digital micromirror device

    NASA Astrophysics Data System (ADS)

    Kim, Donggyu; Choi, Wonjun; Kim, Moonseok; Moon, Jungho; Seo, Keumyoung; Ju, Sanghyun; Choi, Wonshik

    2014-11-01

    We report a method for measuring the transmission matrix of a disordered medium using a binary-control of a digital micromirror device (DMD). With knowledge of the measured transmission matrix, we identified the transmission eigenchannels of the medium. We then used binary control of the DMD to shape the wavefront of incident waves and to experimentally couple light to individual eigenchannels. When the wave was coupled to the eigenchannel with the largest eigenvalue, in particular, we were able to achieve about two times more energy transmission than the mean transmittance of the medium. Our study provides an elaborated use of the DMD as a high-speed wavefront shaping device for controlling the multiple scattering of waves in highly scattering media.

  18. Analysis of wave propagation and wavefront sensing in target-in-the-loop beam control systems

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeri V.

    2004-10-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual intensity function (MIF) for the backscattered (returned) wave. The resulting evolution equation for the MIF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.

  19. Langley's CSI evolutionary model: Phase O

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Elliott, Kenny B.; Horta, Lucas G.; Bailey, Jim P.; Bruner, Anne M.; Sulla, Jeffrey L.; Won, John; Ugoletti, Roberto M.

    1991-01-01

    A testbed for the development of Controls Structures Interaction (CSI) technology to improve space science platform pointing is described. The evolutionary nature of the testbed will permit the study of global line-of-sight pointing in phases 0 and 1, whereas, multipayload pointing systems will be studied beginning with phase 2. The design, capabilities, and typical dynamic behavior of the phase 0 version of the CSI evolutionary model (CEM) is documented for investigator both internal and external to NASA. The model description includes line-of-sight pointing measurement, testbed structure, actuators, sensors, and real time computers, as well as finite element and state space models of major components.

  20. Comparative analysis of methods and optical-electronic equipment to control the form parameters of spherical mirrors

    NASA Astrophysics Data System (ADS)

    Nikitin, Alexander N.; Baryshnikov, Nikolay; Denisov, Dmitrii; Karasik, Valerii; Sakharov, Alexey; Romanov, Pavel; Sheldakova, Julia; Kudryashov, Alexis

    2018-02-01

    In this paper we consider two approaches widely used in testing of spherical optical surfaces: Fizeau interferometer and Shack-Hartmann wavefront sensor. Fizeau interferometer that is widely used in optical testing can be transformed to a device using Shack-Hartmann wavefront sensor, the alternative technique to check spherical optical components. We call this device Hartmannometer, and compare its features to those of Fizeau interferometer.

  1. Hybrid architecture active wavefront sensing and control system, and method

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D. (Inventor); Dean, Bruce H. (Inventor); Hyde, Tristram T. (Inventor)

    2011-01-01

    According to various embodiments, provided herein is an optical system and method that can be configured to perform image analysis. The optical system can comprise a telescope assembly and one or more hybrid instruments. The one or more hybrid instruments can be configured to receive image data from the telescope assembly and perform a fine guidance operation and a wavefront sensing operation, simultaneously, on the image data received from the telescope assembly.

  2. Large-field-of-view imaging by multi-pupil adaptive optics.

    PubMed

    Park, Jung-Hoon; Kong, Lingjie; Zhou, Yifeng; Cui, Meng

    2017-06-01

    Adaptive optics can correct for optical aberrations. We developed multi-pupil adaptive optics (MPAO), which enables simultaneous wavefront correction over a field of view of 450 × 450 μm 2 and expands the correction area to nine times that of conventional methods. MPAO's ability to perform spatially independent wavefront control further enables 3D nonplanar imaging. We applied MPAO to in vivo structural and functional imaging in the mouse brain.

  3. Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects.

    PubMed

    Yang, Huizhen; Soloviev, Oleg; Verhaegen, Michel

    2015-09-21

    A model-based wavefront sensorless (WFSless) adaptive optics (AO) system with a 61-element deformable mirror is simulated to correct the imaging of a turbulence-degraded extended object. A fast closed-loop control algorithm, which is based on the linear relation between the mean square of the aberration gradients and the second moment of the image intensity distribution, is used to generate the control signals for the actuators of the deformable mirror (DM). The restoration capability and the convergence rate of the AO system are investigated with different turbulence strength wave-front aberrations. Simulation results show the model-based WFSless AO system can restore those images degraded by different turbulence strengths successfully and obtain the correction very close to the achievable capability of the given DM. Compared with the ideal correction of 61-element DM, the averaged relative error of RMS value is 6%. The convergence rate of AO system is independent of the turbulence strength and only depends on the number of actuators of DM.

  4. Towards an autonomous telescope system: the Test-Bed Telescope project

    NASA Astrophysics Data System (ADS)

    Racero, E.; Ocaña, F.; Ponz, D.; the TBT Consortium

    2015-05-01

    In the context of the Space Situational Awareness (SSA) programme of ESA, it is foreseen to deploy several large robotic telescopes in remote locations to provide surveillance and tracking services for man-made as well as natural near-Earth objects (NEOs). The present project, termed Telescope Test Bed (TBT) is being developed under ESA's General Studies and Technology Programme, and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario, consisting of two telescopes located in Spain and Australia, to collect representative test data for precursor NEO services. It is foreseen that this test-bed environment will be used to validate future prototype software systems as well as to evaluate remote monitoring and control techniques. The test-bed system will be capable to deliver astrometric and photometric data of the observed objects in near real-time. This contribution describes the current status of the project.

  5. Recent developments for the Large Binocular Telescope Guiding Control Subsystem

    NASA Astrophysics Data System (ADS)

    Golota, T.; De La Peña, M. D.; Biddick, C.; Lesser, M.; Leibold, T.; Miller, D.; Meeks, R.; Hahn, T.; Storm, J.; Sargent, T.; Summers, D.; Hill, J.; Kraus, J.; Hooper, S.; Fisher, D.

    2014-07-01

    The Large Binocular Telescope (LBT) has eight Acquisition, Guiding, and wavefront Sensing Units (AGw units). They provide guiding and wavefront sensing capability at eight different locations at both direct and bent Gregorian focal stations. Recent additions of focal stations for PEPSI and MODS instruments doubled the number of focal stations in use including respective motion, camera controller server computers, and software infrastructure communicating with Guiding Control Subsystem (GCS). This paper describes the improvements made to the LBT GCS and explains how these changes have led to better maintainability and contributed to increased reliability. This paper also discusses the current GCS status and reviews potential upgrades to further improve its performance.

  6. TACCDAS Testbed Human Factors Evaluation Methodology,

    DTIC Science & Technology

    1980-03-01

    3 TEST METHOD Development of performance criteria................... 8 Test participant identification ...................... 8 Control of...major milestones involved in the evaluation process leading up to the evaluation of the complete testbed in the field are identified. Test methods and...inevitably will be different in several ways from the intended system as foreseen by the system designers. The system users provide insights into these

  7. Design of a solar array simulator for the NASA EOS testbed

    NASA Technical Reports Server (NTRS)

    Butler, Steve J.; Sable, Dan M.; Lee, Fred C.; Cho, Bo H.

    1992-01-01

    The present spacecraft solar array simulator addresses both dc and ac characteristics as well as changes in illumination and temperature and performance degradation over the course of array service life. The computerized control system used allows simulation of a complete orbit cycle, in addition to automated diagnostics. The simulator is currently interfaced with the NASA EOS testbed.

  8. ISWHM: Tools and Techniques for Software and System Health Management

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Mengshoel, Ole J.; Darwiche, Adnan

    2010-01-01

    This presentation presents status and results of research on Software Health Management done within the NRA "ISWHM: Tools and Techniques for Software and System Health Management." Topics include: Ingredients of a Guidance, Navigation, and Control System (GN and C); Selected GN and C Testbed example; Health Management of major ingredients; ISWHM testbed architecture; and Conclusions and next Steps.

  9. Acoustic imaging microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-10-17

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  10. High precision wavefront control in point spread function engineering for single emitter localization

    NASA Astrophysics Data System (ADS)

    Siemons, M.; Hulleman, C. N.; Thorsen, R. Ø.; Smith, C. S.; Stallinga, S.

    2018-04-01

    Point Spread Function (PSF) engineering is used in single emitter localization to measure the emitter position in 3D and possibly other parameters such as the emission color or dipole orientation as well. Advanced PSF models such as spline fits to experimental PSFs or the vectorial PSF model can be used in the corresponding localization algorithms in order to model the intricate spot shape and deformations correctly. The complexity of the optical architecture and fit model makes PSF engineering approaches particularly sensitive to optical aberrations. Here, we present a calibration and alignment protocol for fluorescence microscopes equipped with a spatial light modulator (SLM) with the goal of establishing a wavefront error well below the diffraction limit for optimum application of complex engineered PSFs. We achieve high-precision wavefront control, to a level below 20 m$\\lambda$ wavefront aberration over a 30 minute time window after the calibration procedure, using a separate light path for calibrating the pixel-to-pixel variations of the SLM, and alignment of the SLM with respect to the optical axis and Fourier plane within 3 $\\mu$m ($x/y$) and 100 $\\mu$m ($z$) error. Aberrations are retrieved from a fit of the vectorial PSF model to a bead $z$-stack and compensated with a residual wavefront error comparable to the error of the SLM calibration step. This well-calibrated and corrected setup makes it possible to create complex `3D+$\\lambda$' PSFs that fit very well to the vectorial PSF model. Proof-of-principle bead experiments show precisions below 10~nm in $x$, $y$, and $\\lambda$, and below 20~nm in $z$ over an axial range of 1 $\\mu$m with 2000 signal photons and 12 background photons.

  11. Control of her1 expression during zebrafish somitogenesis by a Delta-dependent oscillator and an independent wave-front activity

    PubMed Central

    Holley, Scott A.; Geisler, Robert; Nüsslein-Volhard, Christiane

    2000-01-01

    Somitogenesis has been linked both to a molecular clock that controls the oscillation of gene expression in the presomitic mesoderm (PSM) and to Notch pathway signaling. The oscillator, or clock, is thought to create a prepattern of stripes of gene expression that regulates the activity of the Notch pathway that subsequently directs somite border formation. Here, we report that the zebrafish gene after eight (aei) that is required for both somitogenesis and neurogenesis encodes the Notch ligand DeltaD. Additional analysis revealed that stripes of her1 expression oscillate within the PSM and that aei/DeltaD signaling is required for this oscillation. aei/DeltaD expression does not oscillate, indicating that the activity of the Notch pathway upstream of her1 may function within the oscillator itself. Moreover, we found that her1 stripes are expressed in the anlage of consecutive somites, indicating that its expression pattern is not pair-rule. Analysis of her1 expression in aei/DeltaD, fused somites (fss), and aei;fss embryos uncovered a wave-front activity that is capable of continually inducing her1 expression de novo in the anterior PSM in the absence of the oscillation of her1. The wave-front activity, in reference to the clock and wave-front model, is defined as such because it interacts with the oscillator-derived pattern in the anterior PSM and is required for somite morphogenesis. This wave-front activity is blocked in embryos mutant for fss but not aei/DeltaD. Thus, our analysis indicates that the smooth sequence of formation, refinement, and fading of her1 stripes in the PSM is governed by two separate activities. PMID:10887161

  12. Full-Scaled Advanced Systems Testbed: Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate M.

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on the Full-Scale Advance Systems Testbed (FAST) in January of 2011. The research addressed technical challenges involved with reducing risk in an increasingly complex and dynamic national airspace. Specific challenges lie with the development of validated, multidisciplinary, integrated aircraft control design tools and techniques to enable safe flight in the presence of adverse conditions such as structural damage, control surface failures, or aerodynamic upsets. The testbed is an F-18 aircraft serving as a full-scale vehicle to test and validate adaptive flight control research and lends a significant confidence to the development, maturation, and acceptance process of incorporating adaptive control laws into follow-on research and the operational environment. The experimental systems integrated into FAST were designed to allow for flexible yet safe flight test evaluation and validation of modern adaptive control technologies and revolve around two major hardware upgrades: the modification of Production Support Flight Control Computers (PSFCC) and integration of two, fourth-generation Airborne Research Test Systems (ARTS). Post-hardware integration verification and validation provided the foundation for safe flight test of Nonlinear Dynamic Inversion and Model Reference Aircraft Control adaptive control law experiments. To ensure success of flight in terms of cost, schedule, and test results, emphasis on risk management was incorporated into early stages of design and flight test planning and continued through the execution of each flight test mission. Specific consideration was made to incorporate safety features within the hardware and software to alleviate user demands as well as into test processes and training to reduce human factor impacts to safe and successful flight test. This paper describes the research configuration, experiment functionality, overall risk mitigation, flight test approach and results, and lessons learned of adaptive controls research of the Full-Scale Advanced Systems Testbed.

  13. A new wavefront sensor with polar symmetry: quantitative comparisons with a Shack-Hartmann wavefront sensor.

    PubMed

    Carvalho, Luis Alberto; Castro, Jarbas; Chamon, Wallace; Schor, Paulo

    2006-11-01

    A novel wavefront sensor has been developed. It follows the same principle of the Shack-Hartmann wavefront sensor in that it is based on slope information. However, it has a different symmetry, which may offer benefits in terms of application. The new wavefront sensor consists of a set of donut-shaped acrylic lenses with a charge coupled device located at the focal plane. From detection of shift in the radial direction, radial slopes are computed for 2880 points. Theoretical computations for higher order aberrations and lower order aberrations were implemented for the Shack-Hartmann wavefront sensor and the new wavefront sensor, and practical measurements were conducted on several sphere-cylinder trial lenses. The overall mean value of root mean square error (RMSE) (in microns) for theoretical computations was 0.03 for the Shack-Hartmann wavefront sensor and 0.02 for the new wavefront sensor. The mean value of RMSE for lower order aberrations (1-5) was 0.01 and 0.00003, and for higher order aberrations was 0.02 and 0.02, for the Shack-Hartmann and new wavefront sensors, respectively. For practical measurements (sphere, cylinder, axis), the standard deviation was 0.04 diopters (D), 0.04 D, and 4 degrees for the new wavefront sensor and 0.02 D, 0.02 D, and 5 degrees for the Shack-Hartmann wavefront sensor. Precision of the new wavefront sensor when measuring astigmatic and spherical surfaces is compatible with the Shack-Hartmann wavefront sensor. Centration with this new sensor is an absolute process using the center of the entrance pupil, which is where the line of site passes. This wavefront sensor, similar to the Shack-Hartmann sensor, does not eliminate the possibility of tilt. For more conclusive and statistically valid data, in vivo measurements are needed.

  14. Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: contralateral comparative study.

    PubMed

    Padmanabhan, Prema; Mrochen, Michael; Basuthkar, Subam; Viswanathan, Deepa; Joseph, Roy

    2008-03-01

    To compare the outcomes of wavefront-guided and wavefront-optimized treatment in fellow eyes of patients having laser in situ keratomileusis (LASIK) for myopia. Medical and Vision Research Foundation, Tamil Nadu, India. This prospective comparative study comprised 27 patients who had wavefront-guided LASIK in 1 eye and wavefront-optimized LASIK in the fellow eye. The Hansatome (Bausch & Lomb) was used to create a superior-hinged flap and the Allegretto laser (WaveLight Laser Technologie AG), for photoablation. The Allegretto wave analyzer was used to measure ocular wavefront aberrations and the Functional Acuity Contrast Test chart, to measure contrast sensitivity before and 1 month after LASIK. The refractive and visual outcomes and the changes in aberrations and contrast sensitivity were compared between the 2 treatment modalities. One month postoperatively, 92% of eyes in the wavefront-guided group and 85% in the wavefront-optimized group had uncorrected visual acuity of 20/20 or better; 93% and 89%, respectively, had a postoperative spherical equivalent refraction of +/-0.50 diopter. The differences between groups were not statistically significant. Wavefront-guided LASIK induced less change in 18 of 22 higher-order Zernike terms than wavefront-optimized LASIK, with the change in positive spherical aberration the only statistically significant one (P= .01). Contrast sensitivity improved at the low and middle spatial frequencies (not statistically significant) and worsened significantly at high spatial frequencies after wavefront-guided LASIK; there was a statistically significant worsening at all spatial frequencies after wavefront-optimized LASIK. Although both wavefront-guided and wavefront-optimized LASIK gave excellent refractive correction results, the former induced less higher-order aberrations and was associated with better contrast sensitivity.

  15. One-Dimensional Spacecraft Formation Flight Testbed for Terrestrial Charged Relative Motion Experiments

    NASA Astrophysics Data System (ADS)

    Seubert, Carl R.

    Spacecraft operating in a desired formation offers an abundance of attractive mission capabilities. One proposed method of controlling a close formation of spacecraft is with Coulomb (electrostatic) forces. The Coulomb formation flight idea utilizes charge emission to drive the spacecraft to kilovolt-level potentials and generate adjustable, micronewton- to millinewton-level Coulomb forces for relative position control. In order to advance the prospects of the Coulomb formation flight concept, this dissertation presents the design and implementation of a unique one-dimensional testbed. The disturbances of the testbed are identified and reduced below 1 mN. This noise level offers a near-frictionless platform that is used to perform relative motion actuation with electrostatics in a terrestrial atmospheric environment. Potentials up to 30 kV are used to actuate a cart over a translational range of motion of 40 cm. A challenge to both theoretical and hardware implemented electrostatic actuation developments is correctly modeling the forces between finite charged bodies, outside a vacuum. To remedy this, studies of Earth orbit plasmas and Coulomb force theory is used to derive and propose a model of the Coulomb force between finite spheres in close proximity, in a plasma. This plasma force model is then used as a basis for a candidate terrestrial force model. The plasma-like parameters of this terrestrial model are estimated using charged motion data from fixed-potential, single-direction experiments on the testbed. The testbed is advanced to the level of autonomous feedback position control using solely Coulomb force actuation. This allows relative motion repositioning on a flat and level track as well as an inclined track that mimics the dynamics of two charged spacecraft that are aligned with the principal orbit axis. This controlled motion is accurately predicted with simulations using the terrestrial force model. This demonstrates similarities between the partial charge shielding of space-based plasmas to the electrostatic screening in the laboratory atmosphere.

  16. Design and implementation of a scene-dependent dynamically selfadaptable wavefront coding imaging system

    NASA Astrophysics Data System (ADS)

    Carles, Guillem; Ferran, Carme; Carnicer, Artur; Bosch, Salvador

    2012-01-01

    A computational imaging system based on wavefront coding is presented. Wavefront coding provides an extension of the depth-of-field at the expense of a slight reduction of image quality. This trade-off results from the amount of coding used. By using spatial light modulators, a flexible coding is achieved which permits it to be increased or decreased as needed. In this paper a computational method is proposed for evaluating the output of a wavefront coding imaging system equipped with a spatial light modulator, with the aim of thus making it possible to implement the most suitable coding strength for a given scene. This is achieved in an unsupervised manner, thus the whole system acts as a dynamically selfadaptable imaging system. The program presented here controls the spatial light modulator and the camera, and also processes the images in a synchronised way in order to implement the dynamic system in real time. A prototype of the system was implemented in the laboratory and illustrative examples of the performance are reported in this paper. Program summaryProgram title: DynWFC (Dynamic WaveFront Coding) Catalogue identifier: AEKC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 483 No. of bytes in distributed program, including test data, etc.: 2 437 713 Distribution format: tar.gz Programming language: Labview 8.5 and NI Vision and MinGW C Compiler Computer: Tested on PC Intel ® Pentium ® Operating system: Tested on Windows XP Classification: 18 Nature of problem: The program implements an enhanced wavefront coding imaging system able to adapt the degree of coding to the requirements of a specific scene. The program controls the acquisition by a camera, the display of a spatial light modulator and the image processing operations synchronously. The spatial light modulator is used to implement the phase mask with flexibility given the trade-off between depth-of-field extension and image quality achieved. The action of the program is to evaluate the depth-of-field requirements of the specific scene and subsequently control the coding established by the spatial light modulator, in real time.

  17. Ultra high frequency imaging acoustic microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-05-23

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  18. Correction of the wavefront using the irradiance transport equation

    NASA Astrophysics Data System (ADS)

    García, M.; Granados, F.; Cornejo, A.

    2008-07-01

    The correction of the wavefront in optical systems implies the use of wavefront sensors, software, and auxiliary optical systems. We propose evaluated the wavefront using the fact that the wavefront and its intensity are related in the mathematical expression the irradiance transport equation (ITE)

  19. Development of a Dynamically Scaled Generic Transport Model Testbed for Flight Research Experiments

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas; Langford, William; Belcastro, Christine; Foster, John; Shah, Gautam; Howland, Gregory; Kidd, Reggie

    2004-01-01

    This paper details the design and development of the Airborne Subscale Transport Aircraft Research (AirSTAR) test-bed at NASA Langley Research Center (LaRC). The aircraft is a 5.5% dynamically scaled, remotely piloted, twin-turbine, swept wing, Generic Transport Model (GTM) which will be used to provide an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. The unique design challenges arising from the dimensional, weight, dynamic (inertial), and actuator scaling requirements necessitated by the research community are described along with the specific telemetry and control issues associated with a remotely piloted subscale research aircraft. Development of the necessary operational infrastructure, including operational and safety procedures, test site identification, and research pilots is also discussed. The GTM is a unique vehicle that provides significant research capacity due to its scaling, data gathering, and control characteristics. By combining data from this testbed with full-scale flight and accident data, wind tunnel data, and simulation results, NASA will advance and validate control upset prevention and recovery technologies for transport aircraft, thereby reducing vehicle loss-of-control accidents resulting from adverse and upset conditions.

  20. XUNET experimental high-speed network testbed CRADA 1136, DOE TTI No. 92-MULT-020-B2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, R.E.

    1996-04-01

    XUNET is a research program with AT&T and other partners to study high-speed wide area communication between local area networks over a backbone using Asynchronous Transfer Mode (ATM) switches. Important goals of the project are to develop software techniques for network control and management, and applications for high-speed networks. The project entails building a testbed between member sites to explore performance issues for mixed network traffic such as congestion control, multimedia communications protocols, segmentation and reassembly of ATM cells, and overall data throughput rates.

  1. Simpler Adaptive Optics using a Single Device for Processing and Control

    NASA Astrophysics Data System (ADS)

    Zovaro, A.; Bennet, F.; Rye, D.; D'Orgeville, C.; Rigaut, F.; Price, I.; Ritchie, I.; Smith, C.

    The management of low Earth orbit is becoming more urgent as satellite and debris densities climb, in order to avoid a Kessler syndrome. A key part of this management is to precisely measure the orbit of both active satellites and debris. The Research School of Astronomy and Astrophysics at the Australian National University have been developing an adaptive optics (AO) system to image and range orbiting objects. The AO system provides atmospheric correction for imaging and laser ranging, allowing for the detection of smaller angular targets and drastically increasing the number of detectable objects. AO systems are by nature very complex and high cost systems, often costing millions of dollars and taking years to design. It is not unusual for AO systems to comprise multiple servers, digital signal processors (DSP) and field programmable gate arrays (FPGA), with dedicated tasks such as wavefront sensor data processing or wavefront reconstruction. While this multi-platform approach has been necessary in AO systems to date due to computation and latency requirements, this may no longer be the case for those with less demanding processing needs. In recent years, large strides have been made in FPGA and microcontroller technology, with todays devices having clock speeds in excess of 200 MHz whilst using a < 5 V power supply. AO systems using a single such device for all data processing and control may present a far simpler, cheaper, smaller and more efficient solution than existing systems. A novel AO system design based around a single, low-cost controller is presented. The objective is to determine the performance which can be achieved in terms of bandwidth and correction order, with a focus on optimisation and parallelisation of AO algorithms such as wavefront measurement and reconstruction. The AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror to correct light from a 1.8 m telescope for the purpose of imaging orbiting satellites. The microcontroller or FPGA interfaces directly with the wavefront sensor detector and deformable mirror. Wavefront slopes are calculated from each detector frame and converted into actuator commands to complete the closed loop AO control system. A particular challenge of this system is to optimise the AO algorithms to achieve a high rate (> 1kHz) with low latency (< 1ms) to achieve a good AO correction. As part of the Space Environment Cooperative Research Centre (SERC) this AO system design will be used as a demonstrator for what is possible with ground based AO corrected satellite imaging and ranging systems. The ability to directly and efficiently interface the wavefront sensor and deformable mirror is an important step in reducing the cost and complexity of an AO system. It is hoped that in the future this design can be modified for use in general AO applications, such as in 1-3 m telescopes for space surveillance, or even for amateur astronomy.

  2. Sliding mode control of magnetic suspensions for precision pointing and tracking applications

    NASA Technical Reports Server (NTRS)

    Misovec, Kathleen M.; Flynn, Frederick J.; Johnson, Bruce G.; Hedrick, J. Karl

    1991-01-01

    A recently developed nonlinear control method, sliding mode control, is examined as a means of advancing the achievable performance of space-based precision pointing and tracking systems that use nonlinear magnetic actuators. Analytic results indicate that sliding mode control improves performance compared to linear control approaches. In order to realize these performance improvements, precise knowledge of the plant is required. Additionally, the interaction of an estimating scheme and the sliding mode controller has not been fully examined in the literature. Estimation schemes were designed for use with this sliding mode controller that do not seriously degrade system performance. The authors designed and built a laboratory testbed to determine the feasibility of utilizing sliding mode control in these types of applications. Using this testbed, experimental verification of the authors' analyses is ongoing.

  3. Shaping Microwave Fields Using Nonlinear Unsolicited Feedback: Application to Enhance Energy Harvesting

    NASA Astrophysics Data System (ADS)

    del Hougne, Philipp; Fink, Mathias; Lerosey, Geoffroy

    2017-12-01

    Wave-front shaping has emerged over the past decade as a powerful tool to control wave propagation through complex media, initially in optics and more recently also in the microwave domain with important applications in telecommunication, imaging, and energy transfer. The crux of implementing wave-front shaping concepts in real life is often its need for (direct) feedback, requiring access to the target to focus on. Here, we present the shaping of a microwave field based on indirect, unsolicited, and blind feedback which may be the pivotal step towards practical implementations. With the example of a radio-frequency harvester in a metallic cavity, we demonstrate tenfold enhancement of the harvested power by wave-front shaping based on nonlinear signals detected at an arbitrary position away from the harvesting device.

  4. Layer-oriented multigrid wavefront reconstruction algorithms for multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

    2003-02-01

    Multi-conjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence.

  5. Wavefront detection method of a single-sensor based adaptive optics system.

    PubMed

    Wang, Chongchong; Hu, Lifa; Xu, Huanyu; Wang, Yukun; Li, Dayu; Wang, Shaoxin; Mu, Quanquan; Yang, Chengliang; Cao, Zhaoliang; Lu, Xinghai; Xuan, Li

    2015-08-10

    In adaptive optics system (AOS) for optical telescopes, the reported wavefront sensing strategy consists of two parts: a specific sensor for tip-tilt (TT) detection and another wavefront sensor for other distortions detection. Thus, a part of incident light has to be used for TT detection, which decreases the light energy used by wavefront sensor and eventually reduces the precision of wavefront correction. In this paper, a single Shack-Hartmann wavefront sensor based wavefront measurement method is presented for both large amplitude TT and other distortions' measurement. Experiments were performed for testing the presented wavefront method and validating the wavefront detection and correction ability of the single-sensor based AOS. With adaptive correction, the root-mean-square of residual TT was less than 0.2 λ, and a clear image was obtained in the lab. Equipped on a 1.23-meter optical telescope, the binary stars with angle distance of 0.6″ were clearly resolved using the AOS. This wavefront measurement method removes the separate TT sensor, which not only simplifies the AOS but also saves light energy for subsequent wavefront sensing and imaging, and eventually improves the detection and imaging capability of the AOS.

  6. Research on the adaptive optical control technology based on DSP

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolu; Xue, Qiao; Zeng, Fa; Zhao, Junpu; Zheng, Kuixing; Su, Jingqin; Dai, Wanjun

    2018-02-01

    Adaptive optics is a real-time compensation technique using high speed support system for wavefront errors caused by atmospheric turbulence. However, the randomness and instantaneity of atmospheric changing introduce great difficulties to the design of adaptive optical systems. A large number of complex real-time operations lead to large delay, which is an insurmountable problem. To solve this problem, hardware operation and parallel processing strategy are proposed, and a high-speed adaptive optical control system based on DSP is developed. The hardware counter is used to check the system. The results show that the system can complete a closed loop control in 7.1ms, and improve the controlling bandwidth of the adaptive optical system. Using this system, the wavefront measurement and closed loop experiment are carried out, and obtain the good results.

  7. Wavefront Sensing and Control Technology for Submillimeter and Far-Infrared Space Telescopes

    NASA Technical Reports Server (NTRS)

    Redding, Dave

    2004-01-01

    The NGST wavefront sensing and control system will be developed to TRL6 over the next few years, including testing in a cryogenic vacuum environment with traceable hardware. Doing this in the far-infrared and submillimeter is probably easier, as some aspects of the problem scale with wavelength, and the telescope is likely to have a more stable environment; however, detectors may present small complications. Since this is a new system approach, it warrants a new look. For instance, a large space telescope based on the DART membrane mirror design requires a new actuation approach. Other mirror and actuation technologies may prove useful as well.

  8. Design and fabrication of reflective spatial light modulator for high-dynamic-range wavefront control

    NASA Astrophysics Data System (ADS)

    Zhu, Hao; Bierden, Paul; Cornelissen, Steven; Bifano, Thomas; Kim, Jin-Hong

    2004-10-01

    This paper describes design and fabrication of a microelectromechanical metal spatial light modulator (SLM) integrated with complementary metal-oxide semiconductor (CMOS) electronics, for high-dynamic-range wavefront control. The metal SLM consists of a large array of piston-motion MEMS mirror segments (pixels) which can deflect up to 0.78 µm each. Both 32x32 and 150x150 arrays of the actuators (1024 and 22500 elements respectively) were fabricated onto the CMOS driver electronics and individual pixels were addressed. A new process has been developed to reduce the topography during the metal MEMS processing to fabricate mirror pixels with improved optical quality.

  9. Robot graphic simulation testbed

    NASA Technical Reports Server (NTRS)

    Cook, George E.; Sztipanovits, Janos; Biegl, Csaba; Karsai, Gabor; Springfield, James F.

    1991-01-01

    The objective of this research was twofold. First, the basic capabilities of ROBOSIM (graphical simulation system) were improved and extended by taking advantage of advanced graphic workstation technology and artificial intelligence programming techniques. Second, the scope of the graphic simulation testbed was extended to include general problems of Space Station automation. Hardware support for 3-D graphics and high processing performance make high resolution solid modeling, collision detection, and simulation of structural dynamics computationally feasible. The Space Station is a complex system with many interacting subsystems. Design and testing of automation concepts demand modeling of the affected processes, their interactions, and that of the proposed control systems. The automation testbed was designed to facilitate studies in Space Station automation concepts.

  10. Overview of the Telescience Testbed Program

    NASA Technical Reports Server (NTRS)

    Rasmussen, Daryl N.; Mian, Arshad; Leiner, Barry M.

    1991-01-01

    The NASA's Telescience Testbed Program (TTP) conducted by the Ames Research Center is described with particular attention to the objectives, the approach used to achieve these objectives, and the expected benefits of the program. The goal of the TTP is to gain operational experience for the Space Station Freedom and the Earth Observing System programs, using ground testbeds, and to define the information and communication systems requirements for the development and operation of these programs. The results of TTP are expected to include the requirements for the remote coaching, command and control, monitoring and maintenance, payload design, and operations management. In addition, requirements for technologies such as workstations, software, video, automation, data management, and networking will be defined.

  11. Polarization-independent silicon metadevices for efficient optical wavefront control

    DOE PAGES

    Chong, Katie E.; Staude, Isabelle; James, Anthony Randolph; ...

    2015-07-20

    In this study, we experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0–2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the latticemore » spacing as a single geometric control parameter.« less

  12. Polarization-independent silicon metadevices for efficient optical wavefront control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, Katie E.; Staude, Isabelle; James, Anthony Randolph

    In this study, we experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0–2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the latticemore » spacing as a single geometric control parameter.« less

  13. Wavefront sensor and wavefront corrector matching in adaptive optics

    PubMed Central

    Dubra, Alfredo

    2016-01-01

    Matching wavefront correctors and wavefront sensors by minimizing the condition number and mean wavefront variance is proposed. The particular cases of two continuous-sheet deformable mirrors and a Shack-Hartmann wavefront sensor with square packing geometry are studied in the presence of photon noise, background noise and electronics noise. Optimal number of lenslets across each actuator are obtained for both deformable mirrors, and a simple experimental procedure for optimal alignment is described. The results show that high-performance adaptive optics can be achieved even with low cost off-the-shelf Shack-Hartmann arrays with lenslet spacing that do not necessarily match those of the wavefront correcting elements. PMID:19532513

  14. Wavefront sensor and wavefront corrector matching in adaptive optics.

    PubMed

    Dubra, Alfredo

    2007-03-19

    Matching wavefront correctors and wavefront sensors by minimizing the condition number and mean wavefront variance is proposed. The particular cases of two continuous-sheet deformable mirrors and a Shack-Hartmann wavefront sensor with square packing geometry are studied in the presence of photon noise, background noise and electronics noise. Optimal number of lenslets across each actuator are obtained for both deformable mirrors, and a simple experimental procedure for optimal alignment is described. The results show that high-performance adaptive optics can be achieved even with low cost off-the-shelf Shack-Hartmann arrays with lenslet spacing that do not necessarily match those of the wavefront correcting elements.

  15. Power system monitoring and source control of the Space Station Freedom DC power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the DC Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  16. Power system monitoring and source control of the Space Station Freedom dc-power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the dc Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  17. A Turbine-powered UAV Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.; Guerreiro, Nelson M.; Chambers, Ryan S.; Howard, Keith D.

    2007-01-01

    The latest version of the NASA Flying Controls Testbed (FLiC) integrates commercial-off-the-shelf components including airframe, autopilot, and a small turbine engine to provide a low cost experimental flight controls testbed capable of sustained speeds up to 200 mph. The series of flight tests leading up to the demonstrated performance of the vehicle in sustained, autopiloted 200 mph flight at NASA Wallops Flight Facility's UAV runway in August 2006 will be described. Earlier versions of the FLiC were based on a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate at Fort Eustis, Virginia and NASA Langley Research Center. The newer turbine powered platform (J-FLiC) builds on the successes using the relatively smaller, slower and less expensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches with the implementation of C-coded experimental controllers. Tracking video was taken during the test flights at Wallops and will be available for presentation at the conference. Analysis of flight data from both remotely piloted and autopiloted flights will be presented. Candidate experimental controllers for implementation will be discussed. It is anticipated that flight testing will resume in Spring 2007 and those results will be included, if possible.

  18. Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air

    NASA Astrophysics Data System (ADS)

    Dergachev, A. A.; Ionin, A. A.; Kandidov, V. P.; Mokrousova, D. V.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.; Shlenov, S. A.; Shustikova, A. P.

    2014-12-01

    We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis.

  19. Recent Developments in the Design, Capabilities and Autonomous Operations of a Lightweight Surface Manipulation System and Test-bed

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Jones, Thomas C.; Doggett, W. R.; Brady, Jeffrey S.; Berry, Felecia C.; Ganoe, George G.; Anderson, Eric; King, Bruce D.; Mercer, David C.

    2011-01-01

    The first generation of a versatile high performance device for performing payload handling and assembly operations on planetary surfaces, the Lightweight Surface Manipulation System (LSMS), has been designed and built. Over the course of its development, conventional crane type payload handling configurations and operations have been successfully demonstrated and the range of motion, types of operations and the versatility greatly expanded. This enhanced set of 1st generation LSMS hardware is now serving as a laboratory test-bed allowing the continuing development of end effectors, operational techniques and remotely controlled and automated operations. This paper describes the most recent LSMS and test-bed development activities, that have focused on two major efforts. The first effort was to complete a preliminary design of the 2nd generation LSMS that has the capability for limited mobility and can reposition itself between lander decks, mobility chassis, and fixed base locations. A major portion of this effort involved conducting a study to establish the feasibility of, and define, the specifications for a lightweight cable-drive waist joint. The second effort was to continue expanding the versatility and autonomy of large planetary surface manipulators using the 1st generation LSMS as a test-bed. This has been accomplished by increasing manipulator capabilities and efficiencies through both design changes and tool and end effector development. A software development effort has expanded the operational capabilities of the LSMS test-bed to include; autonomous operations based on stored paths, use of a vision system for target acquisition and tracking, and remote command and control over a communications bridge.

  20. Research in the Optical Sciences.

    DTIC Science & Technology

    1987-12-15

    been chosen for the wavefront sensor. REFERENCES 1. C. L. Koliopoulos, " Wavefront sensing of the turbulent atmosphere using a lateral shearing...technique would permit wavefront sensing in the image plane without employing an elaborate method to obtain a reference wavefront . Background Initial...and R. H. Potoff ......... 87 0rd . . .. El WAVEFRONT SENSING AND ADAPTIVE OPTICS C . K oliopoulos ............................................. 97

  1. Determining the wedge angle and optical homogeneity of a glass plate by statistically analyzing the deformation in the wavefront surface.

    PubMed

    Yang, Pao-Keng

    2017-08-01

    By using a light-emitting diode as the probing light source and a Shack-Hartmann wavefront sensor as the recorder for the wavefront surface to execute a relative measurement, we present a useful method for determining the small wedge angle and optical homogeneity of a nominally planar glass plate from the wavefront measurements. The measured wavefront surface from the light source was first calibrated to be a horizontal plane before the plate under test was inserted. The wedge angle of the plate can be determined from the inclining angle of the regression plane of the measured wavefront surface after the plate was inserted between the light source and the wavefront sensor. Despite the annoying time-dependent altitude fluctuation in measured wavefront topography, the optical homogeneity of the plate can be estimated from the increment on the average variance of the wavefront surface to its regression plane after the light passes through it by using the Bienaymé formula.

  2. Method and apparatus for assessing material properties of sheet-like materials

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.

    2002-01-01

    Apparatus for producing an indication of a material property of a sheet-like material according to the present invention may comprise an excitation source for vibrating the sheet-like material to produce at least one traveling wave therein. A light source configured to produce an object wavefront and a reference wavefront directs the object wavefront toward the sheet-like material to produce a modulated object wavefront. A modulator operatively associated with the reference wavefront modulates the reference wavefront in synchronization with the traveling wave on the sheet-like material to produce a modulated reference wavefront. A sensing medium positioned to receive the modulated object wavefront and the modulated reference wavefront produces an image of the traveling wave in the sheet-like material, the image of the anti-symmetric traveling wave being related to a displacement amplitude of the anti-symmetric traveling wave over a two-dimensional area of the vibrating sheet-like material. A detector detects the image of the traveling wave in the sheet-like material.

  3. Dual-mode photosensitive arrays based on the integration of liquid crystal microlenses and CMOS sensors for obtaining the intensity images and wavefronts of objects.

    PubMed

    Tong, Qing; Lei, Yu; Xin, Zhaowei; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2016-02-08

    In this paper, we present a kind of dual-mode photosensitive arrays (DMPAs) constructed by hybrid integration a liquid crystal microlens array (LCMLA) driven electrically and a CMOS sensor array, which can be used to measure both the conventional intensity images and corresponding wavefronts of objects. We utilize liquid crystal materials to shape the microlens array with the electrically tunable focal length. Through switching the voltage signal on and off, the wavefronts and the intensity images can be acquired through the DMPAs, sequentially. We use white light to obtain the object's wavefronts for avoiding losing important wavefront information. We separate the white light wavefronts with a large number of spectral components and then experimentally compare them with single spectral wavefronts of typical red, green and blue lasers, respectively. Then we mix the red, green and blue wavefronts to a composite wavefront containing more optical information of the object.

  4. NASA's F-15B testbed aircraft undergoes pre-flight checks before performing the first flight of the Quiet Spike project

    NASA Image and Video Library

    2006-08-10

    NASA's F-15B testbed aircraft undergoes pre-flight checks before performing the first flight of the Quiet Spike project. The first flight was performed for evaluation purposes, and the spike was not extended. The Quiet Spike was developed as a means of controlling and reducing the sonic boom caused by an aircraft 'breaking' the sound barrier.

  5. Development of an automated electrical power subsystem testbed for large spacecraft

    NASA Technical Reports Server (NTRS)

    Hall, David K.; Lollar, Louis F.

    1990-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed two autonomous electrical power system breadboards. The first breadboard, the autonomously managed power system (AMPS), is a two power channel system featuring energy generation and storage and 24-kW of switchable loads, all under computer control. The second breadboard, the space station module/power management and distribution (SSM/PMAD) testbed, is a two-bus 120-Vdc model of the Space Station power subsystem featuring smart switchgear and multiple knowledge-based control systems. NASA/MSFC is combining these two breadboards to form a complete autonomous source-to-load power system called the large autonomous spacecraft electrical power system (LASEPS). LASEPS is a high-power, intelligent, physical electrical power system testbed which can be used to derive and test new power system control techniques, new power switching components, and new energy storage elements in a more accurate and realistic fashion. LASEPS has the potential to be interfaced with other spacecraft subsystem breadboards in order to simulate an entire space vehicle. The two individual systems, the combined systems (hardware and software), and the current and future uses of LASEPS are described.

  6. SPHERES as Formation Flight Algorithm Development and Validation Testbed: Current Progress and Beyond

    NASA Technical Reports Server (NTRS)

    Kong, Edmund M.; Saenz-Otero, Alvar; Nolet, Simon; Berkovitz, Dustin S.; Miller, David W.; Sell, Steve W.

    2004-01-01

    The MIT-SSL SPHERES testbed provides a facility for the development of algorithms necessary for the success of Distributed Satellite Systems (DSS). The initial development contemplated formation flight and docking control algorithms; SPHERES now supports the study of metrology, control, autonomy, artificial intelligence, and communications algorithms and their effects on DSS projects. To support this wide range of topics, the SPHERES design contemplated the need to support multiple researchers, as echoed from both the hardware and software designs. The SPHERES operational plan further facilitates the development of algorithms by multiple researchers, while the operational locations incrementally increase the ability of the tests to operate in a representative environment. In this paper, an overview of the SPHERES testbed is first presented. The SPHERES testbed serves as a model of the design philosophies that allow for the various researches being carried out on such a facility. The implementation of these philosophies are further highlighted in the three different programs that are currently scheduled for testing onboard the International Space Station (ISS) and three that are proposed for a re-flight mission: Mass Property Identification, Autonomous Rendezvous and Docking, TPF Multiple Spacecraft Formation Flight in the first flight and Precision Optical Pointing, Tethered Formation Flight and Mars Orbit Sample Retrieval for the re-flight mission.

  7. Design, analysis, and testing of the Phase 1 CSI Evolutionary Model erectable truss

    NASA Technical Reports Server (NTRS)

    Gronet, M. J.; Davis, D. A.; Kintis, D. H.; Brillhart, R. D.; Atkins, E. M.

    1992-01-01

    This report addressed the design, analysis, and testing of the erectable truss structure for the Phase 1 CSI Evolutionary Model (CEM) testbed. The Phase 1 CEM testbed is the second testbed to form part of an ongoing program of focused research at NASA/LaRC in the development of Controls-Structures Integration (CSI) technology. The Phase 1 CEM contains the same overall geometry, weight, and sensor locations as the Phase 0 CEM, but is based in an integrated controller and structure design, whereby both structure and controller design variables are sized simultaneously. The Phase 1 CEM design features seven truss sections composed of struts with tailored mass and stiffness properties. A common erectable joint is used and the strut stiffness is tailored by varying the cross-sectional area. To characterize the structure, static tests were conducted on individual struts and 10-bay truss assemblies. Dynamic tests were conducted on 10-bay truss assemblies as well as the fully-assembled CEM truss. The results indicate that the static and dynamic properties of the structure are predictable, well-characterized, and within the performance requirements established during the Phase 1 CEM integrated controller/structure design analysis.

  8. Description of real-time Ada software implementation of a power system monitor for the Space Station Freedom PMAD DC testbed

    NASA Technical Reports Server (NTRS)

    Ludwig, Kimberly; Mackin, Michael; Wright, Theodore

    1991-01-01

    The authors describe the Ada language software developed to perform the electrical power system monitoring functions for the NASA Lewis Research Center's Power Management and Distribution (PMAD) DC testbed. The results of the effort to implement this monitor are presented. The PMAD DC testbed is a reduced-scale prototype of the electric power system to be used in Space Station Freedom. The power is controlled by smart switches known as power control components (or switchgear). The power control components are currently coordinated by five Compaq 386/20e computers connected through an 802.4 local area network. The power system monitor algorithm comprises several functions, including periodic data acquisition, data smoothing, system performance analysis, and status reporting. Data are collected from the switchgear sensors every 100 ms, then passed through a 2-Hz digital filter. System performance analysis includes power interruption and overcurrent detection. The system monitor required a hardware timer interrupt to activate the data acquisition function. The execution time of the code was optimized by using an assembly language routine. The routine allows direct vectoring of the processor to Ada language procedures that perform periodic control activities.

  9. Conceptual Design and Cost Estimate of a Subsonic NASA Testbed Vehicle (NTV) for Aeronautics Research

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; Frederic, Peter

    2013-01-01

    A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.

  10. Flight Testing of Guidance, Navigation and Control Systems on the Mighty Eagle Robotic Lander Testbed

    NASA Technical Reports Server (NTRS)

    Hannan, Mike; Rickman, Doug; Chavers, Greg; Adam, Jason; Becker, Chris; Eliser, Joshua; Gunter, Dan; Kennedy, Logan; O'Leary, Patrick

    2015-01-01

    During 2011 a series of progressively more challenging flight tests of the Mighty Eagle autonomous terrestrial lander testbed were conducted primarily to validate the GNC system for a proposed lunar lander. With the successful completion of this GNC validation objective the opportunity existed to utilize the Mighty Eagle as a flying testbed for a variety of technologies. In 2012 an Autonomous Rendezvous and Capture (AR&C) algorithm was implemented in flight software and demonstrated in a series of flight tests. In 2012 a hazard avoidance system was developed and flight tested on the Mighty Eagle. Additionally, GNC algorithms from Moon Express and a MEMs IMU were tested in 2012. All of the testing described herein was above and beyond the original charter for the Mighty Eagle. In addition to being an excellent testbed for a wide variety of systems the Mighty Eagle also provided a great learning opportunity for many engineers and technicians to work a flight program.

  11. Adjustable Autonomy Testbed

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schrenkenghost, Debra K.

    2001-01-01

    The Adjustable Autonomy Testbed (AAT) is a simulation-based testbed located in the Intelligent Systems Laboratory in the Automation, Robotics and Simulation Division at NASA Johnson Space Center. The purpose of the testbed is to support evaluation and validation of prototypes of adjustable autonomous agent software for control and fault management for complex systems. The AA T project has developed prototype adjustable autonomous agent software and human interfaces for cooperative fault management. This software builds on current autonomous agent technology by altering the architecture, components and interfaces for effective teamwork between autonomous systems and human experts. Autonomous agents include a planner, flexible executive, low level control and deductive model-based fault isolation. Adjustable autonomy is intended to increase the flexibility and effectiveness of fault management with an autonomous system. The test domain for this work is control of advanced life support systems for habitats for planetary exploration. The CONFIG hybrid discrete event simulation environment provides flexible and dynamically reconfigurable models of the behavior of components and fluids in the life support systems. Both discrete event and continuous (discrete time) simulation are supported, and flows and pressures are computed globally. This provides fast dynamic simulations of interacting hardware systems in closed loops that can be reconfigured during operations scenarios, producing complex cascading effects of operations and failures. Current object-oriented model libraries support modeling of fluid systems, and models have been developed of physico-chemical and biological subsystems for processing advanced life support gases. In FY01, water recovery system models will be developed.

  12. Method and apparatus for detecting internal structures of bulk objects using acoustic imaging

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2002-01-01

    Apparatus for producing an acoustic image of an object according to the present invention may comprise an excitation source for vibrating the object to produce at least one acoustic wave therein. The acoustic wave results in the formation of at least one surface displacement on the surface of the object. A light source produces an optical object wavefront and an optical reference wavefront and directs the optical object wavefront toward the surface of the object to produce a modulated optical object wavefront. A modulator operatively associated with the optical reference wavefront modulates the optical reference wavefront in synchronization with the acoustic wave to produce a modulated optical reference wavefront. A sensing medium positioned to receive the modulated optical object wavefront and the modulated optical reference wavefront combines the modulated optical object and reference wavefronts to produce an image related to the surface displacement on the surface of the object. A detector detects the image related to the surface displacement produced by the sensing medium. A processing system operatively associated with the detector constructs an acoustic image of interior features of the object based on the phase and amplitude of the surface displacement on the surface of the object.

  13. Adaptive optics compensation over a 3 km near horizontal path

    NASA Astrophysics Data System (ADS)

    Mackey, Ruth; Dainty, Chris

    2008-10-01

    We present results of adaptive optics compensation at the receiver of a 3km optical link using a beacon laser operating at 635nm. The laser is transmitted from the roof of a seven-storey building over a near horizontal path towards a 127 mm optical receiver located on the second-floor of the Applied Optics Group at the National University of Ireland, Galway. The wavefront of the scintillated beam is measured using a Shack-Hartmann wavefront sensor (SHWFS) with high-speed CMOS camera capable of frame rates greater than 1kHz. The strength of turbulence is determined from the fluctuations in differential angle-of-arrival in the wavefront sensor measurements and from the degree of scintillation in the pupil plane. Adaptive optics compensation is applied using a tip-tilt mirror and 37 channel membrane mirror and controlled using a single desktop computer. The performance of the adaptive optics system in real turbulence is compared with the performance of the system in a controlled laboratory environment, where turbulence is generated using a liquid crystal spatial light modulator.

  14. Correcting the wavefront aberration of membrane mirror based on liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Wei, Yin; Chen, Xinhua; Tang, Minxue

    2014-11-01

    Membrane mirror with flexible polymer film substrate is a new-concept ultra lightweight mirror for space applications. Compared with traditional mirrors, membrane mirror has the advantages of lightweight, folding and deployable, low cost and etc. Due to the surface shape of flexible membrane mirror is easy to deviate from the design surface shape, it will bring wavefront aberration to the optical system. In order to solve this problem, a method of membrane mirror wavefront aberration correction based on the liquid crystal spatial light modulator (LCSLM) will be studied in this paper. The wavefront aberration correction principle of LCSLM is described and the phase modulation property of a LCSLM is measured and analyzed firstly. Then the membrane mirror wavefront aberration correction system is designed and established according to the optical properties of a membrane mirror. The LCSLM and a Hartmann-Shack sensor are used as a wavefront corrector and a wavefront detector, respectively. The detected wavefront aberration is calculated and converted into voltage value on LCSLM for the mirror wavefront aberration correction by programming in Matlab. When in experiment, the wavefront aberration of a glass plane mirror with a diameter of 70 mm is measured and corrected for verifying the feasibility of the experiment system and the correctness of the program. The PV value and RMS value of distorted wavefront are reduced and near diffraction limited optical performance is achieved. On this basis, the wavefront aberration of the aperture center Φ25 mm in a membrane mirror with a diameter of 200 mm is corrected and the errors are analyzed. It provides a means of correcting the wavefront aberration of membrane mirror.

  15. Myopic aberrations: Simulation based comparison of curvature and Hartmann Shack wavefront sensors

    NASA Astrophysics Data System (ADS)

    Basavaraju, Roopashree M.; Akondi, Vyas; Weddell, Stephen J.; Budihal, Raghavendra Prasad

    2014-02-01

    In comparison with a Hartmann Shack wavefront sensor, the curvature wavefront sensor is known for its higher sensitivity and greater dynamic range. The aim of this study is to numerically investigate the merits of using a curvature wavefront sensor, in comparison with a Hartmann Shack (HS) wavefront sensor, to analyze aberrations of the myopic eye. Aberrations were statistically generated using Zernike coefficient data of 41 myopic subjects obtained from the literature. The curvature sensor is relatively simple to implement, and the processing of extra- and intra-focal images was linearly resolved using the Radon transform to provide Zernike modes corresponding to statistically generated aberrations. Simulations of the HS wavefront sensor involve the evaluation of the focal spot pattern from simulated aberrations. Optical wavefronts were reconstructed using the slope geometry of Southwell. Monte Carlo simulation was used to find critical parameters for accurate wavefront sensing and to investigate the performance of HS and curvature sensors. The performance of the HS sensor is highly dependent on the number of subapertures and the curvature sensor is largely dependent on the number of Zernike modes used to represent the aberration and the effective propagation distance. It is shown that in order to achieve high wavefront sensing accuracy while measuring aberrations of the myopic eye, a simpler and cost effective curvature wavefront sensor is a reliable alternative to a high resolution HS wavefront sensor with a large number of subapertures.

  16. Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm.

    PubMed

    Zou, Weiyao; Qi, Xiaofeng; Burns, Stephen A

    2011-07-01

    We implemented a Lagrange-multiplier (LM)-based damped least-squares (DLS) control algorithm in a woofer-tweeter dual deformable-mirror (DM) adaptive optics scanning laser ophthalmoscope (AOSLO). The algorithm uses data from a single Shack-Hartmann wavefront sensor to simultaneously correct large-amplitude low-order aberrations by a woofer DM and small-amplitude higher-order aberrations by a tweeter DM. We measured the in vivo performance of high resolution retinal imaging with the dual DM AOSLO. We compared the simultaneous LM-based DLS dual DM controller with both single DM controller, and a successive dual DM controller. We evaluated performance using both wavefront (RMS) and image quality metrics including brightness and power spectrum. The simultaneous LM-based dual DM AO can consistently provide near diffraction-limited in vivo routine imaging of human retina.

  17. Aviation Communications Emulation Testbed

    NASA Technical Reports Server (NTRS)

    Sheehe, Charles; Mulkerin, Tom

    2004-01-01

    Aviation related applications that rely upon datalink for information exchange are increasingly being developed and deployed. The increase in the quantity of applications and associated data communications will expose problems and issues to resolve. NASA Glenn Research Center has prepared to study the communications issues that will arise as datalink applications are employed within the National Airspace System (NAS) by developing a aviation communications emulation testbed. The Testbed is evolving and currently provides the hardware and software needed to study the communications impact of Air Traffic Control (ATC) and surveillance applications in a densely populated environment. The communications load associated with up to 160 aircraft transmitting and receiving ATC and surveillance data can be generated in real time in a sequence similar to what would occur in the NAS.

  18. Development and application of a real-time testbed for multiagent system interoperability: A case study on hierarchical microgrid control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cintuglu, Mehmet Hazar; Youssef, Tarek; Mohammed, Osama A.

    This article presents the development and application of a real-time testbed for multiagent system interoperability. As utility independent private microgrids are installed constantly, standardized interoperability frameworks are required to define behavioral models of the individual agents for expandability and plug-and-play operation. In this paper, we propose a comprehensive hybrid agent framework combining the foundation for intelligent physical agents (FIPA), IEC 61850, and data distribution service (DDS) standards. The IEC 61850 logical node concept is extended using FIPA based agent communication language (ACL) with application specific attributes and deliberative behavior modeling capability. The DDS middleware is adopted to enable a real-timemore » publisher-subscriber interoperability mechanism between platforms. The proposed multi-agent framework was validated in a laboratory based testbed involving developed intelligent electronic device (IED) prototypes and actual microgrid setups. Experimental results were demonstrated for both decentralized and distributed control approaches. Secondary and tertiary control levels of a microgrid were demonstrated for decentralized hierarchical control case study. A consensus-based economic dispatch case study was demonstrated as a distributed control example. Finally, it was shown that the developed agent platform is industrially applicable for actual smart grid field deployment.« less

  19. Development and application of a real-time testbed for multiagent system interoperability: A case study on hierarchical microgrid control

    DOE PAGES

    Cintuglu, Mehmet Hazar; Youssef, Tarek; Mohammed, Osama A.

    2016-08-10

    This article presents the development and application of a real-time testbed for multiagent system interoperability. As utility independent private microgrids are installed constantly, standardized interoperability frameworks are required to define behavioral models of the individual agents for expandability and plug-and-play operation. In this paper, we propose a comprehensive hybrid agent framework combining the foundation for intelligent physical agents (FIPA), IEC 61850, and data distribution service (DDS) standards. The IEC 61850 logical node concept is extended using FIPA based agent communication language (ACL) with application specific attributes and deliberative behavior modeling capability. The DDS middleware is adopted to enable a real-timemore » publisher-subscriber interoperability mechanism between platforms. The proposed multi-agent framework was validated in a laboratory based testbed involving developed intelligent electronic device (IED) prototypes and actual microgrid setups. Experimental results were demonstrated for both decentralized and distributed control approaches. Secondary and tertiary control levels of a microgrid were demonstrated for decentralized hierarchical control case study. A consensus-based economic dispatch case study was demonstrated as a distributed control example. Finally, it was shown that the developed agent platform is industrially applicable for actual smart grid field deployment.« less

  20. Evaluation of iris recognition system for wavefront-guided laser in situ keratomileusis for myopic astigmatism.

    PubMed

    Ghosh, Sudipta; Couper, Terry A; Lamoureux, Ecosse; Jhanji, Vishal; Taylor, Hugh R; Vajpayee, Rasik B

    2008-02-01

    To evaluate the visual and refractive outcomes of wavefront-guided laser in situ keratomileusis (LASIK) using an iris recognition system for the correction of myopic astigmatism. Centre for Eye Research Australia, Melbourne Excimer Laser Research Group, and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia. A comparative analysis of wavefront-guided LASIK was performed with an iris recognition system (iris recognition group) and without iris recognition (control group). The main parameters were uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity, amount of residual cylinder, manifest spherical equivalent (SE), and the index of success using the Alpins method of astigmatism analysis 1 and 3 months postoperatively. A P value less than 0.05 was considered statistically significant. Preoperatively, the mean SE was -4.32 diopters (D) +/- 1.59 (SD) in the iris recognition group (100 eyes) and -4.55 +/- 1.87 D in the control group (98 eyes) (P = .84). At 3 months, the mean SE was -0.05 +/- 0.21 D and -0.20 +/- 0.40 D, respectively (P = .001), and an SE within +/-0.50 D of emmetropia was achieved in 92.0% and 85.7% of eyes, respectively (P = .07). At 3 months, the UCVA was 20/20 or better in 90.0% and 76.5% of eyes, respectively. A statistically significant difference in the amount of astigmatic correction was seen between the 2 groups (P = .00 and P = .01 at 1 and 3 months, respectively). The index of success was 98.0% in the iris recognition group and 81.6% in the control group (P = .03). Iris recognition software may achieve better visual and refractive outcomes in wavefront-guided LASIK for myopic astigmatism.

  1. Wavefront sensorless adaptive optics versus sensor-based adaptive optics for in vivo fluorescence retinal imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wahl, Daniel J.; Zhang, Pengfei; Jian, Yifan; Bonora, Stefano; Sarunic, Marinko V.; Zawadzki, Robert J.

    2017-02-01

    Adaptive optics (AO) is essential for achieving diffraction limited resolution in large numerical aperture (NA) in-vivo retinal imaging in small animals. Cellular-resolution in-vivo imaging of fluorescently labeled cells is highly desirable for studying pathophysiology in animal models of retina diseases in pre-clinical vision research. Currently, wavefront sensor-based (WFS-based) AO is widely used for retinal imaging and has demonstrated great success. However, the performance can be limited by several factors including common path errors, wavefront reconstruction errors and an ill-defined reference plane on the retina. Wavefront sensorless (WFS-less) AO has the advantage of avoiding these issues at the cost of algorithmic execution time. We have investigated WFS-less AO on a fluorescence scanning laser ophthalmoscopy (fSLO) system that was originally designed for WFS-based AO. The WFS-based AO uses a Shack-Hartmann WFS and a continuous surface deformable mirror in a closed-loop control system to measure and correct for aberrations induced by the mouse eye. The WFS-less AO performs an open-loop modal optimization with an image quality metric. After WFS-less AO aberration correction, the WFS was used as a control of the closed-loop WFS-less AO operation. We can easily switch between WFS-based and WFS-less control of the deformable mirror multiple times within an imaging session for the same mouse. This allows for a direct comparison between these two types of AO correction for fSLO. Our results demonstrate volumetric AO-fSLO imaging of mouse retinal cells labeled with GFP. Most significantly, we have analyzed and compared the aberration correction results for WFS-based and WFS-less AO imaging.

  2. Generalised optical differentiation wavefront sensor: a sensitive high dynamic range wavefront sensor.

    PubMed

    Haffert, S Y

    2016-08-22

    Current wavefront sensors for high resolution imaging have either a large dynamic range or a high sensitivity. A new kind of wavefront sensor is developed which can have both: the Generalised Optical Differentiation wavefront sensor. This new wavefront sensor is based on the principles of optical differentiation by amplitude filters. We have extended the theory behind linear optical differentiation and generalised it to nonlinear filters. We used numerical simulations and laboratory experiments to investigate the properties of the generalised wavefront sensor. With this we created a new filter that can decouple the dynamic range from the sensitivity. These properties make it suitable for adaptive optic systems where a large range of phase aberrations have to be measured with high precision.

  3. Framework to trade optimality for local processing in large-scale wavefront reconstruction problems.

    PubMed

    Haber, Aleksandar; Verhaegen, Michel

    2016-11-15

    We show that the minimum variance wavefront estimation problems permit localized approximate solutions, in the sense that the wavefront value at a point (excluding unobservable modes, such as the piston mode) can be approximated by a linear combination of the wavefront slope measurements in the point's neighborhood. This enables us to efficiently compute a wavefront estimate by performing a single sparse matrix-vector multiplication. Moreover, our results open the possibility for the development of wavefront estimators that can be easily implemented in a decentralized/distributed manner, and in which the estimate optimality can be easily traded for computational efficiency. We numerically validate our approach on Hudgin wavefront sensor geometries, and the results can be easily generalized to Fried geometries.

  4. Investigation of the confocal wavefront sensor and its application to biological microscopy.

    PubMed

    Shaw, Michael; O'Holleran, Kevin; Paterson, Carl

    2013-08-12

    Wavefront sensing in the presence of background light sources is complicated by the need to restrict the effective depth of field of the wavefront sensor. This problem is particularly significant in direct wavefront sensing adaptive optic (AO) schemes for correcting imaging aberrations in biological microscopy. In this paper we investigate how a confocal pinhole can be used to reject out of focus light whilst still allowing effective wavefront sensing. Using a scaled set of phase screens with statistical properties derived from measurements of wavefront aberrations induced by C. elegans specimens, we investigate and quantify how the size of the pinhole and the aberration amplitude affect the transmitted wavefront. We suggest a lower bound for the pinhole size for a given aberration strength and quantify the optical sectioning provided by the system. For our measured aberration data we find that a pinhole of size approximately 3 Airy units represents a good compromise, allowing effective transmission of the wavefront and thin optical sections. Finally, we discuss some of the practical implications of confocal wavefront sensing for AO systems in microscopy.

  5. The MIST /MIUS Integration and Subsystems Test/ laboratory - A testbed for the MIUS /Modular Integrated Utility System/ program

    NASA Technical Reports Server (NTRS)

    Beckham, W. S., Jr.; Keune, F. A.

    1974-01-01

    The MIUS (Modular Integrated Utility System) concept is to be an energy-conserving, economically feasible, integrated community utility system to provide five necessary services: electricity generation, space heating and air conditioning, solid waste processing, liquid waste processing, and residential water purification. The MIST (MIUS Integration and Subsystem Test) integrated system testbed constructed at the Johnson Space Center in Houston includes subsystems for power generation, heating, ventilation, and air conditioning (HVAC), wastewater management, solid waste management, and control and monitoring. The key design issues under study include thermal integration and distribution techniques, thermal storage, integration of subsystems controls and displays, incinerator performance, effluent characteristics, and odor control.

  6. Space station automation of common module power management and distribution, volume 2

    NASA Technical Reports Server (NTRS)

    Ashworth, B.; Riedesel, J.; Myers, C.; Jakstas, L.; Smith, D.

    1990-01-01

    The new Space Station Module Power Management and Distribution System (SSM/PMAD) testbed automation system is described. The subjects discussed include testbed 120 volt dc star bus configuration and operation, SSM/PMAD automation system architecture, fault recovery and management expert system (FRAMES) rules english representation, the SSM/PMAD user interface, and the SSM/PMAD future direction. Several appendices are presented and include the following: SSM/PMAD interface user manual version 1.0, SSM/PMAD lowest level processor (LLP) reference, SSM/PMAD technical reference version 1.0, SSM/PMAD LLP visual control logic representation's (VCLR's), SSM/PMAD LLP/FRAMES interface control document (ICD) , and SSM/PMAD LLP switchgear interface controller (SIC) ICD.

  7. Optimization of two-photon wave function in parametric down conversion by adaptive optics control of the pump radiation.

    PubMed

    Minozzi, M; Bonora, S; Sergienko, A V; Vallone, G; Villoresi, P

    2013-02-15

    We present an efficient method for optimizing the spatial profile of entangled-photon wave function produced in a spontaneous parametric down conversion process. A deformable mirror that modifies a wavefront of a 404 nm CW diode laser pump interacting with a nonlinear β-barium borate type-I crystal effectively controls the profile of the joint biphoton function. The use of a feedback signal extracted from the biphoton coincidence rate is used to achieve the optimal wavefront shape. The optimization of the two-photon coupling into two, single spatial modes for correlated detection is used for a practical demonstration of this physical principle.

  8. Implementation of Motion Simulation Software and Visual-Auditory Electronics for Use in a Low Gravity Robotic Testbed

    NASA Technical Reports Server (NTRS)

    Martin, William Campbell

    2011-01-01

    The Jet Propulsion Laboratory (JPL) is developing the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) to assist in manned space missions. One of the proposed targets for this robotic vehicle is a near-Earth asteroid (NEA), which typically exhibit a surface gravity of only a few micro-g. In order to properly test ATHLETE in such an environment, the development team has constructed an inverted Stewart platform testbed that acts as a robotic motion simulator. This project focused on creating physical simulation software that is able to predict how ATHLETE will function on and around a NEA. The corresponding platform configurations are calculated and then passed to the testbed to control ATHLETE's motion. In addition, imitation attitude, imitation attitude control thrusters were designed and fabricated for use on ATHLETE. These utilize a combination of high power LEDs and audio amplifiers to provide visual and auditory cues that correspond to the physics simulation.

  9. The Fourier-Kelvin Stellar Interferometer (FKSI) Nulling Testbed II: Closed-loop Path Length Metrology And Control Subsystem

    NASA Technical Reports Server (NTRS)

    Frey, B. J.; Barry, R. K.; Danchi, W. C.; Hyde, T. T.; Lee, K. Y.; Martino, A. J.; Zuray, M. S.

    2006-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer in the near to mid-infrared spectral region (3-8 microns), and will be a scientific and technological pathfinder for upcoming missions including TPF-I/DARWIN, SPECS, and SPIRIT. At NASA's Goddard Space Flight Center, we have constructed a symmetric Mach-Zehnder nulling testbed to demonstrate techniques and algorithms that can be used to establish and maintain the 10(exp 4) null depth that will be required for such a mission. Among the challenges inherent in such a system is the ability to acquire and track the null fringe to the desired depth for timescales on the order of hours in a laboratory environment. In addition, it is desirable to achieve this stability without using conventional dithering techniques. We describe recent testbed metrology and control system developments necessary to achieve these goals and present our preliminary results.

  10. Software-Implemented Fault Tolerance in Communications Systems

    NASA Technical Reports Server (NTRS)

    Gantenbein, Rex E.

    1994-01-01

    Software-implemented fault tolerance (SIFT) is used in many computer-based command, control, and communications (C(3)) systems to provide the nearly continuous availability that they require. In the communications subsystem of Space Station Alpha, SIFT algorithms are used to detect and recover from failures in the data and command link between the Station and its ground support. The paper presents a review of these algorithms and discusses how such techniques can be applied to similar systems found in applications such as manufacturing control, military communications, and programmable devices such as pacemakers. With support from the Tracking and Communication Division of NASA's Johnson Space Center, researchers at the University of Wyoming are developing a testbed for evaluating the effectiveness of these algorithms prior to their deployment. This testbed will be capable of simulating a variety of C(3) system failures and recording the response of the Space Station SIFT algorithms to these failures. The design of this testbed and the applicability of the approach in other environments is described.

  11. STRS Radio Service Software for NASA's SCaN Testbed

    NASA Technical Reports Server (NTRS)

    Mortensen, Dale J.; Bishop, Daniel Wayne; Chelmins, David T.

    2012-01-01

    NASAs Space Communication and Navigation(SCaN) Testbed was launched to the International Space Station in 2012. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASAs Space Telecommunications Radio System(STRS) architecture standard. Pre-launch testing with the testbeds software defined radios was performed as part of system integration. Radio services for the JPL SDR were developed during system integration to allow the waveform application to operate properly in the space environment, especially considering thermal effects. These services include receiver gain control, frequency offset, IQ modulator balance, and transmit level control. Development, integration, and environmental testing of the radio services will be described. The added software allows the waveform application to operate properly in the space environment, and can be reused by future experimenters testing different waveform applications. Integrating such services with the platform provided STRS operating environment will attract more users, and these services are candidates for interface standardization via STRS.

  12. STRS Radio Service Software for NASA's SCaN Testbed

    NASA Technical Reports Server (NTRS)

    Mortensen, Dale J.; Bishop, Daniel Wayne; Chelmins, David T.

    2013-01-01

    NASA's Space Communication and Navigation(SCaN) Testbed was launched to the International Space Station in 2012. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASA's Space Telecommunications Radio System (STRS) architecture standard. Pre-launch testing with the testbed's software defined radios was performed as part of system integration. Radio services for the JPL SDR were developed during system integration to allow the waveform application to operate properly in the space environment, especially considering thermal effects. These services include receiver gain control, frequency offset, IQ modulator balance, and transmit level control. Development, integration, and environmental testing of the radio services will be described. The added software allows the waveform application to operate properly in the space environment, and can be reused by future experimenters testing different waveform applications. Integrating such services with the platform provided STRS operating environment will attract more users, and these services are candidates for interface standardization via STRS.

  13. Aviation Communications Emulation Testbed

    NASA Technical Reports Server (NTRS)

    Sheehe, Charles; Mulkerin, Tom

    2004-01-01

    Aviation related applications that rely upon datalink for information exchange are increasingly being developed and deployed. The increase in the quantity of applications and associated data communications will expose problems and issues to resolve. NASA s Glenn Research Center has prepared to study the communications issues that will arise as datalink applications are employed within the National Airspace System (NAS) by developing an aviation communications emulation testbed. The Testbed is evolving and currently provides the hardware and software needed to study the communications impact of Air Traffic Control (ATC) and surveillance applications in a densely populated environment. The communications load associated with up to 160 aircraft transmitting and receiving ATC and surveillance data can be generated in realtime in a sequence similar to what would occur in the NAS. The ATC applications that can be studied are the Aeronautical Telecommunications Network s (ATN) Context Management (CM) and Controller Pilot Data Link Communications (CPDLC). The Surveillance applications are Automatic Dependent Surveillance - Broadcast (ADS-B) and Traffic Information Services - Broadcast (TIS-B).

  14. Approaching the runway after the first evaluation flight of the Quiet Spike project, NASA's F-15B testbed aircraft cruises over Roger's Dry Lakebed

    NASA Image and Video Library

    2006-08-10

    Approaching the runway after the first evaluation flight of the Quiet Spike project, NASA's F-15B testbed aircraft cruises over Roger's Dry Lakebed near the Dryden Flight Research Center. The Quiet Spike was developed by Gulfstream Aerospace as a means of controlling and reducing the sonic boom caused by an aircraft 'breaking' the sound barrier.

  15. Wavefront Control and Image Restoration with Less Computing

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.

    2010-01-01

    PseudoDiversity is a method of recovering the wavefront in a sparse- or segmented- aperture optical system typified by an interferometer or a telescope equipped with an adaptive primary mirror consisting of controllably slightly moveable segments. (PseudoDiversity should not be confused with a radio-antenna-arraying method called pseudodiversity.) As in the cases of other wavefront- recovery methods, the streams of wavefront data generated by means of PseudoDiversity are used as feedback signals for controlling electromechanical actuators of the various segments so as to correct wavefront errors and thereby, for example, obtain a clearer, steadier image of a distant object in the presence of atmospheric turbulence. There are numerous potential applications in astronomy, remote sensing from aircraft and spacecraft, targeting missiles, sighting military targets, and medical imaging (including microscopy) through such intervening media as cells or water. In comparison with prior wavefront-recovery methods used in adaptive optics, PseudoDiversity involves considerably simpler equipment and procedures and less computation. For PseudoDiversity, there is no need to install separate metrological equipment or to use any optomechanical components beyond those that are already parts of the optical system to which the method is applied. In Pseudo- Diversity, the actuators of a subset of the segments or subapertures are driven to make the segments dither in the piston, tilt, and tip degrees of freedom. Each aperture is dithered at a unique frequency at an amplitude of a half wavelength of light. During the dithering, images on the focal plane are detected and digitized at a rate of at least four samples per dither period. In the processing of the image samples, the use of different dither frequencies makes it possible to determine the separate effects of the various dithered segments or apertures. The digitized image-detector outputs are processed in the spatial-frequency (Fourier-transform) domain to obtain measures of the piston, tip, and tilt errors over each segment or subaperture. Once these measures are known, they are fed back to the actuators to correct the errors. In addition, measures of errors that remain after correction by use of the actuators are further utilized in an algorithm in which the image is phase-corrected in the spatial-frequency domain and then transformed back to the spatial domain at each time step and summed with the images from all previous time steps to obtain a final image having a greater signal-to-noise ratio (and, hence, a visual quality) higher than would otherwise be attainable.

  16. Apparatus and method for measuring and imaging traveling waves

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.

    2001-01-01

    An apparatus is provided for imaging traveling waves in a medium. The apparatus includes a vibration excitation source configured to impart traveling waves within a medium. An emitter is configured to produce two or more wavefronts, at least one wavefront modulated by a vibrating medium. A modulator is configured to modulate another wavefront in synchronization with the vibrating medium. A sensing media is configured to receive in combination the modulated one wavefront and the another wavefront and having a detection resolution within a limited bandwidth. The another wavefront is modulated at a frequency such that a difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. Such modulation produces an image of the vibrating medium having an output intensity that is substantially linear with small physical variations within the vibrating medium for all vibration frequencies above the sensing media's response bandwidth. A detector is configured to detect an image of traveling waves in the vibrating medium resulting from interference between the modulated one wavefront and the another wavefront when combined in association with the sensing media. The traveling wave can be used to characterize certain material properties of the medium. Furthermore, a method is provided for imaging and characterizing material properties according to the apparatus.

  17. INFORM Lab: a testbed for high-level information fusion and resource management

    NASA Astrophysics Data System (ADS)

    Valin, Pierre; Guitouni, Adel; Bossé, Eloi; Wehn, Hans; Happe, Jens

    2011-05-01

    DRDC Valcartier and MDA have created an advanced simulation testbed for the purpose of evaluating the effectiveness of Network Enabled Operations in a Coastal Wide Area Surveillance situation, with algorithms provided by several universities. This INFORM Lab testbed allows experimenting with high-level distributed information fusion, dynamic resource management and configuration management, given multiple constraints on the resources and their communications networks. This paper describes the architecture of INFORM Lab, the essential concepts of goals and situation evidence, a selected set of algorithms for distributed information fusion and dynamic resource management, as well as auto-configurable information fusion architectures. The testbed provides general services which include a multilayer plug-and-play architecture, and a general multi-agent framework based on John Boyd's OODA loop. The testbed's performance is demonstrated on 2 types of scenarios/vignettes for 1) cooperative search-and-rescue efforts, and 2) a noncooperative smuggling scenario involving many target ships and various methods of deceit. For each mission, an appropriate subset of Canadian airborne and naval platforms are dispatched to collect situation evidence, which is fused, and then used to modify the platform trajectories for the most efficient collection of further situation evidence. These platforms are fusion nodes which obey a Command and Control node hierarchy.

  18. Object-oriented wavefront correction in an asymmetric amplifying high-power laser system

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Yuan, Qiang; Wang, Deen; Zhang, Xin; Dai, Wanjun; Hu, Dongxia; Xue, Qiao; Zhang, Xiaolu; Zhao, Junpu; Zeng, Fa; Wang, Shenzhen; Zhou, Wei; Zhu, Qihua; Zheng, Wanguo

    2018-05-01

    An object-oriented wavefront control method is proposed aiming for excellent near-field homogenization and far-field distribution in an asymmetric amplifying high-power laser system. By averaging the residual errors of the propagating beam, smaller pinholes could be employed on the spatial filters to improve the beam quality. With this wavefront correction system, the laser performance of the main amplifier system in the Shen Guang-III laser facility has been improved. The residual wavefront aberration at the position of each pinhole is below 2 µm (peak-to-valley). For each pinhole, 95% of the total laser energy is enclosed within a circle whose diameter is no more than six times the diffraction limit. At the output of the main laser system, the near-field modulation and contrast are 1.29% and 7.5%, respectively, and 95% of the 1ω (1053 nm) beam energy is contained within a 39.8 µrad circle (6.81 times the diffraction limit) under a laser fluence of 5.8 J cm-2. The measured 1ω focal spot size and near-field contrast are better than the design values of the Shen Guang-III laser facility.

  19. Estimation of chromatic errors from broadband images for high contrast imaging

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Belikov, Ruslan

    2015-09-01

    Usage of an internal coronagraph with an adaptive optical system for wavefront correction for direct imaging of exoplanets is currently being considered for many mission concepts, including as an instrument addition to the WFIRST-AFTA mission to follow the James Web Space Telescope. The main technical challenge associated with direct imaging of exoplanets with an internal coronagraph is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, wavefront errors are usually estimated using probes on the DM. To date, most broadband lab demonstrations use narrowband filters to estimate the chromaticity of the wavefront error, but this reduces the photon flux per filter and requires a filter system. Here, we propose a method to estimate the chromaticity of wavefront errors using only a broadband image. This is achieved by using special DM probes that have sufficient chromatic diversity. As a case example, we simulate the retrieval of the spectrum of the central wavelength from broadband images for a simple shaped- pupil coronagraph with a conjugate DM and compute the resulting estimation error.

  20. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation

    PubMed Central

    Liu, Yan; Ma, Cheng; Shen, Yuecheng; Shi, Junhui; Wang, Lihong V.

    2017-01-01

    Wavefront shaping based on digital optical phase conjugation (DOPC) focuses light through or inside scattering media, but the low speed of DOPC prevents it from being applied to thick, living biological tissue. Although a fast DOPC approach was recently developed, the reported single-shot wavefront measurement method does not work when the goal is to focus light inside, instead of through, highly scattering media. Here, using a ferroelectric liquid crystal based spatial light modulator, we develop a simpler but faster DOPC system that focuses light not only through, but also inside scattering media. By controlling 2.6 × 105 optical degrees of freedom, our system focused light through 3 mm thick moving chicken tissue, with a system latency of 3.0 ms. Using ultrasound-guided DOPC, along with a binary wavefront measurement method, our system focused light inside a scattering medium comprising moving tissue with a latency of 6.0 ms, which is one to two orders of magnitude shorter than those of previous digital wavefront shaping systems. Since the demonstrated speed approaches tissue decorrelation rates, this work is an important step toward in vivo deep-tissue non-invasive optical imaging, manipulation, and therapy. PMID:28815194

  1. Modelling Delta-Notch perturbations during zebrafish somitogenesis.

    PubMed

    Murray, Philip J; Maini, Philip K; Baker, Ruth E

    2013-01-15

    The discovery over the last 15 years of molecular clocks and gradients in the pre-somitic mesoderm of numerous vertebrate species has added significant weight to Cooke and Zeeman's 'clock and wavefront' model of somitogenesis, in which a travelling wavefront determines the spatial position of somite formation and the somitogenesis clock controls periodicity (Cooke and Zeeman, 1976). However, recent high-throughput measurements of spatiotemporal patterns of gene expression in different zebrafish mutant backgrounds allow further quantitative evaluation of the clock and wavefront hypothesis. In this study we describe how our recently proposed model, in which oscillator coupling drives the propagation of an emergent wavefront, can be used to provide mechanistic and testable explanations for the following observed phenomena in zebrafish embryos: (a) the variation in somite measurements across a number of zebrafish mutants; (b) the delayed formation of somites and the formation of 'salt and pepper' patterns of gene expression upon disruption of oscillator coupling; and (c) spatial correlations in the 'salt and pepper' patterns in Delta-Notch mutants. In light of our results, we propose a number of plausible experiments that could be used to further test the model. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. A First Order Wavefront Estimation Algorithm for P1640 Calibrator

    NASA Technical Reports Server (NTRS)

    Zhaia, C.; Vasisht, G.; Shao, M.; Lockhart, T.; Cady, E.; Oppenheimer, B.; Burruss, R.; Roberts, J.; Beichman, C.; Brenner, D.; hide

    2012-01-01

    P1640 calibrator is a wavefront sensor working with the P1640 coronagraph and the Palomar 3000 actuator adaptive optics system (P3K) at the Palomar 200 inch Hale telescope. It measures the wavefront by interfering post-coronagraph light with a reference beam formed by low-pass filtering the blocked light from the coronagraph focal plane mask. The P1640 instrument has a similar architecture to the Gemini Planet Imager (GPI) and its performance is currently limited by the quasi-static speckles due to non-common path wavefront errors, which comes from the non-common path for the light to arrive at the AO wavefront sensor and the coronagraph mask. By measuring the wavefront after the coronagraph mask, the non-common path wavefront error can be estimated and corrected by feeding back the error signal to the deformable mirror (DM) of the P3K AO system. Here, we present a first order wavefront estimation algorithm and an instrument calibration scheme used in experiments done recently at Palomar observatory. We calibrate the P1640 calibrator by measuring its responses to poking DM actuators with a sparse checkerboard pattern at different amplitudes. The calibration yields a complex normalization factor for wavefront estimation and establishes the registration of the DM actuators at the pupil camera of the P1640 calibrator, necessary for wavefront correction. Improvement of imaging quality after feeding back the wavefront correction to the AO system demonstrated the efficacy of the algorithm.

  3. Optical phase aberration generation using a Liquid Crystal Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher C.

    In this dissertation, a Liquid Crystal Spatial Light Modulator is used to simulate optical aberrations in an optical system. Any optical aberration can be simulated through the use of software developed for this project. A new method of simulating atmospheric turbulence is also presented. The Earth's atmosphere is a large, non-linear, non-homogeneous medium that is constantly flowing in a random fashion that affects light as it propagates through it. The Kolmogorov model for atmospheric turbulence is a description of the nature of the wavefront perturbations introduced by the atmosphere and it is one of the most accepted models. It is supported by a variety of experimental measurements and research and is quite widely used in simulations for atmospheric imaging. This model provides a statistical description of how random fluctuations in humidity and temperature affect the refractive index of the atmosphere for imaging through atmospheric turbulence. These refractive index fluctuations in turn affect the propagation of light through the atmosphere. An adaptive optical system can be developed to correct these wavefront perturbations for an optical system. However, prior to deployment, an adaptive optical system requires calibration and full characterization in the laboratory. Creating realistic atmospheric simulations is often expensive and computationally intensive using common techniques. To combat some of these issues often the temporal properties in the simulation are neglected. This dissertation outlines a new method developed for generating atmospheric turbulence and a testbed that simulates its aberrations far more inexpensively and with greater fidelity using a Liquid Crystal Spatial Light Modulator. This system allows the simulation of atmospheric seeing conditions ranging from very poor to very good and different algorithms may be easily employed on the device for comparison. These simulations can be dynamically generated and modified very quickly and easily. Using a Liquid Crystal Spatial Light Modulator to induce aberrations in an imaging system is not limited to simulating atmospheric turbulence. Any turbulence model can be used either statically or dynamically for multiple applications.

  4. Capability Description for NASA's F/A-18 TN 853 as a Testbed for the Integrated Resilient Aircraft Control Project

    NASA Technical Reports Server (NTRS)

    Hanson, Curt

    2009-01-01

    The NASA F/A-18 tail number (TN) 853 full-scale Integrated Resilient Aircraft Control (IRAC) testbed has been designed with a full array of capabilities in support of the Aviation Safety Program. Highlights of the system's capabilities include: 1) a quad-redundant research flight control system for safely interfacing controls experiments to the aircraft's control surfaces; 2) a dual-redundant airborne research test system for hosting multi-disciplinary state-of-the-art adaptive control experiments; 3) a robust reversionary configuration for recovery from unusual attitudes and configurations; 4) significant research instrumentation, particularly in the area of static loads; 5) extensive facilities for experiment simulation, data logging, real-time monitoring and post-flight analysis capabilities; and 6) significant growth capability in terms of interfaces and processing power.

  5. [Advanced Development for Space Robotics With Emphasis on Fault Tolerance Technology

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert

    1997-01-01

    This report describes work developing fault tolerant redundant robotic architectures and adaptive control strategies for robotic manipulator systems which can dynamically accommodate drastic robot manipulator mechanism, sensor or control failures and maintain stable end-point trajectory control with minimum disturbance. Kinematic designs of redundant, modular, reconfigurable arms for fault tolerance were pursued at a fundamental level. The approach developed robotic testbeds to evaluate disturbance responses of fault tolerant concepts in robotic mechanisms and controllers. The development was implemented in various fault tolerant mechanism testbeds including duality in the joint servo motor modules, parallel and serial structural architectures, and dual arms. All have real-time adaptive controller technologies to react to mechanism or controller disturbances (failures) to perform real-time reconfiguration to continue the task operations. The developments fall into three main areas: hardware, software, and theoretical.

  6. Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients.

    PubMed

    Solano-Altamirano, Juan Manuel; Vázquez-Otero, Alejandro; Khikhlukha, Danila; Dormido, Raquel; Duro, Natividad

    2017-11-30

    In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts) from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2), wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i) a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii) runtime selection of the library in charge of performing the algebraic computations; (iii) a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features.

  7. Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients

    PubMed Central

    Solano-Altamirano, Juan Manuel; Khikhlukha, Danila

    2017-01-01

    In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts) from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2), wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i) a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii) runtime selection of the library in charge of performing the algebraic computations; (iii) a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features. PMID:29189722

  8. Zonal wavefront sensing with enhanced spatial resolution.

    PubMed

    Pathak, Biswajit; Boruah, Bosanta R

    2016-12-01

    In this Letter, we introduce a scheme to enhance the spatial resolution of a zonal wavefront sensor. The zonal wavefront sensor comprises an array of binary gratings implemented by a ferroelectric spatial light modulator (FLCSLM) followed by a lens, in lieu of the array of lenses in the Shack-Hartmann wavefront sensor. We show that the fast response of the FLCSLM device facilitates quick display of several laterally shifted binary grating patterns, and the programmability of the device enables simultaneous capturing of each focal spot array. This eventually leads to a wavefront estimation with an enhanced spatial resolution without much sacrifice on the sensor frame rate, thus making the scheme suitable for high spatial resolution measurement of transient wavefronts. We present experimental and numerical simulation results to demonstrate the importance of the proposed wavefront sensing scheme.

  9. Detecting higher-order wavefront errors with an astigmatic hybrid wavefront sensor.

    PubMed

    Barwick, Shane

    2009-06-01

    The reconstruction of wavefront errors from measurements over subapertures can be made more accurate if a fully characterized quadratic surface can be fitted to the local wavefront surface. An astigmatic hybrid wavefront sensor with added neural network postprocessing is shown to have this capability, provided that the focal image of each subaperture is sufficiently sampled. Furthermore, complete local curvature information is obtained with a single image without splitting beam power.

  10. Study of an instrument for sensing errors in a telescope wavefront

    NASA Technical Reports Server (NTRS)

    Golden, L. J.; Shack, R. V.; Slater, P. N.

    1974-01-01

    Focal plane sensors for determining the error in a telescope wavefront were investigated. The construction of three candidate test instruments and their evaluation in terms of small wavefront error aberration measurements are described. A laboratory wavefront simulator was designed and fabricated to evaluate the test instruments. The laboratory wavefront error simulator was used to evaluate three tests; a Hartmann test, a polarization shearing interferometer test, and an interferometric Zernike test.

  11. Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts.

    PubMed

    Wu, Aimin; Li, Hao; Du, Junjie; Ni, Xingjie; Ye, Ziliang; Wang, Yuan; Sheng, Zhen; Zou, Shichang; Gan, Fuwan; Zhang, Xiang; Wang, Xi

    2015-03-11

    Controlling an optical beam is fundamental in optics. Recently, unique manipulation of optical wavefronts has been successfully demonstrated by metasurfaces. However, these artificially engineered nanostructures have thus far been limited to operate on light beams propagating out-of-plane. The in-plane operation is critical for on-chip photonic applications. Here, we demonstrate an anomalous negative-angle refraction of a light beam propagating along the plane, by designing a thin dielectric array of silicon nanoposts. The circularly polarized dipoles induced by the high-permittivity nanoposts at the scattering resonance significantly shape the wavefront of the light beam and bend it anomalously. The unique capability of a thin line of the nanoposts for manipulating in-plane wavefronts makes the device extremely compact. The low loss all-dielectric structure is compatible with complementary metal-oxide semiconductor technologies, offering an effective solution for in-plane beam steering and routing for on-chip photonics.

  12. Curvature wavefront sensing performance evaluation for active correction of the Large Synoptic Survey Telescope (LSST).

    PubMed

    Manuel, Anastacia M; Phillion, Donald W; Olivier, Scot S; Baker, Kevin L; Cannon, Brice

    2010-01-18

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, modified Paul-Baker design, with an 8.4-meter primary mirror, a 3.4-m secondary, and a 5.0-m tertiary, along with three refractive corrector lenses to produce a flat focal plane with a field of view of 9.6 square degrees. In order to maintain image quality during operation, the deformations and rigid body motions of the three large mirrors must be actively controlled to minimize optical aberrations, which arise primarily from forces due to gravity and thermal expansion. We describe the methodology for measuring the telescope aberrations using a set of curvature wavefront sensors located in the four corners of the LSST camera focal plane. We present a comprehensive analysis of the wavefront sensing system, including the availability of reference stars, demonstrating that this system will perform to the specifications required to meet the LSST performance goals.

  13. Atmospheric turbulence temperature on the laser wavefront properties

    NASA Astrophysics Data System (ADS)

    Contreras López, J. C.; Ballesteros Díaz, A.; Tíjaro Rojas, O. J.; Torres Moreno, Y.

    2017-06-01

    Temperature is a physical magnitude that if is higher, the refractive index presents more important random fluctuations, which produce a greater distortion in the wavefront and thus a displacement in its centroid. To observe the effect produced by the turbulent medium strongly influenced by temperature on propagation laser beam, we experimented with two variable and controllable temperature systems designed as optical turbulence generators (OTG): a Turbulator and a Parallelepiped glass container. The experimental setup use three CMOS cameras and four temperature sensors spatially distributed to acquire synchronously information of the laser beam wavefront and turbulence temperature, respectively. The acquired information was analyzed with MATLAB® software tool, that it allows to compute the position, in terms of the evolution time, of the laser beam center of mass and their deviations produced by different turbulent conditions generated inside the two manufactured systems. The results were reflected in the statistical analysis of the centroid shifting.

  14. Laser Beam Steering/shaping for Free Space Optical Communication

    NASA Technical Reports Server (NTRS)

    Wang, Xinghua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John; Miranda, Felix; McManamon, Paul F.

    2004-01-01

    The 2-D Optical Phased Array (OPA) antenna based on a Liquid Crystal On Silicon (LCoS) device can be considered for use in free space optical communication as an active beam controlling device. Several examples of the functionality of the device include: beam steering in the horizontal and elevation direction; high resolution wavefront compensation in a large telescope; and beam shaping with the computer generated kinoform. Various issues related to the diffraction efficiency, steering range, steering accuracy as well as the magnitude of wavefront compensation are discussed.

  15. Sensing more modes with fewer sub-apertures: the LIFTed Shack-Hartmann wavefront sensor.

    PubMed

    Meimon, Serge; Fusco, Thierry; Michau, Vincent; Plantet, Cédric

    2014-05-15

    We propose here a novel way to analyze Shack-Hartmann wavefront sensor images in order to retrieve more modes than the two centroid coordinates per sub-aperture. To do so, we use the linearized focal-plane technique (LIFT) phase retrieval method for each sub-aperture. We demonstrate that we can increase the number of modes sensed with the same computational burden per mode. For instance, we show the ability to control a 21×21 actuator deformable mirror using a 10×10 lenslet array.

  16. Simulation of electrowetting lens and prism arrays for wavefront compensation.

    PubMed

    Gopinath, Juliet T; Bright, Victor M; Cogswell, Carol C; Niederriter, Robert D; Watson, Alexander; Zahreddine, Ramzi; Cormack, Robert H

    2012-09-20

    A novel application of electrowetting devices has been simulated: wavefront correction using an array of electrowetting lenses and prisms. Five waves of distortion can be corrected with Strehl ratios of 0.9 or higher, utilizing piston, tip-tilt, and curvature corrections from arrays of 19 elements and fill factors as low as 40%. Effective control of piston can be achieved by placing the liquid lens array at the focus of two microlens arrays. Seven waves of piston delay can be generated with variation in focal length between 1.5 and 500 mm.

  17. Adaptive optics system for the IRSOL solar observatory

    NASA Astrophysics Data System (ADS)

    Ramelli, Renzo; Bucher, Roberto; Rossini, Leopoldo; Bianda, Michele; Balemi, Silvano

    2010-07-01

    We present a low cost adaptive optics system developed for the solar observatory at Istituto Ricerche Solari Locarno (IRSOL), Switzerland. The Shack-Hartmann Wavefront Sensor is based on a Dalsa CCD camera with 256 pixels × 256 pixels working at 1kHz. The wavefront compensation is obtained by a deformable mirror with 37 actuators and a Tip-Tilt mirror. A real time control software has been developed on a RTAI-Linux PC. Scicos/Scilab based software has been realized for an online analysis of the system behavior. The software is completely open source.

  18. Calibration of the island effect: Experimental validation of closed-loop focal plane wavefront control on Subaru/SCExAO

    NASA Astrophysics Data System (ADS)

    N'Diaye, M.; Martinache, F.; Jovanovic, N.; Lozi, J.; Guyon, O.; Norris, B.; Ceau, A.; Mary, D.

    2018-02-01

    Context. Island effect (IE) aberrations are induced by differential pistons, tips, and tilts between neighboring pupil segments on ground-based telescopes, which severely limit the observations of circumstellar environments on the recently deployed exoplanet imagers (e.g., VLT/SPHERE, Gemini/GPI, Subaru/SCExAO) during the best observing conditions. Caused by air temperature gradients at the level of the telescope spiders, these aberrations were recently diagnosed with success on VLT/SPHERE, but so far no complete calibration has been performed to overcome this issue. Aims: We propose closed-loop focal plane wavefront control based on the asymmetric Fourier pupil wavefront sensor (APF-WFS) to calibrate these aberrations and improve the image quality of exoplanet high-contrast instruments in the presence of the IE. Methods: Assuming the archetypal four-quadrant aperture geometry in 8 m class telescopes, we describe these aberrations as a sum of the independent modes of piston, tip, and tilt that are distributed in each quadrant of the telescope pupil. We calibrate these modes with the APF-WFS before introducing our wavefront control for closed-loop operation. We perform numerical simulations and then experimental tests on a real system using Subaru/SCExAO to validate our control loop in the laboratory and on-sky. Results: Closed-loop operation with the APF-WFS enables the compensation for the IE in simulations and in the laboratory for the small aberration regime. Based on a calibration in the near infrared, we observe an improvement of the image quality in the visible range on the SCExAO/VAMPIRES module with a relative increase in the image Strehl ratio of 37%. Conclusions: Our first IE calibration paves the way for maximizing the science operations of the current exoplanet imagers. Such an approach and its results prove also very promising in light of the Extremely Large Telescopes (ELTs) and the presence of similar artifacts with their complex aperture geometry.

  19. Hybrid wavefront sensor for the fast detection of wavefront disturbances.

    PubMed

    Dong, Shihao; Haist, Tobias; Osten, Wolfgang

    2012-09-01

    Strongly aberrated wavefronts lead to inaccuracies and nonlinearities in holography-based modal wavefront sensing (HMWS). In this contribution, a low-resolution Shack-Hartmann sensor (LRSHS) is incorporated into HMWS via a compact holographic design to extend the dynamic range of HMWS. A static binary-phase computer-generated hologram is employed to generate the desired patterns for Shack-Hartmann sensing and HMWS. The low-order aberration modes dominating the wavefront error are first sensed with the LRSHS and corrected by the wavefront modulator. The system then switches to HMWS to obtain better sensor sensitivity and accuracy. Simulated as well as experimental results are shown for validating the proposed method.

  20. Determination of wavefront structure for a Hartmann wavefront sensor using a phase-retrieval method.

    PubMed

    Polo, A; Kutchoukov, V; Bociort, F; Pereira, S F; Urbach, H P

    2012-03-26

    We apply a phase retrieval algorithm to the intensity pattern of a Hartmann wavefront sensor to measure with enhanced accuracy the phase structure of a Hartmann hole array. It is shown that the rms wavefront error achieved by phase reconstruction is one order of magnitude smaller than the one obtained from a typical centroid algorithm. Experimental results are consistent with a phase measurement performed independently using a Shack-Hartmann wavefront sensor.

  1. Spectrally resolved single-shot wavefront sensing of broadband high-harmonic sources

    NASA Astrophysics Data System (ADS)

    Freisem, L.; Jansen, G. S. M.; Rudolf, D.; Eikema, K. S. E.; Witte, S.

    2018-03-01

    Wavefront sensors are an important tool to characterize coherent beams of extreme ultraviolet radiation. However, conventional Hartmann-type sensors do not allow for independent wavefront characterization of different spectral components that may be present in a beam, which limits their applicability for intrinsically broadband high-harmonic generation (HHG) sources. Here we introduce a wavefront sensor that measures the wavefronts of all the harmonics in a HHG beam in a single camera exposure. By replacing the mask apertures with transmission gratings at different orientations, we simultaneously detect harmonic wavefronts and spectra, and obtain sensitivity to spatiotemporal structure such as pulse front tilt as well. We demonstrate the capabilities of the sensor through a parallel measurement of the wavefronts of 9 harmonics in a wavelength range between 25 and 49 nm, with up to lambda/32 precision.

  2. Wavefront Compensation Segmented Mirror Sensing and Control

    NASA Technical Reports Server (NTRS)

    Redding, David C.; Lou, John Z.; Kissil, Andrew; Bradford, Charles M.; Woody, David; Padin, Stephen

    2012-01-01

    The primary mirror of very large submillimeter-wave telescopes will necessarily be segmented into many separate mirror panels. These panels must be continuously co-phased to keep the telescope wavefront error less than a small fraction of a wavelength, to ten microns RMS (root mean square) or less. This performance must be maintained continuously across the full aperture of the telescope, in all pointing conditions, and in a variable thermal environment. A wavefront compensation segmented mirror sensing and control system, consisting of optical edge sensors, Wavefront Compensation Estimator/Controller Soft ware, and segment position actuators is proposed. Optical edge sensors are placed two per each segment-to-segment edge to continuously measure changes in segment state. Segment position actuators (three per segment) are used to move the panels. A computer control system uses the edge sensor measurements to estimate the state of all of the segments and to predict the wavefront error; segment actuator commands are computed that minimize the wavefront error. Translational or rotational motions of one segment relative to the other cause lateral displacement of the light beam, which is measured by the imaging sensor. For high accuracy, the collimator uses a shaped mask, such as one or more slits, so that the light beam forms a pattern on the sensor that permits sensing accuracy of better than 0.1 micron in two axes: in the z or local surface normal direction, and in the y direction parallel to the mirror surface and perpendicular to the beam direction. Using a co-aligned pair of sensors, with the location of the detector and collimated light source interchanged, four degrees of freedom can be sensed: transverse x and y displacements, as well as two bending angles (pitch and yaw). In this approach, each optical edge sensor head has a collimator and an imager, placing one sensor head on each side of a segment gap, with two parallel light beams crossing the gap. Two sets of optical edge sensors are used per segment-to-segment edge, separated by a finite distance along the segment edge, for four optical heads, each with an imager and a collimator. By orienting the beam direction of one edge sensor pair to be +45 away from the segment edge direction, and the other sensor pair to be oriented -45 away from the segment edge direction, all six degrees of freedom of relative motion between the segments can be measured with some redundancy. The software resides in a computer that receives each of the optical edge sensor signals, as well as telescope pointing commands. It feeds back the edge sensor signals to keep the primary mirror figure within specification. It uses a feed-forward control to compensate for global effects such as decollimation of the primary and secondary mirrors due to gravity sag as the telescope pointing changes to track science objects. Three segment position actuators will be provided per segment to enable controlled motions in the piston, tip, and tilt degrees of freedom. These actuators are driven by the software, providing the optical changes needed to keep the telescope phased.

  3. Rover Attitude and Pointing System Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Vanelli, Charles A.; Grinblat, Jonathan F.; Sirlin, Samuel W.; Pfister, Sam

    2009-01-01

    The MER (Mars Exploration Rover) Attitude and Pointing System Simulation Testbed Environment (RAPSSTER) provides a simulation platform used for the development and test of GNC (guidance, navigation, and control) flight algorithm designs for the Mars rovers, which was specifically tailored to the MERs, but has since been used in the development of rover algorithms for the Mars Science Laboratory (MSL) as well. The software provides an integrated simulation and software testbed environment for the development of Mars rover attitude and pointing flight software. It provides an environment that is able to run the MER GNC flight software directly (as opposed to running an algorithmic model of the MER GNC flight code). This improves simulation fidelity and confidence in the results. Further more, the simulation environment allows the user to single step through its execution, pausing, and restarting at will. The system also provides for the introduction of simulated faults specific to Mars rover environments that cannot be replicated in other testbed platforms, to stress test the GNC flight algorithms under examination. The software provides facilities to do these stress tests in ways that cannot be done in the real-time flight system testbeds, such as time-jumping (both forwards and backwards), and introduction of simulated actuator faults that would be difficult, expensive, and/or destructive to implement in the real-time testbeds. Actual flight-quality codes can be incorporated back into the development-test suite of GNC developers, closing the loop between the GNC developers and the flight software developers. The software provides fully automated scripting, allowing multiple tests to be run with varying parameters, without human supervision.

  4. Estimate Low and High Order Wavefront Using P1640 Calibrator Measurements

    NASA Technical Reports Server (NTRS)

    Zhai, C.; Vasisht, G.; Shao, M.; Lockhart, T.; Cady, E.; Oppenheimer, B.; Burruss, R.; Roberts, J.; Beichman, C.; Brenner, D.; hide

    2013-01-01

    P1640 high contrast imaging system on the Palomar 200 inch Telescope consists of an apodized-pupil Lyot coronagraph, the PALM-3000 adaptive optics (P3K-AO), and P1640 Calibrator (CAL). Science images are recorded by an integral field spectrograph covering J-H bands for detecting and characterizing stellar companions. With aberrations from atmosphere corrected by the P3K-AO, instrument performance is limited mainly by the quasi-static speckles due to noncommon path wavefront aberrations for the light to propagate to the P3K-AO wavefront sensor and to the coronagraph mask. The non-common path wavefront aberrations are sensed by CAL, which measures the post-coronagraph E-field using interferometry, and can be effectively corrected by offsetting the P3K-AO deformable mirror target position accordingly. Previously, we have demonstrated using CAL measurements to correct high order wavefront aberrations, which is directly connected to the static speckles in the image plane. Low order wavefront, on the other hand, usually of larger amplitudes, causes light to leak through the coronagraph making the whole image plane brighter. Knowledge error in low order wavefront aberrations can also affect the estimation of the high order wavefront. Even though, CAL is designed to sense efficiently high order wavefront aberrations, the low order wavefront front can be inferred with less sensitivity. Here, we describe our method for estimating both low and high order wavefront aberrations using CAL measurements by propagating the post-coronagraph E-field to a pupil before the coronagraph. We present the results from applying this method to both simulated and experiment data.

  5. Two-years results of small-incision lenticule extraction and wavefront-guided laser in situ keratomileusis for Myopia.

    PubMed

    Kobashi, Hidenaga; Kamiya, Kazutaka; Igarashi, Akihito; Takahashi, Masahide; Shimizu, Kimiya

    2018-03-01

    To compare the 2-years visual and refractive outcomes between small-incision lenticule extraction (SMILE) and wavefront-guided laser in situ keratomileusis (LASIK) in eyes with myopia and myopic astigmatism. Our retrospective case-control study examined 30 eyes of 30 patients with the manifest refraction spherical equivalent (MRSE) of -3.71 ± 1.83 dioptres (D) who underwent SMILE and 30 eyes of 30 patients with MRSE of -3.81 ± 1.40 D who underwent wavefront-guided LASIK. We assessed the 2-years clinical outcomes. Logarithm of the minimal angle of resolution (LogMAR)-corrected distance visual acuity (CDVA) was -0.23 ± 0.07 in the SMILE group and -0.24 ± 0.07 in the wavefront-guided LASIK group 2 years postoperatively (p = 0.82). Logarithm of the minimal angle of resolution-uncorrected distance visual acuity (UDVA) was -0.18 ± 0.09 and -0.15 ± 0.11 (p = 0.30, respectively). In the SMILE and wavefront-guided LASIK groups 2 years postoperatively, 100% and 73% of eyes, respectively, were within 0.5 D of the prompted MRSE correction (p = 0.005). Changes in the MRSE of -0.10 ± 0.30 D and -0.23 ± 0.51 D occurred from 3 months to 2 years (p = 0.40, respectively). We found a significant correlation between myopic regression and the changes in the keratometric readings from 3 months to 2 years after wavefront-guided LASIK (r = -0.48, p = 0.002), but not after SMILE (r = -0.004, p = 0.90). Small-incision lenticule extraction offers better refractive outcomes than wavefront-guided LASIK during a 2-years follow-up for the correction of myopia and myopic astigmatism. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  6. Large autonomous spacecraft electrical power system (LASEPS)

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA - Marshall Space Flight Center is creating a large high voltage electrical power system testbed called LASEPS. This testbed is being developed to simulate an end-to-end power system from power generation and source to loads. When the system is completed it will have several power configurations, which will include several battery configurations. These configurations are: two 120 V batteries, one or two 150 V batteries, and one 250 to 270 V battery. This breadboard encompasses varying levels of autonomy from remote power converters to conventional software control to expert system control of the power system elements. In this paper, the construction and provisions of this breadboard are discussed.

  7. Stitching of near-nulled subaperture measurements

    NASA Technical Reports Server (NTRS)

    Devries, Gary (Inventor); Brophy, Christopher (Inventor); Forbes, Greg (Inventor); Murphy, Paul (Inventor)

    2012-01-01

    A metrology system for measuring aspheric test objects by subaperture stitching. A wavefront-measuring gauge having a limited capture range of wavefront shapes collects partially overlapping subaperture measurements over the test object. A variable optical aberrator reshapes the measurement wavefront with between a limited number of the measurements to maintain the measurement wavefront within the capture range of the wavefront-measuring gauge. Various error compensators are incorporated into a stitching operation to manage residual errors associated with the use of the variable optical aberrator.

  8. The plenoptic camera as a wavefront sensor for the European Solar Telescope (EST)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, Luis F.; Martín, Yolanda; Díaz, José J.; Piqueras, J.; Rodríguez-Ramos, J. M.

    2009-08-01

    The plenoptic wavefront sensor combines measurements at pupil and image planes in order to obtain wavefront information from different points of view simultaneously, being capable to sample the volume above the telescope to extract the tomographic information of the atmospheric turbulence. After describing the working principle, a laboratory setup has been used for the verification of the capability of measuring the pupil plane wavefront. A comparative discussion with respect to other wavefront sensors is also included.

  9. 77 FR 18793 - Spectrum Sharing Innovation Test-Bed Pilot Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    .... 120322212-2212-01] Spectrum Sharing Innovation Test-Bed Pilot Program AGENCY: National Telecommunications... Innovation Test-Bed pilot program to assess whether devices employing Dynamic Spectrum Access techniques can... Spectrum Sharing Innovation Test-Bed (Test-Bed) pilot program to examine the feasibility of increased...

  10. The Algae Testbed Public-Private Partnership (ATP 3 ) framework; establishment of a national network of testbed sites to support sustainable algae production

    DOE PAGES

    McGowen, John; Knoshaug, Eric P.; Laurens, Lieve M. L.; ...

    2017-07-01

    Well-controlled experiments that directly compare seasonal algal productivities across geographically distinct locations have not been reported before. To fill this gap, six cultivation testbed facilities were chosen across the United States to evaluate different climatic zones with respect to algal biomass productivity potential. The geographical locations and climates were as follows: Southwest, desert; Western, coastal; Southeast, inland; Southeast, coastal; Pacific, tropical; and Midwest, greenhouse. The testbed facilities were equipped with identical systems for inoculum production and open pond operation and methods were standardized across all testbeds to ensure accurate measurement of physical and biological variables. The ability of the testbedmore » sites to culture and analyze the same algal species, Nannochloropsis oceanica KA32, using identical pond operational and data collection procedures was evaluated during the same seasonal timeframe. This manuscript describes the results of a first-of-its-kind coordinated testbed validation field study while providing critical details on how geographical variations in temperature, light, and weather variables influenced algal productivity, nitrate consumption, and biomass composition. We found distinct differences in growth characteristics due to the geographic location and the resulting climatic and seasonal conditions across the sites, with the highest productivities observed at the desert Southwest and tropical Pacific regions, followed by the Western coastal region. The lowest productivities were observed at the Southeast inland and Midwest greenhouse locations. These differences in productivities among the sites correlated with the differences in pond water temperature and available solar radiation. In addition two sites, the tropical Pacific and Southeast inland experienced unusual events, spontaneous flocculation, and unusually cold and wet (rainfall) conditions respectively, that negatively affected outdoor algal growth. In addition, minor variability in productivity was observed between the different experimental treatments at each site, much smaller compared to differences due to geographic location. Finally, the successful demonstration of the coordinated and standardized operation of the testbed sites established a rigorous basis for future validation of algal strains and operational conditions and protocols across a geographically diverse testbed network.« less

  11. The Algae Testbed Public-Private Partnership (ATP 3 ) framework; establishment of a national network of testbed sites to support sustainable algae production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowen, John; Knoshaug, Eric P.; Laurens, Lieve M. L.

    Well-controlled experiments that directly compare seasonal algal productivities across geographically distinct locations have not been reported before. To fill this gap, six cultivation testbed facilities were chosen across the United States to evaluate different climatic zones with respect to algal biomass productivity potential. The geographical locations and climates were as follows: Southwest, desert; Western, coastal; Southeast, inland; Southeast, coastal; Pacific, tropical; and Midwest, greenhouse. The testbed facilities were equipped with identical systems for inoculum production and open pond operation and methods were standardized across all testbeds to ensure accurate measurement of physical and biological variables. The ability of the testbedmore » sites to culture and analyze the same algal species, Nannochloropsis oceanica KA32, using identical pond operational and data collection procedures was evaluated during the same seasonal timeframe. This manuscript describes the results of a first-of-its-kind coordinated testbed validation field study while providing critical details on how geographical variations in temperature, light, and weather variables influenced algal productivity, nitrate consumption, and biomass composition. We found distinct differences in growth characteristics due to the geographic location and the resulting climatic and seasonal conditions across the sites, with the highest productivities observed at the desert Southwest and tropical Pacific regions, followed by the Western coastal region. The lowest productivities were observed at the Southeast inland and Midwest greenhouse locations. These differences in productivities among the sites correlated with the differences in pond water temperature and available solar radiation. In addition two sites, the tropical Pacific and Southeast inland experienced unusual events, spontaneous flocculation, and unusually cold and wet (rainfall) conditions respectively, that negatively affected outdoor algal growth. In addition, minor variability in productivity was observed between the different experimental treatments at each site, much smaller compared to differences due to geographic location. Finally, the successful demonstration of the coordinated and standardized operation of the testbed sites established a rigorous basis for future validation of algal strains and operational conditions and protocols across a geographically diverse testbed network.« less

  12. Wavefront sensing with a thin diffuser

    NASA Astrophysics Data System (ADS)

    Berto, Pascal; Rigneault, Hervé; Guillon, Marc

    2017-12-01

    We propose and implement a broadband, compact, and low-cost wavefront sensing scheme by simply placing a thin diffuser in the close vicinity of a camera. The local wavefront gradient is determined from the local translation of the speckle pattern. The translation vector map is computed thanks to a fast diffeomorphic image registration algorithm and integrated to reconstruct the wavefront profile. The simple translation of speckle grains under local wavefront tip/tilt is ensured by the so-called "memory effect" of the diffuser. Quantitative wavefront measurements are experimentally demonstrated both for the few first Zernike polynomials and for phase-imaging applications requiring high resolution. We finally provided a theoretical description of the resolution limit that is supported experimentally.

  13. Fast algorithm for wavefront reconstruction in XAO/SCAO with pyramid wavefront sensor

    NASA Astrophysics Data System (ADS)

    Shatokhina, Iuliia; Obereder, Andreas; Ramlau, Ronny

    2014-08-01

    We present a fast wavefront reconstruction algorithm developed for an extreme adaptive optics system equipped with a pyramid wavefront sensor on a 42m telescope. The method is called the Preprocessed Cumulative Reconstructor with domain decomposition (P-CuReD). The algorithm is based on the theoretical relationship between pyramid and Shack-Hartmann wavefront sensor data. The algorithm consists of two consecutive steps - a data preprocessing, and an application of the CuReD algorithm, which is a fast method for wavefront reconstruction from Shack-Hartmann sensor data. The closed loop simulation results show that the P-CuReD method provides the same reconstruction quality and is significantly faster than an MVM.

  14. JWST Wavefront Control Toolbox

    NASA Technical Reports Server (NTRS)

    Shin, Shahram Ron; Aronstein, David L.

    2011-01-01

    A Matlab-based toolbox has been developed for the wavefront control and optimization of segmented optical surfaces to correct for possible misalignments of James Webb Space Telescope (JWST) using influence functions. The toolbox employs both iterative and non-iterative methods to converge to an optimal solution by minimizing the cost function. The toolbox could be used in either of constrained and unconstrained optimizations. The control process involves 1 to 7 degrees-of-freedom perturbations per segment of primary mirror in addition to the 5 degrees of freedom of secondary mirror. The toolbox consists of a series of Matlab/Simulink functions and modules, developed based on a "wrapper" approach, that handles the interface and data flow between existing commercial optical modeling software packages such as Zemax and Code V. The limitations of the algorithm are dictated by the constraints of the moving parts in the mirrors.

  15. The contribution of accommodation and the ocular surface to the microfluctuations of wavefront aberrations of the eye.

    PubMed

    Zhu, Mingxia; Collins, Michael J; Iskander, D Robert

    2006-09-01

    We have used videokeratoscopy and wavefront sensing to investigate the contribution of the ocular surface and the effect of stimulus vergence on the microfluctuations of the wavefront aberrations of the eye. The fluctuations of the wavefront aberrations were quantified by their variations around the mean and by using power spectrum analysis. Integrated power was determined in two regions: 0.1-0.7 Hz (low frequencies) and 0.8-1.8 Hz (high frequencies). Changes in the ocular surface topography were measured using high-speed videokeratoscopy and variations in the ocular wavefront aberrations were measured with a wavefront sensor. The microfluctuations of wavefront aberrations of the ocular surface were found to be considerably smaller than the microfluctuations of the wavefront aberrations of the total eye. The fluctuations in defocus while viewing a closer target at 2 or 4 D were found to be significantly greater than fluctuations in defocus when viewing a far target. This increase in defocus fluctuations (p < or = 0.001) occurred in both the low- and high-frequency regions of the power spectra.

  16. Wavefront reconstruction method based on wavelet fractal interpolation for coherent free space optical communication

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Zhao, Qi; Wang, Lei; Wan, Xiongfeng

    2018-03-01

    Existing wavefront reconstruction methods are usually low in resolution, restricted by structure characteristics of the Shack Hartmann wavefront sensor (SH WFS) and the deformable mirror (DM) in the adaptive optics (AO) system, thus, resulting in weak homodyne detection efficiency for free space optical (FSO) communication. In order to solve this problem, we firstly validate the feasibility of liquid crystal spatial light modulator (LC SLM) using in an AO system. Then, wavefront reconstruction method based on wavelet fractal interpolation is proposed after self-similarity analysis of wavefront distortion caused by atmospheric turbulence. Fast wavelet decomposition is operated to multiresolution analyze the wavefront phase spectrum, during which soft threshold denoising is carried out. The resolution of estimated wavefront phase is then improved by fractal interpolation. Finally, fast wavelet reconstruction is taken to recover wavefront phase. Simulation results reflect the superiority of our method in homodyne detection. Compared with minimum variance estimation (MVE) method based on interpolation techniques, the proposed method could obtain superior homodyne detection efficiency with lower operation complexity. Our research findings have theoretical significance in the design of coherent FSO communication system.

  17. Fast autonomous holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Andersen, G.

    2010-07-01

    We have created a new adaptive optics system using a holographic modal wavefront sensing method capable of autonomous (computer-free) closed-loop control of a MEMS deformable mirror. A multiplexed hologram is recorded using the maximum and minimum actuator positions on the deformable mirror as the "modes". On reconstruction, an input beam will be diffracted into pairs of focal spots - the ratio of particular pairs determines the absolute wavefront phase at a particular actuator location. The wavefront measurement is made using a fast, sensitive photo-detector array such as a multi-pixel photon counters. This information is then used to directly control each actuator in the MEMS DM without the need for any computer in the loop. We present initial results of a 32-actuator prototype device. We further demonstrate that being an all-optical, parallel processing scheme, the speed is independent of the number of actuators. In fact, the limitations on speed are ultimately determined by the maximum driving speed of the DM actuators themselves. Finally, being modal in nature, the system is largely insensitive to both obscuration and scintillation. This should make it ideal for laser beam transmission or imaging under highly turbulent conditions.

  18. More Zernike modes' open-loop measurement in the sub-aperture of the Shack-Hartmann wavefront sensor.

    PubMed

    Zhu, Zhaoyi; Mu, Quanquan; Li, Dayu; Yang, Chengliang; Cao, Zhaoliang; Hu, Lifa; Xuan, Li

    2016-10-17

    The centroid-based Shack-Hartmann wavefront sensor (SHWFS) treats the sampled wavefronts in the sub-apertures as planes, and the slopes of the sub-wavefronts are used to reconstruct the whole pupil wavefront. The problem is that the centroid method may fail to sense the high-order modes for strong turbulences, decreasing the precision of the whole pupil wavefront reconstruction. To solve this problem, we propose a sub-wavefront estimation method for SHWFS based on the focal plane sensing technique, by which more Zernike modes than the two slopes can be sensed in each sub-aperture. In this paper, the effects on the sub-wavefront estimation method of the related parameters, such as the spot size, the phase offset with its set amplitude and the pixels number in each sub-aperture, are analyzed and these parameters are optimized to achieve high efficiency. After the optimization, open-loop measurement is realized. For the sub-wavefront sensing, we achieve a large linearity range of 3.0 rad RMS for Zernike modes Z2 and Z3, and 2.0 rad RMS for Zernike modes Z4 to Z6 when the pixel number does not exceed 8 × 8 in each sub-aperture. The whole pupil wavefront reconstruction with the modified SHWFS is realized to analyze the improvements brought by the optimized sub-wavefront estimation method. Sixty-five Zernike modes can be reconstructed with a modified SHWFS containing only 7 × 7 sub-apertures, which could reconstruct only 35 modes by the centroid method, and the mean RMS errors of the residual phases are less than 0.2 rad2, which is lower than the 0.35 rad2 by the centroid method.

  19. Development and experimentation of an eye/brain/task testbed

    NASA Technical Reports Server (NTRS)

    Harrington, Nora; Villarreal, James

    1987-01-01

    The principal objective is to develop a laboratory testbed that will provide a unique capability to elicit, control, record, and analyze the relationship of operator task loading, operator eye movement, and operator brain wave data in a computer system environment. The ramifications of an integrated eye/brain monitor to the man machine interface are staggering. The success of such a system would benefit users of space and defense, paraplegics, and the monitoring of boring screens (nuclear power plants, air defense, etc.)

  20. The UCLA Design Diversity Experiment (DEDIX) system: A distributed testbed for multiple-version software

    NASA Technical Reports Server (NTRS)

    Avizienis, A.; Gunningberg, P.; Kelly, J. P. J.; Strigini, L.; Traverse, P. J.; Tso, K. S.; Voges, U.

    1986-01-01

    To establish a long-term research facility for experimental investigations of design diversity as a means of achieving fault-tolerant systems, a distributed testbed for multiple-version software was designed. It is part of a local network, which utilizes the Locus distributed operating system to operate a set of 20 VAX 11/750 computers. It is used in experiments to measure the efficacy of design diversity and to investigate reliability increases under large-scale, controlled experimental conditions.

  1. Design of the deformable mirror demonstration CubeSat (DeMi)

    NASA Astrophysics Data System (ADS)

    Douglas, Ewan S.; Allan, Gregory; Barnes, Derek; Figura, Joseph S.; Haughwout, Christian A.; Gubner, Jennifer N.; Knoedler, Alex A.; LeClair, Sarah; Murphy, Thomas J.; Skouloudis, Nikolaos; Merck, John; Opperman, Roedolph A.; Cahoy, Kerri L.

    2017-09-01

    The Deformable Mirror Demonstration Mission (DeMi) was recently selected by DARPA to demonstrate in-space operation of a wavefront sensor and Microelectromechanical system (MEMS) deformable mirror (DM) payload on a 6U CubeSat. Space telescopes designed to make high-contrast observations using internal coronagraphs for direct characterization of exoplanets require the use of high-actuator density deformable mirrors. These DMs can correct image plane aberrations and speckles caused by imperfections, thermal distortions, and diffraction in the telescope and optics that would otherwise corrupt the wavefront and allow leaking starlight to contaminate coronagraphic images. DeMi is provide on-orbit demonstration and performance characterization of a MEMS deformable mirror and closed loop wavefront sensing. The DeMi payload has two operational modes, one mode that images an internal light source and another mode which uses an external aperture to images stars. Both the internal and external modes include image plane and pupil plane wavefront sensing. The objectives of the internal measurement of the 140-actuator MEMS DM actuator displacement are characterization of the mirror performance and demonstration of closed-loop correction of aberrations in the optical path. Using the external aperture to observe stars of magnitude 2 or brighter, assuming 3-axis stability with less than 0.1 degree of attitude knowledge and jitter below 10 arcsec RMSE, per observation, DeMi will also demonstrate closed loop wavefront control on an astrophysical target. We present an updated payload design, results from simulations and laboratory optical prototyping, as well as present our design for accommodating high-voltage multichannel drive electronics for the DM on a CubeSat.

  2. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeriy

    2005-01-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.

  3. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing.

    PubMed

    Vorontsov, Mikhail A; Kolosov, Valeriy

    2005-01-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.

  4. Mid-infrared Shack-Hartmann wavefront sensor fully cryogenic using extended source for endoatmospheric applications.

    PubMed

    Robert, Clélia; Michau, Vincent; Fleury, Bruno; Magli, Serge; Vial, Laurent

    2012-07-02

    Adaptive optics provide real-time compensation for atmospheric turbulence. The correction quality relies on a key element: the wavefront sensor. We have designed an adaptive optics system in the mid-infrared range providing high spatial resolution for ground-to-air applications, integrating a Shack-Hartmann infrared wavefront sensor operating on an extended source. This paper describes and justifies the design of the infrared wavefront sensor, while defining and characterizing the Shack-Hartmann wavefront sensor camera. Performance and illustration of field tests are also reported.

  5. A Phase-Shifting Zernike Wavefront Sensor for the Palomar P3K Adaptive Optics System

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Crawford, Sam; Loya, Frank; Moore, James

    2012-01-01

    A phase-shifting Zernike wavefront sensor has distinct advantages over other types of wavefront sensors. Chief among them are: 1) improved sensitivity to low-order aberrations and 2) efficient use of photons (hence reduced sensitivity to photon noise). We are in the process of deploying a phase-shifting Zernike wavefront sensor to be used with the realtime adaptive optics system for Palomar. Here we present the current state of the Zernike wavefront sensor to be integrated into the high-order adaptive optics system at Mount Palomar's Hale Telescope.

  6. Fundamental performance of transverse wind estimator from Shack-Hartmann wave-front sensor measurements.

    PubMed

    Li, Zhenghan; Li, Xinyang

    2018-04-30

    Real time transverse wind estimation contributes to predictive correction which is used to compensate for the time delay error in the control systems of adaptive optics (AO) system. Many methods that apply Shack-Hartmann wave-front sensor to wind profile measurement have been proposed. One of the obvious problems is the lack of a fundamental benchmark to compare the various methods. In this work, we present the fundamental performance limits for transverse wind estimator from Shack-Hartmann wave-front sensor measurements using Cramér-Rao lower bound (CRLB). The bound provides insight into the nature of the transverse wind estimation, thereby suggesting how to design and improve the estimator in the different application scenario. We analyze the theoretical bound and find that factors such as slope measurement noise, wind velocity and atmospheric coherence length r 0 have important influence on the performance. Then, we introduced the non-iterative gradient-based transverse wind estimator. The source of the deterministic bias of the gradient-based transverse wind estimators is analyzed for the first time. Finally, we derived biased CRLB for the gradient-based transverse wind estimators from Shack-Hartmann wave-front sensor measurements and the bound can predict the performance of estimator more accurately.

  7. Development of the dynamic motion simulator of 3D micro-gravity with a combined passive/active suspension system

    NASA Technical Reports Server (NTRS)

    Yoshida, Kazuya; Hirose, Shigeo; Ogawa, Tadashi

    1994-01-01

    The establishment of those in-orbit operations like 'Rendez-Vous/Docking' and 'Manipulator Berthing' with the assistance of robotics or autonomous control technology, is essential for the near future space programs. In order to study the control methods, develop the flight models, and verify how the system works, we need a tool or a testbed which enables us to simulate mechanically the micro-gravity environment. There have been many attempts to develop the micro-gravity testbeds, but once the simulation goes into the docking and berthing operation that involves mechanical contacts among multi bodies, the requirement becomes critical. A group at the Tokyo Institute of Technology has proposed a method that can simulate the 3D micro-gravity producing a smooth response to the impact phenomena with relatively simple apparatus. Recently the group carried out basic experiments successfully using a prototype hardware model of the testbed. This paper will present our idea of the 3D micro-gravity simulator and report the results of our initial experiments.

  8. Airborne Subscale Transport Aircraft Research Testbed: Aircraft Model Development

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Langford, William M.; Hill, Jeffrey S.

    2005-01-01

    The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed being developed at NASA Langley Research Center is an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. An integral part of that testbed is a 5.5% dynamically scaled, generic transport aircraft. This remotely piloted vehicle (RPV) is powered by twin turbine engines and includes a collection of sensors, actuators, navigation, and telemetry systems. The downlink for the plane includes over 70 data channels, plus video, at rates up to 250 Hz. Uplink commands for aircraft control include over 30 data channels. The dynamic scaling requirement, which includes dimensional, weight, inertial, actuator, and data rate scaling, presents distinctive challenges in both the mechanical and electrical design of the aircraft. Discussion of these requirements and their implications on the development of the aircraft along with risk mitigation strategies and training exercises are included here. Also described are the first training (non-research) flights of the airframe. Additional papers address the development of a mobile operations station and an emulation and integration laboratory.

  9. Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed

    NASA Technical Reports Server (NTRS)

    Papathakis, Kurt V.; Kloesel, Kurt J.; Lin, Yohan; Clarke, Sean; Ediger, Jacob J.; Ginn, Starr

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC) (Edwards, California) is developing a Hybrid-Electric Integrated Systems Testbed (HEIST) Testbed as part of the HEIST Project, to study power management and transition complexities, modular architectures, and flight control laws for turbo-electric distributed propulsion technologies using representative hardware and piloted simulations. Capabilities are being developed to assess the flight readiness of hybrid electric and distributed electric vehicle architectures. Additionally, NASA will leverage experience gained and assets developed from HEIST to assist in flight-test proposal development, flight-test vehicle design, and evaluation of hybrid electric and distributed electric concept vehicles for flight safety. The HEIST test equipment will include three trailers supporting a distributed electric propulsion wing, a battery system and turbogenerator, dynamometers, and supporting power and communication infrastructure, all connected to the AFRC Core simulation. Plans call for 18 high performance electric motors that will be powered by batteries and the turbogenerator, and commanded by a piloted simulation. Flight control algorithms will be developed on the turbo-electric distributed propulsion system.

  10. Robustness study of the pseudo open-loop controller for multiconjugate adaptive optics.

    PubMed

    Piatrou, Piotr; Gilles, Luc

    2005-02-20

    Robustness of the recently proposed "pseudo open-loop control" algorithm against various system errors has been investigated for the representative example of the Gemini-South 8-m telescope multiconjugate adaptive-optics system. The existing model to represent the adaptive-optics system with pseudo open-loop control has been modified to account for misalignments, noise and calibration errors in deformable mirrors, and wave-front sensors. Comparison with the conventional least-squares control model has been done. We show with the aid of both transfer-function pole-placement analysis and Monte Carlo simulations that POLC remains remarkably stable and robust against very large levels of system errors and outperforms in this respect least-squares control. Approximate stability margins as well as performance metrics such as Strehl ratios and rms wave-front residuals averaged over a 1-arc min field of view have been computed for different types and levels of system errors to quantify the expected performance degradation.

  11. Evaluating noise performance of the IUCAA sidecar drive electronics controller (ISDEC) based system for TMT on-instrument wavefront sensing (OIWFS) application

    NASA Astrophysics Data System (ADS)

    Burse, Mahesh; Chattopadhyay, Sabyasachi; Ramaprakash, A. N.; Sinha, Sakya; Prabhudesai, Swapnil; Punnadi, Sujit; Chordia, Pravin; Kohok, Abhay

    2016-07-01

    As a part of a design study for the On-Instrument Low Order Wave-front Sensor (OIWFS) for the TMT Infra-Red Imaging Spectrograph (IRIS), we recently evaluated the noise performance of a detector control system consisting of IUCAA SIDECAR DRIVE ELECRONICS CONTROLLER (ISDEC), SIDECAR ASIC and HAWAII-2RG (H2RG) MUX. To understand and improve the performance of this system to serve as a near infrared wavefront sensor, we implemented new read out modes like multiple regions of interest with differential multi-accumulate readout schemes for the HAWAII-2RG (H2RG) detector. In this system, the firmware running in SIDECAR ASIC programs the detector for ROI readout, reads the detector, processes the detector output and writes the digitized data into its internal memory. ISDEC reads the digitized data from ASIC, performs the differential multi-accumulate operations and then sends the processed data to a PC over a USB interface. A special loopback board was designed and used to measure and reduce the noise from SIDECAR ASIC DC biases2. We were able to reduce the mean r.m.s read noise of this system down to 1-2 e. for any arbitrary window frame of 4x4 size at frame rates below about 200 Hz.

  12. Improvement in error propagation in the Shack-Hartmann-type zonal wavefront sensors.

    PubMed

    Pathak, Biswajit; Boruah, Bosanta R

    2017-12-01

    Estimation of the wavefront from measured slope values is an essential step in a Shack-Hartmann-type wavefront sensor. Using an appropriate estimation algorithm, these measured slopes are converted into wavefront phase values. Hence, accuracy in wavefront estimation lies in proper interpretation of these measured slope values using the chosen estimation algorithm. There are two important sources of errors associated with the wavefront estimation process, namely, the slope measurement error and the algorithm discretization error. The former type is due to the noise in the slope measurements or to the detector centroiding error, and the latter is a consequence of solving equations of a basic estimation algorithm adopted onto a discrete geometry. These errors deserve particular attention, because they decide the preference of a specific estimation algorithm for wavefront estimation. In this paper, we investigate these two important sources of errors associated with the wavefront estimation algorithms of Shack-Hartmann-type wavefront sensors. We consider the widely used Southwell algorithm and the recently proposed Pathak-Boruah algorithm [J. Opt.16, 055403 (2014)JOOPDB0150-536X10.1088/2040-8978/16/5/055403] and perform a comparative study between the two. We find that the latter algorithm is inherently superior to the Southwell algorithm in terms of the error propagation performance. We also conduct experiments that further establish the correctness of the comparative study between the said two estimation algorithms.

  13. Wavefront propagation from one plane to another with the use of Zernike polynomials and Taylor monomials.

    PubMed

    Dai, Guang-ming; Campbell, Charles E; Chen, Li; Zhao, Huawei; Chernyak, Dimitri

    2009-01-20

    In wavefront-driven vision correction, ocular aberrations are often measured on the pupil plane and the correction is applied on a different plane. The problem with this practice is that any changes undergone by the wavefront as it propagates between planes are not currently included in devising customized vision correction. With some valid approximations, we have developed an analytical foundation based on geometric optics in which Zernike polynomials are used to characterize the propagation of the wavefront from one plane to another. Both the boundary and the magnitude of the wavefront change after the propagation. Taylor monomials were used to realize the propagation because of their simple form for this purpose. The method we developed to identify changes in low-order aberrations was verified with the classical vertex correction formula. The method we developed to identify changes in high-order aberrations was verified with ZEMAX ray-tracing software. Although the method may not be valid for highly irregular wavefronts and it was only proven for wavefronts with low-order or high-order aberrations, our analysis showed that changes in the propagating wavefront are significant and should, therefore, be included in calculating vision correction. This new approach could be of major significance in calculating wavefront-driven vision correction whether by refractive surgery, contact lenses, intraocular lenses, or spectacles.

  14. Experimental demonstration of bandwidth on demand (BoD) provisioning based on time scheduling in software-defined multi-domain optical networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Li, Yajie; Wang, Xinbo; Chen, Bowen; Zhang, Jie

    2016-09-01

    A hierarchical software-defined networking (SDN) control architecture is designed for multi-domain optical networks with the Open Daylight (ODL) controller. The OpenFlow-based Control Virtual Network Interface (CVNI) protocol is deployed between the network orchestrator and the domain controllers. Then, a dynamic bandwidth on demand (BoD) provisioning solution is proposed based on time scheduling in software-defined multi-domain optical networks (SD-MDON). Shared Risk Link Groups (SRLG)-disjoint routing schemes are adopted to separate each tenant for reliability. The SD-MDON testbed is built based on the proposed hierarchical control architecture. Then the proposed time scheduling-based BoD (Ts-BoD) solution is experimentally demonstrated on the testbed. The performance of the Ts-BoD solution is evaluated with respect to blocking probability, resource utilization, and lightpath setup latency.

  15. Transactive Control of Commercial Building HVAC Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbin, Charles D.; Makhmalbaf, Atefe; Huang, Sen

    This document details the development and testing of market-based transactive controls for building heating, ventilating and air conditioning (HVAC) systems. These controls are intended to serve the purposes of reducing electricity use through conservation, reducing peak building electric demand, and providing demand flexibility to assist with power system operations. This report is the summary of the first year of work conducted under Phase 1 of the Clean Energy and Transactive Campus Project. The methods and techniques described here were first investigated in simulation, and then subsequently deployed to a physical testbed on the Pacific Northwest National Laboratory (PNNL) campus formore » validation. In this report, we describe the models and control algorithms we have developed, testing of the control algorithms in simulation, and deployment to a physical testbed. Results from physical experiments support previous simulation findings, and provide insights for further improvement.« less

  16. Simulation to Flight Test for a UAV Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.

    2006-01-01

    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  17. Imaging photorefractive optical vibration measurement method and device

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.; Hale, Thomas C.

    2000-01-01

    A method and apparatus are disclosed for characterizing a vibrating image of an object of interest. The method includes providing a sensing media having a detection resolution within a limited bandwidth and providing an object of interest having a vibrating medium. Two or more wavefronts are provided, with at least one of the wavefronts being modulated by interacting the one wavefront with the vibrating medium of the object of interest. The another wavefront is modulated such that the difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. The modulated one wavefront and another wavefront are combined in association with the sensing media to interfere and produce simultaneous vibration measurements that are distributed over the object so as to provide an image of the vibrating medium. The image has an output intensity that is substantially linear with small physical variations within the vibrating medium. Furthermore, the method includes detecting the image. In one implementation, the apparatus comprises a vibration spectrum analyzer having an emitter, a modulator, sensing media and a detector configured so as to realize such method. According to another implementation, the apparatus comprises a vibration imaging device.

  18. Generating Artificial Reference Images for Open Loop Correlation Wavefront Sensors

    NASA Astrophysics Data System (ADS)

    Townson, M. J.; Love, G. D.; Saunter, C. D.

    2018-05-01

    Shack-Hartmann wavefront sensors for both solar and laser guide star adaptive optics (with elongated spots) need to observe extended objects. Correlation techniques have been successfully employed to measure the wavefront gradient in solar adaptive optics systems and have been proposed for laser guide star systems. In this paper we describe a method for synthesising reference images for correlation Shack-Hartmann wavefront sensors with a larger field of view than individual sub-apertures. We then show how these supersized reference images can increase the performance of correlation wavefront sensors in regimes where large relative shifts are induced between sub-apertures, such as those observed in open-loop wavefront sensors. The technique we describe requires no external knowledge outside of the wavefront-sensor images, making it available as an entirely "software" upgrade to an existing adaptive optics system. For solar adaptive optics we show the supersized reference images extend the magnitude of shifts which can be accurately measured from 12% to 50% of the field of view of a sub-aperture and in laser guide star wavefront sensors the magnitude of centroids that can be accurately measured is increased from 12% to 25% of the total field of view of the sub-aperture.

  19. Reference-free Shack-Hartmann wavefront sensor.

    PubMed

    Zhao, Liping; Guo, Wenjiang; Li, Xiang; Chen, I-Ming

    2011-08-01

    The traditional Shack-Hartmann wavefront sensing (SHWS) system measures the wavefront slope by calculating the centroid shift between the sample and a reference piece, and then the wavefront is reconstructed by a suitable iterative reconstruction method. Because of the necessity of a reference, many issues are brought up, which limit the system in most applications. This Letter proposes a reference-free wavefront sensing (RFWS) methodology, and an RFWS system is built up where wavefront slope changes are measured by introducing a lateral disturbance to the sampling aperture. By using Southwell reconstruction two times to process the measured data, the form of the wavefront at the sampling plane can be well reconstructed. A theoretical simulation platform of RFWS is established, and various surface forms are investigated. Practical measurements with two measurement systems-SHWS and our RFWS-are conducted, analyzed, and compared. All the simulation and measurement results prove and demonstrate the correctness and effectiveness of the method. © 2011 Optical Society of America

  20. Shack-Hartmann wavefront sensing based on binary-aberration-mode filtering.

    PubMed

    Wang, Shuai; Yang, Ping; Xu, Bing; Dong, Lizhi; Ao, Mingwu

    2015-02-23

    Spot centroid detection is required by Shack-Hartmann wavefront sensing since the technique was first proposed. For a Shack-Hartmann wavefront sensor, the standard structure is to place a camera behind a lenslet array to record the image of spots. We proposed a new Shack-Hartmann wavefront sensing technique without using spot centroid detection. Based on the principle of binary-aberration-mode filtering, for each subaperture, only one light-detecting unit is used to measure the local wavefront slopes. It is possible to adopt single detectors in Shack-Hartmann wavefront sensor. Thereby, the method is able to gain noise benefits from using singe detectors behind each subaperture when used for sensing rapid varying wavefront in weak light. Moreover, due to non-discrete pixel imaging, this method is a potential solution for high measurement precision with fewer detecting units. Our simulations demonstrate the validity of the theoretical model. In addition, the results also indicate the advantage in measurement accuracy.

  1. Plenoptic camera wavefront sensing with extended sources

    NASA Astrophysics Data System (ADS)

    Jiang, Pengzhi; Xu, Jieping; Liang, Yonghui; Mao, Hongjun

    2016-09-01

    The wavefront sensor is used in adaptive optics to detect the atmospheric distortion, which feeds back to the deformable mirror to compensate for this distortion. Different from the Shack-Hartmann sensor that has been widely used with point sources, the plenoptic camera wavefront sensor has been proposed as an alternative wavefront sensor adequate for extended objects in recent years. In this paper, the plenoptic camera wavefront sensing with extended sources is discussed systematically. Simulations are performed to investigate the wavefront measurement error and the closed-loop performance of the plenoptic sensor. The results show that there are an optimal lenslet size and an optimal number of pixels to make the best performance. The RMS of the resulting corrected wavefront in closed-loop adaptive optics system is less than 108 nm (0.2λ) when D/r0 ≤ 10 and the magnitude M ≤ 5. Our investigation indicates that the plenoptic sensor is efficient to operate on extended sources in the closed-loop adaptive optics system.

  2. Novel asymmetric cryptosystem based on distorted wavefront beam illumination and double-random phase encoding.

    PubMed

    Yu, Honghao; Chang, Jun; Liu, Xin; Wu, Chuhan; He, Yifan; Zhang, Yongjian

    2017-04-17

    Herein, we propose a new security enhancing method that employs wavefront aberrations as optical keys to improve the resistance capabilities of conventional double-random phase encoding (DRPE) optical cryptosystems. This study has two main innovations. First, we exploit a special beam-expander afocal-reflecting to produce different types of aberrations, and the wavefront distortion can be altered by changing the shape of the afocal-reflecting system using a deformable mirror. Then, we reconstruct the wavefront aberrations via the surface fitting of Zernike polynomials and use the reconstructed aberrations as novel asymmetric vector keys. The ideal wavefront and the distorted wavefront obtained by wavefront sensing can be regarded as a pair of private and public keys. The wavelength and focal length of the Fourier lens can be used as additional keys to increase the number of degrees of freedom. This novel cryptosystem can enhance the resistance to various attacks aimed at DRPE systems. Finally, we conduct ZEMAX and MATLAB simulations to demonstrate the superiority of this method.

  3. Mitotic wavefronts mediated by mechanical signaling in early Drosophila embryos

    NASA Astrophysics Data System (ADS)

    Kang, Louis; Idema, Timon; Liu, Andrea; Lubensky, Tom

    2013-03-01

    Mitosis in the early Drosophila embryo demonstrates spatial and temporal correlations in the form of wavefronts that travel across the embryo in each cell cycle. This coordinated phenomenon requires a signaling mechanism, which we suggest is mechanical in origin. We have constructed a theoretical model that supports nonlinear wavefront propagation in a mechanically-excitable medium. Previously, we have shown that this model captures quantitatively the wavefront speed as it varies with cell cycle number, for reasonable values of the elastic moduli and damping coefficient of the medium. Now we show that our model also captures the displacements of cell nuclei in the embryo in response to the traveling wavefront. This new result further supports that mechanical signaling may play an important role in mediating mitotic wavefronts.

  4. NASA Langley's AirSTAR Testbed: A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Bailey, Roger M.

    2008-01-01

    As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The facility provides all the necessary infrastructure to conduct the research flights in a safe and efficient manner. This paper gives a comprehensive overview of the development of the AirSTAR testbed.

  5. Algorithms and software for solving finite element equations on serial and parallel architectures

    NASA Technical Reports Server (NTRS)

    Chu, Eleanor; George, Alan

    1988-01-01

    The primary objective was to compare the performance of state-of-the-art techniques for solving sparse systems with those that are currently available in the Computational Structural Mechanics (MSC) testbed. One of the first tasks was to become familiar with the structure of the testbed, and to install some or all of the SPARSPAK package in the testbed. A brief overview of the CSM Testbed software and its usage is presented. An overview of the sparse matrix research for the Testbed currently employed in the CSM Testbed is given. An interface which was designed and implemented as a research tool for installing and appraising new matrix processors in the CSM Testbed is described. The results of numerical experiments performed in solving a set of testbed demonstration problems using the processor SPK and other experimental processors are contained.

  6. Fading testbed for free-space optical communications

    NASA Astrophysics Data System (ADS)

    Shrestha, Amita; Giggenbach, Dirk; Mustafa, Ahmad; Pacheco-Labrador, Jorge; Ramirez, Julio; Rein, Fabian

    2016-10-01

    Free-space optical (FSO) communication is a very attractive technology offering very high throughput without spectral regulation constraints, yet allowing small antennas (telescopes) and tap-proof communication. However, the transmitted signal has to travel through the atmosphere where it gets influenced by atmospheric turbulence, causing scintillation of the received signal. In addition, climatic effects like fogs, clouds and rain also affect the signal significantly. Moreover, FSO being a line of sight communication requires precise pointing and tracking of the telescopes, which otherwise also causes fading. To achieve error-free transmission, various mitigation techniques like aperture averaging, adaptive optics, transmitter diversity, sophisticated coding and modulation schemes are being investigated and implemented. Evaluating the performance of such systems under controlled conditions is very difficult in field trials since the atmospheric situation constantly changes, and the target scenario (e.g. on aircraft or satellites) is not easily accessible for test purposes. Therefore, with the motivation to be able to test and verify a system under laboratory conditions, DLR has developed a fading testbed that can emulate most realistic channel conditions. The main principle of the fading testbed is to control the input current of a variable optical attenuator such that it attenuates the incoming signal according to the loaded power vector. The sampling frequency and mean power of the vector can be optionally changed according to requirements. This paper provides a brief introduction to software and hardware development of the fading testbed and measurement results showing its accuracy and application scenarios.

  7. Visible Nulling Coronagraphy Testbed Development for Exoplanet Detection

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Thompson, Patrick; Chen, Andrew; Petrone, Peter; Booth, Andrew; Madison, Timothy; Bolcar, Matthew; hide

    2010-01-01

    Three of the recently completed NASA Astrophysics Strategic Mission Concept (ASMC) studies addressed the feasibility of using a Visible Nulling Coronagraph (VNC) as the prime instrument for exoplanet science. The VNC approach is one of the few approaches that works with filled, segmented and sparse or diluted aperture telescope systems and thus spans the space of potential ASMC exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies and has developed an incremental sequence of VNC testbeds to advance the this approach and the technologies associated with it. Herein we report on the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under high bandwidth closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible light nulling milestones of sequentially higher contrasts of 10(exp 8) , 10(exp 9) and 10(exp 10) at an inner working angle of 2*lambda/D and ultimately culminate in spectrally broadband (>20%) high contrast imaging. Each of the milestones, one per year, is traceable to one or more of the ASMC studies. The VNT uses a modified Mach-Zehnder nulling interferometer, modified with a modified "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. Discussed will be the optical configuration laboratory results, critical technologies and the null sensing and control approach.

  8. Visually guided grasping to study teleprogrammation within the BAROCO testbed

    NASA Technical Reports Server (NTRS)

    Devy, M.; Garric, V.; Delpech, M.; Proy, C.

    1994-01-01

    This paper describes vision functionalities required in future orbital laboratories; in such systems, robots will be needed in order to execute the on-board scientific experiments or servicing and maintenance tasks under the remote control of ground operators. For this sake, ESA has proposed a robotic configuration called EMATS; a testbed has been developed by ESTEC in order to evaluate the potentialities of EMATS-like robot to execute scientific tasks in automatic mode. For the same context, CNES develops the BAROCO testbed to investigate remote control and teleprogrammation, in which high level primitives like 'Pick Object A' are provided as basic primitives. In nominal situations, the system has an a priori knowledge about the position of all objects. These positions are not very accurate, but this knowledge is sufficient in order to predict the position of the object which must be grasped, with respect to the manipulator frame. Vision is required in order to insure a correct grasping and to guarantee a good accuracy for the following operations. We describe our results about a visually guided grasping of static objects. It seems to be a very classical problem, and a lot of results are available. But, in many cases, it lacks a realistic evaluation of the accuracy, because such an evaluation requires tedious experiments. We propose several results about calibration of the experimental testbed, recognition algorithms required to locate a 3D polyhedral object, and the grasping itself.

  9. Virtual pyramid wavefront sensor for phase unwrapping.

    PubMed

    Akondi, Vyas; Vohnsen, Brian; Marcos, Susana

    2016-10-10

    Noise affects wavefront reconstruction from wrapped phase data. A novel method of phase unwrapping is proposed with the help of a virtual pyramid wavefront sensor. The method was tested on noisy wrapped phase images obtained experimentally with a digital phase-shifting point diffraction interferometer. The virtuality of the pyramid wavefront sensor allows easy tuning of the pyramid apex angle and modulation amplitude. It is shown that an optimal modulation amplitude obtained by monitoring the Strehl ratio helps in achieving better accuracy. Through simulation studies and iterative estimation, it is shown that the virtual pyramid wavefront sensor is robust to random noise.

  10. Bottlenecks of the wavefront sensor based on the Talbot effect.

    PubMed

    Podanchuk, Dmytro; Kovalenko, Andrey; Kurashov, Vitalij; Kotov, Myhaylo; Goloborodko, Andrey; Danko, Volodymyr

    2014-04-01

    Physical constraints and peculiarities of the wavefront sensing technique, based on the Talbot effect, are discussed. The limitation on the curvature of the measurable wavefront is derived. The requirements to the Fourier spectrum of the periodic mask are formulated. Two kinds of masks are studied for their performance in the wavefront sensor. It is shown that the boundary part of the mask aperture does not contribute to the initial data for wavefront restoration. It is verified by experiment and computer simulation that the performance of the Talbot sensor, which meets established conditions, is similar to that of the Shack-Hartmann sensor.

  11. Simultaneous measurements of density field and wavefront distortions in high speed flows

    NASA Astrophysics Data System (ADS)

    George, Jacob; Jenkins, Thomas; Trolinger, James; Hess, Cecil; Buckner, Benjamin

    2017-09-01

    This paper presents results from simultaneous measurements of fluid density and the resulting wavefront distortions in a sonic underexpanded jet. The density measurements were carried out using Rayleigh scattering, and the optical distortions were measured using a wavefront sensor based on phase shifting interferometry. The measurements represent a preliminary step toward relating wavefront distortions to a specific flow structure. The measured density field is used to compute the phase distortions using a wave propagation model based on a geometric-optics approximation, and the computed phase map shows moderate agreement with that obtained using the wavefront sensor.

  12. A HEL Testbed for High Accuracy Beam Pointing and Control

    DTIC Science & Technology

    2009-07-01

    Control by Dojong Kim, Duane Frist, Jae Jun Kim, Brij Agrawal 01 July 2009 Approved for......distant targets immediately. The issues of the technology on the HEL system include various types of high energy laser devices, beam control systems

  13. Optimizing phase to enhance optical trap stiffness.

    PubMed

    Taylor, Michael A

    2017-04-03

    Phase optimization offers promising capabilities in optical tweezers, allowing huge increases in the applied forces, trap stiff-ness, or measurement sensitivity. One key obstacle to potential applications is the lack of an efficient algorithm to compute an optimized phase profile, with enhanced trapping experiments relying on slow programs that would take up to a week to converge. Here we introduce an algorithm that reduces the wait from days to minutes. We characterize the achievable in-crease in trap stiffness and its dependence on particle size, refractive index, and optical polarization. We further show that phase-only control can achieve almost all of the enhancement possible with full wavefront shaping; for instance phase control allows 62 times higher trap stiffness for 10 μm silica spheres in water, while amplitude control and non-trivial polarization further increase this by 1.26 and 1.01 respectively. This algorithm will facilitate future applications in optical trapping, and more generally in wavefront optimization.

  14. SU-G-IeP4-09: Method of Human Eye Aberration Measurement Using Plenoptic Camera Over Large Field of View

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Yang; Wang, Ruixing; Ma, Haotong

    Purpose: The measurement based on Shack-Hartmann wave-front sensor(WFS), obtaining both the high and low order wave-front aberrations simultaneously and accurately, has been applied in the detection of human eyes aberration in recent years. However, Its application is limited by the small field of view (FOV), slight eye movement leads the optical bacon image exceeds the lenslet array which result in uncertain detection error. To overcome difficulties of precise eye location, the capacity of detecting eye wave-front aberration over FOV much larger than simply a single conjugate Hartmann WFS accurately and simultaneously is demanded. Methods: Plenoptic camera’s lenslet array subdivides themore » aperture light-field in spatial frequency domain, capture the 4-D light-field information. Data recorded by plenoptic cameras can be used to extract the wave-front phases associated to the eyes aberration. The corresponding theoretical model and simulation system is built up in this article to discuss wave-front measurement performance when utilizing plenoptic camera as wave-front sensor. Results: The simulation results indicate that the plenoptic wave-front method can obtain both the high and low order eyes wave-front aberration with the same accuracy as conventional system in single visual angle detectionand over FOV much larger than simply a single conjugate Hartmann systems. Meanwhile, simulation results show that detection of eye aberrations wave-front in different visual angle can be achieved effectively and simultaneously by plenoptic method, by both point and extended optical beacon from the eye. Conclusion: Plenoptic wave-front method possesses the feasibility in eye aberrations wave-front detection. With larger FOV, the method can effectively reduce the detection error brought by imprecise eye location and simplify the eye aberrations wave-front detection system comparing with which based on Shack-Hartmann WFS. Unique advantage of the plenoptic method lies in obtaining wave-front in different visual angle simultaneously, which provides an approach in building up 3-D model of eye refractor tomographically. Funded by the key Laboratory of High Power Laser and Physics, CAS Research Project of National University of Defense Technology No. JC13-07-01; National Natural Science Foundation of China No. 61205144.« less

  15. Energy-Efficient and Comfortable Buildings through Multivariate Integrated Control (ECoMIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birru, Dagnachew; Wen, Yao-Jung; Rubinstein, Francis M.

    2013-10-28

    This project aims to develop an integrated control solution for enhanced energy efficiency and user comfort in commercial buildings. The developed technology is a zone-based control framework that minimizes energy usage while maintaining occupants’ visual and thermal comfort through control of electric lights, motorized venetian blinds and thermostats. The control framework is designed following a modular, scalable and flexible architecture to facilitate easy integration with exiting building management systems. The control framework contains two key algorithms: 1) the lighting load balancing algorithm and 2) the thermostat control algorithm. The lighting load balancing algorithm adopts a model-based closed-loop control approach tomore » determine the optimal electric light and venetian blind settings. It is formulated into an optimization problem with minimizing lighting-related energy consumptions as the objective and delivering adequate task light and preventing daylight glare as the constraints. The thermostat control algorithm is based on a well-established thermal comfort model and formulated as a root-finding problem to dynamically determine the optimal thermostat setpoint for both energy savings and improved thermal comfort. To address building-wide scalability, a system architecture was developed for the zone-based control technology. Three levels of services are defined in the architecture: external services, facility level services and zone level services. The zone-level service includes the control algorithms described above as well as the corresponding interfaces, profiles, sensors and actuators to realize the zone controller. The facility level services connect to the zones through a backbone network, handle supervisory level information and controls, and thus facilitate building-wide scalability. The external services provide communication capability to entities outside of the building for grid interaction and remote access. Various aspects of the developed control technology were evaluated and verified through both simulations and testbed implementations. Simulations coupling a DOE medium office reference building in EnergyPlus building simulation software and a prototype controller in Matlab were performed. During summer time in a mixed-humid climate zone, the simulations revealed reductions of 27% and 42% in electric lighting load and cooling load, respectively, when compared to an advanced base case with daylight dimming and blinds automatically tilted to block direct sun. Two single-room testbeds were established. The testbed at Philips Lighting business building (Rosemont, IL) was designed for quantifying energy performance of integrated controls. This particular implementation achieved 40% and 79% savings on lighting and HVAC energy, respectively, compared to a relatively simple base case operated on predefined schedules. While the resulting energy savings was very encouraging, it should be noted that there may be several caveats associated with it. 1) The test was run during late spring and early summer, and the savings numbers might not be directly used to extrapolate the annual energy savings. 2) Due to the needs for separate control and metering of the small-scale demonstrator within a large building, the HVAC system, hence the corresponding savings, did not represent a typical energy code-compliant design. 3) The light level in the control case was regulated at a particular setpoint, which was lower than then the full-on light level in the base case, and the savings resulted from tuning down the light level to the setpoint was not attributable to the contribution of the developed technology. The testbed at the Lawrence Berkeley National Laboratory (Berkeley, CA) specifically focused on glare control integration, and has demonstrated the feasibility and capability of the glare detection and prevention technique. While the short one-month test in this testbed provided a functional indication of the developed technology, and it would require at least a full solstice-to-solstice cycle to ruinously quantify the performance, which was not possible within the project timeframe. There are certain limitations inherited from the operational assumptions, which could potentially affect the effectiveness and applicability of the developed control technologies. The system takes a typical ceiling-mounting approach for the photosensor locations, and therefore, the control performance relies on proper commissioning or the built-in intelligence of the photosensor for pertinent task light level estimations. For spaces where daylight penetration diminishes significantly deeper into the zone, certain modification to the control algorithms is required to accommodate multiple lighting control subzones and the corresponding sensors for providing a more uniform light level across the entire zone. Integrated control of visual and thermal comfort requires the lighting control zone and thermal control zone to coincide with each other. In other words, the area illuminated by a lighting circuit needs to be the same area served by the thermostat. Thus, the original zoning will potentially constrain the applicability of this technology in retrofitting projects. This project demonstrated the technical feasibility of a zone-based integrated control technology. From the simulation results and testbed implementations, up to 60% lighting energy savings in daylit areas relative to a “no-controls” case can easily be achieved. A 20% reduction of whole building energy consumption is also attainable. In the aspect of occupant comfort, the testbed demonstrated the ability to maintain specified light level on the workplane while promptly mitigate daylight glare 90% of the time. The control system also managed to maintain the thermal environment at a comfortable level 90% of the time. The aspect of system scalability was guaranteed by the system architecture design, based on which the testbeds were instantiated. Analysis on the aspect of economic benefit has yielded an about 6-year payback time for a medium-sized building, including the installation of all hardware and software, such as motorized blinds and LED luminaires. The payback time can be significantly reduced if part of the hardware is already in place for retrofitting projects. It needs to be noted that since the payback analysis was partly based on the testbed performance results, it is constrained by the caveats associated with the testbed implementations. The main uncertainty lies in the contribution from the space conditioning energy savings as it was non-trivial to realistically configure a room-size HVAC system for directly extrapolating whole-building HVAC energy savings. It is recommended to further evaluate the developed technology at a larger scale, where the lighting and HVAC energy consumption can be realistically measured at the building level, to more rigorously quantify the performance potentials.« less

  16. Optical Quality, Threshold Target Identification, and Military Target Task Performance After Advanced Keratorefractive Surgery

    DTIC Science & Technology

    2012-05-01

    undergo wavefront-guided (WFG) photorefractive keratectomy ( PRK ), WFG laser in situ keratomileusis ( LASIK ), wavefront optimized (WFO) PRK or WFO...Military, Refractive Surgery, PRK , LASIK , Night Vision, Wavefront Optimized, Wavefront Guided, Visual Performance, Quality of Vision, Outcomes...military. In a prospective, randomized treatment trial we will enroll 224 nearsighted soldiers to WFG photorefractive keratectomy ( PRK ), WFG LASIK , WFO PRK

  17. Optical Quality and Threshold Target Identification and Military Target Task Performance after Advanced Keratorefractive Surgery

    DTIC Science & Technology

    2013-05-01

    and Sensors Directorate. • Study participants and physicians select treatment: PRK or LASIK . WFG vs . WFO treatment modality is randomized. The...to undergo wavefront-guided (WFG) photorefractive keratectomy ( PRK ), WFG laser in situ keratomileusis ( LASIK ), wavefront optimized (WFO) PRK or WFO...TERMS Military, Refractive Surgery, PRK , LASIK , Night Vision, Wavefront Optimized, Wavefront Guided, Visual Performance, Quality of Vision, Outcomes

  18. Broadband, Common-path, Interferometric Wavefront Sensor

    NASA Technical Reports Server (NTRS)

    Wallace, James Kent (Inventor)

    2015-01-01

    Hybrid sensors comprising Shack-Hartmann Wavefront Sensor (S-HWFS) and Zernike Wavefront Sensor (Z-WFS) capabilities are presented. The hybrid sensor includes a Z-WFS optically arranged in-line with a S-HWFS such that the combined wavefront sensor operates across a wide dynamic range and noise conditions. The Z-WFS may include the ability to introduce a dynamic phase shift in both transmissive and reflective modes.

  19. Horizon: A Proposal for Large Aperture, Active Optics in Geosynchronous Orbit

    NASA Technical Reports Server (NTRS)

    Chesters, Dennis; Jenstrom, Del

    2000-01-01

    In 1999, NASA's New Millennium Program called for proposals to validate new technology in high-earth orbit for the Earth Observing-3 (NMP EO3) mission to fly in 2003. In response, we proposed to test a large aperture, active optics telescope in geosynchronous orbit. This would flight-qualify new technologies for both Earth and Space science: 1) a future instrument with LANDSAT image resolution and radiometric quality watching continuously from geosynchronous station, and 2) the Next Generation Space Telescope (NGST) for deep space imaging. Six enabling technologies were to be flight-qualified: 1) a 3-meter, lightweight segmented primary mirror, 2) mirror actuators and mechanisms, 3) a deformable mirror, 4) coarse phasing techniques, 5) phase retrieval for wavefront control during stellar viewing, and 6) phase diversity for wavefront control during Earth viewing. Three enhancing technologies were to be flight- validated: 1) mirror deployment and latching mechanisms, 2) an advanced microcontroller, and 3) GPS at GEO. In particular, two wavefront sensing algorithms, phase retrieval by JPL and phase diversity by ERIM International, were to sense optical system alignment and focus errors, and to correct them using high-precision mirror mechanisms. Active corrections based on Earth scenes are challenging because phase diversity images must be collected from extended, dynamically changing scenes. In addition, an Earth-facing telescope in GEO orbit is subject to a powerful diurnal thermal and radiometric cycle not experienced by deep-space astronomy. The Horizon proposal was a bare-bones design for a lightweight large-aperture, active optical system that is a practical blend of science requirements, emerging technologies, budget constraints, launch vehicle considerations, orbital mechanics, optical hardware, phase-determination algorithms, communication strategy, computational burdens, and first-rate cooperation among earth and space scientists, engineers and managers. This manuscript presents excerpts from the Horizon proposal's sections that describe the Earth science requirements, the structural -thermal-optical design, the wavefront sensing and control, and the on-orbit validation.

  20. SCExAO: the most complete instrument to characterize exoplanets and stellar environments

    NASA Astrophysics Data System (ADS)

    Lozi, Julien; Guyon, Olivier; Jovanovic, Nemanja; Singh, Garima; Doughty, Danielle; Pathak, Prashant; Goebel, Sean; Kudo, Tomoyuki

    2015-12-01

    The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument, currently under development for the Subaru Telescope, optimally combines state-of-the-art technologies to directly study exoplanets and stellar environments at the diffraction limit, both in visible and infrared light (0.6 to 2.4 um). The instrument already includes an ultra-fast visible pyramid wavefront sensor operating at 3.5 kHz, a 2k-actuator deformable mirror, a set of optimal coronagraphs that can work as close as 1 l/D, a low-order wavefront sensor, a high-speed speckle control, and two visible interferometric modules, VAMPIRES and FIRST. Stability of the wavefront correction has already been demonstrated on sky, and SCExAO is already producing scientific results. After the integration of the Integral Field Spectrograph (IFS) CHARIS and a Microwave Kinetic Inductance Detector (MKID) in 2016, SCExAO will be one of the most powerful and effective tools for characterizing exoplanets and disks.

Top