Quantum model of light transmission in array waveguide gratings.
Capmany, J; Mora, J; Fernández-Pousa, C R; Muñoz, P
2013-06-17
We develop, to the best of our knowledge, the first model for an array waveguide grating (AWG) device subject to quantum inputs and analyze its basic transformation functionalities for single-photon states. A commercial, cyclic AWG is experimentally characterized with weak input coherent states as a means of exploring its behaviour under realistic quantum detection. In particular it is shown the existence of a cutoff value of the average photon number below which quantum crosstalk between AWG ports is negligible with respect to dark counts. These results can be useful when considering the application of AWG devices to integrated quantum photonic systems.
Vapor-Redissolution Technique for Reduction of POLYMER/Si Arrayed Waveguide Grating Loss
NASA Astrophysics Data System (ADS)
Zhang, Haiming; Zhang, Daming; Qin, Zhenkun; Ma, Chunsheng
An efficient vapor-redissolution technique is used to greatly reduce sidewall scattering loss in the polymer arrayed waveguide grating (AWG) fabricated on a silicon substrate. Smoother sidewalls are achieved and verified by scanning electron microscopy. Reduction of sidewall scattering loss is further measured for the loss measurement of both straight waveguides and AWG devices. The sidewall loss in straight polymer waveguide is decreased by 2.1 dB/cm, the insertion loss of our AWG device is reduced by about 5.5 dB for the central channel and 6.7 dB for the edge channels, the crosstalk is reduced by 2.5 dB, and 3-dB bandwidth is narrowed by 0.05 nm after the vapor-redissoluton treatment.
Multistage WDM access architecture employing cascaded AWGs
NASA Astrophysics Data System (ADS)
El-Nahal, F. I.; Mears, R. J.
2009-03-01
Here we propose passive/active arrayed waveguide gratings (AWGs) with enhanced performance for system applications mainly in novel access architectures employing cascaded AWG technology. Two technologies were considered to achieve space wavelength switching in these networks. Firstly, a passive AWG with semiconductor optical amplifiers array, and secondly, an active AWG. Active AWG is an AWG with an array of phase modulators on its arrayed-waveguides section, where a programmable linear phase-profile or a phase hologram is applied across the arrayed-waveguide section. This results in a wavelength shift at the output section of the AWG. These architectures can address up to 6912 customers employing only 24 wavelengths, coarsely separated by 1.6 nm. Simulation results obtained here demonstrate that cascaded AWGs access architectures have a great potential in future local area networks. Furthermore, they indicate for the first time that active AWGs architectures are more efficient in routing signals to the destination optical network units than passive AWG architectures.
Full-mesh T- and O-band wavelength router based on arrayed waveguide gratings.
Idris, Nazirul A; Yoshizawa, Katsumi; Tomomatsu, Yasunori; Sudo, Makoto; Hajikano, Tadashi; Kubo, Ryogo; Zervas, Georgios; Tsuda, Hiroyuki
2016-01-11
We propose an ultra-broadband full-mesh wavelength router supporting the T- and O-bands using 3 stages of cascaded arrayed waveguide gratings (AWGs). The router architecture is based on a combination of waveband and channel routing by coarse and fine AWGs, respectively. We fabricated several T-band-specific silica-based AWGs and quantum dot semiconductor optical ampliers as part of the router, and demonstrated 10 Gbps data transmission for several wavelengths throughout a range of 7.4 THz. The power penalties were below 1 dB. Wavelength routing was also demonstrated, where tuning time within a 9.4-nm-wide waveband was below 400 ms.
NASA Astrophysics Data System (ADS)
Juhari, Nurjuliana; Menon, P. Susthitha; Ehsan, Abang Annuar; Shaari, Sahbudin
2015-01-01
Arrayed Waveguide Grating (AWG) functioning as a demultiplexer is designed on SOI platform with rib waveguide structure to be utilized in coarse wavelength division multiplexing-passive optical network (CWDM-PON) systems. Two design approaches; conventional and tapered configuration of AWG was developed with channel spacing of 20 nm that covers the standard transmission spectrum of CWDM ranging from 1311 nm to 1611 nm. The performance of insertion loss for tapered configuration offered the lowest insertion loss of 0.77 dB but the adjacent crosstalk gave non-significant relation for both designs. With average channel spacing of 20.4 nm, the nominal central wavelength of this design is close to the standard CWDM wavelength grid over 484 nm free spectrum range (FSR).
The cross waveguide grating: proposal, theory and applications.
Muñoz, Pascual; Pastor, Daniel; Capmany, José
2005-04-18
In this paper a novel grating-like integrated optics device is proposed, the Cross Waveguide Grating (XWG). The device is based upon a modified configuration of a traditional Arrayed Waveguide Grating (AWG). The Arrayed Waveguides part is changed, as detailed along this document, giving the device both the ability of multi/demultiplexing and power splitting/coupling. Design examples and transfer function simulations show good agreement with the presented theory. Finally, some of the envisaged applications are outlined.
NASA Astrophysics Data System (ADS)
Maru, Koichi; Abe, Yukio; Uetsuka, Hisato
2008-10-01
We demonstrated a compact and low-loss athermal arrayed-waveguide grating (AWG) module utilizing silica-based planar lightwave circuit (PLC) technology. Spot-size converters based on a vertical ridge-waveguide taper were integrated with a 2.5%-Δ athermal AWG to reduce the loss at chip-to-fiber interface. Spot-size converters based on a segmented core were formed around resin-filled trenches for athermalization formed in the slab to reduce the diffraction loss at the trenches. A 16-channel athermal AWG module with 100-GHz channel spacing was fabricated. The use of a 2.5%-Δ athermal chip with a single-side fiber array enabled a compact package of the size of 41.6×16.6×4.5 mm3. Athermal characteristics and a small insertion loss of 3.5-3.8 dB were obtained by virtue of low fiber-to-chip coupling loss and athermalization with low excess loss.
Improved arrayed-waveguide-grating layout avoiding systematic phase errors.
Ismail, Nur; Sun, Fei; Sengo, Gabriel; Wörhoff, Kerstin; Driessen, Alfred; de Ridder, René M; Pollnau, Markus
2011-04-25
We present a detailed description of an improved arrayed-waveguide-grating (AWG) layout for both, low and high diffraction orders. The novel layout presents identical bends across the entire array; in this way systematic phase errors arising from different bends that are inherent to conventional AWG designs are completely eliminated. In addition, for high-order AWGs our design results in more than 50% reduction of the occupied area on the wafer. We present an experimental characterization of a low-order device fabricated according to this geometry. The device has a resolution of 5.5 nm, low intrinsic losses (< 2 dB) in the wavelength region of interest for the application, and is polarization insensitive over a wide spectral range of 215 nm.
NASA Astrophysics Data System (ADS)
Asquini, Rita; d'Alessandro, Antonio; Salusti, Andrea; Gizzi, Claudio
2003-08-01
A tunable waveguide grating router (WGR) design is reported, where a subpicosecond phase shift is obtained by means of the electro-optically induced refractive index change in the arms of an arrayed-waveguide grating (AWG) made of highly nonlinear poled polymer CLD-75/APC. The polymer consists of a guest-host system, formed by a ring-locked phenyltetraene bridged cromophore dispersed in an amorphous polycarbonate, with coefficient r33=55pm/V and propagation losses of 1.7dB/cm. We propose a multilayer structure on Si substrate, where segments of each waveguide of the AWG are sandwiched between a ground gold electrode and electrodes whose length varies over the AWG. Numerical simulations of a device with electrode length difference of 250μm show a tuning range of 11nm centered at 1550nm by varying the applied voltage from -90V to +90V. From the optimized AWG, a WGR operating with 16 channels spaced by 100GHz has been designed. The WGR is made of single-mode rib waveguides and buffers whose thicknesses are respectively 1.8μm and 1.7μm. A broader tunability range is obtained using the push-pull technique, which induces a refractive index change of opposite sign in two halves of the AWG. A crosstalk of -40dB with tuning range of 22nm over the C-band was figured out.
Study on fabrication technology of silicon-based silica array waveguide grating
NASA Astrophysics Data System (ADS)
Sun, Yanjun; Dong, Lianhe; Leng, Yanbing
2009-05-01
Array waveguide grating (AWG) is an important plane optical element in dense wavelength division multiplex/demultiplex system. There are many virtue, channel quantity larger,lower loss, lower crosstalk, size smaller and high reliability etc. This article describs AWG fabrication technics utilizing IC(Integrated Circles) techniques, based on sixteen channel Silicon-Based Silica Array Waveguide Grating, put emphasis on discussing doping and deposition of waveguide core film,technics theory and interrelated parameter condition of photoetch and ion etching. Experiment result indicates that it depens on electrode structure, energy of radio-frequency electrode gas component, pressure ,flowing speed and substrate temperature by CVD depositing film .During depositing waveguide film by PE-CVD, the silicon is not reacted, When temperature becomes lower,it is reacted and it is easy to realize the control of film thickness and time with a result of film thickness uniformity reaching about 4% after optimizing deposition parameter and condition. We get the result of high etching speed rate, outline zoom, and side frame smooth by photoresist/Cr multiple mask and optimizing etching technics.
EML Array fabricated by SAG technique monolithically integrated with a buried ridge AWG multiplexer
NASA Astrophysics Data System (ADS)
Xu, Junjie; Liang, Song; Zhang, Zhike; An, Junming; Zhu, Hongliang; Wang, Wei
2017-06-01
We report the fabrication of a ten channel electroabsorption modulated DFB laser (EML) array. Different emission wavelengths of the laser array are obtained by selective area growth (SAG) technique, which is also used for the integration of electroabsorption modulators (EAM) with the lasers. An arrayed waveguide grating (AWG) combiner is integrated monolithically with the laser array by butt-joint regrowth (BJR) technique. A buried ridge waveguide structure is adopted for the AWG combiner. A self aligned fabrication procedure is adopted for the fabrication of the waveguide structure of the device to eliminate the misalignment between the laser active waveguide and the passive waveguide. A Ti thin film heater is integrated for each laser in the array. With the help of the heaters, ten laser emissions with 1.8 nm channel spacing are obtained. The integrated EAM has a larger than 11 dB static extinction ratios and larger than 8 GHz small signal modulation bandwidths. The light power collected in the output waveguide of the AWG is larger than -13 dBm for each wavelength.
NASA Astrophysics Data System (ADS)
Gajdošová, Lenka; Seyringer, Dana
2017-02-01
We present the design and simulation of 20-channel, 50-GHz Si3N4 based AWG using three different commercial photonics tools, namely PHASAR from Optiwave Systems Inc., APSS from Apollo Photonics Inc. and RSoft from Synopsys Inc. For this purpose we created identical waveguide structures and identical AWG layouts in these tools and performed BPM simulations. For the simulations the same calculation conditions were used. These AWGs were designed for TM-polarized light with an AWG central wavelength of 850 nm. The output of all simulations, the transmission characteristics, were used to calculate the transmission parameters defining the optical properties of the simulated AWGs. These parameters were summarized and compared with each other. The results feature very good correlation between the tools and are comparable to the designed parameters in AWG-Parameters tool.
Sub-wavelength grating mode transformers in silicon slab waveguides.
Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J
2009-10-12
We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.
Investigation of AWG demultiplexer based SOI for CWDM application
NASA Astrophysics Data System (ADS)
Juhari, Nurjuliana; Susthitha Menon, P.; Shaari, Sahbudin; Annuar Ehsan, Abang
2017-11-01
9-channel Arrayed Waveguide Grating (AWG) demultiplexer for conventional and tapered structure were simulated using beam propagation method (BPM) with channel spacing of 20 nm. The AWG demultiplexer was design using high refractive index (n 3.47) material namely silicon-on-insulator (SOI) with rib waveguide structure. The characteristics of insertion loss, adjacent crosstalk and output spectrum response at central wavelength of 1.55 μm for both designs were compared and analyzed. The conventional AWG produced a minimum insertion loss of 6.64 dB whereas the tapered AWG design reduced the insertion loss by 2.66 dB. The lowest adjacent crosstalk value of -16.96 dB was obtained in the conventional AWG design and this was much smaller compared to the tapered AWG design where the lowest crosstalk value is -17.23 dB. Hence, a tapered AWG design significantly reduces the insertion loss but has a slightly higher adjacent crosstalk compared to the conventional AWG design. On the other hand, the output spectrum responses that are obtained from both designs were close to the Coarse Wavelength Division Multiplexing (CWDM) wavelength grid.
Muñoz, P; Pastor, D; Capmany, J; Martínez, A
2003-09-22
In this paper, the procedure to optimize flat-top Arrayed Waveguide Grating (AWG) devices in terms of transmission and dispersion properties is presented. The systematic procedure consists on the stigmatization and minimization of the Light Path Function (LPF) used in classic planar spectrograph theory. The resulting geometry arrangement for the Arrayed Waveguides (AW) and the Output Waveguides (OW) is not the classical Rowland mounting, but an arbitrary geometry arrangement. Simulation using previous published enhanced modeling show how this geometry reduces the passband ripple, asymmetry and dispersion, in a design example.
Nishi, Hidetaka; Tsuchizawa, Tai; Kou, Rai; Shinojima, Hiroyuki; Yamada, Takashi; Kimura, Hideaki; Ishikawa, Yasuhiko; Wada, Kazumi; Yamada, Koji
2012-04-09
On the silicon (Si) photonic platform, we monolithically integrated a silica-based arrayed-waveguide grating (AWG) and germanium (Ge) photodiodes (PDs) using low-temperature fabrication technology. We confirmed demultiplexing by the AWG, optical-electrical signal conversion by Ge PDs, and high-speed signal detection at all channels. In addition, we mounted a multichannel transimpedance amplifier/limiting amplifier (TIA/LA) circuit on the fabricated AWG-PD device using flip-chip bonding technology. The results show the promising potential of our Si photonic platform as a photonics-electronics convergence.
Ultra compact triplexing filters based on SOI nanowire AWGs
NASA Astrophysics Data System (ADS)
Jiashun, Zhang; Junming, An; Lei, Zhao; Shijiao, Song; Liangliang, Wang; Jianguang, Li; Hongjie, Wang; Yuanda, Wu; Xiongwei, Hu
2011-04-01
An ultra compact triplexing filter was designed based on a silicon on insulator (SOI) nanowire arrayed waveguide grating (AWG) for fiber-to-the-home FTTH. The simulation results revealed that the design performed well in the sense of having a good triplexing function. The designed SOI nanowire AWGs were fabricated using ultraviolet lithography and induced coupler plasma etching. The experimental results showed that the crosstalk was less than -15 dB, and the 3 dB-bandwidth was 11.04 nm. The peak wavelength output from ports a, c, and b were 1455, 1510 and 1300 nm, respectively, which deviated from our original expectations. The deviation of the wavelength is mainly caused by 45 nm width deviation of the arrayed waveguides during the course of the fabrication process and partly caused by material dispersion.
Feng, Kai-Ming; Wu, Chung-Yu; Wen, Yu-Hsiang
2012-01-16
By utilizing the cyclic filtering function of an NxN arrayed waveguide grating (AWG), we propose and experimentally demonstrate a novel multi-function all optical packet switching (OPS) architecture by applying a periodical wavelength arrangement between the AWG in the optical routing/buffering unit and a set of wideband optical filters in the switched output ports to achieve the desired routing and buffering functions. The proposed OPS employs only one tunable wavelength converter at the input port to convert the input wavelength to a designated wavelength which reduces the number of active optical components and thus the complexity of the traffic control is simplified in the OPS. With the proposed OPS architecture, multiple optical packet switching functions, including arbitrary packet switching and buffering, first-in-first-out (FIFO) packet multiplexing, packet demultiplexing and packet add/drop multiplexing, have been successfully demonstrated.
Multi-PON access network using a coarse AWG for smooth migration from TDM to WDM PON
NASA Astrophysics Data System (ADS)
Shachaf, Y.; Chang, C.-H.; Kourtessis, P.; Senior, J. M.
2007-06-01
An interoperable access network architecture based on a coarse array waveguide grating (AWG) is described, displaying dynamic wavelength assignment to manage the network load across multiple PONs. The multi-PON architecture utilizes coarse Gaussian channels of an AWG to facilitate scalability and smooth migration path between TDM and WDM PONs. Network simulations of a cross-operational protocol platform confirmed successful routing of individual PON clusters through 7 nm-wide passband windows of the AWG. Furthermore, polarization-dependent wavelength shift and phase errors of the device proved not to impose restrain on the routing performance. Optical transmission tests at 2.5 Gbit/s for distances up to 20 km are demonstrated.
Bi-directional ROADM with one pair of NxN cyclic-AWGs for over N wavelength channels configuration
NASA Astrophysics Data System (ADS)
Tsai, Cheng-Mu
2018-01-01
This paper presents a bidirectional optical add-drop multiplexer (BROADM) with permitting white spectral channels input in bidirectional configuration. The filter routing rule of array waveguide grating (AWG) is applied for the wavelength channels (WCs) that need to be added and dropped by using the corresponding tunable fiber Bragg gratings (FBGs). The other WCs pass through output by tuning FBG filter spectra away from the WCs. The bandwidth between two adjacent WCs of each pair of ports in AWG is wider than one channel spacing so that the filter spectra of FBG is tuned to free spectral range (FSR) region to realize the wavelength routing function without interfering other WCs. The WCs can be flexibly handled by installing the corresponding tunable FBG. Therefore, the proposed BROADM is more flexible and has higher transmission capacity in the optical network.
Analysis and design of arrayed waveguide gratings with MMI couplers.
Munoz, P; Pastor, D; Capmany, J
2001-09-24
We present an extension of the AWG model and design procedure described in [1] to incorporate multimode interference, MMI, couplers. For the first time to our knowledge, a closed formula for the passing bands bandwidth and crosstalk estimation plots are derived.
NASA Astrophysics Data System (ADS)
Bock, Carlos; Prat, Josep
2005-04-01
A hybrid WDM/TDM PON architecture implemented by means of two cascaded Arrayed Waveguide Gratings (AWG) is presented. Using the Free Spectral Range (FSR) periodicity of AWGs we transmit unicast and multicast traffic on different wavelengths to each Optical Network Unit (ONU). The OLT is equipped with two laser stacks, a tunable one for unicast transmission and a fixed one for multicast transmission. We propose the ONU to be reflective in order to avoid any light source at the Costumer Premises Equipment (CPE). Optical transmission tests demonstrate correct transmission at 2.5 Gbps up to 30 km.
Broadband arrayed waveguide grating multiplexers on indium phosphide
NASA Astrophysics Data System (ADS)
Rausch, Kameron
2005-11-01
Coarse Wavelength Division Multiplexing (CWDM) is becoming a popular way to increase the optical throughput of fibers for short to medium haul networks at a reduced cost. The International Telecommunications Union (ITU) has defined the CWDM network to consist of eighteen channels with channel spacings of 20 nm starting at 1270 nm and ending at 1610 nm. Four and eight channel AWGs suitable for CWDM were fabricated using a versatile S-shape design novel to InP. The standard horseshoe layout will not work on semiconductor for AWGs with a free spectral range (FSR) larger than 30 nm. The AWG design provides operation insensitive to thermal and polarization fluctuations; which is key for low cost operation and packaging. It will be shown that, refractive index changes over the large operating wavelength band produced negligible effects in the transmission spectrum. Standard AWG design assumes refractive index is a constant over the operating wavelength band. As a result, the output waveguide separations are held constant on the second star coupler. As the channel number increases, secondary focal dispersion caused from a changing refractive index can have detrimental effects on performance. A new design method will be introduced which includes refractive index dispersion by allowing the output waveguide separations to vary. The new design is consistent with standard design but is applicable in materials with a linear index dispersion over an arbitrarily large wavelength band. Lastly, a method for increasing the transmission using multimode waveguides is discussed. Traditionally, single mode waveguides are required in order to prevent higher order waveguide modes creating ghost images in the output spectrum. Using bend loss and waveguide junction offsets, higher order modes can be filtered from the output, thereby eliminating ghost images and at the same time, increase transmission.
Silica waveguide devices and their applications
NASA Astrophysics Data System (ADS)
Sun, C. J.; Schmidt, Kevin M.; Lin, Wenhua
2005-03-01
Silica waveguide technology transitioned from laboratories to commercial use in early 1990. Since then, various applications have been exploited based on this technology. Tens of thousands of array waveguide grating (AWG) devices have been installed worldwide for DWDM Mux and Demux. The recent FTTH push in Japan has renewed the significance of this technology for passive optical network (PON) application. This paper reviews the past development of this technology, compare it with competing technologies, and outline the future role of this technology in the evolving optical communications.
Fiber Bragg grating sensor interrogators on chip: challenges and opportunities
NASA Astrophysics Data System (ADS)
Marin, Yisbel; Nannipieri, Tiziano; Oton, Claudio J.; Di Pasquale, Fabrizio
2017-04-01
In this paper we present an overview of the current efforts towards integration of Fiber Bragg Grating (FBG) sensor interrogators. Different photonic integration platforms will be discussed, including monolithic planar lightwave circuit technology, silicon on insulator (SOI), indium phosphide (InP) and gallium arsenide (GaAs) material platforms. Also various possible techniques for wavelength metering and methods for FBG multiplexing will be discussed and compared in terms of resolution, dynamic performance, multiplexing capabilities and reliability. The use of linear filters, array waveguide gratings (AWG) as multiple linear filters and AWG based centroid signal processing techniques will be addressed as well as interrogation techniques based on tunable micro-ring resonators and Mach-Zehnder interferometers (MZI) for phase sensitive detection. The paper will also discuss the challenges and perspectives of photonic integration to address the increasing requirements of several industrial applications.
NASA Astrophysics Data System (ADS)
Bock, Carlos; Prat, Josep; Walker, Stuart D.
2005-12-01
A novel time/space/wavelength division multiplexing (TDM/WDM) architecture using the free spectral range (FSR) periodicity of the arrayed waveguide grating (AWG) is presented. A shared tunable laser and a photoreceiver stack featuring dynamic bandwidth allocation (DBA) and remote modulation are used for transmission and reception. Transmission tests show correct operation at 2.5 Gb/s to a 30-km reach, and network performance calculations using queue modeling demonstrate that a high-bandwidth-demanding application could be deployed on this network.
NASA Astrophysics Data System (ADS)
Zhao, Jianyi; Chen, Xin; Zhou, Ning; Huang, Xiaodong; Cao, Mingde; Wang, Lei; Liu, Wen
2015-03-01
A 16-channel monolithically integrated distributed feedback (DFB) laser array with arrayed waveguide gratings (AWGs) multiplexer and semiconductor optical amplifier (SOA) has been fabricated using nanoimprint technology. Selective lasing wavelength with 200 GHz frequency space has been obtained. The typical threshold current is between 20 mA and 30 mA. The output power is higher than 1 mW with 350 mA current in SOA. The side mode suppression ratio (SMSR) of the spectrum is better than 40 dB.
A novel protection scheme for a hybrid WDM/TDM PON
NASA Astrophysics Data System (ADS)
Chen, Jiajia; Wosinska, Lena; He, Sailing
2007-11-01
This paper proposes a novel protection scheme based on the cyclic property of an array waveguide grating (AWG) and neighboring connection pattern between two adjacent optical network units (ONUs) for the hybrid WDM/TDM passive optical networks (PONs). Our scheme uses 50% fewer wavelengths while offering one order of magnitude better connection availability than the existing scheme.
Silicon-based optoelectronics: Monolithic integration for WDM
NASA Astrophysics Data System (ADS)
Pearson, Matthew Richard T.
2000-10-01
This thesis details the development of enabling technologies required for inexpensive, monolithic integration of Si-based wavelength division multiplexing (WDM) components and photodetectors. The work involves the design and fabrication of arrayed waveguide grating demultiplexers in silicon-on-insulator (SOI), the development of advanced SiGe photodetectors capable of photodetection at 1.55 mum wavelengths, and the development of a low cost fabrication technique that enables the high volume production of Si-based photonic components. Arrayed waveguide grating (AWG) demultiplexers were designed and fabricated in SOI. The fabrication of AWGs in SOI has been reported in the literature, however there are a number of design issues specific to the SOI material system that can have a large effect on device performance and design, and have not been theoretically examined in earlier work. The SOI AWGs presented in this thesis are the smallest devices of this type reported, and they exhibit performance acceptable for commercial applications. The SiGe photodetectors reported in the literature exhibit extremely low responsivities at wavelengths near 1.55 mum. We present the first use of three dimensional growth modes to enhance the photoresponse of SiGe at 1.55 mum wavelengths. Metal semiconductor-metal (MSM) photodetectors were fabricated using this undulating quantum well structure, and demonstrate the highest responsivities yet reported for a SiGe-based photodetector at 1.55 mum. These detectors were monolithically integrated with low-loss SOI waveguides, enabling integration with nearly any Si-based passive WDM component. The pursuit of inexpensive Si-based photonic components also requires the development of new manufacturing techniques that are more suitable for high volume production. This thesis presents the development of a low cost fabrication technique based on the local oxidation of silicon (LOCOS), a standard processing technique used for Si integrated circuits. This process is developed for both SiGe and SOI waveguides, but is shown to be commercially suitable only for SOI waveguide devices. The technique allows nearly any Si microelectronics fabrication facility to begin manufacturing optical components with minimal change in processing equipment or techniques. These enabling technologies provide the critical elements for inexpensive, monolithic integration in a Si-based system.
Lin, Gong-Ru; Cheng, Tzu-Kang; Chi, Yu-Chieh; Lin, Gong-Cheng; Wang, Hai-Lin; Lin, Yi-Hong
2009-09-28
In a weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) based DWDM-PON system with an array-waveguide-grating (AWG) channelized amplified spontaneous emission (ASE) source located at remote node, we study the effect of AWG filter bandwidth on the transmission performances of the 1.25-Gbit/s directly modulated WRC-FPLD transmitter under the AWG channelized ASE injection-locking. With AWG filters of two different channel spacings at 50 and 200 GHz, several characteristic parameters such as interfered reflection, relatively intensity noise, crosstalk reduction, side-mode-suppressing ratio and power penalty of BER effect of the WRC-FPLD transmitted data are compared. The 200-GHz AWG filtered ASE injection minimizes the noises of WRC-FPLD based ONU transmitter, improving the power penalty of upstream data by -1.6 dB at BER of 10(-12). In contrast, the 50-GHz AWG channelized ASE injection fails to promote better BER but increases the power penalty by + 1.5 dB under back-to-back transmission. A theoretical modeling elucidates that the BER degradation up to 4 orders of magnitude between two injection cases is mainly attributed to the reduction on ASE injection linewidth, since which concurrently degrades the signal-to-noise and extinction ratios of the transmitted data stream.
NASA Astrophysics Data System (ADS)
Barbarin, Y.; Lefrançois, A.; Magne, S.; Woirin, K.; Sinatti, F.; Osmont, A.; Luc, J.
2016-08-01
High pressure shock profiles are monitored using a long Fiber Bragg Grating (FBG). Such thin probe, with a diameter of typically 150 μm, can be inserted directly into targets for shock plate experiments. The shocked FBG's portion is stressed under compression, which increases its optical group index and shortens its grating period. Placed along the 2D symmetrical axis of the cylindrical target, the second effect is stronger and the reflected spectrum shifts towards the shorter wavelengths. The dynamic evolution of FBG spectra is recorded with a customized Arrayed Waveguide Grating (AWG) spectrometer covering the C+L band. The AWG provides 40 channels of 200-GHz spacing with a special flattop design. The output channels are fiber-connected to photoreceivers (bandwidth: DC - 400 MHz or 10 kHz - 2 GHz). The experimental setup was a symmetric impact, completed in a 110-mm diameter single-stage gas gun with Aluminum (6061T6) impactors and targets. The FBG's central wavelength was 1605 nm to cover the pressure range of 0 - 8 GPa. The FBG was 50-mm long as well as the target's thickness. The 20-mm thick impactor maintains a shock within the target over a distance of 30 mm. For the impact at 522 m/s, the sustained pressure of 3.6 GPa, which resulted in a Bragg shift of (26.2 +/- 1.5) nm, is measured and retrieved with respectively thin-film gauges and the hydrodynamic code Ouranos. The shock sensitivity of the FBG is about 7 nm/GPa, but it decreases with the pressure level. The overall spectra evolution is in good agreement with the numerical simulations.
Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit.
Xu, Chenglin; Hong, Xiaobin; Huang, Wei-Ping
2006-05-29
Design optimization of a novel integrated bi-directional (BiDi) triplexer filter based on planar lightwave circuit (PLC) for fiber-to-the premise (FTTP) applications is described. A multi-mode interference (MMI) device is used to filter the up-stream 1310nm signal from the down-stream 1490nm and 1555nm signals. An array waveguide grating (AWG) device performs the dense WDM function by further separating the two down-stream signals. The MMI and AWG are built on the same substrate with monolithic integration. The design is validated by simulation, which shows excellent performance in terms of filter spectral characteristics (e.g., bandwidth, cross-talk, etc.) as well as insertion loss.
Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit
NASA Astrophysics Data System (ADS)
Xu, Chenglin; Hong, Xiaobin; Huang, Wei-Ping
2006-05-01
Design optimization of a novel integrated bi-directional (BiDi) triplexer filter based on planar lightwave circuit (PLC) for fiber-to-the premise (FTTP) applications is described. A multi-mode interference (MMI) device is used to filter the up-stream 1310nm signal from the down-stream 1490nm and 1555nm signals. An array waveguide grating (AWG) device performs the dense WDM function by further separating the two down-stream signals. The MMI and AWG are built on the same substrate with monolithic integration. The design is validated by simulation, which shows excellent performance in terms of filter spectral characteristics (e.g., bandwidth, cross-talk, etc.) as well as insertion loss.
An AWG-based 10 Gbit/s colorless WDM-PON system using a chirp-managed directly modulated laser
NASA Astrophysics Data System (ADS)
Latif, Abdul; Yu, Chong-xiu; Xin, Xiang-jun; Husain, Aftab; Hussain, Ashiq; Munir, Abid; Khan, Yousaf
2012-09-01
We propose an arrayed waveguide grating (AWG)-based 10 Gbit/s per channel full duplex wavelength division multiplexing passive optical network (WDM-PON). A chirp managed directly modulated laser with return-to-zero (RZ) differential phase shift keying (DPSK) modulation technique is utilized for downlink (DL) direction, and then the downlink signal is re-modulated for the uplink (UL) direction using intensity modulation technique with the data rate of 10 Gbit/s per channel. A successful WDM-PON transmission operation with the data rate of 10 Gbit/s per channel over a distance of 25 km without any optical amplification or dispersion compensation is demonstrated with low power penalty.
TWC and AWG based optical switching structure for OVPN in WDM-PON
NASA Astrophysics Data System (ADS)
Bai, Hui-feng; Chen, Yu-xin; Wang, Qin
2015-03-01
With the rapid development of optical elements with large capacity and high speed, the network architecture is of great importance in determing the performance of wavelength division multiplexing passive optical network (WDM-PON). This paper proposes a switching structure based on the tunable wavelength converter (TWC) and the arrayed-waveguide grating (AWG) for WDM-PON, in order to provide the function of opitcal virtual private network (OVPN). Using the tunable wavelength converter technology, this switch structure is designed and works between the optical line terminal (OLT) and optical network units (ONUs) in the WDM-PON system. Moreover, the wavelength assignment of upstream/downstream can be realized and direct communication between ONUs is also allowed by privite wavelength channel. Simulation results show that the proposed TWC and AWG based switching structure is able to achieve OVPN function and to gain better performances in terms of bite error rate (BER) and time delay.
AWG-based WDM-PON monitoring system using an optical switch and a WDM filter
NASA Astrophysics Data System (ADS)
Liaw, S.-K.; Lai, Y.-T.; Chang, C.-L.; Shung, O.
2008-09-01
A new WDM-PON scheme with real-time monitoring based on a time-sharing method is proposed. It uses an optical time domain reflectometer (OTDR) to monitor multiple ports by integrating an optical switch (OSW) with a dense wavelength division multiplexer (DWDM) at the optical line terminal (OLT) site. Each downstream signal and its corresponding monitoring signal are separated by m times the free-space range (FSR) of an array waveguide grating (AWG). A bit error rate (BER) test in 2.5 Gb/s × 27 km is performed with and without turning on the OTDR. A small power penalty of 0.7 dB is observed compared to the back-to-back measurement.
NASA Astrophysics Data System (ADS)
Niwa, Masaki; Takashina, Shoichi; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi; Watanabe, Toshio
2015-01-01
With the continuous increase in Internet traffic, reconfigurable optical add-drop multiplexers (ROADMs) have been widely adopted in the core and metro core networks. Current ROADMs, however, allow only static operation. To realize future dynamic optical-network services, and to minimize any human intervention in network operation, the optical signal add/drop part should have colorless/directionless/contentionless (C/D/C) capabilities. This is possible with matrix switches or a combination of splitter-switches and optical tunable filters. The scale of the matrix switch increases with the square of the number of supported channels, and hence, the matrix-switch-based architecture is not suitable for creating future large-scale ROADMs. In contrast, the numbers of splitter ports, switches, and tunable filters increase linearly with the number of supported channels, and hence the tunable-filter-based architecture will support all future traffic. So far, we have succeeded in fabricating a compact tunable filter that consists of multi-stage cyclic arrayed-waveguide gratings (AWGs) and switches by using planar-lightwave-circuit (PLC) technologies. However, this multistage configuration suffers from large insertion loss and filter narrowing. Moreover, power-consuming temperature control is necessary since it is difficult to make cyclic AWGs athermal. We propose here novel tunable-filter architecture that sandwiches a single-stage non-cyclic athermal AWG having flatter-topped passbands between small-scale switches. With this configuration, the optical tunable filter attains low insertion loss, large passband bandwidths, low power consumption, compactness, and high cost-effectiveness. A prototype is monolithically fabricated with PLC technologies and its excellent performance is experimentally confirmed utilizing 80-channel 30-GBaud dual-polarization quadrature phase-shift-keying (QPSK) signals.
Design and application of 8-channel SOI-based AWG demultiplexer for CWDM-system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juhari, Nurjuliana; Menon, P. Susthitha; Ehsan, Abang Annuar
2015-04-24
Arrayed Waveguide Grating (AWG) serving as a demultiplexer (demux) has been designed on SOI platform and was utilized in a Coarse Wavelength Division Multiplexing (CWDM) system ranging from 1471 nm to 1611 nm. The investigation was carried out at device and system levels. At device level, 20 nm (∼ 2500 GHz) channel spacing was successfully simulated using beam propagation method (BPM) under TE mode polarization with a unique double S-shape pattern at arrays region. The performance of optical properties gave the low values of 0.96 dB dB for insertion loss and – 22.38 dB for optical crosstalk. AWG device wasmore » then successfully used as demultiplexer in CWDM system when 10 Gb/s data rate was applied in the system. Limitation of signal power due to attenuation and fiber dispersion detected by BER analyzer =10{sup −9} of the system was compared with theoretical value. Hence, the maximum distance of optical fiber can be achieved.« less
A novel survivable WDM passive optical networks
NASA Astrophysics Data System (ADS)
Cheng, Xiaofei; Fang, Qin; Zhang, Yong; Chen, Bin; Lu, Fucai
2008-11-01
We propose a novel survivable wavelength-division multiplexed-passive optical network (WDM-PON) based on an N × N cyclic array waveguide grating (AWG) and reflective semiconductor optical amplifiers (RSOAs). ONUs are grouped and connected with extra connection fibres (CFs). Protection resources are provided mutually in ONU pairs. The characteristics of the proposed survivable WDM-PON and wavelength routing scheme are analyzed. Experiments of 10- Gb/s downstream and 1.25-Gb/s upstream transmission experiments are demonstrated to verify our proposed scheme.
Spectral domain, common path OCT in a handheld PIC based system
NASA Astrophysics Data System (ADS)
Leinse, Arne; Wevers, Lennart; Marchenko, Denys; Dekker, Ronald; Heideman, René G.; Ruis, Roosje M.; Faber, Dirk J.; van Leeuwen, Ton G.; Kim, Keun Bae; Kim, Kyungmin
2018-02-01
Optical Coherence Tomography (OCT) has made it into the clinic in the last decade with systems based on bulk optical components. The next disruptive step will be the introduction of handheld OCT systems. Photonic Integrated Circuit (PIC) technology is the key enabler for this further miniaturization. PIC technology allows signal processing on a stable platform and the implementation of a common path interferometer in that same platform creates a robust fully integrated OCT system with a flexible fiber probe. In this work the first PIC based handheld and integrated common path based spectral domain OCT system is described and demonstrated. The spectrometer in the system is based on an Arrayed Waveguide Grating (AWG) and fully integrated with the CCD and a fiber probe into a system operating at 850 nm. The AWG on the PIC creates a 512 channel spectrometer with a resolution of 0.22 nm enabling a high speed analysis of the full A-scan. The silicon nitride based proprietary waveguide technology (TriPleXTM) enables low loss complex photonic structures from the visible (405 nm) to IR (2350 nm) range, making it a unique candidate for OCT applications. Broadband AWG operation from visible to 1700 nm has been shown in the platform and Photonic Design Kits (PDK) are available enabling custom made designs in a system level design environment. This allows a low threshold entry for designing new (OCT) designs for a broad wavelength range.
Interferometric imaging using Si3N4 photonic integrated circuits for a SPIDER imager.
Su, Tiehui; Liu, Guangyao; Badham, Katherine E; Thurman, Samuel T; Kendrick, Richard L; Duncan, Alan; Wuchenich, Danielle; Ogden, Chad; Chriqui, Guy; Feng, Shaoqi; Chun, Jaeyi; Lai, Weicheng; Yoo, S J B
2018-05-14
This paper reports design, fabrication, and experimental demonstration of a silicon nitride photonic integrated circuit (PIC). The PIC is capable of conducting one-dimensional interferometric imaging with twelve baselines near λ = 1100-1600 nm. The PIC consists of twelve waveguide pairs, each leading to a multi-mode interferometer (MMI) that forms broadband interference fringes or each corresponding pair of the waveguides. Then an 18 channel arrayed waveguide grating (AWG) separates the combined signal into 18 signals of different wavelengths. A total of 103 sets of fringes are collected by the detector array at the output of the PIC. We keep the optical path difference (OPD) of each interferometer baseline to within 1 µm to maximize the visibility of the interference measurement. We also constructed a testbed to utilize the PIC for two-dimension complex visibility measurement with various targets. The experiment shows reconstructed images in good agreement with theoretical predictions.
NASA Astrophysics Data System (ADS)
Lee, Kwanil; Lee, Sang Bae; Lee, Ju Han; Han, Young-Geun; Mun, Sil-Gu; Lee, Sang-Mook; Lee, Chang-Hee
2007-04-01
We propose and experimentally demonstrate a novel protection scheme for wavelength-division-multiplexed passive optical network (WDM-PON) employing colorless optical transceivers. The proposed network employs 2 × N arrayed waveguide grating (AWG) to utilize its routing characteristics. The colorless operation is achieved by using wavelength-locked Fabry-Perot laser diodes (FP-LDs) injected with spectrum-sliced amplified spontaneous emission (ASE) light. The experimental results show that the restoration can be achieved within 8 ms against the feeder fiber fault and the power penalty introduced by the restoration process is negligible.
Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits.
Shang, Kuanping; Pathak, Shibnath; Guan, Binbin; Liu, Guangyao; Yoo, S J B
2015-08-10
We design, fabricate, and demonstrate a silicon nitride (Si(3)N(4)) multilayer platform optimized for low-loss and compact multilayer photonic integrated circuits. The designed platform, with 200 nm thick waveguide core and 700 nm interlayer gap, is compatible for active thermal tuning and applicable to realizing compact photonic devices such as arrayed waveguide gratings (AWGs). We achieve ultra-low loss vertical couplers with 0.01 dB coupling loss, multilayer crossing loss of 0.167 dB at 90° crossing angle, 50 μm bending radius, 100 × 2 μm(2) footprint, lateral misalignment tolerance up to 400 nm, and less than -52 dB interlayer crosstalk at 1550 nm wavelength. Based on the designed platform, we demonstrate a 27 × 32 × 2 multilayer star coupler.
Feng, Shaoqi; Qin, Chuan; Shang, Kuanping; Pathak, Shibnath; Lai, Weicheng; Guan, Binbin; Clements, Matthew; Su, Tiehui; Liu, Guangyao; Lu, Hongbo; Scott, Ryan P; Ben Yoo, S J
2017-04-17
This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.
NASA Astrophysics Data System (ADS)
Rablau, Corneliu; Bredthauer, Lance
2007-10-01
Aside from the more traditional data, voice and e-mail communications, new bandwidth intensive applications in the larger consumer markets, such as music, digital pictures and movies, have led to an explosive increase in the demand for transmission capacity for optical communications networks. This has resulted in a widespread deployment of Dense Wavelength Division Multiplexing (DWDM) as a means of increasing the communications capacity by multiplexing and transmitting signals of different wavelengths (establishing multiple communication channels) through a single strand of fiber. We report on the design, assembly and characterization of a 50-GHz, 80-channel Mux-Demux module for DWDM systems. The module has been assembled from two commercially available 100 GHz, 40-channel Array Waveguide Grating (AWG) modules and a 50-GHz to 100-GHz interleaver. Relevant performance parameters such as insertion loss, channel uniformity, next-channel isolation (crosstalk) and integrated cross-talk are presented and discussed in contrast with the performance of other competing technologies such as Thin-Film-Filter-based Mux-Demux devices.
Multi-functional optical signal processing using optical spectrum control circuit
NASA Astrophysics Data System (ADS)
Hayashi, Shuhei; Ikeda, Tatsuhiko; Mizuno, Takayuki; Takahashi, Hiroshi; Tsuda, Hiroyuki
2015-02-01
Processing ultra-fast optical signals without optical/electronic conversion is in demand and time-to-space conversion has been proposed as an effective solution. We have designed and fabricated an arrayed-waveguide grating (AWG) based optical spectrum control circuit (OSCC) using silica planar lightwave circuit (PLC) technology. This device is composed of an AWG, tunable phase shifters and a mirror. The principle of signal processing is to spatially decompose the signal's frequency components by using the AWG. Then, the phase of each frequency component is controlled by the tunable phase shifters. Finally, the light is reflected back to the AWG by the mirror and synthesized. Amplitude of each frequency component can be controlled by distributing the power to high diffraction order light. The spectral controlling range of the OSCC is 100 GHz and its resolution is 1.67 GHz. This paper describes equipping the OSCC with optical coded division multiplex (OCDM) encoder/decoder functionality. The encoding principle is to apply certain phase patterns to the signal's frequency components and intentionally disperse the signal. The decoding principle is also to apply certain phase patterns to the frequency components at the receiving side. If the applied phase pattern compensates the intentional dispersion, the waveform is regenerated, but if the pattern is not appropriate, the waveform remains dispersed. We also propose an arbitrary filter function by exploiting the OSCC's amplitude and phase control attributes. For example, a filtered optical signal transmitted through multiple optical nodes that use the wavelength multiplexer/demultiplexer can be equalized.
AWG Filter for Wavelength Interrogator
NASA Technical Reports Server (NTRS)
Black, Richard J. (Inventor); Costa, Joannes M. (Inventor); Moslehi, Behzad (Inventor); Sotoudeh, Vahid (Inventor); Faridian, Fereydoun (Inventor)
2015-01-01
A wavelength interrogator is coupled to a circulator which couples optical energy from a broadband source to an optical fiber having a plurality of sensors, each sensor reflecting optical energy at a unique wavelength and directing the reflected optical energy to an AWG. The AWG has a detector coupled to each output, and the reflected optical energy from each grating is coupled to the skirt edge response of the AWG such that the adjacent channel responses form a complementary pair response. The complementary pair response is used to convert an AWG skirt response to a wavelength.
A novel survivable architecture for hybrid WDM/TDM passive optical networks
NASA Astrophysics Data System (ADS)
Qiu, Yang; Chan, Chun-Kit
2014-02-01
A novel tree-ring survivable architecture, which consists of an organization of a wavelength-division-multiplexing (WDM) tree from optical line terminal (OLT) to remote nodes (RNs) and a time division multiplexing (TDM) ring in each RN, is proposed for hybrid WDM/TDM passive optical networks. By utilizing the cyclic property of arrayed waveguide gratings (AWGs) and the single-ring topology among a group of optical network units (ONUs) in the remote node, not only the feeder and distribution fibers, but also any fiber failures in the RN rings are protected simultaneously. Five-Gbit/s transmissions under both normal working and protection modes were experimentally demonstrated and a traffic restoration time was successfully measured.
Full colorless transmission of millimeter-wave band gigabit data over WDM-PON using sideband routing
NASA Astrophysics Data System (ADS)
Won, Yong-Yuk; Kim, Hyun-Seung; Son, Yong-Hwan; Han, Sang-Kook
2011-12-01
A new wavelength division multiplexed-radio over fiber (WDM-RoF) access network scheme supporting the simultaneous transmission of a 1.25-Gb/s wired data as well as a 1.25-Gb/s wireless data is proposed in this paper. An optical carrier suppression effect and sideband routing using the multiplexing of arrayed waveguide grating (AWG) with 50-GHz channel spacing are utilized to generate a millimeter wave band carrier. These techniques make the proposed architecture transmit both a wired data and a wireless one at the same time. A reflective semiconductor optical amplifier (RSOA) is employed at both central office and base station so that this architecture is operated colorlessly. Error free transmissions (BER of 10-9) of both downlink and uplink are achieved simultaneously.
Optical network security using unipolar Walsh code
NASA Astrophysics Data System (ADS)
Sikder, Somali; Sarkar, Madhumita; Ghosh, Shila
2018-04-01
Optical code-division multiple-access (OCDMA) is considered as a good technique to provide optical layer security. Many research works have been published to enhance optical network security by using optical signal processing. The paper, demonstrates the design of the AWG (arrayed waveguide grating) router-based optical network for spectral-amplitude-coding (SAC) OCDMA networks with Walsh Code to design a reconfigurable network codec by changing signature codes to against eavesdropping. In this paper we proposed a code reconfiguration scheme to improve the network access confidentiality changing the signature codes by cyclic rotations, for OCDMA system. Each of the OCDMA network users is assigned a unique signature code to transmit the information and at the receiving end each receiver correlates its own signature pattern a(n) with the receiving pattern s(n). The signal arriving at proper destination leads to s(n)=a(n).
Demonstration of 720×720 optical fast circuit switch for intra-datacenter networks
NASA Astrophysics Data System (ADS)
Ueda, Koh; Mori, Yojiro; Hasegawa, Hiroshi; Matsuura, Hiroyuki; Ishii, Kiyo; Kuwatsuka, Haruhiko; Namiki, Shu; Sato, Ken-ichi
2016-03-01
Intra-datacenter traffic is growing more than 20% a year. In typical datacenters, many racks/pods including servers are interconnected via multi-tier electrical switches. The electrical switches necessitate power-consuming optical-to- electrical (OE) and electrical-to-optical (EO) conversion, the power consumption of which increases with traffic. To overcome this problem, optical switches that eliminate costly OE and EO conversion and enable low power consumption switching are being investigated. There are two major requirements for the optical switch. First, it must have a high port count to construct reduced tier intra-datacenter networks. Second, switching speed must be short enough that most of the traffic load can be offloaded from electrical switches. Among various optical switches, we focus on those based on arrayed-waveguide gratings (AWGs), since the AWG is a passive device with minimal power consumption. We previously proposed a high-port-count optical switch architecture that utilizes tunable lasers, route-and-combine switches, and wavelength-routing switches comprised of couplers, erbium-doped fiber amplifiers (EDFAs), and AWGs. We employed conventional external cavity lasers whose wavelength-tuning speed was slower than 100 ms. In this paper, we demonstrate a large-scale optical switch that offers fast wavelength routing. We construct a 720×720 optical switch using recently developed lasers whose wavelength-tuning period is below 460 μs. We evaluate the switching time via bit-error-ratio measurements and achieve 470-μs switching time (includes 10-μs guard time to handle EDFA surge). To best of our knowledge, this is the first demonstration of such a large-scale optical switch with practical switching time.
Dual-wavelength tunable fibre laser with a 15-dBm peak power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latif, A A; Awang, N A; Zulkifli, M Z
2011-08-31
A high-power dual-wavelength tunable fibre laser (HP-DWTFL) operating in the C-band at wavelengths from 1536.7 nm to 1548.6 nm is proposed and demonstrated. The HP-DWTFL utilises an arrayed waveguide grating (AWG) (1 x 16 channels) and is capable of generating eight different dual-wavelength pairs with eight possible wavelength spacings ranging from 0.8 nm (the narrowest spacing) to 12.0 nm (the widest spacing). The average output power and side mode suppression ratio (SMSR) of the HP-DWTFL are measured to be 15 dBm and 52.55 dB, respectively. The proposed HP-DWTFL is highly stable with no variations in the chosen output wavelengths andmore » has minimal changes in the output power. Such a laser has good potential for use in measurements, communications, spectroscopy and terahertz applications. (control of radiation parameters)« less
Connection anonymity analysis in coded-WDM PONs
NASA Astrophysics Data System (ADS)
Sue, Chuan-Ching
2008-04-01
A coded wavelength division multiplexing passive optical network (WDM PON) is presented for fiber to the home (FTTH) systems to protect against eavesdropping. The proposed scheme applies spectral amplitude coding (SAC) with a unipolar maximal-length sequence (M-sequence) code matrix to generate a specific signature address (coding) and to retrieve its matching address codeword (decoding) by exploiting the cyclic properties inherent in array waveguide grating (AWG) routers. In addition to ensuring the confidentiality of user data, the proposed coded-WDM scheme is also a suitable candidate for the physical layer with connection anonymity. Under the assumption that the eavesdropper applies a photo-detection strategy, it is shown that the coded WDM PON outperforms the conventional TDM PON and WDM PON schemes in terms of a higher degree of connection anonymity. Additionally, the proposed scheme allows the system operator to partition the optical network units (ONUs) into appropriate groups so as to achieve a better degree of anonymity.
Hybrid WDM/TDM-PON With Wavelength-Selection-Free Transmitters
NASA Astrophysics Data System (ADS)
Shin, Dong Jae; Jung, Dae Kwang; Shin, Hong Seok; Kwon, Jin Wook; Hwang, Seongtaek; Oh, Yunje; Shim, Changsup
2005-01-01
A hybrid wavelength-division-multiplexed/time-division-multiplexed passive optical network serving 128 subscribers with wavelength-selection-free transmitters is presented by cascading 1x16 arrayed-waveguide gratings (AWGs) and 1x8 splitters. The wavelength-selection-free transmitter is an uncooled Fabry-Pérot laser diode (FP-LD) wavelength-locked to an externally injected narrow-band amplified spontaneous emission (ASE). Bit-error rates better than 10^-9 over temperature ranging from 0 to 60 °C are achieved in all 16 wavelength channels using a single FP-LD with an ASE injection of about -15 and -2 dBm in 622-Mb/s upstream and 1.25-Gb/s downstream transmissions over a 10-km feeder fiber, respectively. It is also reported that the ASE injection does not exert penalty upon burst-mode operations of the FP-LDs in the upstream.
Multi-gigabit WDM optical networking for next generation avionics system communications
NASA Astrophysics Data System (ADS)
Gardner, Robert D.; Andonovic, I.; Hunter, D. K.; Hamoudi, A.; McLaughlin, A. J.; Aitchison, J. S.; Marsh, J. H.
2000-04-01
It is envisaged that photonic networking will play a significant role in improving performance and reliability in both civil and military avionics systems. Of all the available photonic multiplexing technologies, wavelength-division multiplexing (WDM) has been the primary focus of attention within mainstream telecommunications offering increased throughput at a reasonable cost, with scope for enhanced routing flexibility, connectivity and network survivability. A direct mapping of techniques and devices from the maturing telecommunications sector is, however, not possible because of the stringent requirements of systems operating in the hostile aerospace environment. This paper gives an outline of these requirements and discusses, in detail, the design and development of a multi-gigabit, broadband optical WDM network architecture, specifically for use on aerospace platforms. The paper will also discuss a key element in the system, the arrayed-waveguide grating (AWG) wavelength multiplexing component, which has been designed to allow operation over the full military temperature specification without environmental conditioning.
Low-Cost WDM-PON With Colorless Bidirectional Transceivers
NASA Astrophysics Data System (ADS)
Shin, Dong Jae; Keh, Y. C.; Kwon, J. W.; Lee, E. H.; Lee, J. K.; Park, M. K.; Park, J. W.; Oh, Y. K.; Kim, S. W.; Yun, I. K.; Shin, H. C.; Heo, D.; Lee, J. S.; Shin, H. S.; Kim, H. S.; Park, S. B.; Jung, D. K.; Hwang, Seongtaek; Oh, Y. J.; Jang, D. H.; Shim, C. S.
2006-01-01
This paper presents a low-cost bidirectional (BiDi) wavelength-division-multiplexed passive optical network (WDM-PON) employing colorless uncooled BiDi transceivers (TRxs) and superluminescent diode (SLD)-based broadband light sources (BLSs). The C band is allocated for upstream and the E+ band for downstream in consideration of BiDi packaging, SLD development, and wavelength alignment of dual-window arrayed waveguide gratings (AWGs). The BiDi TRx integrates an uncooled Fabry-Pérot laser diode (FP-LD), a p-i-n photodiode (PD), and a 45°-angled thin-film filter in a small-form-factor (SFF) package. The SLD-based BLSs provide 13-dBm amplified spontaneous emissions (ASEs) with spectral ripples of < 3 dB and polarization dependencies of < 1 dB. Colorless operations over 32 100-GHz-spaced channels are demonstrated from -20 to 80°C in 155-Mb/s BiDi transmissions over 25 km.
Polymer waveguide based hybrid opto-electric integration technology
NASA Astrophysics Data System (ADS)
Mao, Jinbin; Deng, Lingling; Jiang, Xiyan; Ren, Rong; Zhai, Yumeng; Wang, Jin
2014-10-01
While monolithic integration especially based on InP appears to be quite an expensive solution for optical devices, hybrid integration solutions using cheaper material platforms are considered powerful competitors because of the high freedom of design, yield optimization and relative cost-efficiency. Among them, the polymer planar-lightwave circuit (PLC) technology is regarded attractive as polymer offers the potential of fairly simple and low-cost fabrication, and of low-cost packaging. In our work, polymer PLC was fabricated by using the standard reactive ion etching (RIE) technique, while other active and passive devices can be integrated on the polymer PLC platform. Exemplary polymer waveguide devices was a 13-channel arrayed waveguide grating (AWG) chip, where the central channel cross-talk was below -30dB and the polarization dependent frequency shift was mitigated by inserting a half wave plate. An optical 900 hybrid was also realized with one 2×4 multi-mode interferometer (MMI). The excess insertion losses are below 4dB for the C-band, while the transmission imbalance is below 1.2dB. When such an optical hybrid was integrated vertically with mesa-type photodiodes, the responsivity of the individual PD was around 0.06 A/W, while the 3 dB bandwidth reaches 24 ~ 27 GHz, which is sufficient for 100Gbit/s receivers. Another example of the hybrid integration was to couple the polymer waveguides to fiber by applying fiber grooves, whose typical loss value was 0.2 dB per-facet over a broad spectral range from 1200-1600 nm.
High-Brightness Lasers with Spectral Beam Combining on Silicon
NASA Astrophysics Data System (ADS)
Stanton, Eric John
Modern implementations of absorption spectroscopy and infrared-countermeasures demand advanced performance and integration of high-brightness lasers, especially in the molecular fingerprint spectral region. These applications, along with others in communication, remote-sensing, and medicine, benefit from the light source comprising a multitude of frequencies. To realize this technology, a single multi-spectral optical beam of near-diffraction-limited divergence is created by combining the outputs from an array of laser sources. Full integration of such a laser is possible with direct bonding of several epitaxially-grown chips to a single silicon (Si) substrate. In this platform, an array of lasers is defined with each gain material, creating a densely spaced set of wavelengths similar to wavelength division multiplexing used in communications. Scaling the brightness of a laser typically involves increasing the active volume to produce more output power. In the direction transverse to the light propagation, larger geometries compromise the beam quality. Lengthening the cavity provides only limited scaling of the output power due to the internal losses. Individual integrated lasers have low brightness due to combination of thermal effects and high optical intensities. With heterogeneous integration, many lasers can be spectrally combined on a single integrated chip to scale brightness in a compact platform. Recent demonstrations of 2.0-microm diode and 4.8-microm quantum cascade lasers on Si have extended this heterogeneous platform beyond the telecommunications band to the mid-infrared. In this work, low-loss beam combining elements spanning the visible to the mid-infrared are developed and a high-brightness multi-spectral laser is demonstrated in the range of 4.6-4.7-microm wavelengths. An architecture is presented where light is combined in multiple stages: first within the gain-bandwidth of each laser material and then coarsely between each spectral band to a single output waveguide. All components are demonstrated on a common material platform with a Si substrate, which lends feasibility to the complete system integration. Particular attention is focused on improving the efficiency of arrayed waveguide gratings (AWGs), used in the dense wavelength combining stage. This requires development of a refined characterization technique involving AWGs in a ring-resonator configuration to reduce measurement uncertainty. New levels of low-loss are achieved for visible, near-infrared, and mid-infrared multiplexing devices. Also, a multi-spectral laser in the mid-infrared is demonstrated by integrating an array of quantum cascade lasers and an AWG with Si waveguides. The output power and spectra are measured, demonstrating efficient beam combining and power scaling. Thus, a bright laser source in the mid-infrared has been demonstrated, along with an architecture and the components for incorporating visible and near-infrared optical bands.
Cross-fiber Bragg grating transducer
NASA Technical Reports Server (NTRS)
Albin, Sacharia (Inventor); Zheng, Jianli (Inventor); Lavarias, Arnel (Inventor)
2000-01-01
A transducer has been invented that uses specially-oriented gratings in waveguide a manner that allows the simultaneous measurement of physical phenomena (such as shear force, strain and temperature) in a single sensing element. The invention has a highly sensitive, linear response and also has directional sensitivity with regard to strain. The transducer has a waveguide with a longitudinal axis as well as two Bragg gratings. The transducer has a first Bragg grating associated with the waveguide that has an angular orientation .theta..sub.a relative to a perpendicular to the longitudinal axis such that 0.degree.<.theta..sub.a <.theta..sub.max. The second Bragg grating is associated with the waveguide in such a way that the angular orientation .theta..sub.b of the grating relative to a perpendicular to the longitudinal axis is (360.degree.-.theta..sub.max)<.theta..sub.b <360.degree.. The first Bragg grating can have a periodicity .LAMBDA..sub.a and the second Bragg grating can have a periodicity .LAMBDA..sub.b such that the periodicity .LAMBDA..sub.a of the first Bragg grating does not equal the periodicity .LAMBDA..sub.b of the second Bragg grating. The angle of the gratings can be such that .theta..sub.a =360.degree.-.theta..sub.b. The waveguide can assume a variety of configurations, including an optical fiber, a rectangular waveguide and a planar waveguide. The waveguide can be fabricated of a variety of materials, including silica and polymer material.
Design and fabrication of inverted rib waveguide Bragg grating
NASA Astrophysics Data System (ADS)
Huang, Cheng-Sheng; Wang, Wei-Chih
2009-03-01
A polymeric SU8 rib waveguide Bragg grating filterfabricated using reactive ion etching (RIE) and solvent assisted microcontact molding (SAMIM) is presented. SAMIM is one kind of soft lithography. The technique is unique in which that a composite hPDMS/PDMS stamp was used to transfer the grating pattern onto an inverted SU8 rib waveguide system. The composite grating stamp can be used repeatedly several times with degradation. Using this stamp and inverter rib waveguide structure, the Bragg grating filter fabrication can be significantly simplified.
Integration and manufacture of multifunctional planar lightwave circuits
NASA Astrophysics Data System (ADS)
Lipscomb, George F.; Ticknor, Anthony J.; Stiller, Marc A.; Chen, Wenjie; Schroeter, Paul
2001-11-01
The demands of exponentially growing Internet traffic, coupled with the advent of Dense Wavelength Division Multiplexing (DWDM) fiber optic systems to meet those demands, have triggered a revolution in the telecommunications industry. This dramatic change has been built upon, and has driven, improvements in fiber optic component technology. The next generation of systems for the all optical network will require higher performance components coupled with dramatically lower costs. One approach to achieve significantly lower costs per function is to employ Planar Lightwave Circuits (PLC) to integrate multiple optical functions in a single package. PLCs are optical circuits laid out on a silicon wafer, and are made using tools and techniques developed to extremely high levels by the semi-conductor industry. In this way multiple components can be fabricated and interconnected at once, significantly reducing both the manufacturing and the packaging/assembly costs. Currently, the predominant commercial application of PLC technology is arrayed-waveguide gratings (AWG's) for multiplexing and demultiplexing multiple wavelength channels in a DWDM system. Although this is generally perceived as a single-function device, it can be performing the function of more than 100 discrete fiber-optic components and already represents a considerable degree of integration. Furthermore, programmable functions such as variable-optical attenuators (VOAs) and switches made with compatible PLC technology are now moving into commercial production. In this paper, we present results on the integration of active and passive functions together using PLC technology, e.g. a 40 channel AWG multiplexer with 40 individually controllable VOAs.
SU8 inverted-rib waveguide Bragg grating filter.
Huang, Cheng-Sheng; Wang, Wei-Chih
2013-08-01
A polymeric SU8 inverted-rib waveguide Bragg grating filter fabricated using reactive ion etching (RIE) and solvent assisted microcontact molding (SAMIM) is presented. SAMIM is one kind of soft lithography. The technique is unique in that a composite hard-polydimethysiloxane/polydimethysiloxane stamp is used to transfer the grating pattern onto an inverted SU8 rib waveguide system. The composite grating stamp can be used repeatedly several times without degradation. Using this stamp and inverter-rib waveguide structure, the Bragg grating filter fabrication can be significantly simplified. The experiment result shows an attenuation dip in the transmission spectra, with a value of -7 dBm at 1550 nm for a grating with a period of 0.492 μm on an inverted-rib waveguide with 6.6 μm width and 4 μm height.
Integrated narrowband optical filter based on embedded subwavelength resonant grating structures
Grann, Eric B.; Sitter, Jr., David N.
2000-01-01
A resonant grating structure in a waveguide and methods of tuning the performance of the grating structure are described. An apparatus includes a waveguide; and a subwavelength resonant grating structure embedded in the waveguide. The systems and methods provide advantages including narrowband filtering capabilities, minimal sideband reflections, spatial control, high packing density, and tunability.
Polymer waveguide grating sensor integrated with a thin-film photodetector
Song, Fuchuan; Xiao, Jing; Xie, Antonio Jou; Seo, Sang-Woo
2014-01-01
This paper presents a planar waveguide grating sensor integrated with a photodetector (PD) for on-chip optical sensing systems which are suitable for diagnostics in the field and in-situ measurements. III–V semiconductor-based thin-film PD is integrated with a polymer based waveguide grating device on a silicon platform. The fabricated optical sensor successfully discriminates optical spectral characteristics of the polymer waveguide grating from the on-chip PD. In addition, its potential use as a refractive index sensor is demonstrated. Based on a planar waveguide structure, the demonstrated sensor chip may incorporate multiple grating waveguide sensing regions with their own optical detection PDs. In addition, the demonstrated processing is based on a post-integration process which is compatible with silicon complementary metal-oxide semiconductor (CMOS) electronics. Potentially, this leads a compact, chip-scale optical sensing system which can monitor multiple physical parameters simultaneously without need for external signal processing. PMID:24466407
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabanenkov, M. Yu., E-mail: barab@iptm.ru; Vyatkin, A. F.; Volkov, V. T.
2015-12-15
Single-mode submicrometer-thick strip waveguides on silicon-on-insulator substrates, fabricated by silicon-planar-technology methods are considered. To solve the problem of 1.5-µm wavelength radiation input-output and its frequency filtering, strip diffraction gratings and two-dimensional photonic crystals are integrated into waveguides. The reflection and transmission spectra of gratings and photonic crystals are calculated. The waveguide-mode-attenuation coefficient for a polycrystalline silicon waveguide is experimentally estimated.
Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating
NASA Technical Reports Server (NTRS)
Lang, Robert J. (Inventor); Forouhar, Siamak (Inventor)
1994-01-01
A semiconductor optical integrated circuit for wave division multiplexing has a semiconductor waveguide layer, a succession of diffraction grating points in the waveguide layer along a predetermined diffraction grating contour, a semiconductor diode array in the waveguide layer having plural optical ports facing the succession of diffraction grating points along a first direction, respective semiconductor diodes in the array corresponding to respective ones of a predetermined succession of wavelengths, an optical fiber having one end thereof terminated at the waveguide layer, the one end of the optical fiber facing the succession of diffraction grating points along a second direction, wherein the diffraction grating points are spatially distributed along the predetermined contour in such a manner that the succession of diffraction grating points diffracts light of respective ones of the succession of wavelengths between the one end of the optical fiber and corresponding ones of the optical ports.
NASA Astrophysics Data System (ADS)
Müller, André; Zink, Christof; Fricke, Jörg; Bugge, Frank; Erbert, Götz; Sumpf, Bernd; Tränkle, Günther
2018-02-01
1030 nm DBR tapered diode lasers with different lateral layouts are presented. The layout comparison includes lasers with straight waveguide and grating, tapered waveguide and straight grating, and straight waveguide and tapered grating. The lasers provide narrowband emission and optical output powers up to 15 W. The highest diffraction-limited central lobe output power of 10.5 W is obtained for lasers with tapered gratings only. Small variations in central lobe output power with RW injection current density also indicate the robustness of that layout. For lasers with tapered waveguides, high RW injection current densities up to 150 A/mm2 have to be applied in order to obtain high central lobe output powers. Lasers with straight waveguide and grating operate best at low RW injection current densities, 50 A/mm2 applied in this study. Using the layout optimizations discussed in this study may help to increase the application potential of DBR tapered diode lasers.
NASA Astrophysics Data System (ADS)
Covey, John; Chen, Ray T.
2014-03-01
Grating couplers are ideal for coupling into the tightly confined propagation modes of semiconductor waveguides. In addition, nonlinear optics has benefited from the sub-diffraction limit confinement of horizontal slot waveguides. By combining these two advancements, slot-based nonlinear optics with mode areas less than 0.02 μm2 can become as routine as twisting fiber connectors together. Surface normal fiber alignment to a chip is also highly desirable from time, cost, and manufacturing considerations. To meet these considerable design challenges, a custom genetic algorithm is created which, starting from purely random designs, creates a unique four stage grating coupler for two novel horizontal slot waveguide platforms. For horizontal multiple-slot waveguides filled with silicon nanocrystal, a theoretical fiber-towaveguide coupling efficiency of 68% is obtained. For thin silicon waveguides clad with optically active silicon nanocrystal, known as cover-slot waveguides, a theoretical fiber-to-waveguide coupling efficiency of 47% is obtained, and 1 dB and 3 dB theoretical bandwidths of 70 nm and 150 nm are obtained, respectively. Both waveguide platforms are fabricated from scratch, and their respective on-chip grating couplers are experimentally measured from a standard single mode fiber array that is mounted surface normally. The horizontal multiple-slot grating coupler achieved an experimental 60% coupling efficiency, and the horizontal cover-slot grating coupler achieved an experimental 38.7% coupling efficiency, with an extrapolated 1 dB bandwidth of 66 nm. This report demonstrates the promise of genetic algorithm-based design by reducing to practice the first large bandwidth vertical grating coupler to a novel silicon nanocrystal horizontal cover-slot waveguide.
NASA Astrophysics Data System (ADS)
Liu, Yueming; Tian, Weijian; Zhang, Shaojun
2009-05-01
Soft and flexible grating sensing waveguides is urgently demanded in application of micro-bending sensing and surface distortion sensing in medical catheter and smart skin sensing unit etc. Based on Nano-imprint Lithography and micro-replication process, polymer grating waveguides with core size 4μm×20μm and pitch 0.75μm are fabricated successfully in this paper. This novel grating waveguides is soft and flexible enough for related application and with the bio-medical safe feature when used in human body catheter. Fabricated processes are presented including the fabrication of micro mould and UV-replication process, and relative skills are discussed also in this paper.
Direct and Inverse Techniques of Guided-Mode Resonance Filters Designs
NASA Technical Reports Server (NTRS)
Tibuleac, Sorin; Magnusson, Robert; Maldonado, Theresa A.; Zuffada, Cinzia
1997-01-01
Guided-mode resonances arise in single or multilayer waveguides where one or more homogeneous layers are replaced by diffraction gratings (Fig. 1.) The diffractive element enables an electromagnetic wave incident on a waveguide grating to be coupled to the waveguide modes supportable by the structure in the absence of the modulation (i.e. the difference between the high and low dielectric constants of the grating) at specific values of the wavelength and incident angle. The periodic modulation of the guide makes the structure leaky, preventing sustained propagation of modes in the waveguide and coupling the waves out into the substrate and cover. As the wavelength is varied around resonance a rapid variation in the intensities of the external propagating waves occurs. By selecting a grating period small enough to eliminate the higher-order propagating waves, an increase in the zero-order intensities up to 100% can result. The pronounced frequency selectivity of guided-mode resonances in dielectric waveguide gratings can be applied to design high-efficiency reflection and transmission filters [1-3].
All-optical single-sideband frequency upconversion utilizing the XPM effect in an SOA-MZI.
Kim, Doo-Ho; Lee, Joo-Young; Choi, Hyung-June; Song, Jong-In
2016-09-05
An all-optical single sideband (OSSB) frequency upconverter based on the cross-phase modulation (XPM) effect is proposed and experimentally demonstrated to overcome the power fading problem caused by the chromatic dispersion of fiber in radio-over-fiber systems. The OSSB frequency upconverter consists of an arrayed waveguide grating (AWG) and a semiconductor optical amplifier Mach-Zehnder interferometer (SOA-MZI) and does not require an extra delay line used for phase noise compensation. The generated OSSB radio frequency (RF) signal transmitted over single-mode fibers up to 20 km shows a flat electrical RF power response as a function of the fiber length. The upconverted electrical RF signal at 48 GHz shows negligible degradation of the phase noise even without an extra delay line. The measured phase noise of the upconverted RF signal (48 GHz) is -74.72 dBc/Hz at an offset frequency of 10 kHz. The spurious free dynamic range (SFDR) measured by a two-tone test to estimate the linearity of the OSSB frequency upconverter is 72.5 dB·Hz2/3.
Compact flexible multifrequency splitter based on plasmonic graded metallic grating arc waveguide.
Han, Chao; Wang, Zhaohong; Chu, Yangyang; Zhao, Xiaodan; Zhang, Xuanru
2018-04-15
A compact flexible multifrequency splitter based on an arc waveguide constructed of plasmonic metallic grating structures with graded-height T-grooves is proposed and studied. The dispersion curves and cutoff frequencies of the plasmonic grating waveguides with different T-groove metallic grating heights are different. The guided spoof surface plasmonic polariton waves at different frequencies can be localized at dissimilar angles along the graded grating arc waveguide. The output flexibility at an arbitrary groove for different frequencies is realized by introducing an additional symmetrical T-groove structure as an output. The compact four-, seven-, and eight-output frequency splitters demonstrate its flexible multifrequency separation capability at different output angle locations, while the dimensional size of the frequency splitters is not increased. Measurement results at the microwave frequency display excellent agreement with numerical simulation results.
Shim, Euijae; Chen, Yu; Masmanidis, Sotiris; Li, Mo
2016-03-04
Optimal optogenetic perturbation of brain circuit activity often requires light delivery in a precise spatial pattern that cannot be achieved with conventional optical fibers. We demonstrate an implantable silicon-based probe with a compact light delivery system, consisting of silicon nitride waveguides and grating couplers for out-of-plane light emission with high spatial resolution. 473 nm light is coupled into and guided in cm-long waveguide and emitted at the output grating coupler. Using the direct cut-back and out-scattering measurement techniques, the propagation optical loss of the waveguide is measured to be below 3 dB/cm. The grating couplers provide collimated light emission with sufficient irradiance for neural stimulation. Finally, a probe with multisite light delivery with three output grating emitters from a single laser input is demonstrated.
Active phase correction of high resolution silicon photonic arrayed waveguide gratings
Gehl, M.; Trotter, D.; Starbuck, A.; ...
2017-03-10
Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Thus, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. We present the design and fabrication of compact siliconmore » photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm 2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. In addition, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.« less
Active phase correction of high resolution silicon photonic arrayed waveguide gratings.
Gehl, M; Trotter, D; Starbuck, A; Pomerene, A; Lentine, A L; DeRose, C
2017-03-20
Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.
60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform.
Zou, Zhi; Zhou, Linjie; Li, Xinwan; Chen, Jianping
2015-08-10
We demonstrate integrated basic photonic components and Bragg gratings using 60-nm-thick silicon-on-insulator strip waveguides. The ultra-thin waveguides exhibit a propagation loss of 0.61 dB/cm and a bending loss of approximately 0.015 dB/180° with a 30 μm bending radius (including two straight-bend waveguide junctions). Basic structures based on the ultra-thin waveguides, including micro-ring resonators, 1 × 2 MMI couplers, and Mach-Zehnder interferometers are realized. Upon thinning-down, the waveguide effective refractive index is reduced, making the fabrication of Bragg gratings possible using the standard 248-nm deep ultra-violet (DUV) photolithography process. The Bragg grating exhibits a stopband width of 1 nm and an extinction ratio of 35 dB, which is practically applicable as an optical filter or a delay line. The transmission spectrum can be thermally tuned via an integrated resistive micro-heater formed by a heavily doped silicon slab beside the waveguide.
Sah, Parimal; Das, Bijoy Krishna
2018-03-20
It has been shown that a fundamental mode adiabatically launched into a multimode SOI waveguide with submicron grating offers well-defined flat-top bandpass filter characteristics in transmission. The transmitted spectral bandwidth is controlled by adjusting both waveguide and grating design parameters. The bandwidth is further narrowed down by cascading two gratings with detuned parameters. A semi-analytical model is used to analyze the filter characteristics (1500 nm≤λ≤1650 nm) of the device operating in transverse-electric polarization. The proposed devices were fabricated with an optimized set of design parameters in a SOI substrate with a device layer thickness of 250 nm. The pass bandwidth of waveguide devices integrated with single-stage gratings are measured to be ∼24 nm, whereas the device with two cascaded gratings with slightly detuned periods (ΔΛ=2 nm) exhibits a pass bandwidth down to ∼10 nm.
Silicon-nitride/oxynitride wavelength demultiplexer and resonators for quantum photonics
NASA Astrophysics Data System (ADS)
Lim, Soon Thor; Gandhi, Alagappan; Ong, Jun Rong; Ang, Thomas; Png, Ching Eng; Lu, Ding; Ang, Norman Soo Seng; Teo, Ee Jin; Teng, Jinghua
2018-02-01
SiOxNy shows promises for bright emitters of single photons. We successfully fabricated ultra-low-loss SiOxNy waveguide and AWG with low insertion loss <1dB and <3dB total loss (<2dB on-chip loss and <1dB coupling loss) at 1310nm.
Application of telecom planar lightwave circuits for homeland security sensing
NASA Astrophysics Data System (ADS)
Veldhuis, Gert J.; Elders, Job; van Weerden, Harm; Amersfoort, Martin
2004-03-01
Over the past decade, a massive effort has been made in the development of planar lightwave circuits (PLCs) for application in optical telecommunications. Major advances have been made, on both the technological and functional performance front. Highly sophisticated software tools that are used to tailor designs to required functional performance support these developments. In addition extensive know-how in the field of packaging, testing, and failure mode and effects analysis (FMEA) has been built up in the struggle for meeting the stringent Telcordia requirements that apply to telecom products. As an example, silica-on-silicon is now a mature technology available at several industrial foundries around the world, where, on the performance front, the arrayed-waveguide grating (AWG) has evolved into an off-the-shelf product. The field of optical chemical-biological (CB) sensors for homeland security application can greatly benefit from the advances as described above. In this paper we discuss the currently available technologies, device concepts, and modeling tools that have emerged from the telecommunications arena and that can effectively be applied to the field of homeland security. Using this profound telecom knowledge base, standard telecom components can readily be tailored for detecting CB agents. Designs for telecom components aim at complete isolation from the environment to exclude impact of environmental parameters on optical performance. For sensing applications, the optical path must be exposed to the measurand, in this area additional development is required beyond what has already been achieved in telecom development. We have tackled this problem, and are now in a position to apply standard telecom components for CB sensing. As an example, the application of an AWG as a refractometer is demonstrated, and its performance evaluated.
On-chip optical mode conversion based on dynamic grating in photonic-phononic hybrid waveguide
Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang
2015-01-01
We present a scheme for reversible and tunable on-chip optical mode conversion based on dynamic grating in a hybrid photonic-phononic waveguide. The dynamic grating is built up through the acousto-optic effect and the theoretical model of the optical mode conversion is developed by considering the geometrical deformation and refractive index change. Three kinds of mode conversions are able to be realized using the same hybrid waveguide structure in a large bandwidth by only changing the launched acoustic frequency. The complete mode conversion can be achieved by choosing a proper acoustic power under a given waveguide length. PMID:25996236
Optical-fiber-to-waveguide coupling using carbon-dioxide-laser-induced long-period fiber gratings.
Bachim, Brent L; Ogunsola, Oluwafemi O; Gaylord, Thomas K
2005-08-15
Optical fibers are expected to play a role in chip-level and board-level optical interconnects because of limitations on the bandwidth and level of integration of electrical interconnects. Therefore, methods are needed to couple optical fibers directly to waveguides on chips and on boards. We demonstrate optical-fiber-to-waveguide coupling using carbon-dioxide laser-induced long-period fiber gratings (LPFGs). Such gratings can be written in standard fiber and offer wavelength multiplexing-demultiplexing performance. The coupler fabrication process and the characterization apparatus are presented. The operation and the wavelength response of a LPFG-based optical-fiber-to-waveguide directional coupler are demonstrated.
Development of a wavelength tunable filter using MEMS technology
NASA Astrophysics Data System (ADS)
Liu, Junting
Microelectromechanical systems (MEMS) for optical applications have received intensive attention in recent years because of their potential applications in optical telecommunication. Traditional wavelength division multiplexing (WDM) offers high capacity but requires the fabrication of selective add-drop filters. MEMS technology offers an effective way to fabricate these components at low cost. This thesis presents the development of a device that tunes the Bragg wavelength by coupling into the evanescent field of the grating. A Bragg grating is a periodic perturbation of the refractive index along a fiber or a periodic perturbation of the structure of a planar waveguide. The Bragg wavelength can be tuned by changing the degree to which a dielectric slab couples into the evanescent field. The result is a change in the effective index of the grating, and thus a change in the wavelength that which it reflects. In this thesis Bragg gratings were successfully written into an optical fiber using phase mask technique. Mechanical polishing was used to side-polish the fiber and remove cladding to expose the core. Grating structures were also fabricated in planar waveguide using E-beam writing and dry etching. In order to achieve the smoothest possible morphology of the waveguide, plasma dry etching of transparent substrates was studied in great detail. It is found that the pre-etch cleaning procedure greatly influences the ability to obtain a smooth etched surface. Upper limits of evanescent field tuning were investigated by applying different index liquids such as D. I. water and index matching oils or by positioning different dielectric materials such as glass and silicon close to the grating. Planar waveguides were found to be more sensitive to effective index change. Two kinds of computer simulation were carried out to understand the mode profile and to estimate the value of effective index of planar waveguide under "dry" and "wet" conditions. The first one used an average depth of grating approximation. The second explicitly considered the corrugated structure of the waveguide. Results of both simulations were compared with the experimental results in order to find the proper simulation approach. The fiber or planar waveguide gratings were "device" integrated and their pro and cons were compared. Devices using an optical fiber employed a microactuator driven by electrothermal vibromotor to change the degree of coupling between fiber and "tuning block". Device using planar waveguides used an electrostatic force actuated membrane, flip-chip mounted atop the waveguide. All devices were fabricated using polysilicon surface micromachining processes. I concluded that devices driven by electrostatic force were easier to actuate and their integration with waveguide less challenging.
Sub-wavelength grating structure on the planar waveguide (Conference Presentation)
NASA Astrophysics Data System (ADS)
Qing-Song, Zhu; Sheng-Hui, Chen
2016-10-01
Making progress in recent years, with the technology of the grating, the grating period can be reduced to shrink the size of the light coupler on a waveguide. The working wavelength of the light coupler can be in the range from the near-infrared to visible. In this study , we used E-gun evaporation system with ion-beam-assisted deposition system to fabricate bottom cladding (SiO2), guiding layer (Ta2O5) and Distributed Bragg Reflector(DBR) of the waveguide on the silicon substrate. Electron-beam lithography is used to make sub-wavelength gratings and reflector grating on the planar waveguide which is a coupling device on the guiding layer. The best fabrication parameters were analyzed to deposit the film. The exposure and development times also influenced to fabricate the grating quality. The purpose is to reduce the device size and enhance coupling efficiency which maintain normal incidence of the light . We designed and developed the device using the Finite-Difference Time-Domain (FDTD) method. The grating period, depth, fill factor, film thickness, Distributed Bragg Reflector(DBR) numbers and reflector grating period have been discussed to enhance coupling efficiency and maintained normal incidence of the light. According to the simulation results, when the wavelength is 1300 nm, the coupling grating period is 720 nm and the Ta2O5 film is 460 nm with 360 nm of reflector grating period and 2 layers of Distributed Bragg Reflector, which had the optimum coupling efficiency and normal incidence angle. In the measurement, We successfully measured the TE wave coupling efficiency of the photoresist grating coupling device.
Tehranchi, Amirhossein; Morandotti, Roberto; Kashyap, Raman
2011-11-07
High-efficiency ultra-broadband wavelength converters based on double-pass quasi-phase-matched cascaded sum and difference frequency generation including engineered chirped gratings in lossy lithium niobate waveguides are numerically investigated and compared to the single-pass counterparts, assuming a large twin-pump wavelength difference of 75 nm. Instead of uniform gratings, few-section chirped gratings with the same length, but with a small constant period change among sections with uniform gratings, are proposed to flatten the response and increase the mean efficiency by finding the common critical period shift and minimum number of sections for both single-pass and double-pass schemes whilst for the latter the efficiency is remarkably higher in a low-loss waveguide. It is also verified that for the same waveguide length and power, the efficiency enhancement expected due to the use of the double-pass scheme instead of the single-pass one, is finally lost if the waveguide loss increases above a certain value. For the double-pass scheme, the criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, bandwidth and ripple are presented for the optimum 3-section chirped-gratings-based devices. Efficient conversions with flattop bandwidths > 84 nm for lengths < 3 cm can be obtained.
NASA Astrophysics Data System (ADS)
Katayama, Takeo; Ito, Jun; Kawaguchi, Hitoshi
2016-07-01
We investigated the optical coupling between a polarization-independent high-index-contrast subwavelength grating (HCG) and two orthogonal in-plane waveguides. We fabricated the HCG with waveguides on a silicon-on-insulator substrate and demonstrated that a waveguide with a strong output is switched by changing the polarization of light injected into the HCG. The light coupled more strongly to the waveguide in the direction perpendicular to the polarization of the incident light than to that in the parallel direction. If this waveguide-coupled HCG is incorporated into a polarization bistable vertical-cavity surface-emitting laser (VCSEL), the output waveguide can be switched by changing the lasing polarization of the VCSEL.
Narrowband resonant transmitter
Hutchinson, Donald P.; Simpson, Marcus L.; Simpson, John T.
2004-06-29
A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.
Transverse-longitudinal integrated resonator
Hutchinson, Donald P [Knoxville, TN; Simpson, Marcus L [Knoxville, TN; Simpson, John T [Knoxville, TN
2003-03-11
A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.
Strategies for P2P connectivity in reconfigurable converged wired/wireless access networks.
Puerto, Gustavo; Mora, José; Ortega, Beatriz; Capmany, José
2010-12-06
This paper presents different strategies to define the architecture of a Radio-Over-Fiber (RoF) Access networks enabling Peer-to-Peer (P2P) functionalities. The architectures fully exploit the flexibility of a wavelength router based on the feedback configuration of an Arrayed Waveguide Grating (AWG) and an optical switch to broadcast P2P services among diverse infrastructures featuring dynamic channel allocation and enabling an optical platform for 3G and beyond wireless backhaul requirements. The first architecture incorporates a tunable laser to generate a dedicated wavelength for P2P purposes and the second architecture takes advantage of reused wavelengths to enable the P2P connectivity among Optical Network Units (ONUs) or Base Stations (BS). While these two approaches allow the P2P connectivity in a one at a time basis (1:1), the third architecture enables the broadcasting of P2P sessions among different ONUs or BSs at the same time (1:M). Experimental assessment of the proposed architecture shows approximately 0.6% Error Vector Magnitude (EVM) degradation for wireless services and 1 dB penalty in average for 1 x 10(-12) Bit Error Rate (BER) for wired baseband services.
NASA Astrophysics Data System (ADS)
Mizutani, Akio; Eto, Yohei; Kikuta, Hisao
2017-12-01
A grating coupler with a trapezoidal hole array was designed and fabricated for perfectly vertical light coupling between a single-mode optical fiber and a silicon waveguide on a silicon-on-insulator (SOI) substrate. The grating coupler with an efficiency of 53% was computationally designed at a 1.1-µm-thick buried oxide (BOX) layer. The grating coupler and silicon waveguide were fabricated on the SOI substrate with a 3.0-µm-thick BOX layer by a single full-etch process. The measured coupling efficiency was 24% for TE-polarized light at 1528 nm wavelength, which was 0.69 times of the calculated coupling efficiency for the 3.0-µm-thick BOX layer.
Plasmonic distributed feedback lasers at telecommunications wavelengths.
Marell, Milan J H; Smalbrugge, Barry; Geluk, Erik Jan; van Veldhoven, Peter J; Barcones, Beatrix; Koopmans, Bert; Nötzel, Richard; Smit, Meint K; Hill, Martin T
2011-08-01
We investigate electrically pumped, distributed feedback (DFB) lasers, based on gap-plasmon mode metallic waveguides. The waveguides have nano-scale widths below the diffraction limit and incorporate vertical groove Bragg gratings. These metallic Bragg gratings provide a broad bandwidth stop band (~500 nm) with grating coupling coefficients of over 5000/cm. A strong suppression of spontaneous emission occurs in these Bragg grating cavities, over the stop band frequencies. This strong suppression manifests itself in our experimental results as a near absence of spontaneous emission and significantly reduced lasing thresholds when compared to similar length Fabry-Pérot waveguide cavities. Furthermore, the reduced threshold pumping requirements permits us to show strong line narrowing and super linear light current curves for these plasmon mode devices even at room temperature.
Modeling optical transmissivity of graphene grate in on-chip silicon photonic device
NASA Astrophysics Data System (ADS)
Amiri, Iraj S.; Ariannejad, M. M.; Jalil, M. A.; Ali, J.; Yupapin, P.
2018-06-01
A three-dimensional (3-D) finite-difference-time-domain (FDTD) analysis was used to simulate a silicon photonic waveguide. We have calculated power and transmission of the graphene used as single or multilayers to study the light transmission behavior. A new technique has been developed to define the straight silicon waveguide integrated with grate graphene layer. The waveguide has a variable grate spacing to be filled by the graphene layer. The number of graphene atomic layers varies between 100 and 1000 (or 380 nm and 3800 nm), the transmitted power obtained varies as ∼30% and ∼80%. The ∼99%, blocking of the light was occurred in 10,000 (or 38,000 nm) atomic layers of the graphene grate.
Thin-film spectroscopic sensor
Burgess, Jr., Lloyd W.; Goldman, Don S.
1992-01-01
There is disclosed an integrated spectrometer for chemical analysis by evanescent electromagnetic radiation absorption in a reaction volume. The spectrometer comprises a noninteractive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device. There is further disclosed a chemical sensor to determine the pressure and concentration of a chemical species in a mixture comprising an interactive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device.
Holographic Reflection Filters in Photorefractive LiNbO3 Channel Waveguides
NASA Astrophysics Data System (ADS)
Kip, Detlef; Hukriede, Joerg
Permanent refractive-index gratings in waveguide devices are of considerable interest for optical communication systems that make use of the high spectral selectivity of holographic filters, e.g. dense wavelength division multiplexing (DWDM) or narrow-bandwidth mirrors for integrated waveguide lasers in LiNbO3. Other possible applications include grating couplers and optical sensors. In this contribution we investigate such holographic wavelength filters in Fe- and Cu-doped LiNbO3 channel waveguides. Permanent refractive-index gratings are generated by thermal fixing of holograms in the waveguides. The samples are fabricated by successive in-diffusion of Ti stripes and thin layers of either Fe or Cu. After high-temperature recording with green light, refractive-index changes up to δ, ~10^-4 for infrared light ( 1.55,m) are obtained, resulting in a reflection efficiency well above 99% for a 15 mm-long grating. Several gratings for different wavelengths can be superimposed in the same sample, which may enable the fabrication of more complex filters, laser mirrors or optical sensors. By changing the sample temperature the reflection wavelength can be tuned by thermal expansion of the grating, and wavelength filters can be switched on and off by applying moderate voltages using the electro-optic effect. Furthermore, we report on a new thermal fixing mechanism that does not need any additional development by homogeneous light illumination and therefore does not suffer from the non-vanishing dark conductivity of the material.
Optical fiber endface biosensor based on resonances in dielectric waveguide gratings
NASA Astrophysics Data System (ADS)
Wawro, Debra D.; Tibuleac, Sorin; Magnusson, Robert; Liu, Hanli
2000-05-01
A new fiber optic sensor integrating dielectric diffraction gratings and thin films on optical fiber endfaces is prosed for biomedical sensing applications. This device utilizes a resonant dielectric waveguide grating structure fabricated on an optical fiber endface to probe reactions occurring in a sensing layer deposited on its surface. The operation of this sensor is based upon a fundamental resonance effect that occurs in waveguide gratings. An incident broad- spectrum signal is guided within an optical fiber and is filtered to reflect or transmit a desired spectral band by the diffractive thin film structure on its endface. Slight changes in one or more parameters of the waveguide grating, such as refractive index or thickness, can result in a responsive shift of the reflected or transmitted spectral peak that can be detected with spectroscopic instruments. This new sensor concept combines improved sensitivity and accuracy with attractive features found separately in currently available fiber optic sensors, such as large dynamic range, small sensing proximity, real time operation, and remote sensing. Diffractive elements of this type consisting of a photoresist grating on a Si3N4 waveguide have been fabricated on multimode optical fiber endfaces with 100 micrometers cores. Preliminary experimental tests using a tunable Ti:sapphire laser indicate notches of 18 percent in the transmission spectrum of the fiber endface guided-mode resonance devices. A theoretical analysis of the device performance capabilities is presented and applied to evaluate the feasibility and potential advantages of this bioprobe.
Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides
NASA Astrophysics Data System (ADS)
Favreau, Julien; Durantin, Cédric; Fédéli, Jean-Marc; Boutami, Salim; Duan, Guang-Hua
2016-03-01
Silicon photonics has taken great importance owing to the applications in optical communications, ranging from short reach to long haul. Originally dedicated to telecom wavelengths, silicon photonics is heading toward circuits handling with a broader spectrum, especially in the short and mid-infrared (MIR) range. This trend is due to potential applications in chemical sensing, spectroscopy and defense in the 2-10 μm range. We previously reported the development of a MIR photonic platform based on buried SiGe/Si waveguide with propagation losses between 1 and 2 dB/cm. However the low index contrast of the platform makes the design of efficient grating couplers very challenging. In order to achieve a high fiber-to-chip efficiency, we propose a novel grating coupler structure, in which the grating is locally suspended in air. The grating has been designed with a FDTD software. To achieve high efficiency, suspended structure thicknesses have been jointly optimized with the grating parameters, namely the fill factor, the period and the grating etch depth. Using the Efficient Global Optimization (EGO) method we obtained a configuration where the fiber-to-waveguide efficiency is above 57 %. Moreover the optical transition between the suspended and the buried SiGe waveguide has been carefully designed by using an Eigenmode Expansion software. Transition efficiency as high as 86 % is achieved.
Ngo, Nam Quoc
2007-12-01
A theoretical study of a new application of a simple pi-phase-shifted waveguide Bragg grating (PSWBG) in reflection mode as a high-speed optical dark-soliton detector is presented. The PSWBG consists of two concatenated identical uniform waveguide Bragg gratings with a pi phase shift between them. The reflective PSWBG, with grating reflectivities equal to 0.9, a free spectral range of 1.91 THz, and a nonlinear phase response, can convert a 40 Gbit/s noisy dark-soliton signal into a high-quality 40 Gbit/s return-to-zero signal with a peak power level of approximately 17.5 dB greater than that by the existing Mach-Zehnder interferometer with free spectral range of 1.91 THz and a linear phase response.
Optical temperature sensing on flexible polymer foils
NASA Astrophysics Data System (ADS)
Sherman, Stanislav; Xiao, Yanfen; Hofmann, Meike; Schmidt, Thomas; Gleissner, Uwe; Zappe, Hans
2016-04-01
In contrast to established semiconductor waveguide-based or glass fiber-based integrated optical sensors, polymerbased optical systems offer tunable material properties, such as refractive index or viscosity, and thus provide additional degrees of freedom for sensor design and fabrication. Of particular interest in sensing applications are fully-integrated optical waveguide-based temperature sensors. These typically rely on Bragg gratings which induce a periodic refractive index variation in the waveguide so that a resonant wavelength of the structure is reflected.1,2 With broad-band excitation, a dip in the spectral output of the waveguide is thus generated at a precisely-defined wavelength. This resonant wavelength depends on the refractive index of the waveguide and the grating period, yet both of these quantities are temperature dependent by means of the thermo-optic effect (change in refractive index with temperature) and thermal expansion (change of the grating period with temperature). We show the design and fabrication of polymer waveguide-integrated temperature sensors based on Bragggratings, fabricated by replication technology on flexible PMMA foil substrates. The 175 μm thick foil serves as lower cladding for a polymeric waveguide fabricated from a custom-made UV-crosslinkable co-monomer composition. The fabrication of the grating structure includes a second replication step into a separate PMMA-foil. The dimensions of the Bragg-gratings are determined by simulations to set the bias point into the near infrared wavelength range, which allows Si-based detectors to be used. We present design considerations and performance data for the developed structures. The resulting sensor's signal is linear to temperature changes and shows a sensitivity of -306 nm/K, allowing high resolution temperature measurements.
NASA Astrophysics Data System (ADS)
Barrios, Carlos Angulo; Canalejas-Tejero, Víctor
2017-01-01
The coupling efficiency at normal incidence of recently demonstrated aluminum grating couplers integrated in flexible Scotch tape waveguides has been analyzed theoretically and experimentally. Finite difference time domain (FDTD) and rigorously coupled wave analysis (RCWA) methods have been used to optimize the dimensions (duty cycle and metal thickness) of Scotch tape-embedded 1D Al gratings for maximum coupling at 635 nm wavelength. Good dimension and tape refractive index tolerances are predicted. FDTD simulations reveal the incident beam width and impinging position (alignment) values that avoid rediffraction and thus maximize the coupling efficiency. A 1D Al diffraction grating integrated into a Scotch tape optical waveguide has been fabricated and characterized. The fabrication process, based on pattern transfer, has been optimized to allow complete Al grating transfer onto the Scotch tape waveguide. A maximum coupling efficiency of 20% for TM-polarized normal incidence has been measured, which is in good agreement with the theoretical predictions. The measured coupling efficiency is further increased up to 28% for TM polarization under oblique incidence. Temperature dependence measurements have been also achieved and related to the simulations results and fabrication procedure.
1×2 demultiplexer for a light waveguide communications system based on a holographic grating
NASA Astrophysics Data System (ADS)
Ren, Xuechang; Zhang, Xiangsu; Wang, Canhui; Liu, Shou
2009-05-01
2-channel multiplexer/demultiplexer (Muxer/Demuxer) is a key component for bidirectional data traffics applied for optical communication. Up to date various types of Muxer/Demuxer have been proposed and demonstrated. A grating coupler diffracts light into substrates or waveguides, along which light beam propagates by total internal reflection. In addition, one can exploit the dispersive and filtering characteristics of gratings, for dropping or separating one or several wavelengths from one another. When a laser beam containing two wavelengths is striking the surface of the grating with an incident angle within certain range, four diffracted beams will be generated. If two diffracted beams, corresponding to different wavelengths, meet the condition of total internal reflection, they will propagate inside the glass substrate (performs as a waveguide). While the third one cannot meet total reflection condition, and the last one should become the evanescent wave. Therefore it can separate two signals and couple signals to different waveguides. These functions are suited for WDM application and directional couplers. For convenience sake, the visible lights at 458nm and 633nm were used as the incident laser beams. To give a simple sample for 1×2 demultiplexing system, a holographic grating was recorded, with the period around 441nm which was chose discretionally within the certain range. The primary experimental results indicate that the two-wavelength signal can be separated and coupled into the respective waveguide as long as the grating is recorded and operated complying with the certain condition. The average insertion loss and crosstalk of the device were presented in this paper.
Benedikovic, Daniel; Alonso-Ramos, Carlos; Pérez-Galacho, Diego; Guerber, Sylvain; Vakarin, Vladyslav; Marcaud, Guillaume; Le Roux, Xavier; Cassan, Eric; Marris-Morini, Delphine; Cheben, Pavel; Boeuf, Frédéric; Baudot, Charles; Vivien, Laurent
2017-09-01
Grating couplers enable position-friendly interfacing of silicon chips by optical fibers. The conventional coupler designs call upon comparatively complex architectures to afford efficient light coupling to sub-micron silicon-on-insulator (SOI) waveguides. Conversely, the blazing effect in double-etched gratings provides high coupling efficiency with reduced fabrication intricacy. In this Letter, we demonstrate for the first time, to the best of our knowledge, the realization of an ultra-directional L-shaped grating coupler, seamlessly fabricated by using 193 nm deep-ultraviolet (deep-UV) lithography. We also include a subwavelength index engineered waveguide-to-grating transition that provides an eight-fold reduction of the grating reflectivity, down to 1% (-20 dB). A measured coupling efficiency of -2.7 dB (54%) is achieved, with a bandwidth of 62 nm. These results open promising prospects for the implementation of efficient, robust, and cost-effective coupling interfaces for sub-micrometric SOI waveguides, as desired for large-volume applications in silicon photonics.
A green-color portable waveguide eyewear display system
NASA Astrophysics Data System (ADS)
Xia, Lingbo; Xu, Ke; Wu, Zhengming; Hu, Yingtian; Li, Zhenzhen; Wang, Yongtian; Liu, Juan
2013-08-01
Waveguide display systems are widely used in various display fields, especially in head mounted display. Comparing with the traditional head mounted display system, this device dramatically reduce the size and mass. However, there are still several fatal problems such as high scatting, the cumbersome design and chromatic aberration that should be solved. We designed and fabricated a monochromatic portable eyewear display system consist of a comfortable eyewear device and waveguide system with two holographic gratings located on the substrate symmetrically. We record the gratings on the photopolymer medium with high efficiency and wavelength sensitivity. The light emitting from the micro-display is diffracted by the grating and trapped in the glass substrate by total internal reflection. The relationship between the diffraction efficiency and exposure value is studied and analyzed, and we fabricated the gratings with appropriate diffraction efficiency in a optimization condition. To avoid the disturbance of the stray light, we optimize the waveguide system numerically and perform the optical experiments. With this system, people can both see through the waveguide to obtain the information outside and catch the information from the micro display. After considering the human body engineering and industrial production, we design the structure in a compact and portable way. It has the advantage of small-type configuration and economic acceptable. It is believe that this kind of planar waveguide system is a potentially replaceable choice for the portable devices in future mobile communications.
Low-loss curved subwavelength grating waveguide based on index engineering
NASA Astrophysics Data System (ADS)
Wang, Zheng; Xu, Xiaochuan; Fan, D. L.; Wang, Yaoguo; Chen, Ray T.
2016-03-01
Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to its freedom to tune a few important waveguide properties such as dispersion and refractive index. Devices based on SWG waveguide have demonstrated impressive performances compared to those of conventional waveguides. However, the large loss of SWG waveguide bends jeopardizes their applications in integrated photonics circuits. In this work, we propose that a predistorted refractive index distribution in SWG waveguide bends can effectively decrease the mode mismatch noise and radiation loss simultaneously, and thus significantly reduce the bend loss. Here, we achieved the pre-distortion refractive index distribution by using trapezoidal silicon pillars. This geometry tuning approach is numerically optimized and experimentally demonstrated. The average insertion loss of a 5 μm SWG waveguide bend can be reduced drastically from 5.58 dB to 1.37 dB per 90° bend for quasi-TE polarization. In the future, the proposed approach can be readily adopted to enhance performance of an array of SWG waveguide-based photonics devices.
Patterning of graphene on silicon-on-insulator waveguides through laser ablation and plasma etching
NASA Astrophysics Data System (ADS)
Van Erps, Jürgen; Ciuk, Tymoteusz; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Van Put, Steven; Van Steenberge, Geert; Baert, Kitty; Terryn, Herman; Thienpont, Hugo; Vermeulen, Nathalie
2016-05-01
We present the use of femtosecond laser ablation for the removal of monolayer graphene from silicon-on-insulator (SOI) waveguides, and the use of oxygen plasma etching through a metal mask to peel off graphene from the grating couplers attached to the waveguides. Through Raman spectroscopy and atomic force microscopy, we show that the removal of graphene is successful with minimal damage to the underlying SOI waveguides. Finally, we employ both removal techniques to measure the contribution of graphene to the loss of grating-coupled graphene-covered SOI waveguides using the cut-back method. This loss contribution is measured to be 0.132 dB/μm.
Scalable, high-capacity optical switches for Internet routers and moving platforms
NASA Astrophysics Data System (ADS)
Joe, In-Sung
Internet traffic nearly doubles every year, and we need faster routers with higher ports count, yet lower electrical power consumption. Current internet routers use electrical switches that consume large amounts of electrical power to operate at high data rates. These internet routers dissipate ˜ 10kW per rack, and their capacity is limited by cooling constraints. The power consumption is also critical for moving platforms. As avionics advance, the demand for larger capacity networks increases. Optical fibers are already chosen for high speed data transmission in advanced aircraft. In optical communication systems, integrated passive optical components, such as Array Waveguide Gratings (AWGs), have provided larger capacity with lower power consumption, because minimal electrical power is required for their operation. In addition, compact, wavelength-tunable semiconductor lasers with wide tuning ranges that can switch their wavelengths in tens of nanoseconds have been demonstrated. Here we present a wavelength-selective optical packet switch based on Waveguide Grating Routers (WGRs), passive splitters, and combiners. Tunable lasers on the transmitter side are the only active switching elements. The WGR is operated on multiple Free Spectral Ranges (FSRs) to achieve increased port count and switching capacity while maintaining strict-sense, non-blocking operation. Switching times of less than 24ns between two wavelengths covering three FSRs is demonstrated experimentally. The electrical power consumption, size, weight, and cost of our optical switch is compared with those of conventional electrical switches, showing substantial improvements at large throughputs (˜2 Tb/s full duplex). A revised switch design that does not suffer optical loss from star couplers is proposed. This switch design uses only WGRs, and it is suitable for networks with stringent power budgets. The burst nature of the optical packet transmission requires clock recovery for every incoming packet, and conventional continuous-mode receivers are not suitable for this application. An Embedded Clock Transport (ECT) technique is adopted here. The ECT combines a clock tone with the data payload before the transmission. Simple band pass filtering can extract the transmitted clock tone, and low pass filtering can recover the data. Error-free transmissions at 2.488 Gb/s with ˜16 ns clock recovery time were demonstrated.
Composite Curing Process Nondestructive Evaluation
1988-06-01
3.5.3.2.1 Background (Arrheuius Equation) 50 3.5.3.2.2 Intepretation of AWG Data . . . 50 3.6 SIGNAL PROCESSING AND DATA OUTPUT .. ............ 52 4.0 RESIN...conventional methods: o permits in-situ measurement of fluorescence in remote, hostile environments o provides immunity to electromagnetic interferences...These devices are very sensitive to changes during material cure because sound escapes from the waveguide to the resin dependent on the relative
Weakly modulated silicon-dioxide-cladding gratings for silicon waveguide Fabry-Pérot cavities.
Grote, Richard R; Driscoll, Jeffrey B; Biris, Claudiu G; Panoiu, Nicolae C; Osgood, Richard M
2011-12-19
We show by theory and experiment that silicon-dioxide-cladding gratings for Fabry-Pérot cavities on silicon-on-insulator channel ("wire") waveguides provide a low-refractive-index perturbation, which is required for several important integrated photonics components. The underlying refractive index perturbation of these gratings is significantly weaker than that of analogous silicon gratings, leading to finer control of the coupling coefficient κ. Our Fabry-Pérot cavities are designed using the transfer-matrix method (TMM) in conjunction with the finite element method (FEM) for calculating the effective index of each waveguide section. Device parameters such as coupling coefficient, κ, Bragg mirror stop band, Bragg mirror reflectivity, and quality factor Q are examined via TMM modeling. Devices are fabricated with representative values of distributed Bragg reflector lengths, cavity lengths, and propagation losses. The measured transmission spectra show excellent agreement with the FEM/TMM calculations.
Dekker, P; Ams, M; Marshall, G D; Little, D J; Withford, M J
2010-02-15
There is still significant speculation regarding the nature of femtosecond laser induced index change in bulk glasses with colour centre formation and densification the main candidates. In the work presented here, we fabricated waveguide Bragg gratings in doped and undoped phosphate glasses and use these as a diagnostic for monitoring subtle changes in the induced refractive index during photo- and thermal annealing experiments. Reductions in grating strengths during such experiments were attributed to the annihilation of colour centres.
Joon Kim, Kyoung; Bar-Cohen, Avram; Han, Bongtae
2012-02-20
This study reports both analytical and numerical thermal-structural models of polymer Bragg grating (PBG) waveguides illuminated by a light emitting diode (LED). A polymethyl methacrylate (PMMA) Bragg grating (BG) waveguide is chosen as an analysis vehicle to explore parametric effects of incident optical powers and substrate materials on the thermal-structural behavior of the BG. Analytical models are verified by comparing analytically predicted average excess temperatures, and thermally induced axial strains and stresses with numerical predictions. A parametric study demonstrates that the PMMA substrate induces more adverse effects, such as higher excess temperatures, complex axial temperature profiles, and greater and more complicated thermally induced strains in the BG compared with the Si substrate. © 2012 Optical Society of America
NASA Astrophysics Data System (ADS)
Rosenberger, M.; Girschikofsky, M.; Förthner, M.; Belle, S.; Rommel, M.; Frey, L.; Schmauss, B.; Hellmann, R.
2018-01-01
We demonstrate the applicability of a planar waveguide Bragg grating in cyclo-olefin copolymer (COC) for refractive index sensing. The polymer planar waveguide Bragg grating fabricated using a single writing step technique is coated with a high-index layer of titanium dioxide (TiO2) leading to a distinct birefringence. This in turn results in the splitting of the Bragg reflection into two distinct Bragg wavelengths, which strongly differ regarding their refractive index sensitivities. Where one wavelength is only slightly affected by the ambient refractive index, the second Bragg peak shows a strong sensitivity. Furthermore, we investigate the temperature behaviour of the functionalized sensor and discuss it with respect to applications in refractive index sensing.
Wide-band fanned-out supercontinuum source covering O-, E-, S-, C-, L- and U-bands
NASA Astrophysics Data System (ADS)
Ahmad, H.; Latif, A. A.; Awang, N. A.; Zulkifli, M. Z.; Thambiratnam, K.; Ghani, Z. A.; Harun, S. W.
2012-10-01
A wide-band supercontinuum source generated by mode-locked pulses injected into a Highly Non-Linear Fiber (HNLF) is proposed and demonstrated. A 49 cm long Bismuth-Erbium Doped Fiber (Bi-EDF) pumped by two 1480 nm laser diodes acts as the active gain medium for a ring fiber laser, from which mode-locked pulses are obtained using the Non-Polarization Rotation (NPR) technique. The mode-locked pulses are then injected into a 100 m long HLNF with a dispersion of 0.15 ps/nm km at 1550 nm to generate a supercontinuum spectrum spanning from 1340 nm to more than 1680 nm with a pulse width of 0.08 ps and an average power of -17 dBm. The supercontinuum spectrum is sliced using a 24 channel Arrayed Waveguide Grating (AWG) with a channel spacing of 100 GHz to obtain a fanned-out laser output covering the O-, E-, S-, C-, L- and U-bands. The lasing wavelengths obtained have an average pulse width of 9 ps with only minor fluctuations and a mode-locked repetition rate of 40 MHz, and is sufficiently stable to be used in a variety of sensing and communication applications, most notably as cost-effective sources for Fiber-to-the-Home (FTTH) networks.
Widely tunable long-period waveguide grating couplers
NASA Astrophysics Data System (ADS)
Bai, Y.; Liu, Q.; Lor, K. P.; Chiang, K. S.
2006-12-01
We demonstrate experimentally two widely tunable optical couplers formed with parallel long-period polymer waveguide gratings. One of the couplers consists of two parallel gratings and shows a peak coupling efficiency of ~34%. The resonance wavelength of the coupler can be tuned thermally with a sensitivity of 4.7 nm/°C. The experimental results agree well with the coupled-mode analysis. The other coupler consists of an array of ten widely separated gratings. A peak coupling efficiency of ~11% is obtained between the two best matched gratings in the array and the resonance wavelength can be tuned thermally with a sensitivity of -3.8 nm/°C. These couplers have the potential to be further developed into practical broadband add/drop multiplexers and signal dividers.
Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; ...
2016-05-05
Here, subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantlymore » reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.« less
Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; Wang, Yaguo; Subbaraman, Harish; Chen, Ray T.
2016-01-01
Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantly reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices. PMID:27145872
Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; Wang, Yaguo; Subbaraman, Harish; Chen, Ray T
2016-05-05
Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantly reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.
Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Ams, Martin; Dekker, Peter; Gross, Simon; Withford, Michael J.
2017-01-01
Optical waveguide Bragg gratings (WBGs) can be created in transparent materials using femtosecond laser pulses. The technique is conducted without the need for lithography, ion-beam fabrication methods, or clean room facilities. This paper reviews the field of ultrafast laser-inscribed WBGs since its inception, with a particular focus on fabrication techniques, WBG characteristics, WBG types, and WBG applications.
Polymer planar waveguide Bragg gratings: fabrication, characterization, and sensing applications
NASA Astrophysics Data System (ADS)
Rosenberger, M.; Hessler, S.; Pauer, H.; Girschikofsky, M.; Roth, G. L.; Adelmann, B.; Woern, H.; Schmauss, B.; Hellmann, R.
2017-02-01
In this contribution, we give a comprehensive overview of the fabrication, characterization, and application of integrated planar waveguide Bragg gratings (PPBGs) in cyclo-olefin copolymers (COC). Starting with the measurement of the refractive index depth profile of integrated UV-written structures in COC by phase shifting Mach-Zehnder- Interferometry, we analyze the light propagation using numerical simulations. Furthermore, we show the rapid fabrication of humidity insensitive polymer waveguide Bragg gratings in cyclo-olefin copolymers and discuss the influence of the UV-dosage onto the spectral characteristics and the transmission behavior of the waveguide. Based on these measurements we exemplify that our Bragg gratings exhibit a reflectivity of over 99 % and are highly suitable for sensing applications. With regard to a negligible affinity to absorb water and in conjunction with high temperature stability these polymer devices are ideal for mechanical deformation sensing. Since planar structures are not limited to tensile but can also be applied for measuring compressive strain, we manufacture different functional devices and corroborate their applicability as optical sensors. Exemplarily, we highlight a temperature referenced PPBG sensor written into a femtosecond-laser cut tensile test geometry for tensile and compressive strain sensing. Furthermore, a flexible polymer planar shape sensor is presented.
Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers
NASA Astrophysics Data System (ADS)
Xu, Lin; Chen, Xia; Li, Chao; Tsang, Hon Ki
2011-04-01
We propose and demonstrate a bi-wavelength two dimensional (2D) waveguide grating coupler on silicon-on-insulator which has efficient coupling of optical light with two-wavelength bands independently between standard optical single mode fibers and nanophotonic waveguides. The details of design are described and the measurement results as well as system performance are experimentally characterized. The bi-wavelength grating coupler can be used as wavelength-division-multiplexing (WDM) splitter/combiner for monolithically silicon integrated transceivers, potentially meeting the low cost requirements for future WDM passive optical network (PON).
Kroesen, Sebastian; Horn, Wolfgang; Imbrock, Jörg; Denz, Cornelia
2014-09-22
optical tunable Bragg gratings in lithium niobate fabricated by direct femtosecond laser writing. The hybrid design that consists of a circular type-II waveguide and a multiscan type-I Bragg grating exhibits low loss ordinary and extraordinary polarized guiding as well as narrowband reflections in the c-band of optical communications. High bandwidth tunability of more than a peak width and nearly preserved electro-optic coefficients of r(13) = 7.59 pm V(-1) and r(33) = 23.21 pm V(-1) are demonstrated.
Inverse design of near unity efficiency perfectly vertical grating couplers
NASA Astrophysics Data System (ADS)
Michaels, Andrew; Yablonovitch, Eli
2018-02-01
Efficient coupling between integrated optical waveguides and optical fibers is essential to the success of integrated photonics. While many solutions exist, perfectly vertical grating couplers which scatter light out of a waveguide in the direction normal to the waveguide's top surface are an ideal candidate due to their potential to reduce packaging complexity. Designing such couplers with high efficiency, however, has proven difficult. In this paper, we use electromagnetic inverse design techniques to optimize a high efficiency two-layer perfectly vertical silicon grating coupler. Our base design achieves a chip-to-fiber coupling efficiency of over 99% (-0.04 dB) at 1550 nm. Using this base design, we apply subsequent constrained optimizations to achieve vertical couplers with over 96% efficiency which are fabricable using a 65 nm process.
Waveguide silicon nitride grating coupler
NASA Astrophysics Data System (ADS)
Litvik, Jan; Dolnak, Ivan; Dado, Milan
2016-12-01
Grating couplers are one of the most used elements for coupling of light between optical fibers and photonic integrated components. Silicon-on-insulator platform provides strong confinement of light and allows high integration. In this work, using simulations we have designed a broadband silicon nitride surface grating coupler. The Fourier-eigenmode expansion and finite difference time domain methods are utilized in design optimization of grating coupler structure. The fully, single etch step grating coupler is based on a standard silicon-on-insulator wafer with 0.55 μm waveguide Si3N4 layer. The optimized structure at 1550 nm wavelength yields a peak coupling efficiency -2.6635 dB (54.16%) with a 1-dB bandwidth up to 80 nm. It is promising way for low-cost fabrication using complementary metal-oxide- semiconductor fabrication process.
Slow-light, band-edge waveguides for tunable time delays.
Povinelli, M; Johnson, Steven; Joannopoulos, J
2005-09-05
We propose the use of slow-light, band-edge waveguides for compact, integrated, tunable optical time delays. We show that slow group velocities at the photonic band edge give rise to large changes in time delay for small changes in refractive index, thereby shrinking device size. Figures of merit are introduced to quantify the sensitivity, as well as the accompanying signal degradation due to dispersion. It is shown that exact calculations of the figures of merit for a realistic, three-dimensional grating structure are well predicted by a simple quadratic-band model, simplifying device design. We present adiabatic taper designs that attain <0.1% reflection in short lengths of 10 to 20 times the grating period. We show further that cascading two gratings compensates for signal dispersion and gives rise to a constant tunable time delay across bandwidths greater than 100GHz. Given typical loss values for silicon-on-insulator waveguides, we estimate that gratings can be designed to exhibit tunable delays in the picosecond range using current fabrication technology.
Inverse design of near unity efficiency perfectly vertical grating couplers.
Michaels, Andrew; Yablonovitch, Eli
2018-02-19
Efficient coupling between integrated optical waveguides and optical fibers is essential to the success of silicon photonics. While many solutions exist, perfectly vertical grating couplers that scatter light out of a waveguide in the direction normal to the waveguide's top surface are an ideal candidate due to their potential to reduce packaging complexity. Designing such couplers with high efficiencies, however, has proven difficult. In this paper, we use inverse electromagnetic design techniques to optimize a high efficiency two-layer perfectly vertical silicon grating coupler. Our base design achieves a chip-to-fiber coupling efficiency of 99.2% (-0.035 dB) at 1550 nm. Using this base design as a starting point, we run subsequent constrained optimizations to realize vertical couplers with coupling efficiencies over 96% and back reflections of less than -40 dB which can be fabricated using 65 nm-resolution lithography. These results demonstrate a new path forward for designing fabrication-tolerant ultra high efficiency grating couplers.
Dielectric loaded surface plasmon waveguides for datacom applications
NASA Astrophysics Data System (ADS)
Weeber, J.-C.; Hassan, K.; Nielsen, M. G.; Pitilakis, A.; Tsilipakos, O.; Kriezis, E. E.; Fatome, J.; Finot, C.; Markey, L.; Albrektsen, O.; Bozhevolnyi, S. I.; Dereux, A.
2012-04-01
We rst report on design, fabrication and characterizations of thermally-controlled plasmonic routers relying on the interference of a plasmonic and a photonic mode supported by wide enough dielectric loaded waveguides. We show that, by owing a current through the gold lm on which the dielectric waveguides are deposited, the length of the beating created by the interference of the two modes can be controlled accurately. By operating such a plasmonic dual-mode interferometer switch, symmetric extinction ratio of 7dB are obtained at the output ports of a 2x2 router. Next, we demonstrate ber-to-ber characterizations of stand-alone dielectric loaded surface plasmon waveguide (DLSPPW) devices by using grating couplers. The couplers are comprised of dielectric loaded gratings with carefully chosen periods and duty-cycles close to 0.5. We show that insertion loss below 10dB per coupler can be achieved with optimized gratings. This coupling scheme is used to operate Bit-Error-Rate (BER) measurements for the transmission of a 10Gbits/s signal along a stand-alone straight DLSPPW. We show in particular that these waveguides introduce a rather small BER power penalty (below 1dB) demonstrating the suitability of this plasmonic waveguiding platform for high-bit rate transmission.
Integrated optical components in thin films of polymers
NASA Technical Reports Server (NTRS)
Sarkisov, Sergey; Abdeldayem, Hossin; Venkateswarlu, Putcha; Teague, Zedric
1995-01-01
The results will be reported on the study of integrated optical components based on nonlinear optical polymeric films. Polymers poly(methyl methacrylate) (PMMA) and polyimide (PI) doped with organic laser dyes 4-dicyanomethylene-2-methyl-6-p dimethylaminostyryl-4H pyran (DCM) and 1, 3, 5, 7, 8 - pentamethyl-2,6 -diethyl-pyrromethene -BF2-complex (Pyrommethene 567, PM-567) were selected as materials for light guiding films. Additionally, UV polymerized polydiacetylene (PDA) on glass substrate was used as a waveguide material. Optical waveguides were fabricated using spin coating of preoxidized silicon wafers (1.5 micrometer silicon oxide layer) with organic dye/polymer solution followed by soft baking. the modes in slab waveguides were studied using prism coupling techniques. Measured values of mode coupling angles in multimode waveguides were used to calculate film thickness and refractive index for different polarizations. Refractive index anisotropy was found in PDA waveguide. The optimal conditions of spin coating for single mode waveguide fabrication were estimated. Propagation losses were measured by collecting the light scattered from the trace of a propagating mode either by scanning photo detector or by CCD camera. Different types of light coupling techniques were used including end-dire coupling, prism and grating coupling. Mechanical printing technique was developed for coupling grating fabrication resulting in gratings with 4% diffraction efficiency. The gratings demonstrated good stability with diffraction efficiency relaxation rate 2.4 dB/hour at a temperature approximately 15-20 C below glass transition point. Dye doped waveguides were transversally pumped with frequency doubled Nd:YAG Q-switched laser producing intensive light emission with apparent 6 kW/sq cm pump threshold and spectrum narrowing near 617 nm peak in the case of DCM doped waveguide. PM-567 doped waveguide pumped with CW Ar(+) laser (514 nm wavelength) far below threshold (0.1 W/sq.cm pump power) demonstrated emission spectrum narrowing near 616 nm peak with 18% power conversion slope efficiency. In this case emission spectrum modification was caused by the enhanced light absorption along the direction of propagating waveguide modes. Changing length, thickness, and other morphlogical waveguide parameters one can modify emission spectrum in predictable direction. The results show that polymeric waveguides, especially based on high temperature polymers such as Pl, can be used to produce a varietiy of active and passive silicon compatible integrated optical components for aerospace applications.
Optical microwave filter based on spectral slicing by use of arrayed waveguide gratings.
Pastor, Daniel; Ortega, Beatriz; Capmany, José; Sales, Salvador; Martinez, Alfonso; Muñoz, Pascual
2003-10-01
We have experimentally demonstrated a new optical signal processor based on the use of arrayed waveguide gratings. The structure exploits the concept of spectral slicing combined with the use of an optical dispersive medium. The approach presents increased flexibility from previous slicing-based structures in terms of tunability, reconfiguration, and apodization of the samples or coefficients of the transversal optical filter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erbert, G
2009-09-01
The Amplitude Modulator Chassis (AMC) is the final component in the MOR system and connects directly to the PAM input through a 100-meter fiber. The 48 AMCs temporally shape the 48 outputs of the MOR using an arbitrary waveform generator coupled to an amplitude modulator. The amplitude modulation element is a two stage, Lithium Niobate waveguide device, where the intensity of the light passing through the device is a function of the electrical drive applied. The first stage of the modulator is connected to a programmable high performance Arbitrary Waveform Generator (AWG) consisting of 140 impulse generators space 250 psmore » apart. An arbitrary waveform is generated by independently varying the amplitude of each impulse generator and then summing the impulses together. In addition to the AWG a short pulse generator is also connected to the first stage of the modulator to provide a sub 100-ps pulse used for timing experiments. The second stage of the modulator is connect to a square pulse generator used to further attenuate any pre or post pulse light passing through the first stage of the modulator. The fast rise and fall time of the square pulse generator is also used to produce fast rise and fall times of the AWG by clipping the AWG pulse. For maximum extinction, a pulse bias voltage is applied to each stage of the modulator. A pulse voltage is applied as opposed to a DC voltage to prevent charge buildup on the modulator. Each bias voltage is adjustable to provide a minimum of 50-dB extinction. The AMC is controlled through ICCS to generate the desired temporal pulse shape. This process involves a closed-loop control algorithm, which compares the desired temporal waveform to the produced optical pulse, and iterates the programming of the AWG until the two waveforms agree within an allowable tolerance.« less
1994-09-01
free-space and waveguide interconnects is investigated through the fabrication, testing and modeling of polycrystalline PLZT/ITO ceramic electro - optic phase...only gratings. PLZT Diffraction grating, Electro - optic diffraction grating, Optical switching, Optical interconnects, Reconfigurable interconnect
Dispersion flattened single etch-step waveguide based on subwavelength grating
NASA Astrophysics Data System (ADS)
Jafari, Zeinab; Zarifkar, Abbas
2017-06-01
A novel subwavelength-grating-assisted (SWG-assisted) waveguide is proposed for dispersion flattening. Tuning the refractive index, which is a powerful tool in dispersion engineering, can be carried out through adjusting the properties of the SWG regions. It is particularly beneficial for controlling the flattened dispersion bandwidth. This will also eliminate the need for integration of other less compatible materials with silicon. Moreover, the SWG-assisted waveguide can be easily fabricated through a single etch-step process. By engineering the structural parameters of the waveguide, an ultra-flat dispersion profile with a total dispersion variation of 10 (ps/nm/km) over a wide bandwidth of 1615 nm is obtained. The possibility of bandwidth expansion, the fabrication friendly design, and the flattened dispersion profile of the proposed waveguide make it promising for wideband nonlinear applications.
Using a micro-molding process to fabricate polymeric wavelength filters
NASA Astrophysics Data System (ADS)
Chuang, Wei-Ching; Lee, An-Chen; Ho, Chi-Ting
2008-08-01
A procedure for fabricating a high aspect ratio periodic structure on a UV polymer at submicron order using holographic interferometry and molding processes is described. First, holographic interferometry using a He-Cd (325 nm) laser was used to create the master of the periodic line structure on an i-line sub-micron positive photoresist film. A 20 nm nickel thin film was then sputtered on the photoresist. The final line pattern on a UV polymer was obtained from casting against the master mold. Finally, a SU8 polymer was spun on the polymer grating to form a planar waveguide or a channel waveguide. The measurement results show that the waveguide length could be reduced for the waveguide having gratings with a high aspect ratio.
Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings.
Ashrafi, Reza; Azaña, José
2012-07-01
A novel, all-optical design for implementing terahertz (THz) bandwidth real-time Hilbert transformers is proposed and numerically demonstrated. An all-optical Hilbert transformer can be implemented using a uniform-period long-period grating (LPG) with a properly designed amplitude-only grating apodization profile, incorporating a single π-phase shift in the middle of the grating length. The designed LPG-based Hilbert transformers can be practically implemented using either fiber-optic or integrated-waveguide technologies. As a generalization, photonic fractional Hilbert transformers are also designed based on the same optical platform. In this general case, the resulting LPGs have multiple π-phase shifts along the grating length. Our numerical simulations confirm that all-optical Hilbert transformers capable of processing arbitrary optical signals with bandwidths well in the THz range can be implemented using feasible fiber/waveguide LPG designs.
Optimization of fiber grating couplers on SOI using advanced search algorithms.
Wohlfeil, Benjamin; Zimmermann, Lars; Petermann, Klaus
2014-06-01
A one-dimensional fiber grating coupler is derived from a waveguide with random etches using implementations of particle swarm and genetic algorithms. The resulting gratings yield a theoretical coupling efficiency of up to 1.1 dB and prompt clear design rules for the layout of highly efficient fiber grating couplers.
Microfluidic resonant waveguide grating biosensor system for whole cell sensing
NASA Astrophysics Data System (ADS)
Zaytseva, Natalya; Miller, William; Goral, Vasily; Hepburn, Jerry; Fang, Ye
2011-04-01
We report on a fluidic resonant waveguide grating (RWG) biosensor system that enables medium throughput measurements of cellular responses under microfluidics in a 32-well format. Dynamic mass redistribution assays under microfluidics differentiate the cross-desensitization process between the β2-adrenoceptor agonist epinephrine and the adenylate cyclase activator forskolin mediated signaling. This system opens new possibility to study cellular processes that are otherwise difficult to achieve using conventional RWG configurations.
Hutchinson, Donald P.; Richards, Roger K.
2003-07-22
A micro-laser is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide and at least one amplifying medium in the waveguide. PBG features are positioned between the first and second subwavelength resonant gratings and allow introduction of amplifying mediums into the highly resonant guided micro-laser microcavity. The micro-laser may be positioned on a die of a bulk substrate material with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a micro-laser is disclosed. A method for tuning the micro-laser is also disclosed. The micro-laser may be used as an optical regenerator, or a light source for data transfer or for optical computing.
NASA Astrophysics Data System (ADS)
Nasaruddin; Tsujioka, Tetsuo
An optical CDMA (OCDMA) system is a flexible technology for future broadband multiple access networks. A secure OCDMA network in broadband optical access technologies is also becoming an issue of great importance. In this paper, we propose novel reconfigurable wavelength-time (W-T) optical codes that lead to secure transmission in OCDMA networks. The proposed W-T optical codes are constructed by using quasigroups (QGs) for wavelength hopping and one-dimensional optical orthogonal codes (OOCs) for time spreading; we call them QGs/OOCs. Both QGs and OOCs are randomly generated by a computer search to ensure that an eavesdropper could not improve its interception performance by making use of the coding structure. Then, the proposed reconfigurable QGs/OOCs can provide more codewords, and many different code set patterns, which differ in both wavelength and time positions for given code parameters. Moreover, the bit error probability of the proposed codes is analyzed numerically. To realize the proposed codes, a secure system is proposed by employing reconfigurable encoders/decoders based on array waveguide gratings (AWGs), which allow the users to change their codeword patterns to protect against eavesdropping. Finally, the probability of breaking a certain codeword in the proposed system is evaluated analytically. The results show that the proposed codes and system can provide a large codeword pattern, and decrease the probability of breaking a certain codeword, to enhance OCDMA network security.
High frequency resonant waveguide grating imager for assessing drug-induced cardiotoxicity
NASA Astrophysics Data System (ADS)
Ferrie, Ann M.; Wu, Qi; Deichmann, Oberon D.; Fang, Ye
2014-05-01
We report a high-frequency resonant waveguide grating imager for assessing compound-induced cardiotoxicity. The imager sweeps the wavelength range from 823 nm to 838 nm every 3 s to identify and monitor compound-induced shifts in resonance wavelength and then switch to the intensity-imaging mode to detect the beating rhythm and proarrhythmic effects of compounds on induced pluripotent stem cell-derived cardiomyocytes. This opens possibility to study cardiovascular biology and compound-induced cardiotoxicity.
Waveguide Grating For Polarization Preprocessing Circuits
NASA Astrophysics Data System (ADS)
Voirin, Guy; Gradisnik, F.; Parriaux, Olivier M.; Gale, Michael T.; Kunz, Rino E.; Curtis, B. J.; Lehmann, Hans W.
1989-12-01
Periodically corrugated optical waveguides on glass with non-collinear coupling have been investigated both theoretically and experimentally. For a TE or TM polarized guided mode of a planar waveguide obliquely incident on a grating pad, there are four characteristic angles corresponding to the coupling with TE and TM reflected modes fulfilling the Bragg condition. The reflectivity is obtained by solving the coupled mode equations for the non-collinear case. The modelling shows that integrated passive functions such as polarization splitting and interference can be achieved. The polarization interference element uses the property that the coupling coefficients TM-TE and TE-TE are equal at defined incidence angles. Since the angle between the two reflected TE beams is only a few minutes of arc, the two beams can interfere. The waveguides are made by K+ ion exchange in BK7 glass for 3 hours at 380°C. The structure was designed for use at a wavelength of 633 nm and uses a 485 nm period grating which was fabricated by holographic exposure and plasma etching techniques in a 50 nm TiO2 layer e-beam evaporated onto the glass surface. The reflectivity of the grating structure was studied experimentally and compared with theory. The diffraction angles are within 30 " of arc of the predicted angles. The measured reflectivities reached 20 %. The feasibility of realizing an integrated optic preprocessing circuit for polarization interferometry has been demonstrated.
Reconfigurable optical interconnection network for multimode optical fiber sensor arrays
NASA Technical Reports Server (NTRS)
Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.
1992-01-01
A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.
Polymer/silica hybrid integration waveguide Bragg grating based on surface plasmon polaritons.
Tian, Liang; Wang, Fei; Wu, Yuanda; Sun, Xiaoqiang; Yi, Yunji; Zhang, Daming
2018-05-01
We proposed a device composed of a Bragg grating and a long-range surface plasmon polariton waveguide. The waveguide is formed by embedding a thin Au stripe in negative UV photoresist (SU-8 2005). The corrugated grating structure is created on a silica substrate using contact lithography and inductively coupled plasma etching, which is transferred onto the SU-8 2005 film by a spin coating process, producing a periodic modulation of refractive index along the waveguide. We achieve a transmission peak with an extinction ratio of 17 dB and a 3-dB bandwidth of 0.9 nm at a wavelength of 1575.2 nm. We achieve a reflection peak with a side-mode suppression ratio of 9.7 dB, a 3-dB bandwidth of 0.9 nm at a wavelength of 1575.2 nm when the heating electrode isn't working. The shift of the reflection peak with heating power over the range 0-6 mW is approximately 2.9 nm. This thermal dependence exhibits an average slope of -0.48 nm/mW.
Plasmonic micropolarizers for full Stokes vector imaging
NASA Astrophysics Data System (ADS)
Peltzer, J. J.; Bachman, K. A.; Rose, J. W.; Flammer, P. D.; Furtak, T. E.; Collins, R. T.; Hollingsworth, R. E.
2012-06-01
Polarimetric imaging using micropolarizers integrated on focal plane arrays has previously been limited to the linear components of the Stokes vector because of the lack of an effective structure with selectivity to circular polarization. We discuss a plasmonic micropolarizing filter that can be tuned for linear or circular polarization as well as wavelength selectivity from blue to infrared (IR) through simple changes in its horizontal geometry. The filter consists of a patterned metal film with an aperture in a central cavity that is surrounded by gratings that couple to incoming light. The aperture and gratings are covered with a transparent dielectric layer to form a surface plasmon slab waveguide. A metal cap covers the aperture and forms a metal-insulator-metal (MIM) waveguide. Structures with linear apertures and gratings provide sensitivity to linear polarization, while structures with circular apertures and spiral gratings give circular polarization selectivity. Plasmonic TM modes are transmitted down the MIM waveguide while the TE modes are cut off due to the sub-wavelength dielectric thickness, providing the potential for extremely high extinction ratios. Experimental results are presented for micropolarizers fabricated on glass or directly into the Ohmic contact metallization of silicon photodiodes. Extinction ratios for linear polarization larger than 3000 have been measured.
NASA Astrophysics Data System (ADS)
Liu, Minghuan; Liu, Yonggang; Peng, Zenghui; Mu, Quanquan; Cao, Zhaoliang; Lu, Xinghai; Ma, Ji; Xuan, Li
2017-08-01
This paper reports the ultra-broad 149.1 nm lasing emission from 573.2 to 722.3 nm using a simple [4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran] (DCM)-doped holographic polymer-dispersed liquid crystal (HPDLC) grating quasi-waveguide configuration by varying the grating period. The lasing emission beams show s-polarization property. The quasi-waveguide structure, which contained the cover glass, the DCM-doped HPDLC grating, the semiconducting polymer film poly[-methoxy-5-(2‧-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV), and the substrate were confirmed to decrease lasing threshold and broaden lasing wavelength. The operational lifetime of the device is 240 000 pulses, which corresponds to an overall laser duration of more than 6 h at a repetition rate of 10 Hz. In addition, the dual-wavelength lasing range from the 8th and 9th order is over 40 nm. The electrical tunability of the dual-wavelength lasing emission is over 1 nm. The experimental results facilitated the decreased lasing threshold and broadened lasing wavelength range of organic solid-state lasers.
Silicon graphene Bragg gratings.
Capmany, José; Domenech, David; Muñoz, Pascual
2014-03-10
We propose the use of interleaved graphene sections on top of a silicon waveguide to implement tunable Bragg gratings. The filter central wavelength and bandwidth can be controlled changing the chemical potential of the graphene sections. Apodization techniques are also presented.
Bragg gratings: Optical microchip sensors
NASA Astrophysics Data System (ADS)
Watts, Sam
2010-07-01
A direct UV writing technique that can create multiple Bragg gratings and waveguides in a planar silica-on-silicon chip is enabling sensing applications ranging from individual disposable sensors for biotechnology through to multiplexed sensor networks in pharmaceutical manufacturing.
NASA Astrophysics Data System (ADS)
Ye, Zhicheng; Zheng, Jun; Zhang, Chenchen; Sun, Shu
2011-12-01
Optical responses in Bi-layer metallic nanowire grating are investigated. There are two kinds of Surface Plasmon resonances: lateral propagating Surface Plasmon waveguide modes excited by the diffraction of the grating which lead to dips in transmission; Surface Plasmon resonance between the slits of the grating, which leads to high extinction ration of TM to TE transmission. With simultaneous resonances, a compacted device of integrated color filter and polarizer can be achieved. In order to improve the transmission of TM light, an undercut structure is proposed. The mechanism of the enhancement is analyzed. Bi-layer metallic nanowire gratings are fabricated by laser interference lithography and subsequent E-beam deposition. The measured transmission and reflection spectra confirmed the theoretical and numerical simulations. The results will have wide potential applications in Displays, Optical communication, and integrated Optics.
Unidirectional complex grating assisted couplers
NASA Astrophysics Data System (ADS)
Greenberg, Maxim; Orenstein, Meir
2004-08-01
We present a novel concept which enables the realization of unidirectional and irreversible grating assisted couplers by using gain-loss modulated medium to eliminate the reversibility. Employing a matched periodic modulation of both refractive index and loss (gain) we achieve a unidirectional energy transfer between the modes of the coupler which translates to light transmission from one waveguide to another while disabling the inverse transmission. The importance of self coupling coefficients is explored as well and a feasible implementation, where the real and imaginary perturbations are implemented in different waveguides is presented.
NASA Astrophysics Data System (ADS)
Ye, Han; Han, Qin; Lv, Qianqian; Pan, Pan; An, Junming; Yang, Xiaohong
2017-12-01
We demonstrate the monolithic integration of a uni-traveling carrier photodiode array with a 4 channel, O-band arrayed waveguide grating demultiplexer on the InP platform by the selective area growth technique. An extended coupling layer at the butt-joint is adopted to ensure both good fabrication compatibility and high photodiode quantum efficiency of 77%. The fabricated integrated chip exhibits a uniform bandwidth over 25 GHz for each channel and a crosstalk below -22 dB.
Special types of FBG and CoaxBG structures for telecommunication and monitoring systems
NASA Astrophysics Data System (ADS)
Morozov, Oleg G.; Nasybullin, Aidar R.; Morozov, Gennady A.; Danilaev, Maxim P.; Zastela, Mikhail Y.; Farkhutdinov, Rafael V.; Faskhutdinov, Lenar M.
2015-03-01
The technology of fiber Bragg gratings is used as one of the most applicable technologies for construction of fiber optic sensors and telecommunication systems. Periodic irregular wave resistance located in the guiding waveguide can be regarded as analog of the fiber Bragg grating structure in the field of radio-frequency. Coaxial waveguide can be used as a guide system, so a special case of this structure is the Bragg grating on coaxial cable. Recently, the special structure of sensors were beginning to be used with heterogeneity as a discrete phase π-shift. Based on the properties analysis of the Bragg reflection characteristics of structures with a phase shift in the optical and microwave range shown advantage of using these devices in measuring systems.
Demonstration of flexible multicasting and aggregation functionality for TWDM-PON
NASA Astrophysics Data System (ADS)
Chen, Yuanxiang; Li, Juhao; Zhu, Paikun; Zhu, Jinglong; Tian, Yu; Wu, Zhongying; Peng, Huangfa; Xu, Yongchi; Chen, Jingbiao; He, Yongqi; Chen, Zhangyuan
2017-06-01
The time- and wavelength-division multiplexed passive optical network (TWDM-PON) has been recognized as an attractive solution to provide broadband access for the next-generation networks. In this paper, we propose flexible service multicasting and aggregation functionality for TWDM-PON utilizing multiple-pump four-wave-mixing (FWM) and cyclic arrayed waveguide grating (AWG). With the proposed scheme, multiple TWDM-PON links share a single optical line terminal (OLT), which can greatly reduce the network deployment expense and achieve efficient network resource utilization by load balancing among different optical distribution networks (ODNs). The proposed scheme is compatible with existing TDM-PON infrastructure with fixed-wavelength OLT transmitter, thus smooth service upgrade can be achieved. Utilizing the proposed scheme, we demonstrate a proof-of-concept experiment with 10-Gb/s OOK and 10-Gb/s QPSK orthogonal frequency division multiplexing (OFDM) signal multicasting and aggregating to seven PON links. Compared with back-to-back (BTB) channel, the newly generated multicasting OOK signal and OFDM signal have power penalty of 1.6 dB and 2 dB at the BER of 10-3, respectively. For the aggregation of multiple channels, no obvious power penalty is observed. What is more, to verify the flexibility of the proposed scheme, we reconfigure the wavelength selective switch (WSS) and adjust the number of pumps to realize flexible multicasting functionality. One to three, one to seven, one to thirteen and one to twenty-one multicasting are achieved without modifying OLT structure.
All-optical LAN architectures based on arrayed waveguide grating multiplexers
NASA Astrophysics Data System (ADS)
Woesner, Hagen
1998-10-01
The paper presents optical LAN topologies which are made possible using an Arrayed Waveguide Grating Multiplexer (AWGM) instead of a passive star coupler to interconnect stations in an all-optical LAN. Due to the collision-free nature of an AWGM it offers the n-fold bandwidth compared to the star coupler. Virtual ring topologies appear (one ring on each wavelength) if the number of stations attached to the AWGM is a prime number. A method to construct larger networks using Cayley graphs is shown. An access protocol to avoid collisions on the proposed network is outlined.
High-contrast grating hollow-core waveguide splitter applied to optical phased array
NASA Astrophysics Data System (ADS)
Zhao, Che; Xue, Ping; Zhang, Hanxing; Chen, Te; Peng, Chao; Hu, Weiwei
2014-11-01
A novel hollow-core (HW) Y-branch waveguide splitter based on high-contrast grating (HCG) is presented. We calculated and designed the HCG-HW splitter using Rigorous Coupled Wave Analysis (RCWA). Finite-different timedomain (FDTD) simulation shows that the splitter has a broad bandwidth and the branching loss is as low as 0.23 dB. Fabrication is accomplished with standard Silicon-On-Insulator (SOI) process. The experimental measurement results indicate its good performance on beam splitting near the central wavelength λ = 1550 nm with a total insertion loss of 7.0 dB.
Design and analysis of photonic optical switches with improved wavelength selectivity
NASA Astrophysics Data System (ADS)
Wielichowski, Marcin; Patela, Sergiusz
2005-09-01
Efficient optical modulators and switches are the key elements of the future all-optical fiber networks. Aside from numerous advantages, the integrated optical devices suffer from excessive longitudinal dimensions. The dimensions may be significantly reduced with help of periodic structures, such as Bragg gratings, arrayed waveguides or multilayer structures. In this paper we describe methods of analysis and example of analytical results of a photonic switch with properties modified by the application of periodic change of effective refractive index. The switch is composed of a strip-waveguide directional coupler and a transversal Bragg grating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, Viktor I; Panchenko, Vladislav Ya; Seminogov, V N
We report the fabrication of narrowband frequency-selective filters for the 1.5-{mu}m telecom window, which include a single-mode polymer waveguide with a submicron Bragg grating inscribed by a helium-cadmium laser. The filters have a reflectance R > 98 % and a nearly rectangular reflection band with a bandwidth {Delta}{lambda}{approx}0.4nm. They can be used as components of optical multiplexers/demultiplexers for combining and separating signals in high-speed dense wavelength-division multiplexed optical fibre communication systems. (laser components)
Bazargani, Hamed Pishvai; Burla, Maurizio; Chrostowski, Lukas; Azaña, José
2016-11-01
We experimentally demonstrate high-performance integer and fractional-order photonic Hilbert transformers based on laterally apodized Bragg gratings in a silicon-on-insulator technology platform. The sub-millimeter-long gratings have been fabricated using single-etch electron beam lithography, and the resulting HT devices offer operation bandwidths approaching the THz range, with time-bandwidth products between 10 and 20.
Surface morphology of refractive-index waveguide gratings fabricated in polymer films
NASA Astrophysics Data System (ADS)
Dong, Yi; Song, Yan-fang; Ma, Lei; Gao, Fang-fang
2016-09-01
The characteristic modifications are reported on the surface of polymeric waveguide film in the process of volume- grating fabrication. The light from a mode-locked 76 MHz femtosecond laser with pulse duration of 200 fs and wavelength of 800 nm is focused normal to the surface of the sample. The surface morphology modifications are ascribed to a fact that surface swelling occurs during the process. Periodic micro-structure is inscribed with increasing incident power. The laser-induced swelling threshold on the grating, which is higher than that of two-photon initiated photo-polymerization (TPIP) (8 mW), is verified to be about 20 mW. It is feasible to enhance the surface smoothness of integrated optics devices for further encapsulation. The variation of modulation depth is studied for different values of incident power and scan spacing. Ablation accompanied with surface swelling appears when the power is higher. By optimizing the laser carving parameters, highly efficient grating devices can be fabricated.
Grating-assisted surface acoustic wave directional couplers
NASA Astrophysics Data System (ADS)
Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.
1991-07-01
Physical properties of novel grating-assisted Y directional couplers are examined using the coupled-mode theory. A general formalism for the analysis of the lateral perturbed directional coupler properties is presented. Explicit expressions for waveguide key parameters such as coupling length, grating period, and other structural characterizations, are obtained. The influence of other physical properties such as time and frequency response or cutoff conditions are also analyzed. A plane grating-assisted directional coupler is presented and examined as a basic component in the integrated acoustic technology.
High sensitivity waveguide micro-displacement sensor based on intermodal interference
NASA Astrophysics Data System (ADS)
Ji, Lanting; He, Guobing; Gao, Yang; Xu, Yan; Liang, Honglei; Sun, Xiaoqiang; Wang, Xibin; Yi, Yunji; Chen, Changming; Wang, Fei; Zhang, Daming
2017-11-01
An optical waveguide displacement sensor according to core-cladding modes interference is theoretically proposed and experimentally demonstrated. Ultraviolet sensitive SU-8 polymer on silica is used as the guiding layer. It is covered by a 12 nm thick planar gold grating. The air gap sensing head which consists of the waveguide end and the single-mode fiber facet can realize the displacement detection by monitoring the wavelength dip shifting in transmission spectra. Cladding modes propagating in the exposed SU-8 can be effectively excited by the end-fire coupling because of the mode field mismatch between the SU-8 waveguide and lead-in fiber. A sinusoidal pattern transmission spectrum in C-band with the depth of over 14 dB can be observed due to the interference between the core and cladding modes. Peaks in the transmission spectrum vary continuously with the position offset of input fiber facet from the center of waveguide end. Both the sensitivity and the stability of sensing are enhanced by the introduction of nanometric gold gratings. The fabricated displacement sensor exhibits a high sensitivity of 2.3 nm μm-1, promising potentials for micromechanical processing and integrated optics application.
Long-period fiber phase grating devices
NASA Astrophysics Data System (ADS)
Stegall, David Brian
In recent years, the explosive growth of the internet has virtually surpassed the limits of the global communications infrastructure. As a result, the fiber- optic communications industry is spearheading research and development to transmit information at ever increasing rates and over longer distances. The industry faces several obstacles to improving the performance of these systems. One problem is dispersion, which manifests at faster transmission rates when pulse spreading and distortion scramble the signal. Furthermore, high transmission powers needed for longer distances introduce deleterious optical nonlinearity phenomenon. Several waveguide and bulk devices have been implemented to address these issues, but each have shortcomings. Many of these problems and challenges have also impacted other fiber-optic industries, such as sensor systems. Long- period optical fiber gratings pose simple solutions to these problems and offer novel applications previously impractical through any other means. In this dissertation, research is presented in which modeling and fabrication of long-period gratings is improved over existing techniques by incorporating the effects of waveguide dispersion. An arbitrary dispersion also can be introduced into a long-period grating intentionally and a theoretical examination is made relating the chirp of a long-period grating and the resulting dispersion. In addition, several device applications such as a biological sensor and the concept of an actively controlled transmission spectrum of a long-period grating are explored. Finally, multiple in-series Bragg and long- period gratings are investigated for novel device configurations.
TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform
NASA Astrophysics Data System (ADS)
Dabos, G.; Manolis, A.; Giesecke, A. L.; Porschatis, C.; Chmielak, B.; Wahlbrink, T.; Pleros, N.; Tsiokos, D.
2017-12-01
We demonstrate, for the first time to our knowledge, a fully etched TM grating coupler for low-loss Low-Pressure-Chemical-Vapor-Deposition (LPCVD) based silicon nitride platform with a coupling loss of 6.5 dB at 1541 nm and a 1 dB bandwidth of 55 nm, addressing applications where TM polarization is a pre-requisite. The proposed GC and the 360 nm × 800 nm strip based Si3N4 waveguides have been fabricated by optical projection lithography using an i-line stepper tool enabling low-cost and mass manufacturing of photonic-integrated-circuits.
Design of bent waveguide semiconductor lasers using nonlinear equivalent chirp
NASA Astrophysics Data System (ADS)
Li, Lianyan; Shi, Yuechun; Zhang, Yunshan; Chen, Xiangfei
2018-01-01
Reconstruction equivalent chirp (REC) technique is widely used in the design and fabrication of semiconductor laser arrays and tunable lasers with low cost and high wavelength accuracy. Bent waveguide is a promising method to suppress the zeroth order resonance, which is an intrinsic problem in REC technique. However, it may introduce basic grating chirp and deteriorate the single longitudinal mode (SLM) property of the laser. A nonlinear equivalent chirp pattern is proposed in this paper to compensate the grating chirp and improve the SLM property. It will benefit the realization of low-cost Distributed feedback (DFB) semiconductor laser arrays with accurate lasing wavelength.
Subwavelength grating enabled on-chip ultra-compact optical true time delay line
Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R.
2016-01-01
An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth. PMID:27457024
Subwavelength grating enabled on-chip ultra-compact optical true time delay line.
Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R
2016-07-26
An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth.
Directional emissivity from two-dimensional infrared waveguide arrays
NASA Astrophysics Data System (ADS)
Burckel, D. Bruce; Davids, Paul S.; Finnegan, Patrick S.; Figueiredo, Pedro N.; Ginn, James C.
2015-09-01
Fabrication and optical characterization of surfaces covered with open-ended metallic waveguides are presented along with numerical modeling of these structures. Both modeling and measurement of the structures indicate that the 2-D array of 3D metallic waveguides modify both the direction and spectral content of the emissivity, resulting in directionality normal to the surface due to the optical axis of the waveguides and spectrally narrow emissivity due to the lateral dimensions of the waveguides. Furthermore, the optical behavior of these structures is placed in the broader context of other structured emission/absorption surfaces such as organ pipe modes, surface plasmon modes, and coherent thermal emission from gratings.
Evanescent field Sensors Based on Tantalum Pentoxide Waveguides – A Review
Schmitt, Katrin; Oehse, Kerstin; Sulz, Gerd; Hoffmann, Christian
2008-01-01
Evanescent field sensors based on waveguide surfaces play an important role where high sensitivity is required. Particularly tantalum pentoxide (Ta2O5) is a suitable material for thin-film waveguides due to its high refractive index and low attenuation. Many label-free biosensor systems such as grating couplers and interferometric sensors as well as fluorescence-based systems benefit from this waveguide material leading to extremely high sensitivity. Some biosensor systems based on Ta2O5 waveguides already took the step into commercialization. This report reviews the various detection systems in terms of limit of detection, the applications, and the suitable surface chemistry. PMID:27879731
An investigation for the development of an integrated optical data preprocessor
NASA Technical Reports Server (NTRS)
Verber, C. M.; Vahey, D. W.; Kenan, R. P.; Wood, V. E.; Hartman, N. F.; Chapman, C. M.
1978-01-01
The successful fabrication and demonstration of an integrated optical circuit designed to perform a parallel processing operation by utilizing holographic subtraction to simultaneously compare N analog signal voltages with N predetermined reference voltages is summarized. The device alleviates transmission, storage and processing loads of satellite data systems by performing, at the sensor site, some preprocessing of data taken by remote sensors. Major accomplishments in the fabrication of integrated optics components include: (1) fabrication of the first LiNbO3 waveguide geodesic lens; (2) development of techniques for polishing TIR mirrors on LiNbO3 waveguides; (3) fabrication of high efficiency metal-over-photoresist gratings for waveguide beam splitters; (4) demonstration of high S/N holographic subtraction using waveguide holograms; and (5) development of alignment techniques for fabrication of integrated optics circuits. Important developments made in integrated optics are the discovery and suggested use of holographic self-subtraction in LiNbO3, development of a mathematical description of the operating modes of the preprocessor, and the development of theories for diffraction efficiency and beam quality of two dimensional beam defined gratings.
A four-port vertical-coupling optical interface based on two-dimensional grating coupler
NASA Astrophysics Data System (ADS)
Zhang, Zan; Zhang, Zanyun; Huang, Beiju; Cheng, Chuantong; Gao, Tianxi; Hu, Xiaochuan; Zhang, Lin; Chen, Hongda
2016-10-01
In this work, a fiber-to-chip optical interface with four output ports is proposed. External lights irradiate vertically from single mode fiber to the center of optical interface can be coupled into silicon photonic chips and split into four siliconon- insulator (SOI) waveguides. If the light is circular polarized, the power of light will be equally split into four ports. Meanwhile, all lights travel in the four channel will be converted into TE polarization. The optical interface is based on a two-dimensional grating coupler with carefully designed duty cycle and period. Simulation results show that the coupling efficiency of each port can reach 11.6% so that the total coupling efficiency of the interface is 46.4%. And Lights coupled into four waveguides are all converted into TE polarization. Further, the optical interface has a simple grating structure allowing for easy fabrication.
High-Power Copper Gratings for a Sheet-Beam Traveling-Wave Amplifier at G-Band
2013-01-01
respectively). A. Two-Port CTF The CTF was CNC machined from OFHC copper. The gratings were tightly clamped into place in the fixture. The results of the... CNC machined such that only ten slots were exposed, followed by a short for the rest of the grating. Adaptors to standard WR5 and WR10 waveguides were...of low-voltage grating Cerenkov amplifiers,” Phys. Plasmas , vol. 1, no. 1, pp. 176–188, Jan. 1994. [11] C. D. Joye, J. P. Calame, K. T. Nguyen, and M
All optical controlled photonic integrated circuits using azo dye functionized sol-gel material
NASA Astrophysics Data System (ADS)
Ke, Xianjun
The main focus of this dissertation is development and characterization of all-optical controllable azo dye functionized sol gel material, demonstrating a PIC fabrication technique on glass substrate using such material, and exploration and feasibility demonstration of three PIC functional devices namely optical variable attenuator, optical switches, and optical tunable filters using the material. The realization of all the devices in this dissertation are based on one material: dye functionalized sol-gel material. A photochromic sol-gel material functionalized with azo dye was synthesized and characterized. It possesses a photochromic characteristic under the control of green laser beam illumination. The material characteristics suggest the possibility of a new promising material platform candidate for the fabrication of alloptical controlled photonic integrated circuits. As the first potential application of the dye functionalized sol-gel material, an alloptical variable attenuator was designed and demonstrated. The optical variable attenuation is achieved in Mach-Zehnder interferometric configuration through all-optical modulation of sol-gel waveguide phase shifters. A 2 x 2 optical switch based on multimode interference (MMI) waveguide structure is proposed in the dissertation. The schematic configuration of the optical switch consists of a cascade of two identical MMIs with two all-optical controlled phase shifters realized by using the photochromic sol-gel material. The cross or bar switch state of the optical switch is determined by the phase difference between the two sol-gel waveguide phase shifters. An all-optical tunable filter is designed and its feasibility demonstrated by using the sol-gel photochromic material. Except for the phase change demonstrated on sol-gel waveguide phase shifters, dynamic gratings were observed on sol-gel film when exposed to two interference beams. This reveals the possibility of realizing Bragg grating-based tunable filters. The schematic configuration of proposed tunable filters consists of a single straight waveguide embedded with a sol-gel waveguide. The wavelength tuning of the tunable filters is accomplished by varying the grating period.
Wavelength interrogation of fiber Bragg grating sensors using tapered hollow Bragg waveguides.
Potts, C; Allen, T W; Azar, A; Melnyk, A; Dennison, C R; DeCorby, R G
2014-10-15
We describe an integrated system for wavelength interrogation, which uses tapered hollow Bragg waveguides coupled to an image sensor. Spectral shifts are extracted from the wavelength dependence of the light radiated at mode cutoff. Wavelength shifts as small as ~10 pm were resolved by employing a simple peak detection algorithm. Si/SiO₂-based cladding mirrors enable a potential operational range of several hundred nanometers in the 1550 nm wavelength region for a taper length of ~1 mm. Interrogation of a strain-tuned grating was accomplished using a broadband amplified spontaneous emission (ASE) source, and potential for single-chip interrogation of multiplexed sensor arrays is demonstrated.
Daghestani, Hikmat N.; Day, Billy W.
2010-01-01
Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed. PMID:22163431
Apodized coupled resonator waveguides.
Capmany, J; Muñoz, P; Domenech, J D; Muriel, M A
2007-08-06
In this paper we propose analyse the apodisation or windowing of the coupling coefficients in the unit cells of coupled resonator waveguide devices (CROWs) as a means to reduce the level of secondary sidelobes in the bandpass characteristic of their transfer functions. This technique is regularly employed in the design of digital filters and has been applied as well in the design of other photonic devices such as corrugated waveguide filters and fiber Bragg gratings. The apodisation of both Type-I and Type-II structures is discussed for several windowing functions.
Sun, Xu; Dai, Daoxin; Thylén, Lars; Wosinski, Lech
2015-10-05
A Mach-Zehnder Interferometer (MZI) liquid sensor, employing ultra-compact double-slot hybrid plasmonic (DSHP) waveguide as active sensing arm, is developed. Numerical results show that extremely large optical confinement factor of the tested analytes (as high as 88%) can be obtained by DSHP waveguide with optimized geometrical parameters, which is larger than both, conventional SOI waveguides and plasmonic slot waveguides with same widths. As for MZI sensor with 40μm long DSHP active sensing area, the sensitivity can reach as high value as 1061nm/RIU (refractive index unit). The total loss, excluding the coupling loss of the grating coupler, is around 4.5dB.
46 CFR 119.440 - Independent fuel tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... not more than 570 liter (150 gal) tanks Over 570 liter (150 gal) 2 tanks Nickel-copper B127, hot...-nickel 4 B122, UNS alloy C71500 1.14 (0.045) [AWG 17] 1.45 (0.057) [AWG 15] 3.25 (0.128) [AWG 8] Copper 4... 4 B 96, alloys C65100 and C65500 1.29 (0.051) [AWG 16] 1.63 (0.064) [AWG 14] 3.66 (0.144) [AWG 7...
46 CFR 119.440 - Independent fuel tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... not more than 570 liter (150 gal) tanks Over 570 liter (150 gal) 2 tanks Nickel-copper B127, hot...-nickel 4 B122, UNS alloy C71500 1.14 (0.045) [AWG 17] 1.45 (0.057) [AWG 15] 3.25 (0.128) [AWG 8] Copper 4... 4 B 96, alloys C65100 and C65500 1.29 (0.051) [AWG 16] 1.63 (0.064) [AWG 14] 3.66 (0.144) [AWG 7...
46 CFR 119.440 - Independent fuel tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... not more than 570 liter (150 gal) tanks Over 570 liter (150 gal) 2 tanks Nickel-copper B127, hot...-nickel 4 B122, UNS alloy C71500 1.14 (0.045) [AWG 17] 1.45 (0.057) [AWG 15] 3.25 (0.128) [AWG 8] Copper 4... 4 B 96, alloys C65100 and C65500 1.29 (0.051) [AWG 16] 1.63 (0.064) [AWG 14] 3.66 (0.144) [AWG 7...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stallard, B. R.; Kaushik, S.; Hadley, G. R.
1996-02-01
This report pertains to a Laboratory Directed Research and Development project which was funded for FY94 and FY95. The goal was to develop building blocks for small, cheap sensors that use optical spectroscopy as a means of detecting chemical analytes. Such sensors can have an impact on a wide variety of technologies, such as: industrial process control, environmental monitors, chemical analysis in medicine, and automotive monitors. We describe work in fabricating and demonstrating a waveguide/grating device that can serve as the wavelength dispersive component in a miniature spectrometer. Also, we describe the invention and modeling of a new way tomore » construct an array of optical interference filters using sub-wavelength lithography to tune the index of refraction of a fixed Fabry-Perot cavity. Next we describe progress in more efficiently calculating the fields in grating devices. Finally we present the invention of a new type of near field optical probe, applicable to scanning microscopy or optical data storage, which is based on a circular grating constructed in a waveguide. This result diverges from the original goal of the project but is quite significant in that it promises to increase the data storage capacity of CD-ROMs by 10 times.« less
Waveguide infrared spectrometer platform for point and standoff chemical sensing
NASA Astrophysics Data System (ADS)
Chadha, Suneet; Henning, Pat; Landers, Frank; Weling, Ani
2004-03-01
Advanced autonomous detection of chemical warfare agents and toxic industrial chemicals has long been a major military concern. At present, our capability to rapidly assess the immediate environment is severely limited and our domestic infrastructure is burdened by the meticulous procedures required to rule out false threats. While significant advances have recently been accomplished in remote spectral sensing using rugged FTIRs and point detectors, efforts towards low cost chemical discrimination have been lacking. Foster-Miller has developed a unique waveguide spectrometer which is a paradigm shift from the conventional FTIR approach. The spectrometer provides spectral discrimination over the 3-14 μm range and will be the spectrometer platform for both active and passive detection. Foster-Miller has leveraged its innovations in infrared fiber-optic probes and the recent development of a waveguide spectrometer to build a novel infrared sensor platform for both point and stand-off chemical sensing. A monolithic wedge-grating optic provides the spectral dispersion with low cost thermopile point or array detectors picking off the diffracted wavelengths from the optic. The integrated optic provides spectral discrimination between 3-12 μm with resolution at 16 cm-1 or better and overall optical throughput approaching 35%. The device has a fixed cylindrical grating bonded to the edge of a ZnSe conditioning "wedge". The conditioning optic overcomes limitations of concave gratings as it accepts high angle (large FOV) light at the narrow end of the wedge and progressively conditions it to be near normal to the grating. On return, the diffracted wavelengths are concentrated on the discrete or array detector (pixel) elements by the wedge, providing throughput comparable to that of an FTIR. The waveguide spectrometer coupled to ATR probes, flow through liquid cells or multipass gas cells provides significant cost advantage over conventional sampling methodologies. We will present the enabling innovations along with present performance, sensitivity expectations and discrimination algorithm strategy.
NASA Astrophysics Data System (ADS)
Asadi, Reza; Ouyang, Zhengbiao
2018-03-01
A new mechanism for out-of-plane coupling into a waveguide is presented and numerically studied based on nonlinear scattering of a single nano-scale Graphene layer inside the waveguide. In this mechanism, the refractive index nonlinearity of Graphene and nonhomogeneous light intensity distribution occurred due to the interference between the out-of-plane incident pump light and the waveguide mode provide a virtual grating inside the waveguide, coupling the out-of-plane pump light into the waveguide. It has been shown that the coupling efficiency has two distinct values with high contrast around a threshold pump intensity, providing suitable condition for digital optical applications. The structure operates at a resonance mode due to band edge effect, which enhances the nonlinearity and decreases the required threshold intensity.
Zhang, Ailing; Li, Changxiu
2012-10-08
In this paper, a novel structure of dynamic optical arbitrary waveform generation (O-AWG) with amplitude controlled by interference of two fiber Bragg grating (FBG) arrays is proposed. The FBG array consists of several FBGs and fiber stretchers (FSs). The amplitude is controlled by FSs through interference of two FBG arrays. The phase is controlled by FSs simultaneously. As a result, optical pulse trains with various waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width in each period are obtained via FSs adjustment to change the phase shift of signal in each array.
Sima, Chaotan; Gates, J C; Holmes, C; Mennea, P L; Zervas, M N; Smith, P G R
2013-09-01
Terahertz bandwidth photonic Hilbert transformers are proposed and experimentally demonstrated. The integrated device is fabricated via a direct UV grating writing technique in a silica-on-silicon platform. The photonic Hilbert transformer operates at bandwidths of up to 2 THz (~16 nm) in the telecom band, a 10-fold greater bandwidth than any previously reported experimental approaches. Achieving this performance requires detailed knowledge of the system transfer function of the direct UV grating writing technique; this allows improved linearity and yields terahertz bandwidth Bragg gratings with improved spectral quality. By incorporating a flat-top reflector and Hilbert grating with a waveguide coupler, an ultrawideband all-optical single-sideband filter is demonstrated.
Laterally Coupled Quantum-Dot Distributed-Feedback Lasers
NASA Technical Reports Server (NTRS)
Qui, Yueming; Gogna, Pawan; Muller, Richard; Maker, paul; Wilson, Daniel; Stintz, Andreas; Lester, Luke
2003-01-01
InAs quantum-dot lasers that feature distributed feedback and lateral evanescent- wave coupling have been demonstrated in operation at a wavelength of 1.3 m. These lasers are prototypes of optical-communication oscillators that are required to be capable of stable single-frequency, single-spatial-mode operation. A laser of this type (see figure) includes an active layer that comprises multiple stacks of InAs quantum dots embedded within InGaAs quantum wells. Distributed feedback is provided by gratings formed on both sides of a ridge by electron lithography and reactive-ion etching on the surfaces of an AlGaAs/GaAs waveguide. The lateral evanescent-wave coupling between the gratings and the wave propagating in the waveguide is strong enough to ensure operation at a single frequency, and the waveguide is thick enough to sustain a stable single spatial mode. In tests, the lasers were found to emit continuous-wave radiation at temperatures up to about 90 C. Side modes were found to be suppressed by more than 30 dB.
NASA Astrophysics Data System (ADS)
Zel'dovich, Boris Ya; Miklyaev, Yu V.; Safonov, V. I.
1995-02-01
An analysis is made of the mechanism of formation of a stationary grating in a planar photorefractive waveguide by a travelling interference pattern with the aid of an alternating electric field applied perpendicular to the waveguide layer. A theoretical calculation is reported of the distribution of the space-charge field in a transverse section of the waveguide. Finite drift lengths and trap saturation are taken into account in these calculations, which are carried out on the assumption of a weak contrast in the interference pattern.
Multistaged stokes injected Raman capillary waveguide amplifier
Kurnit, Norman A.
1980-01-01
A multistaged Stokes injected Raman capillary waveguide amplifier for providing a high gain Stokes output signal. The amplifier uses a plurality of optically coupled capillary waveguide amplifiers and one or more regenerative amplifiers to increase Stokes gain to a level sufficient for power amplification. Power amplification is provided by a multifocused Raman gain cell or a large diameter capillary waveguide. An external source of CO.sub.2 laser radiation can be injected into each of the capillary waveguide amplifier stages to increase Raman gain. Devices for injecting external sources of CO.sub.2 radiation include: dichroic mirrors, prisms, gratings and Ge Brewster plates. Alternatively, the CO.sub.2 input radiation to the first stage can be coupled and amplified between successive stages.
Wavelength selection by dielectric-loaded plasmonic components
NASA Astrophysics Data System (ADS)
Holmgaard, Tobias; Chen, Zhuo; Bozhevolnyi, Sergey I.; Markey, Laurent; Dereux, Alain; Krasavin, Alexey V.; Zayats, Anatoly V.
2009-02-01
Fabrication, characterization, and modeling of waveguide-ring resonators and in-line Bragg gratings for wavelength selection in the telecommunication range are reported utilizing dielectric-loaded surface plasmon-polariton waveguides. The devices were fabricated by depositing subwavelength-sized polymer ridges on a smooth gold film using industrially compatible large-scale UV photolithography. We demonstrate efficient and compact wavelength-selective filters, including waveguide-ring resonators with an insertion loss of ˜2 dB and a footprint of only 150 μm2 featuring narrow bandwidth (˜20 nm) and high contrast (˜13 dB) features in the transmission spectrum. The performance of the components is found in good agreement with the results obtained by full vectorial three-dimensional finite element simulations.
PN-type carrier-induced filter with modulatable extinction ratio.
Fang, Qing; Tu, Xiaoguang; Song, Junfeng; Jia, Lianxi; Luo, Xianshu; Yang, Yan; Yu, Mingbin; Lo, Guoqiang
2014-12-01
We demonstrate the first PN-type carrier-induced silicon waveguide Bragg grating filter on a SOI wafer. The optical extinction ratio of this kind of filter can be efficiently modulated under both reverse and forward biases. The carrier-induced Bragg grating based on a PN junction is fabricated on the silicon waveguide using litho compensation technology. The measured optical bandwidth and the extinction ratio of the filter are 0.45 nm and 19 dB, respectively. The optical extinction ratio modulation under the reverse bias is more than 11.5 dB and it is more than 10 dB under the forward bias. Only 1-dB optical transmission loss is realized in this Bragg grating under a reverse bias. The shifting rates of the central wavelength under forward and reverse biases are ~-1.25 nm/V and 0.01 nm/V, respectively. The 3-dB modulation bandwidth of this filter is 5.1 GHz at a bias of -10 V.
Surface-Emitting Distributed Feedback Terahertz Quantum-Cascade Lasers in Metal-Metal Waveguides
NASA Technical Reports Server (NTRS)
Kumar, Sushil; Williams, Benjamin S.; Qin, Qi; Lee, Alan W. M.; Hu, Qing; Reno, John L.
2007-01-01
Single-mode surface-emitting distributed feedback terahertz quantumcascade lasers operating around 2.9 THz are developed in metal-metal waveguides. A combination of techniques including precise control of phase of reflection at the facets, and u e of metal on the sidewalls to eliminate higher-order lateral modes allow robust single-mode operation over a range of approximately 0.35 THz. Single-lobed far-field radiation pattern is obtained using a pi phase-shift in center of the second-order Bragg grating. A grating device operating at 2.93 THz lased up to 149 K in pulsed mode and a temperature tuning of 19 .7 GHz was observed from 5 K to 147 K. The same device lased up to 78 K in continuous-wave (cw) mode emitting more than 6 m W of cw power at 5 K. ln general, maximum temperature of pulsed operation for grating devices was within a few Kelvin of that of multi-mode Fabry-Perot ridge lasers
NASA Astrophysics Data System (ADS)
Zhao, Jian-Yi; Chen, Xin; Zhou, Ning; Huang, Xiao-Dong; Cao, Ming-De; Liu, Wen
2014-07-01
A 16-channel distributed-feedback (DFB) laser array with a monolithic integrated arrayed waveguide grating multiplexer for a wavelength division multiplex-passive optical network system is fabricated by using the butt-joint metal organic chemical vapor deposition technology and nanoimpirnt technology. The results show that the threshold current is about 20-30 mA at 25°C. The DFB laser side output power is about 16 mW with a 150 mA injection current. The lasing wavelength is from 1550 nm to 1575 nm covering a more than 25 nm range with 200 GHz channel space. A more than 55 dB sidemode suppression ratio is obtained.
Diffractive optics in industry and research: novel components for optical security systems
NASA Astrophysics Data System (ADS)
Laakkonen, Pasi; Turunen, Jari; Pietarinen, Juha; Siitonen, Samuli; Laukkanen, Janne; Jefimovs, Konstantins; Orava, Joni; Ritala, Mikko; Pilvi, Tero; Tuovinen, Hemmo; Ventola, Kalle; Vallius, Tuomas; Kaipiainen, Matti; Kuittinen, Markku
2005-09-01
Design and manufacturing of diffractive optical elements (DOEs) are presented. Mass replication methods for DOEs are explained including UV-replication, micro-injection moulding and reel-to-reel production. Novel applications of diffractive optics including spectroscopic surface relief gratings, antireflection surfaces, infrared light rejection gratings, light incoupling into thin waveguides, and additive diffractive colour mixing are presented.
Universal Network Access System
2003-11-01
128 Figure 37 The detail of the SCM TX , (LO; local oscillator, LPF; Low-pass filter, AMP; Amplifier, BPF ...with UNAS, ( BPF : band-pass filter, BM Rx; Burst Mode receiver, AWGR; Arrayed waveguide grating router, FBG; Fiber Bragg Grating, TL; Tunable Laser...protocols. Standard specifications and RFCs will be used as guidelines for implementation. Table 1 UNAS Serial I/O Formats Protocol Implement1
Optimization of an integrated wavelength monitor device
NASA Astrophysics Data System (ADS)
Wang, Pengfei; Brambilla, Gilberto; Semenova, Yuliya; Wu, Qiang; Farrell, Gerald
2011-05-01
In this paper an edge filter based on multimode interference in an integrated waveguide is optimized for a wavelength monitoring application. This can also be used as a demodulation element in a fibre Bragg grating sensing system. A global optimization algorithm is presented for the optimum design of the multimode interference device, including a range of parameters of the multimode waveguide, such as length, width and position of the input and output waveguides. The designed structure demonstrates the desired spectral response for wavelength measurements. Fabrication tolerance is also analysed numerically for this structure.
Biosensing using long-range surface plasmon waveguides
NASA Astrophysics Data System (ADS)
Krupin, Oleksiy; Khodami, Maryam; Fan, Hui; Wong, Wei Ru; Mahamd Adikan, Faisal Rafiq; Berini, Pierre
2017-05-01
Long-range surface plasmon waveguides, and their application to various transducer architectures for amplitude- or phase-sensitive biosensing, are discussed. Straight and Y-junction waveguides are used for direct intensity-based detection, whereas Bragg gratings and single-, dual- and triple-output Mach Zehnder interferometers are used for phasebased detection. In either case, multiple-output biosensors which provide means for referencing are very useful to eliminate common perturbations and drift. Application of the biosensors to disease detection in complex fluids is discussed. Application to biomolecular interaction analysis and kinetics extraction is also discussed.
Single-Mode, Distributed Feedback Interband Cascade Lasers
NASA Technical Reports Server (NTRS)
Frez, Clifford F. (Inventor); Borgentun, Carl E. (Inventor); Briggs, Ryan M. (Inventor); Bagheri, Mahmood (Inventor); Forouhar, Siamak (Inventor)
2016-01-01
Single-mode, distributed feedback interband cascade lasers (ICLs) using distributed-feedback gratings (e.g., lateral Bragg gratings) and methods of fabricating such ICLs are provided. The ICLs incorporate distributed-feedback gratings that are formed above the laser active region and adjacent the ridge waveguide (RWG) of the ICL. The ICLs may incorporate a double-ridge system comprising an optical confinement structure (e.g., a RWG) disposed above the laser active region that comprises the first ridge of the double ridge system, a DFB grating (e.g., lateral Bragg grating) disposed above the laser active region and adjacent the optical confinement structure, and an electric confinement structure that passes at least partially through the laser active region and that defines the boundary of the second ridge comprises and the termination of the DFB grating.
NASA Astrophysics Data System (ADS)
Burckel, David Bruce
One of the anticipated advantages of photonic crystal waveguides is the ability to tune waveguide dispersion and propagation characteristics to achieve desired properties. The majority of research into photonic crystal waveguides centers around high index contrast photonic crystal waveguides with complete in-plane bandgaps in the photonic crystal cladding. This work focuses on linear photonic crystal waveguides in moderate index materials, with insufficient index contrast to guarantee a complete in-plane bandgap. Using a technique called Interferometric Lithography (IL) as well as standard semiconductor processing steps, a process flow for creating large area (˜cm 2), linear photonic crystal waveguides in a spin-deposited photocurable polymer is outlined. The study of such low index contrast photonic crystal waveguides offers a unique opportunity to explore the mechanisms governing waveguide confinement and photonic crystal behavior in general. Results from two optical characterization experiments are provided. In the first set of experiments, rhodamine 590 organic laser dye was incorporated into the polymer prior to fabrication of the photonic crystal slab. Emission spectra from waveguide core modes exhibit no obvious spectral selectivity owing to variation in the periodicity or geometry of the photonic crystal. In addition, grating coupled waveguides were fabricated, and a single frequency diode laser was coupled into the waveguide in order to study the transverse mode structure. To this author's knowledge, the optical mode profile images are the first taken of photonic crystal slab waveguides, exhibiting both simple low order mode structure as well as complex high order mode structure inconsistent with effective index theory. However, no obvious correlation between the mode structure and photonic crystal period or geometry was evident. Furthermore, in both the laser dye-doped and grating coupled waveguides, low loss waveguiding was observed regardless of wavelength to period ratio. These optical results indicated a need for a deeper understanding of the confinement/guiding mechanisms in such waveguide structures. A simplification of the full 2-D problem to a more tractable "tilted 1-D" geometry led to the proposal of a new waveguide geometry, Generalized Transverse Bragg Waveguides (GTBW), as well as a new propagation mode characterized by spatial variation in both the transverse direction as well as the direction of propagation. GTBW demonstrate many of the same dispersion tunability traits exhibited in complete bandgap photonic crystal waveguides, under more modest fabrication demands, and moreover provide much insight into photonic crystal waveguide modes of all types. Generalized Transverse Bragg Waveguides are presented in terms of the standard physical properties associated with waveguides, including the dispersion relation, expressions for the spatial field profile, and the concepts of phase and group velocity. In addition, the proposal of at least one obvious application, semiconductor optical amplifiers, is offered.
NASA Astrophysics Data System (ADS)
Nakama, Kenichi; Tokiwa, Yuu; Mikami, Osamu
2010-09-01
Intra-board interconnection between optical waveguide channels is suitable for assembling high-speed optoelectronic printed wiring boards (OE-PWB). Here, we propose a novel optical interconnection method combining techniques for both wavelength-based optical waveguide addressing and plug-in optical waveguide alignment with a micro-hole array (MHA). This array was fabricated by the mask transfer method. For waveguide addressing, we used a micro passive wavelength selector (MPWS) module, which is a type of Littrow mount monochromator consisting of an optical diffraction grating, a focusing lens, and the MHA. From the experimental results, we found that the wavelength addressing operation of the MPWS module was effective for intra-board optical interconnection.
A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing.
Zhang, Weifeng; Yao, Jianping
2018-04-11
Since the discovery of the Bragg's law in 1913, Bragg gratings have become important optical devices and have been extensively used in various systems. In particular, the successful inscription of a Bragg grating in a fiber core has significantly boosted its engineering applications. However, a conventional grating device is usually designed for a particular use, which limits general-purpose applications since its index modulation profile is fixed after fabrication. In this article, we propose to implement a fully reconfigurable grating, which is fast and electrically reconfigurable by field programming. The concept is verified by fabricating an integrated grating on a silicon-on-insulator platform, which is employed as a programmable signal processor to perform multiple signal processing functions including temporal differentiation, microwave time delay, and frequency identification. The availability of ultrafast and reconfigurable gratings opens new avenues for programmable optical signal processing at the speed of light.
Volumetric Imaging and Characterization of Focusing Waveguide Grating Couplers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katzenmeyer, Aaron Michael; McGuinness, Hayden James Evans; Starbuck, Andrew Lea
Volumetric imaging of focusing waveguide grating coupler emission with high spatial resolution in the visible (λ = 637.3 nm) is demonstrated using a scanning near-field optical microscope with long z-axis travel range. Stacks of 2-D images recorded at fixed distance from the device are compiled to yield 3-D visualization of the light emission pattern and enable extraction of parameters, such as spot size, angle of emission, and focal height. Measurements of such parameters are not prevalent in the literature yet are necessary for efficacious design and integration. As a result, it is observed that finite-difference time-domain simulations based on fabricationmore » layout files do not perfectly predict in-hand device behavior, underscoring the merit of experimental validation, particularly for critical application.« less
An acousto-optic sensor based on resonance grating waveguide structure
Xie, Antonio Jou; Song, Fuchuan; Seo, Sang-Woo
2014-01-01
This paper presents an acousto-optic (AO) sensor based on resonance grating waveguide structure. The sensor is fabricated using elastic polymer materials to achieve a good sensitivity to ultrasound pressure waves. Ultrasound pressure waves modify the structural parameters of the sensor and result in the optical resonance shift of the sensor. This converts into a light intensity modulation. A commercial ultrasound transducer at 20 MHz is used to characterize a fabricated sensor and detection sensitivity at different optical source wavelength within a resonance spectrum is investigated. Practical use of the sensor at a fixed optical source wavelength is presented. Ultimately, the geometry of the planar sensor structure is suitable for two-dimensional, optical pressure imaging applications such as pressure wave detection and mapping, and ultrasound imaging. PMID:25045203
Reflective coherent spatial light modulator
Simpson, John T.; Richards, Roger K.; Hutchinson, Donald P.; Simpson, Marcus L.
2003-04-22
A reflective coherent spatial light modulator (RCSLM) includes a subwavelength resonant grating structure (SWS), the SWS including at least one subwavelength resonant grating layer (SWL) have a plurality of areas defining a plurality of pixels. Each pixel represents an area capable of individual control of its reflective response. A structure for modulating the resonant reflective response of at least one pixel is provided. The structure for modulating can include at least one electro-optic layer in optical contact with the SWS. The RCSLM is scalable in both pixel size and wavelength. A method for forming a RCSLM includes the steps of selecting a waveguide material and forming a SWS in the waveguide material, the SWS formed from at least one SWL, the SWL having a plurality of areas defining a plurality of pixels.
Volumetric Imaging and Characterization of Focusing Waveguide Grating Couplers
Katzenmeyer, Aaron Michael; McGuinness, Hayden James Evans; Starbuck, Andrew Lea; ...
2017-08-29
Volumetric imaging of focusing waveguide grating coupler emission with high spatial resolution in the visible (λ = 637.3 nm) is demonstrated using a scanning near-field optical microscope with long z-axis travel range. Stacks of 2-D images recorded at fixed distance from the device are compiled to yield 3-D visualization of the light emission pattern and enable extraction of parameters, such as spot size, angle of emission, and focal height. Measurements of such parameters are not prevalent in the literature yet are necessary for efficacious design and integration. As a result, it is observed that finite-difference time-domain simulations based on fabricationmore » layout files do not perfectly predict in-hand device behavior, underscoring the merit of experimental validation, particularly for critical application.« less
Nanocrystal waveguide (NOW) laser
Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.
2005-02-08
A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zheng; Xu, Xiaochuan; Fan, Donglei
Here, subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantlymore » reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.« less
NASA Astrophysics Data System (ADS)
Kang, Jian; Takagi, Shinichi; Takenaka, Mitsuru
2018-04-01
We present the design methodology for Ge passive components including single-mode waveguide, grating couplers, multimode interferometer (MMI) couplers, and micro-ring resonators on the Ge-on-insulator wafer at a 1.95 µm wavelength. Characterizations of the fabricated Ge passive devices reveal a good consistence between the experimental and simulation results. By using the Ge micro-ring device, we also reveal that the thermo-optic coefficient in the Ge strip waveguide is 5.74 × 10-4/°C, which is much greater than that in Si.
Xu, Yin; Xiao, Jinbiao
2016-01-01
On-chip polarization manipulation is pivotal for silicon-on-insulator material platform to realize polarization-transparent circuits and polarization-division-multiplexing transmissions, where polarization splitters and rotators are fundamental components. In this work, we propose an ultracompact and high efficient silicon-based polarization splitter-rotator (PSR) using a partially-etched subwavelength grating (SWG) coupler. The proposed PSR consists of a taper-integrated SWG coupler combined with a partially-etched waveguide between the input and output strip waveguides to make the input transverse-electric (TE) mode couple and convert to the output transverse-magnetic (TM) mode at the cross port while the input TM mode confine well in the strip waveguide during propagation and directly output from the bar port with nearly neglected coupling. Moreover, to better separate input polarizations, an additional tapered waveguide extended from the partially-etched waveguide is also added. From results, an ultracompact PSR of only 8.2 μm in length is achieved, which is so far the reported shortest one. The polarization conversion loss and efficiency are 0.12 dB and 98.52%, respectively, together with the crosstalk and reflection loss of −31.41/−22.43 dB and −34.74/−33.13 dB for input TE/TM mode at wavelength of 1.55 μm. These attributes make the present device suitable for constructing on-chip compact photonic integrated circuits with polarization-independence. PMID:27306112
Properties of Chirped Grating Lenses in Optical Waveguides.
1984-10-01
the design, the materials and the fabrication q process. In this report, we will summarize the research results obtained at UCSD on the fundamental...limitations of their performance in efficiency, angular field of view and F-number caused by diffraction, materials properties and fabrication techniques... material index, the grating groove pattern in both the transverse and the longitudinal direction and the profile of the grooves can all be varied, while in
[Optical Design of Miniature Infrared Gratings Spectrometer Based on Planar Waveguide].
Li, Yang-yu; Fang, Yong-hua; Li, Da-cheng; Liu, Yang
2015-03-01
In order to miniaturize an infrared spectrometer, we analyze the current optical design of miniature spectrometers and propose a method for designing a miniature infrared gratings spectrometer based on planar waveguide. Common miniature spectrometer uses miniature optical elements to reduce the size of system, which also shrinks the effective aperture. So the performance of spectrometer has dropped. Miniaturization principle of planar waveguide spectrometer is different from the principle of common miniature spectrometer. In planar waveguide spectrometer, the propagation of light is limited in a thin planar waveguide, which looks like the whole optical system is squashed flat. In the direction parallel to the planar waveguide, the light through the slit is collimated, dispersed and focused. And a spectral image is formed in the detector plane. This propagation of light is similar to the light in common miniature spectrometer. In the direction perpendicular to the planar waveguide, light is multiple reflected by the upper and lower surfaces of the planar waveguide and propagates in the waveguide. So the size of corresponding optical element could be very small in the vertical direction, which can reduce the size of the optical system. And the performance of the spectrometer is still good. The design method of the planar waveguide spectrometer can be separated into two parts, Czerny-Turner structure design and planar waveguide structure design. First, by using aberration theory an aberration-corrected (spherical aberration, coma, focal curve) Czerny-Turner structure is obtained. The operation wavelength range and spectral resolution are also fixed. Then, by using geometrical optics theory a planar waveguide structure is designed for reducing the system size and correcting the astigmatism. The planar waveguide structure includes a planar waveguide and two cylindrical lenses. Finally, they are modeled together in optical design software and are optimized as a whole. An infrared planar waveguide spectrometer is designed using this method. The operation wavelength range is 8 - 12 μm, the numerical aperture is 0.22, and the linear array detector contains 64 elements. By using Zemax software, the design is optimized and analyzed. The results indicate that the size of the optical system is 130 mm x 125 mm x 20 mm and the spectral resolution of spectrometer is 80 nm, which satisfy the requirements of design index. Thus it is this method that can be used for designing a miniature spectrometer without movable parts and sizes in the range of several cubic centimeters.
NASA Astrophysics Data System (ADS)
Wang, Jun; Mu, Xiaoyu; Wang, Gang; Liu, Changlong
2017-11-01
By etching two SiO2 optical waveguide slabs separately implanted with 90 keV Ag ions and 60 keV Cu ions at the same dose of 6 × 1016 cm-2, two-dimensional Ag/SiO2 and Cu/SiO2 nanocomposite surface-relief grating couplers with 600-nm periodicity and 100-nm thickness were fabricated, and their structural and vertical input coupling properties were investigated. Experimental results revealed that the two couplers could convert light beams at wavelengths of 620-880 nm into guided waves with different efficiencies, highlighting the special importance of metal nanoparticles (NPs). Further discussions also revealed that owing to the introduction of periodically distributed metal NPs, the periodical phase modification of the transmitted beam was enhanced drastically, and the nanocomposite veins could behave as efficient light scatterers. As a result, the two couplers were much larger in coupling efficiency than the NP-free one with identical morphological parameters. The above findings may be useful to construct thin and short but efficient surface-relief grating couplers on glass optical waveguides.
Integrated waveguide Bragg gratings for microwave photonics signal processing.
Burla, Maurizio; Cortés, Luis Romero; Li, Ming; Wang, Xu; Chrostowski, Lukas; Azaña, José
2013-10-21
Integrated Microwave photonics (IMWP) signal processing using Photonic Integrated Circuits (PICs) has attracted a great deal of attention in recent years as an enabling technology for a number of functionalities not attainable by purely microwave solutions. In this context, integrated waveguide Bragg grating (WBG) devices constitute a particularly attractive approach thanks to their compactness and flexibility in producing arbitrarily defined amplitude and phase responses, by directly acting on coupling coefficient and perturbations of the grating profile. In this article, we review recent advances in the field of integrated WBGs applied to MWP, analyzing the advantages leveraged by an integrated realization. We provide a perspective on the exciting possibilities offered by the silicon photonics platform in the field of MWP, potentially enabling integration of highly-complex active and passive functionalities with high yield on a single chip, with a particular focus on the use of WBGs as basic building blocks for linear filtering operations. We demonstrate the versatility of WBG-based devices by proposing and experimentally demonstrating a novel, continuously-tunable, integrated true-time-delay (TTD) line based on a very simple dual phase-shifted WBG (DPS-WBG).
Femtosecond laser processing of optical fibres for novel sensor development
NASA Astrophysics Data System (ADS)
Kalli, Kyriacos; Theodosiou, Antreas; Ioannou, Andreas; Lacraz, Amedee
2017-04-01
We present results of recent research where we have utilized a femtosecond laser to micro-structure silica and polymer optical fibres in order to realize versatile optical components such as diffractive optical elements on the fibre end face, the inscription of integrated waveguide circuits in the fibre cladding and novel optical fibre sensors designs based on Bragg gratings in the core. A major hurdle in tailoring or modifying the properties of optical fibres is the development of an inscription method that can prove to be a flexible and reliable process that is generally applicable to all optical fibre types; this requires careful matching of the laser parameters and optics in order to examine the spatial limits of direct laser writing, whether the application is structuring at the surface of the optical fibre or inscription in the core and cladding of the fibre. We demonstrate a variety of optical components such as two-dimensional grating structures, Bessel, Airy and vortex beam generators; moreover, optical bridging waveguides inscribed in the cladding of single-mode fibre as a means to selectively couple light from single-core to multi-core optical fibres, and demonstrate a grating based sensor; finally, we have developed a novel femtosecond laser inscription method for the precise inscription of tailored Bragg grating sensors in silica and polymer optical fibres. We also show that this novel fibre Bragg grating inscription technique can be used to modify and add versatility to an existing, encapsulated optical fibre pressure sensor.
Multi-gas sensing with quantum cascade laser array in the mid-infrared region
NASA Astrophysics Data System (ADS)
Bizet, Laurent; Vallon, Raphael; Parvitte, Bertrand; Brun, Mickael; Maisons, Gregory; Carras, Mathieu; Zeninari, Virginie
2017-05-01
Wide tunable lasers sources are useful for spectroscopy of complex molecules that have broad absorption spectra and for multiple sensing of smaller molecules. A region of interest is the mid-infrared region, where many species have strong ro-vibrational modes. In this paper a novel broad tunable source composed of a QCL DFB array and an arrayed waveguide grating (also called multiplexer) was used to perform multi-species spectroscopy (CO, C2H2, CO2). The array and the multiplexer are associated in a way to obtain a prototype that is non-sensitive to mechanical vibrations. A 2190-2220 cm^{-1} spectral range is covered by the chip. The arrayed waveguide grating combines beams to have a single output. A multi-pass White cell was used to demonstrate the efficiency of the multiplexer.
NASA Astrophysics Data System (ADS)
Liu, Qifa; Wang, Wei
2018-01-01
Gallium Nitride (GaN) free-standing planar photonic device at telecommunication wavelength based on GaN-on-silicon platform was presented. The free-standing structure was realized by particular double-side fabrication process, which combining GaN front patterning, Si substrate back releasing and GaN slab etching. The actual device parameters were identified via the physical characterizations employing scanning electron microscope (SEM), atomic force microscope (AFM) and reflectance spectra testing. High coupling efficiency and good light confinement properties of the gratings and rib waveguide at telecommunication wavelength range were verified by finite element method (FEM) simulation. This work illustrates the potential of new GaN photonic structure which will enable new functions for planar photonics in communication and sensing applications, and is favorable for the realization of integrated optical circuit.
NASA Astrophysics Data System (ADS)
Werner, Nils; Wegemund, Jan; Gerke, Sebastian; Feise, David; Bugge, Frank; Paschke, Katrin; Tränkle, Günther
2018-02-01
Diode lasers with ridge waveguide structures and wavelength stabilization by a distributed Bragg-reflector (DBR) are key components for many different applications. These lasers provide diffraction limited laser emission in a single spectral mode, while an arbitrary emission wavelength can be chosen as long as the semiconductor allows for amplification. Furthermore, the DBR grating can be fabricated during the lateral structuring of the device which makes them well suited for mass production. A variety of different concepts can be used for the actual realization of the laser. While standard DBR ridge waveguide lasers (DBR-RWL) with a DBR as reflection grating provide up to 1W optical output power, the DBR can be also used as transmission grating for improved efficiency. Furthermore, more complex structures like monolithic master oscillator power amplifiers (MOPA), which show less spectral mode hops than DBR-RWLs, have been fabricated. The wide range of possible applications have different requirements on the emission characteristic of the used lasers. While the lasers can fulfill the requirements on the emission spectrum and the optical output power, the effects due to optical feedback from optical elements of the setup may limit their practical use in the respective application. Thus, it is of high importance to analyze the emission behavior of the different laser designs at various operation conditions with and without optical feedback. Here, the detailed investigation of the emission characteristics of lasers at an exemplary emission wavelength of 1120 nm is be presented.
NASA Astrophysics Data System (ADS)
Sacher, Wesley David
Photonic integrated circuits implemented on silicon (Si) hold the potential for densely integrated electro-optic and passive devices manufactured by the high-volume fabrication and sophisticated assembly processes used for complementary metal-oxide-semiconductor (CMOS) electronics. However, high index contrast Si photonics has a number of functional limitations. In this thesis, several devices are proposed, designed, and experimentally demonstrated to overcome challenges in the areas of resonant modulation, waveguide loss, fiber-to-chip coupling, and polarization control. The devices were fabricated using foundry services at IBM and A*STAR Institute of Microelectronics (IME). First, we describe coupling modulated microrings, in which the coupler between a microring and the bus waveguide is modulated. The device circumvents the modulation bandwidth vs. resonator linewidth trade-off of conventional intracavity modulated microrings. We demonstrate a Si coupling modulated microring with a small-signal modulation response free of the parasitic resonator linewidth limitations at frequencies up to about 6x the linewidth. Comparisons of eye diagrams show that coupling modulation achieved data rates > 2x the rate attainable with intracavity modulation. Second, we demonstrate a silicon nitride (Si3N4)-on-Si photonic platform with independent Si3N4 and Si waveguides and taper transitions to couple light between the layers. The platform combines the excellent passive waveguide properties of Si3N4 and the compatibility of Si waveguides with electro-optic devices. Within the platform, we propose and demonstrate dual-level, Si3N 4-on-Si, fiber-to-chip grating couplers that simultaneously have wide bandwidths and high coupling efficiencies. Conventional Si and Si3N 4 grating couplers suffer from a trade-off between bandwidth and coupling efficiency. The dual-level grating coupler achieved a peak coupling efficiency of -1.3 dB and a 1-dB bandwidth of 80 nm, a record for the coupling efficiency-bandwidth product. Finally, we describe polarization rotator-splitters and controllers based on mode conversion between the fundamental transverse magnetic polarized mode and a high order transverse electric polarized mode in vertically asymmetric waveguides. We demonstrate the first polarization rotator-splitters and controllers that are fully compatible with standard active Si photonic platforms and extend the concept to our Si3N4-on-Si photonic platform.
Refractive index engineering of high performance coupler for compact photonic integrated circuits
NASA Astrophysics Data System (ADS)
Liu, Lu; Zhou, Zhiping
2017-04-01
High performance couplers are highly desired in many applications, but the design is limited by nearly unchangeable material refractive index. To tackle this issue, refractive index engineering method is investigated, which can be realized by subwavelength grating. Subwavelength gratings are periodical structures with pitches small enough to locally synthesize the refractive index of photonic waveguides, which allows direct control of optical profile as well as easier fabrication process. This review provides an introduction to the basics of subwavelength structures and pay special attention to the design strategies of some representative examples of subwavelength grating devices, including: edge couplers, fiber-chip grating couplers, directional couplers and multimode interference couplers. Benefited from the subwavelength grating which can engineer the refractive index as well as birefringence and dispersion, these devices show better performance when compared to their conventional counterparts.
Han, Jian; Liu, Juan; Yao, Xincheng; Wang, Yongtian
2015-02-09
A compact waveguide display system integrating freeform elements and volume holograms is presented here for the first time. The use of freeform elements can broaden the field of view, which limits the applications of a holographic waveguide. An optimized system can achieve a diagonal field of view of 45° when the thickness of the waveguide planar is 3mm. Freeform-elements in-coupler and the volume holograms out-coupler were designed in detail in our study, and the influence of grating configurations on diffraction efficiency was analyzed thoroughly. The off-axis aberrations were well compensated by the in-coupler and the diffraction efficiency of the optimized waveguide display system could reach 87.57%. With integrated design, stability and reliability of this monochromatic display system were achieved and the alignment of the system was easily controlled by the record of the volume holograms, which makes mass production possible.
Han, Jian; Liu, Juan; Yao, Xincheng; Wang, Yongtian
2015-01-01
A compact waveguide display system integrating freeform elements and volume holograms is presented here for the first time. The use of freeform elements can broaden the field of view, which limits the applications of a holographic waveguide. An optimized system can achieve a diagonal field of view of 45° when the thickness of the waveguide planar is 3mm. Freeform-elements in-coupler and the volume holograms out-coupler were designed in detail in our study, and the influence of grating configurations on diffraction efficiency was analyzed thoroughly. The off-axis aberrations were well compensated by the in-coupler and the diffraction efficiency of the optimized waveguide display system could reach 87.57%. With integrated design, stability and reliability of this monochromatic display system were achieved and the alignment of the system was easily controlled by the record of the volume holograms, which makes mass production possible. PMID:25836207
Low loss hollow-core waveguide on a silicon substrate
NASA Astrophysics Data System (ADS)
Yang, Weijian; Ferrara, James; Grutter, Karen; Yeh, Anthony; Chase, Chris; Yue, Yang; Willner, Alan E.; Wu, Ming C.; Chang-Hasnain, Connie J.
2012-07-01
Optical-fiber-based, hollow-core waveguides (HCWs) have opened up many new applications in laser surgery, gas sensors, and non-linear optics. Chip-scale HCWs are desirable because they are compact, light-weight and can be integrated with other devices into systems-on-a-chip. However, their progress has been hindered by the lack of a low loss waveguide architecture. Here, a completely new waveguiding concept is demonstrated using two planar, parallel, silicon-on-insulator wafers with high-contrast subwavelength gratings to reflect light in-between. We report a record low optical loss of 0.37 dB/cm for a 9-μm waveguide, mode-matched to a single mode fiber. Two-dimensional light confinement is experimentally realized without sidewalls in the HCWs, which is promising for ultrafast sensing response with nearly instantaneous flow of gases or fluids. This unique waveguide geometry establishes an entirely new scheme for low-cost chip-scale sensor arrays and lab-on-a-chip applications.
NASA Astrophysics Data System (ADS)
Avrutskiĭ, I. A.; Sychugov, V. A.; Tishchenko, A. V.; Svakhin, A. S.
1989-02-01
An analysis is made of the emission of light from a composite system representing a thin film on the surface of a corrugated diffused waveguide. Expressions are obtained for the radiative light losses in this waveguide. There is no emission of light into the substrate for certain relationships between the amplitudes and phases of the corrugations at the interfaces between the film and the adjoining medium and between the film and the waveguide. Numerical estimates of the losses are obtained for a case of practical importance, which is a corrugated diffused waveguide in glass with a film of Nb2O5 on the surface. A report is given of an experiment in which a grating was formed for coupling radiation out of a composite Cs+-diffused waveguide coated by a film of Nb2O5, which was capable of preferential (80%) emission of radiation into air, and in the presence of an immersion liquid ensured practically unidirectional coupling out of radiation into air.
NASA Technical Reports Server (NTRS)
Dudgeon, J. E.
1972-01-01
A computerized simulation of a planar phased array of circular waveguide elements is reported using mutual coupling and wide angle impedance matching in phased arrays. Special emphasis is given to circular polarization. The aforementioned computer program has as variable inputs: frequency, polarization, grid geometry, element size, dielectric waveguide fill, dielectric plugs in the waveguide for impedance matching, and dielectric sheets covering the array surface for the purpose of wide angle impedance matching. Parameter combinations are found which produce reflection peaks interior to grating lobes, while dielectric cover sheets are successfully employed to extend the usable scan range of a phased array. The most exciting results came from the application of computer aided optimization techniques to the design of this type of array.
NASA Astrophysics Data System (ADS)
Dong, Liuyang; Jiao, Fen; Qin, Wenqing; Zhu, Hailing; Jia, Wenhao
2018-06-01
In this paper, the effect of acidified water glass (AWG) on the flotation separation of scheelite from calcite using mixed collector of dodecylamine (DDA) and sodium oleate (NaOL) was investigated. The flotation results show that AWG could selectively depress the flotation of calcite at pH 7. A series of mechanism experiments confirm that the chemisorption of AWG on calcite surface is more intense than scheelite. Although the chemisorption of NaOL on calcite surface is almost unaffected by the presence of AWG, the chemisorption of AWG hinders the adsorption of DDA on calcite surface.
Miniature Photonic Spectrometers and Filters for Astrophysics and Space Science
NASA Astrophysics Data System (ADS)
Veilleux, Sylvain
This project seeks to apply our recent breakthroughs in astrophotonics - photonics applied to astronomical instrumentation - to replace the large lenses, mirrors, and gratings of conventional astronomical spectrographs with optoelectronic components borrowed from the multi-billion dollar telecommunication industry. This will reduce the mass and volume of these instruments by two to three orders of magnitudes, shorten delivery times, lower the risk, and cut the cost proportionally. Photonic instruments are also more amenable to complex light manipulation and massive multiplexing, cheaper to mass produce, easier to control, much less susceptible to vibrations and flexures, and have higher throughput. The proposed effort directly addresses one of the technology gaps identified in the 2016 Cosmic Origins Technology Report, namely the need to develop "high-performance spectral dispersion components / devices." Using private funding, we have developed photonic near-infrared (1.4 - 1.6 microns) spectrometers where the dispersing optics are replaced by miniature ( 1 cubiccentimeter) arrayed waveguide gratings imprinted using buried silicon nitride (``nanocore'') technology, the leading solution for low-loss waveguides. We have also developed highly sophisticated photonics filters using complex waveguide Bragg gratings, produced on the same platform technology as the photonic spectrometers and equally small. These prototypes have been fabricated and tested using the state-of-the-art facilities of the Maryland NanoCenter and AstroPhotonics Lab, and the results of these tests have been published in refereed publications and conference proceedings. APRA funding is now needed to develop the next generation of photonics spectrometers and filters for astrophysics and space science applications. We will (1) broaden the wavelength range to 1 - 1.7 microns, (2) increase the spectral resolving power of our photonic spectrometers from R 1500 to 3000, (3) experiment with the aspect ratio of the waveguide cross-section and overall design of the Braggs and arrayed waveguide gratings to make them polarization-independent, and (4) increase the overall throughput of these gratings to >70% at 1 - 1.7 microns by changing the deposition method of the cladding material (silica) and reducing the scattering losses with the use of a newly commissioned electron beam writer that delivers higher resolution (down to a few nm instead of 8 nm). Two graduate students, already trained in the techniques relevant to this project, will lead the optimization, fabrication, and testing of these optoelectronic components. Up to three undergraduate students will also be involved with the research. A wide swath of astrophysical research, from spectroscopic studies of the distant universe to searches for biosignatures in the atmospheres of exoplanets, stands to benefit from these miniature spectrometers and filters on board future NASA balloon, CubeSat, Explorer, Probe-, Flagship-, and Surveyor class missions. The technical by-products of this effort will also offer benefits in fields far beyond astronomy, such as medicine, human science, petrochemistry, space geo-science, and quantum computing and communication. The names and contact information of five experts qualified to review this proposal were emailed directly to the two relevant Program Officers.
Low-loss adiabatically-tapered high-contrast gratings for slow-wave modulators on SOI
NASA Astrophysics Data System (ADS)
Sciancalepore, Corrado; Hassan, Karim; Ferrotti, Thomas; Harduin, Julie; Duprez, Hélène; Menezo, Sylvie; Ben Bakir, Badhise
2015-02-01
In this communication, we report about the design, fabrication, and testing of Silicon-based photonic integrated circuits (Si-PICs) including low-loss flat-band slow-light high-contrast-gratings (HCGs) waveguides at 1.31 μm. The light slowdown is achieved in 300-nm-thick silicon-on-insulator (SOI) rib waveguides by patterning adiabatically-tapered highcontrast gratings, capable of providing slow-light propagation with extremely low optical losses, back-scattering, and Fabry-Pérot noise. In detail, the one-dimensional (1-D) grating architecture is capable to provide band-edge group indices ng ~ 25, characterized by overall propagation losses equivalent to those of the index-like propagation regime (~ 1-2 dB/cm). Such photonic band-edge slow-light regime at low propagation losses is made possible by the adiabatic apodization of such 1-D HCGs, thus resulting in a win-win approach where light slow-down regime is reached without additional optical losses penalty. As well as that, a tailored apodization optimized via genetic algorithms allows the flattening of slow-light regime over the wavelength window of interest, therefore suiting well needs for group index stability for modulation purposes and non-linear effects generation. In conclusion, such architectures provide key features suitable for power-efficient high-speed modulators in silicon as well as an extremely low-loss building block for non-linear optics (NLO) which is now available in the Si photonics toolbox.
Steering and filtering white light with resonant waveguide gratings
NASA Astrophysics Data System (ADS)
Quaranta, Giorgio; Basset, Guillaume; Martin, Olivier J. F.; Gallinet, Benjamin
2017-08-01
A novel thin-film single-layer structure based on resonant waveguide gratings (RWGs) allows to engineer selective color filtering and steering of white light. The unit cell of the structure consists of two adjacent finite-length and cross-talking RWGs, where the former acts as in-coupler and the latter acts as out-coupler. The structure is made by only one nano-imprint lithography replication and one thin film layer deposition, making it fully compatible with up-scalable fabrication processes. We characterize a fabricated optical security element designed to work with the flash and the camera of a smartphone in off-axis light steering configuration, where the pattern is revealed only by placing the smartphone in the proper position. Widespread applications are foreseen in a variety of fields, such as multifocal or monochromatic lenses, solar cells, biosensors, security devices and seethrough optical combiners for near-eye displays.
Unidirectional waveguide grating antennas with uniform emission for optical phased arrays.
Raval, Manan; Poulton, Christopher V; Watts, Michael R
2017-07-01
We demonstrate millimeter-scale optical waveguide grating antennas with unidirectional emission for integrated optical phased arrays. Unidirectional emission eliminates the fundamental problem of blind spots in the element factor of a phased array caused by reflections of antenna radiation within the substrate. Over 90% directionality is demonstrated using a design consisting of two silicon nitride layers. Furthermore, the perturbation strength along the antenna is apodized to achieve uniform emission for the first time, to the best of our knowledge, on a millimeter scale. This allows for a high effective aperture and receiving efficiency. The emission profile of the measured 3 mm long antenna has a standard deviation of 8.65% of the mean. These antennas are state of the art and will allow for integrated optical phased arrays with blind-spot-free high transmission output power and high receiving efficiency for LIDAR and free-space communication systems.
Dai, Hailang; Cao, Zhuangqi; Wang, Yuxing; Li, Honggen; Sang, Minghuang; Yuan, Wen; Chen, Fan; Chen, Xianfeng
2016-01-01
Due to the field enhancement effect of the hollow-core metal-cladded optical waveguide chip, massive nanoparticles in a solvent are effectively trapped via exciting ultrahigh order modes. A concentric ring structure of the trapped nanoparticles is obtained since the excited modes are omnidirectional at small incident angle. During the process of solvent evaporation, the nanoparticles remain well trapped since the excitation condition of the optical modes is still valid, and a concentric circular grating consisting of deposited nanoparticles can be produced by this approach. Experiments via scanning electron microscopy, atomic force microscopy and diffraction of a probe laser confirmed the above hypothesis. This technique provides an alternative strategy to enable effective trapping of dielectric particles with low-intensity nonfocused illumination, and a better understanding of the correlation between the guided modes in an optical waveguide and the nanoparticles in a solvent. PMID:27550743
Synthesis of 1D Bragg gratings by a layer-aggregation method.
Capmany, José; Muriel, Miguel A; Sales, Salvador
2007-08-15
We present what we believe to be a novel method for the synthesis of complex 1D (fiber and waveguide) Bragg gratings, which is based on an impedance reconstruction layer aggregation technique. The main advantage brought by the method is the possibility of synthesizing structures containing defects or discontinuities of the size of the local period, a feature that is not possible with prior reported methods. In addition, this enhanced spatial resolution allows the synthesis of very strong fiber Bragg grating devices providing convergent solutions. The method directly renders the refractive index profile n(z) as it does not rely on the coupled-mode theory.
Sparse aperiodic arrays for optical beam forming and LIDAR.
Komljenovic, Tin; Helkey, Roger; Coldren, Larry; Bowers, John E
2017-02-06
We analyze optical phased arrays with aperiodic pitch and element-to-element spacing greater than one wavelength at channel counts exceeding hundreds of elements. We optimize the spacing between waveguides for highest side-mode suppression providing grating lobe free steering in full visible space while preserving the narrow beamwidth. Optimum waveguide placement strategies are derived and design guidelines for sparse (> 1.5 λ and > 3 λ average element spacing) optical phased arrays are given. Scaling to larger array areas by means of tiling is considered.
Multi-wavelength transceiver integration on SOI for high-performance computing system applications
NASA Astrophysics Data System (ADS)
Aalto, Timo; Harjanne, Mikko; Ylinen, Sami; Kapulainen, Markku; Vehmas, Tapani; Cherchi, Matteo; Neumeyr, Christian; Ortsiefer, Markus; Malacarne, Antonio
2015-03-01
We present a vision for transceiver integration on a 3 μm SOI waveguide platform for systems scalable to Pb/s. We also present experimental results from the first building blocks developed in the EU-funded RAPIDO project. At 1.3 μm wavelength 80 Gb/s per wavelength is to be achieved using hybrid integration of III-V optoelectronics on SOI. Goals include athermal operation, low-loss I/O coupling, advanced modulation formats and packet switching. An example of the design results is an interposer chip that consists of 12 μm thick SOI waveguides locally tapered down to 3 μm to provide low-loss coupling between an optical single-mode fiber array and the 3 μm SOI chip. First example of experimental results is a 4x4 cyclic AWGs with 5 nm channel spacing, 0.4 dB/facet fiber coupling loss, 3.5 dB center-tocenter loss, and -23 dB adjacent channel crosstalk in 3.5x1.5 mm2 footprint. The second example result is a new VCSEL design that was demonstrated to have up to 40 Gb/s operation at 1.55 μm.
AWG, Enhancing Professional Skills, Providing Resources and Assistance for Women in the Geosciences
NASA Astrophysics Data System (ADS)
Sundermann, C.; Cruse, A. M.; AssociationWomen Geoscientists
2011-12-01
The Association for Women Geoscientists (AWG) was founded in 1977. AWG is an international organization, with ten chapters, devoted to enhancing the quality and level of participation of women in geosciences, and introducing women and girls to geoscience careers. Our diverse interests and expertise cover the entire spectrum of geoscience disciplines and career paths, providing unexcelled networking and mentoring opportunities to develop leadership skills. Our membership is brought together by a common love of earth, atmospheric and ocean sciences, and the desire to ensure rewarding opportunities for women in the geosciences. AWG offers a variety of scholarships, including the Chrysalis scholarship for women who are returning to school after a life-changing interruption, and the Sands and Takken awards for students to make presentations at professional meetings. AWG promotes professional development through workshops, an online bi-monthly newsletter, more timely e-mailed newsletters, field trips, and opportunities to serve in an established professional organization. AWG recognizes the work of outstanding women geoscientists and of outstanding men supporters of women in the geosciences. The AWG Foundation funds ten scholarships, a Distinguished Lecture Program, the Geologist-in-the-Parks program, Science Fair awards, and numerous Girl Scout programs. Each year, AWG sends a contingent to Congressional Visits Day, to help educate lawmakers about the unique challenges that women scientists face in the geoscience workforce.
A fast response hydrogen sensor with Pd metallic grating onto a fiber's end-face
NASA Astrophysics Data System (ADS)
Yan, Haitao; Zhao, Xiaoyan; Zhang, Chao; Li, Qiu-Ze; Cao, Jingxiao; Han, Dao-Fu; Hao, Hui; Wang, Ming
2016-01-01
We demonstrated an integrated hydrogen sensor with Pd metallic grating fabricated on a fiber end-face. The grating consists of three thin metal layers in stacks, Au, WO3 and Pd. The WO3 is used as a waveguide layer between the Pd and Au layer. The Pd layer is etched by using a focused ion beam (FIB) method, forming a Pd metallic grating with period of 450 nm. The sensor is experimentally exposed to hydrogen gas environment. Changing the concentration from 0% to 4% which is the low explosive limit (LEL), the resonant wavelength measured from the reflection experienced 28.10 nm spectral changes in the visible range. The results demonstrated that the sensor is sensitive for hydrogen detection and it has fast response and low temperature effect.
Coupled ridge waveguide distributed feedback quantum cascade laser arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying-Hui; Zhang, Jin-Chuan, E-mail: zhangjinchuan@semi.ac.cn; Yan, Fang-Liang
2015-04-06
A coupled ridge waveguide quantum cascade laser (QCL) array consisting of fifteen elements with parallel integration was presented. In-phase fundamental mode operation in each element is secured by both the index-guided nature of the ridge and delicate loss management by properly designed geometries of the ridges and interspaces. Single-lobe lateral far-field with a nearly diffraction limited beam pattern was obtained. By incorporating a one-dimensional buried distributed feedback grating, the in-phase-operating coupled ridge waveguide QCL design provides an efficient solution to obtaining high output power and stable single longitudinal mode emission. The simplicity of this structure and fabrication process makes thismore » approach attractive to many practical applications.« less
Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiles, Jeff; Malinowski, Marcin; Rao, Ashutosh
A chlorine plasma etching-based method for the fabrication of high-performance chalcogenide-based integrated photonics on silicon substrates is presented. By optimizing the etching conditions, chlorine plasma is employed to produce extremely low-roughness etched sidewalls on waveguides with minimal penalty to propagation loss. Using this fabrication method, microring resonators with record-high intrinsic Q-factors as high as 450 000 and a corresponding propagation loss as low as 0.42 dB/cm are demonstrated in submicron chalcogenide waveguides. Furthermore, the developed chlorine plasma etching process is utilized to demonstrate fiber-to-waveguide grating couplers in chalcogenide photonics with high power coupling efficiency of 37% for transverse-electric polarized modes.
Design, fabrication and analysis of integrated optical waveguide devices
NASA Astrophysics Data System (ADS)
Sikorski, Yuri
Throughout the present dissertation, the main effort has been to develop the set of design rules for optical integrated circuits (OIC). At the present time, when planar optical integrated circuits seem to be the leading technology, and industry is heading towards much higher levels of integration, such design rules become necessary. It is known that analysis of light propagation in rectangular waveguides can not be carried out exactly. Various approximations become necessary, and their validity is discussed in this text. Various methods are used in the text for calculating the same problems, and results are compared. A few new concepts have been suggested to avoid approximations used elsewhere. The second part of this dissertation is directed to the development of a new technique for the fabrication of optical integrated circuits inside optical glass. This technique is based on the use of ultrafast laser pulses to alter the properties of glasses. Using this method we demonstrated the possibility of changing the refractive index of various passive and active optical glasses as well as ablating the material on the surface in a controlled fashion. A number of optical waveguide devices (e.g. waveguides, directional couplers, diffraction gratings, fiber Bragg gratings, V-grooves in dual-clad optical fibers, optical waveguide amplifiers) were fabricated and tested. Testing included measurements of loss/throughput, near-field mode profiles, efficiency and thermal stability. All of the experimental setup and test results are reported in the dissertation. We also demonstrated the possibility of using this technique to fabricate future bio-optical devices that will incorporate an OIC and a microfluidic circuit on a single substrate. Our results are expected to serve as a guide for the design and fabrication of a new generation of integrated optical and bio-optical devices.
NASA Astrophysics Data System (ADS)
Tibuleac, Sorin
In this dissertation, new reflection and transmission filters are developed and characterized in the optical and microwave spectral regions. These guided-mode resonance (GMR) filters are implemented by integrating diffraction gratings into classical thin-film multilayers to produce high efficiency filter response and low sidebands extended over a large spectral range. Diffraction from phase-shifted gratings and gratings with different periods is analyzed using rigorous coupled-wave theory yielding a new approach to filter linewidth broadening, line-shaping, and multi-line filters at normal incidence. New single-grating transmission filters presented have narrow linewidth, high peak transmittance, and low sideband reflectance. A comparison with classical thin-film filters shows that GMR devices require significantly fewer layers to obtain narrow linewidth and high peak response. All-dielectric microwave frequency- selective surfaces operating in reflection or transmission are shown to be realizable with only a few layers using common microwave materials. Single-layer and multilayer waveguide gratings operating as reflection and transmission filters, respectively, were built and tested in the 4-20 GHz frequency range. The presence of GMR notches and peaks is clearly established by the experimental results, and their spectral location and lineshape found to be in excellent agreement with the theoretical predictions. A new computer program using genetic algorithms and rigorous coupled-wave analysis was developed for optimization of multilayer structures containing homogeneous and diffractive layers. This program was utilized to find GMR filters possessing features not previously known. Thus, numerous examples of transmission filters with peaks approaching 100%, narrow linewidths (~0.03%), and low sidebands have been found in structures containing only 1-3 layers. A new type of GMR device integrating a waveguide grating with subwavelength period on the endface of an optical fiber is developed for high-resolution biomedical or chemical sensors and spectral filtering applications. Diffraction gratings with submicron periods exhibiting high efficiencies have been recorded for the first time on coated and uncoated endfaces of single-mode and multimode fibers. Guided-mode resonance transmittance notches of ~18% were experimentally obtained with structures consisting of photoresist gratings on thin films of Si3N4 deposited on optical fiber endfaces.
Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating.
Wang, Guoxi; Lu, Hua; Liu, Xueming; Gong, Yongkang
2012-11-09
We have proposed and numerically investigated an all-optical switch based on a metal-insulator-metal waveguide with graded nonlinear plasmonic gratings. The influences of grating depth and refractive index of a Kerr nonlinear medium on the transmission of the switch are exactly analyzed by utilizing transmission line theory. The finite-difference time-domain simulation results show that the highly compact structure possesses excellent switch function by tuning the incident electric field intensity. In addition, the simulation results show that this all-optical switch has an ultrawide operating frequency regime and femtosecond-scale response time (~130 fs). Such a switch can find potential applications for all-optical signal processing and optical communication.
Thermocapillary Technique for Shaping and Fabricating Optical Ribbon Waveguides
NASA Astrophysics Data System (ADS)
Fiedler, Kevin; Troian, Sandra
The demand for ever increasing bandwidth and higher speed communication has ushered the next generation optoelectronic integrated circuits which directly incorporate polymer optical waveguide devices. Polymer melts are very versatile materials which have been successfully cast into planar single- and multimode waveguides using techniques such as embossing, photolithography and direct laser writing. In this talk, we describe a novel thermocapillary patterning method for fabricating waveguides in which the free surface of an ultrathin molten polymer film is exposed to a spatially inhomogeneous temperature field via thermal conduction from a nearby cooled mask pattern held in close proximity. The ensuring surface temperature distribution is purposely designed to pool liquid selectively into ribbon shapes suitable for optical waveguiding, but with rounded and not rectangular cross sectional areas due to capillary forces. The solidified waveguide patterns which result from this non-contact one step procedure exhibit ultrasmooth interfaces suitable for demanding optoelectronic applications. To complement these studies, we have also conducted finite element simulations for quantifying the influence of non-rectangular cross-sectional shapes on mode propagation and losses. Kf gratefully acknowledges support from a NASA Space Technology Research Fellowship.
NASA Astrophysics Data System (ADS)
Lin, Xian-Shi; Huang, Xu-Guang
2008-12-01
In this paper, we theoretically and numerically demonstrate a two-dimensional Metal-Dielectric-Metal (MDM) waveguide based on finite-difference time-domain simulation of the propagation characteristics of surface plasmon polaritons (SPPs). For practical applications, we propose a plasmonic Y-branch waveguide based on MDM structure for high integration. The simulation results show that the Y-branch waveguide proposed here makes optical splitter with large branching angle (~180 degree) come true. We also introduce a finite array of periodic tooth structure on one surface of the MDM waveguide which is in a similar way as FBGs or Bragg reflectors, potentially as filters for WDM applications. Our results show that the novel structure not only can realize filtering function of wavelength with a high transmittance over 92%, but also with an ultra-compact size in the length of a few hundred nanometers, in comparison with other grating-like SPPs filters. The MDM waveguide splitters and filters could be utilized to achieve ultra-compact photonic filtering devices for high integration in SPPs-based flat metallic surfaces.
7 CFR 1755.508 - Customer access location protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AWG copper and No. 18 AWG copper covered-steel reinforced aerial service wire conductors shall not be... served as close as practicable to the point at which the telecommunications service wire attaches to the... gauges (AWG) finer (numerically higher) conductivity than the aerial service wire shall be provided...
7 CFR 1755.508 - Customer access location protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AWG copper and No. 18 AWG copper covered-steel reinforced aerial service wire conductors shall not be... served as close as practicable to the point at which the telecommunications service wire attaches to the... gauges (AWG) finer (numerically higher) conductivity than the aerial service wire shall be provided...
Wide-field-of-view nanoscale Bragg liquid crystal polarization gratings
NASA Astrophysics Data System (ADS)
Xiang, Xiao; Kim, Jihwan; Escuti, Michael J.
2018-02-01
Here, we demonstrate a liquid crystal (LC) polymer Bragg polarization grating (PG) with large angular band- width and high efficiency in transmission-mode for 532 nm wavelength and 400 nm period. The field-of-view (FOV ) is increased significantly while preserving high diffraction efficiency by realizing a monolithic grating comprising two different slants. Using rigorous coupled-wave analysis simulation, we identified a structure with 48° FOV and 70% average first-order efficiency. We then experimentally fabricated and characterized the grating with a photo-aligned LC polymer network, also known as reactive mesogens. We measured 40° FOV and nearly 80% average diffraction efficiency. With this broadened and fairly uniform angular response, this wide FOV Bragg PG is a compelling option for large deflection-angle applications, including near-eye display in augmented reality systems, waveguide based illumination, and beam steering.
Design of a holographic waveguide with L configuration
NASA Astrophysics Data System (ADS)
Xiang, Guangxin-Xin; Li, Wen-Qiang
2016-10-01
In order to decrease the complexity to design and manufacture the turning grating of the configuration with one reflecting surface, an L-shape two-dimension extended configuration with single plate is given in the paper. This configuration consists of one specular reflecting surface and three holographic gratings two in which periods and the groove orientations are totally same, which makes gratings design and fabrication easier. According to the calculation and analysis to the optical path of configuration, the dimension of the turning grating is no larger than 40mm×30mm. The simulation result demonstrates the display configuration is reasonable and correct and can realize the display effect with 30°×30° field of view and Φ30mm large exit pupil. This configuration can be applied to an Augmented Reality Display (AR) or a Head-Mounted Display (HMD).
Global optimization of multimode interference structure for ratiometric wavelength measurement
NASA Astrophysics Data System (ADS)
Wang, Qian; Farrell, Gerald; Hatta, Agus Muhamad
2007-07-01
The multimode interference structure is conventionally used as a splitter/combiner. In this paper, it is optimised as an edge filter for ratiometric wavelength measurement, which can be used in demodulation of fiber Bragg grating sensing. The global optimization algorithm-adaptive simulated annealing is introduced in the design of multimode interference structure including the length and width of the multimode waveguide section, and positions of the input and output waveguides. The designed structure shows a suitable spectral response for wavelength measurement and a good fabrication tolerance.
Distributed-feedback Terahertz Quantum-cascade Lasers with Laterally Corrugated Metal Waveguides
NASA Technical Reports Server (NTRS)
Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.
2005-01-01
We report the demonstration of distributed-feedback terahertz quantum-cascade lasers based on a first-order grating fabricated via a lateral corrugation in a double-sided metal ridge waveguide. The phase of the facet reflection was precisely set by lithographically defined facets by dry etching. Single-mode emission was observed at low to moderate injection currents, although multimode emission was observed far beyond threshold owing to spatial hole burning. Finite-element simulations were used to calculate the modal and threshold characteristics for these devices, with results in good agreement with experiments.
Design of multi-wavelength tunable filter based on Lithium Niobate
NASA Astrophysics Data System (ADS)
Zhang, Ailing; Yao, Yuan; Zhang, Yue; Song, Hongyun
2018-05-01
A multi-wavelength tunable filter is designed. It consists of multiple waveguides among multiple waveguide gratings. A pair of electrodes were placed on both sides of each waveguide. The tunable filter uses the electro-optic effect of Lithium Niobate to tune the phase caused by each waveguide. Consequently, the wavelength and wavelength spacing of the filter are tuned by changing external voltages added on the electrode pairs. The tunable property of the filter is analyzed by phase matching condition and transfer-matrix method. Numerical results show that not only multiple wavelengths with narrow bandwidth are tuned with nearly equal spacing by synchronously changing the voltages added on all electrode pairs, but also the number of wavelengths is determined by the number of phase shifts caused by electrode pairs. Furthermore, due to the electro-optic effect of Lithium Niobate, the tuning speed of the filter can reach the order of ns.
Design of Planar Leaky Wave Antenna Fed by Substrate Integrated Waveguide Horn
NASA Astrophysics Data System (ADS)
Cai, Yang; Zhang, Yingsong; Qian, Zuping
2017-12-01
A metal strip grating leaky wave antenna (MSG-LWA) fed by substrate integrated waveguide (SIW) horn is proposed. The planar horn shares the same substrate with the MSG-LWA, which leads to a compact structure of the proposed antenna. Furthermore, through introducing phase-corrected structure by embedding metallized vias into the SIW horn, a nearly uniform phase distribution at the horn aperture is obtained, which effectively enhances the radiating performance of the MSG-LWA. Results indicate that the proposed antenna scans from -50° to -25° in the frequency band ranging from 15.3 GHz to 17.3 GHz. Besides, effectiveness of the proposed design is validated by comparing with a same MSG-LWA fed by an ideal rectangular waveguide.
1981-03-03
described theory and experiments on the DBR laser and on the use of the Distributed Bragg Deflector ( DBD ) to act as a grating bean expander. The DBD is a...and telescope. 9 .\\pplications requiring more power can use the DBD as a power combiner for several laser stripes, as shown in Fig. 3. In design...Bragg deflector ( DBD ). This device consists of a corrugated waveguide, whose grating is slanted at an angle 6 with respect to the incident beam. The
1998-05-26
therefore, produce higher propagation losses. A. Theory The presence of losses in the cladding modes renders their propagation constants complex...growth theory [10, 11] by tf(L,F,Ga)= ’ n + \\ „4-1 (" + l) 0 F \\ L <C (1) where L is the service length, L0 is the fiber gauge length, and m is...single input pulse, (p. 114) 8:30am BMB2 ■ Ultrashort purse propagation through fiber gratings: theory and experiment, L.R. Chen, S.D. Benjamin
Remote coding scheme based on waveguide Bragg grating in PLC splitter chip for PON monitoring.
Zhang, Xuan; Lu, Fengjun; Chen, Si; Zhao, Xingqun; Zhu, Min; Sun, Xiaohan
2016-03-07
A distributing arranged waveguide Bragg gratings (WBGs) in PLC splitter chip based remote coding scheme is proposed and analyzed for passive optical network (PON) monitoring, by which the management system can identify each drop fiber link through the same reflector in the terminal of each optical network unit, even though there exist several equidistant users. The corresponding coding and capacity models are respectively established and investigated so that we can obtain a minimum number of the WBGs needed under the condition of the distributed structure. Signal-to-noise ratio (SNR) model related to the number of equidistant users is also developed to extend the analyses for the overall performance of the system. Simulation results show the proposed scheme is feasible and allow the monitoring of a 64 users PON with SNR range of 7.5~10.6dB. The scheme can solve some of difficulties of construction site at the lower user cost for PON system.
NASA Astrophysics Data System (ADS)
Quaranta, Giorgio; Basset, Guillaume; Benes, Zdenek; Martin, Olivier J. F.; Gallinet, Benjamin
2018-01-01
Resonant waveguide gratings (RWGs) are thin-film structures, where coupled modes interfere with the diffracted incoming wave and produce strong angular and spectral filtering. The combination of two finite-length and impedance matched RWGs allows the creation of a passive beam steering element, which is compatible with up-scalable fabrication processes. Here, we propose a design method to create large patterns of such elements able to filter, steer, and focus the light from one point source to another. The method is based on ellipsoidal mirrors to choose a system of confocal prolate spheroids where the two focal points are the source point and observation point, respectively. It allows finding the proper orientation and position of each RWG element of the pattern, such that the phase is constructively preserved at the observation point. The design techniques presented here could be implemented in a variety of systems, where large-scale patterns are needed, such as optical security, multifocal or monochromatic lenses, biosensors, and see-through optical combiners for near-eye displays.
Polymer based resonant waveguide grating photonic filter with on-chip thermal tuning
NASA Astrophysics Data System (ADS)
Chaudhuri, Ritesh Ray; Enemuo, Amarachukwu N.; Song, Youngsik; Seo, Sang-Woo
2018-07-01
In this paper, we present the development of a multilayer polymer resonant waveguide grating (RWG)-based optical filter with an integrated microheater for on-chip thermal spectral tuning. RWG optical filter is fabricated using polymer-based materials. Therefore, its integration can be applied to different material platforms. Typical RWG structure is sensitive to back optical reflection from the structures below. To reduce the effect of back reflection from the metal heater and improve the quality of the integrated RWG filter output, an intermediate absorption layer was implemented utilizing an epoxy based carbon coating. This approach effectively suppresses the background noise in the RWG characteristics. The central wavelength of the reported filter was designed around 1550 nm. Experimentally, wavelength tuning of 21.96 nm was achieved for operating temperature range of 81 °C with approximately 150mW power consumption. Based on the layer-by-layer fabrication approach, the presented thermally tunable RWG filter on a chip has potential for use in low cost hybrid communication systems and spectral sensing applications.
Modal analysis on resonant excitation of two-dimensional waveguide grating filters
NASA Astrophysics Data System (ADS)
Zhou, Jianyu; Sang, Tian; Li, Junlang; Wang, Rui; Wang, La; Wang, Benxin; Wang, Yueke
2017-12-01
Modal analysis on resonant excitation of two-dimensional (2-D) waveguide grating filters (WGFs) is proposed. It is shown that the 2-D WGFs can support the excitation of a resonant pair, and the locations of the resonant pair arising from the TE and TM guided-mode resonances (GMRs) can be estimated accurately based on the modal analysis. Multichannel filtering using the resonant pair is investigated, and the antireflection (AR) design of the 2-D WGFs is also studied. It is shown that the reflection sideband can be reduced by placing an AR layer on the bottom of the homogeneous layer, and the well-shaped reflection spectrum with near-zero sideband reflection can be achieved by using the double-faced AR design. By merely increasing the thickness of the homogeneous layer with other parameters maintained, the spectrally dense comb-like filters with good unpolarized filtering features can be achieved. The proposed modal analysis can be extended to study the resonant excitation of 2-D periodic nanoarrays with diverse surface profiles.
NASA Astrophysics Data System (ADS)
Lobanov, S. V.; Tikhodeev, S. G.; Gippius, N. A.; Maksimov, A. A.; Filatov, E. V.; Tartakovskii, I. I.; Kulakovskii, V. D.; Weiss, T.; Schneider, C.; Geßler, J.; Kamp, M.; Höfling, S.
2015-11-01
We study the polarization properties of light emitted by quantum dots that are embedded in chiral photonic crystal structures made of achiral planar GaAs waveguides. A modification of the electromagnetic mode structure due to the chiral grating fabricated by partial etching of the waveguide layer has been shown to result in a high circular polarization degree ρc of the quantum dot emission in the absence of external magnetic field. The physical nature of the phenomenon can be understood in terms of the reciprocity principle taking into account the structural symmetry. At the resonance wavelength, the magnitude of | ρc| is predicted to exceed 98%. The experimentally achieved value of | ρc|=81 % is smaller, which is due to the contribution of unpolarized light scattered by grating defects, thus breaking its periodicity. The achieved polarization degree estimated removing the unpolarized nonresonant background from the emission spectra can be estimated to be as high as 96%, close to the theoretical prediction.
Benedikovic, Daniel; Alonso-Ramos, Carlos; Cheben, Pavel; Schmid, Jens H; Wang, Shurui; Xu, Dan-Xia; Lapointe, Jean; Janz, Siegfried; Halir, Robert; Ortega-Moñux, Alejandro; Wangüemert-Pérez, J Gonzalo; Molina-Fernández, Iñigo; Fédéli, Jean-Marc; Vivien, Laurent; Dado, Milan
2015-09-15
We present the first experimental demonstration of a new fiber-chip grating coupler concept that exploits the blazing effect by interleaving the standard full (220 nm) and shallow etch (70 nm) trenches in a 220 nm thick silicon layer. The high directionality is obtained by controlling the separation between the deep and shallow trenches to achieve constructive interference in the upward direction and destructive interference toward the silicon substrate. Utilizing this concept, the grating directionality can be maximized independent of the bottom oxide thickness. The coupler also includes a subwavelength-engineered index-matching region, designed to reduce the reflectivity at the interface between the injection waveguide and the grating. We report a measured fiber-chip coupling efficiency of -1.3 dB, the highest coupling efficiency achieved to date for a surface grating coupler in a 220 nm silicon-on-insulator platform fabricated in a conventional dual-etch process without high-index overlays or bottom mirrors.
Highly efficient color filter array using resonant Si3N4 gratings.
Uddin, Mohammad Jalal; Magnusson, Robert
2013-05-20
We demonstrate the design and fabrication of a highly efficient guided-mode resonant color filter array. The device is designed using numerical methods based on rigorous coupled-wave analysis and is patterned using UV-laser interferometric lithography. It consists of a 60-nm-thick subwavelength silicon nitride grating along with a 105-nm-thick homogeneous silicon nitride waveguide on a glass substrate. The fabricated device exhibits blue, green, and red color response for grating periods of 274, 327, and 369 nm, respectively. The pixels have a spectral bandwidth of ~12 nm with efficiencies of 94%, 96%, and 99% at the center wavelength of blue, green, and red color filter, respectively. These are higher efficiencies than reported in the literature previously.
NASA Astrophysics Data System (ADS)
Ignatov, A. I.; Merzlikin, A. M.
2018-03-01
A method for development of gratings for effective excitation of surface plasmonic waves using holography principles has been proposed and theoretically analyzed. For the case of a plasmonic wave in a dielectric layer on metal, the proposed volume hologram is 1.7 times more effective than the simple grating of slits in the dielectric layer with the optimized period and slits' width. The advantage of the hologram over the optimized grating is in the refractive index distribution that accounts phase relationships between an exciting and an excited waves more correctly. The proposed holographic method is universal. As expected, this can be extended for effective excitation of different types of optical surface waves and modes of optical waveguides.
Holograms for power-efficient excitation of optical surface waves
NASA Astrophysics Data System (ADS)
Ignatov, Anton I.; Merzlikin, Alexander M.
2018-02-01
A method for effective excitation of optical surface waves based on holography principles has been proposed. For a particular example of excitation of a plasmonic wave in a dielectric layer on metal the efficiency of proposed volume holograms in the dielectric layer has been analyzed in comparison with optimized periodic gratings in the dielectric layer. Conditions when the holograms are considerably more efficient than the gratings have been found out. In addition, holograms recorded in two iterations have been proposed and studied. Such holograms are substantially more efficient than the optimized periodic gratings for all incidence angles of an exciting Gaussian beam. The proposed method is universal: it can be extended for efficient excitation of different types of optical surface waves and optical waveguide modes.
NASA Astrophysics Data System (ADS)
Talbayev, Diyar; Zhou, Jiangfeng; Lin, Shuai; Bhattarai, Khagendra
2017-05-01
Detection and identification of molecular materials based on their THz frequency vibrational resonances remains an open technological challenge. The need for such technology is illustrated by its potential uses in explosives detection (e.g., RDX) or identification of large biomolecules based on their THz-frequency vibrational fingerprints. The prevailing approaches to THz sensing often rely on a form of waveguide spectroscopy, either utilizing geometric waveguides, such as metallic parallel plate, or plasmonic waveguides made of structured metallic surfaces with sub-wavelength corrugation. The sensitivity of waveguide-based sensing devices is derived from the long (1 cm or longer) propagation and interaction distance of the THz wave with the analyte. We have demonstrated that thin InSb layers with metallic gratings can support high quality factor "true" surface plasmon (SP) resonances that can be used for THz plasmonic sensing. We find two strong SP absorption resonances in normal-incidence transmission and investigate their dispersion relations, dependence on InSb thickness, and the spatial distribution of the electric field. The sensitivity of this approach relies on the frequency shift of the SP resonance when the dielectric function changes in the immediate vicinity of the sensor, in the region of deeply sub-wavelength thickness. Our computational modeling indicates that the sensor sensitivity can exceed 0.25 THz per refractive index unit. One of the SP resonances also exhibits a splitting when tuned in resonance with a vibrational mode of an analyte, which could lead to new sensing modalities for the detection of THz vibrational features of the analyte.
Committees review activities at December meetings
NASA Astrophysics Data System (ADS)
The Education and Human Resources Committee reported having approved participation in the Association for Women Geoscientist's (AWG) national survey. During the summer of 1983 the AWG designed a 75-question survey targeted to women but also applicable to men. The survey consisted of five sections (in addition to such demographics as age, salary, education, job area, and society membership): feelings and attitude toward job, career/family balance, sexual harassment and discrimination, opinions on national energy and conservation policy, and attitude toward AWG. The questionnaire was mailed to AWG members (just over 1000) and to AGU female members (about 1300). Survey participants were asked to give copies to their male colleagues to create a comparison group. About 25% of the 800 responses were from men. The responses were split about 50/50 between AWG and AGU members. The Education and Human Resources Committee will have the results from the survey presented at their next meeting in Cincinnati, May 15.
1-D grating based SPR biosensor for the detection of lung cancer biomarkers using Vroman effect
NASA Astrophysics Data System (ADS)
Teotia, Pradeep Kumar; Kaler, R. S.
2018-01-01
Grating based surface plasmon resonance waveguide biosensor have been reported for the detection of lung cancer biomarkers using Vroman effect. The proposed grating based multilayered biosensor is designed with high detection accuracy for Epidermal growth factor receptor (EGFR) and also analysed to show high detection accuracy with acceptable sensitivity for both cancer biomarkers. The introduction of periodic grating with multilayer metals generates a good resonance that make it possible for early detection of cancerous cells. Using finite difference time domain method, it is observed wavelength of biosensor get red-shifted on variations of the refractive index due to the presence of both the cancerous bio-markers. The reported detection accuracy and sensitivity of proposed biosensor is quite acceptable for both lung cancer biomarkers i.e. Carcinoembryonic antigen (CEA) and Epidermal growth factor receptor (EGFR) which further offer us label free early detection of lung cancer using these biomarkers.
An Open Rectangular Waveguide Grating for Millimeter-Wave Traveling-Wave Tubes
NASA Astrophysics Data System (ADS)
Liao, Ming-Liang; Wei, Yan-Yu; Wang, Hai-Long; Huang, Yu; Xu, Jin; Liu, Yang; Guo, Guo; Niu, Xin-Jian; Gong, Yu-Bin; Park, Gun-Sik
2016-09-01
Not Available Supported by the National Natural Science Foundation of China under Grant No 61271029, the National Science Fund for Distinguished Young Scholars of China under Grant No 61125103, and the National Research Foundation of Korea under Grant No MSIP: NRF-2009-0083512.
NASA Astrophysics Data System (ADS)
Kaspar, P.; Jany, C.; Le Liepvre, A.; Accard, A.; Lamponi, M.; Make, D.; Levaufre, G.; Girard, N.; Lelarge, F.; Shen, A.; Charbonnier, P.; Mallecot, F.; Duan, G.-H.; Gentner, J.-.; Fedeli, J.-M.; Olivier, S.; Descos, A.; Ben Bakir, B.; Messaoudene, S.; Bordel, D.; Malhouitre, S.; Kopp, C.; Menezo, S.
2014-05-01
The lack of potent integrated light emitters is one of the bottlenecks that have so far hindered the silicon photonics platform from revolutionizing the communication market. Photonic circuits with integrated light sources have the potential to address a wide range of applications from short-distance data communication to long-haul optical transmission. Notably, the integration of lasers would allow saving large assembly costs and reduce the footprint of optoelectronic products by combining photonic and microelectronic functionalities on a single chip. Since silicon and germanium-based sources are still in their infancy, hybrid approaches using III-V semiconductor materials are currently pursued by several research laboratories in academia as well as in industry. In this paper we review recent developments of hybrid III-V/silicon lasers and discuss the advantages and drawbacks of several integration schemes. The integration approach followed in our laboratory makes use of wafer-bonded III-V material on structured silicon-on-insulator substrates and is based on adiabatic mode transfers between silicon and III-V waveguides. We will highlight some of the most interesting results from devices such as wavelength-tunable lasers and AWG lasers. The good performance demonstrates that an efficient mode transfer can be achieved between III-V and silicon waveguides and encourages further research efforts in this direction.
Novel hybrid laser modes in composite VCSEL-DFB microcavities (Conference Presentation)
NASA Astrophysics Data System (ADS)
Mischok, Andreas; Wagner, Tim; Sudzius, Markas; Brückner, Robert; Fröb, Hartmut; Lyssenko, Vadim G.; Leo, Karl
2017-02-01
Two of the most successful microcresonator concepts are the vertical cavity surface emitting laser (VCSEL), where light is confined between distributed Bragg reflectors (DBRs), and the distributed feedback (DFB) laser, where a periodic grating provides positive optical feedback to selected modes in an active waveguide (WG) layer. Our work concerns the combination of both into a composite device, facilitating coherent interaction between both regimes and giving rise to novel laser modes in the system. In a first realization, a full VCSEL stack with an organic active layer is evaporated on top of a diffraction grating with a large period (approximately 1 micron), leading to diffraction of waveguided modes into the surface emission of the device. Here, the coherent interaction between VCSEL and WG modes, as observed in an anticrossing of the dispersion lines, facilitates novel hybrid lasing modes with macroscopic in-plane coherence [1]. In further studies, we decrease the grating period of such devices to realise DFB conditions in a second-order Bragg grating which strongly couples photons via first-order light diffraction to the VCSEL. This efficient coupling can be compared to more classical cascade-coupled cavities and is successfully described by a coupled oscillator model [2]. When both resonators are non-degenerate, they are able to function as independent structures without substantial diffraction losses. The realization of such novel devices provides a promising platform for photonic circuits based on organic microlasers. [1] A. Mischok et al., Adv. Opt. Mater., early online, DOI: 10.1002/adom.201600282, (2016) [2] T. Wagner et al., Appl. Phys. Lett., accepted, in production, (2016)
GaSb-based single-mode distributed feedback lasers for sensing (Conference Presentation)
NASA Astrophysics Data System (ADS)
Gupta, James A.; Bezinger, Andrew; Lapointe, Jean; Poitras, Daniel; Aers, Geof C.
2017-02-01
GaSb-based tunable single-mode diode lasers can enable rapid, highly-selective and highly-sensitive absorption spectroscopy systems for gas sensing. In this work, single-mode distributed feedback (DFB) laser diodes were developed for the detection of various trace gases in the 2-3.3um range, including CO2, CO, HF, H2S, H2O and CH4. The lasers were fabricated using an index-coupled grating process without epitaxial regrowth, making the process significantly less expensive than conventional DFB fabrication. The devices are based on InGaAsSb/AlGaAsSb separate confinement heterostructures grown on GaSb by molecular beam epitaxy. DFB lasers were produced using a two step etch process. Narrow ridge waveguides were first defined by optical lithography and etched into the semiconductor. Lateral gratings were then defined on both sides of the ridge using electron-beam lithography and etched to produce the index-grating. Effective index modeling was used to optimize the ridge width, etch depths and the grating pitch to ensure single-lateral-mode operation and adequate coupling strength. The effective index method was further used to simulate the DFB laser emission spectrum, based on a transfer matrix model for light transmission through the periodic structure. The fabricated lasers exhibit single-mode operation which is tunable through the absorption features of the various target gases by adjustment of the drive current. In addition to the established open-path sensing applications, these devices have great potential for optoelectronic integrated gas sensors, making use of integrated photodetectors and possibly on-chip Si photonics waveguide structures.
Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers.
Ben Bakir, B; Descos, A; Olivier, N; Bordel, D; Grosse, P; Augendre, E; Fulbert, L; Fedeli, J M
2011-05-23
We report the first demonstration of an electrically driven hybrid silicon/III-V laser based on adiabatic mode transformers. The hybrid structure is formed by two vertically superimposed waveguides separated by a 100-nm-thick SiO2 layer. The top waveguide, fabricated in an InP/InGaAsP-based heterostructure, serves to provide optical gain. The bottom Si-waveguides system, which supports all optical functions, is constituted by two tapered rib-waveguides (mode transformers), two distributed Bragg reflectors (DBRs) and a surface-grating coupler. The supermodes of this hybrid structure are controlled by an appropriate design of the tapers located at the edges of the gain region. In the middle part of the device almost all the field resides in the III-V waveguide so that the optical mode experiences maximal gain, while in regions near the III-V facets, mode transformers ensure an efficient transfer of the power flow towards Si-waveguides. The investigated device operates under quasi-continuous wave regime. The room temperature threshold current is 100 mA, the side-mode suppression ratio is as high as 20 dB, and the fiber-coupled output power is ~7 mW.
Fedorova, Ksenia A; Sokolovskii, Grigorii S; Khomylev, Maksim; Livshits, Daniil A; Rafailov, Edik U
2014-12-01
A compact high-power yellow-green continuous wave (CW) laser source based on second-harmonic generation (SHG) in a 5% MgO doped periodically poled congruent lithium niobate (PPLN) waveguide crystal pumped by a quantum-dot fiber Bragg grating (QD-FBG) laser diode is demonstrated. A frequency-doubled power of 90.11 mW at the wavelength of 560.68 nm with a conversion efficiency of 52.4% is reported. To the best of our knowledge, this represents the highest output power and conversion efficiency achieved to date in this spectral region from a diode-pumped PPLN waveguide crystal, which could prove extremely valuable for the deployment of such a source in a wide range of biomedical applications.
Dynamic optical arbitrary waveform shaping based on cascaded optical modulators of single FBG.
Chen, Jingyuan; Li, Peili
2015-08-10
A dynamic optical arbitrary waveform generation (O-AWG) with amplitude and phase independently controlled in optical modulators of single fiber Bragg Grating (FBG) has been proposed. This novel scheme consists of several optical modulators. In the optical modulator (O-MOD), a uniform FBG is used to filter spectral component of the input signal. The amplitude is controlled by fiber stretcher (FS) in Mach-Zehnder interference (MZI) structure through interference of two MZI arms. The phase is manipulated via the second FS in the optical modulator. This scheme is investigated by simulation. Consequently, optical pulse trains with different waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width within each period are obtained through FSs adjustment to alter the phase shifts of signal in each O-MOD.
NASA Astrophysics Data System (ADS)
Villarroel, J.; Carrascosa, M.; García-Cabañes, A.; Caballero-Calero, O.; Crespillo, M.; Olivares, J.
2009-06-01
The photorefractive behaviour of a novel type of optical waveguides fabricated in LiNbO3 by swift heavy ion irradiation is investigated. First, the electro-optic coefficient r 33 of these guides that is crucial in the photorefractive effect is measured. Second, two complementary aspects of the photorefractive response are studied: (i) recording and light-induced and dark erasure of holographic gratings; (ii) optical beam degradation in single-beam configuration. The main photorefractive parameters, recording and erasing time constants, maximum refractive-index change and optical damage thresholds are determined.
46 CFR 182.440 - Independent fuel tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... C65100 and C65500 1.29 (0.051) [AWG 16] 1.63 (0.064) [AWG 14] 3.66 (0.144) [AWG 7]. Steel or iron 5 6 1... act of March 3, 1892 (15 U.S.C. 206), for sheet and plate iron and steel. The letters “AWG” stand for... for “Manufacturer's Standard Gage” for sheet steel thickness. 2 Tanks over 1514 liters (400 gallons...
46 CFR 182.440 - Independent fuel tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... C65100 and C65500 1.29 (0.051) [AWG 16] 1.63 (0.064) [AWG 14] 3.66 (0.144) [AWG 7]. Steel or iron 5 6 1... act of March 3, 1892 (15 U.S.C. 206), for sheet and plate iron and steel. The letters “AWG” stand for... for “Manufacturer's Standard Gage” for sheet steel thickness. 2 Tanks over 1514 liters (400 gallons...
Development of the multiwavelength monolithic integrated fiber optics terminal
NASA Technical Reports Server (NTRS)
Chubb, C. R.; Bryan, D. A.; Powers, J. K.; Rice, R. R.; Nettle, V. H.; Dalke, E. A.; Reed, W. R.
1982-01-01
This paper describes the development of the Multiwavelength Monolithic Integrated Fiber Optic Terminal (MMIFOT) for the NASA Johnson Space Center. The program objective is to utilize guided wave optical technology to develop wavelength-multiplexing and -demultiplexing units, using a single mode optical fiber for transmission between terminals. Intensity modulated injection laser diodes, chirped diffraction gratings and thin film lenses are used to achieve the wavelength-multiplexing and -demultiplexing. The video and audio data transmission test of an integrated optical unit with a Luneburg collimation lens, waveguide diffraction grating and step index condensing lens is described.
Multiplexing of adjacent vortex modes with the forked grating coupler
NASA Astrophysics Data System (ADS)
Nadovich, Christopher T.; Kosciolek, Derek J.; Crouse, David T.; Jemison, William D.
2017-08-01
For vortex fiber multiplexing to reach practical commercial viability, simple silicon photonic interfaces with vortex fiber will be required. These interfaces must support multiplexing. Toward this goal, an efficient singlefed multimode Forked Grating Coupler (FGC) for coupling two different optical vortex OAM charges to or from the TE0 and TE1 rectangular waveguide modes has been developed. A simple, apodized device implemented with e-beam lithography and a conventional dual-etch processing on SOI wafer exhibits low crosstalk and reasonable mode match. Advanced designs using this concept are expected to further improve performance.
2-Dimensional beamsteering using dispersive deflectors and wavelength tuning.
Chan, Trevor; Myslivets, Evgeny; Ford, Joseph E
2008-09-15
We introduce a 2D beamscanner which is controlled by wavelength tuning. Two passive dispersive devices are aligned orthogonally to deflect the optical beam in two dimensions. We provide a proof of principle demonstration by combining an arrayed waveguide grating with a free space optical grating and using various input sources to characterize the beamscanner. This achieved a discrete 10.3 degrees by 11 degrees output field of view with attainable angles existing on an 8 by 6 grid of directions. The entire range was reached by scanning over a 40 nm wavelength range. We also analyze an improved system combining a virtually imaged phased array with a diffraction grating. This device is much more compact and produces a continuous output scan in one direction while being discrete in the other.
Toward a biophotonic MEMS cell sensor
NASA Astrophysics Data System (ADS)
Powers, Michael A.; Koev, Stephan T.; Schleunitz, Arne; Yi, Hyunmin; Hodzic, Vildana; Bentley, William E.; Payne, Gregory F.; Rubloff, Gary W.; Ghodssi, Reza
2005-06-01
We present a new platform for the optical analysis of biomolecules based upon the polysaccharide chitosan. The versatile, stable, and compatible nature of chitosan makes it an ideal material for integrating biological materials in microfabricated systems. Chitosan"s pH-responsive solubility allows electrochemical deposition, while its chemical reactivity enables facile coupling of proteins, oligonucleotides, and other biomolecules by covalent bonds. This work demonstrates the spatially selective assembly of a fluorescent molecule on chitosan and its applicability to microscale optical transducers. We define multimode waveguides and fluidic channels on a Pyrex wafer using a single layer of SU-8. Our implementation of sidewall patterning of transparent electrodes (indium tin oxide) on SU-8 structures is demonstrated and can be highly beneficial to fluorescent signal transduction. In this optical configuration, normally incident excitation light illuminates a chitosan surface on the vertical face of a collector waveguide intersected by a microfluidic channel. We demonstrate the collection of the optical signal in the integrated waveguide and analyze the signal by coupling the waveguide to a grating spectrometer.
Washburn, Adam L; Bailey, Ryan C
2011-01-21
By leveraging advances in semiconductor microfabrication technologies, chip-integrated optical biosensors are poised to make an impact as scalable and multiplexable bioanalytical measurement tools for lab-on-a-chip applications. In particular, waveguide-based optical sensing technology appears to be exceptionally amenable to chip integration and miniaturization, and, as a result, the recent literature is replete with examples of chip-integrated waveguide sensing platforms developed to address a wide range of contemporary analytical challenges. As an overview of the most recent advances within this dynamic field, this review highlights work from the last 2-3 years in the areas of grating-coupled, interferometric, photonic crystal, and microresonator waveguide sensors. With a focus towards device integration, particular emphasis is placed on demonstrations of biosensing using these technologies within microfluidically controlled environments. In addition, examples of multiplexed detection and sensing within complex matrices--important features for real-world applicability--are given special attention.
46 CFR 182.440 - Independent fuel tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
...(150 gal) tanks Over 570 liter(150 gal) 2 tanks Nickel-copper B 127, hot rolled sheet or plate 0.94 (0.037) [USSG 20] 3 1.27 (0.050) [USSG 18] 2.72 (0.107) [USSG 12]. Copper-nickel 4 B 122, UNS alloy... C65100 and C65500 1.29 (0.051) [AWG 16] 1.63 (0.064) [AWG 14] 3.66 (0.144) [AWG 7]. Steel or iron 5,6 1...
46 CFR 182.440 - Independent fuel tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
...(150 gal) tanks Over 570 liter(150 gal) 2 tanks Nickel-copper B 127, hot rolled sheet or plate 0.94 (0.037) [USSG 20] 3 1.27 (0.050) [USSG 18] 2.72 (0.107) [USSG 12]. Copper-nickel 4 B 122, UNS alloy... C65100 and C65500 1.29 (0.051) [AWG 16] 1.63 (0.064) [AWG 14] 3.66 (0.144) [AWG 7]. Steel or iron 5,6 1...
Adaptive slit beam shaping for direct laser written waveguides.
Salter, P S; Jesacher, A; Spring, J B; Metcalf, B J; Thomas-Peter, N; Simmonds, R D; Langford, N K; Walmsley, I A; Booth, M J
2012-02-15
We demonstrate an improved method for fabricating optical waveguides in bulk materials by means of femtosecond laser writing. We use an LC spatial light modulator (SLM) to shape the beam focus by generating adaptive slit illumination in the pupil of the objective lens. A diffraction grating is applied in a strip across the SLM to simulate a slit, with the first diffracted order mapped onto the pupil plane of the objective lens while the zeroth order is blocked. This technique enables real-time control of the beam-shaping parameters during writing, facilitating the fabrication of more complicated structures than is possible using nonadaptive methods. Waveguides are demonstrated in fused silica with a coupling loss to single-mode fibers in the range of 0.2 to 0.5 dB and propagation loss <0.4 dB/cm.
A submillimeter tripler using a quasi-waveguide structure
NASA Technical Reports Server (NTRS)
Erickson, Neal R.; Cortes-Medellin, German
1992-01-01
A new type of frequency multiplier structure is being developed which is suitable for application at frequencies above 1 THz. This structure preserves some of the properties of waveguide for mode control, yet is not truly single mode. The device resembles a sectoral horn, with a varactor diode mounted near the throat. Input and output coupling are through the same aperture, requiring a quasi-optical diplexer. Initial tests are directed at building a tripler at 500 GHz, for comparison with waveguide structures. The diplexer is a blazed diffraction grating with appropriate focusing optics. Model studies show that the impedance match to a varactor should be good, and initial tests of the beam patterns of the prototype indicate that optical coupling efficiency should be very high. The structure also has the potential for use as a fundamental mixer, or as a third harmonic mixer.
Lin, Jian Hung; Tseng, Chun-Yen; Lee, Ching-Ting; Young, Jeff F; Kan, Hung-Chih; Hsu, Chia Chen
2014-02-10
Guided mode resonance (GMR) enhanced second- and third-harmonic generation (SHG and THG) is demonstrated in an azo-polymer resonant waveguide grating (RWG), comprised of a poled azo-polymer layer on top of a textured SU8 substrate with a thin intervening layer of TiO2. Strong SHG and THG outputs are observed by matching either in-coming fundamental- or out-going harmonic-wavelength to the GMR wavelengths of the azo-polymer RWG. Without the azo-polymer coating, pure TiO2 RWGs, do not generate any detectable SHG using a fundamental beam peak intensity of 2 MW/cm(2). Without the textured TiO2 layer, a planar poled azo-polymer layer results in 3650 times less SHG than the full nonlinear RWG structure under identical excitation conditions. Rigorous coupled-wave analysis calculations confirm that this enhancement of the nonlinear conversion is due to strong local electric fields that are generated at the interfaces of the TiO2 and azo-polymer layers when the RWG is excited at resonant wavelengths associated with both SHG and THG conversion processes.
Graphene electrodes for lithium-niobate electro-optic devices.
Chang, Zeshan; Jin, Wei; Chiang, Kin Seng
2018-04-15
We propose and demonstrate the use of graphene electrodes for lithium-niobate electro-optic (EO) devices to exempt the need of incorporating a buffer layer between the waveguide and the electrodes. Using graphene electrodes, our experimental mode converter, based on an EO-generated long-period grating in a LiNbO 3 waveguide, shows a reduction in the half-π voltage by almost three times, compared with the conventional electrode design using metal. With the buffer layer exempted, the device fabrication process is also significantly simplified. The use of graphene electrodes is an effective approach to enhancing the efficiency of EO devices and, at the same time, reducing their fabrication cost.
Waferscale nanophotonic circuits made from diamond-on-insulator substrates.
Rath, P; Gruhler, N; Khasminskaya, S; Nebel, C; Wild, C; Pernice, W H P
2013-05-06
Wide bandgap dielectrics are attractive materials for the fabrication of photonic devices because they allow broadband optical operation and do not suffer from free-carrier absorption. Here we show that polycrystalline diamond thin films deposited by chemical vapor deposition provide a promising platform for the realization of large scale integrated photonic circuits. We present a full suite of photonic components required for the investigation of on-chip devices, including input grating couplers, millimeter long nanophotonic waveguides and microcavities. In microring resonators we measure loaded optical quality factors up to 11,000. Corresponding propagation loss of 5 dB/mm is also confirmed by measuring transmission through long waveguides.
NASA Astrophysics Data System (ADS)
Benisty, Henri; Lupu, Anatole
2017-05-01
The evolving field of optics for information and communication is currently seeking directions to expand the data rates in all concerned devices, fiber-based or on chips. We describe here two possibilities where the new concept of PT-symmetry in optics [1,2] can be exploited to help high data rate operation, considering either transverse or longitudinal aspects of modal selection, and assuming that data are carried using precise modes. The first aspect is transverse multimode transport. In this case, a fiber or a waveguide carries a few modes, say 4 to 16, and at nodes, they have to undergo a demux/mux operation to add or drop a subset of them, as much as possible without affecting the others. We shall consider to this end the operation as described in ref. [3] : if a PT-symmetric "potential", which essentially consists of a transverse gain-loss profile with antisymmetry, is applied to a waveguide, it has a very different impact on the different modes and mode families in the waveguide. One can in particular find situations where only two modes of the passive waveguide to be analyzed may enter into a gain regime, and not the other ones. From this scheme and others [4], we will discuss what is the road left towards an actual device, either in dielectrics or in case plasmonics is envisioned [5], i.e. with rather constant losses, but the possible advantage of miniaturization. The second aspect is longitudinal mode selection. The special transport properties of PT-symmetric Bragg gratings are now well established. In order to be used within a data management system, attention has to be paid to the rejection rate of Bragg gratings, and to the flatness of their response in the targeted window. To this end, a slow modulation of both real and imaginary parts of the periodic pattern of the basically PT-symmetric waveguide can help, in the general spirit of "apodization", but now with more parameters. We will detail some aspects of the designs introduced in [6] , notably their ease of implementation in established optoelectronic fabrication platforms. To conclude these considerations, the perspectives offered by the combination of transverse multimode systems and PT-symmetric type of periodicity will be discussed. [1] C. M. Bender and S. Boettcher, "Real spectra in non-Hermitian Hamiltonians having PT-symmetry," Phys. Rev. Lett. 80, 5243 (1998). [2] J. Čtyroký, V. Kuzmiak, and S. Eyderman, "Waveguide structures with antisymmetric gain/loss profile," Opt. Express 18, 21585-21593 (2010). [3] H. Benisty, A. Lupu, A. Degiron, "Transverse periodic PT symmetry for modal demultiplexing in optical waveguides," Phys. Rev. A 91, 053825 (2015). [4] N. Rivolta, B. Maes, "Symmetry recovery for coupled photonic modes with transversal PT symmetry", Opt. Letters, 40, 16, 3922-3925, (2015) [5] A. Lupu, H. Benisty, A. Degiron, "Switching using PT symmetry in plasmonic systems: positive role of the losses," Opt. Express 21, 21651-21668 (2013). [6] A. Lupu, H. Benisty, A. Lavrinenko, "Tailoring spectral properties of binary PT-symmetric gratings by using duty cycle methods," JSTQE 22, 35-41 (2016).
NASA Astrophysics Data System (ADS)
Chang, Daniel H.
The development of high speed polymer electro-optic modulators has seen steady and significant progress in recent years, enabling novel applications in RF-Photonics. Two of these are described in this Thesis: an Opto-Electronic Oscillator (OEO), which is a hybrid RF and optical oscillator capable of high spectral purity, and Photonic Time-Stretch, which is a signal processing technique for waveform spectral shifting with application to photonically-assisted A/D conversion. In both cases, the operating frequencies achieved have been the highest demonstrated to date. Application of this promising material to more complicated devices, however, is stymied by insertion loss performance. Current loss figures, while acceptable for single modulators, are too high for large arrays of modulators or intrinsically long devices such as AWGs or photonic-RF phase shifters. This is especially frustrating in light of a key virtue which polymers possess as a photonic material: its photolithographic process-ability makes patterning complex devices possible. Indeed, the current ascendancy of silica-based waveguide devices can be attributed largely to the same reason. In this Thesis, we also demonstrate the first hybrid device composed of silica planar lightwave circuits (PLCs) and polymer planar waveguides. Our approach utilizes grayscale lithography to enable vertical coupling between polymer and silica layers, minimizing entanglement of their respective fabrication processes. We have achieved coupling excess loss figures on the order of 1dB. We believe this is the natural next step in the development of electro-optic polymer devices. The two technologies are highly complementary. Silica PLCs, with excellent propagation loss and fiber coupling, are ideally suited for long passive waveguiding. By endowing them with the high-speed phase shifting capability offered by polymers, active wideband photonic devices of increasing complexity and array size can be contemplated.
Highly sensitive biochemical sensor utilizing Bragg grating in submicron Si/SiO2 waveguides
NASA Astrophysics Data System (ADS)
Tripathi, Saurabh Mani; Kumar, Arun; Meunier, Jean-Pierre; Marin, Emmanuel
2009-05-01
We present a novel highly sensitive biochemical sensor based on a Bragg grating written in the cladding region of a submicron planar Si/SiO2 waveguide. Owing to the high refractive index contrast at the Si/SiO2 boundary the TM modal power is relatively high in low refractive index sensing region, leading to higher sensitivity in this configuration [1]. Waveguide parameters have been optimized to obtain maximum modal power in the sensing region (PSe) and an optimum core width corresponding to maximum sensitivity is found to exist while operating in TM mode configuration, as has been shown in Fig. 1. It has been found that operating in TM mode configuration at optimum core width the structure exhibits extremely high sensitivity, ~ 5×10-6 RIU - 1.35×10-6 RIU for the ambient refractive indices between 1.33 - 1.63. Such high sensitivities are typically attainable for Surface Plasmon Polariton (SPP) based biosensors and is much higher than any non SPP based sensors. Being free from any metallic layer or bulky prism the structure is easy to realize. Owing to its simple structure and small dimensions the proposed sensor can be integrated with planar lightwave circuits and could be used in handy lab-on-a-chip devices. The device may find application in highly sensitive biological/chemical sensing areas in civil and defense sectors where analyzing the samples at the point of need is required rather than sending it to some centralized laboratory.
Microfiber Optical Sensors: A Review
Lou, Jingyi; Wang, Yipei; Tong, Limin
2014-01-01
With diameter close to or below the wavelength of guided light and high index contrast between the fiber core and the surrounding, an optical microfiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, evanescent fields and waveguide dispersion. Among various microfiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, fast response, high flexibility and low optical power consumption. Here we review recent progress in microfiber optical sensors regarding their fabrication, waveguide properties and sensing applications. Typical microfiber-based sensing structures, including biconical tapers, optical gratings, circular cavities, Mach-Zehnder interferometers and functionally coated/doped microfibers, are summarized. Categorized by sensing structures, microfiber optical sensors for refractive index, concentration, temperature, humidity, strain and current measurement in gas or liquid environments are reviewed. Finally, we conclude with an outlook for challenges and opportunities of microfiber optical sensors. PMID:24670720
NASA Astrophysics Data System (ADS)
Kowligy, Abijith S.; Lind, Alex; Hickstein, Daniel D.; Carlson, David R.; Timmers, Henry; Nader, Nima; Cruz, Flavio C.; Ycas, Gabriel; Papp, Scott B.; Diddams, Scott A.
2018-04-01
We experimentally demonstrate a simple configuration for mid-infrared (MIR) frequency comb generation in quasi-phase-matched lithium niobate waveguides using the cascaded-$\\chi^{(2)}$ nonlinearity. With nanojoule-scale pulses from an Er:fiber laser, we observe octave-spanning supercontinuum in the near-infrared with dispersive-wave generation in the 2.5--3 $\\text{\\mu}$m region and intra-pulse difference-frequency generation in the 4--5 $\\text{\\mu}$m region. By engineering the quasi-phase-matched grating profiles, tunable, narrow-band MIR and broadband MIR spectra are both observed in this geometry. Finally, we perform numerical modeling using a nonlinear envelope equation, which shows good quantitative agreement with the experiment---and can be used to inform waveguide designs to tailor the MIR frequency combs. Our results identify a path to a simple single-branch approach to mid-infrared frequency comb generation in a compact platform using commercial Er:fiber technology.
Study on W-band sheet-beam traveling-wave tube based on flat-roofed sine waveguide
NASA Astrophysics Data System (ADS)
Fang, Shuanzhu; Xu, Jin; Jiang, Xuebing; Lei, Xia; Wu, Gangxiong; Li, Qian; Ding, Chong; Yu, Xiang; Wang, Wenxiang; Gong, Yubin; Wei, Yanyu
2018-05-01
A W-band sheet electron beam (SEB) traveling-wave tube (TWT) based on flat-roofed sine waveguide slow-wave structure (FRSWG-SWS) is proposed. The sine wave of the metal grating is replaced by a flat-roofed sine wave around the electron beam tunnel. The slow-wave characteristics including the dispersion properties and interaction impedance have been investigated by using the eigenmode solver in the 3-D electromagnetic simulation software Ansoft HFSS. Through calculations, the FRSWG SWS possesses the larger average interaction impedance than the conventional sine waveguide (SWG) SWS in the frequency range of 86-110 GHz. The beam-wave interaction was studied and particle-in-cell simulation results show that the SEB TWT can produce output power over 120 W within the bandwidth ranging from 90 to 100 GHz, and the maximum output power is 226 W at typical frequency 94 GHz, corresponding electron efficiency of 5.89%.
Kowligy, Abijith S; Lind, Alex; Hickstein, Daniel D; Carlson, David R; Timmers, Henry; Nader, Nima; Cruz, Flavio C; Ycas, Gabriel; Papp, Scott B; Diddams, Scott A
2018-04-15
We experimentally demonstrate a simple configuration for mid-infrared (MIR) frequency comb generation in quasi-phase-matched lithium niobate waveguides using the cascaded-χ (2) nonlinearity. With nanojoule-scale pulses from an Er:fiber laser, we observe octave-spanning supercontinuum in the near-infrared with dispersive wave generation in the 2.5-3 μm region and intrapulse difference frequency generation in the 4-5 μm region. By engineering the quasi-phase-matched grating profiles, tunable, narrowband MIR and broadband MIR spectra are both observed in this geometry. Finally, we perform numerical modeling using a nonlinear envelope equation, which shows good quantitative agreement with the experiment-and can be used to inform waveguide designs to tailor the MIR frequency combs. Our results identify a path to a simple single-branch approach to mid-infrared frequency comb generation in a compact platform using commercial Er:fiber technology.
Chemical-assisted femtosecond laser writing of lab-in-fibers.
Haque, Moez; Lee, Kenneth K C; Ho, Stephen; Fernandes, Luís A; Herman, Peter R
2014-10-07
The lab-on-chip (LOC) platform has presented a powerful opportunity to improve functionalization, parallelization, and miniaturization on planar or multilevel geometries that has not been possible with fiber optic technology. A migration of such LOC devices into the optical fiber platform would therefore open the revolutionary prospect of creating novel lab-in-fiber (LIF) systems on the basis of an efficient optical transport highway for multifunctional sensing. For the LIF, the core optical waveguide inherently offers a facile means to interconnect numerous types of sensing elements along the optical fiber, presenting a radical opportunity for optimizing the packaging and densification of diverse components in convenient geometries beyond that available with conventional LOCs. In this paper, three-dimensional patterning inside the optical fiber by femtosecond laser writing, together with selective chemical etching, is presented as a powerful tool to form refractive index structures such as optical waveguides and gratings as well as to open buried microfluidic channels and optical resonators inside the flexible and robust glass fiber. In this approach, optically smooth surfaces (~12 nm rms) are introduced for the first time inside the fiber cladding that precisely conform to planar nanograting structures when formed by aberration-free focusing with an oil-immersion lens across the cylindrical fiber wall. This process has enabled optofluidic components to be precisely embedded within the fiber to be probed by either the single-mode fiber core waveguide or the laser-formed optical circuits. We establish cladding waveguides, X-couplers, fiber Bragg gratings, microholes, mirrors, optofluidic resonators, and microfluidic reservoirs that define the building blocks for facile interconnection of inline core-waveguide devices with cladding optofluidics. With these components, more advanced, integrated, and multiplexed fiber microsystems are presented demonstrating fluorescence detection, Fabry-Perot interferometric refractometry, and simultaneous sensing of refractive index, temperature, and bending strain. The flexible writing technique and multiplexed sensors described here open powerful prospects to migrate the benefits of LOCs into a more flexible and miniature LIF platform for highly functional and distributed sensing capabilities. The waveguide backbone of the LIF inherently provides an efficient exchange of information, combining sensing data that are attractive in telecom networks, smart catheters for medical procedures, compact sensors for security and defense, shape sensors, and low-cost health care products.
Multiple-channel guided mode resonance Brewster filter with controllable spectral separation.
Ma, Jianyong; Cao, Hongchao; Zhou, Changhe
2014-05-01
In this work, a single-layer, multiple-channel guided mode resonance (GMR) Brewster filter with controllable spectral separation is proposed using the plane waveguide method and rigorous coupled-wave analysis. Based on the normalized eigenvalue equation, the controllability of the spectral separation is analyzed when the fill ratio of the grating layer is changed while its effective index is identical to that of the substrate. The location and the separation between resonances can be specifically controlled by modifying the fill ratio of the grating layer. In contrast to the ordinary GMR filter, where the location of the resonances is material dependent, it is demonstrated that the spectral separation for the first and second resonances can be linearly controlled by altering the fill ratio of the grating layer. In addition, the maximal shift of the second resonance is up to 5% of the first resonant wavelength using the single-layer Brewster filter.
NASA Astrophysics Data System (ADS)
Chen, I.-Ju; Chi, Chang-Chia; Tarn, Chen-Wen
2016-01-01
A new architecture of a pentaplexer transceiver module which can be used in GPON/GEPON and RFoG triple play optical networks with supporting of the multiple optical wavelengths of 1310 nm, 1490 nm, 1550 nm, 1610 nm, and 1650 nm, is proposed. By using diffractive grating elements combing with market readily available GRIN (Gradient-Index) lens, grating, mirrors, beamsplitter, LDs (Laser Diodes), and PDs (Photodetectors), the proposed design have the advantages of low cost, high efficiency/performance, easy design and manufacturing, over the contemporary triplex transceivers which are made of multilayer filters or waveguides that increase the complexity of manufacturing and reduce the performance efficiency. With the proposed design, a pentaplexer system can accommodate GPON/GEPON, RFoG, and monitoring integration services, total five optical wavelength channels into a hybrid-integrated TO-CAN package platform with sufficient efficiency.
Low Average Sidelobe Slot Array Antennas for Radiometer Applications
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam; Zawardzki, Mark S.; Hodges, Richard E.
2012-01-01
In radiometer applications, it is required to design antennas that meet low average sidelobe levels and low average return loss over a specified frequency bandwidth. It is a challenge to meet such specifications over a frequency range when one uses resonant elements such as waveguide feed slots. In addition to their inherent narrow frequency band performance, the problem is exacerbated due to modeling errors and manufacturing tolerances. There was a need to develop a design methodology to solve the problem. An iterative design procedure was developed by starting with an array architecture, lattice spacing, aperture distribution, waveguide dimensions, etc. The array was designed using Elliott s technique with appropriate values of the total slot conductance in each radiating waveguide, and the total resistance in each feed waveguide. Subsequently, the array performance was analyzed by the full wave method of moments solution to the pertinent integral equations. Monte Carlo simulations were also carried out to account for amplitude and phase errors introduced for the aperture distribution due to modeling errors as well as manufacturing tolerances. If the design margins for the average sidelobe level and the average return loss were not adequate, array architecture, lattice spacing, aperture distribution, and waveguide dimensions were varied in subsequent iterations. Once the design margins were found to be adequate, the iteration was stopped and a good design was achieved. A symmetric array architecture was found to meet the design specification with adequate margin. The specifications were near 40 dB for angular regions beyond 30 degrees from broadside. Separable Taylor distribution with nbar=4 and 35 dB sidelobe specification was chosen for each principal plane. A non-separable distribution obtained by the genetic algorithm was found to have similar characteristics. The element spacing was obtained to provide the required beamwidth and close to a null in the E-plane end-fire direction. Because of the alternating slot offsets, grating lobes called butterfly lobes are produced in non-principal planes close to the H-plane. An attempt to reduce the influence of such grating lobes resulted in a symmetric design.
Coupling and Switching in Optically Resonant Periodic Electrode Structures
NASA Astrophysics Data System (ADS)
Bieber, Amy Erica
This thesis describes coupling and switching of optical radiation using metal-semiconductor-metal (MSM) structures, specifically in a metal-on-silicon waveguide configuration. The structures which are the subject of this research have the special advantage of being VLSI -compatible; this is very important for the ultimate acceptance of any integrated optoelectronics technology by the mainstream semiconductor community. To date, research efforts in VLSI electronics, MSM detectors, metal devices, and optical switching have existed as separate entities with decidedly different goals. This work attempts to unite these specialties; an interdigitated array of metal fingers on a silicon waveguide allows for (1) fabrication processes which are well-understood and compatible with current or next-generation semiconductor manufacturing standards, (2) electrical bias capability which can potentially provide modulation, tuning, and enhanced speed, and (3) potentially efficient waveguide coupling which takes advantage of TM coupling. The latter two items are made possible by the use of metallic gratings, which sets this work apart from previous optical switching results. This MSM structure represents an important step in uniting four vital technologies which, taken together, can lead to switching performance and operational flexibility which could substantially advance the capabilities of current optoelectronic devices. Three different designs were successfully used to examine modulation and optical switching based upon nonlinear interactions in the silicon waveguide. First, a traditional Bragg reflector design with input and output couplers on either side was used to observe switching of nanosecond-regime Nd:YAG pulses. This structure was thermally tuned to obtain a variety of switching dynamics. Next, a phase-shift was incorporated into the Bragg reflector, and again thermally-tunable switching dynamics were observed, but with the added advantage of a reduction in the energy requirements for optical switching. Finally, the roles of the coupler and Bragg reflector were combined in a normal -incidence structure which exhibited nonlinear reflectivity modulation. This has not only been the first experimental demonstration of optical switching in a metal-semiconductor waveguide structure, but, to our knowledge, one of the first such demonstrations using a nonlinear phase-shifted or normal incidence grating of any kind.
NASA Astrophysics Data System (ADS)
Meng, Yang
Photonic circuits are becoming very promising in many different applications, such as optical amplification, optical switching and wavelength division multiplexing optical networks, lab-on-chip in bioengineering, atom-light interaction in quantum information processing, wavelength selecting and filtering in astronomy, etc. Thanks to major developments in the nanofabrication technology, smaller but more powerful photonic circuits can be made to realize more complex applications. Here we propose two on-chip photonic circuits: one is for atom-light interaction in quantum information, and the other is for an optical spectrometer in astronomy. Part I. The atom-light interaction can be used for a number of quantum based application, such as quantum information processing and atomic sensing. These significant applications make atom-light interaction a strong candidate for next-generation quantum computers and ultraprecise magnetic or navigation sensors. People have proposed various types of atom-photon interaction, and enhancing the interaction by using a small mode area has also been demonstrated in several platforms such as a hollow-core fiber, a hollow-core waveguide, a tapered fiber, and a nanowaveguide. In our work, we propose a nanowaveguide platform for collective atom-light interaction through the evanescent optical field coupling. We have demonstrated a centimeter-long silicon nitride nanowaveguide that has a sub-micrometer mode area and high fiber-to-waveguide coupling efficiencies for near-infrared wavelengths, working as evanescent field atom trapping/probing of an ensemble of 87Rb atoms. Inverse tapers are made at both ends of the waveguide that adiabatically transfer the weakly guided fiber-coupled mode to a strongly guided mode with an evanescent field for a better fiber-waveguide coupling efficiency. The coupling efficiency improves from around 2% to around 80% for both wavelengths. Trapping atoms by nanowaveguide modes is challenging because the small mode area generates high heat flux at the waveguide in an ultra-high vacuum. This platform has good thermal conductance and could transfer high enough optical powers to trap atoms in an ultra-high vacuum compared to a standalone photonic crystal waveguide with no substrate or an evanescent field coupled with a nanofiber. We have experimentally measured the optical absorption of thermal 87Rb atoms through the guided waveguide mode. We have also demonstrated an atom-chip mirror MOT with the same dimension of the platform that can be transferred to the proximity of the surface by magnetic field controls. Part II. In astronomical applications, wavelength analysis is very important especially for the wavelength selecting and filtering. Here we focus on the wavelength range from 1microm to 1.7microm. There are many valuable applications that make this near infrared wavelength range so important. For example, the Lyman-alpha line of hydrogen is one of the very important emission lines of hydrogen for understanding the origin and creation of the universe. Since the universe has expanded for more than 10 billion years after the big bang, the Lyman-alpha line of hydrogen has redshifted from 121.5nm to the 1microm-to-1.7microm wavelength range according to Hubble's Law. In addition, analysis of this wavelength range can also help us understand many other cosmic phenomena such as quasars, Gamma-ray bursts, etc. Therefore, a good spectrometer is needed to achieve this. Here we present an echelle grating which is based on an on-chip spectrometer that covers the near infrared wavelength range from 1.45um to 1.7um. To begin with, we use optical waveguides as the input and output channels. We have successfully achieved a reliable fabrication process to make the on-chip echelle-grating spectrometer. We have also achieved high fiber-waveguide coupling efficiency (94% per facet at 1550nm) and low propagation loss (-0.975dB/cm at 1550nm) for the input and output waveguides. In addition, we have characterized the bending loss of the waveguide. Finally, we have successfully measured the output spectrum of the echelle grating we designed and found it to be in good agreement with our simulation.
Lasing in a nematic liquid crystal cell with an interdigitated electrode system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shtykov, N M; Palto, S P; Umanskii, B A
2015-04-30
Waveguide lasing in a layer of a dye-doped nematic liquid crystal has been observed. The liquid-crystal layer was sandwiched between a quartz substrate and a glass cover plate on whose surface was deposited an interdigitated electrode system. This system had a period of 3.75 μm and played a dual role, namely, it created a spatial periodicity of the waveguide medium refractive index (thus creating distributed feedback) and served as a diffraction grating coupling out a part of waveguide radiation into the glass cover plate. The distributed feedback ensured lasing in the 18th diffraction order for the TE modes and inmore » the 19th order for the TM modes of the waveguide. The generated radiation was observed at the exit from the glass plate end face at the angles to the waveguide plane of 33.1 ± 1.5° for TM modes and 21.8 ± 1.8° for TE modes. The intensity and position of the TE emission line showed no regular dependence on the voltage on the electrodes. In the case of TM radiation, an increase in the voltage led to a short-wavelength shift of the laser line and to a decrease in its intensity. (lasers)« less
Silicon nitride back-end optics for biosensor applications
NASA Astrophysics Data System (ADS)
Romero-García, Sebastian; Merget, Florian; Zhong, Frank C.; Finkelstein, Hod; Witzens, Jeremy
2013-05-01
Silicon nitride (SiN) is a promising candidate material for becoming a standard high-performance solution for integrated biophotonics applications in the visible spectrum. As a key feature, its compatibility with the complementary-oxidemetal- semiconductor (CMOS) technology permits cost reduction at large manufacturing volumes that is particularly advantageous for manufacturing consumables. In this work, we show that the back-end deposition of a thin SiN film enables the large light-cladding interaction desirable for biosensing applications while the refractive index contrast of the technology (Δn ≍ 0.5) also enables a considerable level of integration with reduced waveguide bend radii. Design and experimental validation also show that several advantages are derived from the moderate SiN/SiO2 refractive index contrast, such as lower scattering losses in interconnection waveguides and relaxed tolerances to fabrication imperfections as compared to higher refractive index contrast material systems. As a drawback, a moderate refractive index contrast also makes the implementation of compact grating couplers more challenging, due to the fact that only a relatively weak scattering strength can be achieved. Thereby, the beam diffracted by the grating tends to be rather large and consequently exhibit stringent angular alignment tolerances. Here, we experimentally demonstrate how a proper design of the bottom and top cladding oxide thicknesses allows reduction of the full-width at half maximum (FWHM) and alleviates this problem. Additionally, the inclusion of a CMOS-compatible AlCu/TiN bottom reflector further decreases the FWHM and increases the coupling efficiency. Finally, we show that focusing grating designs greatly reduce the device footprint without penalizing the device metrics.
Single photons to multiple octaves: Engineering nonlinear optics in micro- and nano-structured media
2017-05-18
generation and amplification of ultrafast IR pulses. Both efforts took advantage of microstructured nonlinear media, e.g. quasi -phasematched (QPM...enhance the wave-mixing efficiency, especially for low-power devices. Because errors in fabrication of waveguides and quasi - phasematching gratings are... experimental demonstration of optical parametric chirped pulse amplifiers (OPCPA) in apodized aperiodic QPMgratings for high repetition rate, high
Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator.
Doylend, J K; Heck, M J R; Bovington, J T; Peters, J D; Coldren, L A; Bowers, J E
2011-10-24
We demonstrate a 16-channel, independently tuned waveguide surface grating optical phased array in silicon for two dimensional beam steering with a total field of view of 20° x 14°, beam width of 0.6° x 1.6°, and full-window background peak suppression of 10 dB. © 2011 Optical Society of America
Application of holographic elements in displays and planar illuminators
NASA Astrophysics Data System (ADS)
Putilin, Andrew; Gustomiasov, Igor
2007-05-01
Holographic Optical Elements (HOE's) on planar waveguides can be used to design the planar optics for backlit units, color selectors or filters, lenses for virtual reality displays. The several schemes for HOE recording are proposed to obtain planar stereo backlit unit and private eye displays light source. It is shown in the paper that the specific light transformation grating permits to construct efficient backlit units for display holograms and LCD. Several schemes of reflection/transmission backlit units and scattering films based on holographic optical elements are also proposed. The performance of the waveguide HOE can be optimized using the parameters of recording scheme and etching parameters. The schemes of HOE application are discussed and some experimental results are shown.
NASA Astrophysics Data System (ADS)
Papatryfonos, Konstantinos; Saladukha, Dzianis; Merghem, Kamel; Joshi, Siddharth; Lelarge, Francois; Bouchoule, Sophie; Kazazis, Dimitrios; Guilet, Stephane; Le Gratiet, Luc; Ochalski, Tomasz J.; Huyet, Guillaume; Martinez, Anthony; Ramdane, Abderrahim
2017-02-01
Single-mode diode lasers on an InP(001) substrate have been developed using InAs/In0.53Ga0.47As quantum dash (Qdash) active regions and etched lateral Bragg gratings. The lasers have been designed to operate at wavelengths near 2 μm and exhibit a threshold current of 65 mA for a 600 μm long cavity, and a room temperature continuous wave output power per facet >5 mW. Using our novel growth approach based on the low ternary In0.53Ga0.47As barriers, we also demonstrate ridge-waveguide lasers emitting up to 2.1 μm and underline the possibilities for further pushing the emission wavelength out towards longer wavelengths with this material system. By introducing experimentally the concept of high-duty-cycle lateral Bragg gratings, a side mode suppression ratio of >37 dB has been achieved, owing to an appreciably increased grating coupling coefficient of κ ˜ 40 cm-1. These laterally coupled distributed feedback (LC-DFB) lasers combine the advantage of high and well-controlled coupling coefficients achieved in conventional DFB lasers, with the regrowth-free fabrication process of lateral gratings, and exhibit substantially lower optical losses compared to the conventional metal-based LC-DFB lasers.
Reflectively Coupled Waveguide Photodetector for High Speed Optical Interconnection
Hsu*, Shih-Hsiang
2010-01-01
To fully utilize GaAs high drift mobility, techniques to monolithically integrate In0.53Ga0.47As p-i-n photodetectors with GaAs based optical waveguides using total internal reflection coupling are reviewed. Metal coplanar waveguides, deposited on top of the polyimide layer for the photodetector’s planarization and passivation, were then uniquely connected as a bridge between the photonics and electronics to illustrate the high-speed monitoring function. The photodetectors were efficiently implemented and imposed on the echelle grating circle for wavelength division multiplexing monitoring. In optical filtering performance, the monolithically integrated photodetector channel spacing was 2 nm over the 1,520–1,550 nm wavelength range and the pass band was 1 nm at the −1 dB level. For high-speed applications the full-width half-maximum of the temporal response and 3-dB bandwidth for the reflectively coupled waveguide photodetectors were demonstrated to be 30 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodetector at 10 Gbit/s with 27-1 long pseudo-random bit sequence non-return to zero input data also showed error-free operation. PMID:22163502
NASA Technical Reports Server (NTRS)
Jordan, Rebecca H.; King, Oliver; Wicks, Gary W.; Hall, Dennis G.; Anderson, Erik H.; Rooks, Michael J.
1993-01-01
We describe the fabrication and operational characteristics of a novel, surface-emitting semiconductor laser that makes use of a concentric-circle grating to both define its resonant cavity and to provide surface emission. A properly fabricated circular grating causes the laser to operate in radially inward- and outward-going circular waves in the waveguide, thus, introducing the circular symmetry needed for the laser to emit a beam with a circular cross-section. The basic circular-grating-resonator concept can be implemented in any materials system; an AlGaAs/GaAs graded-index, separate confinement heterostructure (GRINSCH), single-quantum-well (SQW) semiconductor laser, grown by molecular beam epitaxy (MBE), was used for the experiments discussed here. Each concentric-circle grating was fabricated on the surface of the AlGaAs/GaAs semiconductor laser. The circular pattern was first defined by electron-beam (e-beam) lithography in a layer of polymethylmethacrylate (PMMA) and subsequently etched into the semiconductor surface using chemically-assisted (chlorine) ion-beam etching (CAIBE). We consider issues that affect the fabrication and quality of the gratings. These issues include grating design requirements, data representation of the grating pattern, and e-beam scan method. We provide examples of how these techniques can be implemented and their impact on the resulting laser performance. A comparison is made of the results obtained using two fundamentally different electron-beam writing systems. Circular gratings with period lambda = 0.25 microns and overall diameters ranging from 80 microns to 500 microns were fabricated. We also report our successful demonstration of an optically pumped, concentric-circle grating, semiconductor laser that emits a beam with a far-field divergence angle that is less than one degree. The emission spectrum is quite narrow (less than 0.1 nm) and is centered at wavelength lambda = 0.8175 microns.
Compact SOI optimized slot microring coupled phase-shifted Bragg grating resonator for sensing
NASA Astrophysics Data System (ADS)
Zhao, Chao Ying; Zhang, Lei; Zhang, Cheng Mei
2018-05-01
We propose a novel sensor structure composed of a slot microring and a phase-shifted sidewall Bragg gratings in a slot waveguide. We first present a theoretical analysis of transmission by using the transfer matrix. Then, the mode-field distributions of transmission spectrum obtained from 3D simulations based on FDTD method demonstrates that our sensor exhibit theoretical sensitivity of 297 . 13 nm / RIU, a minimum detection limit of 1 . 1 × 10-4 RIU, the maximum extinction ratio of 20 dB, the quality factor of 2 × 103 and a compact dimension-theoretical structure of 15 μm × 8 . 5 μm. Finally, the sensor's performance is simulated for NaCl solution.
Two-way reflector based on two-dimensional sub-wavelength high-index contrast grating on SOI
NASA Astrophysics Data System (ADS)
Kaur, Harpinder; Kumar, Mukesh
2016-05-01
A two-dimensional (2D) high-index contrast grating (HCG) is proposed as a two-way reflector on Silicon-on-insulator (SOI). The proposed reflector provides high reflectivity over two (practically important) sets of angles of incidence- normal (θ = 0 °) and oblique/grazing (θ = 80 ° - 85 ° / 90 °). Analytical model of 2D HCG is presented using improved Fourier modal method. The vertical incidence is useful for application in VCSEL while oblique/grazing incidence can be utilized in high confinement (HCG mirrors based) hollow waveguides and Bragg reflectors. The proposed two-way reflector also exhibits a large reflection bandwidth (around telecom wavelength) which is an advantage for broadband photonic devices.
Optical Electronic Bragg Reflection Sensor System with Hydrodynamic Flow Applications
NASA Technical Reports Server (NTRS)
Lyons, D. R.
2003-01-01
This project, as described in the following report, involved design and fabrication of fiber optic sensors for the detection and measurement of dynamic fluid density variations. These devices are created using UV (ultraviolet) ablation and generally modified transverse holographic fiber grating techniques. The resulting phase gratings created on or immediately underneath the flat portion of D-shaped optical waveguides are characterized as evanescent field sensing devices. The primary applications include the sensor portion of a real-time localized or distributed measurement system for hydrodynamic flow, fluid density measurements, and phase change phenomena. Several design modifications were implemented in an attempt to accomplish the tasks specified in our original proposal. In addition, we have established key collaborative relationships with numerous people and institutions.
Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films.
Rath, Patrik; Khasminskaya, Svetlana; Nebel, Christoph; Wild, Christoph; Pernice, Wolfram Hp
2013-01-01
Synthetic diamond films can be prepared on a waferscale by using chemical vapour deposition (CVD) on suitable substrates such as silicon or silicon dioxide. While such films find a wealth of applications in thermal management, in X-ray and terahertz window design, and in gyrotron tubes and microwave transmission lines, their use for nanoscale optical components remains largely unexplored. Here we demonstrate that CVD diamond provides a high-quality template for realizing nanophotonic integrated optical circuits. Using efficient grating coupling devices prepared from partially etched diamond thin films, we investigate millimetre-sized optical circuits and achieve single-mode waveguiding at telecoms wavelengths. Our results pave the way towards broadband optical applications for sensing in harsh environments and visible photonic devices.
NASA Astrophysics Data System (ADS)
Maendl, Stefan; Grundler, Dirk
2018-05-01
We performed broadband spin-wave spectroscopy on 200 nm thick yttrium iron garnet containing arrays of partially embedded magnetic nanodisks. Using integrated coplanar waveguides (CPWs), we studied the excitation and transmission of spin waves depending on the presence of nanomagnet arrays of different lateral extensions. By means of the grating coupler effect, we excited spin waves propagating in multiple lateral directions with wavelengths down to 111 nm. They exhibited group velocities of up to 1 km/s. Detection of such short-wavelength spin waves was possible only in symmetrically designed emitter/detector configurations, not with a bare CPW. We report spin waves propagating between grating couplers under oblique angles exhibiting a wave vector component parallel to the CPW. The effective propagation distance amounted to about 80 μm. Such transmission signals were not addressed before and substantiate the versatility of the grating coupler effect for implementing nanomagnonic circuits.
Conversion between EIT and Fano spectra in a microring-Bragg grating coupled-resonator system
NASA Astrophysics Data System (ADS)
Zhang, Zecen; Ng, Geok Ing; Hu, Ting; Qiu, Haodong; Guo, Xin; Wang, Wanjun; Rouifed, Mohamed Saïd; Liu, Chongyang; Wang, Hong
2017-08-01
A conversion between the electromagnetically induced transparency (EIT) transmission and Fano transmission is theoretically and experimentally demonstrated in an all-pass microring-Bragg grating (APMR-BG) coupled-resonator system. In this work, the coupling between the two resonators (the microring resonator and the Fabry-Perot resonator formed by two Bragg gratings) gives rise to the EIT and Fano transmissions. The resonant status strongly depends on the round-trip attenuation of the microring and the coupling strength. By tuning the coupling strength, the EIT and Fano transmissions can be controlled and converted. The device performance has been theoretically calculated and analyzed with a specially developed numerical model based on the transfer matrix method. The APMR-BG coupled-resonator systems with different gap widths were designed, fabricated, and characterized on a silicon-on-insulator (SOI) platform. The conversion of resonance was experimentally observed and verified. In addition, this on-chip system has the advantage of a small footprint, and the fabrication process is compatible with the planar waveguide fabrication process.
NASA Astrophysics Data System (ADS)
Ushida, Jun; Tokushima, Masatoshi; Sobu, Yohei; Shimura, Daisuke; Yashiki, Kenichiro; Takahashi, Shigeki; Kurata, Kazuhiko
2018-05-01
Fan-shaped grating couplers (F-GCs) can be smaller than straight ones but are less efficient in general in coupling to single-mode fibers. To find a small F-GC with sufficiently high fiber-coupling characteristics, we numerically compared the dependencies of coupling efficiencies on wavelengths, the starting width of gratings, and misalignment distances among 25, 45, and 60° tapered angles of fan shape by using the three-dimensional finite-difference time domain method. A F-GC with a tapered angle of 25° exhibited the highest performances for all dependencies. The optical loss origins of F-GCs were discussed in terms of the electric field structures in them and scattering at the joint between the fan-shaped slab and channel waveguide. We fabricated an optimized 25° F-GC by using ArF photolithography, which almost exactly reproduced the optical coupling efficiency and radiation angle characteristics that were numerically expected.
Distributed feedback interband cascade lasers with top grating and corrugated sidewalls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Feng; Stocker, Michael; Pham, John
Distributed feedback (DFB) interband cascade lasers (ICLs) with a 1st order top surface grating were designed and fabricated. Partially corrugated sidewalls were implemented to suppress high order lateral modes. The DFB ICLs have 4 mm long and 4.5 mu m wide ridge waveguides and are mounted epi-up on AlN submounts. We demonstrated a continuous-wave (CW) DFB ICL, from a first wafer which has a large detuning of the gain peak from the DFB wavelength, with a side mode suppression ratio of 30 dB. With proper matching of grating feedback and the gain peak wavelength for the second wafer, a DFBmore » ICL was demonstrated with a maximum CW output power and a maximum wall plug efficiency reaching 42 mW and 2%, respectively, at 25 degrees C. The lasing wavelengths of both lasers are around 3.3 mu m at 25 degrees C. Published by AIP Publishing.« less
Generalized fiber Fourier optics.
Cincotti, Gabriella
2011-06-15
A twofold generalization of the optical schemes that perform the discrete Fourier transform (DFT) is given: new passive planar architectures are presented where the 2 × 2 3 dB couplers are replaced by M × M hybrids, reducing the number of required connections and phase shifters. Furthermore, the planar implementation of the discrete fractional Fourier transform (DFrFT) is also described, with a waveguide grating router (WGR) configuration and a properly modified slab coupler.
Trends in Array Antenna Research,
1977-06-01
design, because it is possible to record this single mode parameter and still account for all of the subtleties that occur at the array face. 2.5...waveguide field, but did properly account for the full spatial harmonic series (grating lobe series) in the free space half space. Some earlier...described some approximate procedures to account for coupling in large arrays where the numerical evaluation of all the higher order terms would
Open Resonator for Summation of Powers in Sub-Terahertz and Terahertz Frequencies
NASA Astrophysics Data System (ADS)
Kuz'michev, I. K.; Yeryomka, V. D.; May, A. V.; Troshchilo, A. S.
2017-03-01
Purpose: Study of excitation features for the first higher axialasymmetric type oscillations in an open resonator connected into the waveguide transmission line. Design/methodology/approach: To determine the efficiency of higher oscillation excitation in the resonator by using the highest wave of a rectangular waveguide, the coefficient of the antenna surface utilization is used. The coefficient of reflection from the open resonator is determined by the known method of summation of the partial coefficients of reflection from the resonant system. Findings: The excitation efficiency of the first higher axial asymmetric type TEM10q oscillations in an open resonator connected into the waveguide transmission line, using the TE20 type wave, is considered. The research efforts were made with accounting for the electromagnetic field vector nature. It is shown that for certain sizes of exciting coupler the excitation efficiency of the working excitation is equal to 0.867. Besides, this resonant system has a single frequency response within a wide band of frequencies. Due to this, it can be applied for summation of powers for individual sources of oscillations. Since this resonant system allows separating the matching functions as to the field and coupling, it is possible to provide any prescribed coupling of sources with a resonant volume. For this purpose, one- dimensional diffraction gratings (E-polarization) are used. Conclusions: With the matched excitation of axially asymmetric modes of oscillations the resonant system has an angular and frequency spectrum selection that is of great practical importance for powers summation. By application of one- dimensional diffraction gratings (E-polarization), located in apertures of coupling elements, the active elements can be matched with the resonant volume.
Guided-mode resonance nanophotonics in materially sparse architectures
NASA Astrophysics Data System (ADS)
Magnusson, Robert; Niraula, Manoj; Yoon, Jae W.; Ko, Yeong H.; Lee, Kyu J.
2016-03-01
The guided-mode resonance (GMR) concept refers to lateral quasi-guided waveguide modes induced in periodic layers. Whereas these effects have been known for a long time, new attributes and innovations continue to appear. Here, we review some recent progress in this field with emphasis on sparse, or minimal, device embodiments. We discuss properties of wideband resonant reflectors designed with gratings in which the grating ridges are matched to an identical material to eliminate local reflections and phase changes. This critical interface therefore possesses zero refractive-index contrast; hence we call them "zero-contrast gratings." Applying this architecture, we present single-layer, wideband reflectors that are robust under experimentally realistic parametric variations. We introduce a new class of reflectors and polarizers fashioned with dielectric nanowire grids that are mostly empty space. Computed results predict high reflection and attendant polarization extinction for these sparse lattices. Experimental verification with Si nanowire grids yields ~200-nm-wide band of high reflection for one polarization state and free transmission of the orthogonal state. Finally, we present bandpass filters using all-dielectric resonant gratings. We design, fabricate, and test nanostructured single layer filters exhibiting high efficiency and sub-nanometer-wide passbands surrounded by 100-nm-wide stopbands.
NASA Technical Reports Server (NTRS)
Bradford, C. M.; Bock, J. J.; Dragovan, M.; Earle, L.; Glenn, J.; Naylor, B.; Nguyen, H.; Zmuidzinas, J.
2004-01-01
The discovery of galaxies beyond z approximately equal to 1 which emit the bulk of their luminosity at long wavelengths has demonstrated the need for high sensitivity, broadband spectroscopy in the far-IR/submm/mm bands. Because many of these sources are not detectable in the optical, long wavelength spectroscopy is key to measuring their redshifts and ISM conditions. The continuum source list will increase in the next decade with new ground-based instruments (SCUBA2, Bolocam, MAMBO) and the surveys of HSO and SIRTF. Yet the planned spectroscopic capabilities lag behind, primarily due to the difficulty in scaling existing IR spectrograph designs to longer wavelengths. To overcome these limitations, we are developing WaFIRS, a novel concept for long-wavelength spectroscopy which utilizes a parallel-plate waveguide and a curved diffraction grating. WaFIRS provides the large (approximately 60%) instantaneous bandwidth and high throughput of a conventional grating system, but offers a dramatic reduction in volume and mass. WaFIRS requires no space overheads for extra optical elements beyond the diffraction grating itself, and is two-dimensional because the propagation is confined between two parallel plates. Thus several modules could be stacked to multiplex either spatially or in different frequency bands. The size and mass savings provide opportunities for spectroscopy from space-borne observatories which would be impractical with conventional spectrographs. With background-limited detectors and a cooled 3.5 telescope, the line sensitivity would be better than that of ALMA, with instantaneous broad-band coverage. We have built and tested a WaFIRS prototype for 1-1.6 mm, and are currently constructing Z-Spec, a 100 mK model to be used as a ground-based lambda/DELTAlambda approximately equal to 350 submillimeter galaxy redshift machine.
Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature
NASA Astrophysics Data System (ADS)
Bousseksou, A.; Chassagneux, Y.; Coudevylle, J. R.; Colombelli, R.; Sirtori, C.; Patriarche, G.; Beaudoin, G.; Sagnes, I.
2009-08-01
We report distributed-feedback surface-plasmon quantum cascade lasers operating at λ ≈7.6μm. The distributed feedback is obtained by the sole patterning of the top metal contact on a surface plasmon waveguide. Single mode operation with more than 30dB side mode suppression ratio is obtained in pulsed mode and at room temperature. A careful experimental study confirms that by varying the grating duty cycle, one can reduce the waveguide losses with respect to standard, unpatterned surface-plasmon devices. This allows one to reduce the laser threshold current of more than a factor of 2 in the 200-300K temperature range. This approach may lead to a fabrication technology for midinfrared distributed-feedback lasers based on a very simple processing.
Rainbow Trapping in Hyperbolic Metamaterial Waveguide
Hu, Haifeng; Ji, Dengxin; Zeng, Xie; Liu, Kai; Gan, Qiaoqiang
2013-01-01
The recent reported trapped “rainbow” storage of light using metamaterials and plasmonic graded surface gratings has generated considerable interest for on-chip slow light. The potential for controlling the velocity of broadband light in guided photonic structures opens up tremendous opportunities to manipulate light for optical modulation, switching, communication and light-matter interactions. However, previously reported designs for rainbow trapping are generally constrained by inherent difficulties resulting in the limited experimental realization of this intriguing effect. Here we propose a hyperbolic metamaterial structure to realize a highly efficient rainbow trapping effect, which, importantly, is not limited by those severe theoretical constraints required in previously reported insulator-negative-index-insulator, insulator-metal-insulator and metal-insulator-metal waveguide tapers, and therefore representing a significant promise to realize the rainbow trapping structure practically. PMID:23409240
Optical biosensors for cell adhesion.
Ramsden, Jeremy J; Horvath, Robert
2009-01-01
Planar optical waveguides offer an ideal substratum for cells on which to reside. The materials from which the waveguides are made--high refractive index transparent dielectrics--correspond to the coatings of medical implants (e.g., the oxides of niobium, tantalum, and titanium) or the high molecular weight polymers used for culture flasks (e.g., polystyrene). The waveguides can furthermore be modified both chemically and morphologically while retaining their full capability for generating an evanescent optical field that has its greatest strength at the interface between the solid substratum and the liquid phase with which it is invariably in contact (i.e., the culture medium bathing the cells), decaying exponentially perpendicular to the interface at a rate controllable by varying the material parameters of the waveguide. Analysis of the perturbation of the evanescent field by the presence of living cells within it enables their size, number density, shape, refractive index (linked to their constitution) and so forth to be determined, the number of parameters depending on the number of waveguide lightmodes analyzed. No labeling of any kind is necessary, and convenient measurement setups are fully compatible with maintaining the cells in their usual environment. If the temporal evolution of the perturbation is analyzed, even more information can be obtained, such as the amount of material (microexudate) secreted by the cell while residing on the surface. Separation of parallel effects simultaneously contributing to the perturbation of the evanescent field can be accomplished by analysis of coupling peak shape when a grating coupler is used to measure the propagation constants of the waveguide lightmodes.
Integrated Optical Information Processing
1988-08-01
applications in optical disk memory systems [91. This device is constructed in a glass /SiO2/Si waveguide. The choice of a Si substrate allows for the...contact mask) were formed in the photoresist deposited on all of the samples, we covered the unwanted gratings on each sample with cover glass slides...processing, let us consider TeO2 (v, = 620 m/s) as a potential substrate for applications requiring large time delays. This con- sideration is despite
10th order laterally coupled GaN-based DFB laser diodes with V-shaped surface gratings
NASA Astrophysics Data System (ADS)
Kang, J. H.; Wenzel, H.; Hoffmann, V.; Freier, E.; Sulmoni, L.; Unger, R.-S.; Einfeldt, S.; Wernicke, T.; Kneissl, M.
2018-02-01
Single longitudinal mode operation of laterally coupled distributed feedback (DFB) laser diodes (LDs) based on GaN containing 10th-order surface Bragg gratings with V-shaped grooves is demonstrated using i-line stepper lithography and inductively coupled plasma etching. A threshold current of 82 mA, a slope efficiency of 1.7 W/A, a single peak emission at 404.5 nm with a full width at half maximum of 0.04 nm and a side mode suppression ratio of > 23 dB at an output power of about 46 mW were achieved under pulsed operation. The shift of the lasing wavelength of DFB LDs with temperature was around three times smaller than that of conventional ridge waveguide LDs.
46 CFR 120.340 - Cable and wiring requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... for the circuit in which they are used; (2) Be installed in a manner to avoid or reduce interference... paragraph (b)(8) of this section. (c) Conductors in power and lighting circuits must be No. 14 American Wire Gauge (AWG) or larger. Conductors in control and indicator circuits must be No. 22 AWG or larger. (d...
46 CFR 120.340 - Cable and wiring requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... for the circuit in which they are used; (2) Be installed in a manner to avoid or reduce interference... paragraph (b)(8) of this section. (c) Conductors in power and lighting circuits must be No. 14 American Wire Gauge (AWG) or larger. Conductors in control and indicator circuits must be No. 22 AWG or larger. (d...
46 CFR 120.340 - Cable and wiring requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... for the circuit in which they are used; (2) Be installed in a manner to avoid or reduce interference... paragraph (b)(8) of this section. (c) Conductors in power and lighting circuits must be No. 14 American Wire Gauge (AWG) or larger. Conductors in control and indicator circuits must be No. 22 AWG or larger. (d...
46 CFR 120.340 - Cable and wiring requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... for the circuit in which they are used; (2) Be installed in a manner to avoid or reduce interference... paragraph (b)(8) of this section. (c) Conductors in power and lighting circuits must be No. 14 American Wire Gauge (AWG) or larger. Conductors in control and indicator circuits must be No. 22 AWG or larger. (d...
Direct Synthesis of Microwave Waveforms for Quantum Computing
NASA Astrophysics Data System (ADS)
Raftery, James; Vrajitoarea, Andrei; Zhang, Gengyan; Leng, Zhaoqi; Srinivasan, Srikanth; Houck, Andrew
Current state of the art quantum computing experiments in the microwave regime use control pulses generated by modulating microwave tones with baseband signals generated by an arbitrary waveform generator (AWG). Recent advances in digital analog conversion technology have made it possible to directly synthesize arbitrary microwave pulses with sampling rates of 65 gigasamples per second (GSa/s) or higher. These new ultra-wide bandwidth AWG's could dramatically simplify the classical control chain for quantum computing experiments, presenting potential cost savings and reducing the number of components that need to be carefully calibrated. Here we use a Keysight M8195A AWG to study the viability of such a simplified scheme, demonstrating randomized benchmarking of a superconducting qubit with high fidelity.
Tunable Magneto-electric Subbands in Oxide Electron Waveguides
NASA Astrophysics Data System (ADS)
Cheng, Guanglei; Annadi, Anil; Lu, Shicheng; Lee, Hyungwoo; Lee, Jungwoo; Eom, Chang-Beom; Huang, Mengchen; Irvin, Patrick; Levy, Jeremy
Strontium titanate-based complex-oxide interfaces hold great promise for exploring new correlated electron physics and applications in quantum technologies. Previous reports show electron mobility can be greatly enhanced in 1D, while the 2D interface can contain 1D channels due to the presence of ferroelastic domains. In addition, carrier density measurements at the 2D interface by Shubnikov-de Haas (SdH) oscillations and Hall effect reveal a large discrepancy. Here we fabricate quasi-1D electron waveguides at the LaAlO3/SrTiO3 (LAO/STO) interface to locally probe the interface. The conductance of the waveguides is fully quantized, and the corresponding magneto-electric subbands can be depopulated by increasing the magnetic field. The 2D carrier densities (1012 cm-2) extracted from magnetic depopulation are consistent with measurements by SdH oscillations at the 2D interface. Our results show that magneto-electric subbands of quasi-1D electron waveguides can reproduce known SdH signatures without discrepancies in electron density, and suggest that 2D SdH measurements may also arise from quasi-1D channels. We gratefully acknowledge financial support from AFOSR (FA9550-12-1- 0057 (JL) and FA9550-12-1-0342 (CBE)), ONR N00014-15-1-2847 (JL), and NSF DMR-1234096 (CBE).
Biolayer modeling and optimization for the SPARROW biosensor
NASA Astrophysics Data System (ADS)
Feng, Ke
2007-12-01
Biosensor direct detection of molecular binding events is of significant interest in applications from molecular screening for cancer drug design to bioagent detection for homeland security and defense. The Stacked Planar Affinity Regulated Resonant Optical Waveguide (SPARROW) structure based on coupled waveguides was recently developed to achieve increased sensitivity within a fieldable biosensor device configuration. Under ideal operating conditions, modification of the effective propagation constant of the structure's sensing waveguide through selective attachment of specific targets to probes on the waveguide surface results in a change in the coupling characteristics of the guide over a specifically designed interaction length with the analyte. Monitoring the relative power in each waveguide after interaction enables 'recognition' of those targets which have selectively bound to the surface. However, fabrication tolerances, waveguide interface roughness, biolayer surface roughness and biolayer partial coverage have an effect on biosensor behavior and achievable limit of detection (LOD). In addition to these influences which play a role in device optimization, the influence of the spatially random surface loading of molecular binding events has to be considered, especially for low surface coverage. In this dissertation an analytic model is established for the SPARROW biosensor which accounts for these nonidealities with which the design of the biosensor can be guided and optimized. For the idealized case of uniform waveguide transducer layers and biolayer, both theoretical simulation (analytical expression) and computer simulation (numerical calculation) are completed. For the nonideal case of an inhomogeneous transducer with nonideal waveguide and biolayer surfaces, device output power is affected by such physical influences as surface scattering, coupling length, absorption, and percent coverage of binding events. Using grating and perturbation techniques we explore the influence of imperfect surfaces and random surface loading on scattering loss and coupling length. Results provide a range of achievable limits of detection in the SPARROW device for a given target size, surface loading, and detectable optical power.
NASA Technical Reports Server (NTRS)
Verber, C. M.; Kenan, R. P.; Hartman, N. F.; Chapman, C. M.
1980-01-01
A laboratory model of a 16 channel integrated optical data preprocessor was fabricated and tested in response to a need for a device to evaluate the outputs of a set of remote sensors. It does this by accepting the outputs of these sensors, in parallel, as the components of a multidimensional vector descriptive of the data and comparing this vector to one or more reference vectors which are used to classify the data set. The comparison is performed by taking the difference between the signal and reference vectors. The preprocessor is wholly integrated upon the surface of a LiNbO3 single crystal with the exceptions of the source and the detector. He-Ne laser light is coupled in and out of the waveguide by prism couplers. The integrated optical circuit consists of a titanium infused waveguide pattern, electrode structures and grating beam splitters. The waveguide and electrode patterns, by virtue of their complexity, make the vector subtraction device the most complex integrated optical structure fabricated to date.
NASA Astrophysics Data System (ADS)
Jang, Ki-Seok; Joo, Jiho; Kim, Taeyong; Kim, Sanghoon; Oh, Jin Hyuk; Kim, In Gyoo; Kim, Sun Ae; Kim, Gyungock
2015-03-01
We report a 40 Gb/s photoreceiver based on vertical-illumination type Ge-on-Si photodetectors and a silica-based AWG demultiplexer by employing 4-channel CWDM. The 60um-diameter Ge-on-Si photodetector arrays, grown on a bulk silicon wafer by RPCVD and fabricated with CMOS-compatible process, have ~0.9 A/W responsivity with 13 GHz bandwidth at λ ~ 1330nm. Ge-on-Si photodetector arrays are hybrid-integrated with TIA/LAs and directly-coupled to the AWG. The low-cost FPCB-package based photoreceiver module shows 10.3 Gb/s × 4-channel interconnection with -11 ~ -12.2 dBm sensitivity at a BER = 10-12.
Simultaneous RGB lasing from a single-chip polymer device.
Yamashita, Kenichi; Takeuchi, Nobutaka; Oe, Kunishige; Yanagi, Hisao
2010-07-15
This Letter describes the fabrication and operation of a single-chip white-laser device. The laser device has a multilayered structure consisting of three laser layers. Each laser layer comprises polymer claddings and a waveguide core doped with organic dye. In each laser layer, grating corrugations were fabricated by UV-nanoimprint lithography that act as distributed-feedback cavity structures. Under optical pumping, lasing output with red, green, and blue colors was simultaneously obtained from the sample edge.
Plasmon-emitter interaction using integrated ring grating-nanoantenna structures.
Rahbany, Nancy; Geng, Wei; Bachelot, Renaud; Couteau, Christophe
2017-05-05
Overcoming the diffraction limit to achieve high optical resolution is one of the main challenges in the fields of plasmonics, nanooptics and nanophotonics. In this work, we introduce novel plasmonic structures consisting of nanoantennas (nanoprisms, single bowtie nanoantennas and double bowtie nanoantennas) integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and coupled with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in their gap. SPPs are widely used for optical waveguiding but provide low resolution due to their weak spatial confinement. In contrast, LSPs provide excellent sub-wavelength confinement but induce large losses. The phenomenon of SPP-LSP coupling witnessed in our structures allows for achieving more precise focusing at the nanoscale, causing an increase in the fluorescence emission of the emitters. Finite-difference time-domain simulations as well as experimental fabrication and optical characterization results are presented to study plasmon-emitter coupling between an ensemble of dye molecules and our integrated plasmonic structures. A comparison is given to highlight the importance of each structure on the photoluminescence and radiative decay enhancement of the molecules.
Plasmon-emitter interaction using integrated ring grating-nanoantenna structures
NASA Astrophysics Data System (ADS)
Rahbany, Nancy; Geng, Wei; Bachelot, Renaud; Couteau, Christophe
2017-05-01
Overcoming the diffraction limit to achieve high optical resolution is one of the main challenges in the fields of plasmonics, nanooptics and nanophotonics. In this work, we introduce novel plasmonic structures consisting of nanoantennas (nanoprisms, single bowtie nanoantennas and double bowtie nanoantennas) integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and coupled with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in their gap. SPPs are widely used for optical waveguiding but provide low resolution due to their weak spatial confinement. In contrast, LSPs provide excellent sub-wavelength confinement but induce large losses. The phenomenon of SPP-LSP coupling witnessed in our structures allows for achieving more precise focusing at the nanoscale, causing an increase in the fluorescence emission of the emitters. Finite-difference time-domain simulations as well as experimental fabrication and optical characterization results are presented to study plasmon-emitter coupling between an ensemble of dye molecules and our integrated plasmonic structures. A comparison is given to highlight the importance of each structure on the photoluminescence and radiative decay enhancement of the molecules.
Burgmeier, Jörg; Feizpour, Amin; Schade, Wolfgang; Reinhard, Björn M
2015-02-15
A novel fiber optical refractive index sensor based on gold nanoshells immobilized on the surface of an etched single-mode fiber including a Bragg grating is demonstrated. The nanoparticle coating induces refractive index dependent waveguide losses, because of the variation of the evanescently guided part of the light. Hence the amplitude of the Bragg reflection is highly sensitive to refractive index changes of the surrounding medium. The nanoshell functionalized fiber optical refractive index sensor works in reflectance mode, is suitable for chemical and biochemical sensing, and shows an intensity dependency of 4400% per refractive index unit in the refractive index range between 1.333 and 1.346. Furthermore, the physical length of the sensor is smaller than 3 mm with a diameter of 6 μm, and therefore offers the possibility of a localized refractive index measurement.
Nellessen, Aline Gonçalves; Donária, Leila; Hernandes, Nidia Aparecida; Pitta, Fabio
2015-01-01
Abstract Objective: To compare equations for predicting peak quadriceps femoris (QF) muscle force; to determine the agreement among the equations in identifying QF muscle weakness in COPD patients; and to assess the differences in characteristics among the groups of patients classified as having or not having QF muscle weakness by each equation. Methods: Fifty-six COPD patients underwent assessment of peak QF muscle force by dynamometry (maximal voluntary isometric contraction of knee extension). Predicted values were calculated with three equations: an age-height-weight-gender equation (Eq-AHWG); an age-weight-gender equation (Eq-AWG); and an age-fat-free mass-gender equation (Eq-AFFMG). Results: Comparison of the percentage of predicted values obtained with the three equations showed that the Eq-AHWG gave higher values than did the Eq-AWG and Eq-AFFMG, with no difference between the last two. The Eq-AHWG showed moderate agreement with the Eq-AWG and Eq-AFFMG, whereas the last two also showed moderate, albeit lower, agreement with each other. In the sample as a whole, QF muscle weakness (< 80% of predicted) was identified by the Eq-AHWG, Eq-AWG, and Eq-AFFMG in 59%, 68%, and 70% of the patients, respectively (p > 0.05). Age, fat-free mass, and body mass index are characteristics that differentiate between patients with and without QF muscle weakness. Conclusions: The three equations were statistically equivalent in classifying COPD patients as having or not having QF muscle weakness. However, the Eq-AHWG gave higher peak force values than did the Eq-AWG and the Eq-AFFMG, as well as showing greater agreement with the other equations. PMID:26398750
Ultra-Low Loss, Chip-Based Hollow-Core Waveguide Using High-Contrast Grating
2011-09-28
Although the physical mechanism for tuning the filter may allow fast tuning, the tap weight computational algorithm must also be fast enough to support...applications and the ability to accurately set tap weights through optical splitting and combining networks is important. Techniques for trimming and...are: h(t)=s*(-t) and H(OJ)=S*(-OJ), respectively. Then the tap weights and delays should be chosen as: tk=kLJt and ak=h(tll)=s*(-tk), respectively
Polarization rotation enhancement and scattering mechanisms in waveguide magnetophotonic crystals
NASA Astrophysics Data System (ADS)
Levy, Miguel; Li, Rong
2006-09-01
Intermodal coupling in photonic band gap optical channels in magnetic garnet films is found to leverage the nonreciprocal polarization rotation. Forward fundamental-mode to high-order mode backscattering yields the largest rotations. The underlying mechanism is traced to the dependence of the grating-coupling constant on the modal refractive index and profile of the propagating beam. Large changes in polarization near the band edges are observed in first and second orders. Extreme sensitivity to linear birefringence exists in second order.
Guided-Wave Optical Biosensors
Passaro, Vittorio M. N.; Dell'Olio, Francesco; Casamassima, Biagio; De Leonardis, Francesco
2007-01-01
Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.
Single transverse mode protein laser
NASA Astrophysics Data System (ADS)
Dogru, Itir Bakis; Min, Kyungtaek; Umar, Muhammad; Bahmani Jalali, Houman; Begar, Efe; Conkar, Deniz; Firat Karalar, Elif Nur; Kim, Sunghwan; Nizamoglu, Sedat
2017-12-01
Here, we report a single transverse mode distributed feedback (DFB) protein laser. The gain medium that is composed of enhanced green fluorescent protein in a silk fibroin matrix yields a waveguiding gain layer on a DFB resonator. The thin TiO2 layer on the quartz grating improves optical feedback due to the increased effective refractive index. The protein laser shows a single transverse mode lasing at the wavelength of 520 nm with the threshold level of 92.1 μJ/ mm2.
Blue, green, orange, and red upconversion laser
Xie, Ping; Gosnell, Timothy R.
1998-01-01
A laser for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr.sup.3+ ions and Yb.sup.3+ ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output.
Blue, green, orange, and red upconversion laser
Xie, P.; Gosnell, T.R.
1998-09-08
A laser is disclosed for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr{sup 3+} ions and Yb{sup 3+} ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output. 11 figs.
Delpierre, Nicolas; Berveiller, Daniel; Granda, Elena; Dufrêne, Eric
2016-04-01
Although the analysis of flux data has increased our understanding of the interannual variability of carbon inputs into forest ecosystems, we still know little about the determinants of wood growth. Here, we aimed to identify which drivers control the interannual variability of wood growth in a mesic temperate deciduous forest. We analysed a 9-yr time series of carbon fluxes and aboveground wood growth (AWG), reconstructed at a weekly time-scale through the combination of dendrometer and wood density data. Carbon inputs and AWG anomalies appeared to be uncorrelated from the seasonal to interannual scales. More than 90% of the interannual variability of AWG was explained by a combination of the growth intensity during a first 'critical period' of the wood growing season, occurring close to the seasonal maximum, and the timing of the first summer growth halt. Both atmospheric and soil water stress exerted a strong control on the interannual variability of AWG at the study site, despite its mesic conditions, whilst not affecting carbon inputs. Carbon sink activity, not carbon inputs, determined the interannual variations in wood growth at the study site. Our results provide a functional understanding of the dependence of radial growth on precipitation observed in dendrological studies. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Dissipationless transport of spin-polarized electrons and Cooper pairs in an electron waveguide
NASA Astrophysics Data System (ADS)
Levy, J.; Annadi, A.; Lu, S.; Cheng, G.; Tylan-Tyler, A.; Briggeman, M.; Tomczyk, M.; Huang, M.; Pekker, D.; Irvin, P.; Lee, H.; Lee, J.-W.; Eom, C.-B.
Electron systems undergo profound changes in their behavior when constrained to move along a single axis. To date, clean one-dimensional (1D) electron transport has only been observed in carbon-based nanotubes and nanoribbons, and compound semiconductor nanowires. Complex-oxide heterostructures can possess conductive two-dimensional (2D) interfaces with much richer chemistries and properties, e.g., superconductivity, but with mobilities that appear to preclude ballistic transport in 1D. Here we show that nearly ideal 1D electron waveguides exhibiting ballistic transport of electrons and non-superconducting Cooper pairs can be formed at the interface between the two band insulators LaAlO3 and SrTiO3. The electron waveguides possess gate and magnetic-field selectable spin and charge degrees of freedom, and can be tuned to the one-dimensional limit of a single spin-polarized quantum channel. The strong attractive electron-electron interactions enable a new mode of dissipationless transport of electron pairs that is not superconducting. The selectable spin and subband quantum numbers of these electron waveguides may be useful for quantum simulation, quantum informatio We gratefully acknowledge financial support from ONR N00014-15-1-2847 (JL), AFOSR (FA9550-15-1-0334 (CBE) and FA9550-12-1-0057 (JL, CBE)), AOARD FA2386-15-1-4046 (CBE) and NSF (DMR-1104191 (JL), DMR-1124131 (CBE, JL) and DMR-1234096 (CBE)).
Li, Xiujian; Liao, Jiali; Nie, Yongming; Marko, Matthew; Jia, Hui; Liu, Ju; Wang, Xiaochun; Wong, Chee Wei
2015-04-20
We demonstrate the temporal and spectral evolution of picosecond soliton in the slow light silicon photonic crystal waveguides (PhCWs) by sum frequency generation cross-correlation frequency resolved optical grating (SFG-XFROG) and nonlinear Schrödinger equation (NLSE) modeling. The reference pulses for the SFG-XFROG measurements are unambiguously pre-characterized by the second harmonic generation frequency resolved optical gating (SHG-FROG) assisted with the combination of NLSE simulations and optical spectrum analyzer (OSA) measurements. Regardless of the inevitable nonlinear two photon absorption, high order soliton compressions have been observed remarkably owing to the slow light enhanced nonlinear effects in the silicon PhCWs. Both the measurements and the further numerical analyses of the pulse dynamics indicate that, the free carrier dispersion (FCD) enhanced by the slow light effects is mainly responsible for the compression, the acceleration, and the spectral blue shift of the soliton.
Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications
NASA Astrophysics Data System (ADS)
Kumari, Sulakshna; Gustavsson, Johan S.; Wang, Ruijun; Haglund, Emanuel P.; Westbergh, Petter; Sanchez, Dorian; Haglund, Erik; Haglund, Åsa; Bengtsson, Jörgen; Le Thomas, Nicolas; Roelkens, Gunther; Larsson, Anders; Baets, Roel
2015-02-01
We present a GaAs-based VCSEL structure, BCB bonded to a Si3N4 waveguide circuit, where one DBR is substituted by a free-standing Si3N4 high-contrast-grating (HCG) reflector realized in the Si3N4 waveguide layer. This design enables solutions for on-chip spectroscopic sensing, and the dense integration of 850-nm WDM data communication transmitters where individual channel wavelengths are set by varying the HCG parameters. RCWA shows that a 300nm-thick Si3N4 HCG with 800nm period and 40% duty cycle reflects strongly (<99%) over a 75nm wavelength range around 850nm. A design with a standing-optical-field minimum at the III-V/airgap interface maximizes the HCG's influence on the VCSEL wavelength, allowing for a 15-nm-wide wavelength setting range with low threshold gain (<1000 cm-1).
Wang, Ruijun; Vasiliev, Anton; Muneeb, Muhammad; Malik, Aditya; Sprengel, Stephan; Boehm, Gerhard; Amann, Markus-Christian; Šimonytė, Ieva; Vizbaras, Augustinas; Vizbaras, Kristijonas; Baets, Roel; Roelkens, Gunther
2017-08-04
The availability of silicon photonic integrated circuits (ICs) in the 2-4 μm wavelength range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper, we review our recent work on III-V-on-silicon waveguide circuits for spectroscopic sensing in this wavelength range. We first present results on the heterogeneous integration of 2.3 μm wavelength III-V laser sources and photodetectors on silicon photonic ICs for fully integrated optical sensors. Then a compact 2 μm wavelength widely tunable external cavity laser using a silicon photonic IC for the wavelength selective feedback is shown. High-performance silicon arrayed waveguide grating spectrometers are also presented. Further we show an on-chip photothermal transducer using a suspended silicon-on-insulator microring resonator used for mid-infrared photothermal spectroscopy.
Laser Micromachining Fabrication of THz Components
NASA Technical Reports Server (NTRS)
DrouetdAubigny, C.; Walker, C.; Jones, B.; Groppi, C.; Papapolymerou, J.; Tavenier, C.
2001-01-01
Laser micromachining techniques can be used to fabricate high-quality waveguide structures and quasi-optical components to micrometer accuracies. Successful GHz designs can be directly scaled to THz frequencies. We expect this promising technology to allow the construction of the first fully integrated THz heterodyne imaging arrays. At the University of Arizona, construction of the first laser micromachining system designed for THz waveguide components fabrication has been completed. Once tested and characterized our system will be used to construct prototype THz lx4 focal plane mixer arrays, magic tees, AR coated silicon lenses, local oscillator source phase gratings, filters and more. Our system can micro-machine structures down to a few microns accuracy and up to 6 inches across in a short time. This paper discusses the design and performance of our micromachining system, and illustrates the type, range and performance of components this exciting new technology will make accessible to the THz community.
Wang, Ruijun; Vasiliev, Anton; Muneeb, Muhammad; Malik, Aditya; Sprengel, Stephan; Boehm, Gerhard; Amann, Markus-Christian; Šimonytė, Ieva; Vizbaras, Augustinas; Vizbaras, Kristijonas; Baets, Roel; Roelkens, Gunther
2017-01-01
The availability of silicon photonic integrated circuits (ICs) in the 2–4 μm wavelength range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper, we review our recent work on III–V-on-silicon waveguide circuits for spectroscopic sensing in this wavelength range. We first present results on the heterogeneous integration of 2.3 μm wavelength III–V laser sources and photodetectors on silicon photonic ICs for fully integrated optical sensors. Then a compact 2 μm wavelength widely tunable external cavity laser using a silicon photonic IC for the wavelength selective feedback is shown. High-performance silicon arrayed waveguide grating spectrometers are also presented. Further we show an on-chip photothermal transducer using a suspended silicon-on-insulator microring resonator used for mid-infrared photothermal spectroscopy. PMID:28777291
High-Power Single-Mode 2.65-micron InGaAsSb/AlInGaAsSb Diode Lasers
NASA Technical Reports Server (NTRS)
Frez, Clifford F.; Briggs, Ryan M.; Forouhar, Siamak; Borgentun, Carl E.; Gupta, James
2013-01-01
Central to the advancement of both satellite and in-situ science are improvements in continuous-wave and pulsed infrared laser systems coupled with integrated miniaturized optics and electronics, allowing for the use of powerful, single-mode light sources aboard both satellite and unmanned aerial vehicle platforms. There is a technological gap in supplying adequate laser sources to address the mid-infrared spectral window for spectroscopic characterization of important atmospheric gases. For high-power applications between 2 to 3 micron, commercial laser technologies are unsuitable because of limitations in output power. For instance, existing InP-based laser systems developed for fiber-based telecommunications cannot be extended to wavelengths longer than 2 micron. For emission wavelengths shorter than 3 micron, intersubband devices, such as infrared quantum cascade lasers, become inefficient due to band-offset limitations. To date, successfully demonstrated singlemode GaSb-based laser diodes emitting between 2 and 3 micron have employed lossy metal Bragg gratings for distributed- feedback coupling, which limits output power due to optical absorption. By optimizing both the quantum well design and the grating fabrication process, index-coupled distributed-feedback 2.65-micron lasers capable of emitting in excess of 25 mW at room temperature have been demonstrated. Specifically, lasers at 3,777/cm (2.65 micron) have been realized to interact with strong absorption lines of HDO and other isotopologues of H2O. With minor modifications of the optical cavity and quantum well designs, lasers can be fabricated at any wavelength within the 2-to-3-micron spectral window with similar performance. At the time of this reporting, lasers with this output power and wavelength accuracy are not commercially available. Monolithic ridge-waveguide GaSb lasers were fabricated that utilize secondorder lateral Bragg gratings to generate single-mode emission from InGaAsSb/ AlInGaAsSb multi-quantum well structures. The device fabrication utilizes etched index-coupled gratings in the top AlGaAsSb cladding of the laser chip along the ridge waveguide, whereas commercial lasers that emit close to this wavelength include loss-coupled metal gratings that limit the output power of the laser. Semiconductor-laser-based spectrometers can be used to replace gas sensors currently used in industry and government. With the availability of high-power laser sources at mid-infrared wavelengths, sensors can target strong fundamental gas absorption lines to maximize instrument sensitivity.
Solitonic guides in photopolymerizable materials for optical devices
NASA Astrophysics Data System (ADS)
Dorkenoo, Kokou D.; Cregut, Olivier; Fort, Alain
2003-11-01
These last twenty years, advanced studies in integrated optics have demonstrated the capacity to elaborate optical circuits in planar substrates. Most of the optical integrated devices are realized on glass substrate and the guide areas are usually obtained by photolithography techniques. We present here a new approach based on the use of compounds photopolymerizable in the visible range. The conditions of self written channel creation by solitonic propagation inside the bulk of the photopolymerizable formulation are analyzed. Waveguides can be self-written in photopolymerizable materials1,2 due to the dependence of their refractive index on intensity and duration of the active light. This process results from the competition between the diffraction of the incident Gaussian beam and the photopolymerization which tends to increase the refractive index where light intensity is the highest. By controlling the difference between the refractive index values of the polymerized and non polymerized zones, the beam can be self-trapped along the propagation axis giving rise to a waveguide over distances as large as 10 cm without any broadening. Such permanent waveguides can be structured by inscription of gratings and doped with a dye in a plastic cell leading to the elaboration of a completely plastic laser.
NASA Technical Reports Server (NTRS)
Ladany, I.; Hammer, J. M.
1980-01-01
A module developed for the generation of a stable single wavelength to be used for a fiber optic multiplexing scheme is described. The laser is driven with RZ pulses, and the temperature is stabilized thermoelectrically. The unit is capable of maintaining a fixed wavelength within about 6 A as the pulse duty cycle is changed between 0 and 100 percent. This is considered the most severe case, and much tighter tolerances are obtainable for constant input power coding schemes. Using a constricted double heterostructure laser, a wavelength shift of 0.083 A mA is obtained due to laser self-heating by a dc driving current. The thermoelectric unit is capable of maintaining a constant laser heat-sink temperature within 0.02 C. In addition, miniature lenses and couplers are described which allow efficient coupling of single wavelength modes of junction lasers to thin film optical waveguides. The design of the miniature cylinder lenses and the prism coupling techniques allow 2 mW of single wavelength mode junction laser light to b coupled into thin film waveguides using compact assemblies. Selective grating couplers are also studied.
Digital EPR with an arbitrary waveform generator and direct detection at the carrier frequency
Tseitlin, Mark; Quine, Richard W.; Rinard, George A.; Eaton, Sandra S.; Eaton, Gareth R.
2011-01-01
A digital EPR spectrometer was constructed by replacing the traditional bridge with an arbitrary waveform generator (AWG) to produce excitation patterns and a high-speed digitizer for direct detection of the spin system response at the carrier frequency. Digital down-conversion produced baseband signals in quadrature with very precise orthogonality. Real-time resonator tuning was performed by monitoring the Fourier transforms of signals reflected from the resonator during frequency sweeps generated by the AWG. The capabilities of the system were demonstrated by rapid magnetic field scans at 256 MHz carrier frequency, and FID and spin echo experiments at 1 and 10 GHz carrier frequencies. For the rapid scan experiments the leakage through a cross-loop resonator was compensated by adjusting the amplitude and phase of a sinusoid at the carrier frequency that was generated with another AWG channel. PMID:21968420
Integrated optical biosensor system (IOBS)
Grace, Karen M.; Sweet, Martin R.; Goeller, Roy M.; Morrison, Leland Jean; Grace, Wynne Kevin; Kolar, Jerome D.
2007-10-30
An optical biosensor has a first enclosure with a pathogen recognition surface, including a planar optical waveguide and grating located in the first enclosure. An aperture is in the first enclosure for insertion of sample to be investigated to a position in close proximity to the pathogen recognition surface. A laser in the first enclosure includes means for aligning and means for modulating the laser, the laser having its light output directed toward said grating. Detection means are located in the first enclosure and in optical communication with the pathogen recognition surface for detecting pathogens after interrogation by the laser light and outputting the detection. Electronic means is located in the first enclosure and receives the detection for processing the detection and outputting information on the detection, and an electrical power supply is located in the first enclosure for supplying power to the laser, the detection means and the electronic means.
NASA Technical Reports Server (NTRS)
Ladany, I.; Andrews, J. T.; Evans, G. A.
1988-01-01
A ridge waveguide distributed feedback laser was developed in InGaAsP. These devices have demonstrated CW output powers over 7 mW with threshold currents as low as 60 mA at 25 C. Measurements of the frequency response of these devices show a 3 dB bandwidth of about 2 GHz, which may be limited by the mount. The best devices have a single mode spectra over the entire temperature range tested with a side mode suppression of about 20 dB in both CW and pulsed modes. The design of this device, including detailed modeling of the ridge guide structure, effective index calculations, and a discussion of the grating configuration are presented. Also, the fabrication of the devices is presented in some detail, especially the fabrication of and subsequent growth over the grating. In addition, a high frequency fiber pigtailed package was designed and tested, which is a suitable prototype for a commercial package.
Optical spatial differentiator based on subwavelength high-contrast gratings
NASA Astrophysics Data System (ADS)
Dong, Zhewei; Si, Jiangnan; Yu, Xuanyi; Deng, Xiaoxu
2018-04-01
An optical spatial differentiator based on subwavelength high-contrast gratings (HCGs) is proposed experimentally. The spatial differentiation property of the subwavelength HCG is analyzed by calculating its spatial spectral transfer function based on the periodic waveguide theory. By employing the FDTD solutions, the performance of the subwavelength HCG spatial differentiator was investigated numerically. The subwavelength HCG differentiator with the thickness at the nanoscale was fabricated on the quartz substrate by electron beam lithography and Bosch deep silicon etching. Observed under an optical microscope with a CCD camera, the spatial differentiation of the incident field profile was obtained by the subwavelength HCG differentiator in transmission without Fourier lens. By projecting the images of slits, letter "X," and a cross on the subwavelength HCG differentiator, edge detections of images were obtained in transmission. With the nanoscale HCG structure and simple optical implementation, the proposed optical spatial differentiator provides the prospects for applications in optical computing systems and parallel data processing.
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Sankhyabrata; Basumallick, Nandini; Bysakh, Sandip; Dey, Tanoy Kumar; Biswas, Palas; Bandyopadhyay, Somnath
2018-06-01
In this paper studies on the design and fabrication of a long period fiber grating (LPFG) with a self mono layer of gold nanoparticle (AuNP) has been presented. Refractive index (RI) sensitivity of a dispersed cladding mode (DCM) near turn around point (TAP) of its phase matching curve (PMC) has been investigated with and also without AuNP coated LPFG. The typical role played by the intermediate layer of AuNP on the effective index and thus on the sensitivity of the cladding mode to the surrounding RI has also been explored by carrying out coupled mode analysis of the requisite multilayer waveguide. Deposition of AuNP enhanced the sensitivity by more than a factor of 2. Measured sensitivity was found to be ∼3928 nm/refractive index unit (RIU) in the range of 1.3333-1.3428.
Orgovan, Norbert; Peter, Beatrix; Bősze, Szilvia; Ramsden, Jeremy J; Szabó, Bálint; Horvath, Robert
2014-02-07
A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (v(RGD)) of integrin ligand RGD-motifs. v(RGD) was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm(-2) (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels.
Optical clock signal distribution and packaging optimization
NASA Astrophysics Data System (ADS)
Wu, Linghui
Polymer-based waveguides for optoelectronic interconnects and packagings were fabricated by a fabrication process that is compatible with the Si CMOS packaging process. An optoelectronic interconnection layer (OIL) for the high-speed massive clock signal distribution for the Cray T-90 supercomputer board employing optical multimode channel waveguides in conjunction with surface-normal waveguide grating couplers and a 1-to-2 3 dB splitter was constructed. Equalized optical paths were realized using an optical H-tree structure having 48 optical fanouts. This device could be increased to 64 without introducing any additional complications. A 1-to-48 fanout H-tree structure using Ultradel 9000D series polyimide was fabricated. The propagation loss and splitting loss have been measured as 0.21 dB/cm and 0.4 dB/splitter at 850 nm. The power budget was discussed, and the H-tree waveguide fully satisfies the power budget requirement. A tapered waveguide coupler was employed to match the mode profile between the single-mode fiber and the multimode channel waveguides of the OIL. A thermo-optical based multimode switch was designed, fabricated, and tested. The finite difference method was used to simulate the thermal distribution in the polymer waveguide. Both stable and transient conditions have been calculated. The thermo-optical switch was fabricated and tested. The switching speed of 1 ms was experimentally confirmed, fitting well with the simulation results. Thermo-optic switching for randomly polarized light at wavelengths of 850 nm was experimental confirmed, as was a stable attenuation of 25 dB. The details of tapered waveguide fabrication were investigated. Compression-molded 3-D tapered waveguides were demonstrated for the first time. Not only the vertical depth variation but also the linear dimensions of the molded waveguides were well beyond the limits of what any other conventional waveguide fabrication method is capable of providing. Molded waveguides with vertical depths of 100 mum at one end and 5 mum at the other end and lengths of 1.0 cm were fabricated using a photolime gel polymer. A propagation loss of 0.5 dB/cm was achieved when light was coupled from the 5 mum x 5 mum end to the 100 mum x 100 mum end and that of 1.1 dB/cm was observed when light was coupled from the 100 mum x 100 mum end to the 5 mum x 5 mum. By confining the energy to the fundamental mode when coupling from the large end to the small end, low-loss packaging can be achieved bi-directionally. 3-D compression-molded polymeric waveguides present a promising solution to bridging the huge dynamic range of different optoelectronic device-depths varying from a few microns to several hundred microns.
Wang, Hui; Hai, Shan; Cao, Li; Zhou, Jianghua; Liu, Ping; Dong, Bi-Rong
2016-12-28
The aim of the present study was to validate the usefulness of the new octapolar multifrequency bioelectrical impedance analysis (BIA) for assessment of appendicular skeletal muscle mass (ASM) by comparing it with that of dual-energy X-ray absorptiometry (DXA) and to investigate the prevalence of sarcopenia in Chinese community-dwelling elderly according to Asian Working Group for Sarcopenia (AWGS) definition. A cross-sectional study was conducted in communities of Chengdu, China. A total of 944 community-dwelling elderly adults aged ≥60 years were included. ASM was measured by using DXA as a criterion method to validate a standing eight-electrode multifrequency BIA (InBody 720), followed by a further estimation of the prevalence of sarcopenia according the AWGS definition. In the Bland-Altman analysis, no significant difference was found between DXA and BIA based on the ASM measurements. The prevalence of AWGS-defined sarcopenia was 12.5% in the elderly women and 8.2% in the elderly men. BIA is suitable for body composition monitoring (ASM) in elderly Chinese as a fast, noninvasive, and convenient method; therefore, it may be a better choice in large epidemiological studies in the Chinese population. The prevalence of AWGS-defined sarcopenia was approximately 10.4% and increased with age in the Chinese community-dwelling elderly in this study.
Project CHECO Southeast Asia Report. Pave Mace/Combat Rendezvous
1972-12-26
deficiencies in the APQ-133 radar, the LWL was generally satisfied with the results and.certified the system for use in combat provided all airborne...offset 5 35 firing confirmed a deficiency noted in earlier test results: the AWG-13 FCC was unreliable at long ranges. On 2 May the 14th SOW informed...Lockbourne, SEA, and Puerto 3 Rico tests of 1969-1970. These tests had shown a number of deficiencies in the SST-201X miniponder, the AWG-13 Fire Control
New Insulation Constructions for Aerospace Wiring Applications. Volume 1. Testing and Evaluation
1991-06-01
28 S.3.2 CORONA INCEPTION AND EXTINCIION VOLTAGES 5 - 33 5.3.2.. AC CORONA INCEPTION AND EXTINCTION VOLTAGES 5...... - 33 5.3.2.2 DC CORONA ...SETUP ....... .. 5 - 27 5.10 DIELECTRIC CONSTANT TEST RESULTS .......... .. 5 - 32 5.11 AC CORONA INCEPTION AND EXTINCTION TEST, 22 AWG, 8.6 MIL WALL...AIRFRAME WIRE ... .......... 5 - 39 5.12 AC CORONA INCEPTION AND EXTINCTION TEST, 22 AWG, 5.8 MIL WALL, HOOK UP WIRE .... ........... 5 - 40 5.13 AC
Evolutionary multidimensional access architecture featuring cost-reduced components
NASA Astrophysics Data System (ADS)
Farjady, Farsheed; Parker, Michael C.; Walker, Stuart D.
1998-12-01
We describe a three-stage wavelength-routed optical access network, utilizing coarse passband-flattened arrayed- waveguide grating routers. An N-dimensional addressing strategy enables 6912 customers to be bi-directionally addressed with multi-Gb/s data using only 24 wavelengths spaced by 1.6 nm. Coarse wavelength separation allows use of increased tolerance WDM components at the exchange and customer premises. The architecture is designed to map onto standard access network topologies, allowing elegant upgradability from legacy PON infrastructures at low cost. Passband-flattening of the routers is achieved through phase apodization.
CMOS-compatible plenoptic detector for LED lighting applications.
Neumann, Alexander; Ghasemi, Javad; Nezhadbadeh, Shima; Nie, Xiangyu; Zarkesh-Ha, Payman; Brueck, S R J
2015-09-07
LED lighting systems with large color gamuts, with multiple LEDs spanning the visible spectrum, offer the potential of increased lighting efficiency, improved human health and productivity, and visible light communications addressing the explosive growth in wireless communications. The control of this "smart lighting system" requires a silicon-integrated-circuit-compatible, visible, plenoptic (angle and wavelength) detector. A detector element, based on an offset-grating-coupled dielectric waveguide structure and a silicon photodetector, is demonstrated with an angular resolution of less than 1° and a wavelength resolution of less than 5 nm.
Sound reflection by a resonator array in a multimode cylindrical waveguide
NASA Astrophysics Data System (ADS)
Lapin, A. D.
2012-09-01
The paper considers the problem of scattering of the mth symmetric mode by an array of Q rings of identical, closely located Helmholtz resonators joined by necks to the walls of a wide circular pipe. The distance between rings is equal to half the wavelength of this mode at frequency ω, equal or close to the eigen-frequency of the resonator ring with allowance for the connected mass and interaction of neighboring rings via inhomogeneous modes. The coefficient of reflection of the mth mode from this grating array is calculated.
Ultralow noise up-conversion detector and spectrometer for the telecom band.
Shentu, Guo-Liang; Pelc, Jason S; Wang, Xiao-Dong; Sun, Qi-Chao; Zheng, Ming-Yang; Fejer, M M; Zhang, Qiang; Pan, Jian-Wei
2013-06-17
We demonstrate up-conversion single-photon detection for the 1550-nm telecommunications band using a PPLN waveguide, long-wavelength pump, and narrowband filtering using a volume Bragg grating. We achieve total-system detection efficiency of around 30% with noise at the dark-count level of a Silicon APD. Based on the new detector, a single-pixel up-conversion infrared spectrometer with a noise equivalent power of -142 dBm Hz(-1/2) was demonstrated, which was as good as a liquid nitrogen cooled CCD camera.
NASA Astrophysics Data System (ADS)
Whitesides, George M.; Tang, Sindy K. Y.
2006-09-01
Fluidic optics is a new class of optical system with real-time tunability and reconfigurability enabled by the introduction of fluidic components into the optical path. We describe the design, fabrication, operation of a number of fluidic optical systems, and focus on three devices, liquid-core/liquid-cladding (L2) waveguides, microfluidic dye lasers, and diffraction gratings based on flowing, crystalline lattices of bubbles, to demonstrate the integration of microfluidics and optics. We fabricate these devices in poly(dimethylsiloxane) (PDMS) with soft-lithographic techniques. They are simple to construct, and readily integrable with microanalytical or lab-on-a-chip systems.
Fazal, Irfan; Yilmaz, Omer; Nuccio, Scott; Zhang, Bo; Willner, Alan E; Langrock, Carsten; Fejer, Martin M
2007-08-20
10 Gb/s non-return-to-zero (NRZ) on-off keyed (OOK) optical data packets are synchronized and time-multiplexed using a 26-ns tunable all-optical delay line. The delay element is based on wavelength conversion in periodically poled lithium niobate (PPLN) waveguides, inter-channel chromatic dispersion in dispersion compensating fiber (DCF) and intra-channel dispersion compensation with a chirped fiber Bragg grating (FBG). Delay reconfiguration time is measured to be less than 300 ps.
Gas bubble formation in fused silica generated by ultra-short laser pulses.
Cvecek, Kristian; Miyamoto, Isamu; Schmidt, Michael
2014-06-30
During processing of glass using ultra-fast lasers the formation of bubble-like structures can be observed in several glass types such as fused silica. Their formation can be exploited to generate periodic gratings in glasses but for other glass processing techniques such as waveguide-writing or glass welding by ultra-fast lasers the bubble formation proves often detrimental. In this work we present experiments and their results in order to gain understanding of the origins and on the underlying formation and transportation mechanisms of the gas bubbles.
Dense periodical patterns in photonic devices: Technology for fabrication and device performance
NASA Astrophysics Data System (ADS)
Chandramohan, Sabarish
For the fabrication, focused ion beam parameters are investigated to successfully fabricate dense periodical patterns, such as gratings, on hard transition metal nitride such as zirconium nitride. Transition metal nitrides such as titanium nitride and zirconium nitride have recently been studied as alternative materials for plasmonic devices because of its plasmonic resonance in the visible and near-infrared ranges, material strength, CMOS compatibility and optical properties resembling gold. Coupling of light on the surface of these materials using sub-micrometer gratings gives additional capabilities for wider applications. Here we report the fabrication of gratings on the surface of zirconium nitride using gallium ion 30keV dual beam focused ion beam. Scanning electron microscope imaging and atomic force microscope profiling is used to characterize the fabricated gratings. Appropriate values for FIB parameters such as ion beam current, magnification, dwell time and milling rate are found for successful milling of dense patterns on zirconium nitride. For the device performance, a real-time image-processing algorithm is developed to enhance the sensitivity of an optical miniature spectrometer. The novel approach in this design is the use of real-time image-processing algorithm to average the image intensity along the arc shaped images registered by the monochromatic inputs on the CMOS image sensor. This approach helps to collect light from the entire arc and thus enhances the sensitivity of the device. The algorithm is developed using SiTiO2 planar waveguide. The accuracy of the mapping from x-pixel number scale of the CMOS image sensor to the wavelength spectra of the miniature spectrometer is demonstrated by measuring the spectrum of a known LED source using a conventional desktop spectrometer and comparing it with the spectrum measured by the miniature spectrometer. The sensitivity of miniature spectrometer is demonstrated using two methods. In the first method, the input laser power is attenuated to 0.1 nW and the spectra is measured using the miniature spectrometer. Even at low input power of 0.1nW, the spectrum of monochromatic inputs is observed well above the noise level. Second method is by quantitative analysis, which measures the absorption of CdSeS/ZnS quantum dots drop casted between the gratings of Ta2O5 planar single-mode waveguide. The expected guided mode attenuation introduced by monolayer of quantum dots is found to be approximately 11 times above the highest noise level from the absorption measurements. Thus, the miniature spectrometer is capable of detecting the signal from the noise level even with the absorption introduced by monolayer of quantum dots.
Li, Chenlei; Dai, Daoxin
2017-11-01
A polarization beam splitter (PBS) is proposed and realized for silicon photonic integrated circuits with a 340-nm-thick silicon core layer by introducing an asymmetric directional coupler (ADC), which consists of a silicon-on-insulator (SOI) nanowire and a subwavelength grating (SWG) waveguide. The SWG is introduced to provide an optical waveguide which has much higher birefringence than a regular 340-nm-thick SOI nanowire, so that it is possible to make the phase-matching condition satisfied for TE polarization only in the present design when the waveguide dimensions are optimized. Meanwhile, there is a significant phase mismatching for TM polarization automatically. In this way, the present ADC enables strong polarization selectivity to realize a PBS that separates TE and TM polarizations to the cross and through ports, respectively. The realized PBS has a length of ∼2 μm for the coupling region. For the fabricated PBS, the extinction ratio (ER) is 15-30 dB and the excess loss is 0.2-2.6 dB for TE polarization while the ER is 20-27 dB and the excess loss is 0.3-2.8 dB for TM polarization when operating in the wavelength range of 1520-1580 nm.
NASA Astrophysics Data System (ADS)
Kondalkar, Vijay V.; Ryu, Geonhee; Lee, Yongbeom; Lee, Keekeun
2018-07-01
An acousto-optic (AO) based holographic display unit was developed using surface acoustic wave (SAW) with different wavelength to modulate the diffraction angles, intensities, and phases of light. The new configurations were employed to control two beams simultaneously by using a single chirp inter-digital transducer (IDT), and a micro-lens array was integrated at the end of the waveguide layer to focus the diffracted light on to the screen. Two incident light beams were simultaneously modulated by using different refractive grating periods generated from chirp IDT. A diffraction angle of about 5° was obtained by using a SAW with a frequency of 430 MHz. The increase in the SAW input power enhances the diffraction efficiency of the light beam at the exit. The obtained maximum diffraction efficiency is ~70% at a frequency of 430 MHz. The sloped shape of the waveguide entrance and a tall rounded Ni poles help in coupling the incident light to the waveguide layer. The diffracted beam was collected through the lens, which increased the intensity of light in the viewing plane. COMSOL multi-physics and coupling of mode (COM) modeling were performed to predict the device performance and compared with the experimental results.
Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation.
Pang, Zhaoguang; Zhang, Xinping
2011-04-08
We report direct writing of metallic photonic crystals (MPCs) through a single-shot exposure of a thin film of colloidal gold nanoparticles to the interference pattern of a single UV laser pulse before a subsequent annealing process. This is defined as interference ablation, where the colloidal gold nanoparticles illuminated by the bright interference fringes are removed instantly within a timescale of about 6 ns, which is actually the pulse length of the UV laser, whereas the gold nanoparticles located within the dark interference fringes remain on the substrate and form grating structures. This kind of ablation has been proven to have a high spatial resolution and thus enables successful fabrication of waveguided MPC structures with the optical response in the visible spectral range. The subsequent annealing process transforms the grating structures consisting of ligand-covered gold nanoparticles into plasmonic MPCs. The annealing temperature is optimized to a range from 250 to 300 °C to produce MPCs of gold nanowires with a period of 300 nm and an effective area of 5 mm in diameter. If the sample of the spin-coated gold nanoparticles is rotated by 90° after the first exposure, true two-dimensional plasmonic MPCs are produced through a second exposure to the interference pattern. Strong plasmonic resonance and its coupling with the photonic modes of the waveguided MPCs verifies the success of this new fabrication technique. This is the simplest and most efficient technique so far for the construction of large-area MPC devices, which enables true mass fabrication of plasmonic devices with high reproducibility and high success rate.
Silicon photonic resonator sensors and devices
NASA Astrophysics Data System (ADS)
Chrostowski, Lukas; Grist, Samantha; Flueckiger, Jonas; Shi, Wei; Wang, Xu; Ouellet, Eric; Yun, Han; Webb, Mitch; Nie, Ben; Liang, Zhen; Cheung, Karen C.; Schmidt, Shon A.; Ratner, Daniel M.; Jaeger, Nicolas A. F.
2012-02-01
Silicon photonic resonators, implemented using silicon-on-insulator substrates, are promising for numerous applications. The most commonly studied resonators are ring/racetrack resonators. We have fabricated these and other resonators including disk resonators, waveguide-grating resonators, ring resonator reflectors, contra-directional grating-coupler ring resonators, and racetrack-based multiplexer/demultiplexers. While numerous resonators have been demonstrated for sensing purposes, it remains unclear as to which structures provide the highest sensitivity and best limit of detection; for example, disc resonators and slot-waveguide-based ring resonators have been conjectured to provide an improved limit of detection. Here, we compare various resonators in terms of sensor metrics for label-free bio-sensing in a micro-fluidic environment. We have integrated resonator arrays with PDMS micro-fluidics for real-time detection of biomolecules in experiments such as antigen-antibody binding reaction experiments using Human Factor IX proteins. Numerous resonators are fabricated on the same wafer and experimentally compared. We identify that, while evanescent-field sensors all operate on the principle that the analyte's refractive index shifts the resonant frequency, there are important differences between implementations that lie in the relationship between the optical field overlap with the analyte and the relative contributions of the various loss mechanisms. The chips were fabricated in the context of the CMC-UBC Silicon Nanophotonics Fabrication course and workshop. This yearlong, design-based, graduate training program is offered to students from across Canada and, over the last four years, has attracted participants from nearly every Canadian university involved in photonics research. The course takes students through a full design cycle of a photonic circuit, including theory, modelling, design, and experimentation.
Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation
NASA Astrophysics Data System (ADS)
Pang, Zhaoguang; Zhang, Xinping
2011-04-01
We report direct writing of metallic photonic crystals (MPCs) through a single-shot exposure of a thin film of colloidal gold nanoparticles to the interference pattern of a single UV laser pulse before a subsequent annealing process. This is defined as interference ablation, where the colloidal gold nanoparticles illuminated by the bright interference fringes are removed instantly within a timescale of about 6 ns, which is actually the pulse length of the UV laser, whereas the gold nanoparticles located within the dark interference fringes remain on the substrate and form grating structures. This kind of ablation has been proven to have a high spatial resolution and thus enables successful fabrication of waveguided MPC structures with the optical response in the visible spectral range. The subsequent annealing process transforms the grating structures consisting of ligand-covered gold nanoparticles into plasmonic MPCs. The annealing temperature is optimized to a range from 250 to 300 °C to produce MPCs of gold nanowires with a period of 300 nm and an effective area of 5 mm in diameter. If the sample of the spin-coated gold nanoparticles is rotated by 90° after the first exposure, true two-dimensional plasmonic MPCs are produced through a second exposure to the interference pattern. Strong plasmonic resonance and its coupling with the photonic modes of the waveguided MPCs verifies the success of this new fabrication technique. This is the simplest and most efficient technique so far for the construction of large-area MPC devices, which enables true mass fabrication of plasmonic devices with high reproducibility and high success rate.
A new generation of ultra-dense optical I/O for silicon photonics
NASA Astrophysics Data System (ADS)
Wlodawski, Mitchell S.; Kopp, Victor I.; Park, Jongchul; Singer, Jonathan; Hubner, Eric E.; Neugroschl, Daniel; Chao, Norman; Genack, Azriel Z.
2014-03-01
In response to the optical packaging needs of a rapidly growing silicon photonics market, Chiral Photonics, Inc. (CPI) has developed a new generation of ultra-dense-channel, bi-directional, all-optical, input/output (I/O) couplers that bridge the data transport gap between standard optical fibers and photonic integrated circuits. These couplers, called Pitch Reducing Optical Fiber Arrays (PROFAs), provide a means to simultaneously match both the mode field and channel spacing (i.e. pitch) between an optical fiber array and a photonic integrated circuit (PIC). Both primary methods for optically interfacing with PICs, via vertical grating couplers (VGCs) and edge couplers, can be addressed with PROFAs. PROFAs bring the signal-carrying cores, either multimode or singlemode, of many optical fibers into close proximity within an all-glass device that can provide low loss coupling to on-chip components, including waveguides, gratings, detectors and emitters. Two-dimensional (2D) PROFAs offer more than an order of magnitude enhancement in channel density compared to conventional one-dimensional (1D) fiber arrays. PROFAs can also be used with low vertical profile solutions that simplify optoelectronic packaging while reducing PIC I/O real estate usage requirements. PROFA technology is based on a scalable production process for microforming glass preform assemblies as they are pulled through a small oven. An innovative fiber design, called the "vanishing core," enables tailoring the mode field along the length of the PROFA to meet the coupling needs of disparate waveguide technologies, such as fiber and onchip. Examples of single- and multi-channel couplers fabricated using this technology will be presented.
Recent progress in InP/polymer-based devices for telecom and data center applications
NASA Astrophysics Data System (ADS)
Kleinert, Moritz; Zhang, Ziyang; de Felipe, David; Zawadzki, Crispin; Maese Novo, Alejandro; Brinker, Walter; Möhrle, Martin; Keil, Norbert
2015-02-01
Recent progress on polymer-based photonic devices and hybrid photonic integration technology using InP-based active components is presented. High performance thermo-optic components, including compact polymer variable optical attenuators and switches are powerful tools to regulate and control the light flow in the optical backbone. Polymer arrayed waveguide gratings integrated with InP laser and detector arrays function as low-cost optical line terminals (OLTs) in the WDM-PON network. External cavity tunable lasers combined with C/L band thinfilm filter, on-chip U-groove and 45° mirrors construct a compact, bi-directional and color-less optical network unit (ONU). A tunable laser integrated with VOAs, TFEs and two 90° hybrids builds the optical front-end of a colorless, dual-polarization coherent receiver. Multicore polymer waveguides and multi-step 45°mirrors are demonstrated as bridging devices between the spatialdivision- multiplexing transmission technology using multi-core fibers and the conventional PLCbased photonic platforms, appealing to the fast development of dense 3D photonic integration.
NASA Astrophysics Data System (ADS)
Raman, Karthik; Murthy, T. R. Srinivasa; Hegde, G. M.
Photonic crystal based nanostructures are expected to play a significant role in next generation nanophotonic devices. Recent developments in two-dimensional (2D) photonic crystal based devices have created widespread interest as such planar photonic structures are compatible with conventional microelectronic and photonic devices. Various optical components such as waveguides, resonators, modulators and demultiplexers have been designed and fabricated based on 2D photonic crystal geometry. This paper presents the fabrication of refractive index tunable Polydimethylsiloxane (PDMS) polymer based photonic crystals. The advantages of using PDMS are mainly its chemical stability, bio-compatibility and the stack reduces sidewall roughness scattering. The PDMS structure with square lattice was fabricated by using silicon substrate patterned with SU8-2002 resist. The 600 nm period grating of PDMS is then fabricated using Nano-imprinting. In addition, the refractive index of PDMS is modified using certain additive materials. The resulting photonic crystals are suitable for application in photonic integrated circuits and biological applications such as filters, cavities or microlaser waveguides.
Integrated high-order surface diffraction gratings for diode lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotarev, V V; Leshko, A Yu; Pikhtin, N A
2015-12-31
High-order surface diffraction gratings acting as a distributed Bragg reflector (DBR) in mesa stripe semiconductor lasers (λ = 1030 nm) have been studied theoretically and experimentally. Higher order interfering radiation modes (IRMs), which propagate off the plane of the waveguide, have been shown to have a crucial effect on the reflection and transmission spectra of the DBR. The decrease in the reflectivity of the DBR in response to the increase in the diffraction efficiency of these modes may reach 80% and more. According to theoretical analysis results, the intensity of the higher order IRMs is determined by the geometry ofmore » the DBR groove profile. Experimental data demonstrate that the noncavity modes are responsible for parasitic light leakage losses in the laser cavity. It has been shown that, in the case of nonoptimal geometry of the grating groove profile, the overall external differential quantum efficiency of the parasitic laser emission may exceed 45%, which is more than half of the laser output power. The optimal geometry of the DBR groove profile is trapezoidal, with the smallest possible lower base. Experimental evidence has been presented that this geometry considerably reduces the power of the higher order IRMs and minimises the parasitic light leakage loss. (lasers)« less
Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network.
Ortega, Beatriz; Mora, José; Puerto, Gustavo; Capmany, José
2007-12-10
This paper presents a novel architecture for DWDM bidirectional access networks providing symmetric dynamic capacity allocation for both downlink and uplink signals. A foldback arrayed waveguide grating incorporating an optical switch enables the experimental demonstration of flexible assignment of multiservice capacity. Different analog and digital services, such as CATV, 10 GHz-tone, 155Mb/s PRBS and UMTS signals have been transmitted in order to successfully test the system performance under different scenarios of total capacity distribution from the Central Station to different Base Stations with two reconfigurable extra channels for each down and upstream direction.
Presi, M; Chiuchiarelli, A; Corsini, R; Choudury, P; Bottoni, F; Giorgi, L; Ciaramella, E
2012-12-10
We report enhanced 10 Gb/s operation of directly modulated bandwidth-limited reflective semiconductor optical amplifiers. By using a single suitable arrayed waveguide grating we achieve simultaneously WDM demultiplexing and optical equalization. Compared to previous approaches, the proposed system results significantly more tolerant to seeding wavelength drifts. This removes the need for wavelength lockers, additional electronic equalization or complex digital signal processing. Uniform C-band operations are obtained experimentally with < 2 dB power penalty within a wavelength drift of 10 GHz (which doubles the ITU-T standard recommendations).
A fiber-optic ice detection system for large-scale wind turbine blades
NASA Astrophysics Data System (ADS)
Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho
2017-09-01
Icing causes substantial problems in the integrity of large-scale wind turbines. In this work, a fiber-optic sensor system for detection of icing with an arrayed waveguide grating is presented. The sensor system detects Fresnel reflections from the ends of the fibers. The transition in Fresnel reflection due to icing gives peculiar intensity variations, which categorizes the ice, the water, and the air medium on the wind turbine blades. From the experimental results, with the proposed sensor system, the formation of icing conditions and thickness of ice were identified successfully in real time.
Hybrid III/V silicon photonic source with integrated 1D free-space beam steering.
Doylend, J K; Heck, M J R; Bovington, J T; Peters, J D; Davenport, M L; Coldren, L A; Bowers, J E
2012-10-15
A chip-scale optical source with integrated beam steering is demonstrated. The chip was fabricated using the hybrid silicon platform and incorporates an on-chip laser, waveguide splitter, amplifiers, phase modulators, and surface gratings to comprise an optical phased array with beam steering across a 12° field of view in one axis. Tuning of the phased array is used to achieve 1.8°(steered axis)×0.6°(nonsteered axis) beam width with 7 dB background suppression for arbitrary beam direction within the field of view.
Tasolamprou, Anna C; Zhang, Lei; Kafesaki, Maria; Koschny, Thomas; Soukoulis, Costas M
2015-06-01
We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. The angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasolamprou, Anna C.; Zhang, Lei; Kafesaki, Maria
2015-05-19
We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. Furthermore, the angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.
Ring resonator based narrow-linewidth semiconductor lasers
NASA Technical Reports Server (NTRS)
Ksendzov, Alexander (Inventor)
2005-01-01
The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.
Rapid updating of optical arbitrary waveforms via time-domain multiplexing.
Scott, R P; Fontaine, N K; Yang, C; Geisler, D J; Okamoto, K; Heritage, J P; Yoo, S J B
2008-05-15
We demonstrate high-fidelity optical arbitrary waveform generation with 5 GHz waveform switching via time-domain multiplexing. Compact, integrated waveform shapers based on silica arrayed-waveguide grating pairs with 10 GHz channel spacing are used to shape (line-by-line) two different waveforms from the output of a 10-mode x 10 GHz optical frequency comb generator. Characterization of the time multiplexer's complex transfer function (amplitude and phase) by frequency-resolved optical gating permits compensation of its impact on the switched waveforms and matching of the measured and target waveforms to better than G'=5%.
Si-based optical I/O for optical memory interface
NASA Astrophysics Data System (ADS)
Ha, Kyoungho; Shin, Dongjae; Byun, Hyunil; Cho, Kwansik; Na, Kyoungwon; Ji, Hochul; Pyo, Junghyung; Hong, Seokyong; Lee, Kwanghyun; Lee, Beomseok; Shin, Yong-hwack; Kim, Junghye; Kim, Seong-gu; Joe, Insung; Suh, Sungdong; Choi, Sanghoon; Han, Sangdeok; Park, Yoondong; Choi, Hanmei; Kuh, Bongjin; Kim, Kichul; Choi, Jinwoo; Park, Sujin; Kim, Hyeunsu; Kim, Kiho; Choi, Jinyong; Lee, Hyunjoo; Yang, Sujin; Park, Sungho; Lee, Minwoo; Cho, Minchang; Kim, Saebyeol; Jeong, Taejin; Hyun, Seokhun; Cho, Cheongryong; Kim, Jeong-kyoum; Yoon, Hong-gu; Nam, Jeongsik; Kwon, Hyukjoon; Lee, Hocheol; Choi, Junghwan; Jang, Sungjin; Choi, Joosun; Chung, Chilhee
2012-01-01
Optical interconnects may provide solutions to the capacity-bandwidth trade-off of recent memory interface systems. For cost-effective optical memory interfaces, Samsung Electronics has been developing silicon photonics platforms on memory-compatible bulk-Si 300-mm wafers. The waveguide of 0.6 dB/mm propagation loss, vertical grating coupler of 2.7 dB coupling loss, modulator of 10 Gbps speed, and Ge/Si photodiode of 12.5 Gbps bandwidth have been achieved on the bulk-Si platform. 2x6.4 Gbps electrical driver circuits have been also fabricated using a CMOS process.
Yuki, Atsumu; Ando, Fujiko; Shimokata, Hiroshi
2014-10-01
Sarcopenia is a syndrome characterized by loss of skeletal muscle mass and function (strength and physical performance) with a risk of adverse outcomes. Asian criteria have been decided recently by the Asia Working Group for Sarcopenia (AWGS) . AWGS defined sarcopenia as low skeletal muscle mass plus low muscle strength and/or low physical performance based on the previous reports. AWGS recommend cutoff values for muscle mass (7.0 kg/m(2) for men and 5.4 kg/m(2) for women by using dual X-ray absorptiometry, and 7.0 kg/m(2) for men and 5.7 kg/m(2) for women by using bioelectrical impedance analysis) , handgrip strength (<26 kg for men and <18 kg for women) , and usual gait speed (<0.8 m/s) . The prevalence of sarcopenia in Japanese elderly men and women diagnosed using Asian criteria was 9.6% and 7.7%, respectively. The estimated number of prevalent cases of sarcopenia in Japanese elderly men and women was approximately 1.3 million and 1.4 million, respectively.
Recent and emerging applications of holographic photopolymers and nanocomposites
NASA Astrophysics Data System (ADS)
Naydenova, Izabela; Kotakonda, Pavani; Jallapuram, Raghavendra; Babeva, Tsvetanka; Mintova, S.; Bade, Denis; Martin, Suzanne; Toal, Vincent
2010-11-01
Sensing applications of holograms may be based on effects such as change in the spacing of the recorded fringes in a holographic diffraction grating in the presence of an analyte so that the direction of the diffracted laser light changes, or, in the case of a white light reflection grating, the wavelength of the diffracted light changes. An example is a reflection grating which swells in the presence of atmospheric moisture to indicate relative humidity by a change is the colour of the diffracted light. These devices make use of the photopolymer's ability to absorb moisture. In a more versatile approach one can add inorganic nanoparticles to the photopolymer composition. These nanoparticles have refractive indices that are different from that of the bulk photopolymer. During the holographic recording of diffraction gratings, the polymerisation and accompanying diffusion processes cause redistribution of the nanoparticles enhancing the holographic diffraction efficiency. Zeolite nanoparticles have the form of hollow cages enabling them to trap analyte molecules of appropriate sizes. The refractive index of the nanoparticle-analyte combination is normally different from that of the nanoparticles alone and this alters the refractive index modulation of the recorded grating, leading to a change in diffraction efficiency and hence of the strength of the diffracted light signal. Yet another approach makes use of a principle which we call dye deposition holography. The analyte is labelled using a dye which acts as a photosensitiser for the polymerisation process. When the analyte labeled is deposited on a layer containing the other photopolymer components photopolymerisation can take place. If the illumination is in the form of an interference pattern, a diffraction grating is formed, in the region where dye has been deposited. In this way the formation of a holographic diffraction grating itself becomes a sensing action with the potential for extremely high signal to noise ratio. The method also allows fabrication of photonic devices by direct writing, using photosensitising dye, of structures such as Fresnel zone plate lenses and waveguides onto the photopolymer layer followed by exposure to spatially uniform light. Our work on HDS is concerned with enhancing the diffraction efficiency of user selected very weak diffraction gratings by illumination with a single beam at the Bragg angle. Light in the illuminating beam is coupled into the diffracted beam and the two interfere to enhance the grating strength. In this way grating diffraction efficiency can be raised above a threshold so that a binary zero can be changed to binary one. A large number of identical weak holographic gratings may be multiplexed into the recording medium at the manufacturing stage, for user selection at the data recording stage. In this way consumer HDS systems could be made much more simply and cheaply than at present.
NASA Astrophysics Data System (ADS)
Bernhardi, E. H.; de Ridder, R. M.; Wörhoff, K.; Pollnau, M.
2013-03-01
We report on diode-pumped distributed-feedback (DFB) and distributed-Bragg-reflector (DBR) channel waveguide lasers in Er-doped and Yb-doped Al2O3 on standard thermally oxidized silicon substrates. Uniform surface-relief Bragg gratings were patterned by laser-interference lithography and etched into the SiO2 top cladding. The maximum grating reflectivity exceeded 99%. Monolithic DFB and DBR cavities with Q-factors of up to 1.35×106 were realized. The Erdoped DFB laser delivered 3 mW of output power with a slope efficiency of 41% versus absorbed pump power. Singlelongitudinal- mode operation at a wavelength of 1545.2 nm was achieved with an emission line width of 1.70 0.58 kHz, corresponding to a laser Q-factor of 1.14×1011. Yb-doped DFB and DBR lasers were demonstrated at wavelengths near 1020 nm with output powers of 55 mW and a slope efficiency of 67% versus launched pump power. An Yb-doped dualwavelength laser was achieved based on the optical resonances induced by two local phase shifts in the DFB structure. A stable microwave signal at ~15 GHz with a -3-dB width of 9 kHz and a long-term frequency stability of +/- 2.5 MHz was created via the heterodyne photo-detection of the two laser wavelengths. By measuring changes in the microwave beat signal as the intra-cavity evanescent laser field interacts with micro-particles on the waveguide surface, we achieved real-time detection and accurate size measurement of single micro-particles with diameters ranging between 1 μm and 20 μm, which represents the typical size of many fungal and bacterial pathogens. A limit of detection of ~500 nm was deduced.
Intensity-based readout of resonant-waveguide grating biosensors: Systems and nanostructures
NASA Astrophysics Data System (ADS)
Paulsen, Moritz; Jahns, Sabrina; Gerken, Martina
2017-09-01
Resonant waveguide gratings (RWG) - also called photonic crystal slabs (PCS) - have been established as reliable optical transducers for label-free biochemical assays as well as for cell-based assays. Current readout systems are based on mechanical scanning and spectrometric measurements with system sizes suitable for laboratory equipment. Here, we review recent progress in compact intensity-based readout systems for point-of-care (POC) applications. We briefly introduce PCSs as sensitive optical transducers and introduce different approaches for intensity-based readout systems. Photometric measurements have been realized with a simple combination of a light source and a photodetector. Recently a 96-channel, intensity-based readout system for both biochemical interaction analyses as well as cellular assays was presented employing the intensity change of a near cut-off mode. As an alternative for multiparametric detection, a camera system for imaging detection has been implemented. A portable, camera-based system of size 13 cm × 4.9 cm × 3.5 cm with six detection areas on an RWG surface area of 11 mm × 7 mm has been demonstrated for the parallel detection of six protein binding kinetics. The signal-to-noise ratio of this system corresponds to a limit of detection of 168 M (24 ng/ml). To further improve the signal-to-noise ratio advanced nanostructure designs are investigated for RWGs. Here, results on multiperiodic and deterministic aperiodic nanostructures are presented. These advanced nanostructures allow for the design of the number and wavelengths of the RWG resonances. In the context of intensity-based readout systems they are particularly interesting for the realization of multi-LED systems. These recent trends suggest that compact point-of-care systems employing disposable test chips with RWG functional areas may reach market in the near future.
Millimeter-wave Spectroscopy of NGC1068 With Z-Spec
NASA Astrophysics Data System (ADS)
Kamenetzky, Julia; Aguirre, J. E.; Bock, J. J.; Bradford, M.; Earle, L.; Glenn, J.; Maloney, P.; Matsuhara, H.; Naylor, B.; Nguyen, H. T.; Zmuidzinas, J.
2009-05-01
NGC1068 is commonly cited as the prototypical Seyfert 2 galaxy. Both the central and extended regions have been studied extensively across the electromagnetic spectrum, revealing many different astrophysical phenomena, such as a bright central region, radio jet knots, and a conical narrow-line region. Significantly, evidence has been found that the active galactic nucleus is shrouded by a dusty molecular disk, which could support the theory that viewing angle will unify Seyfert 1 and 2 galaxies. We observed NGC1068 with Z-Spec, a broadband (185-305 GHz) millimeter-wave grating spectrometer, at the Caltech Submillimeter Observatory. Its large bandwidth allows us to simultaneously observe multiple molecular rotational transitions along with the underlying continuum. The detector array is composed of 160 silicon-nitride micromesh bolometers cooled to 60 mK by an adiabatic demagnetization refrigerator (ADR) and a closed-cycle 3He refrigerator. Z-Spec's compact design is achieved via a WaFIRS (Waveguide Far IR Spectrometer) design utilizing a parallel-plate waveguide and curved diffraction grating. Z-Spec's spectral resolution is approximately 900 MHz at the band center. We obtained a high signal-to-noise ratio spectrum of NGC1068 in late January 2007. Key observable transitions in Z-Spec's bandpass include CO , 13CO, and C18O (J = 2 - 1), HCN, HNC, and HCO+ (J = 3 - 2), and multiple CS transitions. We are modeling the NGC1068 spectrum using these data and other transitions of these molecules from the literature to probe the physical characteristics of its interstellar medium, such as temperature, density, dense gas fraction, and the extent of the AGN's contribution to the molecular gas excitation. We will present preliminary results of the analysis.
NASA Astrophysics Data System (ADS)
Tsiokos, Dimitris M.; Dabos, George; Ketzaki, Dimitra; Weeber, Jean-Claude; Markey, Laurent; Dereux, Alain; Giesecke, Anna Lena; Porschatis, Caroline; Chmielak, Bartos; Wahlbrink, Thorsten; Rochracher, Karl; Pleros, Nikos
2017-05-01
Silicon photonics meet most fabrication requirements of standard CMOS process lines encompassing the photonics-electronics consolidation vision. Despite this remarkable progress, further miniaturization of PICs for common integration with electronics and for increasing PIC functional density is bounded by the inherent diffraction limit of light imposed by optical waveguides. Instead, Surface Plasmon Polariton (SPP) waveguides can guide light at sub-wavelength scales at the metal surface providing unique light-matter interaction properties, exploiting at the same time their metallic nature to naturally integrate with electronics in high-performance ASPICs. In this article, we demonstrate the main goals of the recently introduced H2020 project PlasmoFab towards addressing the ever increasing needs for low energy, small size and high performance mass manufactured PICs by developing a revolutionary yet CMOS-compatible fabrication platform for seamless co-integration of plasmonics with photonic and supporting electronic. We demonstrate recent advances on the hosting SiN photonic hosting platform reporting on low-loss passive SiN waveguide and Grating Coupler circuits for both the TM and TE polarization states. We also present experimental results of plasmonic gold thin-film and hybrid slot waveguide configurations that can allow for high-sensitivity sensing, providing also the ongoing activities towards replacing gold with Cu, Al or TiN metal in order to yield the same functionality over a CMOS metallic structure. Finally, the first experimental results on the co-integrated SiN+plasmonic platform are demonstrated, concluding to an initial theoretical performance analysis of the CMOS plasmo-photonic biosensor that has the potential to allow for sensitivities beyond 150000nm/RIU.
Design of optical metamaterial waveguide structures (Conference Presentation)
NASA Astrophysics Data System (ADS)
Ortega-Moñux, Alejandro; Halir, Robert; Sánchez-Postigo, Alejandro; Soler-Penadés, Jordi; Ctyroký, Jirí; Luque-González, José Manuel; Sarmiento-Merenguel, José Darío.; Wangüemert-Pérez, Juan Gonzalo; Schmid, Jens H.; Xu, Dan-Xia; Janz, Sigfried; Lapointe, Jean; Molina-Fernández, Iñigo; Nedeljkovic, Milos; Mashanovich, Goran Z.; Cheben, Pavel
2017-05-01
Subwavelength gratings (SWGs) are periodic structures with a pitch (Λ) smaller than the wavelength of the propagating wave (λ), so that diffraction effects are suppressed. These structures thus behave as artificial metamaterials where the refractive index and the dispersion profile can be controlled with a proper design of the geometry of the structure. SWG waveguides have found extensive applications in the field of integrated optics, such as efficient fiber-chip couplers, broadband multimode interference (MMI) couplers, polarization beam splitters or evanescent field sensors, among others. From the point of view of nano-fabrication, the subwavelength condition (Λ << λ) is much easier to meet for long, mid-infrared wavelengths than for the comparatively short near-infrared wavelengths. Since most of the integrated devices based on SWGs have been proposed for the near-infrared, the true potential of subwavelength structures has not yet been completely exploited. In this talk we summarize some valuable guidelines for the design of high performance SWG integrated devices. We will start describing some practical aspects of the design, such as the range of application of semi-analytical methods, the rigorous electromagnetic simulation of Floquet modes, the relevance of substrate leakage losses and the effects of the random jitter, inherent to any fabrication process, on the performance of SWG structures. Finally, we will show the possibilities of the design of SWG structures with two different state-of-the-art applications: i) ultra-broadband MMI beam splitters with an operation bandwidth greater than 300nm for telecom wavelengths and ii) a set of suspended waveguides with SWG lateral cladding for mid-infrared applications, including low loss waveguides, MMI couplers and Mach-Zehnder interferometers.
1983-08-01
LOOK DOWN F-4J/AWG-10 • ADDED PULSE DOPPLER • GOOD HEAD ON PERFORMANCE • POOR TAIL PERFORMANCE F-14/AWG-9 • ADDED TWS • HIGHER POWER • INCREASED...returned to NAS Lemoore for I level repair retested good . 45B/8-2 ^° F/A-18 YUMA DEPLOYMENT 45A/3-9 • MOST RECENT OF MANY NAVY DEPLOYMENTS...THERMAL ANALYSIS AND DESIGN Following the design process to minimize the parts count, and a selection/screening process to obtain good quality
Park, Chang-Hyun; Yoon, Yeo-Taek; Shrestha, Vivek Raj; Park, Chul-Soon; Lee, Sang-Shin; Kim, Eun-Soo
2013-11-18
We have demonstrated a highly efficient electrically tunable color filter, which provides precise control of color output, taking advantage of a nano-photonic polarization-tailored dichroic resonator combined with a liquid-crystal based polarization rotator. The visible dichroic resonator based on the guided mode resonance, which incorporates a planar dielectric waveguide in Si3N4 integrated with an asymmetric two-dimensional subwavelength Al grating with unequal pitches along its principal axes, exhibited polarization specific transmission featuring high efficiency up to 75%. The proposed tunable color filters were constructed by combining three types of dichroic resonators, each of which deals with a mixture of two primary colors (i.e. blue/green, blue/red, and green/red) with a polarization rotator exploiting a twisted nematic liquid crystal cell. The output colors could be dynamically and seamlessly customized across the blend of the two corresponding primary colors, by altering the polarization via the voltage applied to the polarization rotator. For the blue/red filter, the center wavelength was particularly adjusted from 460 to 610 nm with an applied voltage variation of 2 V, leading to a tuning range of up to 150 nm. And the spectral tuning was readily confirmed via color mapping. The proposed devices may permit the tuning span to be readily extended by tailoring the grating pitches.
NASA Astrophysics Data System (ADS)
Jerábek, Vitezslav; Hüttel, Ivan; Prajzler, Václav; Busek, K.; Seliger, P.
2008-11-01
We report about design and construction of the bidirectional transceiver TRx module for subscriber part of the passive optical network PON for a fiber to the home FTTH topology. The TRx module consists of a epoxy novolak resin polymer planar lightwave circuit (PLC) hybrid integration technology with volume holographic grating triplex filter VHGT, surface-illuminated photodetectors and spot-size converted Fabry-Pérot laser diode in SMD package. The hybrid PLC has composed from a two parts-polymer optical waveguide including VHGT filter section and a optoelectronic microwave section. The both parts are placed on the composite substrate.
FIBER AND INTEGRATED OPTICS: Compact fiber-optic compressor of ultrashort pulses
NASA Astrophysics Data System (ADS)
Nikitin, S. P.; Onishchukov, G. I.; Fomichev, A. A.
1992-02-01
A theoretical design of a universal compact fiber-optic compressor based on a monochromator with a spherical mirror in the plane of its exit slit was considered. Ultrashort pulses emitted by an actively mode-locked YAG:Nd3+ laser, whose spectrum was broadened in a fiber-optic waveguide, were compressed experimentally to 2.7 ns. A universal compact compressor was developed: it produced 4-ns pulses with an average radiation power of about 1 W. The dimensions of this compressor were several times smaller than those of a traditional scheme using a diffraction grating to compress pulses having an initial duration of about 100 ns.
NASA Astrophysics Data System (ADS)
Zink, Christof; Maaβdorf, André; Fricke, Jörg; Ressel, Peter; Maiwald, Martin; Sumpf, Bernd; Erbert, Götz; Tränkle, Günther
2018-02-01
High brightness diode lasers with a spectrally narrowband emission, several watts of output power with an almost diffraction limited beam quality are requested light sources for several applications. In this work, a monolithic master oscillator power amplifier will be presented. The resonator of the master oscillator is formed by a high-reflection DBR grating on the rear side and an internal DBR mirror. Its power is amplified in a ridge waveguide followed by a tapered section. The monolithic MOPA provides over 7 W at 1064 nm with a narrow spectral emission width below 20 pm and an almost diffraction limited beam.
Visual gas sensors based on dye thin films and resonant waveguide gratings
NASA Astrophysics Data System (ADS)
Davoine, L.; Schnieper, M.; Barranco, A.; Aparicio, F. J.
2011-05-01
A colorimetric sensor that provides a direct visual indication of chemical contamination was developed. The detection is based on the color change of the reflected light after exposure to a gas or a liquid. The sensor is a combination of a chemically sensitive dye layer and a subwavelength grating structure. To enhance the perception of color change, a reference area sealed under a non-contaminated atmosphere is used and placed next to the sensor. The color change is clearly visible by human eyes. The device is based on photonic resonant effects; the visible color is a direct reflection of some incoming light, therefore no additional supplies are needed. This makes it usable as a standalone disposable sensor. The dye thin film is deposited by Plasma enhanced chemical vapor deposition (PECVD) on top of the subwavelength structure. The latter is made by combining a replication process of a Sol-Gel material and a thin film deposition. Lowcost fabrication and compatibility with environments where electricity cannot be used make this device very attractive for applications in hospitals, industries, with explosives and in traffic.
Design and Fabrication of TES Detector Modules for the TIME-Pilot [CII] Intensity Mapping Experiment
NASA Astrophysics Data System (ADS)
Hunacek, J.; Bock, J.; Bradford, C. M.; Bumble, B.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A.; Crites, A.; Hailey-Dunsheath, S.; Gong, Y.; Kenyon, M.; Koch, P.; Li, C.-T.; O'Brient, R.; Shirokoff, E.; Shiu, C.; Staniszewski, Z.; Uzgil, B.; Zemcov, M.
2016-08-01
We are developing a series of close-packed modular detector arrays for TIME-Pilot, a new mm-wavelength grating spectrometer array that will map the intensity fluctuations of the redshifted 157.7 \\upmu m emission line of singly ionized carbon ([CII]) from redshift z ˜ 5 to 9. TIME-Pilot's two banks of 16 parallel-plate waveguide spectrometers (one bank per polarization) will have a spectral range of 183-326 GHz and a resolving power of R ˜ 100. The spectrometers use a curved diffraction grating to disperse and focus the light on a series of output arcs, each sampled by 60 transition edge sensor (TES) bolometers with gold micro-mesh absorbers. These low-noise detectors will be operated from a 250 mK base temperature and are designed to have a background-limited NEP of {˜ }10^{-17} mathrm {W}/mathrm {Hz}^{1/2}. This proceeding presents an overview of the detector design in the context of the TIME-Pilot instrument. Additionally, a prototype detector module produced at the Microdevices Laboratory at JPL is shown.
NASA Astrophysics Data System (ADS)
Dabos, G.; Pitris, S.; Mitsolidou, C.; Alexoudi, T.; Fitsios, D.; Cherchi, M.; Harjanne, M.; Aalto, T.; Kanellos, G. T.; Pleros, N.
2017-02-01
As data centers constantly expand, electronic switches are facing the challenge of enhanced scalability and the request for increased pin-count and bandwidth. Photonic technology and wavelength division multiplexing have always been a strong alternative for efficient routing and their potential was already proven in the telecoms. CWDM transceivers have emerged in the board-to-board level interconnection, revealing the potential for wavelength-routing to be applied in the datacom and an AWGR-based approach has recently been proposed towards building an optical multi-socket interconnection to offer any-to-any connectivity with high aggregated throughput and reduced power consumption. Echelle gratings have long been recognized as the multiplexing block exhibiting smallest footprint and robustness in a wide number of applications compared to other alternatives such as the Arrayed Waveguide Grating. Such filtering devices can also perform in a similar way to cyclical AWGR and serve as mid-board routing platforms in multi-socket environments. In this communication, we present such a 3x3 Echelle grating integrated on thick SOI platform with aluminum-coated facets that is shown to perform successful wavelength-routing functionality at 10 Gb/s. The device exhibits a footprint of 60x270 μm2, while the static characterization showed a 3 dB on-chip loss for the best channel. The 3 dB-bandwidth of the channels was 4.5 nm and the free spectral range was 90 nm. The echelle was evaluated in a 2x2 wavelength routing topology, exhibiting a power penalty of below 0.4 dB at 10-9 BER for the C-band. Further experimental evaluations of the platform involve commercially available CWDM datacenter transceivers, towards emulating an optically-interconnected multi-socket environment traffic scenario.
Ultrafast laser inscription of 3D components for spatial multiplexing
NASA Astrophysics Data System (ADS)
Thomson, Robert R.
2016-02-01
The thirst for bandwidth in telecommunications networks is becoming ever larger due to bandwidth hungry applications such as video-on-demand. To further increase the bandwidth capacity, engineers are now seeking to imprint information on the last remaining degree of freedom of the lightwave carrier - space. This has given rise to the field of Space Division Multiplexing (SDM). In essence, the concept of SDM simple; we aim to use the different spatial modes of an optical fibre as multiplexed data transmission channels. These modes could either be in the form of separate singlemodes in a multicore optical fibre, individual spatial modes of a multimode fibre, or indeed the individual spatial modes of a multimode multicore optical fibre. Regardless of the particular "flavour" of SDM in question, it is clear that significant interfacing issues exist between the optical fibres used in SDM and the conventional single-mode planar lightwave circuits that are essential to process the light (e.g. arrayed waveguide gratings and splitters), and efficient interconnect technologies will be required. One fabrication technology that has emerged as a possible route to solve these interconnection issues is ultrafast laser inscription (ULI), which relies on the use of focused ultrashort laser pulses to directly inscribe three-dimensional waveguide structures inside a bulk dielectric. In this paper, I describe some of the work that has been conducted around the world to apply the unique waveguide fabrication capabilities of ULI to the development of 3D photonic components for applications in SDM.
Silicon Photonics: All-Optical Devices for Linear and Nonlinear Applications
NASA Astrophysics Data System (ADS)
Driscoll, Jeffrey B.
Silicon photonics has grown rapidly since the first Si electro-optic switch was demonstrated in 1987, and the field has never grown more quickly than it has over the past decade, fueled by milestone achievements in semiconductor processing technologies for low loss waveguides, high-speed Si modulators, Si lasers, Si detectors, and an enormous toolbox of passive and active integrated devices. Silicon photonics is now on the verge of major commercialization breakthroughs, and optical communication links remain the force driving integrated and Si photonics towards the first commercial telecom and datacom transceivers; however other potential and future applications are becoming uncovered and refined as researchers reveal the benefits of manipulating photons on the nanoscale. This thesis documents an exploration into the unique guided-wave and nonlinear properties of deeply-scaled high-index-contrast sub-wavelength Si waveguides. It is found that the tight confinement inherent to single-mode channel waveguides on the silicon-on-insulator platform lead to a rich physics, which can be leveraged for new devices extending well beyond simple passive interconnects and electro-optic devices. The following chapters will concentrate, in detail, on a number of unique physical features of Si waveguides and extend these attributes towards new and interesting devices. Linear optical properties and nonlinear optical properties are investigated, both of which are strongly affected by tight optical confinement of the guided waveguide modes. As will be shown, tight optical confinement directly results in strongly vectoral modal components, where the electric and magnetic fields of the guided modes extend into all spatial dimensions, even along the axis of propagation. In fact, the longitudinal electric and magnetic field components can be just as strong as the transverse fields, directly affecting the modal group velocity and energy transport properties since the longitudinal fields are shown to contribute no time-averaged momentum. Furthermore, the vectoral modal components, in conjunction with the tensoral nature of the third-order susceptibility of Si, lead to nonlinear properties which are dependent on waveguide orientation with respect to the Si parent crystal and the construction of the modal electric field components. This consideration is used to maximize effective nonlinearity and realize nonlinear Kerr gratings along specific waveguide trajectories. Tight optical confinement leads to a natural enhancement of the intrinsically large effective nonlinearty of Si waveguides, and in fact, the effective nonlinearty can be made to be almost 106 times greater in Si waveguides than that of standard single-mode fiber. Such a large nonlinearity motivates chip-scale all-optical signal processing techniques. Wavelength conversion by both four-wave-mixing (FWM) and cross-phase-modulation (XPM) will be discussed, including a technique that allows for enhanced broadband discrete FWM over arbitrary spectral spans by modulating both the linear and nonlinear waveguide properties through periodic changes in waveguide geometry. This quasi-phase-matching approach has very real applications towards connecting mature telecom sources detectors and components to other spectral regimes, including the mid-IR. Other signal processing techniques such as all-optical modulation format conversion via XPM will also be discussed. This thesis will conclude by looking at ways to extend the bandwidth capacity of Si waveguide interconnects on chip. As the number of processing cores continues to scale as a means for computational performance gains, on-chip link capacity will become an increasingly important issue. Metallic traces have severe limitations and are envisioned to eventually bow to integrated photonic links. The aggregate bandwidth supported by a single waveguide link will therefore become a crucial consideration as integrated photonics approaches the CPU. One way to increase aggregate bandwidth is to utilize different eigen-modes of a multimode waveguide, and integrated waveguide mode-muxes and demuxes for achieving simultaneous mode-division-multiplexing and wavelength-division-multiplexing will be demonstrated.
NASA Astrophysics Data System (ADS)
Ng, Jason Clement
Femtosecond laser processing is a flexible, three-dimensional (3D) fabrication technique used to make integrated low-loss photonic devices in fused silica. My work expanded the suite of available optical devices through the design and optimization of linear optical components such as low-loss (< 0.5 dB) curved waveguides, directional couplers (DCs), and Mach-Zehnder interferometers (MZIs). The robustness and consistency of this maturing fabrication process was also reinforced through the scalable design and integration of a more complex, multi-component flat-top interleaver over a wide >70-nm spectral window. My work further complemented femtosecond laser processing with the development of nonlinear device capabilities. While thermal poling is a well known process, significant challenges had restricted the development of nonlinear devices in fused silica. The laser writing process would erase the induced nonlinearity (erasing) while a written waveguide core acted as a barrier to the thermal poling process (blocking). Using second harmonic (SH) microscopy, the effectiveness of thermal poling on laser-written waveguides was systematically analyzed leading to the technique of "double poling", which effectively overcomes the two challenges of erasing and blocking. In this new process the substrate is poled before and after waveguide writing to restore the induced nonlinearity within the vicinity of the waveguide to enable effective poling for inducing a second-order nonlinearity (SON) in fused silica. A new flexible, femtosecond laser based erasure process was also developed to enable quasi-phase matching and to form arbitrarily chirped gratings. Following this result, second harmonic generation (SHG) in a quasiphase-matched (QPM) femtosecond laser written waveguide device was demonstrated. SHG in a chirped QPM structure was also demonstrated to illustrate the flexibility of the femtosecond laser writing technique. These are the first demonstration of frequency doubling in an all-femtosecond-laser-written structure. A maximum SHG conversion efficiency of 1.3 +/- 0.1x10 -11/W-cm-2 was achieved for the fundamental wavelength of 1552.8 nm with a phase-matching bandwidth of 4.4 nm for a 10.0-mm-long waveguide. For a shorter sample, an effective SON of chi(2) = 0:020 +/- 0:002 pm/V was measured. The results collectively demonstrate the versatility of femtosecond laser additive and subtractive fabrication and opens up the development of integrated nonlinear applications and photonic devices for future lab-on-a-chip and lab-in-a-fiber devices.
NASA Astrophysics Data System (ADS)
Weisenbach, Lori Ann
An experimental study of the processing and attenuation characteristics of solution derived, thin film, planar waveguides was made. In this study, the densification and attenuation characteristics of a variety of compositions were compared. To insure that the effects measured reflected compositional differences and not processing artifacts, guidelines for the reproducible fabrication of optical quality layers, irrespective of composition, were established. A broad range of compositions were prepared and an effort was made to keep the various solution syntheses as simple and similar as possible. The densification and attenuation of binary SiO _2-TiO_2 compositions was measured, then compared to the densification and attenuation of SiO_2-TiO_2 -R_{rm x}O _{rm y} (where R = Al or Zn) ternary compositions. Film densification was not strongly dependent upon composition, and was successfully modelled using the Lorentz-Lorenz relation, assuming the open volume in the undensified films were filled with adsorbed water. The attenuation measured at 632.8 nm did not vary with composition, except for the Zn ternary samples. Waveguides with losses of <1dB/cm could be fabricated from all other compositions. Waveguide attenuation was measured for films of different thickness, and compared to modelled predictions. The attenuation increased as layer thickness decreased, suggesting the predominance of the surface scattering contribution. To confirm that absorption losses were negligible, the wavelength dependence of the waveguides was measured. The wavelength dependence varied with composition, suggesting the absorption varied with composition. Possible mechanisms of absorption in the waveguides were discussed; the interaction of the atmosphere with the film structure is proposed as the cause of the deterioration. Film development for the binary SiO_2 -TiO_2 films was also studied as a function of increased firing time at 500^ circC. Multiple firings at 500^ circC increased the film density and the resistance to deterioration, but also increased the surface roughness of the films. Increased surface roughness, increased the scattering losses measured for the guide. The application of solution derived thin films was demonstrated with the successful fabrication of a novel optical device. The fabrication of the Single Leakage -Channel Grating Coupler illustrated specific design tolerances could be met and the resulting device performance near the theoretical maximum.
NASA Astrophysics Data System (ADS)
Baryshev, V. I.; Golikova, E. G.; Duraev, V. P.; Kuchinskiĭ, V. I.; Kizhaev, K. Yu; Kuksenkov, D. V.; Portnoĭ, E. L.; Smirnitskiĭ, V. B.
1988-11-01
A study was made of stimulated emission from mesa-stripe distributed-feedback lasers in the form of double heterostructures with separate electron and optical confinement. A diffraction grating with a period Λ = 0.46 μm, formed on the surface of the upper waveguide layer by holographic lithography, ensured distributed feedback in the second order. The threshold current for cw operation at room temperature was 35-70 mA, the shift of the emission wavelength with temperature was ~ 0.08 nm/K, and the feedback coefficient deduced from the width of a "Bragg gap" was 110-150 cm- 1.
On-chip synthesis of circularly polarized emission of light with integrated photonic circuits.
He, Li; Li, Mo
2014-05-01
The helicity of circularly polarized (CP) light plays an important role in the light-matter interaction in magnetic and quantum material systems. Exploiting CP light in integrated photonic circuits could lead to on-chip integration of novel optical helicity-dependent devices for applications ranging from spintronics to quantum optics. In this Letter, we demonstrate a silicon photonic circuit coupled with a 2D grating emitter operating at a telecom wavelength to synthesize vertically emitting, CP light from a quasi-TE waveguide mode. Handedness of the emitted circular polarized light can be thermally controlled with an integrated microheater. The compact device footprint enables a small beam diameter, which is desirable for large-scale integration.
Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang
2016-05-03
Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.
'Invisible' antenna takes up less space
NASA Astrophysics Data System (ADS)
Shelley, M.; Bond, K.
1986-06-01
A compensated microstrip patch design is described that also uses grounded coplanar waveguide to permit a second, independent antenna to be mounted on any type of existing primary radar antenna aboard an aircraft without affecting its radiation. Successful integration of the IFF (identification friend or foe) antenna, which works at D-band, and the primary radar antenna is possible because of the diversity in frequency between the two antennas. Construction of a microstrip radiating element, electromagnetically invisible to the primary antenna, requires orthogonal grating elements and use of the primary antenna as the ground plane. Coplanar mounting of a stripline array with the primary antenna reduces the manufacturing costs and increases the functional performance of the IFF antenna.
A Novel Coupled Resonator Photonic Crystal Design in Lithium Niobate for Electrooptic Applications
Ozturk, Birol; Yavuzcetin, Ozgur; Sridhar, Srinivas
2015-01-01
High-aspect-ratio photonic crystal air-hole fabrication on bulk Lithium Niobate (LN) substrates is extremely difficult due to its inherent resistance to etching, resulting in conical structures and high insertion losses. Here, we propose a novel coupled resonator photonic crystal (CRPC) design, combining a coupled resonator approach with that of Bragg gratings. CRPC design parameters were optimized by analytical calculations and FDTD simulations. CRPC structures with optimized parameters were fabricated and electrooptically tested on bulk LN annealed proton exchange waveguides. Low insertion loss and large electrooptic effect were observed with the fabricated devices, making the CRPC design a promising structure for electroopticmore » device applications.« less
Calzado, Eva M.; Boj, Pedro G.; Díaz-García, María A.
2009-01-01
This review compiles the work performed in the field of organic solid-state lasers with the hole-transporting organic molecule N,N´-bis(3-methylphenyl)-N,N´-diphenyl-benzidine system (TPD), in view of improving active laser material properties. The optimization of the amplified spontaneous emission characteristics, i.e., threshold, linewidth, emission wavelength and photostability, of polystyrene films doped with TPD in waveguide configuration has been achieved by investigating the influence of several materials parameters such as film thickness and TPD concentration. In addition, the influence in the emission properties of the inclusion of a second-order distributed feedback grating in the substrate is discussed.
U.S. verification method disputed
NASA Astrophysics Data System (ADS)
The Association for Women Geoscientists Foundation has established the Chrysalis Scholarship, a $250 grant for women finishing a Masters or Ph.D. degree in an Earth science. Chrysalis is for candidates who have returned to school after an interruption of a year or longer and has no restrictions on use. "We see a winner getting her thesis typed or paying for child care—anything necessary to allow a degree candidate to finish her thesis and enter a geoscience profession," said Vicki Cowart, AWG Foundation president. For information, write to Chrysalis Scholarship, AWG Foundation, c/o Resource Center for Associations, 10200 W. 44th Ave., #304, Wheat Ridge, CO 80033. January 31, 1989, is the deadline to apply for the Chrysalis awards that will be made March 1.
Pascal Liquid Phase in Electronic Waveguides
NASA Astrophysics Data System (ADS)
Tomczyk, M.; Briggeman, M.; Tylan-Tyler, A.; Huang, M.; Tian, B.; Pekker, D.; Lee, J.-W.; Lee, H.; Eom, C.-B.; Levy, J.
Clean one-dimensional electron transport has been observed in very few material systems. The development of exceptionally clean electron waveguides formed at the interface between complex oxides LaAlO3 and SrTiO3 enables low-dimensional transport to be explored with newfound flexibility. This material system not only supports ballistic 1D transport, but possesses a rich phase diagram and strong attractive electron-electron interactions which are not present in other solid-state systems. Here we report an unusual phenomenon in which quantized conductance increases by steps that themselves increase sequentially in multiples of e2 / h . The overall conductance exhibits a Pascal-like sequence: 1, 3, 6, 10... e2 / h , which we ascribe to ballistic transport of 1, 2, 3, 4 ... bunches of electrons. We will discuss how subband degeneracies can occur in non-interacting models that have carefully tuned parameters. Strong attractive interactions are required, however, for these subbands to lock together. This Pascal liquid phase provides a striking example of the consequences of strong attractive interactions in low-dimensional environments. We gratefully acknowledge financial support from AFOSR (FA9550-12-1- 0057 (JL) and FA9550-12-1-0342 (CBE)), ONR N00014-15-1-2847 (JL), and NSF DMR-1234096 (CBE).
NASA Astrophysics Data System (ADS)
Kwiecien, Pavel; Litvik, Ján.; Richter, Ivan; Ctyroký, Jirí; Cheben, Pavel
2017-05-01
Silicon-on-insulator (SOI), as the most promising platform, for advanced photonic integrated structures, employs a high refractive index contrast between the silicon "core" and surrounding media. One of the recent new ideas within this field is based on the alternative formation of the subwavelength sized (quasi)periodic structures, manifesting as an effective medium with respect to propagating light. Such structures relay on Bloch wave propagation concept, in contrast to standard index guiding mechanism. Soon after the invention of such subwavelength grating (SWG) waveguides, the scientists concentrated on various functional elements such as couplers, crossings, mode transformers, convertors, MMI couplers, polarization converters, resonators, Bragg filters, and others. Our contribution is devoted to a detailed numerical analysis and design considerations of Bragg filtering structures based on SWG idea. Based on our previous studies where we have shown impossibility of application of various 2 and "2.5" dimensional methods for the proper numerical analysis, here we effectively use two independent but similar in-house approaches based on 3D Fourier modal methods, namely aperiodic rigorous coupled wave analysis (aRCWA) and bidirectional expansion and propagation method based on Fourier series (BEX) tools. As it was recently demonstrated, SWG Bragg filters are feasible. Based on this idea, we propose, simulate, and optimize spectral characteristics of such filters. In particular, we have investigated several possibilities of modifications of original SWG waveguides towards the Bragg filtering, including firstly - simple single-segment changes in position, thickness, and width, and secondly - several types of Si inclusions, in terms of perturbed width and thickness (and their combinations). The leading idea was to obtain required (e.g. sufficiently narrow) spectral characteristic while keeping the minimum size of Si features large enough. We have found that the second approach with the single element perturbations can provide promising designs. Furthermore, even more complex filtering SWG structures can be considered.
NASA Astrophysics Data System (ADS)
Luo, Bin-bin; Zhao, Ming-fu; Zhou, Xiao-jun; Huang, De-yi; Wang, Shao-fei; Cao, Xue-mei
2011-12-01
Based on the fiber waveguide models, a modified transfer matrix method was utilized to calculate the reflection spectrum of the thinned fiber Bragg grating (ThFBG) under the uneven surrounding refractive index (SRI) environment. Tow SRI ranges, including the high SRI region (from 1.42 to the fiber cladding index) and the low ones (from 1.33 to about 1.36), were considered. Numerical results showed that the responsive characteristics of the reflectance spectrum of the ThFBG were closely related to the properties of the SRI distribution, first, the original reflection spectrum of the ThFBG would split into many tinny resonant peaks and the reflectance spectrums are asymmetric since the uneven SRI distributions, second, the number of the resonant peaks, the decline of the amplitude, and the degree of the asymmetric of the reflectance spectrums would increase as the increase in the SRI gradient and the D-value of the SRI between the tow ends of the ThFBG. The same numerical approach could be used to analyze the responsive characteristics of the ThFBG under the uneven medium environment where the SRI distribution was any other functions.
Lee, Jie Hyun; Park, Heuk; Kang, Sae-Kyoung; Lee, Joon Ki; Chung, Hwan Seok
2015-11-30
In this study, we propose and experimentally demonstrate a wavelength domain rogue-free ONU based on wavelength-pairing of downstream and upstream signals for time/wavelength division-multiplexed optical access networks. The wavelength-pairing tunable filter is aligned to the upstream wavelength channel by aligning it to one of the downstream wavelength channels. Wavelength-pairing is implemented with a compact and cyclic Si-AWG integrated with a Ge-PD. The pairing filter covered four 100 GHz-spaced wavelength channels. The feasibility of the wavelength domain rogue-free operation is investigated by emulating malfunction of the misaligned laser. The wavelength-pairing tunable filter based on the Si-AWG blocks the upstream signal in the non-assigned wavelength channel before data collision with other ONUs.
A Highly Flexible and Efficient Passive Optical Network Employing Dynamic Wavelength Allocation
NASA Astrophysics Data System (ADS)
Hsueh, Yu-Li; Rogge, Matthew S.; Yamamoto, Shu; Kazovsky, Leonid G.
2005-01-01
A novel and high-performance passive optical network (PON), the SUCCESS-DWA PON, employs dynamic wavelength allocation to provide bandwidth sharing across multiple physical PONs. In the downstream, tunable lasers, an arrayed waveguide grating, and coarse/fine filtering combine to create a flexible new optical access solution. In the upstream, several distributed and centralized schemes are proposed and investigated. The network performance is compared to conventional TDM-PONs under different traffic models, including the self-similar traffic model and the transaction-oriented model. Broadcast support and deployment issues are addressed. The network's excellent scalability can bridge the gap between conventional TDM-PONs and WDM-PONs. The powerful architecture is a promising candidate for next generation optical access networks.
Photonic crystal Fano resonances for realizing optical switches, lasers, and non-reciprocal elements
NASA Astrophysics Data System (ADS)
Bekele, Dagmawi A.; Yu, Yi; Hu, Hao; Ding, Yunhong; Sakanas, Aurimas; Ottaviano, Luisa; Semenova, Elizaveta; Oxenløwe, Leif K.; Yvind, Kresten; Mork, Jesper
2017-08-01
We present our work on photonic crystal membrane devices exploiting Fano resonance between a line-defect waveguide and a side coupled nanocavity. Experimental demonstration of fast and compact all-optical switches for wavelength-conversion is reported. It is shown how the use of an asymmetric structure in combination with cavity-enhanced nonlinearity can be used to realize non-reciprocal transmission at ultra-low power and with large bandwidth. A novel type of laser structure, denoted a Fano laser, is discussed in which one of the mirrors is based on a Fano resonance. Finally, the design, fabrication and characterization of grating couplers for efficient light coupling in and out of the indium phosphide photonic crystal platform is discussed.
Su, Tiehui; Scott, Ryan P; Djordjevic, Stevan S; Fontaine, Nicolas K; Geisler, David J; Cai, Xinran; Yoo, S J B
2012-04-23
We propose and demonstrate silicon photonic integrated circuits (PICs) for free-space spatial-division-multiplexing (SDM) optical transmission with multiplexed orbital angular momentum (OAM) states over a topological charge range of -2 to +2. The silicon PIC fabricated using a CMOS-compatible process exploits tunable-phase arrayed waveguides with vertical grating couplers to achieve space division multiplexing and demultiplexing. The experimental results utilizing two silicon PICs achieve SDM mux/demux bit-error-rate performance for 1‑b/s/Hz, 10-Gb/s binary phase shifted keying (BPSK) data and 2-b/s/Hz, 20-Gb/s quadrature phase shifted keying (QPSK) data for individual and two simultaneous OAM states. © 2012 Optical Society of America
On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit.
Burla, Maurizio; Cortés, Luis Romero; Li, Ming; Wang, Xu; Chrostowski, Lukas; Azaña, José
2014-11-01
We proposed and experimentally demonstrated an ultra-broadband on-chip microwave photonic processor that can operate both as RF phase shifter (PS) and true-time-delay (TTD) line, with continuous tuning. The processor is based on a silicon dual-phase-shifted waveguide Bragg grating (DPS-WBG) realized with a CMOS compatible process. We experimentally demonstrated the generation of delay up to 19.4 ps over 10 GHz instantaneous bandwidth and a phase shift of approximately 160° over the bandwidth 22-29 GHz. The available RF measurement setup ultimately limits the phase shifting demonstration as the device is capable of providing up to 300° phase shift for RF frequencies over a record bandwidth approaching 1 THz.
Dispersion-free pulse duration reduction of passively Q-switched microchip lasers.
Lehneis, R; Steinmetz, A; Jauregui, C; Limpert, J; Tünnermann, A
2012-11-01
We present a dispersion-free method for the pulse duration reduction of passively Q-switched microchip laser (MCL) seed sources. This technique comprises two stages: one that carries out the self-phase modulation induced spectral broadening in a waveguide structure and a subsequent spectral filtering stage in order to shorten the pulses in time domain. The setup of a proof-of-principle experiment consists of a fiber-amplified passively Q-switched MCL, a passive single-mode fiber used as nonlinear element in which the spectrum is broadened, and a reflective volume-Bragg-grating acting as bandpass filter. A reduction of the pulse duration from 118 to 32 ps with high temporal quality has been achieved with this setup.
Hybrid silica coarse wavelength-division multiplexer transmitter optical subassembly
NASA Astrophysics Data System (ADS)
An, Jun-Ming; Zhang, Jia-Shun; Wang, Liang-Liang; Zhu, Kaiwu; Sun, Bingli; Li, Yong; Hou, Jie; Li, Jian-Guang; Wu, Yuan-Da; Wang, Yue; Yin, Xiao-Jie
2018-01-01
Based on silica arrayed waveguide grating technology, a hybrid integrated transmitter optical subassembly was developed. Four direct-modulating distributed feedback lasers and four focusing microlenses were integrated to a coarse wavelength-division multiplexer (CWDM) on a CuW substrate. The four-channel silica-on-silicon CWDM was fabricated with 1.5% refractive index difference and 20-nm wavelength spacing. The experimental results showed that the output optical power was >3 mW with 45 mA of injection current, the slope efficiency was >0.0833 W/A, and the 3-dB bandwidth was broader than 18.15 GHz. The 1-dB compress points were higher than 18 and 15.8 dBm for frequency of 10 and 18 GHz, respectively.
Liquid crystal true 3D displays for augmented reality applications
NASA Astrophysics Data System (ADS)
Li, Yan; Liu, Shuxin; Zhou, Pengcheng; Chen, Quanming; Su, Yikai
2018-02-01
Augmented reality (AR) technology, which integrates virtual computer-generated information into the real world scene, is believed to be the next-generation human-machine interface. However, most AR products adopt stereoscopic 3D display technique, which causes the accommodation-vergence conflict. To solve this problem, we have proposed two approaches. The first is a multi-planar volumetric display using fast switching polymer-stabilized liquid crystal (PSLC) films. By rapidly switching the films between scattering and transparent states while synchronizing with a high-speed projector, the 2D slices of a 3D volume could be displayed in time sequence. We delved into the research on developing high-performance PSLC films in both normal mode and reverse mode; moreover, we also realized the demonstration of four-depth AR images with correct accommodation cues. For the second approach, we realized a holographic AR display using digital blazed gratings and a 4f system to eliminate zero-order and higher-order noise. With a 4k liquid crystal on silicon device, we achieved a field of view (FOV) of 32 deg. Moreover, we designed a compact waveguidebased holographic 3D display. In the design, there are two holographic optical elements (HOEs), each of which functions as a diffractive grating and a Fresnel lens. Because of the grating effect, holographic 3D image light is coupled into and decoupled out of the waveguide by modifying incident angles. Because of the lens effect, the collimated zero order light is focused at a point, and got filtered out. The optical power of the second HOE also helps enlarge FOV.
Realization of back-side heterogeneous hybrid III-V/Si DBR lasers for silicon photonics
NASA Astrophysics Data System (ADS)
Durel, Jocelyn; Ferrotti, Thomas; Chantre, Alain; Cremer, Sébastien; Harduin, Julie; Bernabé, Stéphane; Kopp, Christophe; Boeuf, Frédéric; Ben Bakir, Badhise; Broquin, Jean-Emmanuel
2016-02-01
In this paper, the simulation, design and fabrication of a back-side coupling (BSC) concept for silicon photonics, which targets heterogeneous hybrid III-V/Si laser integration is presented. Though various demonstrations of a complete SOI integration of passive and active photonic devices have been made, they all feature multi-level planar metal interconnects, and a lack of integrated light sources. This is mainly due to the conflict between the need of planar surfaces for III-V/Si bonding and multiple levels of metallization. The proposed BSC solution to this topographical problem consists in fabricating lasers on the back-side of the Si waveguides using a new process sequence. The devices are based on a hybrid structure composed of an InGaAsP MQW active area and a Si-based DBR cavity. The emitted light wavelength is accordable within a range of 20 nm around 1.31μm thanks to thermal heaters and the laser output is fiber coupled through a Grating Coupler (GC). From a manufacturing point of view, the BSC approach provides not only the advantages of allowing the use of a thin-BOX SOI instead of a thick one; but it also shifts the laser processing steps and their materials unfriendly to CMOS process to the far back-end areas of fabrication lines. Moreover, aside from solving technological integration issues, the BSC concept offers several new design opportunities for active and passive devices (heat sink, Bragg gratings, grating couplers enhanced with integrated metallic mirrors, tapers…). These building boxes are explored here theoretically and experimentally.
NASA Astrophysics Data System (ADS)
Yeh, Wei-Hsun
Surface plasmon resonance (SPR) is a powerful tool in probing interfacial events in that any changes of effective refractive index in the interface directly impact the behavior of surface plasmons, an electromagnetic wave, travelling along the interface. Surface plasmons (SPs) are generated only if the momemtum of incident light matches that of SPs in the interface. This thesis focuses on tuning the behavior of SPs by changing the topology of diffraction gratings, monitoring the thickness of thin films by diffraction gratings, and use of dispersion images to analyze complex optical responses of SPs through diffraction gratings. Chapter 1 covers the background/principle of SPR, comprehensive literature review, sensor applications, control of SPR spectral responses, and sensitivity of SPR. In Chapter 2, we illustrate a chirped grating with varying surface topology along its spatial position. We demonstrated that the features of nanostructure such as pitch and amplitude significantly impact the behavior of enhanced transmission. In addition, we also illustrate the sensing application of chirped grating and the results indicate that the chirped grating is a sensitive and information rich SPR platform. In chapter 3, we used a commercial DVD diffraction grating as a SPR coupler. A camera-mounted microscope with Bertrend lens attachment is used to observe the enhanced transmission. We demonstrate that this system can monitor the SPR responses and track the thickness of a silicon monoxide film without using a spectrophotometer. Surface plasmons are a result of collective oscillation of free electrons in the metal/dielectric interface. Thus, the interaction of SPs with delocalized electrons from molecular resonance is complex. In chapter 4, we perform both experimental and simulation works to address this complex interaction. Detailed examination and analysis show nontypical SPR responses. For p-polarized light, a branch of dispersion curve and quenching of SPs in the Q band of zinc phthalocyanine are observed. For both p- and s-polarized light, additional waveguided modes are observed and the wavelength from different guided modes are dispersed. Diffraction gratings can provide complicated optical information about SPs. Both front side (air/metal) and back side (metal/substrate) provide SPR signals simultaneously. In chapter 5, we use dispersion images to analyze the complicated optical responses of SPR from an asymmetrical diffraction grating consisting of three layers (air/gold/polycarbonate). We illustrate that clear identification of SPR responses from several diffraction orders at front side and back side can be achieved by the use of dispersion images. Theoretical prediction and experimental results show consistency. We also show that only the behavior of SPs from the front side is impacted by the deposition of Langmuir-Blodgett dielectric films. In chapter 6, we construct a diffraction grating that has a fixed pitch and several amplitudes on its surface by using interference lithography. The purpose of this work is to examine how the amplitude impacts the behavior of transmission peaks. Different amplitudes are successfully fabricated by varying development time in the lithography process. We observed that largest (optimized) enhanced transmission peak shows as the amplitude approach a critical value. Transmission is not maximized below or beyond a critical amplitude. We also found that transmission enhancements are strongly affected by the diffraction efficiencies. A maximum enhancement is observed as diffraction efficiency is largest where amplitude reaches the critical value. The experimental results are then compared to the simulation. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Alimohammadian, Ehsan; Ho, Stephen; Ertorer, Erden; Gherghe, Sebastian; Li, Jianzhao; Herman, Peter R.
2017-03-01
Spatial Light Modulators (SLM) are emerging as a power tool for laser beam shaping whereby digitally addressed phase shifts can impose computer-generated hologram patterns on incoming laser light. SLM provide several additional advantages with ultrashort-pulsed lasers in controlling the shape of both surface and internal interactions with materials. Inside transparent materials, nonlinear optical effects can confine strong absorption only to the focal volume, extend dissipation over long filament tracks, or reach below diffraction-limited spot sizes. Hence, SLM beam shaping has been widely adopted for laser material processing applications that include parallel structuring, filamentation, fiber Bragg grating formation and optical aberration correction. This paper reports on a range of SLM applications we have studied in femtosecond processing of transparent glasses and thin films. Laser phase-fronts were tailored by the SLM to compensate for spherical surface aberration, and to further address the nonlinear interactions that interplay between Kerr-lens self-focusing and plasma defocusing effects over shallow and deep focusing inside the glass. Limits of strong and weak focusing were examined around the respective formation of low-loss optical waveguides and long uniform filament tracks. Further, we have employed the SLM for beam patterning inside thin film, exploring the limits of phase noise, resolution and fringe contrast during interferometric intra-film structuring. Femtosecond laser pulses of 200 fs pulse duration and 515 nm wavelength were shaped by a phase-only LCOS-SLM (Hamamatsu X10468-04). By imposing radial phase profiles, axicon, grating and beam splitting gratings, volume shape control of filament diameter, length, and uniformity as well as simultaneous formation of multiple filaments has been demonstrated. Similarly, competing effects of spherical surface aberration, self-focusing, and plasma de-focusing were studied and delineated to enable formation of low-loss optical waveguides over shallow and deep focusing conditions. Lastly, SLM beam shaping has been successfully extended to interferometric processing inside thin transparent film, enabling the arbitrary formation of uniform or non-uniform, symmetric or asymmetric patterns of flexible shape on nano-scale dimensions without phase-noise degradation by the SLM patterning. We present quantized structuring of thin films by a single laser pulse, demonstrating λ/2nfilm layer ejection control, blister formation, nano-cavities, and film colouring. Closed intra-film nanochannels with high aspect ratio (20:1) have been formed inside 3.5 um thick silica, opening new prospects for sub-cellular studies and lab-in-film concepts that integrate on CMOS silicon technologies.
Si photonics technology for future optical interconnection
NASA Astrophysics Data System (ADS)
Zheng, Xuezhe; Krishnamoorthy, Ashok V.
2011-12-01
Scaling of computing systems require ultra-efficient interconnects with large bandwidth density. Silicon photonics offers a disruptive solution with advantages in reach, energy efficiency and bandwidth density. We review our progress in developing building blocks for ultra-efficient WDM silicon photonic links. Employing microsolder based hybrid integration with low parasitics and high density, we optimize photonic devices on SOI platforms and VLSI circuits on more advanced bulk CMOS technology nodes independently. Progressively, we successfully demonstrated single channel hybrid silicon photonic transceivers at 5 Gbps and 10 Gbps, and 80 Gbps arrayed WDM silicon photonic transceiver using reverse biased depletion ring modulators and Ge waveguide photo detectors. Record-high energy efficiency of less than 100fJ/bit and 385 fJ/bit were achieved for the hybrid integrated transmitter and receiver, respectively. Waveguide grating based optical proximity couplers were developed with low loss and large optical bandwidth to enable multi-layer intra/inter-chip optical interconnects. Thermal engineering of WDM devices by selective substrate removal, together with WDM link using synthetic wavelength comb, we significantly improved the device tuning efficiency and reduced the tuning range. Using these innovative techniques, two orders of magnitude tuning power reduction was achieved. And tuning cost of only a few 10s of fJ/bit is expected for high data rate WDM silicon photonic links.
Kim, Hyunseok; Farrell, Alan C; Senanayake, Pradeep; Lee, Wook-Jae; Huffaker, Diana L
2016-03-09
Monolithically integrated III-V semiconductors on a silicon-on-insulator (SOI) platform can be used as a building block for energy-efficient on-chip optical links. Epitaxial growth of III-V semiconductors on silicon, however, has been challenged by the large mismatches in lattice constants and thermal expansion coefficients between epitaxial layers and silicon substrates. Here, we demonstrate for the first time the monolithic integration of InGaAs nanowires on the SOI platform and its feasibility for photonics and optoelectronic applications. InGaAs nanowires are grown not only on a planar SOI layer but also on a 3D structured SOI layer by catalyst-free metal-organic chemical vapor deposition. The precise positioning of nanowires on 3D structures, including waveguides and gratings, reveals the versatility and practicality of the proposed platform. Photoluminescence measurements exhibit that the composition of ternary InGaAs nanowires grown on the SOI layer has wide tunability covering all telecommunication wavelengths from 1.2 to 1.8 μm. We also show that the emission from an optically pumped single nanowire is effectively coupled and transmitted through an SOI waveguide, explicitly showing that this work lays the foundation for a new platform toward energy-efficient optical links.
Fiber-Optic Sensor-Based Remote Acoustic Emission Measurement in a 1000 °C Environment.
Yu, Fengming; Okabe, Yoji
2017-12-14
Recently, the authors have proposed a remote acoustic emission (AE) measurement configuration using a sensitive fiber-optic Bragg grating (FBG) sensor. In the configuration, the FBG sensor was remotely bonded on a plate, and an optical fiber was used as the waveguide to propagate AE waves from the adhesive point to the sensor. The previous work (Yu et al., Smart Materials and Structures 25 (10), 105,033 (2016)) has clarified the sensing principle behind the special remote measurement system that enables accurate remote sensing of AE signals. Since the silica-glass optical fibers have a high heat-resistance exceeding 1000 °C, this work presents a preliminary high-temperature AE detection method by using the optical fiber-based ultrasonic waveguide to propagate the AE from a high-temperature environment to a room-temperature environment, in which the FBG sensor could function as the receiver of the guided wave. As a result, the novel measurement configuration successfully achieved highly sensitive and stable AE detection in an alumina plate at elevated temperatures in the 100 °C to 1000 °C range. Due to its good performance, this detection method will be potentially useful for the non-destructive testing that can be performed in high-temperature environments to evaluate the microscopic damage in heat-resistant materials.
Hadamard spectrometer for passive LWIR standoff surveillance
NASA Astrophysics Data System (ADS)
Kruzelecky, Roman V.; Wong, Brian; Zou, Jing; Mohammad, Najeeb; Jamroz, Wes; Soltani, Mohammed; Chaker, Mohamed; Haddad, Emile; Laou, Philips; Paradis, Suzanne
2007-06-01
Based on the principle of the Integrated Optical Spectrometer (IOSPEC), a waveguide-based, longwave infrared (LWIR) dispersive spectrometer with multiple input slits for Hadamard spectroscopy was designed and built intended for passive standoff chemical agent detection in 8 to 12μm spectral range. This prototype unit equips with a three-inch input telescope providing a field-of-view of 1.2 degrees, a 16-microslit array (each slit 60 μm by 1.8 mm) module for Hadamard binary coding, a 2-mm core ZnS/ZnSe/ZnS slab waveguide with a 2 by 2 mm2 optical input and micro-machined integrated optical output condensor, a Si micro-machined blazing grating, a customized 128-pixel LWIR mercury-cadmium-telluride (MCT) LN2 cooled detector array, proprietary signal processing technique, software and electronics. According to the current configuration, it was estimated that the total system weight to be ~4 kg, spectral resolution <4cm -1 and Noise Equivalent Spectral Radiance (NESR) <10 -8 Wcm -2 sr -1cm -1 in 8 to 12 μm. System design and preliminary test results of some components will be presented. Upon the arrival of the MCT detector array, the prototype unit will be further tested and its performance validated in fall of 2007.
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-03-09
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-01-01
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics. PMID:28276500
In-situ strain monitoring in liquid containers of LNG transporting carriers
NASA Astrophysics Data System (ADS)
Oh, Min-Cheol; Seo, Jun-Kyu; Kim, Kyung-Jo; Lee, Sang-Min; Kim, Myung-Hyun
2008-08-01
Liquefied natural gas (LNG) transport carriers are exposed to a risk by the repeated bump in the LNG container during the vessel traveling over the wave in ocean. The liquid inside the container, especially when it was not fully contained, make a strong bump onto the insulation panel of the tank wall. The insulation panel consists of several layers of thick polyurethane foam (PUF) to maintain the LNG below the cryogenic temperature, -162°C. Due to the repeated shock on the PUF, a crack could be developed on the tank wall causing a tremendous disaster for LNG carriers. To prevent the accidental crack on the tank, a continuous monitoring of the strain imposed on the PUF is recommended. In this work, a fiber-optic Bragg grating was imbedded inside the PUF for monitoring the strain parallel to the impact direction. The optical fiber sensor with a small diameter of 125 μm was suitable to be inserted in the PUF through a small hole drilled after the PUF was cured. In-situ monitoring of the strain producing the change of Bragg reflection wavelength, a high speed wavelength interrogation method was employed by using an arrayed waveguide grating. By dropping a heavy mass on the PUF, we measured the strain imposed on the insulation panel.
WDM hybrid microoptical transceiver with Bragg volume grating
NASA Astrophysics Data System (ADS)
Jeřábek, Vitezslav; Armas, Julio; Mareš, David; Prajzler, Václav
2012-02-01
The paper presents the design, simulation and construction results of the wavelength division multiplex bidirectional transceiver module (WDM transceiver) for the passive optical network (PON) of a fiber to the home (FTTH) topology network. WDM transceiver uses a microoptical hybrid integration technology with volume holographic Bragg grating triplex filter -VHGT and a collimation lenses imagine system for wavelength multiplexing/ demultiplexing. This transmission type VHGT filter has high diffraction angle, very low insertion loses and optical crosstalk, which guide to very good technical parameters of transceiver module. WDM transceiver has been constructed using system of a four micromodules in the new circle topology. The optical micromodule with VHGT filter and collimation and decollimation lenses, two optoelectronics microwave receiver micromodules for receiving download information (internet and digital TV signals) and optoelectronic transmitter micromodule for transmitting upload information. In the paper is presented the optical analysis of the optical imagine system by ray-transfer matrix. We compute and measure VHGT characteristics such as diffraction angle, diffraction efficiency and diffraction crosstalk of the optical system for 1310, 1490 and 1550 nm wavelength radiation. For the design of optoelectronic receiver micromodule was used the low signal electrical equivalent circuit for the dynamic performance signal analysis. In the paper is presented the planar form WDM transceiver with polymer optical waveguides and two stage interference demultiplexing optical filter as well.
WDM hybrid microoptical transceiver with Bragg volume grating
NASA Astrophysics Data System (ADS)
Jeřábek, Vitezslav; Armas, Julio; Mareš, David; Prajzler, Václav
2011-09-01
The paper presents the design, simulation and construction results of the wavelength division multiplex bidirectional transceiver module (WDM transceiver) for the passive optical network (PON) of a fiber to the home (FTTH) topology network. WDM transceiver uses a microoptical hybrid integration technology with volume holographic Bragg grating triplex filter -VHGT and a collimation lenses imagine system for wavelength multiplexing/ demultiplexing. This transmission type VHGT filter has high diffraction angle, very low insertion loses and optical crosstalk, which guide to very good technical parameters of transceiver module. WDM transceiver has been constructed using system of a four micromodules in the new circle topology. The optical micromodule with VHGT filter and collimation and decollimation lenses, two optoelectronics microwave receiver micromodules for receiving download information (internet and digital TV signals) and optoelectronic transmitter micromodule for transmitting upload information. In the paper is presented the optical analysis of the optical imagine system by ray-transfer matrix. We compute and measure VHGT characteristics such as diffraction angle, diffraction efficiency and diffraction crosstalk of the optical system for 1310, 1490 and 1550 nm wavelength radiation. For the design of optoelectronic receiver micromodule was used the low signal electrical equivalent circuit for the dynamic performance signal analysis. In the paper is presented the planar form WDM transceiver with polymer optical waveguides and two stage interference demultiplexing optical filter as well.
Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter
NASA Astrophysics Data System (ADS)
Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong
2017-03-01
Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.
Low-cost CWDM transmitter package
NASA Astrophysics Data System (ADS)
Bhandarkar, Navin; Castillega, Jaime
2005-03-01
A low-cost coarse-wavelength-division multiplexer (CWDM) transmitter that combines four channels (wavelengths) in the infrared spectrum (~1310 nm) in a small form-factor un-cooled package is demonstrated. The package utilizes precision molded optics to multiplex beams from four grating-outcoupled surface-emitting (GSE) lasers into a single beam suitable for coupling into multimode fiber. This paper summarizes the optical and opto-mechanical design, fabrication and assembly of prototypes, and optical, thermal and electrical measurement results of the prototypes. This unique design enables multiplexing of wavelengths without the use of filters, waveguides, couplers and fiber splicing. Commercial fabrication and alignment technology is used to manufacture the package, resulting in a more robust, reliable and low-cost transmitter. The transmitter package is enabled by the unique characteristics of the long-wavelength GSE laser.
Highly efficient 400 W near-fundamental-mode green thin-disk laser.
Piehler, Stefan; Dietrich, Tom; Rumpel, Martin; Graf, Thomas; Ahmed, Marwan Abdou
2016-01-01
We report on the efficient generation of continuous-wave, high-brightness green laser radiation. Green lasers are particularly interesting for reliable and reproducible deep-penetration welding of copper or for pumping Ti:Sa oscillators. By intracavity second-harmonic generation in a thin-disk laser resonator designed for fundamental-mode operation, an output power of up to 403 W is demonstrated at a wavelength of 515 nm with almost diffraction-limited beam quality. The unprecedented optical efficiency of 40.7% of green output power with respect to the pump power of the thin-disk laser is enabled by the intracavity use of a highly efficient grating waveguide mirror, which combines the functions of wavelength stabilization and spectral narrowing, as well as polarization selection in a single element.
Dynamically reconfigurable optical packet switch (DROPS)
NASA Astrophysics Data System (ADS)
Huang, Chi-Heng; Chou, Hsu-Feng; Bowers, John E.; Toudeh-Fallah, Farzam; Gyurek, Russ
2006-12-01
A novel Dynamically Reconfigurable Optical Packet Switch (DROPS) that combines both spectral and spatial switching capabilities is proposed and experimentally demonstrated for the first time. Compared with an Arrayed Waveguide Grating Router (AWGR), the added spatial switching capability provided by the microelectromechanical systems (MEMS) enables dynamically reconfigurable routing that is not possible with an AWGR alone. This methodology has several advantages over an AWGR including scalability, additional degrees of freedom in routing a packet from an ingress port to an egress port and more flexibility in path or line card recovery. The experimental demonstration implemented with 10-Gb/s packets shows that the added spatial switching does not degrade the bit-error-rate performance, indicating the promising potential of DROPS as a versatile and ultra-high capacity switch for optical packet-switched networks.
46 CFR 169.672 - Wiring for power and lighting circuits.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Wiring for power and lighting circuits must have copper conductors, of 14 AWG or larger, and— (1) Meet... must have stranded conductors. (c) Conductors must be sized so that— (1) They are adequate for the...
30 CFR 75.822 - Underground high-voltage longwall cables.
Code of Federal Regulations, 2011 CFR
2011-07-01
... be a type SHD cable with a center ground-check conductor no smaller than a No. 16 AWG stranded conductor. The cables must be MSHA accepted as flame-resistant under part 18 or approved under subpart K of...
30 CFR 75.822 - Underground high-voltage longwall cables.
Code of Federal Regulations, 2010 CFR
2010-07-01
... be a type SHD cable with a center ground-check conductor no smaller than a No. 16 AWG stranded conductor. The cables must be MSHA accepted as flame-resistant under part 18 or approved under subpart K of...
Optical Analog to Electromagnetically Induced Transparency in Cascaded Ring-Resonator Systems.
Wang, Yonghua; Zheng, Hua; Xue, Chenyang; Zhang, Wendong
2016-07-25
The analogue of electromagnetically induced transparency in optical methods has shown great potential in slow light and sensing applications. Here, we experimentally demonstrated a coupled resonator induced transparency system with three cascaded ring coupled resonators in a silicon chip. The structure was modeled by using the transfer matrix method. Influences of various parameters including coupling ratio of couplers, waveguide loss and additional loss of couplers on transmission characteristic and group index have been investigated theoretically and numerically in detail. The transmission character of the system was measured by the vertical grating coupling method. The enhanced quality factor reached 1.22 × 10⁵. In addition, we further test the temperature performance of the device. The results provide a new method for the manipulation of light in highly integrated optical circuits and sensing applications.
Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds
NASA Technical Reports Server (NTRS)
Pozar, D. M.; Schaubert, D. H.
1984-01-01
A solution is presented to the problem of an infinite array of microstrip patches fed by idealized current probes. The input reflection coefficient is calculated versus scan angle in an arbitrary scan plane, and the effects of substrate parameters and grid spacing are considered. It is pointed out that even when a Galerkin method is used the impedance matrix is not symmetric due to phasing through a unit cell, as required for scanning. The mechanism by which scan blindness can occur is discussed. Measurement results are presented for the reflection coefficient magnitude variation with angle for E-plane, H-plane, and D-plane scans, for various substrate parameters. Measured results from waveguide simulators are also presented, and the scan blindness phenomenon is observed and discussed in terms of forced surface waves and a modified grating lobe diagram.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesim, Yunus E., E-mail: yunus.kesim@bilkent.edu.tr; Battal, Enes; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800
2014-07-15
Noble metals such as gold and silver have been extensively used for plasmonic applications due to their ability to support plasmons, yet they suffer from high intrinsic losses. Alternative plasmonic materials that offer low loss and tunability are desired for a new generation of efficient and agile devices. In this paper, atomic layer deposition (ALD) grown ZnO is investigated as a candidate material for plasmonic applications. Optical constants of ZnO are investigated along with figures of merit pertaining to plasmonic waveguides. We show that ZnO can alleviate the trade-off between propagation length and mode confinement width owing to tunable dielectricmore » properties. In order to demonstrate plasmonic resonances, we simulate a grating structure and computationally demonstrate an ultra-wide-band (4–15 μm) infrared absorber.« less
Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujita, Kazuue, E-mail: kfujita@crl.hpk.co.jp; Hitaka, Masahiro; Ito, Akio
2015-06-22
We report the performance of room temperature terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers with a dual-upper-state (DAU) active region. DAU active region design is theoretically expected to produce larger optical nonlinearity for terahertz difference-frequency generation, compared to the active region designs of the bound-to-continuum type used previously. Fabricated buried heterostructure devices with a two-section buried distributed feedback grating and the waveguide designed for Cherenkov difference-frequency phase-matching scheme operate in two single-mode mid-infrared wavelengths at 10.7 μm and 9.7 μm and produce terahertz output at 2.9 THz with mid-infrared to terahertz conversion efficiency of 0.8 mW/W{sup 2}more » at room temperature.« less
Investigation of RF excited CW CO2 waveguide lasers local oscillator - RF excitation
NASA Technical Reports Server (NTRS)
Hochuli, U.
1988-01-01
A new local oscillator housing was built which seems to have improved laser life. Laser cooling was changed from internal water cooling to the more convenient thermal contact cooling. At the present time, a conclusion can not be made if the 20 percent reduction in power output is the result of poorer cooling or poorer grating alignment. The coupling-starting network was improved from 55 to about 90 percent. It can be adjusted by varying trimmers C sub 1 and C sub 2 to match RF power levels between 10 and 30 W. If the laser admittance changes greatly with laser life rematching will have to be achieved by remote control for space applications. The same holds true if the RF power level has to be changed with a maximum efficiency constraint.
Visualizing light with electrons
NASA Astrophysics Data System (ADS)
Fitzgerald, J. P. S.; Word, R. C.; Koenenkamp, R.
2014-03-01
In multiphoton photoemission electron microscopy (nP-PEEM) electrons are emitted from surfaces at a rate proportional to the surface electromagnetic field amplitude. We use 2P-PEEM to give nanometer scale visualizations of light of diffracted and waveguide fields around various microstructures. We use Fourier analysis to determine the phase and amplitude of surface fields in relation to incident light from the interference patterns. To provide quick and intuitive simulations of surface fields, we employ two dimensional Fresnel-Kirchhoff integration, a technique based on freely propagating waves and Huygens' principle. We find generally good agreement between simulations and experiment. Additionally diffracted wave simulations exhibit greater phase accuracy, indicating that these waves are well represented by a two dimensional approximation. The authors gratefully acknowledge funding of this research by the US-DOE Basic Science Office under Contract DE-FG02-10ER46406.
NASA Astrophysics Data System (ADS)
Scheuermann, Julian; Weih, Robert; Becker, Steffen; Fischer, Marc; Koeth, Johannes; Höfling, Sven
2018-01-01
An interband cascade laser multiemitter with single-mode distributed feedback (DFB) emission at two wavelengths is presented. Continuous-wave laser operation is measured from 0°C to 40°C with threshold currents of around 25 mA and output powers of around 9 mW at 20°C. The ridge waveguide DFB structures are monolithically integrated with a spacing of 70 μm and each is provided with an individual metal DFB grating to select specific single-mode wavelengths of interest for absorption spectroscopy. The emission windows at 3.92 and 4.01 μm are targeting hydrogen sulfide and sulfur dioxide, which are of importance for industrial applications since both gases are reagents of the Claus process in sulfur recovery units, recovering elemental sulfur from gaseous hydrogen sulfide.
Materials processing by use of a Ti:Sapphire laser with automatically-adjustable pulse duration
NASA Astrophysics Data System (ADS)
Kamata, M.; Imahoko, T.; Ozono, K.; Obara, M.
We have developed an automatic pulsewidth-adjustable femtosecond Ti:Sapphire laser system that can generate an output of 50 fs-1 ps in duration, and sub-mJ/pulse at a repetition rate of 1 kpps. The automatic pulse compressor enables one to control the pulsewidth in the range of 50 fs-1 ps by use of a personal computer (PC). The compressor can change the distance in-between and the tilt angle of the grating pairs by use of two stepping motors and two piezo-electric transducer(PZT) driven actuators, respectively. Both are controlled by a PC. Therefore, not only control of the pulsewidth, but also of the optical chirp becomes easy. By use of this femtosecond laser system, we fabricated a waveguide in fused quartz. The numerical aperture is chosen to 0.007 to loosely focus the femtosecond laser. The fabricated waveguides are well controllable by the incident laser pulsewidth. We also demonstrated the ablation processing of hydroxyapatite (Ca10(PO4)6(OH)2), which is a key component of human tooth and human bone for orthopedics and dentistry. With pulsewidth tunable output from 50 fs through 2 ps at 1 kpps, the chemical content of calcium and phosphorus is kept unchanged before and after 50-fs-2-ps laser ablation. We also demonstrated the precise ablation processing of human tooth enamel with 2 ps Ti:Sapphire laser.
29 CFR 1926.954 - Grounding for protection of employees.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the new lines or equipment. (c) Communication conductors. Bare wire communication conductors on power... have a resistance to ground low enough to remove the danger of harm to personnel or permit prompt... shall have a minimum conductance of No. 2 AWG copper. ...
29 CFR 1926.954 - Grounding for protection of employees.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the new lines or equipment. (c) Communication conductors. Bare wire communication conductors on power... have a resistance to ground low enough to remove the danger of harm to personnel or permit prompt... shall have a minimum conductance of No. 2 AWG copper. ...
29 CFR 1926.954 - Grounding for protection of employees.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the new lines or equipment. (c) Communication conductors. Bare wire communication conductors on power... have a resistance to ground low enough to remove the danger of harm to personnel or permit prompt... shall have a minimum conductance of No. 2 AWG copper. ...
29 CFR 1926.954 - Grounding for protection of employees.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the new lines or equipment. (c) Communication conductors. Bare wire communication conductors on power... have a resistance to ground low enough to remove the danger of harm to personnel or permit prompt... shall have a minimum conductance of No. 2 AWG copper. ...
29 CFR 1926.954 - Grounding for protection of employees.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the new lines or equipment. (c) Communication conductors. Bare wire communication conductors on power... have a resistance to ground low enough to remove the danger of harm to personnel or permit prompt... shall have a minimum conductance of No. 2 AWG copper. ...
Bulckaen, Massimo; Capitanini, Alessandro; Lange, Sara; Caciula, Andrea; Giuntoli, Franco; Cupisti, Adamasco
2011-01-01
Exercise training is beneficial for hemodialysis patients, but it should be tailored to individual abilities and willingness to participate. This study evaluated the effects of different 6-month programs of physical activity in 18 patients of a single hemodialysis unit. Before and after a 12-month control period (T0), and following 3 (T3) and 6 (T6) months of training, the patients underwent the 6-minute walk test (6MWT) and constant treadmill test at 3 km/hour speed and 10% grade; spontaneous physical activity was assessed by pedometers. All patients trained for coordination, flexibility and muscular strengthening for 30 minutes within the first 2 hours of hemodialysis sessions: 9 patients underwent home exercise walking training (advised walking group [AWG]); the other 9 patients underwent the advised home training program plus an additional supervised gym training session, twice weekly (supervised walking group [SWG]). In both AWG and SWG, no changes occurred during the control period (232 ± 204 m and 248 ± 187 m at T0). In contrast, endurance performance at treadmill increased at T3 and T6 in the AWG (377 ± 272 m and 615 ± 413 m; p<0.01) and in the SWG (424 ± 272 m and 890 ± 364 m; p<0.001). No unwanted side effects occurred. This study shows that physical exercise programs can safely increase physical performance in hemodialysis patients. The training program should be continued for at least 6 months to increase muscle strength and endurance. Intradialytic exercise and home-based, pedometer-based regimens may be a useful and easy approach, whereas supervised programs can give additional benefits in motivated, selected patients.
Chen, Liang-Kung; Lee, Wei-Ju; Peng, Li-Ning; Liu, Li-Kuo; Arai, Hidenori; Akishita, Masahiro
2016-08-01
Sarcopenia was recently classified a geriatric syndrome and is a major challenge to healthy aging. Affected patients tend to have worse clinical outcomes and higher mortality than those without sarcopenia. Although there is general agreement on the principal diagnostic characteristics, initial thresholds for muscle mass, strength, and physical performance were based on data from populations of predominantly Europid ancestry and may not apply worldwide. The Asian Working Group for Sarcopenia (AWGS) issued regional consensus guidelines in 2014, and many more research studies from Asia have since been published; this review summarizes recent progress. The prevalence of sarcopenia estimated by the AWGS criteria ranges between 4.1% and 11.5% of the general older population; however, prevalence rates were higher in Asian studies that used European Working Group on Sarcopenia in Older People cut-offs. Risk factors include age, sex, heart disease, hyperlipidemia, daily alcohol consumption, and low protein or vitamin intake; physical activity is protective. Adjusting skeletal muscle mass by weight rather than height is better in showing the effect of older age in sarcopenia and identifying sarcopenic obesity; however, some Asian studies found no significant skeletal muscle loss, and muscle strength might be a better indicator. Although AWGS 2014 diagnostic cut-offs were generally well accepted, some may require further revision in light of conflicting evidence from some studies. The importance of sarcopenia in diverse therapeutic areas is increasingly evident, with strong research interest in sarcopenic obesity and the setting of malignancy. Pharmacologic interventions have been unsatisfactory, and the core management strategies remain physical exercise and nutritional supplementation; however, further research is required to determine the most beneficial approaches. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
The TIME-Pilot intensity mapping experiment
NASA Astrophysics Data System (ADS)
Crites, A. T.; Bock, J. J.; Bradford, C. M.; Chang, T. C.; Cooray, A. R.; Duband, L.; Gong, Y.; Hailey-Dunsheath, S.; Hunacek, J.; Koch, P. M.; Li, C. T.; O'Brient, R. C.; Prouve, T.; Shirokoff, E.; Silva, M. B.; Staniszewski, Z.; Uzgil, B.; Zemcov, M.
2014-08-01
TIME-Pilot is designed to make measurements from the Epoch of Reionization (EoR), when the first stars and galaxies formed and ionized the intergalactic medium. This will be done via measurements of the redshifted 157.7 um line of singly ionized carbon ([CII]). In particular, TIME-Pilot will produce the first detection of [CII] clustering fluctuations, a signal proportional to the integrated [CII] intensity, summed over all EoR galaxies. TIME-Pilot is thus sensitive to the emission from dwarf galaxies, thought to be responsible for the balance of ionizing UV photons, that will be difficult to detect individually with JWST and ALMA. A detection of [CII] clustering fluctuations would validate current theoretical estimates of the [CII] line as a new cosmological observable, opening the door for a new generation of instruments with advanced technology spectroscopic array focal planes that will map [CII] fluctuations to probe the EoR history of star formation, bubble size, and ionization state. Additionally, TIME-Pilot will produce high signal-to-noise measurements of CO clustering fluctuations, which trace the role of molecular gas in star-forming galaxies at redshifts 0 < z < 2. With its unique atmospheric noise mitigation, TIME-Pilot also significantly improves sensitivity for measuring the kinetic Sunyaev-Zel'dovich (kSZ) effect in galaxy clusters. TIME-Pilot will employ a linear array of spectrometers, each consisting of a parallel-plate diffraction grating. The spectrometer bandwidth covers 185-323 GHz to both probe the entire redshift range of interest and to include channels at the edges of the band for atmospheric noise mitigation. We illuminate the telescope with f/3 horns, which balances the desire to both couple to the sky with the best efficiency per beam, and to pack a large number of horns into the fixed field of view. Feedhorns couple radiation to the waveguide spectrometer gratings. Each spectrometer grating has 190 facets and provides resolving power above 100. At this resolution, the longest dimension of the grating is 31 cm, which allows us to stack gratings in two blocks (one for each polarization) of 16 within a single cryostat, providing a 1x16 array of beams in a 14 arcminute field of view. Direct absorber TES sensors sit at the output of the grating on six linear facets over the output arc, allowing us to package and read out the detectors as arrays in a modular manner. The 1840 detectors will be read out with the NIST time-domain-multiplexing (TDM) scheme and cooled to a base temperature of 250 mK with a 3He sorption refrigerator. We present preliminary designs for the TIME-Pilot cryogenics, spectrometers, bolometers, and optics.
One-step sol-gel imprint lithography for guided-mode resonance structures.
Huang, Yin; Liu, Longju; Johnson, Michael; C Hillier, Andrew; Lu, Meng
2016-03-04
Guided-mode resonance (GMR) structures consisting of sub-wavelength periodic gratings are capable of producing narrow-linewidth optical resonances. This paper describes a sol-gel-based imprint lithography method for the fabrication of submicron 1D and 2D GMR structures. This method utilizes a patterned polydimethylsiloxane (PDMS) mold to fabricate the grating coupler and waveguide for a GMR device using a sol-gel thin film in a single step. An organic-inorganic hybrid sol-gel film was selected as the imprint material because of its relatively high refractive index. The optical responses of several sol-gel GMR devices were characterized, and the experimental results were in good agreement with the results of electromagnetic simulations. The influence of processing parameters was investigated in order to determine how finely the spectral response and resonant wavelength of the GMR devices could be tuned. As an example potential application, refractometric sensing experiments were performed using a 1D sol-gel device. The results demonstrated a refractive index sensitivity of 50 nm/refractive index unit. This one-step fabrication process offers a simple, rapid, and low-cost means of fabricating GMR structures. We anticipate that this method can be valuable in the development of various GMR-based devices as it can readily enable the fabrication of complex shapes and allow the doping of optically active materials into sol-gel thin film.
Duval, Daphné; González-Guerrero, Ana Belén; Dante, Stefania; Osmond, Johann; Monge, Rosa; Fernández, Luis J; Zinoviev, Kirill E; Domínguez, Carlos; Lechuga, Laura M
2012-05-08
One of the main limitations for achieving truly lab-on-a-chip (LOC) devices for point-of-care diagnosis is the incorporation of the "on-chip" detection. Indeed, most of the state-of-the-art LOC devices usually require complex read-out instrumentation, losing the main advantages of portability and simplicity. In this context, we present our last advances towards the achievement of a portable and label-free LOC platform with highly sensitive "on-chip" detection by using nanophotonic biosensors. Bimodal waveguide interferometers fabricated by standard silicon processes have been integrated with sub-micronic grating couplers for efficient light in-coupling, showing a phase resolution of 6.6 × 10(-4)× 2π rad and a limit of detection of 3.3 × 10(-7) refractive index unit (RIU) in bulk. A 3D network of SU-8 polymer microfluidics monolithically assembled at the wafer-level was included, ensuring perfect sealing and compact packaging. To overcome some of the drawbacks inherent to interferometric read-outs, a novel all-optical wavelength modulation system has been implemented, providing a linear response and a direct read-out of the phase variation. Sensitivity, specificity and reproducibility of the wavelength modulated BiMW sensor has been demonstrated through the label-free immunodetection of the human hormone hTSH at picomolar level using a reliable biofunctionalization process.
30 CFR 75.601-3 - Short circuit protection; dual element fuses; current ratings; maximum values.
Code of Federal Regulations, 2011 CFR
2011-07-01
... devices shall not exceed the maximum values specified in this section: Conductor size (AWG or MGM) Single conductor cable Ampacity Max. fuse rating Two conductor cable Ampacity Max. fuse rating 14 15 15 12 20 20 10...
Association for Women Geoscientists
the three following professional areas: government/regulatory, private industry/consulting and : Ozark hAWGs Outstanding Educator Award: Susan Conrad Professional Excellence Award in Industry: Lisa central time! There will be representatives from government, academia, and industry to talk about the
Protecting Against Damage from Refraction of High Power Microwaves in the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
Lohr, John; Brambila, Rigo; Cengher, Mirela; Chen, Xi; Gorelov, Yuri; Grosnickle, William; Moeller, Charles; Ponce, Dan; Prater, Ron; Torrezan, Antonio; Austin, Max; Doyle, Edward; Hu, Xing; Dormier, Calvin
2017-07-01
Several new protective systems are being installed on the DIII D tokamak to increase the safety margins for plasma operations with injected ECH power at densities approaching cutoff. Inadvertent overdense operation has previously resulted in reflection of an rf beam back into a launcher causing extensive arcing and melt damage on one waveguide line. Damage to microwave diagnostics, which are located on the same side of the tokamak as the ECH launchers, also has occurred. Developing a reliable microwave based interlock to protect the many vulnerable systems in DIII-D has proved to be difficult. Therefore, multiple protective steps have been taken to reduce the risk of damage in the future. Among these is a density interlock generated by the plasma control system, with setpoint determined by the ECH operators based on rf beam trajectories and plasma parameters. Also installed are enhanced video monitoring of the launchers, and an ambient light monitor on each of the waveguide systems, along with a Langmuir probe at the mouth of each launcher. Versatile rf monitors, measuring forward and reflected power in addition to the mode content of the rf beams, have been installed as the last miter bends in each waveguide line. As these systems are characterized, they are being incorporated in the interlock chains, which enable the ECH injection permits. The diagnostics most susceptible to damage from the ECH waves have also been fitted with a variety of protective devices including stripline filters, thin resonant notch filters tuned to the 110 GHz injected microwave frequency, blazed grating filters and shutters. Calculations of rf beam trajectories in the plasmas are performed using the TORAY ray tracing code with input from kinetic profile diagnostics. Using these calculations, strike points for refracted beams on the vacuum vessel are calculated, which allows evaluation of the risk of damage to sensitive diagnostics and hardware.
Protecting against damage from refraction of high power microwaves in the DIII-D tokamak
Lohr, John; Brambila, Rigo; Cengher, Mirela; ...
2017-07-24
Here, several new protective systems are being installed on the DIII D tokamak to increase the safety margins for plasma operations with injected ECH power at densities approaching cutoff. Inadvertent overdense operation has previously resulted in reflection of an rf beam back into a launcher causing extensive arcing and melt damage on one waveguide line. Damage to microwave diagnostics, which are located on the same side of the tokamak as the ECH launchers, also has occurred. Developing a reliable microwave based interlock to protect the many vulnerable systems in DIII-D has proved to be difficult. Therefore, multiple protective steps havemore » been taken to reduce the risk of damage in the future. Among these is a density interlock generated by the plasma control system, with setpoint determined by the ECH operators based on rf beam trajectories and plasma parameters. Also installed are enhanced video monitoring of the launchers, and an ambient light monitor on each of the waveguide systems, along with a Langmuir probe at the mouth of each launcher. Versatile rf monitors, measuring forward and reflected power in addition to the mode content of the rf beams, have been installed as the last miter bends in each waveguide line. As these systems are characterized, they are being incorporated in the interlock chains, which enable the ECH injection permits. The diagnostics most susceptible to damage from the ECH waves have also been fitted with a variety of protective devices including stripline filters, thin resonant notch filters tuned to the 110 GHz injected microwave frequency, blazed grating filters and shutters. Calculations of rf beam trajectories in the plasmas are performed using the TORAY ray tracing code with input from kinetic profile diagnostics. Using these calculations, strike points for refracted beams on the vacuum vessel are calculated, which allows evaluation of the risk of damage to sensitive diagnostics and hardware.« less
Protecting against damage from refraction of high power microwaves in the DIII-D tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohr, John; Brambila, Rigo; Cengher, Mirela
Here, several new protective systems are being installed on the DIII D tokamak to increase the safety margins for plasma operations with injected ECH power at densities approaching cutoff. Inadvertent overdense operation has previously resulted in reflection of an rf beam back into a launcher causing extensive arcing and melt damage on one waveguide line. Damage to microwave diagnostics, which are located on the same side of the tokamak as the ECH launchers, also has occurred. Developing a reliable microwave based interlock to protect the many vulnerable systems in DIII-D has proved to be difficult. Therefore, multiple protective steps havemore » been taken to reduce the risk of damage in the future. Among these is a density interlock generated by the plasma control system, with setpoint determined by the ECH operators based on rf beam trajectories and plasma parameters. Also installed are enhanced video monitoring of the launchers, and an ambient light monitor on each of the waveguide systems, along with a Langmuir probe at the mouth of each launcher. Versatile rf monitors, measuring forward and reflected power in addition to the mode content of the rf beams, have been installed as the last miter bends in each waveguide line. As these systems are characterized, they are being incorporated in the interlock chains, which enable the ECH injection permits. The diagnostics most susceptible to damage from the ECH waves have also been fitted with a variety of protective devices including stripline filters, thin resonant notch filters tuned to the 110 GHz injected microwave frequency, blazed grating filters and shutters. Calculations of rf beam trajectories in the plasmas are performed using the TORAY ray tracing code with input from kinetic profile diagnostics. Using these calculations, strike points for refracted beams on the vacuum vessel are calculated, which allows evaluation of the risk of damage to sensitive diagnostics and hardware.« less
Topology-optimized silicon photonic wire mode (de)multiplexer
NASA Astrophysics Data System (ADS)
Frellsen, Louise F.; Frandsen, Lars H.; Ding, Yunhong; Elesin, Yuriy; Sigmund, Ole; Yvind, Kresten
2015-02-01
We have designed and for the first time experimentally verified a topology optimized mode (de)multiplexer, which demultiplexes the fundamental and the first order mode of a double mode photonic wire to two separate single mode waveguides (and multiplexes vice versa). The device has a footprint of ~4.4 μm x ~2.8 μm and was fabricated for different design resolutions and design threshold values to verify the robustness of the structure to fabrication tolerances. The multiplexing functionality was confirmed by recording mode profiles using an infrared camera and vertical grating couplers. All structures were experimentally found to maintain functionality throughout a 100 nm wavelength range limited by available laser sources and insertion losses were generally lower than 1.3 dB. The cross talk was around -12 dB and the extinction ratio was measured to be better than 8 dB.
NASA Astrophysics Data System (ADS)
Gibbon, T. B.; Prince, K.; Pham, T. T.; Tatarczak, A.; Neumeyr, C.; Rönneberg, E.; Ortsiefer, M.; Monroy, I. Tafur
2011-01-01
Vertical Cavity Surface Emitting Lasers (VCSELs) are extremely cost effective, energy efficient optical sources ideal for passive optical access networks. However, wavelength chirp and chromatic dispersion severely limit VCSEL performance at bit rates of 10 Gb/s and above. We experimentally show how off-center wavelength filtering of the VCSEL spectrum at an array waveguide grating can be used to mitigate the effect of chirp and the dispersion penalty. Transmission at 10 Gb/s VCSEL over 23.6 km of single mode fiber is experimentally demonstrated, with a dispersion penalty of only 2.9 dB. Simulated results are also presented which show that off-center wavelength filtering can extend the 10 Gb/s network reach from 11.7 km to 25.8 km for a 4 dB dispersion penalty. This allows for cheap and simple dispersion mitigation in next generation VCSEL-based optical access networks.
NASA Astrophysics Data System (ADS)
Thiel, M.; Flachenecker, G.; Schade, W.; Gorecki, C.; Thoma, A.; Rathje, R.
2017-11-01
Optical seals consisting of waveguide Bragg grating sensor structures in ultra thin glass transparencies have been developed to cover security relevant objects for detection of unauthorized access. For generation of optical signature in the seals, femtosecond laser pulses were used. The optical seals were connected with an optical fiber to enable external read out of the seal. Different attack scenarios for getting undetected access to the object, covered by the seal, were proven and evaluated. The results presented here, verify a very high level of security. An unauthorized detaching and subsequent replacement by original or copy of the seals for tampering would be accompanied with a very high technological effort, posing a substantial barrier towards an attacker. Additionally, environmental influences like temperature effects have a strong but reproducible influence on signature, which in context of a temperature reference database increases the level of security significantly.
Zhao, Changyun; Wei, Bing; Yang, Longzhi; Wang, Gencheng; Wang, Yuehai; Jiang, Xiaoqing; Li, Yubo; Yang, Jianyi
2015-09-20
We investigate the accumulative effect of the phase measurement errors in characterizing optical multipath components by low-coherence interferometry. The accumulative effect is caused by the fluctuation of the environment temperature, which leads to the variation of the refractive index of the device under test. The resulting phase measurement errors accumulate with the increasing of the phase difference between the two interferometer arms. Our experiments were carried out to demonstrate that the accumulative effect is still obvious even though the thermo-optical coefficient of the device under test is quite small. Shortening the measurement time to reduce the fluctuation of the environment temperature can effectively restrain the accumulative effect. The experiments show that when the scanning speed increases to 4.8 mm/s, the slope of the phase measurement errors decreases to 5.52×10(-8), which means the accumulative effect can be ignored.
Linear integrated optics in 3C silicon carbide.
Martini, Francesco; Politi, Alberto
2017-05-15
The development of new photonic materials that combine diverse optical capabilities is needed to boost the integration of different quantum and classical components within the same chip. Amongst all candidates, the superior optical properties of cubic silicon carbide (3C SiC) could be merged with its crystalline point defects, enabling single photon generation, manipulation and light-matter interaction on a single device. The development of photonics devices in SiC has been limited by the presence of the silicon substrate, over which thin crystalline films are heteroepitaxially grown. By employing a novel approach in the material fabrication, we demonstrate grating couplers with coupling efficiency reaching -6 dB, sub-µm waveguides and high intrinsic quality factor (up to 24,000) ring resonators. These components are the basis for linear optical networks and essential for developing a wide range of photonics component for non-linear and quantum optics.
Characterization and on-sky demonstration of an integrated photonic spectrograph for astronomy.
Cvetojevic, N; Lawrence, J S; Ellis, S C; Bland-Hawthorn, J; Haynes, R; Horton, A
2009-10-12
We present results from the first on-sky demonstration of a prototype astronomical integrated photonic spectrograph (IPS) using the Anglo-Australian Telescope near-infrared imaging spectrometer (IRIS2) at Siding Spring Observatory to observe atmospheric molecular OH emission lines. We have succeeded in detecting upwards of 27 lines, and demonstrated the practicality of the IPS device for astronomy. Furthermore, we present a laboratory characterization of the device, which is a modified version of a commercial arrayed-waveguide grating multiplexer. We measure the spectral resolution full-width-half-maximum to be 0.75 +/- 0.05 nm (giving R = lambda/deltalambda = 2100 +/- 150 at 1500 nm). We find the free spectral range to be 57.4 +/- 0.6 nm and the peak total efficiency to be approximately 65%. Finally, we briefly discuss the future steps required to realize an astronomical instrument based on this technology concept.
Nanophotonic label-free biosensors for environmental monitoring.
Chocarro-Ruiz, Blanca; Fernández-Gavela, Adrián; Herranz, Sonia; Lechuga, Laura M
2017-06-01
The field of environmental monitoring has experienced a substantial progress in the last years but still the on-site control of contaminants is an elusive problem. In addition, the growing number of pollutant sources is accompanied by an increasing need of having efficient early warning systems. Several years ago biosensor devices emerged as promising environmental monitoring tools, but their level of miniaturization and their fully operation outside the laboratory prevented their use on-site. In the last period, nanophotonic biosensors based on evanescent sensing have emerged as an outstanding choice for portable point-of-care diagnosis thanks to their capability, among others, of miniaturization, multiplexing, label-free detection and integration in lab-on-chip platforms. This review covers the most relevant nanophotonic biosensors which have been proposed (including interferometric waveguides, grating-couplers, microcavity resonators, photonic crystals and localized surface plasmon resonance sensors) and their recent application for environmental surveillance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of material dispersion using a nanosecond optical pulse radiator.
Horiguchi, M; Ohmori, Y; Miya, T
1979-07-01
To study the material dispersion effects on graded-index fibers, a method for measuring the material dispersion in optical glass fibers has been developed. Nanosecond pulses in the 0.5-1.7-microm region are generated by a nanosecond optical pulse radiator and grating monochromator. These pulses are injected into a GeO(2)-P(2)0(5)-doped silica graded-index fiber. Relative time delay changes between different wavelengths are used to determine material dispersion, core glass refractive index, material group index, and optimum profile parameter of the graded-index fiber. From the measured data, the optimum profile parameter on the GeO(2)-P(2)O(5)-doped silica graded-index fiber could be estimated to be 1.88 at 1.27 microm of the material dispersion free wavelength region and 1.82 at 1.55 microm of the lowest-loss wavelength region in silica-based optical fiber waveguides.
A single-stage optical load-balanced switch for data centers.
Huang, Qirui; Yeo, Yong-Kee; Zhou, Luying
2012-10-22
Load balancing is an attractive technique to achieve maximum throughput and optimal resource utilization in large-scale switching systems. However current electronic load-balanced switches suffer from severe problems in implementation cost, power consumption and scaling. To overcome these problems, in this paper we propose a single-stage optical load-balanced switch architecture based on an arrayed waveguide grating router (AWGR) in conjunction with fast tunable lasers. By reuse of the fast tunable lasers, the switch achieves both functions of load balancing and switching through the AWGR. With this architecture, proof-of-concept experiments have been conducted to investigate the feasibility of the optical load-balanced switch and to examine its physical performance. Compared to three-stage load-balanced switches, the reported switch needs only half of optical devices such as tunable lasers and AWGRs, which can provide a cost-effective solution for future data centers.
A scalable silicon photonic chip-scale optical switch for high performance computing systems.
Yu, Runxiang; Cheung, Stanley; Li, Yuliang; Okamoto, Katsunari; Proietti, Roberto; Yin, Yawei; Yoo, S J B
2013-12-30
This paper discusses the architecture and provides performance studies of a silicon photonic chip-scale optical switch for scalable interconnect network in high performance computing systems. The proposed switch exploits optical wavelength parallelism and wavelength routing characteristics of an Arrayed Waveguide Grating Router (AWGR) to allow contention resolution in the wavelength domain. Simulation results from a cycle-accurate network simulator indicate that, even with only two transmitter/receiver pairs per node, the switch exhibits lower end-to-end latency and higher throughput at high (>90%) input loads compared with electronic switches. On the device integration level, we propose to integrate all the components (ring modulators, photodetectors and AWGR) on a CMOS-compatible silicon photonic platform to ensure a compact, energy efficient and cost-effective device. We successfully demonstrate proof-of-concept routing functions on an 8 × 8 prototype fabricated using foundry services provided by OpSIS-IME.
75 FR 41529 - Petitions for Modification
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-16
... number'' on the subject line, by any of the following methods: 1. Electronic Mail: Standards-Petitions... permissible pump trailing cables will not be smaller than 10 American Wire Gauge (AWG); (4) all circuit... will have an instantaneous trip unit calibrated to trip at 70 percent of phase-to-phase short-circuit...
75 FR 12793 - Petitions for Modification
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-17
... number'' on the subject line, by any of the following methods: 1. Electronic Mail: Standards-Petitions... cables will be no smaller than 10 American Wire Gauge (AWG); (4) all circuit breakers used to protect... unit calibrated to trip at 70% of phase to phase short circuit current. The trip setting of these...
30 CFR 75.804 - Underground high-voltage cables.
Code of Federal Regulations, 2010 CFR
2010-07-01
... grounded systems shall be equipped with metallic shields around each power conductor with one or more ground conductors having a total cross sectional area of not less than one-half the power conductor, and with an insulated external conductor not smaller than No. 8 (A.W.G.) or an insulated internal ground...
30 CFR 75.804 - Underground high-voltage cables.
Code of Federal Regulations, 2011 CFR
2011-07-01
... grounded systems shall be equipped with metallic shields around each power conductor with one or more ground conductors having a total cross sectional area of not less than one-half the power conductor, and with an insulated external conductor not smaller than No. 8 (A.W.G.) or an insulated internal ground...
46 CFR 111.60-4 - Minimum cable conductor size.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Minimum cable conductor size. 111.60-4 Section 111.60-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... conductor must be #18 AWG (0.82 mm2) or larger except— (a) Each power and lighting cable conductor must be...
46 CFR 111.60-4 - Minimum cable conductor size.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Minimum cable conductor size. 111.60-4 Section 111.60-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... conductor must be #18 AWG (0.82 mm2) or larger except— (a) Each power and lighting cable conductor must be...
46 CFR 111.60-4 - Minimum cable conductor size.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Minimum cable conductor size. 111.60-4 Section 111.60-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... conductor must be #18 AWG (0.82 mm2) or larger except— (a) Each power and lighting cable conductor must be...
46 CFR 28.865 - Wiring methods and materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (e) Cable and wire for power and lighting circuits must: (1) For circuits of less than 50 volts, meet... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.865 Wiring methods and materials. (a) All cable... the circuit. (b) Each conductor must be No. 22 AWG or larger. Conductors in power and lighting...
46 CFR 28.865 - Wiring methods and materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... (e) Cable and wire for power and lighting circuits must: (1) For circuits of less than 50 volts, meet... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.865 Wiring methods and materials. (a) All cable... the circuit. (b) Each conductor must be No. 22 AWG or larger. Conductors in power and lighting...
46 CFR 28.370 - Wiring methods and materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... that affects one cable does not affect the other. (d) Cable and wire for power and lighting circuits... Operate With More Than 16 Individuals on Board § 28.370 Wiring methods and materials. (a) All cable and... circuit. (b) Each conductor must be No. 22 AWG or larger. Conductors in power and lighting circuits must...
46 CFR 28.865 - Wiring methods and materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (e) Cable and wire for power and lighting circuits must: (1) For circuits of less than 50 volts, meet... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.865 Wiring methods and materials. (a) All cable... the circuit. (b) Each conductor must be No. 22 AWG or larger. Conductors in power and lighting...
46 CFR 28.865 - Wiring methods and materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (e) Cable and wire for power and lighting circuits must: (1) For circuits of less than 50 volts, meet... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.865 Wiring methods and materials. (a) All cable... the circuit. (b) Each conductor must be No. 22 AWG or larger. Conductors in power and lighting...
46 CFR 28.370 - Wiring methods and materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... that affects one cable does not affect the other. (d) Cable and wire for power and lighting circuits... Operate With More Than 16 Individuals on Board § 28.370 Wiring methods and materials. (a) All cable and... circuit. (b) Each conductor must be No. 22 AWG or larger. Conductors in power and lighting circuits must...
46 CFR 28.370 - Wiring methods and materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... that affects one cable does not affect the other. (d) Cable and wire for power and lighting circuits... Operate With More Than 16 Individuals on Board § 28.370 Wiring methods and materials. (a) All cable and... circuit. (b) Each conductor must be No. 22 AWG or larger. Conductors in power and lighting circuits must...
The Application of Ultrasonic Inspection to Crimped Electrical Connections
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.
2010-01-01
The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The development of a prototype instrument, based on a modified, commercially available, crimp tool, is demonstrated for applying this technique when wire crimps are installed. The crimp tool has three separate crimping locations that accommodate the three different ferrule diameters. The crimp tool in this study is capable of crimping wire diameters ranging from 12 to 26 American Wire Gauge (AWG). A transducer design is presented that allows for interrogation of each of the three crimp locations on the crimp tool without reconfiguring the device. An analysis methodology, based on transmitted ultrasonic energy and timing of the first received pulse is shown to correlate to both crimp location in the tool and the AWG of the crimp/ferrule combination. The detectability of a number of the crimp failure pathologies, such as missing strands, partially inserted wires and incomplete crimp compression, is discussed. A wave propagation model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process.
NASA Astrophysics Data System (ADS)
Ryan, Neil; Todd, Michael; Farrell, Tom; Lavin, Adrian; Rigole, Pierre-Jean; Corbett, Brian; Roycroft, Brendan; Engelstaedter, Jan-Peter
2017-11-01
This paper outlines the development of a prototype optical burst mode switching network based upon a star topology, the ultimate application of which could be as a transparent payload processor onboard satellite repeaters. The network architecture incorporates multiple tunable laser sources, burst mode receivers and a passive optical router (Arrayed Waveguide Grating). Each tunable optical signal should carry >=10Gbps and be capable of wavelength switching in c. 5ns timescales. Two monolithic tunable laser types, based upon different technologies, will be utilised: a Slotted Fabry Perot laser (a Fabry Perot laser with slots added in order to introduce controlled cavity perturbations); and a Modulated Grating Y-Branch Laser (MGY: a widely tunable, multi-section device similar to the DBR laser). While the Slotted Fabry Perot laser is expected to achieve the required switching times, it is an immature technology not yet capable of achieving tunability over 80 ITU channels from a single chip. The MGY device is a more mature technology and has full C-band ITU channel coverage, but is not capable of the required short switching times. Hence, in order to facilitate the integration of this more mature technology into the prototype breadboard with the requisite switching time capabilities, a system of `dual laser' transmitters is being developed to enable data transmission from one MGY laser while the other switches and vice-versa. This work is being performed under ESA contract AO 1-5025/06/NL/PM, Optical Technologies for Ultra - fast Processing.
Reddy, M Ashwin; Patel, Himanshu I; Karim, Shah M; Lock, Helen; Perry, Leslie; Bunce, Catey; Kempley, Steve; Sinha, Ajay K
2016-04-01
To validate known risk factors and identify a threshold level for serum insulin-like growth factor 1 (IGF-1) in the development of severe retinopathy of prematurity (ROP) in an ethnically diverse population at a tertiary neonatal unit, 2011-2013. A prospective cohort masked study was conducted. Serum IGF-1 levels at 31, 32 and 33 weeks were measured and risk factor data collected including gestational age (GA), birth weight (BW), absolute weight gain (AWG) and maternal ethnicity. The eventual ROP outcome was divided into two groups: minimal ROP (Stages 0 and 1) and severe ROP (Stage 2 or worse including Type 1 ROP). 36 patients were recruited: 14 had minimal ROP and 22 severe ROP. Significant differences between the groups were found in GA, BW, AWG and IGF-1 at 32 and 33 weeks. There was minimal rise in IGF-1 in Stage 2 patients and/or black patients (p=0.0013) between 32 and 33 weeks but no pragmatic threshold level of IGF-1 that could distinguish between minimal or severe ROP. There were significant differences in GA, BW, AWG and IGF-1 at 32 and 33 weeks between those babies with severe ROP and those with minimal ROP. However, there was no threshold level of IGF-1 at a time point between 31 and 33 weeks that can be used to exclude a large proportion of babies from screening. We also found ethnic differences in IGF-1 levels with infants born to black mothers having significantly lower IGF-1 levels at 32 and 33 weeks gestation. The determination of ROP risk using IGF-1 is a race-specific phenomenon. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
46 CFR 111.05-31 - Grounding conductors for systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Grounding conductors for systems. 111.05-31 Section 111... Grounding conductors for systems. (a) A conductor for grounding a direct-current system must be the larger of: (1) The largest conductor supplying the system; or (2) No. 8 AWG (8.4mm2). (b) A conductor for...
46 CFR 111.60-4 - Minimum cable conductor size.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Minimum cable conductor size. 111.60-4 Section 111.60-4...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-4 Minimum cable conductor size. Each cable conductor must be #18 AWG (0.82 mm2) or larger except— (a) Each power and lighting cable conductor must be...
46 CFR 111.05-31 - Grounding conductors for systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Grounding conductors for systems. 111.05-31 Section 111... Grounding conductors for systems. (a) A conductor for grounding a direct-current system must be the larger of: (1) The largest conductor supplying the system; or (2) No. 8 AWG (8.4mm2). (b) A conductor for...
46 CFR 111.60-4 - Minimum cable conductor size.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Minimum cable conductor size. 111.60-4 Section 111.60-4...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-4 Minimum cable conductor size. Each cable conductor must be #18 AWG (0.82 mm2) or larger except— (a) Each power and lighting cable conductor must be...
46 CFR 169.672 - Wiring for power and lighting circuits.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Wiring for power and lighting circuits. 169.672 Section... Volts on Vessels of Less Than 100 Gross Tons § 169.672 Wiring for power and lighting circuits. (a) Wiring for power and lighting circuits must have copper conductors, of 14 AWG or larger, and— (1) Meet...
46 CFR 169.672 - Wiring for power and lighting circuits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Wiring for power and lighting circuits. 169.672 Section... Volts on Vessels of Less Than 100 Gross Tons § 169.672 Wiring for power and lighting circuits. (a) Wiring for power and lighting circuits must have copper conductors, of 14 AWG or larger, and— (1) Meet...
46 CFR 111.60-13 - Flexible electric cord and cables.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Flexible electric cord and cables. 111.60-13 Section 111... cables. (a) Construction and testing. Each flexible cord and cable must meet the requirements in section.... Each flexible cord must be No. 18 AWG (0.82 mm2) or larger. (e) Splices. Each flexible cord and cable...
Marine Seismic System (MSS). Development, Deployment and Recovery
1983-04-01
HYTREL SHEA TH, 0.040 IN. WALL OD 0.692 IN. ELECTRICAL. NOM CONDUCTOR DC RESISTANCE *@ 20 0 C: @10 AWG: 1.08 OHMS/K PT COAX RETURN BRAID-. 1.40 OHMS/KFT...Juice. Follow vith one of the following: white- or-egg, olive oil, starch water, mineral oil,.or melted butter . Obtain medical attention at once. . - S
7 CFR 1755.501 - Definitions applicable to §§ 1755.501 through 1755.510.
Code of Federal Regulations, 2013 CFR
2013-01-01
... in the ANSI/NFPA 70-1999, NEC ®: A fine gauge section of wire or cable that serves as a fuse (that is... telecommunications cable and wire plant, and protective devices. (Reprinted with permission from NFPA 70-1999, the.../code_of_federal_regulations/ibr_locations.html. AWG. American Wire Gauge. BET. Building entrance...
7 CFR 1755.501 - Definitions applicable to §§ 1755.501 through 1755.510.
Code of Federal Regulations, 2012 CFR
2012-01-01
... in the ANSI/NFPA 70-1999, NEC ®: A fine gauge section of wire or cable that serves as a fuse (that is... telecommunications cable and wire plant, and protective devices. (Reprinted with permission from NFPA 70-1999, the.../code_of_federal_regulations/ibr_locations.html. AWG. American Wire Gauge. BET. Building entrance...
7 CFR 1755.501 - Definitions applicable to §§ 1755.501 through 1755.510.
Code of Federal Regulations, 2014 CFR
2014-01-01
... in the ANSI/NFPA 70-1999, NEC ®: A fine gauge section of wire or cable that serves as a fuse (that is... telecommunications cable and wire plant, and protective devices. (Reprinted with permission from NFPA 70-1999, the.../code_of_federal_regulations/ibr_locations.html. AWG. American Wire Gauge. BET. Building entrance...