Compact Receiver Front Ends for Submillimeter-Wave Applications
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Chattopadhyay, Goutam; Schlecht, Erich T.; Lin, Robert H.; Sin, Seth; Peralta, Alejandro; Lee, Choonsup; Gill, John J.; Gulkis, Samuel; Thomas, Bertrand C.
2012-01-01
The current generation of submillimeter-wave instruments is relatively mass and power-hungry. The receiver front ends (RFEs) of a submillimeter instrument form the heart of the instrument, and any mass reduction achieved in this subsystem is propagated through the instrument. In the current implementation, the RFE consists of different blocks for the mixer and LO circuits. The motivation for this work is to reduce the mass of the RFE by integrating the mixer and LO circuits in one waveguide block. The mixer and its associated LO chips will all be packaged in a single waveguide package. This will reduce the mass of the RFE and also provide a number of other advantages. By bringing the mixer and LO circuits close together, losses in the waveguide will be reduced. Moreover, the compact nature of the block will allow for better thermal control of the block, which is important in order to reduce gain fluctuations. A single waveguide block with a 600- GHz RFE functionality (based on a subharmonically pumped Schottky diode pair) has been demonstrated. The block is about 3x3x3 cubic centimeters. The block combines the mixer and multiplier chip in a single package. 3D electromagnetic simulations were carried out to design the waveguide circuit around the mixer and multiplier chip. The circuit is optimized to provide maximum output power and maximum bandwidth. An integrated submillimeter front end featuring a 520-600-GHz sub-harmonic mixer and a 260-300-GHz frequency tripler in a single cavity was tested. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional metal-machined blocks. Measurement results on the metal block give best DSB (double sideband) mixer noise temperature of 2,360 K and conversion losses of 7.7 dB at 520 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer is between 30 and 50 mW.
A Novel Split-Waveguide Mount Design For MM and SubMM wave frequency multipliers and Harmonic Mixers
NASA Technical Reports Server (NTRS)
Raisanen, Anti V.; Choudhury, Debabani; Dengler, Robert J.; Oswald, John E.; Siegel, Peter H.
1993-01-01
A novel split-waveguide mount for millimeter and submillimeter wave frequency multipliers and harmonic mixers is presented. It consists of only two pieces, block halves, which are mirror images of each other.
Topics in the optimization of millimeter-wave mixers
NASA Technical Reports Server (NTRS)
Siegel, P. H.; Kerr, A. R.; Hwang, W.
1984-01-01
A user oriented computer program for the analysis of single-ended Schottky diode mixers is described. The program is used to compute the performance of a 140 to 220 GHz mixer and excellent agreement with measurements at 150 and 180 GHz is obtained. A sensitivity analysis indicates the importance of various diode and mount characteristics on the mixer performance. A computer program for the analysis of varactor diode multipliers is described. The diode operates in either the reverse biased varactor mode or with substantial forward current flow where the conversion mechanism is predominantly resistive. A description and analysis of a new H-plane rectangular waveguide transformer is reported. The transformer is made quickly and easily in split-block waveguide using a standard slitting saw. It is particularly suited for use in the millimeter-wave band, replacing conventional electroformed stepped transformers. A theoretical analysis of the transformer is given and good agreement is obtained with measurements made at X-band.
Development of Balanced SIS Mixers for ALMA Band-10
NASA Astrophysics Data System (ADS)
Shitov, Sergey V.; Koryukin, Oleg V.; Uzawa, Yoshinory; Noguchi, Takashi; Uvarov, Andrey V.; Cohn, Ilya A.
2006-05-01
A few concepts of a wide-band balanced SIS mixer employing submicron-sized SIS junctions are under development for 787-950 GHz frequency range. A quasioptical DSB balanced mixer with integrated cross-slot antenna is considered as the less laborious and cheaper option. The silicon lens-antenna beam efficiency is expected above 80 % across the whole band with first-order sidelobe below -16 dB. To use the conservative horn antenna solution, a single chamber waveguide DSB balanced mixer is developed. Two equal probe-type SIS chips are inserted into a full-height waveguide through its opposite broad walls; these two mixers are driven by the signal waveguide in series. The LO current is transferred to the mixers in parallel via a capacitive probe inserted through the narrow wall of the signal waveguide from the neighboring LO waveguide. The HFSS model demonstrated the LO power coupling efficiency above -3 dB, almost perfect signal transfer and the LO cross talk below -30 dB that take into account misalignment (misbalance) of the chips. It is demonstrated numerically using Tucker's 3-port model that unequal pump of junctions of a twin-SIS mixer can lead, in spite of the perfect signal coupling, to degradation of the gain performance up to -3 dB, especially at the top of the ALMA Band-10.
A Low-Noise NbTiN Hot Electron Bolometer Mixer
NASA Technical Reports Server (NTRS)
Tong, C. Edward; Stern, Jeffrey; Megerian, Krikor; LeDuc, Henry; Sridharan, T. K.; Gibson, Hugh; Blundell, Raymond
2001-01-01
Hot electron bolometer (HEB) mixer elements, based on niobium titanium nitride (NbTiN) thin film technology, have been fabricated on crystalline quartz substrates over a 20 nm thick AlN buffer layer. The film was patterned by optical lithography, yielding bolometer elements that measure about 1 micrometer long and between 2 and 12 micrometers wide. These mixer chips were mounted in a fixed-tuned waveguide mixer block, and tested in the 600 and 800 GHz frequency range. The 3-dB output bandwidth of these mixers was determined to be about 2.5 GHz and we measured a receiver noise temperature of 270 K at 630 GHz using an intermediate frequency of 1.5 GHz. The receiver has excellent amplitude stability and the noise temperature measurements are highly repeatable. An 800 GHz receiver incorporating one of these mixer chips has recently been installed at the Sub-Millimeter Telescope in Arizona for field test and for astronomical observations.
Micromechanical Waveguide Mounts for Hot Electron Bolometer Terahertz Mixers
NASA Astrophysics Data System (ADS)
Brandt, Michael; Jacobs, Karl; Honingh, C. E.; Stodolka, Jörg
The superior beam matching of waveguide horn antennas to a telescope suggests using waveguide mounts even at THz-frequencies. In contrast to the more common quasi-optical (substrate lens) designs, the exceedingly small dimensions of the waveguide require novel micro-mechanical fabrication technologies. We will present a novel fabrication scheme for 1.9 THz waveguide mixers for SOFIA. Hot Electron Bolometer devices (HEB) are fabricated on 2 μm thick Si3N4 membrane strips. The strips are robust enough to be mounted on a separately fabricated Si support frame using an adapted flip-chip technology. Mounted onto the frame, the devices can be easily positioned and glued into a copper waveguide mount. Further developments regarding micro-mechanical processes to fabricate this copper waveguide mount and the receiving horn antenna will be presented, as well as the KOSMA Micro Assembly Station and its capabilities to handle mixer substrates.
670 GHz Schottky Diode Based Subharmonic Mixer with CPW Circuits and 70 GHz IF
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam (Inventor); Schlecht, Erich T. (Inventor); Lee, Choonsup (Inventor); Lin, Robert H. (Inventor); Gill, John J. (Inventor); Sin, Seth (Inventor); Mehdi, Imran (Inventor)
2014-01-01
A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.
Biasable, Balanced, Fundamental Submillimeter Monolithic Membrane Mixer
NASA Technical Reports Server (NTRS)
Siegel, Peter; Schlecht, Erich; Mehdi, Imran; Gill, John; Velebir, James; Tsang, Raymond; Dengler, Robert; Lin, Robert
2010-01-01
This device is a biasable, submillimeter-wave, balanced mixer fabricated using JPL s monolithic membrane process a simplified version of planar membrane technology. The primary target application is instrumentation used for analysis of atmospheric constituents, pressure, temperature, winds, and other physical and chemical properties of the atmospheres of planets and comets. Other applications include high-sensitivity gas detection and analysis. This innovation uses a balanced configuration of two diodes allowing the radio frequency (RF) signal and local oscillator (LO) inputs to be separated. This removes the need for external diplexers that are inherently narrowband, bulky, and require mechanical tuning to change frequency. Additionally, this mixer uses DC bias-ability to improve its performance and versatility. In order to solve problems relating to circuit size, the GaAs membrane process was created. As much of the circuitry as possible is fabricated on-chip, making the circuit monolithic. The remainder of the circuitry is precision-machined into a waveguide block that holds the GaAs circuit. The most critical alignments are performed using micron-scale semiconductor technology, enabling wide bandwidth and high operating frequencies. The balanced mixer gets superior performance with less than 2 mW of LO power. This can be provided by a simple two-stage multiplier chain following an amplifier at around 90 GHz. Further, the diodes are arranged so that they can be biased. Biasing pushes the diodes closer to their switching voltage, so that less LO power is required to switch the diodes on and off. In the photo, the diodes are at the right end of the circuit. The LO comes from the waveguide at the right into a reduced-height section containing the diodes. Because the diodes are in series to the LO signal, they are both turned on and off simultaneously once per LO cycle. Conversely, the RF signal is picked up from the RF waveguide by the probe at the left, and flows rightward to the diodes. Because the RF is in a quasi- TEM (suspended, microstrip-like) mode, it impinges on the diodes in an anti-parallel mode that does not couple to the waveguide mode. This isolates the LO and RF signals. This operation is similar to a cross-bar mixer used at low frequencies, except the RF signal enters through the back-short end of the waveguide rather than through the side. The RF probe also conveys the down-converted intermediate frequency (IF) signal out to an off-chip circuit board through a simple LC low-pass filter to the left as indicated. The bias is brought to the diodes through a bypass capacitor at the top.
Split-Waveguide Mounts For Submillimeter-Wave Multipliers And Harmonic Mixers
NASA Technical Reports Server (NTRS)
Raisanen, Antti; Choudhury, Debabani; Dengler, Robert J.; Oswald, John E.; Siegel, Peter H.
1996-01-01
Novel variation of split-waveguide mount for millimeter-and submillimeter-wavelength frequency multipliers and harmonic mixers developed. Designed to offer wide range of available matching impedances, while maintaining relatively simple fabrication sequence. Wide tuning range achieved with separate series and parallel elements, consisting of two pairs of noncontacting sliding backshorts, at fundamental and harmonic frequencies. Advantages include ease of fabrication, reliability, and tunability.
Comparison of measured and predicted performance of a SIS waveguide mixer at 345 GHz
NASA Technical Reports Server (NTRS)
Honingh, C. E.; Delange, G.; Dierichs, M. M. T. M.; Schaeffer, H. H. A.; Wezelman, J.; Vandekuur, J.; Degraauw, T.; Klapwijk, T. M.
1992-01-01
The measured gain and noise of a SIS waveguide mixer at 345 GHz have been compared with theoretical values, calculated from the quantum mixer theory using a three port model. As a mixing element, we use a series array of two Nb-Al2O3-Nb SIS junctions. The area of each junction is 0.8 sq microns and the normal state resistance is 52 omega. The embedding impedance of the mixer has been determined from the pumped DC-IV curves of the junction and is compared to results from scale model measurements (105 x). Good agreement was obtained. The measured mixer gain, however, is a factor of 0.45 plus or minus 0.5 lower than the theoretical predicted gain. The measured mixer noise temperature is a factor of 4-5 higher than the calculated one. These discrepancies are independent on pump power and are valid for a broad range of tuning conditions.
Highly efficient evaluation of a gas mixer using a hollow waveguide based laser spectral sensor
NASA Astrophysics Data System (ADS)
Du, Z.; Yang, X.; Li, J.; Yang, Y.; Qiao, C.
2017-05-01
This paper aims to provide a fast, sensitive, and accurate characterization of a Mass Flow Controller (MFC) based gas mixer. The gas mixer was evaluated by using a hollow waveguide based laser spectral sensor with high efficiency. Benefiting from the sensor's fast response, high sensitivity and continuous operation, multiple key parameters of the mixer, including mixing uncertainty, linearity, and response time, were acquired by a one-round test. The test results show that the mixer can blend multi-compound gases quite efficiently with an uncertainty of 1.44% occurring at a flow rate of 500 ml/min, with the linearity of 0.998 43 and the response time of 92.6 s. The results' reliability was confirmed by the relative measurement of gas concentration, in which the isolation of the sensor's uncertainty was conducted. The measured uncertainty has shown well coincidence with the theoretical uncertainties of the mixer, which proves the method to be a reliable characterization. Consequently, this sort of laser based characterization's wide appliance on gas analyzer's evaluations is demonstrated.
Highly efficient evaluation of a gas mixer using a hollow waveguide based laser spectral sensor.
Du, Z; Yang, X; Li, J; Yang, Y; Qiao, C
2017-05-01
This paper aims to provide a fast, sensitive, and accurate characterization of a Mass Flow Controller (MFC) based gas mixer. The gas mixer was evaluated by using a hollow waveguide based laser spectral sensor with high efficiency. Benefiting from the sensor's fast response, high sensitivity and continuous operation, multiple key parameters of the mixer, including mixing uncertainty, linearity, and response time, were acquired by a one-round test. The test results show that the mixer can blend multi-compound gases quite efficiently with an uncertainty of 1.44% occurring at a flow rate of 500 ml/min, with the linearity of 0.998 43 and the response time of 92.6 s. The results' reliability was confirmed by the relative measurement of gas concentration, in which the isolation of the sensor's uncertainty was conducted. The measured uncertainty has shown well coincidence with the theoretical uncertainties of the mixer, which proves the method to be a reliable characterization. Consequently, this sort of laser based characterization's wide appliance on gas analyzer's evaluations is demonstrated.
Surface plasmon quantum cascade lasers as terahertz local oscillators.
Hajenius, M; Khosropanah, P; Hovenier, J N; Gao, J R; Klapwijk, T M; Barbieri, S; Dhillon, S; Filloux, P; Sirtori, C; Ritchie, D A; Beere, H E
2008-02-15
We characterize a heterodyne receiver based on a surface-plasmon waveguide quantum cascade laser (QCL) emitting at 2.84 THz as a local oscillator, and an NbN hot electron bolometer as a mixer. We find that the envelope of the far-field pattern of the QCL is diffraction-limited and superimposed onto interference fringes, which are similar to those found in narrow double-metal waveguide QCLs. Compared to the latter, a more directional beam allows for better coupling of the radiation power to the mixer. We obtain a receiver noise temperature of 1050 K when the mixer is at 2 K, which, to our knowledge, is the highest sensitivity reported at frequencies beyond 2.5 THz.
EHF Test-Bed Subharmonic Mixer.
1981-07-14
work undertaken between June 1979 and April 1981 to develop a low noise, subharmonically pumped mixer f or a satel- lite receiver. A further objective is...waveguide with LO filter, of structure in Fig. 7a. 27 LO( J FILTER VRF TWT - Cj C10 RF SOURCE Fig. 8. Mixer equivalent circuit at RP. zo 9 VRF j Fig. 9
670-GHz Schottky Diode-Based Subharmonic Mixer with CPW Circuits and 70-GHz IF
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Schlecht, Erich T.; Lee, Choonsup; Lin, Robert H.; Gill, John J.; Mehdi, Imran; Sin, Seth; Deal, William; Loi, Kwok K.; Nam, Peta;
2012-01-01
GaAs-based, sub-harmonically pumped Schottky diode mixers offer a number of advantages for array implementation in a heterodyne receiver system. Since the radio frequency (RF) and local oscillator (LO) signals are far apart, system design becomes much simpler. A proprietary planar GaAs Schottky diode process was developed that results in very low parasitic anodes that have cutoff frequencies in the tens of terahertz. This technology enables robust implementation of monolithic mixer and frequency multiplier circuits well into the terahertz frequency range. Using optical and e-beam lithography, and conventional epitaxial layer design with innovative usage of GaAs membranes and metal beam leads, high-performance terahertz circuits can be designed with high fidelity. All of these mixers use metal waveguide structures for housing. Metal machined structures for RF and LO coupling hamper these mixers to be integrated in multi-pixel heterodyne array receivers for spectroscopic and imaging applications. Moreover, the recent developments of terahertz transistors on InP substrate provide an opportunity, for the first time, to have integrated amplifiers followed by Schottky diode mixers in a heterodyne receiver at these frequencies. Since the amplifiers are developed on a planar architecture to facilitate multi-pixel array implementation, it is quite important to find alternative architecture to waveguide-based mixers.
Superconducting terahertz mixer using a transition-edge microbolometer
NASA Technical Reports Server (NTRS)
Prober, D. E.
1993-01-01
We present a new device concept for a mixer element for THz frequencies. This uses a superconducting transition-edge microbridge biased at the center of its superconducting transition near 4.2 K. It is fed from an antenna or waveguide structure. Power from a local oscillator and an RF signal produce a temperature and resulting resistance variation at the difference frequency. The new aspect is the use of a very short bridge in which rapid (less than 0.1 ns) outdiffusion of hot electrons occurs. This gives large intermediate frequency (IF) response. The mixer offers about 4 GHz IF bandwidth, about 80 ohm RF resistive impedance, good match to the IF amplifier, and requires only 1-20 nW of local oscillator power. The upper RF frequency is determined by antenna or waveguide properties. Predicted mixer conversion efficiency is 1/8, and predicted double-sideband receiver noise temperatures are 260 and 90 K for transition widths of 0.1 and 0.5 Tc, respectively.
Wideband fixed-tuned SIS receiver for 200-GHz operation
NASA Technical Reports Server (NTRS)
Blundell, Raymond; Tong, Cheuk-Yu E.; Papa, D. Cosmo; Leombruno, R. Louie; Zhang, Xiaolei; Paine, Scott; Stern, Jeffrey A.; Leduc, Henry G.; Bumble, Bruce
1995-01-01
We report on the design and development of a heterodyne receiver, designed to cover the frequency range 176-256 GHz. This receiver incorporates a niobium superconductor-insulator-superconductor (SIS) tunnel junction mixer, which, chiefly for reasons of reliability and ease of operation, is a fixed-tuned waveguide design. On-chip tuning is provided to resonate out the junction's geometric capacitance and produce a good match to the waveguide circuit. Laboratory measurements on the first test receiver indicate that the required input bandwidth (about 40%) is achieved with an average receiver noise temperature of below 50 K. Mixer conversion gain is observed at some frequencies, and the lowest measured receiver noise is less than 30 K. Furthermore, the SIS mixer used in this receiver is of simple construction, is easy to assemble and is therefore a good candidate for duplication.
A submillimeter tripler using a quasi-waveguide structure
NASA Technical Reports Server (NTRS)
Erickson, Neal R.; Cortes-Medellin, German
1992-01-01
A new type of frequency multiplier structure is being developed which is suitable for application at frequencies above 1 THz. This structure preserves some of the properties of waveguide for mode control, yet is not truly single mode. The device resembles a sectoral horn, with a varactor diode mounted near the throat. Input and output coupling are through the same aperture, requiring a quasi-optical diplexer. Initial tests are directed at building a tripler at 500 GHz, for comparison with waveguide structures. The diplexer is a blazed diffraction grating with appropriate focusing optics. Model studies show that the impedance match to a varactor should be good, and initial tests of the beam patterns of the prototype indicate that optical coupling efficiency should be very high. The structure also has the potential for use as a fundamental mixer, or as a third harmonic mixer.
Classical and low-light-level detection and pulse characterization using optical-frequency mixers
NASA Astrophysics Data System (ADS)
Langrock, Carsten
2007-12-01
Classical all-optical signal processing for telecommunication applications greatly benefits from the availability of highly efficient optical frequency (OF) mixers, the optical analogue of radio-frequency mixers used in RF signal processing. The OF mixers presented in this dissertation are based on reverse-proton-exchange (RPE) periodically-poled lithium niobate (PPLN) waveguides, one of the most efficient and versatile material systems in the field of nonlinear optics to date. Taking advantage of fabrication technologies developed in Prof. Martin Fejer's group over the past two decades, we expand the range of applications for these OF mixers to low-light-level signal detection and pulse characterization. We demonstrate high-speed high-efficiency single-photon counting at telecommunication wavelengths, used for the implementation of record-breaking quantum-key distribution systems, which allow unconditionally secure data transfer. In collaboration with researchers at the MIT Lincoln Laboratory, we also show that the very same technology can be used to achieve an order of magnitude improvement in the sensitivity of classical few-photon free-space communication links based on pulse-position modulation. These extremely sensitive receivers (1 photon/bit) are being developed to facilitate deep-space communication over several hundred million kilometers between Mars and Earth. OF mixers can also be used to fully characterize, potentially weak, ultrashort pulses, as well as time-magnify segments of ultra-high-speed data streams to be detected in real time by conventional streak cameras and oscilloscopes. We will present a novel implementation of both collinear autocorrelation as well as parametric temporal imaging (in collaboration with the Lawrence Livermore National Laboratory) based on mode-multiplexing in integrated asymmetric Y-junctions in combination with linearly-chirped apodized quasi-phasematching gratings. For the first time, background-free autocorrelation, frequency-resolved optical gating, and temporal imaging can be realized in single-polarization-guiding collinear waveguide structures at sub-60-aJ (400 photons/pulse) levels. Recently, guided-wave OF mixers have also become important for precision metrology applications based on frequency-comb generation (FCG) (i.e. optical ruler) using ultrashort pulses. The most compact and energy efficient FCG systems use fiber lasers. In collaboration with IMRA America, Inc., we demonstrate that RPE PPLN waveguides can be used to implement fully integrated fiber-laser-based FCG systems taking advantage of unprecedented octave-spanning spectral broadening of the input pulses in combination with simultaneous phase sensing inside the same waveguide.
NASA Technical Reports Server (NTRS)
Skalare, A.; McGrath, W. R.; Bumble, B.; LeDuc, H. G.; Burke, P. J.; Verheijen, A. A.; Prober, D. E.
1995-01-01
We report on the first heterodyne measurements with a diffusion-cooled hot-electron bolometer mixer in the submillimeter wave band, using a waveguide mixer cooled to 2.2 K. The best receiver noise temperature at a local oscillator frequency of 533 GHz and an intermediate frequency of 1.4 GHz was 650 K (double sideband). The 3 dB IF roll-off frequency was around 1.7 to 1.9 GHz, with a weak dependence on the device bias conditions.
Hot-Electron Bolometer Mixers on Silicon-on-Insulator Substrates for Terahertz Frequencies
NASA Technical Reports Server (NTRS)
Skalare, Anders; Stern, Jeffrey; Bumble, Bruce; Maiwald, Frank
2005-01-01
A terahertz Hot-Electron Bolometer (HEB) mixer design using device substrates based on Silicon-On-Insulator (SOI) technology is described. This substrate technology allows very thin chips (6 pm) with almost arbitrary shape to be manufactured, so that they can be tightly fitted into a waveguide structure and operated at very high frequencies with only low risk for power leakages and resonance modes. The NbTiN-based bolometers are contacted by gold beam-leads, while other beamleads are used to hold the chip in place in the waveguide test fixture. The initial tests yielded an equivalent receiver noise temperature of 3460 K double-sideband at a local oscillator frequency of 1.462 THz and an intermediate frequency of 1.4 GHz.
Modelling and performance of Nb SIS mixers in the 1.3 mm and 0.8 mm bands
NASA Technical Reports Server (NTRS)
Karpov, A.; Carter, M.; Lazareff, B.; Billon-Pierron, D.; Gundlach, K. H.
1992-01-01
We describe the modeling and subsequent improvements of SIS waveguide mixers for the 200-270 and 330-370 GHz bands (Blundell, Carter, and Gundlach 1988, Carter et al 1991). These mixers are constructed for use in receivers on IRAM radiotelescopes on Pico Veleta (Spain, Sierra Nevada) and Plateau de Bure (French Alps), and must meet specific requirements. The standard reduced height waveguide structure with suspended stripline is first analyzed and a model is validated through comparison with scale model and working scale measurements. In the first step, the intrinsic limitations of the standard mixer structure are identified, and the parameters are optimized bearing in mind the radioastronomical applications. In the second step, inductive tuning of the junctions is introduced and optimized for minimum noise and maximum bandwidth. In the 1.3 mm band, a DSB receiver temperature of less than 110 K (minimum 80 K) is measured from 180 through 260 GHz. In the 0.8 mm band, a DSB receiver temperature of less than 250 K (minimum 175 K) is obtained between 325 and 355 GHz. All these results are obtained with room-temperature optics and a 4 GHz IF chain having a 500 MHz bandwidth and a noise temperature of 14 K.
Fiberless multicolor neural optoelectrode for in vivo circuit analysis.
Kampasi, Komal; Stark, Eran; Seymour, John; Na, Kyounghwan; Winful, Herbert G; Buzsáki, György; Wise, Kensall D; Yoon, Euisik
2016-08-03
Maximizing the potential of optogenetic approaches in deep brain structures of intact animals requires optical manipulation of neurons at high spatial and temporal resolutions, while simultaneously recording electrical data from those neurons. Here, we present the first fiber-less optoelectrode with a monolithically integrated optical waveguide mixer that can deliver multicolor light at a common waveguide port to achieve multicolor modulation of the same neuronal population in vivo. We demonstrate successful device implementation by achieving efficient coupling between a side-emitting injection laser diode (ILD) and a dielectric optical waveguide mixer via a gradient-index (GRIN) lens. The use of GRIN lenses attains several design features, including high optical coupling and thermal isolation between ILDs and waveguides. We validated the packaged devices in the intact brain of anesthetized mice co-expressing Channelrhodopsin-2 and Archaerhodopsin in pyramidal cells in the hippocampal CA1 region, achieving high quality recording, activation and silencing of the exact same neurons in a given local region. This fully-integrated approach demonstrates the spatial precision and scalability needed to enable independent activation and silencing of the same or different groups of neurons in dense brain regions while simultaneously recording from them, thus considerably advancing the capabilities of currently available optogenetic toolsets.
NASA Technical Reports Server (NTRS)
Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.
2011-01-01
We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW
NASA Technical Reports Server (NTRS)
Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.
2010-01-01
We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW.
Improved equivalent circuit for twin slot terahertz receivers
NASA Technical Reports Server (NTRS)
McGrath, W. R.
2002-01-01
Series-fed coplanar waveguide embedding circuits are being developed for terahertz mixers using, in particular, submicron-sized superconducting devices, such as hot electron bolometers as the nonlinear element. Although these mixers show promising performance, they usually also show a considerable downward shift in the center frequency, when compared with simulations obtained by using simplified models. This makes it very difficult to design low-noise mixers for a given THz frequency. This shiftis principally caused by parasitics due to the extremely small details (in terms of wavelength) of the device, and by the electrical properties of the RF choke filter in the DC/IF line. In this paper, we present an improved equivalent network model of such mixer circuits which agrees with measured results at THz frequencies and we propose a new set of THz bolometric mixers that have been fabricated and are currently being tested.
Design of Balanced Mixers for ALMA Band-10
NASA Astrophysics Data System (ADS)
Shitov, Sergey V.; Koryukin, Oleg V.; Uzawa, Yoshinori; Noguchi, Takashi; Uvarov, Andrey V.; Bukovski, Maksim A.; Cohn, Ilya A.
2007-06-01
Two variants of balanced mixer employing twin-SIS structure are under development for 787-950 GHz frequency range. Easy-to-use Geometry Transformation method for modeling of superconducting microstrips is developed, compared to referenced methods and used for design of the mixers. Lens-antenna mixer is based on cross-slot antenna; it does not need any intervening optics between its lens and sub-reflector of ALMA telescope; simple yet efficient composition of lens-antenna cartridge is suggested. Compact single-chamber balanced waveguide mixer employs two SIS chips and capacitive probe for LO injection; coupling above -3 dB and signal loss below -20 dB are expected. Need in shifting of resonance frequency of twin-SIS mixer towards top of the frequency band is predicted using Tucker's theory in large-signal approximation. TRX considerably below 200 K (DSB) is simulated using high-quality hybrid SIS junction for NbTiN/Nb - AlOx - Nb/Al for Jc = 12 kA/cm2.
THz transceiver characterization : LDRD project 139363 final report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordquist, Christopher Daniel; Wanke, Michael Clement; Cich, Michael Joseph
2009-09-01
LDRD Project 139363 supported experiments to quantify the performance characteristics of monolithically integrated Schottky diode + quantum cascade laser (QCL) heterodyne mixers at terahertz (THz) frequencies. These integrated mixers are the first all-semiconductor THz devices to successfully incorporate a rectifying diode directly into the optical waveguide of a QCL, obviating the conventional optical coupling between a THz local oscillator and rectifier in a heterodyne mixer system. This integrated mixer was shown to function as a true heterodyne receiver of an externally received THz signal, a breakthrough which may lead to more widespread acceptance of this new THz technology paradigm. Inmore » addition, questions about QCL mode shifting in response to temperature, bias, and external feedback, and to what extent internal frequency locking can improve stability have been answered under this project.« less
NASA Astrophysics Data System (ADS)
Pavolotsky, Alexey
2018-01-01
Modern and future heterodyne radio astronomy instrumentation critically depends on availability of advanced fabrication technologies and components. In Part1 of the Poster, we present the thin film fabrication process for SIS mixer receivers, utilizing either AlOx, or AlN barrier superconducting tunnel junctions developed and supported by GARD. The summary of the process design rules is presented. It is well known that performance of waveguide mixer components critically depends on accuracy of their geometrical dimensions. At GARD, all critical mechanical parts are 3D-mapped with a sub-um accuracy. Further progress of heterodyne instrumentation requires new efficient and compact sources of LO signal. We present SIS-based frequency multiplier, which could become a new option for LO source. Future radio astronomy THz receivers will need waveguide components, which fabricating due to their tiny dimensions is not feasible by traditional mechanical machining. We present the alternative micromachining technique for fabricating waveguide component for up 5 THz band and probably beyond.
Fiberless multicolor neural optoelectrode for in vivo circuit analysis
Kampasi, Komal; Stark, Eran; Seymour, John; Na, Kyounghwan; Winful, Herbert G.; Buzsáki, György; Wise, Kensall D.; Yoon, Euisik
2016-01-01
Maximizing the potential of optogenetic approaches in deep brain structures of intact animals requires optical manipulation of neurons at high spatial and temporal resolutions, while simultaneously recording electrical data from those neurons. Here, we present the first fiber-less optoelectrode with a monolithically integrated optical waveguide mixer that can deliver multicolor light at a common waveguide port to achieve multicolor modulation of the same neuronal population in vivo. We demonstrate successful device implementation by achieving efficient coupling between a side-emitting injection laser diode (ILD) and a dielectric optical waveguide mixer via a gradient-index (GRIN) lens. The use of GRIN lenses attains several design features, including high optical coupling and thermal isolation between ILDs and waveguides. We validated the packaged devices in the intact brain of anesthetized mice co-expressing Channelrhodopsin-2 and Archaerhodopsin in pyramidal cells in the hippocampal CA1 region, achieving high quality recording, activation and silencing of the exact same neurons in a given local region. This fully-integrated approach demonstrates the spatial precision and scalability needed to enable independent activation and silencing of the same or different groups of neurons in dense brain regions while simultaneously recording from them, thus considerably advancing the capabilities of currently available optogenetic toolsets. PMID:27485264
NASA Astrophysics Data System (ADS)
Hasegawa, Yutaka; Asayama, Shinichiro; Harada, Ryohei; Tokuda, Kazuki; Kimura, Kimihiro; Ogawa, Hideo; Onishi, Toshikazu
2017-12-01
A new sideband separation method was developed for use in millimeter-/submillimeter-band radio receivers using a novel waveguide frequency separation filter (FSF), which consists of two branch line hybrid couplers and two waveguide high-pass filters. The FSF was designed to allow the radio frequency (RF) signal to pass through to an output port when the frequency is higher than a certain value (225 GHz), and to reflect the RF signal back to another output port when the frequency is lower. The FSF is connected to two double sideband superconductor-insulator-superconductor (SIS) mixers, and an image rejection ratio (IRR) is determined by the FSF characteristics. With this new sideband separation method, we can achieve good and stable IRR without the balancing two SIS mixers such as is necessary for conventional sideband-separating SIS mixers. To demonstrate the applicability of this method, we designed and developed an FSF for simultaneous observations of the J = 2-1 rotational transition lines of three CO isotopes (12CO, 13CO, and C18O): the 12CO line is in the upper sideband and the others are in the lower sideband with an intermediate-frequency range of 4-8 GHz at the radio frequency of 220/230 GHz. This FSF was then installed in the receiver system of the 1.85 m radio telescope of Osaka Prefecture University, and was used during the 2014 observation season. The observation results indicate that the IRR of the proposed receiver is 25 dB or higher for the 12CO line, and no significant fluctuation larger than 1 dB in the IRR was observed throughout the season. These results demonstrate the practical utility of the FSF receiver for observations like extensive molecular cloud surveys in specified lines with a fixed frequency setting.
NASA Astrophysics Data System (ADS)
Li, J.
2010-01-01
High-sensitivity superconducting SIS (superconductor-insulator-superconductor) mixers are playing an increasingly important role in the terahertz (THz) astronomical observation, which is an emerging research frontier in modern astrophysics. Superconducting SIS mixers with niobium (Nb) tunnel junctions have reached a sensitivity close to the quantum limit, but have a frequency limit about 0.7 THz (i.e., gap frequency of Nb tunnel junctions). Beyond this frequency Nb superconducting films will absorb energetic photons (i.e., energy loss) to break Cooper pairs, thereby resulting in significant degradation of the mixer performance. Therefore, it is of particular interest to develop THz superconducting SIS mixers incorporating tunnel junctions with a larger energy gap. Niobium-nitride (NbN) superconducting tunnel junctions have been long known for their large energy gap, almost double that of Nb ones. With the introduction of epitaxially grown NbN films, the fabrication technology of NbN superconducting tunnel junctions has been considerably improved in the recent years. Nevertheless, their performances are still not as good as Nb ones, and furthermore they are not yet demonstrated in real astronomical applications. Given the facts mentioned above, in this paper we systematically study the quantum mixing behaviors of NbN superconducting tunnel junctions in the THz regime and demonstrate an astronomical testing observation with a 0.5 THz superconducting SIS mixer developed with NbN tunnel junctions. The main results of this study include: (1) successful design and fabrication of a 0.4˜0.6 THz waveguide mixing circuit with the high-dielectric-constant MgO substrate; (2) successful fabrication of NbN superconducting tunnel junctions with the gap voltage reaching 5.6 mV and the quality factor as high as 15; (3) demonstration of a 0.5 THz waveguide NbN superconducting SIS mixer with a measured receiver noise temperature (no correction) as low as five times the quantum limit (5hω/kB), which is the best among NbN superconducting SIS mixers developed in this frequency band; (4) demonstration of high sensitivity for NbN superconducting SIS mixers operated at temperatures as high as 10 K, and demonstration of much less interference resulting from the Josephson effect; (5) demonstration of the first astronomical observation ever done with an NbN superconducting SIS mixer. This study has provided further understanding of the quantum mixing behaviors of NbN superconducting SIS mixers. It has been demonstrated that NbN superconducting SIS mixers can reach nearly quantum-limited sensitivity and have good stability. Furthermore, NbN superconducting SIS mixers have less stringent requirement for cooling and magnetic field compared with Nb ones. Hence they can be used in astronomical applications, especially for space-borne projects and complex systems such as multi-beam receivers.
Ding, W X; Lin, L; Duff, J R; Brower, D L
2014-11-01
Magnetic fluctuation-induced transport driven by global tearing modes has been measured by Faraday-effect polarimetry and interferometry (phase measurements) in the MST reversed field pinch. However, the role of small-scale broadband magnetic and density turbulence in transport remains unknown. In order to investigate broadband magnetic turbulence, we plan to upgrade the existing detector system by using planar-diode fundamental waveguide mixers optimized for high sensitivity. Initial tests indicate these mixers have ×10 sensitivity improvement compared to currently employed corner-cube Schottky-diode mixers and ×5 lower noise. Compact mixer design will allow us to resolve the wavenumbers up to k ∼ 1-2 cm(-1) for beam width w = 1.5 cm and 15 cm(-1) for beam width w = 2 mm. The system can also be used to measure the scattered signal (amplitude measurement) induced by both plasma density and magnetic fluctuations.
Millimeter And Submillimeter-Wave Integrated Circuits On Quartz
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Mazed, Mohammad; Siegel, Peter; Smith, R. Peter
1995-01-01
Proposed Quartz substrate Upside-down Integrated Device (QUID) relies on UV-curable adhesive to bond semiconductor with quartz. Integrated circuits including planar GaAs Schottky diodes and passive circuit elements (such as bandpass filters) fabricated on quartz substrates. Circuits designed to operate as mixers in waveguide circuit at millimeter and submillimeter wavelengths. Integrated circuits mechanically more robust, larger, and easier to handle than planar Schottky diode chips. Quartz substrate more suitable for waveguide circuits than GaAs substrate.
Dielectric Covered Planar Antennas at Submillimeter Wavelengths for Terahertz Imaging
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Gill, John J.; Skalare, Anders; Lee, Choonsup; Llombart, Nuria; Siegel, Peter H.
2011-01-01
Most optical systems require antennas with directive patterns. This means that the physical area of the antenna will be large in terms of the wavelength. When non-cooled systems are used, the losses of microstrip or coplanar waveguide lines impede the use of standard patch or slot antennas for a large number of elements in a phased array format. Traditionally, this problem has been solved by using silicon lenses. However, if an array of such highly directive antennas is to be used for imaging applications, the fabrication of many closely spaced lenses becomes a problem. Moreover, planar antennas are usually fed by microstrip or coplanar waveguides while the mixer or the detector elements (usually Schottky diodes) are coupled in a waveguide environment. The coupling between the antenna and the detector/ mixer can be a fabrication challenge in an imaging array at submillimeter wavelengths. Antennas excited by a waveguide (TE10) mode makes use of dielectric superlayers to increase the directivity. These antennas create a kind of Fabry- Perot cavity between the ground plane and the first layer of dielectric. In reality, the antenna operates as a leaky wave mode where a leaky wave pole propagates along the cavity while it radiates. Thanks to this pole, the directivity of a small antenna is considerably enhanced. The antenna consists of a waveguide feed, which can be coupled to a mixer or detector such as a Schottky diode via a standard probe design. The waveguide is loaded with a double-slot iris to perform an impedance match and to suppress undesired modes that can propagate on the cavity. On top of the slot there is an air cavity and on top, a small portion of a hemispherical lens. The fractional bandwidth of such antennas is around 10 percent, which is good enough for heterodyne imaging applications.The new geometry makes use of a silicon lens instead of dielectric quarter wavelength substrates. This design presents several advantages when used in the submillimeter-wave and terahertz bands: a) Antenna fabrication compatible with lithographic techniques. b) Much simpler fabrication of the lens. c) A simple quarter-wavelength matching layer of the lens will be more efficient if a smaller portion of the lens is used. d) The directivity is given by the lens diameter instead of the leaky pole (the bandwidth will not depend anymore on the directivity but just on the initial cavity). The feed is a standard waveguide, which is compatible with proven Schottky diode mixer/detector technologies. The development of such technology will benefit applications where submillimeter- wave heterodyne array designs are required. The main fields are national security, planetary exploration, and biomedicine. For national security, wideband submillimeter radars could be an effective tool for the standoff detection of hidden weapons or bombs concealed by clothing or packaging. In the field of planetary exploration, wideband submillimeter radars can be used as a spectrometer to detect trace concentrations of chemicals in atmospheres that are too cold to rely on thermal imaging techniques. In biomedicine, an imaging heterodyne system could be helpful in detecting skin diseases.
Multi-Step Deep Reactive Ion Etching Fabrication Process for Silicon-Based Terahertz Components
NASA Technical Reports Server (NTRS)
Reck, Theodore (Inventor); Perez, Jose Vicente Siles (Inventor); Lee, Choonsup (Inventor); Cooper, Ken B. (Inventor); Jung-Kubiak, Cecile (Inventor); Mehdi, Imran (Inventor); Chattopadhyay, Goutam (Inventor); Lin, Robert H. (Inventor); Peralta, Alejandro (Inventor)
2016-01-01
A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.
A Low-noise Micromachined Millimeter-Wave Heterodyne Mixer using Nb Superconducting Tunnel Junctions
NASA Technical Reports Server (NTRS)
DeLange, Gert; Jacobson, Brian R.; Hu, Qing
1996-01-01
A heterodyne mixer with a micromachined horn antenna and a superconductor-insulator-superconductor (SIS) tunnel junction as mixing element is tested in the W-band (75-115 GHz) frequency range. Micromachined integrated horn antennas consist of a dipole antenna suspended on a thin Si3N4 dielectric membrane inside a pyramidal cavity etched in silicon. The mixer performance is optimized by using a backing plane behind the dipole antenna to tune out the capacitance of the tunnel junction. The lowest receiver noise temperature of 30 +/- 3 K (without any correction) is measured at 106 GHz with a 3-dB bandwidth of 8 GHz. This sensitivity is comparable to the state-of-the-art waveguide and quasi-optical SIS receivers, showing the potential use of micromachined horn antennas in imaging arrays.
Split-Block Waveguide Polarization Twist for 220 to 325 GHz
NASA Technical Reports Server (NTRS)
Ward, John; Chattopadhyay, Goutam
2008-01-01
A split-block waveguide circuit that rotates polarization by 90 has been designed with WR-3 input and output waveguides, which are rectangular waveguides used for a nominal frequency range of 220 to 325 GHz. Heretofore, twisted rectangular waveguides equipped with flanges at the input and output have been the standard means of rotating the polarizations of guided microwave signals. However, the fabrication and assembly of such components become difficult at high frequency due to decreasing wavelength, such that twisted rectangular waveguides become impractical at frequencies above a few hundred gigahertz. Conventional twisted rectangular waveguides are also not amenable to integration into highly miniaturized subassemblies of advanced millimeter- and submillimeter-wave detector arrays now undergoing development. In contrast, the present polarization- rotating waveguide can readily be incorporated into complex integrated waveguide circuits such as miniaturized detector arrays fabricated by either conventional end milling of metal blocks or by deep reactive ion etching of silicon blocks. Moreover, the present split-block design can be scaled up in frequency to at least 5 THz. The main step in fabricating a splitblock polarization-rotating waveguide of the present design is to cut channels having special asymmetrically shaped steps into mating upper and lower blocks (see Figure 1). The dimensions of the steps are chosen to be consistent with the WR-3 waveguide cross section, which is 0.864 by 0.432 mm. The channels are characterized by varying widths with constant depths of 0.432, 0.324, and 0.216 mm and by relatively large corner radii to facilitate fabrication. The steps effect both a geometric transition and the corresponding impedance-matched electromagnetic-polarization transition between (1) a WR-3 rectangular waveguide oriented with the electric field vector normal to the block mating surfaces and (2) a corresponding WR-3 waveguide oriented with its electric field vector parallel to the mating surfaces of the blocks. A prototype has been built and tested. Figure 2 presents test results indicative of good performance over nearly the entire WR-3 waveguide frequency band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuwahara, D., E-mail: dkuwahar@cc.tuat.ac.jp; Ito, N.; Nagayama, Y.
A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.
Kuwahara, D; Ito, N; Nagayama, Y; Yoshinaga, T; Yamaguchi, S; Yoshikawa, M; Kohagura, J; Sugito, S; Kogi, Y; Mase, A
2014-11-01
A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.
NASA Technical Reports Server (NTRS)
Rice, F.; Sumner, M.; Zmuidzinas, J.; Hu, R.; LeDuc, H.; Harris, A.; Miller, D.
2004-01-01
We present some detail of the waveguide probe and SIS mixer chip designs for a low-noise 180-300 GHz double- sideband receiver with an instantaneous RF bandwidth of 24 GHz. The receiver's single SIS junction is excited by a broadband, fixed-tuned waveguide probe on a silicon substrate. The IF output is coupled to a 6-18 GHz MMIC low- noise preamplifier. Following further amplification, the output is processed by an array of 4 GHz, 128-channel analog autocorrelation spectrometers (WASP 11). The single-sideband receiver noise temperature goal of 70 Kelvin will provide a prototype instrument capable of rapid line surveys and of relatively efficient carbon monoxide (CO) emission line searches of distant, dusty galaxies. The latter application's goal is to determine redshifts by measuring the frequencies of CO line emissions from the star-forming regions dominating the submillimeter brightness of these galaxies. Construction of the receiver has begun; lab testing should begin in the fall. Demonstration of the receiver on the Caltech Submillimeter Observatory (CSO) telescope should begin in spring 2003.
On-Wafer Measurement of a Multi-Stage MMIC Amplifier with 10 dB of Gain at 475 GHz
NASA Technical Reports Server (NTRS)
Samoska, Lorene A.; Fung, KingMan; Pukala, David M.; Kangaslahti, Pekka P.; Lai, Richard; Ferreira, Linda
2012-01-01
JPL has measured and calibrated a WR2.2 waveguide wafer probe from GGB Industries in order to allow for measurement of circuits in the 325-500 GHz range. Circuits were measured, and one of the circuits exhibited 10 dB of gain at 475 GHz. The MMIC circuit was fabricated at Northrop Grumman Corp. (NGC) as part of a NASA Innovative Partnerships Program, using NGC s 35-nm-gatelength InP HEMT process technology. The chip utilizes three stages of HEMT amplifiers, each having two gate fingers of 10 m in width. The circuits use grounded coplanar waveguide topology on a 50- m-thick substrate with through substrate vias. Broadband matching is achieved with coplanar waveguide transmission lines, on-chip capacitors, and open stubs. When tested with wafer probing, the chip exhibited 10 dB of gain at 475 GHz, with over 9 dB of gain from 445-490 GHz. Low-noise amplifiers in the 400-500 GHz range are useful for astrophysics receivers and earth science remote sensing instruments. In particular, molecular lines in the 400-500 GHz range include the CO 4-3 line at 460 GHz, and the CI fine structure line at 492 GHz. Future astrophysics heterodyne instruments could make use of high-gain, low-noise amplifiers such as the one described here. In addition, earth science remote sensing instruments could also make use of low-noise receivers with MMIC amplifier front ends. Present receiver technology typically employs mixers for frequency down-conversion in the 400-500 GHz band. Commercially available mixers have typical conversion loss in the range of 7-10 dB with noise figure of 1,000 K. A low-noise amplifier placed in front of such a mixer would have 10 dB of gain and lower noise figure, particularly if cooled to low temperature. Future work will involve measuring the noise figure of this amplifier.
Quantum-limited detection of millimeter waves using superconducting tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mears, Carl Atherton
1991-09-01
The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit bymore » studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 ± 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker`s theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs.« less
Quantum-limited detection of millimeter waves using superconducting tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mears, C.A.
1991-09-01
The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit bymore » studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 {plus minus} 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker's theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs.« less
A quasi-optical flight mixer. [Schottky diodes and wire grid lenses
NASA Technical Reports Server (NTRS)
1978-01-01
A mechanically stable single block mixer design is described utilizing a recessed whisker and beamwidth equalization lens. A stripline I.F. matching section which is an integral part of the mixer is presented. Engineering measurements of wire grids and dielectric transmission loss near one millimeter wavelength are given and an anomolous I-V curve behavior observed during diode whiskering is discussed.
Tunable Heterodyne Receiver from 100 Micron to 1,000 Micron for Airborne Observations
NASA Technical Reports Server (NTRS)
Roeser, H. P.; Wattenbach, R.; Vanderwal, P.
1984-01-01
Interest in high resolution spectrometers for the submillimeter wavelength range from 100 micron to 1,000 micron is mostly stimulated by molecular spectroscopy in radioastronomy and atmospheric physics, and by plasma diagnostic experiments. Schottky diodes in waveguide mixer technology and InSb-hot electron bolometers are successfully used in the 0.5 to a few millimeter range whereas tandem Fabry-Perot spectrometers combined with photoconductive detectors (Ge:Sb and Ge:Ga) are used for the 100 micron range. Recent research on heterodyne spectrometers, with Schottky diodes in an open structure mixer and a molecular laser as local oscillators, which can be used over the whole wavelength range is summarized.
Planar Submillimeter-Wave Mixer Technology with Integrated Antenna
NASA Technical Reports Server (NTRS)
Chattopadhyay, Gautam; Mehdi, Imran; Gill, John J.; Lee, Choonsup; lombart, Muria L.; Thomas, Betrand
2010-01-01
High-performance mixers at terahertz frequencies require good matching between the coupling circuits such as antennas and local oscillators and the diode embedding impedance. With the availability of amplifiers at submillimeter wavelengths and the need to have multi-pixel imagers and cameras, planar mixer architecture is required to have an integrated system. An integrated mixer with planar antenna provides a compact and optimized design at terahertz frequencies. Moreover, it leads to a planar architecture that enables efficient interconnect with submillimeter-wave amplifiers. In this architecture, a planar slot antenna is designed on a thin gallium arsenide (GaAs) membrane in such a way that the beam on either side of the membrane is symmetric and has good beam profile with high coupling efficiency. A coplanar waveguide (CPW) coupled Schottky diode mixer is designed and integrated with the antenna. In this architecture, the local oscillator (LO) is coupled through one side of the antenna and the RF from the other side, without requiring any beam sp litters or diplexers. The intermediate frequency (IF) comes out on a 50-ohm CPW line at the edge of the mixer chip, which can be wire-bonded to external circuits. This unique terahertz mixer has an integrated single planar antenna for coupling both the radio frequency (RF) input and LO injection without any diplexer or beamsplitters. The design utilizes novel planar slot antenna architecture on a 3- mthick GaAs membrane. This work is required to enable future multi-pixel terahertz receivers for astrophysics missions, and lightweight and compact receivers for planetary missions to the outer planets in our solar system. Also, this technology can be used in tera hertz radar imaging applications as well as for testing of quantum cascade lasers (QCLs).
Planar integrated metasurfaces for highly-collimated terahertz quantum cascade lasers
Liang, Guozhen; Dupont, Emmanuel; Fathololoumi, Saeed; Wasilewski, Zbigniew R.; Ban, Dayan; Liang, Hou Kun; Zhang, Ying; Yu, Siu Fung; Li, Lianhe H.; Davies, Alexander Giles; Linfield, Edmund H.; Liu, Hui Chun; Wang, Qi Jie
2014-01-01
We report planar integration of tapered terahertz (THz) frequency quantum cascade lasers (QCLs) with metasurface waveguides that are designed to be spoof surface plasmon (SSP) out-couplers by introducing periodically arranged SSP scatterers. The resulting surface-emitting THz beam profile is highly collimated with a divergence as narrow as ~4° × 10°, which indicates a good waveguiding property of the metasurface waveguide. In addition, the low background THz power implies a high coupling efficiency for the THz radiation from the laser cavity to the metasurface structure. Furthermore, since all the structures are in-plane, this scheme provides a promising platform where well-established surface plasmon/metasurface techniques can be employed to engineer the emitted beam of THz QCLs controllably and flexibly. More importantly, an integrated active THz photonic circuit for sensing and communication applications could be constructed by incorporating other optoelectronic devices such as Schottky diode THz mixers, and graphene modulators and photodetectors. PMID:25403796
A Dual Polarized Quasi-Optical SIS Mixer at 550-GHz
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Miller, David; LeDuc, Henry G.; Zmuidzinas, Jonas
2000-01-01
We describe the design, fabrication, and the performance of a low-noise dual-polarized quasi-optical superconductor insulator superconductor (SIS) mixer at 550 GHz. The mixer utilizes a novel cross-slot antenna on a hyperhemispherical substrate lens, two junction tuning circuits, niobium trilayer junctions, and an IF circuit containing a lumped element 180 deg hybrid. The antenna consists of an orthogonal pair of twin-slot antennas, and has four feed points, two for each polarization. Each feed point is coupled to a two-junction SIS mixer. The 180 deg IF hybrid is implemented using a lumped element/microstrip circuit located inside the mixer block. Fourier transform spectrometer (FTS) measurements of the mixer frequency response show good agreement with computer simulations. The measured co-polarized and cross-polarized patterns for both polarizations also agree with the theoretical predictions. The noise performance of the dual-polarized mixer is excellent, giving uncorrected receiver noise temperature of better than 115 K (DSB) at 528 GHz for both the polarizations.
Micromachined Millimeter- and Submillimeter-Wave SIS Heterodyne Receivers for Remote Sensing
NASA Technical Reports Server (NTRS)
Hu, Qing
1998-01-01
A heterodyne mixer with a micromachined horn antenna and a superconductor -insulator-superconductor (SIS) tunnel junction as mixing element is tested in the W-band (75-115 GHz) frequency range. Micromachined integrated horn antennas consist of a dipole antenna suspended on a thin Si3N4 dielectric membrane inside a pyramidal cavity etched in silicon. The mixer performance is optimized by using a backing plane behind the dipole antenna to tune out the capacitance of the tunnel junction. The lowest receiver noise temperature of 30+/-3 K without any correction) is measured at 106 GHz with a 3-dB bandwidth of 8 GHz. This sensitivity is comparable to the state-of-the-art waveguide and quasi-optical SIS receivers, showing the potential use of micromachined horn antennas in imaging arrays.
Compact microwave lamp having a tuning block and a dielectric located in a lamp cavity
Simpson, James E.
2000-01-01
A microwave lamp having a compact structure utilizing a coupling slot which has a dielectric member extending therethrough and a tuning block adjoining the coupling slot. A non-conventional waveguide is used which has about the width of a WR-284 waveguide and about the length of a WR-340 waveguide.
Design of a 12-GHz multicarrier earth-terminal for satellite-CATV interconnection
NASA Technical Reports Server (NTRS)
Newman, B. A.; Singh, J. P.; Rosenbaum, F. J.
1971-01-01
The design and development of the front-end for a multi-carrier system that allows multiplex signal transmission from satellite-borne transponders is described. Detailed systems analyses provided down-converter specifications. The 12 GHz carrier down-converter uses waveguide, coaxial, and microstrip transmission line elements in its implementation. Mixing is accomplished in a single-ended coaxial mixer employing a field-replacable cartridge style diode.
NASA Astrophysics Data System (ADS)
Masca, Sergiu I.; Rodriguez-Mendieta, Iñigo R.; Friel, Claire T.; Radford, Sheena E.; Smith, D. Alastair
2006-05-01
A reliable device that produces efficient mixing with a short dead time has enormous utility in the kinetic analysis of biochemical and chemical processes. We have designed two different T mixers that use moderate flow rates (0.2-0.4ml/s), can monitor reactions up to several milliseconds, and achieve mixing times as low as 20μs. The two mixers are easy to build and dismantle, reliable, and can perform hundreds of experiments without blocking. The first mixer comprises a stainless steel block, containing a microchannel, glued to a quartz cuvette, containing a 200×200μm2 observation channel defining a conventional T mixer. The reactions are monitored by imaging the length of the observation channel onto a charge-coupled device camera. In the second mixer the entire T (200×200μm2 internal cross section) is contained within a 40-mm-long quartz cuvette. We have adopted a novel approach to controlling the entrance channel bore by inserting a stainless steel wire in order to increase the linear speed of the impinging fluids. Using a dye to visualize the flow profile inside the second T mixer, it was shown that in this T geometry segregation of the reactants is observed in the junction between the inlet channels and the observation channel (T junction) and mixing occurs entirely in the observation channel. We thoroughly tested the two mixers through several kinetic reactions using both fluorescence and ultraviolet resonance Raman spectroscopy measurements. We show that both mixers provide efficient mixing with nominal dead times (using 1:10 v /v dilution), calculated using the quenching of the fluorescence of N-acetyl-L-tryptophanamide by N-bromosuccinimide, of 200±20 and 100±10μs, for each mixer, respectively. However, the ability to monitor within the inlet channels and the entire observation channel of the second mixer shows that this standard approach to estimating the dead time is artifactual, since it relies on assuming a constant flow speed throughout the observation channel, a feature that we show is not adhered to at short distances from the T junction. Using both mixers the refolding of the A state of cytochrome c to the native state was followed by fluorescence and ultraviolet resonance Raman spectroscopy, revealing the ability of these instruments to provide insights into the early stages of protein folding using only milligrams of sample.
Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime.
Quraishi, Qudsia; Griebel, Martin; Kleine-Ostmann, Thomas; Bratschitsch, Rudolf
2005-12-01
Broadly tunable phase-stable single-frequency terahertz radiation is generated with an optical heterodyne photomixer. The photomixer is excited by two near-infrared CW diode lasers that are phase locked to the stabilized optical frequency comb of a femtosecond titanium:sapphire laser. The terahertz radiation emitted by the photomixer is downconverted into RF frequencies with a waveguide harmonic mixer and measurement-limited linewidths at the Hertz level are demonstrated.
Multichannel homodyne receiver
Landt, Jeremy A.
1982-01-01
A homodyne radar transmitter/receiver device which produces a single combined output which contains modulated backscatter information for all phase conditions of both modulated and unmodulated backscatter signals. The device utilizes taps along coaxial transmission lines, strip transmission line, and waveguides which are spaced by 1/8 wavelength or 1/6 wavelength, etc. This greatly reduces costs by eliminating separate transmission and reception antennas and an expensive arrangement of power splitters and mixers utilized in the prior art.
Multichannel homodyne receiver
Landt, J.A.
1981-01-19
A homodyne radar transmitter/receiver device which produces a single combined output which contains modulated backscatter information for all phase conditions of both modulated and unmodulated backscatter signals is described. The device utilizes taps along coaxial transmission lines, strip transmission line, and waveguides which are spaced by 1/8 wavelength or 1/6 wavelength, etc. This greatly reduces costs by eliminating separate transmission and reception antennas and an expensive arrangement of power splitters and mixers utilized in the prior art.
2.32 THz quantum cascade laser frequency-locked to the harmonic of a microwave synthesizer source.
Danylov, Andriy A; Light, Alexander R; Waldman, Jerry; Erickson, Neal R; Qian, Xifeng; Goodhue, William D
2012-12-03
Frequency stabilization of a THz quantum cascade laser (QCL) to the harmonic of a microwave source has been accomplished using a Schottky diode waveguide mixer designed for harmonic mixing. The 2.32 THz, 1.0 milliwatt CW QCL is coupled into the signal port of the mixer and a 110 GHz signal, derived from a harmonic of a microwave synthesizer, is coupled into the IF port. The difference frequency between the 21st harmonic of 110 GHz and the QCL is used in a discriminator to adjust the QCL bias current to stabilize the frequency. The short-term frequency jitter is reduced from 550 kHz to 4.5 kHz (FWHM) and the long-term frequency drift is eliminated. This performance is compared to that of several other THz QCL frequency stabilization techniques.
Schottky Heterodyne Receivers With Full Waveguide Bandwidth
NASA Technical Reports Server (NTRS)
Hesler, Jeffrey; Crowe, Thomas
2011-01-01
Compact THz receivers with broad bandwidth and low noise have been developed for the frequency range from 100 GHz to 1 THz. These receivers meet the requirements for high-resolution spectroscopic studies of planetary atmospheres (including the Earth s) from spacecraft, as well as airborne and balloon platforms. The ongoing research is significant not only for the development of Schottky mixers, but also for the creation of a receiver system, including the LO chain. The new receivers meet the goals of high sensitivity, compact size, low total power requirement, and operation across complete waveguide bands. The exceptional performance makes these receivers ideal for the broader range of scientific and commercial applications. These include the extension of sophisticated test and measurement equipment to 1 THz and the development of low-cost imaging systems for security applications and industrial process monitoring. As a particular example, a WR-1.9SHM (400-600 GHz) has been developed (see Figure 1), with state-of-the-art noise temperature ranging from 1,000-1,800 K (DSB) over the full waveguide band. Also, a Vector Network Analyzer extender has been developed (see Figure 2) for the WR1.5 waveguide band (500 750 GHz) with 100-dB dynamic range.
Silicon Photonic Waveguides for Near- and Mid-Infrared Regions
NASA Astrophysics Data System (ADS)
Stankovic, S.; Milosevic, M.; Timotijevic, B.; Yang, P. Y.; Teo, E. J.; Crnjanski, J.; Matavulj, P.; Mashanovich, G. Z.
2007-11-01
The basic building block of every photonic circuit is a waveguide. In this paper we investigate the most popular silicon waveguide structures in the form of a silicon-on-insulator rib waveguide. We also analyse two structures that can find applications in mid- and long-wave infrared regions: free-standing and hollow core omnidirectional waveguides.
Fiber optic multiplex optical transmission system
NASA Technical Reports Server (NTRS)
Bell, C. H. (Inventor)
1977-01-01
A multiplex optical transmission system which minimizes external interference while simultaneously receiving and transmitting video, digital data, and audio signals is described. Signals are received into subgroup mixers for blocking into respective frequency ranges. The outputs of these mixers are in turn fed to a master mixer which produces a composite electrical signal. An optical transmitter connected to the master mixer converts the composite signal into an optical signal and transmits it over a fiber optic cable to an optical receiver which receives the signal and converts it back to a composite electrical signal. A de-multiplexer is coupled to the output of the receiver for separating the composite signal back into composite video, digital data, and audio signals. A programmable optic patch board is interposed in the fiber optic cables for selectively connecting the optical signals to various receivers and transmitters.
Direct Machining of Low-Loss THz Waveguide Components With an RF Choke.
Lewis, Samantha M; Nanni, Emilio A; Temkin, Richard J
2014-12-01
We present results for the successful fabrication of low-loss THz metallic waveguide components using direct machining with a CNC end mill. The approach uses a split-block machining process with the addition of an RF choke running parallel to the waveguide. The choke greatly reduces coupling to the parasitic mode of the parallel-plate waveguide produced by the split-block. This method has demonstrated loss as low as 0.2 dB/cm at 280 GHz for a copper WR-3 waveguide. It has also been used in the fabrication of 3 and 10 dB directional couplers in brass, demonstrating excellent agreement with design simulations from 240-260 GHz. The method may be adapted to structures with features on the order of 200 μm.
A Robust High-Performance GPS L1 Receiver with Single-stage Quadrature Redio-Frequency Circuit
NASA Astrophysics Data System (ADS)
Liu, Jianghua; Xu, Weilin; Wan, Qinq; Liu, Tianci
2018-03-01
A low power current reuse single-stage quadrature raido-frequency part (SQRF) is proposed for GPS L1 receiver in 180nm CMOS process. The proposed circuit consists of LNA, Mixer, QVCO, is called the QLMV cell. A two blocks stacked topology is adopted in this design. The parallel QVCO and mixer placed on the top forms the upper stacked block, and the LNA placed on the bottom forms the other stacked block. The two blocks share the current and achieve low power performance. To improve the stability, a float current source is proposed. The float current isolated the local oscillation signal and the input RF signal, which bring the whole circuit robust high-performance. The result shows conversion gain is 34 dB, noise figure is three dB, the phase noise is -110 dBc/Hz at 1MHz and IIP3 is -20 dBm. The proposed circuit dissipated 1.7mW with 1 V supply voltage.
Development of Suitable Technologies for Heterodyne W-Band Focal-Plane Arrays
NASA Astrophysics Data System (ADS)
Mena, Patricio; Reyes, N.; Jarufe, C.; Barrueto, I.; Molina, R.; Monasterio, D.; Bronfman, L.
2018-01-01
We present the ongoing efforts at University of Chile to develop technologies for heterodyne focal-plane arrays. We have focused in W band covering four areas of study. 1. OPTICAL SYSTEMS: We have studied the possibility of using multi-pixel receivers at ALMA-type antennas. We designed an array of 7 pixels (extensible to 19) that fits into an ALMA cartridge. The design includes a set of mirrors and a fly-eye lens that allows the system to fit on the available space. For the feed, we have studied smooth-wall horns and Vivaldi antennas. 2. COMPACT OMTS: We have been working on turnstile-type OMTs fabricated in platelets that permit integration of several OMTs in the same block. 3. LOW NOISE AMPLIFIERS: We are working on a hybrid concept that uses a single transistor mounted before a commercial MMIC. We have measured noise temperatures lower than 50 K. The aim is to produce compact blocks suitable for integration. 4. DOWNCONVERTING MIXERS: We have designed biased sub-harmonic mixers based on Schottky diodes using MMIC technology and to be fabricated in a commercial run. We expect conversion losses below 15 dB. Mixers and LNA will be packaged in a single block using a 2SB scheme.
Laser Micromachining Fabrication of THz Components
NASA Technical Reports Server (NTRS)
DrouetdAubigny, C.; Walker, C.; Jones, B.; Groppi, C.; Papapolymerou, J.; Tavenier, C.
2001-01-01
Laser micromachining techniques can be used to fabricate high-quality waveguide structures and quasi-optical components to micrometer accuracies. Successful GHz designs can be directly scaled to THz frequencies. We expect this promising technology to allow the construction of the first fully integrated THz heterodyne imaging arrays. At the University of Arizona, construction of the first laser micromachining system designed for THz waveguide components fabrication has been completed. Once tested and characterized our system will be used to construct prototype THz lx4 focal plane mixer arrays, magic tees, AR coated silicon lenses, local oscillator source phase gratings, filters and more. Our system can micro-machine structures down to a few microns accuracy and up to 6 inches across in a short time. This paper discusses the design and performance of our micromachining system, and illustrates the type, range and performance of components this exciting new technology will make accessible to the THz community.
Coplanar monolithic integrated circuits for low-noise communication and radar systems
NASA Astrophysics Data System (ADS)
Bessemoulin, Alexandre; Verweyen, Ludger; Marsetz, Waldemar; Massler, Hermann; Neumann, Markus; Hulsmann, Axel; Schlechtweg, Michael
1999-12-01
This paper presents coplanar millimeter-wave monolithic integrated circuits with high performance and small size for use in low noise communication and radar system applications. Technology and modeling issues with respect to active and passive elements are discussed first. In a second step, the potential of coplanar waveguides to realize compact ICs is illustrated through various design examples, such as low noise amplifiers, mixers and power amplifiers. The performance of multifunctional ICs is also presented by comparing simulated and measured results for a complete 77 GHz Transceive MMIC.
NASA Astrophysics Data System (ADS)
Temkin, Richard J.
Recent advances in IR and mm-wave (MMW) physics, astrophysics, devices, and applications are examined in reviews and reports. Sections are devoted to MMW sources, MMW modulation of light, MMW antennas, FELs, MMW optical technology, astronomy, MMW systems, microwave-optical interactions, MMW waveguides, MMW detectors and mixers, plasma diagnostics, and atmospheric physics. Also considered are gyrotrons, guided propagation, high-Tc superconductors, sub-MMW detectors and related devices, ICs, near-MMW measurements and techniques, lasers, material characterization, semiconductors, and atmospheric propagation.
Propagation of eigenmodes and transfer functions in waveguide WDM structures
NASA Astrophysics Data System (ADS)
Mashkov, Vladimir A.; Francoeur, S.; Geuss, U.; Neiser, K.; Temkin, Henryk
1998-02-01
A method of propagation functions and transfer amplitudes suitable for the design of integrated optical circuits is presented. The method is based on vectorial formulation of electrodynamics: the distributions and propagation of electromagnetic fields in optical circuits is described by equivalent surface sources. This approach permits a division of complex optical waveguide structures into sets of primitive blocks and to separately calculate the transfer function and the transfer amplitude for each block. The transfer amplitude of the entire optical system is represented by a convolution of transfer amplitudes of its primitive blocks. The eigenvalues and eigenfunctions of arbitrary waveguide structure are obtained in the WKB approximation and compared with other methods. The general approach is illustrated with the transfer amplitude calculations for Dragone's star coupler and router.
Superconducting Nb DHEB Mixer Arrays for Far-Infrared Spectroscopy
NASA Technical Reports Server (NTRS)
Gerecht, E.; Reintsema, C. D.; Grossman, E. N.; Betz, A. L.; Boreiko, R. T.
2001-01-01
We are developing a heterodyne focal plane array with up to eight elements to study lines of the interstellar medium and planetary atmospheres with frequencies of 2 THz and above. Our fabrication process utilizes selective ion milling techniques to produce Nb Diffusion-Cooled Hot Electron Bolometric (DHEB) mixers from a bilayer thin film of Au/Nb deposited on a silicon substrate. A micro-bridge of 10 nm thick Nb forms the HEB device. The first generation of devices with lateral dimensions of 100 nm by 80 nm were fabricated at the feed of a broadband spiral antenna with a frequency response designed for up to 16 THz. Harmonic multiplier sources becoming available within the next few years should have sufficient power to provide a local-oscillator source for small-format, quasi-optically coupled arrays of these mixers. First generation devices measured at our laboratory have demonstrated a critical temperature (Tc) of 4.8 K with a 0.5 K transition width. These DHEB mixers are expected to have an optimum operational temperature of 1.8-2.0 K. The current four element array mixer block will ultimately be replaced by a dual polarization slot-ring array configuration with up to eight elements.
Analysis of hybrid dielectric-plasmonic slot waveguide structures with 3D Fourier Modal Methods
NASA Astrophysics Data System (ADS)
Ctyroky, J.; Kwiecien, P.; Richter, I.
2013-03-01
Recently, plasmonic waveguides have been intensively studied as promising basic building blocks for the construction of extremely compact photonic devices with subwavelength characteristic dimensions. A number of different types of plasmonic waveguide structures have been recently proposed, theoretically analyzed, and their properties experimentally verified. The fundamental trade-off in the design of plasmonic waveguides for potential application in information technologies lies in the contradiction between their mode field confinement and propagation loss: the higher confinement, the higher loss, and vice versa. Various definitions of figures of merit of plasmonic waveguides have been also introduced for the characterization of their properties with a single quantity. In this contribution, we theoretically analyze one specific type of a plasmonic waveguide - the hybrid dielectric-loaded plasmonic waveguide, or - as we call it in this paper - the hybrid dielectric-plasmonic slot waveguide, which exhibits very strong field confinement combined with acceptable losses allowing their application in some integrated plasmonic devices. In contrast to the structures analyzed previously, our structure makes use of a single low-index dielectric only. We first define the effective area of this waveguide type, and using waveguide parameters close to the optimum we analyze several waveguide devices as directional couplers, multimode interference couplers (MMI), and the Mach-Zehnder interferometer based on the MMI couplers. For the full-vector 3D analysis of these structures, we use modelling tools developed in-house on the basis of the Fourier Modal Method (FMM). Our results thus serve to a dual purpose: they confirm that (i) these structures represent promising building blocks of plasmonic devices, and (ii) our FMM codes are capable of efficient 3D vector modelling of plasmonic waveguide devices.
Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition.
Seo, Min-Kyo; Kang, Ju-Hyung; Kim, Myung-Ki; Ahn, Byeong-Hyeon; Kim, Ju-Young; Jeong, Kwang-Yong; Park, Hong-Gyu; Lee, Yong-Hee
2009-04-13
A wavelength-scale cavity is generated by printing a carbonaceous nano-block on a photonic-crystal waveguide. The nanometer-size carbonaceous block is grown at a pre-determined region by the electron-beam-induced deposition method. The wavelength-scale photonic-crystal cavity operates as a single mode laser, near 1550 nm with threshold of approximately 100 microW at room temperature. Finite-difference time-domain computations show that a high-quality-factor cavity mode is defined around the nano-block with resonant wavelength slightly longer than the dispersion-edge of the photonic-crystal waveguide. Measured near-field images exhibit photon distribution well-localized in the proximity of the printed nano-block. Linearly-polarized emission along the vertical direction is also observed.
Terahertz particle-in-liquid sensing with spoof surface plasmon polariton waveguides
NASA Astrophysics Data System (ADS)
Ma, Zhijie; Hanham, Stephen M.; Arroyo Huidobro, Paloma; Gong, Yandong; Hong, Minghui; Klein, Norbert; Maier, Stefan A.
2017-11-01
We present a highly sensitive microfluidic sensing technique for the terahertz (THz) region of the electromagnetic spectrum based on spoof surface plasmon polaritons (SPPs). By integrating a microfluidic channel in a spoof SPP waveguide, we take advantage of these highly confined electromagnetic modes to create a platform for dielectric sensing of liquids. Our design consists of a domino waveguide, that is, a series of periodically arranged rectangular metal blocks on top of a metal surface that supports the propagation of spoof SPPs. Through numerical simulations, we demonstrate that the transmission of spoof SPPs along the waveguide is extremely sensitive to the refractive index of a liquid flowing through a microfluidic channel crossing the waveguide to give an interaction volume on the nanoliter scale. Furthermore, by taking advantage of the insensitivity of the domino waveguide's fundamental spoof SPP mode to the lateral width of the metal blocks, we design a tapered waveguide able to achieve further confinement of the electromagnetic field. Using this approach, we demonstrate the highly sensitive detection of individual subwavelength micro-particles flowing in the liquid. These results are promising for the creation of spoof SPP based THz lab-on-a-chip microfluidic devices that are suitable for the analysis of biological liquids such as proteins and circulating tumour cells in buffer solution.
F-16 Simulator for Man-in-the-Loop Testing of Aircraft Control Systems (SIMTACS).
1987-12-01
Figures Figure Page 2.1. General Hardware Arrangement..................... 12 3.1. DFCS Longitudinal Control Block Diagram .... 21 3.2. DFCS Gain...Functions for Longitudinal Control 22 3.3. DFCS Lateral-Directional Control Block Diagram........................................... 23 3.4. DFCS Gain...Functions for Lateral-Directional Control........................................... 24 3.5. DFCS Control Surface Mixer....................... 25 3.6
NASA Astrophysics Data System (ADS)
Zoepfl, D.; Muppalla, P. R.; Schneider, C. M. F.; Kasemann, S.; Partel, S.; Kirchmair, G.
2017-08-01
Here we present the microwave characterization of microstrip resonators, made from aluminum and niobium, inside a 3D microwave waveguide. In the low temperature, low power limit internal quality factors of up to one million were reached. We found a good agreement to models predicting conductive losses and losses to two level systems for increasing temperature. The setup presented here is appealing for testing materials and structures, as it is free of wire bonds and offers a well controlled microwave environment. In combination with transmon qubits, these resonators serve as a building block for a novel circuit QED architecture inside a rectangular waveguide.
The role of Mixer in patterning the early Xenopus embryo.
Kofron, Matt; Wylie, Chris; Heasman, Janet
2004-05-01
The transcription factor VegT, is required in early Xenopus embryos for the formation of both the mesoderm and endoderm germ layers. Inherited as a maternal mRNA localized only in vegetal cells, VegT activates the transcription of a large number of transcription factors, as well as signaling ligands that induce cells in the vegetal mass to form endoderm, and the marginal zone to form mesoderm. It is important now to understand the extent to which transcription factors downstream of VegT play individual, or overlapping, roles in the specification and patterning of the endoderm and mesoderm. In addition, it is important to understand the mechanism that specifies the boundary between endoderm and mesoderm. One of the downstream targets of VegT, the homeodomain protein Mixer, is expressed at high levels at the mesoderm/endoderm boundary at the late blastula stage. We therefore examined its functions by blocking its translation using morpholino oligos. In Mixer-depleted embryos, the expression of many signaling ligands and transcription factors was affected. In particular, we found that the expression of several genes, including several normally expressed in mesoderm, was upregulated. Functional assays of Mixer-depleted vegetal cells showed that they have increased mesoderm-inducing activity. This demonstrates that Mixer plays an essential role in controlling the amount of mesoderm induction by the vegetal cells.
NASA Technical Reports Server (NTRS)
Clauss, R. C.; Quinn, R. B. (Inventor)
1980-01-01
A dielectrically loaded four port waveguide circulator is used with a reflected wave maser connected to a second port between first and third ports to form one of a plurality of cascaded maser waveguide structures. The fourth port is connected to a waveguide loaded with microwave energy absorbing material. The third (output signal) port of one maser waveguide structure is connected by a waveguide loaded with dielectric material to the first (input) port of an adjacent maser waveguide structure, and the second port is connected to a reflected wave maser by a matching transformer which passes the signal to be amplified into and out of the reflected wavemaser and blocks pumping energy in the reflected wave maser from entering the circulator. A number of cascaded maser waveguide structures are thus housed in a relatively small volume of conductive material placed within a cryogenically cooled magnet assembly.
Subwavelength hybrid terahertz waveguides.
Nam, Sung Hyun; Taylor, Antoinette J; Efimov, Anatoly
2009-12-07
We introduce and present general properties of hybrid terahertz waveguides. Weakly confined Zenneck waves on a metal-dielectric interface at terahertz frequencies can be transformed to a strongly confined yet low-loss subwavelength mode through coupling with a photonic mode of a nearby high-index dielectric strip. We analyze confinement, attenuation, and dispersion properties of this mode. The proposed design is suitable for planar integration and allows easy fabrication on chip scale. The superior waveguiding properties at terahertz frequencies could enable the hybrid terahertz waveguides as building blocks for terahertz integrated circuits.
100-GHz Phase Switch/Mixer Containing a Slot-Line Transition
NASA Technical Reports Server (NTRS)
Gaier, Todd; Wells, Mary; Dawson, Douglas
2009-01-01
A circuit that can function as a phase switch, frequency mixer, or frequency multiplier operates over a broad frequency range in the vicinity of 100 GHz. Among the most notable features of this circuit is a grounded uniplanar transition (in effect, a balun) between a slot line and one of two coplanar waveguides (CPWs). The design of this circuit is well suited to integration of the circuit into a microwave monolithic integrated circuit (MMIC) package. One CPW is located at the input end and one at the output end of the top side of a substrate on which the circuit is fabricated (see Figure 1). The input CPW feeds the input signal to antiparallel flip-chip Schottky diodes connected to the edges of the slot line. Phase switching is effected by the combination of (1) the abrupt transition from the input CPW to the slot line and (2) CPW ground tuning effected by switching of the bias on the diodes. Grounding of the slot metal to the bottom metal gives rise to a frequency cutoff in the slot. This cutoff is valuable for separating different frequency components when the circuit is used as a mixer or multiplier. Proceeding along the slot line toward the output end, one encounters the aforementioned transition, which couples the slot line to the output CPW. Impedance tuning of the transition is accomplished by use of a high-impedance section immediately before the transition.
Demonstration of a Submillimeter-Wave HEMT Oscillator Module at 330 GHz
NASA Technical Reports Server (NTRS)
Radisic, Vesna; Deal, W. R.; Mei, X. B.; Yoshida, Wayne; Liu, P. H.; Uyeda, Jansen; Lai, Richard; Samoska, Lorene; Fung, King Man; Gaier, Todd;
2010-01-01
In this work, radial transitions have been successfully mated with a HEMT-based MMIC (high-electron-mobility-transistor-based monolithic microwave integrated circuit) oscillator circuit. The chip has been assembled into a WR2.2 waveguide module for the basic implementation with radial E-plane probe transitions to convert the waveguide mode to the MMIC coplanar waveguide mode. The E-plane transitions have been directly integrated onto the InP substrate to couple the submillimeter-wave energy directly to the waveguides, thus avoiding wire-bonds in the RF path. The oscillator demonstrates a measured 1.7 percent DC-RF efficiency at the module level. The oscillator chip uses 35-nm-gate-length HEMT devices, which enable the high frequency of oscillation, creating the first demonstration of a packaged waveguide oscillator that operates over 300 GHz and is based on InP HEMT technology. The oscillator chip is extremely compact, with dimensions of only 1.085 x 320 sq mm for a total die size of 0.35 sq mm. This fully integrated, waveguide oscillator module, with an output power of 0.27 mW at 330 GHz, can provide low-mass, low DC-power-consumption alternatives to existing local oscillator schemes, which require high DC power consumption and large mass. This oscillator module can be easily integrated with mixers, multipliers, and amplifiers for building high-frequency transmit and receive systems at submillimeter wave frequencies. Because it requires only a DC bias to enable submillimeter wave output power, it is a simple and reliable technique for generating power at these frequencies. Future work will be directed to further improving the applicability of HEMT transistors to submillimeter wave and terahertz applications. Commercial applications include submillimeter-wave imaging systems for hidden weapons detection, airport security, homeland security, and portable low-mass, low-power imaging systems
3. SIXTH FLOOR VIEW TO WEST, WITH FACE POWDER MAKING ...
3. SIXTH FLOOR VIEW TO WEST, WITH FACE POWDER MAKING UNIT: CHARGE HOPPER (CENTER FOREGROUND), PERFUME MIXER (LEFT), AND DUST COLLECTOR (REAR CENTER) - Colgate & Company Jersey City Plant, G Block, 81-95 Greene Street, Jersey City, Hudson County, NJ
Wallis, R; Degl'Iinnocenti, R; Jessop, D S; Ren, Y; Klimont, A; Shah, Y D; Mitrofanov, O; Bledt, C M; Melzer, J E; Harrington, J A; Beere, H E; Ritchie, D A
2015-10-05
The growth in terahertz frequency applications utilising the quantum cascade laser is hampered by a lack of targeted power delivery solutions over large distances (>100 mm). Here we demonstrate the efficient coupling of double-metal quantum cascade lasers into flexible polystyrene lined hollow metallic waveguides via the use of a hollow copper waveguide integrated into the laser mounting block. Our approach exhibits low divergence, Gaussian-like emission, which is robust to misalignment error, at distances > 550 mm, with a coupling efficiency from the hollow copper waveguide into the flexible waveguide > 90%. We also demonstrate the ability to nitrogen purge the flexible waveguide, increasing the power transmission by up to 20% at 2.85 THz, which paves the way for future fibre based terahertz sensing and spectroscopy applications.
Development of Submillimeter SIS Mixers and Broadband HEMT Amplifiers
NASA Technical Reports Server (NTRS)
Zmuidzinas, J.
2004-01-01
This is the final technical report for NASA grant NAG5-9493. entitled "Development of Submillimeter SIS Mixers and Broadband HEMT Amplifiers". The goal of this project was to develop and demonstrate a new generation of superconducting tunnel junction (SIS) receivers with extremely wide instantaneous (intermediate-frequency, or IF) bandwidths. of order 12 GHz. along with the wideband low-noise microwave HEMT (high electron mobility transistor) amplifiers which follow the SIS mixer. These wideband SIS/HEMT receivers would allow rapid submillimeter wavelength spectral line surveys to be carried out, for instance with the NASA airborne observatory SOFIA. and could potentially be useful for future submillimeter space missions such as SAFIR. In addition, there are potential NASA earth science applications. such as the monitoring of the distribution of chemical species in the stratosphere and troposphere using the limb-sounding technique. The overall goals of this project have been achieved: a broadband 200-300 SIS receiver was designed and constructed, and was demonstrated in the field through a test run at the Caltech Submillimeter Observatory on Mauna Kea. HI. The technical details are described in the appendices. which are primarily conference publications. but Appendix A also includes an unpublished summary of the latest results. The work on the SIS mixer design are described in the conference publications (appendices B and C). The "Supermix" software package that was developed at Caltech and used for the SIS design is also described in two conference papers, but has been substantially revised, debugged. and extended as part of the work completed for this grant. The Supermix package is made available to the community at no charge. The electromagnetic design of a radial waveguide probe similar to the one used in this work is described in a journal publication. Details of the novel fabrication procedure used for producing the SIS devices at JPL are also given in an upcoming journal article. Finally, details on the wideband HEMT amplifier design and noise characterization techniques are described in two publications.
NASA Astrophysics Data System (ADS)
Huby, Nolwenn; Bigeon, John; Lagneaux, Quentin; Amela-Cortes, Maria; Garreau, Alexandre; Molard, Yann; Fade, Julien; Desert, Anthony; Faulques, Eric; Bêche, Bruno; Duvail, Jean-Luc; Cordier, Stéphane
2016-02-01
Integration of stable emissive entities into organic waveguide with minimum scattering is essential to design efficient optically active devices. Here we present a new class of doped nanocomposite waveguides exploiting 1-nm diameter metallic cluster-based building blocks as red-NIR luminescent dyes embedded in a SU8 polymeric matrix, a reference photoresist for organic photonics. These building blocks are [Mo6Ii8(OOCC2F5)a6]2- cluster anionic units with unique chemical and physical features well suited for optical nanocomposites such as a ligand-promoted dispersibility, a large Stokes shift with a broad absorption window and an emission window in the range 600-900 nm. A whole investigation of the nanocomposite has been first performed. Optical characterizations of Cs2[Mo6Ii8(OOCCnF2n+1)a6]@SU8 nanocomposites thin film and waveguiding structures show their relevance as active layers in integrated structures with a significant increase of the refractive index of 3 × 10-2 when the cluster concentration increases up to 4 wt%, while keeping high values for the transmitted power, as shown for different waveguide dimensions and clusters concentrations. The efficiency of photoluminescence propagation is investigated as a function of clusters concentration in the excitation area for several waveguides dimensions. Attenuation coefficient ranges between 5 and 18 dB/cm, values of the same order of magnitude as those obtained in polymeric waveguide doped with QDs or organic dyes. This original, stable and efficient nanocomposite is promising for downscaling complex nanosources and active waveguides in the visible and NIR range.
Asadi, R; Ouyang, Z; Mohammd, M M
2015-07-14
We design a compact, all-optical THz wave generator based on self-modulation in a 1-D slab photonic crystal (PhC) waveguide with a single sub-nanometer graphene layer by using enhanced nonlinearity of graphene. It has been shown that at the bandgap edge of higher bands of a 1-D slab PhC, through only one sub-nanometer graphene layer we can obtain a compact, high modulation factor (about 0.98 percent), self-intensity modulator at a high frequency (about 0.6 THz) and low threshold intensity (about 15 MW per square centimeter), and further a compact, all-optical THz wave generator by integrating the self-modulator with a THz photodiode or photonic mixer. Such a THz source is expected to have a relatively high efficiency compared with conventional sources based on optical methods. The proposed THz source can find wide applications in THz science and technology, e.g., in THz imaging, THz sensors and detectors, THz communication systems, and THz optical integrated logic circuits.
NASA Technical Reports Server (NTRS)
Sumner, Matthew; Blain, Andrew; Harris, Andrew; Hu, Robert; Rice, Frank; LeDuc, H. G.; Weinreb, Sander; Zmuidzinas, Jonas
2002-01-01
Millimeter and submillimeter heterodyne receivers using state-of-the-art SIS detectors are capable of extremely large instantaneous bandwidths with noise temperatures within a few Kelvin of the quantum limit. We present the design for a broadband, sensitive, heterodyne spectrometer under development for the Caltech Submillimeter Observatory (CSO). The 180-300 GHz double-sideband design uses a single SIS device excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output frequency (limited by the MMIC low noise IF preamplifier) is 6-18 GHz, providing an instantaneous RF bandwidth of 24 GHz (double-sideband). The SIS mixer conversion loss should be no more than 1-2 dB with mixer noise temperatures across the band within 10 K of the quantum limit. The single-sideband receiver noise temperature goal is 70 K. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical observations beyond the capabilities of current instruments. Lab testing of the receiver will begin in the summer of 2002, and the first use on the CSO should occur in the spring of 2003.
A Low Noise NbTiN-Based 850 GHz SIS Receiver for the Caltech Submillimeter Observatory
NASA Technical Reports Server (NTRS)
Kooi, J. W.; Kawamura, J.; Chen, J.; Chattopadhyay, G.; Pardo, J. R.; Zmuidzinas, J.; Phillips, T. G.; Bumble, B.; Stern, J.; LeDuc, H. G.
2000-01-01
We have developed a niobium titanium nitride (NbTiN) based superconductor- insulator-superconductor (SIS) receiver to cover the 350 micron atmospheric window. This frequency band lies entirely above the energy gap of niobium (700 GHz), a commonly used SIS superconductor. The instrument uses an open structure twin-slot SIS mixer that consists of two Nb/AlN/NbTiN tunnel junctions, NbTiN thin-film microstrip tuning elements, and a NbTiN ground plane. The optical configuration is very similar to the 850 GHz waveguide receiver that was installed at the Caltech Submillimeter Observatory (CSO) in 1997. To minimize front-end loss, we employed reflecting optics and a cooled beamsplitter at 4 K. The instrument has an uncorrected receiver noise temperature of 205K DSB at 800 GHz and 410K DSB at 900 GHz. The degradation in receiver sensitivity with frequency is primarily due to an increase in the mixer conversion loss, which is attributed to the mismatch between the SIS junction and the twin-slot antenna impedance. The overall system performance has been confirmed through its use at the telescope to detect a wealth of new spectroscopic lines.
New approach to the design of Schottky barrier diodes for THz mixers
NASA Technical Reports Server (NTRS)
Jelenski, A.; Grueb, A.; Krozer, V.; Hartnagel, H. L.
1992-01-01
Near-ideal GaAs Schottky barrier diodes especially designed for mixing applications in the THz frequency range are presented. A diode fabrication process for submicron diodes with near-ideal electrical and noise characteristics is described. This process is based on the electrolytic pulse etching of GaAs in combination with an in-situ platinum plating for the formation of the Schottky contacts. Schottky barrier diodes with a diameter of 1 micron fabricated by the process have already shown excellent results in a 650 GHz waveguide mixer at room temperature. A conversion loss of 7.5 dB and a mixer noise temperature of less than 2000 K have been obtained at an intermediate frequency of 4 GHz. The optimization of the diode structure and the technology was possible due to the development of a generalized Schottky barrier diode model which is valid also at high current densities. The common diode design and optimization is discussed on the basis of the classical theory. However, the conventional fomulas are valid only in a limited forward bias range corresponding to currents much smaller than the operating currents under submillimeter mixing conditions. The generalized new model takes into account not only the phenomena occurring at the junction such as current dependent recombination and drift/diffusion velocities, but also mobility and electron temperature variations in the undepleted epi-layer. Calculated diode I/V and noise characteristics are in excellent agreement with the measured values. Thus, the model offers the possibility of optimizing the diode structure and predicting the diode performance under mixing conditions at THz frequencies.
Space-qualified submillimeter radiometer
NASA Technical Reports Server (NTRS)
Huguenin, G. R.
1987-01-01
The purpose of this research was to develop a reliable submillimeter wave spectrometer for space-borne high frequency spectral line work. The emphasis was on improving the efficiency of frequency multipliers to limit the system components to rugged, low power consumption solid-state devices. This research has allowed Millitech to develop increased efficiency and performance in Millitech's existing line of submillimeter components and systems. Millitech has fabricated and tested a complete solid-state spectrometer front end for use at 560 GHz (the 1(sub 10) to 1(sub 01) transition of water vapor). The spectrometer was designed with the rigors of flight conditions in mind. The spectrometer uses a phase-locked, solid-state Gunn diode oscillator as the local oscillator, employing a tripler to produce about 3 mW of power at 285 GHz, and a low noise second harmonic waveguide mixer which requires less than 2 mW of LO power. The LO (and the signal) is injected into the mixer by means of a quasioptical diplexer. The measured system noise temperature is 2800 K (DSB) over 400 MHz. The whole spectrometer front end is compact (21 cm by 21 cm by 24 cm), light (7.4 kg), and has a power consumption of less than 8 W. Other topics explored in this work include compact frequency agile phase lock loops, optical filters, and InP Gunn oscillators for low noise applications. As a result of this research, the improvement in the design of multipliers and harmonic mixers will allow their use as the LO power for a variety of satellite-borne receivers operating in the 200 to 600 GHz frequency range.
Yang, Peidong; Law, Matt; Sirbuly, Donald J.; Johnson, Justin C.; Saykally, Richard; Fan, Rong; Tao, Andrea
2012-10-02
Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.
Phase locking of a 2.7 THz quantum cascade laser to a microwave reference.
Khosropanah, P; Baryshev, A; Zhang, W; Jellema, W; Hovenier, J N; Gao, J R; Klapwijk, T M; Paveliev, D G; Williams, B S; Kumar, S; Hu, Q; Reno, J L; Klein, B; Hesler, J L
2009-10-01
We demonstrate the phase locking of a 2.7 THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain (x12) from a microwave synthesizer at approximately 15 GHz. Both laser and reference radiations are coupled into a bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. The spectral analysis of the beat signal confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range.
Phase Locking of a 2.7 THz Quantum Cascade Laser to a Microwave Reference
NASA Technical Reports Server (NTRS)
Khosropanah, P.; Baryshev, A.; Zhang, W.; Jellema, W.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Paveliev, D. G.; Williams, B. S.; Hu, Q.;
2009-01-01
We demonstrate the phase locking of a 2.7 THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain (x 12) from a microwave synthesizer at approx. 15 GHz. Both laser and reference radiations are coupled into a bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. The spectral analysis of the beat signal confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range.
NASA Astrophysics Data System (ADS)
Ajates, Javier G.; Romero, Carolina; Castillo, Gabriel R.; Chen, Feng; Vázquez de Aldana, Javier R.
2017-10-01
We have designed and fabricated photonic structures such as, Y-junctions (one of the basic building blocks for construction any integrated photonic devices) and Mach-Zehnder interferometers, based on circular depressed-cladding waveguides by direct femtosecond laser irradiation in Nd:YAG crystal. The waveguides were optically characterized at 633 nm, showing nearly mono-modal behaviour for the selected waveguide radius (9 μm). The effect of the splitting angle in the Y structures was investigated finding a good preservation of the modal profiles up to more than 2°, with 1 dB of additional losses in comparison with straight waveguides. The dependence with polarization of these splitters keeps in a reasonable low level. Our designs pave the way for the fabrication of arbitrarily complex 3D photonic circuits in crystals with cladding waveguides.
Nanoassembled dynamic optical waveguides and sensors based on zeolite L nanocontainers
NASA Astrophysics Data System (ADS)
Barroso, Álvaro; Dieckmann, Katrin; Alpmann, Christina; Buscher, Tim; Studer, Armido; Denz, Cornelia
2015-03-01
Although optical functional devices as waveguides and sensors are of utmost importance for metrology on the nano scale, the micro-and nano-assembly by optical means of functional materials to create such optical elements has yet not been considered. In the last years, an elegant strategy based on holographic optical tweezers (HOT) has been developed to design and fabricate permanent and dynamic three-dimensional micro- and nanostructures based on functional nanocontainers as building blocks. Nanocontainers that exhibit stable and ordered voids to hierarchically organize guest materials are especially attractive. Zeolite L are a type of porous micro-sized crystals which features a high number of strictly one-dimensional, parallel aligned nanochannels. They are highly interesting as building blocks of functional nano-and microsystems due to their potential as nanocontainers to accommodate various different guest molecules and to assemble them in specific configurations. For instance, based on zeolite L crystals, microscopic polarization sensors and chains of several microcrystals for hierarchical supramolecular organization have been realized. Here, we demonstrate the ability of nanocontainers in general, and zeolite L crystals in particular to represent the basic constituent of optical functional microsystems. We show that the capability of HOT to manipulate multitude of non-spherical microparticles in three dimensions can be exploited for the investigation of zeolite L nanocontainers as dynamic optical waveguides. Moreover, we implement as additional elements dye-loaded zeolite L to sense the guiding features of these novel waveguides with high spatial precision and microspheres to enhance the light coupling into the zeolite L waveguides. With this elaborated approach of using nanocontainers as tailored building blocks for functional optical systems a new era of bricking optical components in a lego-like style becomes feasible.
Design and implementation of a low-power SOI CMOS receiver
NASA Astrophysics Data System (ADS)
Zencir, Ertan
There is a strong demand for wireless communications in civilian and military applications, and space explorations. This work attempts to implement a low-power, high-performance fully-integrated receiver for deep space communications using Silicon on Insulator (SOI) CMOS technology. Design and implementation of a UHF low-IF receiver front-end in a 0.35-mum SOI CMOS technology are presented. Problems and challenges in implementing a highly integrated receiver at UHF are identified. Low-IF architecture, suitable for low-power design, has been adopted to mitigate the noise at the baseband. Design issues of the receiver building blocks including single-ended and differential LNA's, passive and active mixers, and variable gain/bandwidth complex filters are discussed. The receiver is designed to have a variable conversion gain of more than 100 dB with a 70 dB image rejection and a power dissipation of 45 mW from a 2.5-V supply. Design and measured performance of the LNA's, and the mixer are presented. Measurement results of RF front-end blocks including a single-ended LNA, a differential LNA, and a double-balanced mixer demonstrate the low power realizability of RF front-end circuits in SOI CMOS technology. We also report on the design and simulation of the image-rejecting complex IF filter and the full receiver circuit. Gain, noise, and linearity performance of the receiver components prove the viability of fully integrated low-power receivers in SOI CMOS technology.
A Robust Waveguide Millimeter-Wave Noise Source
NASA Technical Reports Server (NTRS)
Ehsan, Negar; Piepmeier, Jeffrey R.; Solly, Michael; Macmurphy, Shawn; Lucey, Jared; Wollack, Edward
2015-01-01
This paper presents the design, fabrication, and characterization of a millimeter-wave noise source for the 160- 210 GHz frequency range. The noise source has been implemented in an E-split-block waveguide package and the internal circuitry was developed on a quartz substrate. The measured excess noise ratio at 200 GHz is 9.6 dB.
Study of mathematical modeling of communication systems transponders and receivers
NASA Technical Reports Server (NTRS)
Walsh, J. R.
1972-01-01
The modeling of communication receivers is described at both the circuit detail level and at the block level. The largest effort was devoted to developing new models at the block modeling level. The available effort did not permit full development of all of the block modeling concepts envisioned, but idealized blocks were developed for signal sources, a variety of filters, limiters, amplifiers, mixers, and demodulators. These blocks were organized into an operational computer simulation of communications receiver circuits identified as the frequency and time circuit analysis technique (FATCAT). The simulation operates in both the time and frequency domains, and permits output plots or listings of either frequency spectra or time waveforms from any model block. Transfer between domains is handled with a fast Fourier transform algorithm.
Quantum interference between transverse spatial waveguide modes.
Mohanty, Aseema; Zhang, Mian; Dutt, Avik; Ramelow, Sven; Nussenzveig, Paulo; Lipson, Michal
2017-01-20
Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic quantum systems have primarily relied on path encoding. However, in the classical regime, the transverse spatial modes of a multi-mode waveguide have been easily manipulated using the waveguide geometry to densely encode information. Here, we demonstrate quantum interference between the transverse spatial modes within a single multi-mode waveguide using quantum circuit-building blocks. This work shows that spatial modes can be controlled to an unprecedented level and have the potential to enable practical and robust quantum information processing.
NASA Astrophysics Data System (ADS)
Sjöberg, Daniel; Larsson, Christer
2015-06-01
We present a method aimed at reducing uncertainties and instabilities when characterizing materials in waveguide setups. The method is based on measuring the S parameters for three different orientations of a rectangular sample block in a rectangular waveguide. The corresponding geometries are modeled in a commercial full-wave simulation program, taking any material parameters as input. The material parameters of the sample are found by minimizing the squared distance between measured and calculated S parameters. The information added by the different sample orientations is quantified using the Cramér-Rao lower bound. The flexibility of the method allows the determination of material parameters of an arbitrarily shaped sample that fits in the waveguide.
Full Navier-Stokes analysis of a two-dimensional mixer/ejector nozzle for noise suppression
NASA Technical Reports Server (NTRS)
Debonis, James R.
1992-01-01
A three-dimensional full Navier-Stokes (FNS) analysis was performed on a mixer/ejector nozzle designed to reduce the jet noise created at takeoff by a future supersonic transport. The PARC3D computational fluid dynamics (CFD) code was used to study the flow field of the nozzle. The grid that was used in the analysis consisted of approximately 900,000 node points contained in eight grid blocks. Two nozzle configurations were studied: a constant area mixing section and a diverging mixing section. Data are presented for predictions of pressure, velocity, and total temperature distributions and for evaluations of internal performance and mixing effectiveness. The analysis provided good insight into the behavior of the flow.
Zhang, Bin; Bian, Yusheng; Ren, Liqiang; Guo, Feng; Tang, Shi-Yang; Mao, Zhangming; Liu, Xiaomin; Sun, Jinju; Gong, Jianying; Guo, Xiasheng; Huang, Tony Jun
2017-01-01
The emerging development of the hybrid plasmonic waveguide has recently received significant attention owing to its remarkable capability of enabling subwavelength field confinement and great transmission distance. Here we report a guiding approach that integrates hybrid plasmon polariton with dielectric-loaded plasmonic waveguiding. By introducing a deep-subwavelength dielectric ridge between a dielectric slab and a metallic substrate, a hybrid dielectric-loaded nanoridge plasmonic waveguide is formed. The waveguide features lower propagation loss than its conventional hybrid waveguiding counterpart, while maintaining strong optical confinement at telecommunication wavelengths. Through systematic structural parameter tuning, we realize an efficient balance between confinement and attenuation of the fundamental hybrid mode, and we demonstrate the tolerance of its properties despite fabrication imperfections. Furthermore, we show that the waveguide concept can be extended to other metal/dielectric composites as well, including metal-insulator-metal and insulator-metal-insulator configurations. Our hybrid dielectric-loaded nanoridge plasmonic platform may serve as a fundamental building block for various functional photonic components and be used in applications such as sensing, nanofocusing, and nanolasing. PMID:28091583
Phase-locking of a 2.7-THz Quantum Cascade Laser to a Microwave Reference
NASA Astrophysics Data System (ADS)
Baryshev, A. M.; Khosropanah, P.; Zhang, W.; Jellema, W.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Paveliev, D. G.; William, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.; Klein, B.; Hesler, J. L.
2009-04-01
We demonstrate phase-locking of a 2.7-THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier-chain (x2x3x2) from a microwave synthesizer at 15 GHz. Both laser and reference radiations are coupled into a hot electron bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. Spectral analysis of the beat signal (see fig. 1) confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range.
Generation and transfer of single photons on a photonic crystal chip.
Englund, Dirk; Faraon, Andrei; Zhang, Bingyang; Yamamoto, Yoshihisa; Vucković, Jelena
2007-04-30
We present a basic building block of a quantum network consisting of a quantum dot coupled to a source cavity, which in turn is coupled to a target cavity via a waveguide. The single photon emission from the high-Q/V source cavity is characterized by twelve-fold spontaneous emission (SE) rate enhancement, SE coupling efficiency beta ~ 0.98 into the source cavity mode, and mean wavepacket indistinguishability of ~67%. Single photons are efficiently transferred into the target cavity via the waveguide, with a target/source field intensity ratio of 0.12 +/- 0.01. This system shows great promise as a building block of future on-chip quantum information processing systems.
Low-loss terahertz ribbon waveguides.
Yeh, Cavour; Shimabukuro, Fred; Siegel, Peter H
2005-10-01
The submillimeter wave or terahertz (THz) band (1 mm-100 microm) is one of the last unexplored frontiers in the electromagnetic spectrum. A major stumbling block hampering instrument deployment in this frequency regime is the lack of a low-loss guiding structure equivalent to the optical fiber that is so prevalent at the visible wavelengths. The presence of strong inherent vibrational absorption bands in solids and the high skin-depth losses of conductors make the traditional microstripline circuits, conventional dielectric lines, or metallic waveguides, which are common at microwave frequencies, much too lossy to be used in the THz bands. Even the modern surface plasmon polariton waveguides are much too lossy for long-distance transmission in the THz bands. We describe a concept for overcoming this drawback and describe a new family of ultra-low-loss ribbon-based guide structures and matching components for propagating single-mode THz signals. For straight runs this ribbon-based waveguide can provide an attenuation constant that is more than 100 times less than that of a conventional dielectric or metallic waveguide. Problems dealing with efficient coupling of power into and out of the ribbon guide, achieving low-loss bends and branches, and forming THz circuit elements are discussed in detail. One notes that active circuit elements can be integrated directly onto the ribbon structure (when it is made with semiconductor material) and that the absence of metallic structures in the ribbon guide provides the possibility of high-power carrying capability. It thus appears that this ribbon-based dielectric waveguide and associated components can be used as fundamental building blocks for a new generation of ultra-high-speed electronic integrated circuits or THz interconnects.
A Cryogenic Waveguide Mount for Microstrip Circuit and Material Characterization
NASA Technical Reports Server (NTRS)
U-yen, Kongpop; Brown, Ari D.; Moseley, Samuel H.; Noroozian, Omid; Wollack, Edward J.
2016-01-01
A waveguide split-block fixture used in the characterization of thin-film superconducting planar circuitry at millimeter wavelengths is described in detail. The test fixture is realized from a pair of mode converters, which transition from rectangular-waveguide to on-chip microstrip-line signal propagation via a stepped ridge-guide impedance transformer. The observed performance of the W-band package at 4.2K has a maximum in-band transmission ripple of 2dB between 1.53 and 1.89 times the waveguide cutoff frequency. This metrology approach enables the characterization of superconducting microstrip test structures as a function temperature and frequency. The limitations of the method are discussed and representative data for superconducting Nb and NbTiN thin film microstrip resonators on single-crystal Si dielectric substrates are presented.
Polymer waveguides for electro-optical integration in data centers and high-performance computers.
Dangel, Roger; Hofrichter, Jens; Horst, Folkert; Jubin, Daniel; La Porta, Antonio; Meier, Norbert; Soganci, Ibrahim Murat; Weiss, Jonas; Offrein, Bert Jan
2015-02-23
To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.
Analysis of Helical Waveguide.
1985-12-23
tube Efficiency Helix structure Backward wave oscillation Gain 19. ABSTRACT (Continue on reverse if necessary and identofy by block number) The...4,vailabilitY CCdes -vai aidIorDist spec a ." iii "- -. .5- S.. . ANALYSIS OF HELICAL WAVEGUIDE I. INTRODUCTION High power (- 10 kW) and broadband ...sys- tems. The frequency range of interest is 60-100 GHz. In this frequency range, the conventional slow wave circuits such as klystrons and TWTs have
Full Ka Band Waveguide-to-Microstrip Inline Transition Design
NASA Astrophysics Data System (ADS)
Li, Jianxing; Li, Lei; Qiao, Yu; Chen, Juan; Chen, Jianzhong; Zhang, Anxue
2018-05-01
In this paper, a compact and broadband inline waveguide-to-microstrip transition is proposed to cover the full Ka band. The transition can be segmented from the electric point of view into three building blocks, comprising a microstrip line to rectangular coaxial line, a wedged rectangular coaxial line to ridged waveguide, and a final tapered ridged waveguide impedance transformer to standard waveguide. Both good electrical performance and simple modular assembly without any soldering have been simultaneously obtained. The validation of the design concept has been conducted by numerical simulations and experimental measurements. The experimental results of a fabricated back-to-back transition prototype coincide with the simulated results. It shows that the proposed transition achieves good return loss of lower than 15.5 dB and low insertion loss with a fluctuation between 0.23 to 0.60 dB across the entire Ka band. Details of design considerations and operation mechanism as well as simulation and measurement results are presented.
Johnston, Steven W.; Ahrenkiel, Richard K.
2002-01-01
An apparatus for measuring the minority carrier lifetime of a semiconductor sample using radio-frequency coupling. The measuring apparatus includes an antenna that is positioned a coupling distance from a semiconductor sample which is exposed to light pulses from a laser during sampling operations. A signal generator is included to generate high frequency, such as 900 MHz or higher, sinusoidal waveform signals that are split into a reference signal and a sample signal. The sample signal is transmitted into a sample branch circuit where it passes through a tuning capacitor and a coaxial cable prior to reaching the antenna. The antenna is radio-frequency coupled with the adjacent sample and transmits the sample signal, or electromagnetic radiation corresponding to the sample signal, to the sample and receives reflected power or a sample-coupled-photoconductivity signal back. To lower impedance and speed system response, the impedance is controlled by limiting impedance in the coaxial cable and the antenna reactance. In one embodiment, the antenna is a waveguide/aperture hybrid antenna having a central transmission line and an adjacent ground flange. The sample-coupled-photoconductivity signal is then transmitted to a mixer which also receives the reference signal. To enhance the sensitivity of the measuring apparatus, the mixer is operated to phase match the reference signal and the sample-coupled-photoconductivity signal.
Dark and bright blocker soliton interaction in defocusing waveguide arrays.
Smirnov, Eugene; Rüter, Christian E; Stepić, Milutin; Shandarov, Vladimir; Kip, Detlef
2006-11-13
We experimentally demonstrate the interaction of an optical probe beam with both bright and dark blocker solitons formed with low optical light power in a saturable defocusing waveguide array in photorefractive lithium niobate. A phase insensitive interaction of the beams is achieved by means of counterpropagating light waves. Partial and full reflection (blocking) of the probe beam on the positive or negative light-induced defect is obtained, respectively, in good agreement with numerical simulations.
Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths
NASA Astrophysics Data System (ADS)
Fohrmann, Lena Simone; Sommer, Gerrit; Pitruzzello, Giampaolo; Krauss, Thomas F.; Petrov, Alexander Yu.; Eich, Manfred
2017-09-01
Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC) mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.
NASA Astrophysics Data System (ADS)
Johnson, Brian K.
This dissertation provides a method and the understanding required to produce nanoparticles of organic actives using Flash NanoPrecipitation . The process comprises mixing a solvent phase containing molecularly dissolved amphiphilic block copolymer and an organic active with an anti-solvent. One block of the copolymer precipitates to alter the nucleation and growth of the organic active while the other remains in solution for particle stabilization. A custom built confined impinging jets (CIJ) mixer provides optimum micromixing at the laboratory or full scale within milliseconds. Comparison to other reactor designs is provided. The resulting nanoparticles have functional surfaces tailored to meet the needs of pharmaceutical or specialty chemical formulations. Example beta-carotene nanoparticles with a polyethylene oxide surface are produced at high concentration, high yield, low stabilizer content, and a size suitable for sterile filtration or larger. The technical challenges in nanoparticle production are explained via the characteristic times for mixing, copolymer aggregation, and organic active particle formation. The time for Flash NanoPrecipitation is shown to depend strongly on the time for copolymer aggregation, and control of the organic nucleation versus growth is critical to achieve nanoparticles. Mixing operating lines explain the impact of solubility differences between the colloidal stabilizer and the organic active as function of mixing rate. Techniques to measure the solubility of the copolymer and DeltaG° , DeltaH°, and DeltaS° of micellization are demonstrated. An analytical CIJ mixer is developed by quantifying the characteristic time and physical mechanism of mixing. The methodology described to find an absolute mixing lifetime is also applied to a vortex mixer at a spectrum of flow ratios away from one. Dimensional analysis using the process Damkohler number, defined as the ratio of the mixing to the process time, is applied to precipitation to quantify the induction time through knowledge of the mixing lifetime. Copolymer aggregation without an organic active to kinetically frozen nanoparticles occurs by a "fusion only" mechanism. By analogy to classical precipitation kinetics, the interfacial free energy of a diblock copolymer nanoparticle is determined for the first time. The composite dissertation provides a clear picture of Flash NanoPrecipitation for future research and applications.
New coplanar waveguide feed network for 2 x 2 linearly tapered slot antenna subarray
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Perl, Thomas D.; Lee, Richard Q.
1992-01-01
A novel feed method is presently demonstrated for a 2 x 2 linearly tapered slot antenna (LTSA) on the basis of a coplanar-waveguide (CPW)-to-slotline transition and a coax-to-CPW in-phase, four-way power divider. The LTSA subarray exhibits excellent radiation patterns and return-loss characteristics at 18 GHz, and has symmetric beamwidth; its compactness renders it applicable as either a feed for a reflector antenna or as a building-block for large arrays.
NITINOL Interconnect Device for Optical Fiber Waveguides
1981-07-01
LE EL,~NAVSEA REPORT NO. S27L~kV-NL 4P fNSWNC TR 81-129 1 JULY 1981 0 NITINOL INTERC&INECT DEVICE FOR OPTICAL FIBER WAVEGUIDES FINAL REPORT A...ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER NSWC TR 81-129I 1-19 -A )ci , ’ 4 TI TL E (and Sbtitle) S. TYPE OF REPORT & PERIOD COVERED NITINOL ... NITINOL Optical Fibers 20. ABSTRACT (Continue on reverse side if neceeewy and identify by block number) Two different interconnect devices for optical
Design and Performance of a 2.7 THz Waveguide Tripler
NASA Technical Reports Server (NTRS)
Maiwald, Frank; Martin, S.; Bruston, J.; Maestrini, A.; Crawford, T.; Siegel, P. H.
2001-01-01
The design and performance of a 0.9 THz to 2.7 THz waveguide tripler are presented. An unusual split block configuration with parallel input and output waveguides accommodates a monolithic membrane diode (MoMeD) circuit. Submicron planar GaAs Schottky diodes in single and antiparallel pairs are implemented with matching filters on a 3-micrometer thick suspended substrate as part of the MoMeD structure. The filters are a combination of short hammerheads and high-low impedance elements. Only a few circuit variations have been measured to date. The best current performance shows an output power of 0.1 microW and an efficiency of 0.002% at the band center frequency of 2.55 THz.
Modeling optical transmissivity of graphene grate in on-chip silicon photonic device
NASA Astrophysics Data System (ADS)
Amiri, Iraj S.; Ariannejad, M. M.; Jalil, M. A.; Ali, J.; Yupapin, P.
2018-06-01
A three-dimensional (3-D) finite-difference-time-domain (FDTD) analysis was used to simulate a silicon photonic waveguide. We have calculated power and transmission of the graphene used as single or multilayers to study the light transmission behavior. A new technique has been developed to define the straight silicon waveguide integrated with grate graphene layer. The waveguide has a variable grate spacing to be filled by the graphene layer. The number of graphene atomic layers varies between 100 and 1000 (or 380 nm and 3800 nm), the transmitted power obtained varies as ∼30% and ∼80%. The ∼99%, blocking of the light was occurred in 10,000 (or 38,000 nm) atomic layers of the graphene grate.
Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides.
Nguyen, Huu-Dat; Ródenas, Airán; Vázquez de Aldana, Javier R; Martínez, Javier; Chen, Feng; Aguiló, Magdalena; Pujol, Maria Cinta; Díaz, Francesc
2016-04-04
Mid-infrared lithium niobate cladding waveguides have great potential in low-loss on-chip non-linear optical instruments such as mid-infrared spectrometers and frequency converters, but their three-dimensional femtosecond-laser fabrication is currently not well understood due to the complex interplay between achievable depressed index values and the stress-optic refractive index changes arising as a function of both laser fabrication parameters, and cladding arrangement. Moreover, both the stress-field anisotropy and the asymmetric shape of low-index tracks yield highly birefringent waveguides not useful for most applications where controlling and manipulating the polarization state of a light beam is crucial. To achieve true high performance devices a fundamental understanding on how these waveguides behave and how they can be ultimately optimized is required. In this work we employ a heuristic modelling approach based on the use of standard optical characterization data along with standard computational numerical methods to obtain a satisfactory approximate solution to the problem of designing realistic laser-written circuit building-blocks, such as straight waveguides, bends and evanescent splitters. We infer basic waveguide design parameters such as the complex index of refraction of laser-written tracks at 3.68 µm mid-infrared wavelengths, as well as the cross-sectional stress-optic index maps, obtaining an overall waveguide simulation that closely matches the measured mid-infrared waveguide properties in terms of anisotropy, mode field distributions and propagation losses. We then explore experimentally feasible waveguide designs in the search of a single-mode low-loss behaviour for both ordinary and extraordinary polarizations. We evaluate the overall losses of s-bend components unveiling the expected radiation bend losses of this type of waveguides, and finally showcase a prototype design of a low-loss evanescent splitter. Developing a realistic waveguide model with which robust waveguide designs can be developed will be key for exploiting the potential of the technology.
Ka-Band Waveguide Three-Way Serial Combiner for MMIC Amplifiers
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.; Freeman, Jon C.; Chevalier, Christine T.
2012-01-01
In this innovation, the three-way combiner consists internally of two branch-line hybrids that are connected in series by a short length of waveguide. Each branch-line hybrid is designed to combine input signals that are in phase with an amplitude ratio of two. The combiner is constructed in an E-plane split-block arrangement and is precision machined from blocks of aluminum with standard WR-28 waveguide ports. The port impedances of the combiner are matched to that of a standard WR-28 waveguide. The component parts include the power combiner and the MMIC (monolithic microwave integrated circuit) power amplifiers (PAs). The three-way series power combiner is a six-port device. For basic operation, power that enters ports 3, 5, and 6 is combined in phase and appears at port 1. Ports 2 and 4 are isolated ports. The application of the three-way combiner for combining three PAs with unequal output powers was demonstrated. NASA requires narrow-band solid-state power amplifiers (SSPAs) at Ka-band frequencies with output power in the range of 3 to 5 W for radio or gravity science experiments. In addition, NASA also requires wideband, high-efficiency SSPAs at Ka-band frequencies with output power in the range of 5 to 15 W for high-data-rate communications from deep space to Earth. The three-way power combiner is designed to operate over the frequency band of 31.8 to 32.3 GHz, which is NASA s deep-space frequency band.
Synthesis and Characterization of Germanium Dioxide - Dioxide Waveguides
NASA Astrophysics Data System (ADS)
Chen, Din-Guo
The increasing use of single mode fibers in local -area networks (LAN) and customer premises networks (CPN) will increase the need for passive optical components, such as branching devices, mixers, etc. Integrated optical devices are potentially ideal for these applications, provided that they can be made compatible with single mode fibers. The use of GeO_2 as the core dopant and SiO_2 as the substrate ensures that these waveguides will have virtually identical characteristics to single mode fibers. Additionally, glasses in the form of waveguides have recently been used to study various nonlinear optical phenomena, which provide great potential applications such as data storage and information processing. The present study has for the first time demonstrated the feasibility of employing both sol-gel multiple dip -coating and low pressure chemical vapor deposition (LPCVD) in the production of GeO_2-SiO _2 waveguiding films with various germania contents. The thin film characteristics were studied by various analytical techniques (e.g. ellipsometry, waveguiding Raman spectroscopy, FTIR, XPS, SEM/TEM, etc.). The composition dependence of the linear refractive index of GeO _2-SiO_2 films follows that predicted by the Lorenz-Lorenz model. Vibrational spectroscopy revealed the existence of Si-O-Ge linkages in GeO_2-SiO_2 glass network. The addition of GeO_2 in SiO_2 caused a decrease in the size of both the D1 and D2 defect bands in the SiO _2 Raman spectra. The structure of the LPCVD film appears to be dominated by D1 and D2 defect bands. Using a three-prism loss measurement technique, the propagation losses were found to be 3.31 dB/cm and 2.59dB/cm for sol-gel and LPCVD films, respectively. These losses are attributed to various scattering processes in the films. The mode indices of the waveguide were measured using a prism coupling technique. The measured mode indices were found to agree with the calculated value based upon a step-index profile assumption. The theoretical electromagnetic field distribution profiles for a step-index planar waveguide has been calculated and compared to the experimentally measured mode profiles using a near field technique. The nonlinear refractive indices of the sol-gel films (GeO_2-SiO_2 and GeO_2-TiO_2 ) were measured using a THG interferometry fringe technique. The relation between n_{ rm 2THG} and n_1 was found to follow that predicted by the empirical BGO model. An additive model was used to calculate the linear refractive indices, Abbe numbers, and n_1 dispersion curves of the films.
Packaging of microwave integrated circuits operating beyond 100 GHz
NASA Technical Reports Server (NTRS)
Samoska, L.; Daniel, E.; Sokolov, V.; Sommerfeldt, S.; Bublitz, J.; Olson, K.; Gilbert, B.; Chow, D.
2002-01-01
Several methods of packaging high speed (75-330 GHz) InP HEMT MMIC devices are discussed. Coplanar wirebonding is presented with measured insertion loss of less than 0.5dB and return loss better than -17 dB from DC to 110 GHz. A motherboard/daughterboard packaging scheme is presented which supports minimum loss chains of MMICs using this coplanar wirebonding method. Split waveguide block packaging approaches are presented in G-band (140-220 GHz) with two types of MMIC-waveguide transitions: E-plane probe andantipodal finline.
Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides
NASA Astrophysics Data System (ADS)
Tsilipakos, Odysseas; Kriezis, Emmanouil E.; Bozhevolnyi, Sergey I.
2011-04-01
Thermo-optic switching elements made of dielectric-loaded plasmonic (DLSPP) waveguides are theoretically investigated by utilizing the three-dimensional vector finite element method. The configurations considered employ microring resonators, whose resonant frequency is varied by means of thermal tuning. First, a classic add-drop filter with parallel access waveguides is examined. Such a component features very poor drop port extinction ratio (ER). We therefore extend the analysis to add-drop filters with perpendicular access waveguides, which are found to exhibit superior drop port ERs, due to interference effects associated with the drop port transmission. In the process, the performance of a DLSPP waveguide crossing is also assessed, since it is a building block of those filters whose bus waveguides intersect. An elliptic tapering scheme is proposed for minimizing cross talk and its effect on the filter performance is explored. The dual-resonator add-drop filter with perpendicular bus waveguides and an untreated waveguide crossing of Sec. V can act as an efficient 2×2 switching element (the single-resonator variant can only act as a 1×2 switch due to structure asymmetry), possessing two equivalent input ports and featuring high ERs for both output ports over a broad wavelength range. Specifically, an extinction ratio of at least 8 dB can be attained for both output ports over a wavelength range of 3.2 nm, accommodating four 100-GHz-spaced channels. Switching times are in the order of a few microseconds, rendering the aforementioned structure capable of handling real-world routing scenarios.
NASA Tech Briefs, December 2010
NASA Technical Reports Server (NTRS)
2010-01-01
Topics include: Coherent Frequency Reference System for the NASA Deep Space Network; Diamond Heat-Spreader for Submillimeter-Wave Frequency Multipliers; 180-GHz I-Q Second Harmonic Resistive Mixer MMIC; Ultra-Low-Noise W-Band MMIC Detector Modules; 338-GHz Semiconductor Amplifier Module; Power Amplifier Module with 734-mW Continuous Wave Output Power; Multiple Differential-Amplifier MMICs Embedded in Waveguides; Rapid Corner Detection Using FPGAs; Special Component Designs for Differential-Amplifier MMICs; Multi-Stage System for Automatic Target Recognition; Single-Receiver GPS Phase Bias Resolution; Ultra-Wideband Angle-of-Arrival Tracking Systems; Update on Waveguide-Embedded Differential MMIC Amplifiers; Automation Framework for Flight Dynamics Products Generation; Product Operations Status Summary Metrics; Mars Terrain Generation; Application-Controlled Parallel Asynchronous Input/Output Utility; Planetary Image Geometry Library; Propulsion Design With Freeform Fabrication (PDFF); Economical Fabrication of Thick-Section Ceramic Matrix Composites; Process for Making a Noble Metal on Tin Oxide Catalyst; Stacked Corrugated Horn Rings; Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator; Continuous/Batch Mg/MgH2/H2O-Based Hydrogen Generator; Strain System for the Motion Base Shuttle Mission Simulator; Ko Displacement Theory for Structural Shape Predictions; Pyrotechnic Actuator for Retracting Tubes Between MSL Subsystems; Surface-Enhanced X-Ray Fluorescence; Infrared Sensor on Unmanned Aircraft Transmits Time-Critical Wildfire Data; and Slopes To Prevent Trapping of Bubbles in Microfluidic Channels.
Metal Standards for Waveguide Characterization of Materials
NASA Technical Reports Server (NTRS)
Lambert, Kevin M.; Kory, Carol L.
2009-01-01
Rectangular-waveguide inserts that are made of non-ferromagnetic metals and are sized and shaped to function as notch filters have been conceived as reference standards for use in the rectangular- waveguide method of characterizing materials with respect to such constitutive electromagnetic properties as permittivity and permeability. Such standards are needed for determining the accuracy of measurements used in the method, as described below. In this method, a specimen of a material to be characterized is cut to a prescribed size and shape and inserted in a rectangular- waveguide test fixture, wherein the specimen is irradiated with a known source signal and detectors are used to measure the signals reflected by, and transmitted through, the specimen. Scattering parameters [also known as "S" parameters (S11, S12, S21, and S22)] are computed from ratios between the transmitted and reflected signals and the source signal. Then the permeability and permittivity of the specimen material are derived from the scattering parameters. Theoretically, the technique for calculating the permeability and permittivity from the scattering parameters is exact, but the accuracy of the results depends on the accuracy of the measurements from which the scattering parameters are obtained. To determine whether the measurements are accurate, it is necessary to perform comparable measurements on reference standards, which are essentially specimens that have known scattering parameters. To be most useful, reference standards should provide the full range of scattering-parameter values that can be obtained from material specimens. Specifically, measurements of the backscattering parameter (S11) from no reflection to total reflection and of the forward-transmission parameter (S21) from no transmission to total transmission are needed. A reference standard that functions as a notch (band-stop) filter can satisfy this need because as the signal frequency is varied across the frequency range for which the filter is designed, the scattering parameters vary over the ranges of values between the extremes of total reflection and total transmission. A notch-filter reference standard in the form of a rectangular-waveguide insert that has a size and shape similar to that of a material specimen is advantageous because the measurement configuration used for the reference standard can be the same as that for a material specimen. Typically a specimen is a block of material that fills a waveguide cross-section but occupies only a small fraction of the length of the waveguide. A reference standard of the present type (see figure) is a metal block that fills part of a waveguide cross section and contains a slot, the long dimension of which can be chosen to tailor the notch frequency to a desired value. The scattering parameters and notch frequency can be estimated with high accuracy by use of commercially available electromagnetic-field-simulating software. The block can be fabricated to the requisite precision by wire electrical-discharge machining. In use, the accuracy of measurements is determined by comparison of (1) the scattering parameters calculated from the measurements with (2) the scattering parameters calculated by the aforementioned software.
Power-Combined GaN Amplifier with 2.28-W Output Power at 87 GHz
NASA Technical Reports Server (NTRS)
Fung, King Man; Ward, John; Chattopadhyay, Goutam; Lin, Robert H.; Samoska, Lorene A.; Kangaslahti, Pekka P.; Mehdi, Imran; Lambrigtsen, Bjorn H.; Goldsmith, Paul F.; Soria, Mary M.;
2011-01-01
Future remote sensing instruments will require focal plane spectrometer arrays with higher resolution at high frequencies. One of the major components of spectrometers are the local oscillator (LO) signal sources that are used to drive mixers to down-convert received radio-frequency (RF) signals to intermediate frequencies (IFs) for analysis. By advancing LO technology through increasing output power and efficiency, and reducing component size, these advances will improve performance and simplify architecture of spectrometer array systems. W-band power amplifiers (PAs) are an essential element of current frequency-multiplied submillimeter-wave LO signal sources. This work utilizes GaN monolithic millimeter-wave integrated circuit (MMIC) PAs developed from a new HRL Laboratories LLC 0.15- m gate length GaN semiconductor transistor. By additionally waveguide power combining PA MMIC modules, the researchers here target the highest output power performance and efficiency in the smallest volume achievable for W-band.
Transport conductivity of graphene at RF and microwave frequencies
NASA Astrophysics Data System (ADS)
Awan, S. A.; Lombardo, A.; Colli, A.; Privitera, G.; Kulmala, T. S.; Kivioja, J. M.; Koshino, M.; Ferrari, A. C.
2016-03-01
We measure graphene coplanar waveguides from direct current (DC) to a frequency f = 13.5 GHz and show that the apparent resistance (in the presence of parasitic impedances) has an {ω }2 dependence (where ω =2π f), but the intrinsic conductivity (without the influence of parasitic impedances) is frequency-independent. Consequently, in our devices the real part of the complex alternating current (AC) conductivity is the same as the DC value and the imaginary part is ˜0. The graphene channel is modeled as a parallel resistive-capacitive network with a frequency dependence identical to that of the Drude conductivity with momentum relaxation time ˜2.1 ps, highlighting the influence of AC electron transport on the electromagnetic properties of graphene. This can lead to optimized design of high-speed analog field-effect transistors, mixers, frequency doublers, low-noise amplifiers and radiation detectors.
A low noise 230 GHz heterodyne receiver employing .25 sq micron area Nb/AlO(x)/Nb tunnel junctions
NASA Technical Reports Server (NTRS)
Kooi, Jacob W.; Chan, M.; Phillips, T. G.; Bumble, B.; Leduc, H. G.
1992-01-01
Recent results for a full height rectangular waveguide mixer with an integrated IF matching network are reported. Two 0.25 sq micron Nb/AlO(x)/Nb superconducting insulating superconducting (SIS) tunnel junctions with a current density of about 8500 A/sq cm and omega RC of about 2.5 at 230 GHz have been tested. Detailed measurements of the receiver noise have been made from 200-290 GHz for both junctions at 4.2 K. The lowest receiver noise temperatures were recorded at 239 GHz, measuring 48 K DSB at 4.2 K and 40 K DSB at 2.1 K. The 230 GHz receiver incorporates a one octave wide integrated low pass filter and matching network which transforms the pumped IF junction impedance to 50 ohms over a wide range of impedances.
Ground-based mm-wave emission spectroscopy for the detection and monitoring of stratospheric ozone
NASA Technical Reports Server (NTRS)
Parrish, A.; Dezafra, R.; Solomon, P.
1981-01-01
The molecular rotational spectrum of ozone is quite rich in the mm-wave region from 50 to 300 GHz. An apparatus, which was developed primarily for detection and measurement of stratospheric ClO and other trace molecules, is found to be well suited also for the observation of ozone lines. The collecting antenna of the apparatus is a simple mm-waveguide feedhorn. The detector is a superheterodyne mixer using a special high frequency Schottky diode and a klystron local oscillator. The spectrometer is a 256 channel filter bank with 1 MHz resolution per channel. The apparatus is believed to be the first ground-based mm-wave instrument having the capability of obtaining data of sufficient quality to make use of the inversion technique. The ground based radio technique is most sensitive to changes in vertical distribution in the region above 25 km, a region which is difficult to sample by other techniques.
Microwave window breakdown experiments and simulations on the UM/L-3 relativistic magnetron
NASA Astrophysics Data System (ADS)
Hoff, B. W.; Mardahl, P. J.; Gilgenbach, R. M.; Haworth, M. D.; French, D. M.; Lau, Y. Y.; Franzi, M.
2009-09-01
Experiments have been performed on the UM/L-3 (6-vane, L-band) relativistic magnetron to test a new microwave window configuration designed to limit vacuum side breakdown. In the baseline case, acrylic microwave windows were mounted between three of the waveguide coupling cavities in the anode block vacuum housing and the output waveguides. Each of the six 3 cm deep coupling cavities is separated from its corresponding anode cavity by a 1.75 cm wide aperture. In the baseline case, vacuum side window breakdown was observed to initiate at single waveguide output powers close to 20 MW. In the new window configuration, three Air Force Research Laboratory-designed, vacuum-rated directional coupler waveguide segments were mounted between the coupling cavities and the microwave windows. The inclusion of the vacuum side power couplers moved the microwave windows an additional 30 cm away from the anode apertures. Additionally, the Lucite microwave windows were replaced with polycarbonate windows and the microwave window mounts were redesigned to better maintain waveguide continuity in the region around the microwave windows. No vacuum side window breakdown was observed in the new window configuration at single waveguide output powers of 120+MW (a factor of 3 increase in measured microwave pulse duration and factor of 3 increase in measured peak power over the baseline case). Simulations were performed to investigate likely causes for the window breakdown in the original configuration. Results from these simulations have shown that in the original configuration, at typical operating voltage and magnetic field ranges, electrons emitted from the anode block microwave apertures strike the windows with a mean kinetic energy of 33 keV with a standard deviation of 14 keV. Calculations performed using electron impact angle and energy data predict a first generation secondary electron yield of 65% of the primary electron population. The effects of the primary aperture electron impacts, combined with multiplication of the secondary populations, were determined to be the likely causes of the poor microwave window performance in the original configuration.
Compact, Miniature MMIC Receiver Modules for an MMIC Array Spectrograph
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka P.; Gaier, Todd C.; Cooperrider, Joelle T.; Samoska, Lorene A.; Soria, Mary M.; ODwyer, Ian J.; Weinreb, Sander; Custodero, Brian; Owen, Heahter; Grainge, Keith;
2009-01-01
A single-pixel prototype of a W-band detector module with a digital back-end was developed to serve as a building block for large focal-plane arrays of monolithic millimeter-wave integrated circuit (MMIC) detectors. The module uses low-noise amplifiers, diode-based mixers, and a WR10 waveguide input with a coaxial local oscillator. State-of-the-art InP HEMT (high electron mobility transistor) MMIC amplifiers at the front end provide approximately 40 dB of gain. The measured noise temperature of the module, at an ambient temperature of 300 K, was found to be as low as 450 K at 95 GHz. The modules will be used to develop multiple instruments for astrophysics radio telescopes, both on the ground and in space. The prototype is being used by Stanford University to characterize noise performance at cryogenic temperatures. The goal is to achieve a 30-50 K noise temperature around 90 GHz when cooled to a 20 K ambient temperature. Further developments include characterization of the IF in-phase (I) and quadrature (Q) signals as a function of frequency to check amplitude and phase; replacing the InP low-noise amplifiers with state-of-the-art 35-nm-gate-length NGC low-noise amplifiers; interfacing the front-end module with a digital back-end spectrometer; and developing a scheme for local oscillator and IF distribution in a future array. While this MMIC is being developed for use in radio astronomy, it has the potential for use in other industries. Applications include automotive radar (both transmitters and receivers), communication links, radar systems for collision avoidance, production monitors, ground-penetrating sensors, and wireless personal networks.
Low noise 874 GHz receivers for the International Submillimetre Airborne Radiometer (ISMAR)
NASA Astrophysics Data System (ADS)
Hammar, A.; Sobis, P.; Drakinskiy, V.; Emrich, A.; Wadefalk, N.; Schleeh, J.; Stake, J.
2018-05-01
We report on the development of two 874 GHz receiver channels with orthogonal polarizations for the International Submillimetre Airborne Radiometer. A spline horn antenna and dielectric lens, a Schottky diode mixer circuit, and an intermediate frequency (IF) low noise amplifier circuit were integrated in the same metallic split block housing. This resulted in a receiver mean double sideband (DSB) noise temperature of 3300 K (minimum 2770 K, maximum 3400 K), achieved at an operation temperature of 40 °C and across a 10 GHz wide IF band. A minimum DSB noise temperature of 2260 K at 20 °C was measured without the lens. Three different dielectric lens materials were tested and compared with respect to the radiation pattern and noise temperature. All three lenses were compliant in terms of radiation pattern, but one of the materials led to a reduction in noise temperature of approximately 200 K compared to the others. The loss in this lens was estimated to be 0.42 dB. The local oscillator chains have a power consumption of 24 W and consist of custom-designed Schottky diode quadruplers (5% power efficiency in operation, 8%-9% peak), commercial heterostructure barrier varactor (HBV) triplers, and power amplifiers that are pumped by using a common dielectric resonator oscillator at 36.43 GHz. Measurements of the radiation pattern showed a symmetric main beam lobe with full width half maximum <5° and side lobe levels below -20 dB. Return loss of a prototype of the spline horn and lens was measured using a network analyzer and frequency extenders to 750-1100 GHz. Time-domain analysis of the reflection coefficients shows that the reflections are below -25 dB and are dominated by the external waveguide interface.
Energy Efficient Engine Exhaust Mixer Model Technology
NASA Technical Reports Server (NTRS)
Kozlowski, H.; Larkin, M.
1981-01-01
An exhaust mixer test program was conducted to define the technology required for the Energy Efficient Engine Program. The model configurations of 1/10 scale were tested in two phases. A parametric study of mixer design options, the impact of residual low pressure turbine swirl, and integration of the mixer with the structural pylon of the nacelle were investigated. The improvement of the mixer itself was also studied. Nozzle performance characteristics were obtained along with exit profiles and oil smear photographs. The sensitivity of nozzle performance to tailpipe length, lobe number, mixer penetration, and mixer modifications like scalloping and cutbacks were established. Residual turbine swirl was found detrimental to exhaust system performance and the low pressure turbine system for Energy Efficient Engine was designed so that no swirl would enter the mixer. The impact of mixer/plug gap was also established, along with importance of scalloping, cutbacks, hoods, and plug angles on high penetration mixers.
Frequency domain measurement systems
NASA Technical Reports Server (NTRS)
Eischer, M. C.
1978-01-01
Stable frequency sources and signal processing blocks were characterized by their noise spectra, both discrete and random, in the frequency domain. Conventional measures are outlined, and systems for performing the measurements are described. Broad coverage of system configurations which were found useful is given. Their functioning and areas of application are discussed briefly. Particular attention is given to some of the potential error sources in the measurement procedures, system configurations, double-balanced-mixer-phase-detectors, and application of measuring instruments.
Ugwu, C U; Ogbonna, J C; Tanaka, H
2002-04-01
The feasibility of improving mass transfer characteristics of inclined tubular photobioreactors by installation of static mixers was investigated. The mass transfer characteristics of the tubular photobioreactor varied depending on the type (shape) and the number of static mixers. The volumetric oxygen transfer coefficient ( k(L)a) and gas hold up of the photobioreactor with internal static mixers were significantly higher than those of the photobioreactor without static mixers. The k(L)a and gas hold up increased with the number of static mixers but the mixing time became longer due to restricted liquid flow through the static mixers. By installing the static mixers, the liquid flow changed from plug flow to turbulent mixing so that cells were moved between the surface and bottom of the photobioreactor. In outdoor culture of Chlorella sorokiniana, the photobioreactor with static mixers gave higher biomass productivities irrespective of the standing biomass concentration and solar radiation. The effectiveness of the static mixers (average percentage increase in the productivities of the photobioreactor with static mixers over the productivities obtained without static mixers) was higher at higher standing biomass concentrations and on cloudy days (solar radiation below 6 MJ m(-2) day(-1)).
On-chip non-reciprocal optical devices based on quantum inspired photonic lattices
NASA Astrophysics Data System (ADS)
El-Ganainy, R.; Eisfeld, A.; Levy, Miguel; Christodoulides, D. N.
2013-10-01
We propose integrated optical structures that can be used as isolators and polarization splitters based on engineered photonic lattices. Starting from optical waveguide arrays that mimic Fock space (quantum state with a well-defined particle number) representation of a non-interacting two-site Bose Hubbard Hamiltonian, we show that introducing magneto-optic nonreciprocity to these structures leads to a superior optical isolation performance. In the forward propagation direction, an input TM polarized beam experiences a perfect state transfer between the input and output waveguide channels while surface Bloch oscillations block the backward transmission between the same ports. Our analysis indicates a large isolation ratio of 75 dB after a propagation distance of 8 mm inside seven coupled waveguides. Moreover, we demonstrate that, a judicious choice of the nonreciprocity in this same geometry can lead to perfect polarization splitting.
Adaptive slit beam shaping for direct laser written waveguides.
Salter, P S; Jesacher, A; Spring, J B; Metcalf, B J; Thomas-Peter, N; Simmonds, R D; Langford, N K; Walmsley, I A; Booth, M J
2012-02-15
We demonstrate an improved method for fabricating optical waveguides in bulk materials by means of femtosecond laser writing. We use an LC spatial light modulator (SLM) to shape the beam focus by generating adaptive slit illumination in the pupil of the objective lens. A diffraction grating is applied in a strip across the SLM to simulate a slit, with the first diffracted order mapped onto the pupil plane of the objective lens while the zeroth order is blocked. This technique enables real-time control of the beam-shaping parameters during writing, facilitating the fabrication of more complicated structures than is possible using nonadaptive methods. Waveguides are demonstrated in fused silica with a coupling loss to single-mode fibers in the range of 0.2 to 0.5 dB and propagation loss <0.4 dB/cm.
Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics
Weigel, Peter O.; Savanier, Marc; DeRose, Christopher T.; Pomerene, Andrew T.; Starbuck, Andrew L.; Lentine, Anthony L.; Stenger, Vincent; Mookherjea, Shayan
2016-01-01
We demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost. PMID:26927022
Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics.
Weigel, Peter O; Savanier, Marc; DeRose, Christopher T; Pomerene, Andrew T; Starbuck, Andrew L; Lentine, Anthony L; Stenger, Vincent; Mookherjea, Shayan
2016-03-01
We demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.
A 850 GHz SIS receiver employing silicon micro-machining technology
NASA Technical Reports Server (NTRS)
Kooi, J. W.; Pety, J.; Schaffer, P. L.; Phillips, T. G.; Bumble, B.; LeDuc, H. G.; Walker, C. K.
1996-01-01
A 850 GHz superconductor-insulator-superconductor (SIS) heterodyne receiver which uses a radiofrequency tuned niobium tunnel junction fabricated on a 1 micron thick silicon nitrate membrane, is reported. From video and heterodyne measurements, it was calculated that the niobium film loss in the radiofrequency matching network is about 6.8 dB at 822 GHz. These results are approximately a factor of two higher than the theoretical loss predicted by the Mattis-Bardeen theory in the extreme anomalous limit. The junction design and the receiver configuration are described, including the mixer block, the membrane construction and the cooled optics. The performance tests using a Fourier transform spectrometer to measure the response of the radiofrequency matching network, and the SIS simulations of the receiver response to cold and hot loads, the infrared noise contribution and the overall mixer conversion efficiency, are reported. It is concluded that the receiver response is limited by the absorption loss in the radiofrequency matching network.
NASA Technical Reports Server (NTRS)
Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor)
2012-01-01
A mixer assembly for a gas turbine engine is provided, including a main mixer, and a pilot mixer having an annular housing in which a corner is formed between an aft portion of the housing and a bulkhead wall in which a corner recirculation zone is located to stabilize and anchor the flame of the pilot mixer. The pilot mixer can further include features to cool the annular housing, including in the area of the corner recirculation zone.
NASA Technical Reports Server (NTRS)
Cheung, Albert K. (Inventor); Hoke, James B. (Inventor); McKinney, Randal G. (Inventor)
2017-01-01
A combustor is provided. The combustor may include an axial fuel injection system, and a radial fuel injection system aft of the axial fuel injection system. The axial fuel injection system includes a mixer having a bluff body at an exit port of the mixer, and a fuel injector disposed within the mixer. A fuel and air mixer is also provided and comprises an outer housing with an exit port and a bluff body. The bluff body extends across the exit port of the outer housing. A fuel injection system is also provided. The systems comprise a mixer having a bluff body at an exit port of the mixer and a fuel injector disposed within the mixer.
1984-09-21
Identify by block number) - FIELD GROUP SUB-GROUP Double layer pillbox antennas Triple layer pillbox antenna The possibility of designing very broadband... Design .................... 1 Broadband Feed De gn ........................................... 2 Ex mental Simulation of Double Layer Pillbox...5 REFERENCES ................................................... 6 APPENDIX - COAXIAL TO WAVEGUIDE JUNCTION DESIGN
Quantum memory and gates using a Λ -type quantum emitter coupled to a chiral waveguide
NASA Astrophysics Data System (ADS)
Li, Tao; Miranowicz, Adam; Hu, Xuedong; Xia, Keyu; Nori, Franco
2018-06-01
By coupling a Λ -type quantum emitter to a chiral waveguide, in which the polarization of a photon is locked to its propagation direction, we propose a controllable photon-emitter interface for quantum networks. We show that this chiral system enables the swap gate and a hybrid-entangling gate between the emitter and a flying single photon. It also allows deterministic storage and retrieval of single-photon states with high fidelities and efficiencies. In short, this chirally coupled emitter-photon interface can be a critical building block toward a large-scale quantum network.
A Matlab-Based Graphical User Interface for Simulation and Control Design of a Hydrogen Mixer
NASA Technical Reports Server (NTRS)
Richter, Hanz; Figueroa, Fernando
2003-01-01
A Graphical User Interface (GUI) that facilitates prediction and control design tasks for a propellant mixer is described. The Hydrogen mixer is used in rocket test stand operations at the NASA John C. Stennis Space Center. The mixer injects gaseous hydrogen (GH2) into a stream of liquid hydrogen (LH2) to obtain a combined flow with desired thermodynamic properties. The flows of GH2 and LH2 into the mixer are regulated by two control valves, and a third control valve is installed at the exit of the mixer to regulate the combined flow. The three valves may be simultaneously operated in order to achieve any desired combination of total flow, exit temperature and mixer pressure within the range of operation. The mixer, thus, constitutes a three-input, three-output system. A mathematical model of the mixer has been obtained and validated with experimental data. The GUI presented here uses the model to predict mixer response under diverse conditions.
Electrochemical cell apparatus having an exterior fuel mixer nozzle
Reichner, Philip; Doshi, Vinod B.
1992-01-01
An electrochemical apparatus (10) is made having a generator section (22) containing electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one hot gaseous spent fuel recirculation channel (46), where the spent fuel recirculation channel (46), a portion of which is in contact with the outside of a mixer chamber (52), passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at the entrance to the mixer chamber, and a mixer nozzle (50) is located at the entrance to the mixer chamber, where the mixer chamber (52) connects with the reforming chamber (54), and where the mixer-diffuser chamber (52) and mixer nozzle (50) are exterior to and spaced apart from the combustion chamber (24), and the generator chamber (22), and the mixer nozzle (50) can operate below 400.degree. C.
Flashback resistant pre-mixer assembly
Laster, Walter R [Oviedo, FL; Gambacorta, Domenico [Oviedo, FL
2012-02-14
A pre-mixer assembly associated with a fuel supply system for mixing of air and fuel upstream from a main combustion zone in a gas turbine engine. The pre-mixer assembly includes a swirler assembly disposed about a fuel injector of the fuel supply system and a pre-mixer transition member. The swirler assembly includes a forward end defining an air inlet and an opposed aft end. The pre-mixer transition member has a forward end affixed to the aft end of the swirler assembly and an opposed aft end defining an outlet of the pre-mixer assembly. The aft end of the pre-mixer transition member is spaced from a base plate such that a gap is formed between the aft end of the pre-mixer transition member and the base plate for permitting a flow of purge air therethrough to increase a velocity of the air/fuel mixture exiting the pre-mixer assembly.
Amplifier Module for 260-GHz Band Using Quartz Waveguide Transitions
NASA Technical Reports Server (NTRS)
Padmanabhan, Sharmila; Fung, King Man; Kangaslahti, Pekka P.; Peralta, Alejandro; Soria, Mary M.; Pukala, David M.; Sin, Seth; Samoska, Lorene A.; Sarkozy, Stephen; Lai, Richard
2012-01-01
Packaging of MMIC LNA (monolithic microwave integrated circuit low-noise amplifier) chips at frequencies over 200 GHz has always been problematic due to the high loss in the transition between the MMIC chip and the waveguide medium in which the chip will typically be used. In addition, above 200 GHz, wire-bond inductance between the LNA and the waveguide can severely limit the RF matching and bandwidth of the final waveguide amplifier module. This work resulted in the development of a low-loss quartz waveguide transition that includes a capacitive transmission line between the MMIC and the waveguide probe element. This capacitive transmission line tunes out the wirebond inductance (where the wire-bond is required to bond between the MMIC and the probe element). This inductance can severely limit the RF matching and bandwidth of the final waveguide amplifier module. The amplifier module consists of a quartz E-plane waveguide probe transition, a short capacitive tuning element, a short wire-bond to the MMIC, and the MMIC LNA. The output structure is similar, with a short wire-bond at the output of the MMIC, a quartz E-plane waveguide probe transition, and the output waveguide. The quartz probe element is made of 3-mil quartz, which is the thinnest commercially available material. The waveguide band used is WR4, from 170 to 260 GHz. This new transition and block design is an improvement over prior art because it provides for better RF matching, and will likely yield lower loss and better noise figure. The development of high-performance, low-noise amplifiers in the 180-to- 700-GHz range has applications for future earth science and planetary instruments with low power and volume, and astrophysics array instruments for molecular spectroscopy. This frequency band, while suitable for homeland security and commercial applications (such as millimeter-wave imaging, hidden weapons detection, crowd scanning, airport security, and communications), also has applications to future NASA missions. The Global Atmospheric Composition Mission (GACM) in the NRC Decadel Survey will need low-noise amplifiers with extremely low noise temperatures, either at room temperature or for cryogenic applications, for atmospheric remote sensing.
Small signal amplifiers and converters for millimeter wave Satcom systems
NASA Technical Reports Server (NTRS)
Okean, H. C.
1979-01-01
This paper describes the current state of the art and the various design tradeoffs encompassing the variety of small signal active circuit 'building blocks' deployed in millimeter wave Satcom receivers and transmitters. Included in this catagory are such low noise receiver components as parametric and FET amplifiers and low loss mixer downconverters as well as low level transmitter driver components such as resistive and varactor upconverters. Current and projected state of the art performance data will be presented along with specific examples of operating hardware.
The automated system for technological process of spacecraft's waveguide paths soldering
NASA Astrophysics Data System (ADS)
Tynchenko, V. S.; Murygin, A. V.; Emilova, O. A.; Bocharov, A. N.; Laptenok, V. D.
2016-11-01
The paper solves the problem of automated process control of space vehicles waveguide paths soldering by means of induction heating. The peculiarities of the induction soldering process are analyzed and necessity of information-control system automation is identified. The developed automated system makes the control of the product heating process, by varying the power supplied to the inductor, on the basis of information about the soldering zone temperature, and stabilizing the temperature in a narrow range above the melting point of the solder but below the melting point of the waveguide. This allows the soldering process automating to improve the quality of the waveguides and eliminate burn-troughs. The article shows a block diagram of a software system consisting of five modules, and describes the main algorithm of its work. Also there is a description of the waveguide paths automated soldering system operation, for explaining the basic functions and limitations of the system. The developed software allows setting of the measurement equipment, setting and changing parameters of the soldering process, as well as view graphs of temperatures recorded by the system. There is shown the results of experimental studies that prove high quality of soldering process control and the system applicability to the tasks of automation.
Deterministic photon-emitter coupling in chiral photonic circuits.
Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter
2015-09-01
Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.
Deterministic photon-emitter coupling in chiral photonic circuits
NASA Astrophysics Data System (ADS)
Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter
2015-09-01
Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.
NASA Technical Reports Server (NTRS)
Blumenthal, Rob; Kim, Dongmoon; Bache, George
1992-01-01
The hydrogen mixer for the Space Transportation Main Engine is used to mix cold hydrogen bypass flow with warm hydrogen coolant chamber gas, which is then fed to the injectors. It is very important to have a uniform fuel temperature at the injectors in order to minimize mixture ratio problems due to the fuel density variations. In addition, the fuel at the injector has certain total pressure requirements. In order to achieve these objectives, the hydrogen mixer must provide a thoroughly mixed fluid with a minimum pressure loss. The AEROVISC computational fluid dynamics (CFD) code was used to analyze the STME hydrogen mixer, and proved to be an effective tool in optimizing the mixer design. AEROVISC, which solves the Reynolds Stress-Averaged Navier-Stokes equations in primitive variable form, was used to assess the effectiveness of different mixer designs. Through a parametric study of mixer design variables, an optimal design was selected which minimized mixed fuel temperature variation and fuel mixer pressure loss. The use of CFD in the design process of the STME hydrogen mixer was effective in achieving an optimal mixer design while reducing the amount of hardware testing.
Subwavelength grating enabled on-chip ultra-compact optical true time delay line
Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R.
2016-01-01
An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth. PMID:27457024
Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics
Weigel, Peter O.; Savanier, Marc; DeRose, Christopher T.; ...
2016-03-01
Here, we demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneathmore » an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.« less
GRIN planar waveguide concentrator used with a single axis tracker.
Bouchard, Sébastien; Thibault, Simon
2014-03-10
It is generally accepted that small to medium level concentrators could be used as cost-competitive replacements for tracked solar panels. The objective is to design a system that can reach a good level of sun concentration with only one sun-tracking axis and is cheap to fabricate. As the most critical parameter for all concentrator designs, optical efficiency needed improvement to reduce the cost of power produced by our system. By using a graded-index planar waveguide with an index profile similar to SELFOC fiber, the ray's path can be controlled. Also, the concentrator can be fabricated in a single block, which reduces Fresnel reflections. Overall, the optical efficiency can be improved by as much as 33% compared to the same system made with a homogeneous waveguide. Furthermore, the ability to cost-effectively fabricate the concentrator by molding can be preserved, making it possible to reduce the cost of the solar power produced.
GRIN planar waveguide concentrator used with a single axis tracker.
Bouchard, Sébastien; Thibault, Simon
2014-03-10
It is generally accepted that small to medium level concentrators could be used as cost-competitive replacements for tracked solar panels. The objective is to design a system that can reach a good level of sun concentration with only one sun-tracking axis and is cheap to fabricate. As the most critical parameter for all concentrator designs, optical efficiency needed improvement to reduce the cost of power produced by our system. By using a graded-index planar waveguide with an index profile similar to SELFOC fiber, the ray’s path can be controlled. Also, the concentrator can be fabricated in a single block, which reduces Fresnel reflections. Overall, the optical efficiency can be improved by as much as 33% compared to the same system made with a homogeneous waveguide. Furthermore, the ability to cost-effectively fabricate the concentrator by molding can be preserved, making it possible to reduce the cost of the solar power produced.
Subwavelength grating enabled on-chip ultra-compact optical true time delay line.
Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R
2016-07-26
An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth.
On the Dynamics of Austral Heat Waves
NASA Astrophysics Data System (ADS)
Risbey, James S.; O'Kane, Terence J.; Monselesan, Didier P.; Franzke, Christian L. E.; Horenko, Illia
2018-01-01
This work examines summer heat wave events in four different regions of Australia (southwest, central, southeast, and northeast) to assess similarities and differences in the circulations that precede, accompany, and follow the heat wave events. A series of circulation composites are constructed for days from 10 days prior to 5 days following onset of each heat wave event. The composites of geopotential height anomalies and wave activity flux vectors show that heat waves in southwest and southeast Australia are preceded by coherent wave train structures in the Indian Ocean region, accompanied by blocking in the Australian region (as an amplified node of the wave train structure), and followed by coherent responses of wave train patterns in the Pacific and South America regions. The heat wave blocking high is maintained by convergence of wave activity in a well-defined wave channel. The concentration of wave activity in the block is aided by the formation of a subtropical jet branch and wave barrier on the equatorward side of the block. Heat waves in central and northeast Australia show similar wave train life cycle responses, but with a proximate ridge in the midtroposphere and a trough in the nearby waveguide region. Heat waves in Australia can be viewed as an element of successive expression of the planetary waveguide modes in the Southern Hemisphere and serve as signifiers of organized, active phases of these modes.
Noise and loss in balanced and subharmonically pumped mixers. I - Theory. II - Application
NASA Technical Reports Server (NTRS)
Kerr, A. R.
1979-01-01
The theory of noise and frequency conversion for two-diode balanced and subharmonically pumped mixers is presented. The analysis is based on the equivalent circuit of the Schottky diode, having nonlinear capacitance, series resistance, and shot and thermal noise. Expressions for the conversion loss, noise temperature, and input and output impedances are determined in a form suitable for numerical analysis. In Part II, the application of the theory to practical mixers is demonstrated, and the properties of some two-diode mixers are examined. The subharmonically pumped mixer is found to be much more strongly affected by the loop inductance than the balanced mixer, and the ideal two-diode mixer using exponential diodes has a multiport noise-equivalent network (attenuator) similar to that of the ideal single-diode mixer. It is concluded that the theory can be extended to mixers with more than two diodes and will be useful for their design and analysis, provided a suitable nonlinear analysis is available to determine the diode waveforms.
NASA Astrophysics Data System (ADS)
Ng, Jason Clement
Femtosecond laser processing is a flexible, three-dimensional (3D) fabrication technique used to make integrated low-loss photonic devices in fused silica. My work expanded the suite of available optical devices through the design and optimization of linear optical components such as low-loss (< 0.5 dB) curved waveguides, directional couplers (DCs), and Mach-Zehnder interferometers (MZIs). The robustness and consistency of this maturing fabrication process was also reinforced through the scalable design and integration of a more complex, multi-component flat-top interleaver over a wide >70-nm spectral window. My work further complemented femtosecond laser processing with the development of nonlinear device capabilities. While thermal poling is a well known process, significant challenges had restricted the development of nonlinear devices in fused silica. The laser writing process would erase the induced nonlinearity (erasing) while a written waveguide core acted as a barrier to the thermal poling process (blocking). Using second harmonic (SH) microscopy, the effectiveness of thermal poling on laser-written waveguides was systematically analyzed leading to the technique of "double poling", which effectively overcomes the two challenges of erasing and blocking. In this new process the substrate is poled before and after waveguide writing to restore the induced nonlinearity within the vicinity of the waveguide to enable effective poling for inducing a second-order nonlinearity (SON) in fused silica. A new flexible, femtosecond laser based erasure process was also developed to enable quasi-phase matching and to form arbitrarily chirped gratings. Following this result, second harmonic generation (SHG) in a quasiphase-matched (QPM) femtosecond laser written waveguide device was demonstrated. SHG in a chirped QPM structure was also demonstrated to illustrate the flexibility of the femtosecond laser writing technique. These are the first demonstration of frequency doubling in an all-femtosecond-laser-written structure. A maximum SHG conversion efficiency of 1.3 +/- 0.1x10 -11/W-cm-2 was achieved for the fundamental wavelength of 1552.8 nm with a phase-matching bandwidth of 4.4 nm for a 10.0-mm-long waveguide. For a shorter sample, an effective SON of chi(2) = 0:020 +/- 0:002 pm/V was measured. The results collectively demonstrate the versatility of femtosecond laser additive and subtractive fabrication and opens up the development of integrated nonlinear applications and photonic devices for future lab-on-a-chip and lab-in-a-fiber devices.
Chatrath, Jatin; Aziz, Mohsin; Helaoui, Mohamed
2018-01-01
Reconfigurable and multi-standard RF front-ends for wireless communication and sensor networks have gained importance as building blocks for the Internet of Things. Simpler and highly-efficient transmitter architectures, which can transmit better quality signals with reduced impairments, are an important step in this direction. In this regard, mixer-less transmitter architecture, namely, the three-way amplitude modulator-based transmitter, avoids the use of imperfect mixers and frequency up-converters, and their resulting distortions, leading to an improved signal quality. In this work, an augmented memory polynomial-based model for the behavioral modeling of such mixer-less transmitter architecture is proposed. Extensive simulations and measurements have been carried out in order to validate the accuracy of the proposed modeling strategy. The performance of the proposed model is evaluated using normalized mean square error (NMSE) for long-term evolution (LTE) signals. NMSE for a LTE signal of 1.4 MHz bandwidth with 100,000 samples for digital combining and analog combining are recorded as −36.41 dB and −36.9 dB, respectively. Similarly, for a 5 MHz signal the proposed models achieves −31.93 dB and −32.08 dB NMSE using digital and analog combining, respectively. For further validation of the proposed model, amplitude-to-amplitude (AM-AM), amplitude-to-phase (AM-PM), and the spectral response of the modeled and measured data are plotted, reasonably meeting the desired modeling criteria. PMID:29510501
Rafeie, Mehdi; Welleweerd, Marcel; Hassanzadeh-Barforoushi, Amin; Asadnia, Mohsen; Olthuis, Wouter; Ebrahimi Warkiani, Majid
2017-01-01
Mixing fluid samples or reactants is a paramount function in the fields of micro total analysis system (μTAS) and microchemical processing. However, rapid and efficient fluid mixing is difficult to achieve inside microchannels because of the difficulty of diffusive mass transfer in the laminar regime of the typical microfluidic flows. It has been well recorded that the mixing efficiency can be boosted by migrating from two-dimensional (2D) to three-dimensional (3D) geometries. Although several 3D chaotic mixers have been designed, most of them offer a high mixing efficiency only in a very limited range of Reynolds numbers (Re). In this work, we developed a 3D fine-threaded lemniscate-shaped micromixer whose maximum numerical and empirical efficiency is around 97% and 93%, respectively, and maintains its high performance (i.e., >90%) over a wide range of 1 < Re < 1000 which meets the requirements of both the μTAS and microchemical process applications. The 3D micromixer was designed based on two distinct mixing strategies, namely, the inducing of chaotic advection by the presence of Dean flow and diffusive mixing through thread-like grooves around the curved body of the mixers. First, a set of numerical simulations was performed to study the physics of the flow and to determine the essential geometrical parameters of the mixers. Second, a simple and cost-effective method was exploited to fabricate the convoluted structure of the micromixers through the removal of a 3D-printed wax structure from a block of cured polydimethylsiloxane. Finally, the fabricated mixers with different threads were tested using a fluorescent microscope demonstrating a good agreement with the results of the numerical simulation. We envisage that the strategy used in this work would expand the scope of the micromixer technology by broadening the range of efficient working flow rate and providing an easy way to the fabrication of 3D convoluted microstructures. PMID:28798843
Rafeie, Mehdi; Welleweerd, Marcel; Hassanzadeh-Barforoushi, Amin; Asadnia, Mohsen; Olthuis, Wouter; Ebrahimi Warkiani, Majid
2017-01-01
Mixing fluid samples or reactants is a paramount function in the fields of micro total analysis system (μTAS) and microchemical processing. However, rapid and efficient fluid mixing is difficult to achieve inside microchannels because of the difficulty of diffusive mass transfer in the laminar regime of the typical microfluidic flows. It has been well recorded that the mixing efficiency can be boosted by migrating from two-dimensional (2D) to three-dimensional (3D) geometries. Although several 3D chaotic mixers have been designed, most of them offer a high mixing efficiency only in a very limited range of Reynolds numbers ( Re ). In this work, we developed a 3D fine-threaded lemniscate-shaped micromixer whose maximum numerical and empirical efficiency is around 97% and 93%, respectively, and maintains its high performance (i.e., >90%) over a wide range of 1 < Re < 1000 which meets the requirements of both the μTAS and microchemical process applications. The 3D micromixer was designed based on two distinct mixing strategies, namely, the inducing of chaotic advection by the presence of Dean flow and diffusive mixing through thread-like grooves around the curved body of the mixers. First, a set of numerical simulations was performed to study the physics of the flow and to determine the essential geometrical parameters of the mixers. Second, a simple and cost-effective method was exploited to fabricate the convoluted structure of the micromixers through the removal of a 3D-printed wax structure from a block of cured polydimethylsiloxane. Finally, the fabricated mixers with different threads were tested using a fluorescent microscope demonstrating a good agreement with the results of the numerical simulation. We envisage that the strategy used in this work would expand the scope of the micromixer technology by broadening the range of efficient working flow rate and providing an easy way to the fabrication of 3D convoluted microstructures.
Design of a Wideband 900 GHz Balanced Frequency Tripler for Radioastronomy
NASA Technical Reports Server (NTRS)
Tripon-Canseliet, Charlotte; Maestrini, Alain; Mehdi, Imran
2004-01-01
We report on the design of a fix-tuned split-block waveguide balanced frequency tripler working nominally at 900GHz. It uses a GaAs Schottky planar diode pair in a balanced configuration. The circuit will be fabricated with JPL membrane technology in order to minimize dielectric loading. The multiplier is bias-less to dramatically ease the mounting and the operating procedure. At room temperature, the expected output power is 50- 130 (micro)W in the band 800-970 GHz when the tripler is pumped with 4mW. By modifying the waveguide input and output matching circuit, the multiplier can be tuned to operate at lower frequencies.
NASA Technical Reports Server (NTRS)
Kuchar, A. P.; Chamberlin, R.
1983-01-01
As part of the NASA Energy Efficient Engine program, scale-model performance tests of a mixed flow exhaust system were conducted. The tests were used to evaluate the performance of exhaust system mixers for high-bypass, mixed-flow turbofan engines. The tests indicated that: (1) mixer penetration has the most significant affect on both mixing effectiveness and mixer pressure loss; (2) mixing/tailpipe length improves mixing effectiveness; (3) gap reduction between the mixer and centerbody increases high mixing effectiveness; (4) mixer cross-sectional shape influences mixing effectiveness; (5) lobe number affects mixing degree; and (6) mixer aerodynamic pressure losses are a function of secondary flows inherent to the lobed mixer concept.
Transforming guided waves with metamaterial waveguide cores
NASA Astrophysics Data System (ADS)
Viaene, S.; Ginis, V.; Danckaert, J.; Tassin, P.
2016-04-01
Metamaterials make use of subwavelength building blocks to enhance our control on the propagation of light. To determine the required material properties for a given functionality, i.e., a set of desired light flows inside a metamaterial device, metamaterial designs often rely on a geometrical design tool known as transformation optics. In recent years, applications in integrated photonics motivated several research groups to develop two-dimensional versions of transformation optics capable of routing surface waves along graphene-dielectric and metal-dielectric interfaces. Although guided electromagnetic waves are highly relevant to applications in integrated optics, no consistent transformation-optical framework has so far been developed for slab waveguides. Indeed, the conventional application of transformation optics to dielectric slab waveguides leads to bulky three-dimensional devices with metamaterial implementations both inside and outside of the waveguide's core. In this contribution, we develop a transformationoptical framework that still results in thin metamaterial waveguide devices consisting of a nonmagnetic metamaterial core of varying thickness [Phys. Rev. B 93.8, 085429 (2016)]. We numerically demonstrate the effectiveness and versatility of our equivalence relations with three crucial functionalities: a beam bender, a beam splitter and a conformal lens. Our devices perform well on a qualitative (comparison of fields) and quantitative (comparison of transmitted power) level compared to their bulky counterparts. As a result, the geometrical toolbox of transformation optics may lead to a plethora of integrated metamaterial devices to route guided waves along optical chips.
NASA Tech Briefs, February 2010
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Insulation-Testing Cryostat With Lifting Mechanism; Optical Testing of Retroreflectors for Cryogenic Applications; Measuring Cyclic Error in Laser Heterodyne Interferometers; Self-Referencing Hartmann Test for Large-Aperture Telescopes; Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser; Reconfigurable Hardware for Compressing Hyperspectral Image Data; Spatio-Temporal Equalizer for a Receiving-Antenna Feed Array; High-Speed Ring Bus; Nanoionics-Based Switches for Radio-Frequency Applications; Lunar Dust-Tolerant Electrical Connector; Compact, Reliable EEPROM Controller; Quad-Chip Double-Balanced Frequency Tripler; Ka-Band Waveguide Two-Way Hybrid Combiner for MMIC Amplifiers; Radiation-Hardened Solid-State Drive; Use of Nanofibers to Strengthen Hydrogels of Silica, Other Oxides, and Aerogels; Two Concepts for Deployable Trusses; Concentric Nested Toroidal Inflatable Structures; Investigating Dynamics of Eccentricity in Turbomachines; Improved Low-Temperature Performance of Li-Ion Cells Using New Electrolytes; Integrity Monitoring of Mercury Discharge Lamps; White-Light Phase-Conjugate Mirrors as Distortion Correctors; Biasable, Balanced, Fundamental Submillimeter Monolithic Membrane Mixer; ICER-3D Hyperspectral Image Compression Software; and Context Modeler for Wavelet Compression of Spectral Hyperspectral Images.
A low noise 665 GHz SIS quasi-particle waveguide receiver
NASA Technical Reports Server (NTRS)
Kooi, J. W.; Walker, C. K.; Leduc, H. G.; Hunter, T. R.; Benford, D. J.; Phillips, T. G.
1993-01-01
Recent results on a 565-690 GHz SIS heterodyne receiver employing a 0.36 micron(sup 2) Nb/AlOx/Nb SIS tunnel junction with high quality circular non-contacting back short and E-plane tuners in a full height wave guide mount are reported. No resonant tuning structures were incorporated in the junction design at this time, even though such structures are expected to help the performance of the receiver. The receiver operates to at least the gap frequency of Niobium, approximately 680 GHz. Typical receiver noise temperatures from 565-690 GHz range from 160K to 230K with a best value of 185K DSB at 648 GHz. With the mixer cooled from 4.3K to 2K the measured receiver noise temperatures decreased by approximately 15 percent, giving roughly 180K DSB from 660 to 680 GHz. The receiver has a full 1 GHz IF pass band and was successfully installed at the Caltech Submillimeter Observatory in Hawaii.
Wanke, Michael C [Albuquerque, NM; Allen, S James [Santa Barbara, CA; Lee, Mark [Albuquerque, NM
2008-05-20
A terahertz radiation mixer comprises a heterodyned field-effect transistor (FET) having a high electron mobility heterostructure that provides a gatable two-dimensional electron gas in the channel region of the FET. The mixer can operate in either a broadband pinch-off mode or a narrowband resonant plasmon mode by changing a grating gate bias of the FET. The mixer can beat an RF signal frequency against a local oscillator frequency to generate an intermediate frequency difference signal in the microwave region. The mixer can have a low local oscillator power requirement and a large intermediate frequency bandwidth. The terahertz radiation mixer is particularly useful for terahertz applications requiring high resolution.
A general numerical analysis of the superconducting quasiparticle mixer
NASA Technical Reports Server (NTRS)
Hicks, R. G.; Feldman, M. J.; Kerr, A. R.
1985-01-01
For very low noise millimeter-wave receivers, the superconductor-insulator-superconductor (SIS) quasiparticle mixer is now competitive with conventional Schottky mixers. Tucker (1979, 1980) has developed a quantum theory of mixing which has provided a basis for the rapid improvement in SIS mixer performance. The present paper is concerned with a general method of numerical analysis for SIS mixers which allows arbitrary terminating impedances for all the harmonic frequencies. This analysis provides an approach for an examination of the range of validity of the three-frequency results of the quantum mixer theory. The new method has been implemented with the aid of a Fortran computer program.
Diurnal variation in peak expiratory flow rate among polyvinylchloride compounding workers.
Lee, H S; Ng, T P; Ng, Y L; Phoon, W H
1991-01-01
The diurnal variation in peak expiratory flow rate (PEFR) was studied in 24 mixers and 24 non-mixers in three polyvinylchloride (PVC) compounding plants and 24 non-PVC controls from a marine police workshop. The three groups (all men) were matched for age, race, and smoking. The mean respirable dust concentration (essentially PVC dust) was 1.6 mg/m3 for mixers and 0.4 mg/m3 for nonmixers. The mean diurnal variation in PEFR of the mixers was 6.5%. This was significantly higher than the 4.8% for non-mixers and 4.3% for the non-PVC controls. Six mixers had a diurnal variation of more than 15% on at least one day compared with none among the other two groups. Twenty nine per cent of mixers complained of wheezing compared with 4% of non-mixers and none among non-PVC workers. These differences were significant. Forced expiratory volume in one second (FEV1) for the mixers was 10% below the predicted values whereas that of non-PVC workers was 2% below predicted values. The study indicates a significant acute airway constriction from occupational exposure to PVC dust. PMID:2025595
TriPleX: a versatile dielectric photonic platform
NASA Astrophysics Data System (ADS)
Wörhoff, Kerstin; Heideman, René G.; Leinse, Arne; Hoekman, Marcel
2015-04-01
Photonic applications based on planar waveguide technology impose stringent requirements on properties such as optical propagation losses, light coupling to optical fibers, integration density, as well as on reliability and reproducibility. The latter is correlated to a high level of control of the refractive index and waveguide geometry. In this paper, we review a versatile dielectric waveguide platform, called TriPleX, which is based on alternating silicon nitride and silicon dioxide films. Fabrication with CMOS-compatible equipment based on low-pressure chemical vapor deposition enables the realization of stable material compositions being a prerequisite to the control of waveguide properties and modal shape. The transparency window of both materials allows for the realization of low-loss waveguides over a wide wavelength range (400 nm-2.35 μm). Propagation losses as low as 5×10-4 dB/cm are reported. Three basic geometries (box shell, double stripe, and filled box) can be distinguished. A specific tapering technology is developed for on-chip, low-loss (<0.1 dB) spotsize convertors, allowing for combining efficient fiber to chip coupling with high-contrast waveguides required for increased functional complexity as well as for hybrid integration with other photonic platforms such as InP and SOI. The functionality of the TriPleX platform is captured by verified basic building blocks. The corresponding library and associated design kit is available for multi-project wafer (MPW) runs. Several applications of this platform technology in communications, biomedicine, sensing, as well as a few special fields of photonics are treated in more detail.
Low-noise submillimeter-wave NbTiN superconducting tunnel junction mixers
NASA Astrophysics Data System (ADS)
Kawamura, Jonathan; Chen, Jian; Miller, David; Kooi, Jacob; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.
1999-12-01
We have developed a low-noise 850 GHz superconductor-insulator-superconductor quasiparticle mixer with NbTiN thin-film microstrip tuning circuits and hybrid Nb/AlN/NbTiN tunnel junctions. The mixer uses a quasioptical configuration with a planar twin-slot antenna feeding a two-junction tuning circuit. At 798 GHz, we measured an uncorrected double-sideband receiver noise temperature of TRX=260 K at 4.2 K bath temperature. This mixer outperforms current Nb SIS mixers by a factor of nearly 2 near 800 GHz. The high-gap frequency and low loss at 800 GHz make NbTiN an attractive material with which to fabricate tuning circuits for SIS mixers. NbTiN mixers can potentially operate up to the gap frequency, 2Δ/h˜1.2 THz.
Low-Noise Submillimeter-Wave NbTiN Superconducting Tunnel Junction Mixers
NASA Technical Reports Server (NTRS)
Kawamura, J.; Chen, J.; Miller, D.; Kooi, J.; Zmuidzinas, J.; Bumble, B.; LeDuc, H. G.; Stern, J. A.
1999-01-01
We have developed a low-noise 850 GHz superconductor-insulator-superconductor (SIS) quasi-particle mixer with NbTiN thin-film microstrip tuning circuits and hybrid Nb/AlN/NbTiN tunnel junctions. The mixer uses a quasioptical configuration with a planar twin-slot antenna feeding a two-junction tuning circuit. At 798 GHz, we measured an uncorrected double-sideband receiver noise temperature of T(sub RX) = 260 K at 4.2 K bath temperature. This mixer outperforms current Nb SIS mixers by a factor of nearly 2 near 800 GHz. The high gap frequency and low loss at 800 GHz make NbTiN an attractive material with which to fabricate tuning circuits for SIS mixers. NbTiN mixers can potentially operate up to the gap frequency, 2(delta)/h is approximately 1.2THz.
Research in millimeter wave techniques
NASA Technical Reports Server (NTRS)
Mcmillan, R. W.
1977-01-01
The following is investigated; (1) the design of a 183 GHz single ended fundamental mixer to serve as a back up mixer to the subharmonic mixer for airborne applications, (2) attainment of 6 db single sideband conversion loss with the 6 GHz subharmonic mixer model, together with initial tests to determine the feasibility of pumping the mixer at w sub s/4, (3) additional ground based radiometric measurements, and (4) derivation of equations for power transmission of wire grid interferometers, and initial tests to verify these equations.
Optimization of SIS mixer elements
NASA Technical Reports Server (NTRS)
Mattauch, Robert J.
1985-01-01
Superconductor-Insulator-Superconductor (SIS) quantum mixers provide an approach to millimeter wave mixing - potentially offering conversion gain, a low local oscillator power demand, and potential mixer noise temperatures near the quantum limit. The development of a reliable fabrication technology for producing such high quality SIS devices for mixer applications in radio astronomy is the focus of the work.
Mixer Assembly for a Gas Turbine Engine
NASA Technical Reports Server (NTRS)
Smith, Lance L. (Inventor); Fotache, Catalin G. (Inventor); Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Hautman, Donald J. (Inventor)
2015-01-01
A mixer assembly for a gas turbine engine is provided, including a main mixer with fuel injection holes located between at least one radial swirler and at least one axial swirler, wherein the fuel injected into the main mixer is atomized and dispersed by the air flowing through the radial swirler and the axial swirler.
Mixer Assembly for a Gas Turbine Engine
NASA Technical Reports Server (NTRS)
Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor); Hautman, Donald J. (Inventor); Smith, Lance L. (Inventor)
2018-01-01
A mixer assembly for a gas turbine engine is provided, including a main mixer with fuel injection holes located between at least one radial swirler and at least one axial swirler, wherein the fuel injected into the main mixer is atomized and dispersed by the air flowing through the radial swirler and the axial swirler.
7 CFR 58.228 - Dump hoppers, screens, mixers and conveyors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Dump hoppers, screens, mixers and conveyors. 58.228... Service 1 Equipment and Utensils § 58.228 Dump hoppers, screens, mixers and conveyors. The product contact surfaces of dump hoppers, screens, mixers and conveyors which are used in the process of transferring dry...
Novel index for micromixing characterization and comparative analysis
Jain, Mranal; Nandakumar, K.
2010-01-01
The most basic micromixer is a T- or Y-mixer, where two confluent streams mix due to transverse diffusion. To enhance micromixing, various modifications of T-mixers are reported such as heterogeneously charged walls, grooves on the channel base, geometric variations by introducing physical constrictions, etc. The performance of these reported designs is evaluated against the T-mixer in terms of the deviation from perfectly mixed state and mixing length (device length required to achieve perfect mixing). Although many studies have noticed the reduced flow rates for improved mixer designs, the residence time is not taken into consideration for micromixing performance evaluation. In this work, we propose a novel index, based on residence time, for micromixing characterization and comparative analysis. For any given mixer, the proposed index identifies the nondiffusive mixing enhancement with respect to the T-mixer. Various micromixers are evaluated using the proposed index to demonstrate the usefulness of the index. It is also shown that physical constriction mixer types are equivalent to T-mixers. The proposed index is found to be insightful and could be used as a benchmark for comparing different mixing strategies. PMID:20689773
Credit BG. This view looks northwest (290°) in the mixer ...
Credit BG. This view looks northwest (290°) in the mixer room at the 30-gallon Baker-Perkins model 121/2 PVM mixer and its associated equipment. The hopper in the left background feeds ingredients to the mixing pot when the hopper is mounted on the mixer frame; the hoist overhead is used to mount the hopper. The mixing pot is in its lowered position beneath the mixer blades. The pot is normally raised and secured to the upper half of the mixer, and a vacuum is applied during mixing operations to prevent the entrainment of air bubbles in the mix. A second mixing pot appears in the right background, and a pot vacuum lid appears in the extreme right foreground. The equipment on the palette in the left foreground is not related to the mixer. Note the explosion-proof fluorescent lighting fixtures suspended from the ceiling. The floor has an electrically conductive coating to dissipate static electrical charges - Jet Propulsion Laboratory Edwards Facility, Mixer & Casting Building, Edwards Air Force Base, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Sun, Feiying; Xia, Liangping; Nie, Changbin; Shen, Jun; Zou, Yixuan; Cheng, Guiyu; Wu, Hao; Zhang, Yong; Wei, Dongshan; Yin, Shaoyun; Du, Chunlei
2018-04-01
All-optical modulators based on graphene show great promise for on-chip optical interconnects. However, the modulation performance of all-optical modulators is usually based on the interaction between graphene and the fiber, limiting their potential in high integration. Based on this point, an all-optical modulator in a dielectric-loaded waveguide (DLW) with a graphene-silicon heterojunction structure (GSH) is proposed. The DLW raises the waveguide mode, which provides a strong light-graphene interaction. Sufficient tuning of the graphene Fermi energy beyond the Pauli blocking effect is obtained with the presented GSH structure. Under the modulation light with a wavelength of 532 nm and a power of 60 mW, a modulation efficiency of 0.0275 dB µm-1 is achieved for light with a communication wavelength of 1.55 µm in the experiment. This modulator has the advantage of having a compact footprint, which may make it a candidate for achieving a highly integrated all-optical modulator.
NASA Astrophysics Data System (ADS)
Liu, Yahong; Guo, Qinghua; Liu, Hongchao; Liu, Congcong; Song, Kun; Yang, Biao; Hou, Quanwen; Zhao, Xiaopeng; Zhang, Shuang; Navarro-Cía, Miguel
2018-05-01
Spin-orbit coupling of light, describing the interaction between the polarization (spin) and spatial degrees of freedom (orbit) of light, plays an important role in subwavelength scale systems and leads to many interesting phenomena, such as the spin Hall effect of light. Here, based on the spin-orbit coupling, we design and fabricate a helical tape waveguide (HTW), which can realize a circular-polarization-selective process. When the incident circularly polarized wave is of the same handedness as the helix of the HTW, a nearly complete transmission is observed; in contrast, a counterrotating circular polarization of incident wave results in a much lower transmission or is even totally blocked by the HTW. Indeed, both simulations and experiments reveal that the blocked component of power leaks through the helical aperture of the HTW and forms a conical beam analogous to helical Cherenkov radiation due to the conversion from the spin angular momentum to the orbital angular momentum. Our HTW structure demonstrates its potential as a polarization selector in a broadband frequency range.
21 CFR 888.4210 - Cement mixer for clinical use.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in mixing...
21 CFR 888.4210 - Cement mixer for clinical use.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in mixing...
21 CFR 888.4210 - Cement mixer for clinical use.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in mixing...
21 CFR 888.4210 - Cement mixer for clinical use.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in mixing...
21 CFR 888.4210 - Cement mixer for clinical use.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in mixing...
Conversion loss and noise of microwave and millimeter-wave mixers. I - Theory. II - Experiment
NASA Technical Reports Server (NTRS)
Held, D. N.; Kerr, A. R.
1978-01-01
The conversion loss and noise of microwave and millimeter-wave mixers are analyzed. Nonlinear capacitance, arbitrary embedding impedances, as well as shot, thermal and scattering noise arising in the diode, figure in the analysis. The anomalous mixer noise noted in millimeter-wave mixers by Kerr (1975) is shown to be explainable in terms of the correlation of down-converted components of the time-varying shot noise. A digital computer analysis of the conversion loss, noise, and output impedance of an 80-120-GHz mixer is also conducted.
A 30% bandwidth tunerless SIS mixer of quantum-limited sensitivity for Herschel / HIFI Band 1
NASA Astrophysics Data System (ADS)
Salez, Morvan; Delorme, Yan; Peron, I.; Lecomte, Benoit; Dauplay, Frederic; Boussaha, Faouzi; Spatazza, J.; Feret, A.; Krieg, J. M.; Schuster, Karl-Friedrich
2003-02-01
We report on the status of the development of a 30% bandwidth tunerless SIS double-sideband mixer for the "Band 1" (480 GHz-630 GHz) channel of the heterodyne instrument (HIFI) of ESA"s Herschel Space Observatory, scheduled for launch in 2007. After exposing the main features of our mixer design, we present the performance achieved by the demonstration mixer, measured via Fourier Transform Spectroscopy and heterodyne Y factor calibrations. We infer from a preliminary mixer analysis that the mixer has very low, quantum-limited noise and low conversion loss. We also report on some pre-qualification tests, as we currently start to manufacture the qualification models and design the last iteration of masks for SIS junction production.
11. VIEW OF HORIZONTAL MIXER (GedgeGray Co., Lockland, Ohio), LOCATED ...
11. VIEW OF HORIZONTAL MIXER (Gedge-Gray Co., Lockland, Ohio), LOCATED IN THE BASEMENT, MIXED ANIMAL FEED TO ORDER. THE WATER-POWERED MIXER WAS SUPERSEDED BY TWO ELECTRIC-POWERED VERTICAL MIXERS, ADDED IN THE 1940S. Photographer: Louise Taft Cawood, July 1986 - Alexander's Grist Mill, Lock 37 on Ohio & Erie Canal, South of Cleveland, Valley View, Cuyahoga County, OH
A wideband current-commutating passive mixer for multi-standard receivers in a 0.18 μm CMOS
NASA Astrophysics Data System (ADS)
Kuan, Bao; Xiangning, Fan; Wei, Li; Zhigong, Wang
2013-01-01
This paper reports a wideband passive mixer for direct conversion multi-standard receivers. A brief comparison between current-commutating passive mixers and active mixers is presented. The effect of source and load impedance on the linearity of a mixer is analyzed. Specially, the impact of the input impedance of the transimpedance amplifier (TIA), which acts as the load impedance of a mixer, is investigated in detail. The analysis is verified by a passive mixer implemented with 0.18 μm CMOS technology. The circuit is inductorless and can operate over a broad frequency range. On wafer measurements show that, with radio frequency (RF) ranges from 700 MHz to 2.3 GHz, the mixer achieves 21 dB of conversion voltage gain with a -1 dB intermediate frequency (IF) bandwidth of 10 MHz. The measured IIP3 is 9 dBm and the measured double-sideband noise figure (NF) is 10.6 dB at 10 MHz output. The chip occupies an area of 0.19 mm2 and drains a current of 5.5 mA from a 1.8 V supply.
Acoustic characteristics of externally blown flap systems with mixer nozzles
NASA Technical Reports Server (NTRS)
Goodykoontz, J. H.; Dorsch, R. G.; Wagner, J. M.
1974-01-01
Noise tests were conducted on a large scale, cold flow model of an engine-under-the-wing externally blown flap lift augmentation system employing a mixer nozzle. The mixer nozzle was used to reduce the flap impingement velocity and, consequently, try to attenuate the additional noise caused by the interaction between the jet exhaust and the wing flap. Results from the mixer nozzle tests are summarized and compared with the results for a conical nozzle. The comparison showed that with the mixer nozzle, less noise was generated when the trailing flap was in a typical landing setting (e.g., 60 deg). However, for a takeoff flap setting (20 deg), there was little or no difference in the acoustic characteristics when either the mixer or conical nozzle was used.
Noise tests of a mixer nozzle-externally blown flap system
NASA Technical Reports Server (NTRS)
Goodykoontz, J. H.; Dorsch, R. G.; Groesbeck, D. E.
1973-01-01
Noise tests were conducted on a large scale model of an externally blown flap lift augmentation system, employing a mixer nozzle. The mixer nozzle consisted of seven flow passages with a total equivalent diameter of 40 centimeters. With the flaps in the 30 - 60 deg setting, the noise level below the wing was less with the mixer nozzle than when a standard circular nozzle was used. At the 10 - 20 deg flap setting, the noise levels were about the same when either nozzle was used. With retracted flaps, the noise level was higher when the mixer nozzle was used.
Turbofan forced mixer lobe flow modeling. Part 3: Application to augment engines
NASA Technical Reports Server (NTRS)
Barber, T.; Moore, G. C.; Blatt, J. R.
1988-01-01
Military engines frequently need large quantities of thrust for short periods of time. The addition of an augmentor can provide such thrust increases but with a penalty of increased duct length and engine weight. The addition of a forced mixer to the augmentor improves performance and reduces the penalty, as well as providing a method for siting the required flame holders. In this report two augmentor concepts are investigated: a swirl-mixer augmentor and a mixer-flameholder augmentor. Several designs for each concept are included and an experimental assessment of one of the swirl-mixer augmentors is presented.
Submillimeter wave detection with superconducting tunnel diodes
NASA Technical Reports Server (NTRS)
Wengler, Michael J.
1992-01-01
Superconductor-Insulator-Superconductor (SIS) diodes are the detector elements in the most sensitive heterodyne receivers available from 100 to 500 GHz. SIS mixers are the front end of radio astronomical systems around the world. SIS mixer technology is being extended to 1 THz and higher frequencies for eventual use on spaceborne astronomical experiments. Here is a short review of submillimeter SIS mixers. The role of impedance matching in the proper design of an SIS mixer is described. A variety of methods for achieving good impedance match at submillimeter frequencies are presented. The experimental state of the submillimeter SIS mixer art is described and summarized.
Experimental evaluation of exhaust mixers for an Energy Efficient Engine
NASA Technical Reports Server (NTRS)
Kozlowski, H.; Kraft, G.
1980-01-01
Static scale model tests were conducted to evaluate exhaust system mixers for a high bypass ratio engine as part of the NASA sponsored Energy Efficient program. Gross thrust coefficients were measured for a series of mixer configurations which included variations in the number of mixer lobes, tailpipe length, mixer penetration, and length. All of these parameters have a significant impact on exhaust system performance. In addition, flow visualization pictures and pressure/temperature traverses were obtained for selected configurations. Parametric performance trends are discussed and the results considered relative to the Energy Efficient Engine program goals.
NASA Technical Reports Server (NTRS)
Kuchar, A. P.; Chamberlin, R.
1980-01-01
A scale model performance test was conducted as part of the NASA Energy Efficient Engine (E3) Program, to investigate the geometric variables that influence the aerodynamic design of exhaust system mixers for high-bypass, mixed-flow engines. Mixer configuration variables included lobe number, penetration and perimeter, as well as several cutback mixer geometries. Mixing effectiveness and mixer pressure loss were determined using measured thrust and nozzle exit total pressure and temperature surveys. Results provide a data base to aid the analysis and design development of the E3 mixed-flow exhaust system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... stock refunds or credits on cement mixers. 48.4061-1 Section 48.4061-1 Internal Revenue INTERNAL REVENUE... § 48.4061-1 Temporary regulations with respect to floor stock refunds or credits on cement mixers. (a... of tax on motor vehicles) on the sale of a cement mixer after June 30, 1968, and before January 1...
Code of Federal Regulations, 2011 CFR
2011-04-01
... stock refunds or credits on cement mixers. 48.4061-1 Section 48.4061-1 Internal Revenue INTERNAL REVENUE... § 48.4061-1 Temporary regulations with respect to floor stock refunds or credits on cement mixers. (a... of tax on motor vehicles) on the sale of a cement mixer after June 30, 1968, and before January 1...
Code of Federal Regulations, 2013 CFR
2013-04-01
... stock refunds or credits on cement mixers. 48.4061-1 Section 48.4061-1 Internal Revenue INTERNAL REVENUE... § 48.4061-1 Temporary regulations with respect to floor stock refunds or credits on cement mixers. (a... of tax on motor vehicles) on the sale of a cement mixer after June 30, 1968, and before January 1...
Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers
to Its Fleet Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet on Twitter Bookmark
Code of Federal Regulations, 2010 CFR
2010-04-01
... stock refunds or credits on cement mixers. 48.4061-1 Section 48.4061-1 Internal Revenue INTERNAL REVENUE... § 48.4061-1 Temporary regulations with respect to floor stock refunds or credits on cement mixers. (a... of tax on motor vehicles) on the sale of a cement mixer after June 30, 1968, and before January 1...
Submillimeter SIS Mixers Using High Current Density Nb/AIN/Nb Tunnel Junctions and NbTiN Films
NASA Astrophysics Data System (ADS)
Kawamura, J.; Miller, D.; Chen, J.; Kooi, J.; Zmuidzinas, J.; Bumble, B.; Leduc, H.; Stern, J.
1999-03-01
We are currently exploring ways to improve the performance of SIS mixers above 700 GHz. One approach is to use NbTiN in place of Nb for all or some of the mixer circuitry. With its high gap frequency and low losses demonstrated up to 800 GHz, it should be possible to fabricate an all-NbTiN SIS mixer with near quantum-limited noise performance up to 1.2 THz. Using a quasioptical twin-slot two-junction mixer with NbTiN ground plane and wiring and hybrid Nb/A1N/NbTiN junctions, we measured an uncorrected receiver noise temperature of TRx ~ 500 K across 790-850 GHz at 4.2 K bath temperature. Our second approach is to reduce the RC product of the mixer by employing very high current density Nb/A1N/Nb junctions. By using these we will greatly relax the requirement on tuning circuits, which is where substantial losses occur in mixers operating above the Nb gap frequency. These junctions have resistance-area products of R_N*A ~ 5.6 Ohm um2, good subgap to normal resistance ratios, R_sg/R_N ~ 10, and good run-to-run reproducibility. From FTS measurements we infer that omega*R_N*C = 1 at 270 GHz in these junctions. This is a substantial improvement over that available using Nb/Al0x/Nb technology. The sensitivity of a receiver incorporating these high current density mixers is T_Rx = 110 K at 533 GHz using a design for lower J_c mixers, which is close to the best we have measured with lower J_c Nb/Al0x/Nb mixers.
Dielectric Covered Planar Antennas
NASA Technical Reports Server (NTRS)
Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)
2014-01-01
An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.
Apparatus and method for suppressing sound in a gas turbine engine powerplant
NASA Technical Reports Server (NTRS)
Wynosky, Thomas A. (Inventor); Mischke, Robert J. (Inventor)
1992-01-01
A method and apparatus for suppressing jet noise in a gas turbine engine powerplant 10 is disclosed. Various construction details are developed for providing sound suppression at sea level take-off operative conditions and not providing sound suppression at cruise operative conditions. In one embodiment, the powerplant 10 has a lobed mixer 152 between a primary flowpath 44 and a second flowpath 46, a diffusion region downstream of the lobed mixer region (first mixing region 76), and a deployable ejector/mixer 176 in the diffusion region which forms a second mixing region 78 having a diffusion flowpath 72 downstream of the ejector/mixer and sound absorbing structure 18 bounding the flowpath throughout the diffusion region. The method includes deploying the ejector/mixer 176 at take-off and stowing the ejector/mixer at cruise.
Phase noise measurements of the 400-kW, 2.115-GHz (S-band) transmitter
NASA Technical Reports Server (NTRS)
Boss, P.; Hoppe, D.; Bhanji, A.
1987-01-01
The measurement theory is described and a test method to perform phase noise verification using off-the-shelf components and instruments is presented. The measurement technique described consists of a double-balanced mixer used as phase detector, followed by a low noise amplifier. An FFT spectrum analyzer is then used to view the modulation components. A simple calibration procedure is outlined that ensures accurate measurements. A block diagram of the configuration is presented as well as actual phase noise data from the 400 kW, 2.115 GHz (S-band) klystron transmitter.
Alternate paddle configuration for improved wear resistance in the saltstone mixer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reigel, M.; Fowley, M.
The Saltstone Production Facility has a 10-inch Readco-Kurimoto continuous mixer that mixes the premix dry feeds and low-level waste salt solution to make fresh (uncured) saltstone. Inspection of the mixer in January 2013 showed significant wear on the third, fourth and fifth paddle pairs after the conveying augers. A 2-inch Readco-Kurimoto continuous mixer was used to test alternate paddle configurations for use in the 10-inch mixer to decrease the wear rate on the paddles. Two wear tests were conducted to investigate a method of reducing wear on the mixer paddles. The first test (wear test 2a) had a paddle configurationmore » similar to the currently installed 10-inch mixer in the SPF. This test established baseline wear. The second test (wear test 2b) had a reconfigured paddle arrangement that replaced the flat paddles with helical paddles for paddle pairs 2 - 6 and aligned paddle pair 1 with the augers. The intent of the reconfiguration was to more effectively convey the partially wetted dry feeds through the transition region and into the liquid feed where paddle wear is reduced due to dry feeds and salt solution being mixed at the intended water to premix ratio. The design of the helical paddles provides conveyance through the transition region to the liquid feed inlet. The alignment with the auger is aimed to provide a smoother transition (minimizing the discontinuity between the auger and paddle pair 1) into the downstream paddles. A soft metal with low wear resistance (6000 series aluminum) was used for the wear testing paddles to determine wear patterns while minimizing run time and maximizing wear rate. For the two paddle configurations tested using the scaled 2-inch Readco-Kurimoto continuous mixer, with the first six paddles after the augers replaced by the wear paddles and the remaining paddles were stainless steel. Since the 10-inch SPF mixer is designed with the liquid inlet centered over paddle pairs 5 and 6, the scaled 2-inch mixer was configured the same way. The wear rate from wear test 2a was approximately double the wear rate from wear test 2b for paddle pairs 4 and 5. For both configurations, there was little or no wear on paddle pairs 1, 2, 3 and 6 based on mass change, indicating that the un-wetted and fully wetted premix materials cause less wear than the partially wetted premix. Additionally, inspection of the wear surface of the paddles showed more deformation on the flat paddles than the helical paddles which was consistent with the wear rates. Aligning of the auger discharge flight with paddle pair 1 resulted in a lower wear rate paddle pair 1 rather than having them misaligned with the feed augers. During the paddle wear tests, polishing wear was observed on the inside barrel of the mixer. The polishing wear is evident on the upper housing clamshell and the lower housing clamshell primarily at paddle pairs 4 and 5, which is the transition region of the mixer. Wear on the mixer barrel increases the space between the paddles and the barrel, resulting in increased grout build up on the barrel. Since the mixer barrel cannot be reconfigured or replaced in the SPF, the method for mitigating wear on the barrel is to move the more viscous grout through the transition region as quickly as possible. In addition, the location of the liquid inlet does not allow for sufficient cleaning of the mixer since residual grout remains on paddle pairs 1 - 4. As the paddles continue to wear and the self-cleaning capability of the paddles is lost, the lack of sufficient flushing would aid in grout build up between the barrel and the paddles which could eventually lead to decreased throughput capacity of the dry feeds. Changing the paddle configuration from flat to helical resulted in no change to the rheological properties of the grout mixture. Both tests produced a grout that is within the processing range of the SPF. Based on the results of this testing, it is recommended for the currently installed SPF mixer that paddle pairs 1 through 6 be helical rather than flat, with the paddle pair 1 aligned with the feed augers in order to minimize the wear occurring in the SPF mixer. Based on the results of this testing, it is recommended that the mixer be inspected and critical measurements be taken whenever the SPF processing schedule allows in order to establish a wear rate of the 10-inch mixer paddles.5 Based on these measurements, the lifetime of paddles in the transition region can be established in order to set up a maintenance schedule for the mixer. Since replacing the entire mixer is very expensive and time intensive, replacing the worn paddles after a specific time period would allow for planned shutdowns as well as process optimization such that the mixer throughput is not compromised. In addition, further testing should be performed to determine an alternate liquid inlet location to better flush the mixer of residual grout at the end of processing. Sufficiently cleaning the mixer will help eliminate another potential source of wear. Another potential method for reducing the wear rate in the mixer is to reduce the mixer speed without affecting the throughput capacity. Since wear rate is a function of impact velocity of the grout and mixing paddles, testing could be done using the 2-inch mixer determine the optimum mixer speed to reduce wear but not adversely impact facility operations (e.g. throughput capacity and grout properties).« less
Credit BG. The southeast and northeast facades appear as seen ...
Credit BG. The southeast and northeast facades appear as seen when looking due west (270°). Doors to the mixer room are open; the smaller closed doors lead to a building equipment room containing heating and refrigeration units for temperature control of the mixer and its contents. The mixer room doors and sidewalls are filled with foam and constructed to blow out in case of an explosion in the mixer. Note the lightning rods and two exterior emergency showers. The two tanks at the eastern corner of the building are unidentified - Jet Propulsion Laboratory Edwards Facility, Mixer & Casting Building, Edwards Air Force Base, Boron, Kern County, CA
Concrete Mixing Methods and Concrete Mixers: State of the Art
Ferraris, Chiara F.
2001-01-01
As for all materials, the performance of concrete is determined by its microstructure. Its microstructure is determined by its composition, its curing conditions, and also by the mixing method and mixer conditions used to process the concrete. This paper gives an overview of the various types of mixing methods and concrete mixers commercially available used by the concrete industry. There are two main types of mixers used: batch mixers and continuous mixers. Batch mixers are the most common. To determine the mixing method best suited for a specific application, factors to be considered include: location of the construction site (distance from the batching plant), the amount of concrete needed, the construction schedule (volume of concrete needed per hour), and the cost. Ultimately, the quality of the concrete produced determines its performance after placement. An important measure of the quality is the homogeneity of the material after mixing. This paper will review mixing methods in regards to the quality of the concrete produced. Some procedures used to determine the effectiveness of the mixing will be examined. PMID:27500029
Hot-electron bolometer terahertz mixers for the Herschel Space Observatory.
Cherednichenko, Sergey; Drakinskiy, Vladimir; Berg, Therese; Khosropanah, Pourya; Kollberg, Erik
2008-03-01
We report on low noise terahertz mixers (1.4-1.9 THz) developed for the heterodyne spectrometer onboard the Herschel Space Observatory. The mixers employ double slot antenna integrated superconducting hot-electron bolometers (HEBs) made of thin NbN films. The mixer performance was characterized in terms of detection sensitivity across the entire rf band by using a Fourier transform spectrometer (from 0.5 to 2.5 THz, with 30 GHz resolution) and also by measuring the mixer noise temperature at a limited number of discrete frequencies. The lowest mixer noise temperature recorded was 750 K [double sideband (DSB)] at 1.6 THz and 950 K DSB at 1.9 THz local oscillator (LO) frequencies. Averaged across the intermediate frequency band of 2.4-4.8 GHz, the mixer noise temperature was 1100 K DSB at 1.6 THz and 1450 K DSB at 1.9 THz LO frequencies. The HEB heterodyne receiver stability has been analyzed and compared to the HEB stability in the direct detection mode. The optimal local oscillator power was determined and found to be in a 200-500 nW range.
Yong, Shan; JingZhou, Zhang; Yameng, Wang
2014-11-01
To improve the performance of the afterburner for the turbofan engine, an innovative type of mixer, namely, the chevron mixer, was considered to enhance the mixture between the core flow and the bypass flow. Computational fluid dynamics (CFD) simulations investigated the aerodynamic performances and combustion characteristics of the chevron mixer inside a typical afterburner. Three types of mixer, namely, CC (chevrons tilted into core flow), CB (chevrons tilted into bypass flow), and CA (chevrons tilted into core flow and bypass flow alternately), respectively, were studied on the aerodynamic performances of mixing process. The chevrons arrangement has significant effect on the mixing characteristics and the CA mode seems to be advantageous for the generation of the stronger streamwise vortices with lower aerodynamic loss. Further investigations on combustion characteristics for CA mode were performed. Calculation results reveal that the local temperature distribution at the leading edge section of flame holder is improved under the action of streamwise vortices shedding from chevron mixers. Consequently, the combustion efficiency increased by 3.5% compared with confluent mixer under the same fuel supply scheme.
The development of mixer machine for organic animal feed production: Proposed study
NASA Astrophysics Data System (ADS)
Leman, A. M.; Wahab, R. Abdul; Zakaria, Supaat; Feriyanto, Dafit; Nor, M. I. F. Che Mohd; Muzarpar, Syafiq
2017-09-01
Mixer machine plays a major role in producing homogenous composition of animal feed. Long time production, inhomogeneous and minor agglomeration has been observed by existing mixer. Therefore, this paper proposed continuous mixer to enhance mixing efficiency with shorter time of mixing process in order to abbreviate the whole process in animal feed production. Through calculation of torque, torsion, bending, power and energy consumption will perform in mixer machine process. Proposed mixer machine is designed by two layer buckets with purpose for continuity of mixing process. Mixing process was performed by 4 blades which consists of various arm length such as 50, 100,150 and 225 mm in 60 rpm velocity clockwise rotation. Therefore by using this machine will produce the homogenous composition of animal feed through nutrition analysis and short operation time of mixing process approximately of 5 minutes. Therefore, the production of animal feed will suitable for various animals including poultry and aquatic fish. This mixer will available for various organic material in animal feed production. Therefore, this paper will highlights some areas such as continues animal feed supply chain and bio-based animal feed.
Self-anchoring mast for deploying a high-speed submersible mixer in a tank
Cato, Jr., Joseph E.; Shearer, Paul M [Aiken, SC; Rodwell, Philip O [Evans, GA
2004-10-12
A self-anchoring mast for deploying a high-speed submersible mixer in a tank includes operably connected first and second mast members (20, 22) and a foot member 46 operably connected to the second mast member for supporting the mast in a tank. The second mast member includes a track (36, 38) for slidably receiving a bearing of the mixer to change the orientation of the mixer in the tank.
NASA Astrophysics Data System (ADS)
Chang, Chih-Chang; Yang, Ruey-Jen
2006-08-01
This paper presents a numerical simulation investigation into electroosmotic flow mixing in three-dimensional microchannels with patterned non-uniform surface zeta potentials. Three types of micromixers are investigated, namely a straight diagonal strip mixer (i.e. the non-uniform surface zeta potential is applied along straight, diagonal strips on the lower wall of the mixing channel), a staggered asymmetric herringbone strip mixer and a straight diagonal/symmetric herringbone strip mixer. A particle tracing algorithm is used to visualize and evaluate the mixing performance of the various mixers. The particle trajectories and Poincaré maps of the various mixers are calculated from the three-dimensional flow fields. The surface charge patterns on the lower walls of the microchannels induce electroosmotic chaotic advection in the low Reynolds number flow regime, and hence enhance the passive mixing effect in the microfluidic devices. A quantitative measure of the mixing performance based on Shannon entropy is employed to quantify the mixing of two miscible fluids. The results show that the mixing efficiency increases as the magnitude of the heterogeneous zeta potential ratio (|ζR|) is increased, but decreases as the aspect ratio (H/W) is increased. The mixing efficiency of the straight diagonal strip mixer with a length ratio of l/W = 0.5 is slightly higher than that obtained from the same mixer with l/W = 1.0. Finally, the staggered asymmetric herringbone strip mixer with θ = 45°, ζR = -1, l/W = 0.5 and H/W = 0.2 provides the optimal mixing performance of all the mixers presented in this study.
Development of a wavelength tunable filter using MEMS technology
NASA Astrophysics Data System (ADS)
Liu, Junting
Microelectromechanical systems (MEMS) for optical applications have received intensive attention in recent years because of their potential applications in optical telecommunication. Traditional wavelength division multiplexing (WDM) offers high capacity but requires the fabrication of selective add-drop filters. MEMS technology offers an effective way to fabricate these components at low cost. This thesis presents the development of a device that tunes the Bragg wavelength by coupling into the evanescent field of the grating. A Bragg grating is a periodic perturbation of the refractive index along a fiber or a periodic perturbation of the structure of a planar waveguide. The Bragg wavelength can be tuned by changing the degree to which a dielectric slab couples into the evanescent field. The result is a change in the effective index of the grating, and thus a change in the wavelength that which it reflects. In this thesis Bragg gratings were successfully written into an optical fiber using phase mask technique. Mechanical polishing was used to side-polish the fiber and remove cladding to expose the core. Grating structures were also fabricated in planar waveguide using E-beam writing and dry etching. In order to achieve the smoothest possible morphology of the waveguide, plasma dry etching of transparent substrates was studied in great detail. It is found that the pre-etch cleaning procedure greatly influences the ability to obtain a smooth etched surface. Upper limits of evanescent field tuning were investigated by applying different index liquids such as D. I. water and index matching oils or by positioning different dielectric materials such as glass and silicon close to the grating. Planar waveguides were found to be more sensitive to effective index change. Two kinds of computer simulation were carried out to understand the mode profile and to estimate the value of effective index of planar waveguide under "dry" and "wet" conditions. The first one used an average depth of grating approximation. The second explicitly considered the corrugated structure of the waveguide. Results of both simulations were compared with the experimental results in order to find the proper simulation approach. The fiber or planar waveguide gratings were "device" integrated and their pro and cons were compared. Devices using an optical fiber employed a microactuator driven by electrothermal vibromotor to change the degree of coupling between fiber and "tuning block". Device using planar waveguides used an electrostatic force actuated membrane, flip-chip mounted atop the waveguide. All devices were fabricated using polysilicon surface micromachining processes. I concluded that devices driven by electrostatic force were easier to actuate and their integration with waveguide less challenging.
INTERIOR VIEW OF MIXER LOCATED ON SECOND FLOOR OF BATCH ...
INTERIOR VIEW OF MIXER LOCATED ON SECOND FLOOR OF BATCH PLANT. RECENTLY PURCHASED TO REPLACE OLD MIXER. USED TO MIX THE BATCH - Chambers-McKee Window Glass Company, Batch Plant, Clay Avenue Extension, Jeannette, Westmoreland County, PA
Performance of all-NbN superconductive tunnel junctions as mixers at 205 GHz
NASA Technical Reports Server (NTRS)
Mcgrath, W. R.; Leduc, H. G.; Stern, J. A.
1990-01-01
Small-area (1x1 sq micron) high-current-density NbN-MgO-NbN tunnel junctions with I-V characteristics suitable for high frequency mixers were fabricated. These junctions are integrated with superconducting microstrip lines designed to resonate out the large junction capacitance. The mixer gain and noise performance were studied near 205 GHz as a function of the inductance provided by the microstrip. This has yielded values of junction capacitance of 85 fF/sq microns and magnetic penetration depth of 3800 angstroms. Mixer noise as low as 133 K has been obtained for properly tuned junctions. This is the best noise performance ever reported for an NbN SIS mixer.
Silicon Alignment Pins: An Easy Way to Realize a Wafer-to-Wafer Alignment
NASA Technical Reports Server (NTRS)
Jung-Kubiak, Cecile; Reck, Theodore J.; Lin, Robert H.; Peralta, Alejandro; Gill, John J.; Lee, Choonsup; Siles, Jose; Toda, Risaku; Chattopadhyay, Goutam; Cooper, Ken B.;
2013-01-01
Submillimeter heterodyne instruments play a critical role in addressing fundamental questions regarding the evolution of galaxies as well as being a crucial tool in planetary science. To make these instruments compatible with small platforms, especially for the study of the outer planets, or to enable the development of multi-pixel arrays, it is essential to reduce the mass, power, and volume of the existing single-pixel heterodyne receivers. Silicon micromachining technology is naturally suited for making these submillimeter and terahertz components, where precision and accuracy are essential. Waveguide and channel cavities are etched in a silicon bulk material using deep reactive ion etching (DRIE) techniques. Power amplifiers, multiplier and mixer chips are then integrated and the silicon pieces are stacked together to form a supercompact receiver front end. By using silicon micromachined packages for these components, instrument mass can be reduced and higher levels of integration can be achieved. A method is needed to assemble accurately these silicon pieces together, and a technique was developed here using etched pockets and silicon pins to align two wafers together.
The effect of AM noise on correlation phase-noise measurements.
Rubiola, Enrico; Boudot, Rodolphe
2007-05-01
We analyze the phase-noise measurement methods in which correlation and averaging is used to reject the background noise of the instrument. All the known methods make use of a mixer, used either as a saturated-phase detector or as a linear-synchronous detector. Unifortunately, AM noise is taken in through the power-to-dc-offset conversion mechanism that results from the mixer asymmetry. The measurement of some mixers indicates that the unwanted amplitude-to-voltage gain is of the order of 5-50 mV, which is 12-35 dB lower than the phase-to-voltage gain of the mixer. In addition, the trick of setting the mixer at a sweet point--off the quadrature condition--where the sensitivity to AM nulls, works only with microwave mixers. The HF-VHF mixers do not have this sweet point. Moreover, we prove that if the AM noise comes from the oscillator under test, it cannot be rejected by correlation. At least not with the schemes currently used. An example shows that at some critical frequencies the unwanted effect of AM noise is of the same order-if not greater--than the phase noise. Thus, experimental mistakes are around the corner.
Flow regimes in a T-mixer operating with a binary mixture
NASA Astrophysics Data System (ADS)
Camarri, Simone; Siconolfi, Lorenzo; Galletti, Chiara; Salvetti, Maria Vittoria
2015-11-01
Efficient mixing in small volumes is a key target in many processes. Among the most common micro-devices, passive T-shaped micro-mixers are widely used. For this reason, T-mixers have been studied in the literature and its working flow regimes have been identified. However, in most of the available theoretical studies it is assumed that only one working fluid is used, i.e. that the same fluid at the same thermodynamic conditions is entering the two inlet conduits of the mixer. Conversely, the practical use of micro-devices often involves the mixing of two different fluids or of the same fluid at different thermodynamic conditions. In this case flow regimes significantly different than those observed for a single working fluid may occur. The present work aims at investigating the flow regimes in a T-mixers when water at two different temperatures, i.e. having different viscosity and density, is entering the mixer. The effect of the temperature difference on the flow regimes in a 3D T-mixer is investigated by DNS and stability analysis and the results are compared to the case in which a single working fluid is employed.
NASA Technical Reports Server (NTRS)
Mcgrath, W. R.; Richards, P. L.; Face, D. W.; Prober, D. E.; Lloyd, F. L.
1988-01-01
A systematic study of the gain and noise in superconductor-insulator-superconductor mixers employing Ta based, Nb based, and Pb-alloy based tunnel junctions was made. These junctions displayed both weak and strong quantum effects at a signal frequency of 33 GHz. The effects of energy gap sharpness and subgap current were investigated and are quantitatively related to mixer performance. Detailed comparisons are made of the mixing results with the predictions of a three-port model approximation to the Tucker theory. Mixer performance was measured with a novel test apparatus which is accurate enough to allow for the first quantitative tests of theoretical noise predictions. It is found that the three-port model of the Tucker theory underestimates the mixer noise temperature by a factor of about 2 for all of the mixers. In addition, predicted values of available mixer gain are in reasonable agreement with experiment when quantum effects are weak. However, as quantum effects become strong, the predicted available gain diverges to infinity, which is in sharp contrast to the experimental results. Predictions of coupled gain do not always show such divergences.
Credit WCT. Original 21" x 2A" color negative is housed ...
Credit WCT. Original 2-1" x 2-A" color negative is housed in the JPL Photography Laboratory, Pasadena, California. The mixing pot of the 150-gallon (Size 16-PVM) Baker-Perkins vertical mixer appears in its lowered position, exposing the mixer paddles. JPL employees Harold "Andy" Anderson and Ron Wright in protective clothing demonstrate how to scrape mixed propellant from mixer blades (JPL negative JPL10284BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Mixer, Edwards Air Force Base, Boron, Kern County, CA
1981-09-21
acknowledge and thank A. R. Hislop and D. L. Saul, Code 9262, for their work on tbh mixer design and D. L. Chappelle and K. S. Maynard, Code 8124, for...MTT-28, p 555-563, June 1980 . 33 (a) Mixer matrix, 7 boards, 6-5 mixers, 1-7 mixers. (b) LO power split to boards, 7-way. rN’ o, Ro (c) N-way power...1966. 9. Saleh, A.A.M., Planar Electrically Symmetric N-Way Hybrid Power Dividers/ Combiners, IEEE T-MTT-28, p 555-563, June 1980 . 55
Planar doped barrier devices for subharmonic mixers
NASA Technical Reports Server (NTRS)
Lee, T. H.; East, J. R.; Haddad, G. I.
1991-01-01
An overview is given of planar doped barrier (PDB) devices for subharmonic mixer applications. A simplified description is given of PDB characteristics along with a more complete numerical analysis of the current versus voltage characteristics of typical structures. The analysis points out the tradeoffs between the device structure and the resulting characteristics that are important for mixer performance. Preliminary low-frequency characterization results are given for the device structures, and a computer analysis of subharmonic mixer parameters and performance is presented.
Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers
NASA Technical Reports Server (NTRS)
Skalare, Anders; McGrath, William; Bumble, Bruce; LeDuc, Henry
2004-01-01
A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere.
L-Band High Power Amplifiers for CEBAF Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugitt, Jock; Killion, Richard; Nelson, Richard
1990-09-01
The high power portion of the CEBAF RF system utilizes 340 5kW klystrons providing 339 separately controlled outputs. Modulating anodes have been included in the klystron design to provide for economically efficient operation. The design includes shunt regulator-type modulating anode power supplies running from the cathode power supply, and switching filament power supplies. Remotely programmable filament voltage allows maximum cathode life to be realized. Klystron operating setpoint and fast klystron protection logic are provided by individual external CEBAF RF control modules. A single cathode power supply powers a block of eight klystrons. The design includes circulators and custom extrusion andmore » hybrid waveguide components which have allowed reduced physical size and lower cost in the design of the WR-650 waveguide transmission system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weigel, Peter O.; Savanier, Marc; DeRose, Christopher T.
Here, we demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneathmore » an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.« less
Xia, H M; Wan, S Y M; Shu, C; Chew, Y T
2005-07-01
We report two chaotic micromixers that exhibit fast mixing at low Reynolds numbers in this paper. Passive mixers usually use the channel geometry to stir the fluids, and many previously reported designs rely on inertial effects which are only available at moderate Re. In this paper, we propose two chaotic micromixers using two-layer crossing channels. Both numerical and experimental studies show that the mixers are very efficient for fluid manipulation at low Reynolds numbers, such as stretching and splitting, folding and recombination, through which chaotic advection can be generated and the mixing is significantly promoted. More importantly, the generation of chaotic advection does not rely on the fluid inertial forces, so the mixers work well at very low Re. The mixers are benchmarked against a three-dimensional serpentine mixer. Results show that the latter is inefficient at Re = 0.2, while the new design exhibits rapid mixing at Re = 0.2 and at Re of O(10(-2)). The new mixer design will benefit various microfluidic systems.
21 CFR 868.5330 - Breathing gas mixer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing gas mixer. 868.5330 Section 868.5330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5330 Breathing gas mixer. (a...
21 CFR 868.5330 - Breathing gas mixer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing gas mixer. 868.5330 Section 868.5330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5330 Breathing gas mixer. (a...
NASA Technical Reports Server (NTRS)
Kiser, James D.; Bansal, Narottam P.; Szelagowski, J.; Sokhey, J.; Heffernan, T.; Clegg, J.; Pierluissi, A.; Riedell, J.; Atmur, S.; Wyen, T.;
2015-01-01
Rolls-Royce North American Technologies, Inc. (LibertyWorksLW) began considering the development of CMC exhaust forced mixers in 2008, as a means of obtaining reduced weight and hotter operating temperature capability, while minimizing shape distortion during operation, which would improve mixing efficiency and reduce fuel burn. Increased component durability, enhanced ability to fabricate complex-shaped components, and engine noise reduction are other potential advantages of CMC mixers (compared to metallic mixers). In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project. ERA subtasks, including those focused on CMC components, were formulated with the goal of maturing technology from proof of concept validation (TRL 3) to a systemsubsystem or prototype demonstration in a relevant environment (TRL 6). In April 2010, the NASA Glenn Research Center (GRC) and LibertyWorks jointly initiated a CMC Exhaust System Validation Program within the ERA Project, teaming on CMC exhaust mixer development for subsonic jet engines capable of operating with increased performance. Our initial focus was on designing, fabricating, and characterizing the thrust and acoustic performance of a roughly quarter-scale 16-lobe oxide oxide CMC mixer and tail cone along with a conventional low bypass exhaust nozzle. Support Services, LLC (Allendale, MI) and ATK COI Ceramics, Inc. (COIC, in San Diego, CA) supported the design of a subscale nozzle assembly that consisted of an oxide oxide CMC mixer and center body, with each component mounted on a metallic attachment ring. That design was based upon the operating conditions a mixer would experience in a turbofan engine. Validation of the aerodynamic and acoustic performance of the subscale mixer via testing and the achievement of TRL 4 encouraged the NASALWCOIC team to move to the next phase where a full scale CMC mixer sized for a RR AE3007 engine and a compatible attachment flange were designed, followed by CMC component fabrication by COIC, and vibration testing at GRC under conditions simulating the structural and dynamic environment encountered during engine operation. AFRL (WPAFB) supported this testing by performing 3D laser vibrometry to identify the mixer mode shapes and modal frequencies. The successful fabrication and testing of such a component has been achieved. The CMC mixer demonstrated good durability during vibration testing at room and elevated temperature (TRL5). This has cleared the article for a ground-based test on a Rolls-Royce AE3007 engine, where the performance and benefits of the component can be further assessed.
Differential InP HEMT MMIC Amplifiers Embedded in Waveguides
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka; Schlecht, Erich; Samoska, Lorene
2009-01-01
Monolithic microwave integrated-circuit (MMIC) amplifiers of a type now being developed for operation at frequencies of hundreds of gigahertz contain InP high-electron-mobility transistors (HEMTs) in a differential configuration. The differential configuration makes it possible to obtain gains greater than those of amplifiers having the single-ended configuration. To reduce losses associated with packaging, the MMIC chips are designed integrally with, and embedded in, waveguide packages, with the additional benefit that the packages are compact enough to fit into phased transmitting and/or receiving antenna arrays. Differential configurations (which are inherently balanced) have been used to extend the upper limits of operating frequencies of complementary metal oxide/semiconductor (CMOS) amplifiers to the microwave range but, until now, have not been applied in millimeter- wave amplifier circuits. Baluns have traditionally been used to transform from single-ended to balanced configurations, but baluns tend to be lossy. Instead of baluns, finlines are used to effect this transformation in the present line of development. Finlines have been used extensively to drive millimeter- wave mixers in balanced configurations. In the present extension of the finline balancing concept, finline transitions are integrated onto the affected MMICs (see figure). The differential configuration creates a virtual ground within each pair of InP HEMT gate fingers, eliminating the need for inductive vias to ground. Elimination of these vias greatly reduces parasitic components of current and the associated losses within an amplifier, thereby enabling more nearly complete utilization of the full performance of each transistor. The differential configuration offers the additional benefit of multiplying (relative to the single-ended configuration) the input and output impedances of each transistor by a factor of four, so that it is possible to use large transistors that would otherwise have prohibitively low impedances. Yet another advantage afforded by the virtual ground of the differential configuration is elimination of the need for a ground plane and, hence, elimination of the need for back-side metallization of the MMIC chip. In turn, elimination of the back-side metallization simplifies fabrication, reduces parasitic capacitances, and enables mounting of the MMIC in the electric-field plane ("E-plane") of a waveguide. E-plane mounting is consistent with (and essential for the utility of) the finline configuration, in which transmission lines lie on a dielectric sheet in the middle of a broad side of the waveguide. E-plane mounting offers a combination of low loss and ease of assembly because no millimeter-wave wire bonds or transition substrates are required. Moreover, because there is no ground plane behind the MMIC, the impedance for the detrimental even (single-ended) mode is high, suppressing coupling to that mode. Still another advantage of E-plane mounting is that the fundamental waveguide mode is inherently differential, eliminating the need for a balun to excite the differential mode.
InP-based monolithically integrated 1310/1550nm diplexer/triplexer
NASA Astrophysics Data System (ADS)
Silfvenius, C.; Swillo, M.; Claesson, J.; Forsberg, E.; Akram, N.; Chacinski, M.; Thylén, L.
2008-11-01
Multiple streams of high definition television (HDTV) and improved home-working infrastructure are currently driving forces for potential fiber to the home (FTTH) customers [1]. There is an interest to reduce the cost and physical size of the FTTH equipment. The current fabrication methods have reached a cost minimum. We have addressed the costchallenge by developing 1310/(1490)/1550nm bidirectional diplexers, by monolithic seamless integration of lasers, photodiodes and wavelength division multiplexing (WDM) couplers into one single InP-based device. A 250nm wide optical gain profile covers the spectrum from 1310 to 1550nm and is the principal building block. The device fabrication is basically based on the established configuration of using split-contacts on continuos waveguides. Optical and electrical cross-talks are further addressed by using a Y-configuration to physically separate the components from each other and avoid inline configurations such as when the incoming signal travels through the laser component or vice versa. By the eliminated butt-joint interfaces which can reflect light between components or be a current leakage path and by leaving optically absorbing (unpumped active) material to surround the components to absorb spontaneous emission and nonintentional reflections the devices are optically and electrically isolated from each other. Ridge waveguides (RWG) form the waveguides and which also maintain the absorbing material between them. The WDM functionality is designed for a large optical bandwidth complying with the wide spectral range in FTTH applications and also reducing the polarization dependence of the WDM-coupler. Lasing is achieved by forming facet-free, λ/4-shifted, DFB (distributed feedback laser) lasers emitting directly into the waveguide. The photodiodes are waveguide photo-diodes (WGPD). Our seamless technology is also able to array the single channel diplexers to 4 to 12 channel diplexer arrays with 250μm fiber port waveguide spacing to comply with fiber optic ribbons. This is an important feature in central office applications were small physical space is important.
Variable volume combustor with center hub fuel staging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostebee, Heath Michael; McConnaughhay, Johnie Franklin; Stewart, Jason Thurman
The present application and the resultant patent provide a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a center hub for providing the flow of fuel therethrough. The center hub may include a first supply circuit for a first micro-mixer fuel nozzle and a second supply circuit for a second micro-mixer fuel nozzle.
Low Noise in a Diffusion-Cooled Hot-Electron Mixer at 2.5 THz
NASA Technical Reports Server (NTRS)
Karasik, B. S.; Gaidis, M. C.; McGrath, W. R.; Bumble, B.; LeDuc, H. G.
1997-01-01
The noise performance of a Nb hot-electron bolometer mixer at 2.5 THz has been investigated. The devices are fabricated from a 12-nm-thick Nb film, and have a 0.30 micrometer x 0.15 micrometer in-plane size, thus exploiting diffusion as the electron cooling mechanism. The rf coupling was provided by a twin-slot planar antenna on an elliptical Si lens. The experimentally measured double sideband noise temperature of the receiver was as low as 2750 +/- 250 K with an estimated mixer noise temperature of approximately equal 900 K. The mixer bandwidth derived from both noise bandwidth and IF impedance measurements was approximately equal 1.4 GHz. These results demonstrate the low-noise operation of the diffusion-cooled bolometer mixer above 2 THz.
Design of a mixer for the thrust-vectoring system on the high-alpha research vehicle
NASA Technical Reports Server (NTRS)
Pahle, Joseph W.; Bundick, W. Thomas; Yeager, Jessie C.; Beissner, Fred L., Jr.
1996-01-01
One of the advanced control concepts being investigated on the High-Alpha Research Vehicle (HARV) is multi-axis thrust vectoring using an experimental thrust-vectoring (TV) system consisting of three hydraulically actuated vanes per engine. A mixer is used to translate the pitch-, roll-, and yaw-TV commands into the appropriate TV-vane commands for distribution to the vane actuators. A computer-aided optimization process was developed to perform the inversion of the thrust-vectoring effectiveness data for use by the mixer in performing this command translation. Using this process a new mixer was designed for the HARV and evaluated in simulation and flight. An important element of the Mixer is the priority logic, which determines priority among the pitch-, roll-, and yaw-TV commands.
Thrust Augmentation with Mixer/Ejector Systems
NASA Technical Reports Server (NTRS)
Presz, Walter M., Jr.; Reynolds, Gary; Hunter, Craig
2002-01-01
Older commercial aircraft often exceed FAA (Federal Aviation Administration) sideline noise regulations. The major problem is the jet noise associated with the high exhaust velocities of the low bypass ratio engines on such aircraft. Mixer/ejector exhaust systems can provide a simple means of reducing the jet noise on these aircraft by mixing cool ambient air with the high velocity engine gases before they are exhausted to ambient. This paper presents new information on thrust performance predictions, and thrust augmentation capabilities of mixer/ejectors. Results are presented from the recent development program of the patented Alternating Lobe Mixer Ejector Concept (ALMEC) suppressor system for the Gulfstream GII, GIIB and GIII aircraft. Mixer/ejector performance procedures are presented which include classical control volume analyses, compound compressible flow theory, lobed nozzle loss correlations and state of the art computational fluid dynamic predictions. The mixer/ejector thrust predictions are compared to subscale wind tunnel test model data and actual aircraft flight test measurements. The results demonstrate that a properly designed mixer/ejector noise suppressor can increase effective engine bypass ratio and generate large thrust gains at takeoff conditions with little or no thrust loss at cruise conditions. The cruise performance obtained for such noise suppressor systems is shown to be a strong function of installation effects on the aircraft.
Noise Reduction with Lobed Mixers: Nozzle-Length and Free-Jet Speed Effects
NASA Technical Reports Server (NTRS)
Mengle, Vinod G.; Dalton, William N.; Bridges, James C.; Boyd, Kathy C.
1997-01-01
Acoustic test results are presented for 1/4th-scaled nozzles with internal lobed mixers used for reduction of subsonic jet noise of turbofan engines with bypass ratio above 5 and jet speeds up to 830 ft/s. One coaxial and three forced lobe mixers were tested with variations in lobe penetration, cut-outs in lobe-sidewall, lobe number and nozzle-length. Measured exit flow profiles and thrusts are used to assist the inferences from acoustic data. It is observed that lobed mixers reduce the low-frequency noise due to more uniformly mixed exit flow; but they may also increase the high-frequency noise at peak perceived noise (PNL) angle and angles upstream of it due to enhanced mixing inside the nozzle. Cut-outs and low lobe penetration reduce the annoying portion of the spectrum but lead to less uniform exit flow. Due to the dominance of internal duct noise in unscalloped, high-penetration mixers their noise is not reduced as much with increase in free-jet speed as that of coaxial or cut-out lobed mixers. The latter two mixers also show no change in PNL over the wide range of nozzle-lengths tested because most of their noise sources are outside the nozzle; whereas, the former show an increase in noise with decrease in nozzle-length.
Low-noise and wideband hot-electron superconductive mixer for terahertz frequencies
NASA Astrophysics Data System (ADS)
Karasik, Boris S.; Skalare, Anders; McGrath, William R.; Bumble, Bruce; Leduc, Henry G.; Barner, J. B.; Kleinsasser, Alan W.; Burke, P. J.; Schoelkopf, Robert J.; Prober, Daniel E.
1998-11-01
Superconductive hot-electron bolometer (HEB) mixers have been built and tested in the frequency range from 1.1 THz to 2.5 THz. The mixer device is a 0.15 - 0.3 micrometer microbridge made from a 10 nm thick Nb film. This device employs diffusion as a cooling mechanism for hot electrons. The double sideband noise temperature was measured to be less than or equal to 3000 K at 2.5 THz and the mixer IF bandwidth is expected to be at least 10 GHz for a 0.1 micrometer long device. The local oscillator (LO) power dissipated in the HEB microbridge was 20 - 100 nW. Further improvement of the mixer characteristics can be potentially achieved by using Al microbridges. The advantages and parameters of such devices are evaluated. The HEB mixer is a primary candidate for ground based, airborne and spaceborne heterodyne instruments at THz frequencies. HEB receivers are planned for use on the NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) and the ESA Far Infrared and Submillimeter Space Telescope (FIRST). The prospects of a submicron-size YBa2Cu3O7-(delta ) (YBCO) HEB are discussed. The expected LO power of 1 - 10 (mu) W and SSB noise temperature of approximately equals 2000 K may make this mixer attractive for various remote sensing applications.
Dielectric Metasurface as a Platform for Spatial Mode Conversion in Nanoscale Waveguides.
Ohana, David; Desiatov, Boris; Mazurski, Noa; Levy, Uriel
2016-12-14
We experimentally demonstrate a nanoscale mode converter that performs coupling between the first two transverse electric-like modes of a silicon-on-insulator waveguide. The device operates by introducing a nanoscale periodic perturbation in its effective refractive index along the propagation direction and a graded effective index profile along its transverse direction. The periodic perturbation provides phase matching between the modes, while the graded index profile, which is realized by the implementation of nanoscale dielectric metasurface consisting of silicon features that are etched into the waveguide taking advantage of the effective medium concept, provides the overlap between the modes. Following the device design and numerical analysis using three-dimensional finite difference time domain simulations, we have fabricated the device and characterized it by directly measuring the modal content using optical imaging microscopy. From these measurements, the mode purity is estimated to be 95% and the transmission relative to an unperturbed strip waveguide is as high as 88%. Finally, we extend this approach to accommodate for the coupling between photonic and plasmonic modes. Specifically, we design and numerically demonstrate photonic to plasmonic mode conversion in a hybrid waveguide in which photonic and surface plasmon polariton modes can be guided in the silicon core and in the silicon/metal interface, respectively. The same method can also be used for coupling between symmetric and antisymmetric plasmonic modes in metal-insulator-metal or insulator-metal-insulator structures. On the basis of the current demonstration, we believe that such nanoscale dielectric metasurface-based mode converters can now be realized and become an important building block in future nanoscale photonic and plasmonic devices. Furthermore, the demonstrated platform can be used for the implementation of other chip scale components such as splitters, combiners couplers, and more.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickalonis, J.; Torres, R.
2012-08-15
Wear and corrosion testing were conducted to evaluate alternate materials of construction for the Saltstone mixer auger and paddles. These components have been degraded by wear from the slurry processed in the mixer. Material test options included PVD coatings (TiN, TiCN, and ZrN), weld overlays (Stellite 12 and Ultimet) and higher hardness steels and carbides (D2 and tungsten carbide). The corrosion testing demonstrated that the slurry is not detrimental to the current materials of construction or the new candidates. The ASTM G75 Miller wear test showed that the high hardness materials and the Stellite 12 weld overlay provide superior wearmore » relative to the Astralloy and CF8M stainless steel, which are the current materials of construction, as well as the PVD coatings and Ultimet. The following recommendations are made for selecting new material options and improving the overall wear resistance of the Saltstone mixer components: A Stellite 12 weld overlay or higher hardness steel (with toughness equivalent to Astralloy) be used to improve the wear resistance of the Saltstone mixer paddles; other manufacturing specifications for the mixer need to be considered in this selection. The current use of the Stellite 12 weld overlay be evaluated so that coverage of the 316 auger can be optimized for improved wear resistance of the auger. The wear surfaces of the Saltstone mixer auger and paddles be evaluated so that laboratory data can be better correlated to actual service. The 2-inch Saltstone mixer prototype be used to verify material performance.« less
Effect of mixing time and speed on experimental baking and dough testing with a 200g pin-mixer
USDA-ARS?s Scientific Manuscript database
Under mixing or over mixing the dough results in varied experimental loaf volumes. Bread preparation requires a trained baker to evaluate dough development and determine stop points of mixer. Instrumentation and electronic control of the dough mixer would allow for automatic mixing. This study us...
Optimizing micromixer design for enhancing dielectrophoretic microconcentrator performance.
Lee, Hsu-Yi; Voldman, Joel
2007-03-01
We present an investigation into optimizing micromixer design for enhancing dielectrophoretic (DEP) microconcentrator performance. DEP-based microconcentrators use the dielectrophoretic force to collect particles on electrodes. Because the DEP force generated by electrodes decays rapidly away from the electrodes, DEP-based microconcentrators are only effective at capturing particles from a limited cross section of the input liquid stream. Adding a mixer can circulate the input liquid, increasing the probability that particles will drift near the electrodes for capture. Because mixers for DEP-based microconcentrators aim to circulate particles, rather than mix two species, design specifications for such mixers may be significantly different from that for conventional mixers. Here we investigated the performance of patterned-groove micromixers on particle trapping efficiency in DEP-based microconcentrators numerically and experimentally. We used modeling software to simulate the particle motion due to various forces on the particle (DEP, hydrodynamic, etc.), allowing us to predict trapping efficiency. We also conducted trapping experiments and measured the capture efficiency of different micromixer configurations, including the slanted groove, staggered herringbone, and herringbone mixers. Finally, we used these analyses to illustrate the design principles of mixers for DEP-based concentrators.
The Strength Analysis of Differential Planetary Gears of Gearbox for Concrete Mixer Truck
NASA Astrophysics Data System (ADS)
Bae, M. H.; Bae, T. Y.; Kim, D. J.
2018-03-01
The power train of mixer gearbox for concrete mixer truck includes differential planetary gears to get large reduction ratio for operating mixer a drum and simple structure. The planetary gears are very important part of a mixer gearbox where strength problems namely gear bending stress, gear compressive stress and scoring failure are the main concern. In the present study, calculating specifications of the differential planetary gears and analyzing the gear bending and compressive stresses as well as scoring factor of the differential planetary gears gearbox for an optimal design of the mixer gearbox in respect to cost and reliability are investigated. The analyses of actual gear bending and compressive stresses of the differential planetary gears using Lewes & Hertz equation and verifications of the calculated specifications of the differential planetary gears evaluate the results with the data of allowable bending and compressive stress from the Stress-No. of cycles curves of gears. In addition, we also analyze actual gear scoring factor as well as evaluate the possibility of scoring failure of the differential planetary gear.
NASA Technical Reports Server (NTRS)
Tacina, K. M.; Hicks, Y. R.
2017-01-01
The combustion dynamics of multiple 7-point lean direct injection (LDI) combustor configurations are compared. LDI is a fuel-lean combustor concept for aero gas turbine engines in which multiple small fuel-air mixers replace one traditionally-sized fuel-air mixer. This 7-point LDI configuration has a circular cross section, with a center (pilot) fuel-air mixer surrounded by six outer (main) fuel-air mixers. Each fuel-air mixer consists of an axial air swirler followed by a converging-diverging venturi. A simplex fuel injector is inserted through the center of the air swirler, with the fuel injector tip located near the venturi throat. All 7 fuel-air mixers are identical except for the swirler blade angle, which varies with the configuration. Testing was done in a 5-atm flame tube with inlet air temperatures from 600 to 800 F and equivalence ratios from 0.4 to 0.7. Combustion dynamics were measured using a cooled PCB pressure transducer flush-mounted in the wall of the combustor test section.
Turbofan forced mixer lobe flow modeling. 2: Three-dimensional inviscid mixer analysis (FLOMIX)
NASA Technical Reports Server (NTRS)
Barber, T.
1988-01-01
A three-dimensional potential analysis (FLOMIX) was formulated and applied to the inviscid flow over a turbofan foced mixer. The method uses a small disturbance formulation to analytically uncouple the circumferential flow from the radial and axial flow problem, thereby reducing the analysis to the solution of a series of axisymmetric problems. These equations are discretized using a flux volume formulation along a Cartesian grid. The method extends earlier applications of the Cartesian method to complex cambered geometries. The effects of power addition are also included within the potential formulation. Good agreement is obtained with an alternate small disturbance analysis for a high penetration symmetric mixer in a planar duct. In addition, calculations showing pressure distributions and induced secondary vorticity fields are presented for practical trubofan mixer configurations, and where possible, comparison was made with available experimental data. A detailed description of the required data input and coordinate definition is presented along with a sample data set for a practical forced mixer configuration. A brief description of the program structure and subroutines is also provided.
Embedding impedance approximations in the analysis of SIS mixers
NASA Technical Reports Server (NTRS)
Kerr, A. R.; Pan, S.-K.; Withington, S.
1992-01-01
Future millimeter-wave radio astronomy instruments will use arrays of many SIS receivers, either as focal plane arrays on individual radio telescopes, or as individual receivers on the many antennas of radio interferometers. Such applications will require broadband integrated mixers without mechanical tuners. To produce such mixers, it will be necessary to improve present mixer design techniques, most of which use the three-frequency approximation to Tucker's quantum mixer theory. This paper examines the adequacy of three approximations to Tucker's theory: (1) the usual three-frequency approximation which assumes a sinusoidal LO voltage at the junction, and a short-circuit at all frequencies above the upper sideband; (2) a five-frequency approximation which allows two LO voltage harmonics and five small-signal sidebands; and (3) a quasi five-frequency approximation in which five small-signal sidebands are allowed, but the LO voltage is assumed sinusoidal. These are compared with a full harmonic-Newton solution of Tucker's equations, including eight LO harmonics and their corresponding sidebands, for realistic SIS mixer circuits. It is shown that the accuracy of the three approximations depends strongly on the value of omega R(sub N)C for the SIS junctions used. For large omega R(sub N)C, all three approximations approach the eight-harmonic solution. For omega R(sub N)C values in the range 0.5 to 10, the range of most practical interest, the quasi five-frequency approximation is a considerable improvement over the three-frequency approximation, and should be suitable for much design work. For the realistic SIS mixers considered here, the five-frequency approximation gives results very close to those of the eight-harmonic solution. Use of these approximations, where appropriate, considerably reduces the computational effort needed to analyze an SIS mixer, and allows the design and optimization of mixers using a personal computer.
NASA Astrophysics Data System (ADS)
Woody, D. P.
2009-12-01
The modern era of millimeter and submillimeter spectral line observations and interferometry started at end of the 1979 with the invention of the Superconductor-Insulator-Superconductor (SIS) mixer. Tom Phillips co-invented this device while working at Bell Telephone Labs (BTL) in Murray Hill, NJ. His group built the first astronomically useful SIS heterodyne receiver which was deployed on the Leighton 10.4 m telescope at the Caltech Owens Valley Radio Observatory (OVRO) in the same year. Tom Phillips joined the Caltech faculty in the early 1980s where his group continues to lead the way in developing state-of-the-art SIS receivers throughout the millimeter and submillimeter wavelength bands. The rapid progress in millimeter and submillimeter astronomy during 1980s required developments on many fronts including the theoretical understanding of the device physics, advances in device fabrication, microwave and radio frequency (RF) circuit design, mixer block construction, development of wideband low-noise intermediate frequency (IF) amplifiers and the telescopes used for making the observations. Many groups around the world made important contributions to this field but the groups at Caltech and the Jet Propulsion Laboratory (JPL) under the leadership of Tom Phillips made major contributions in all of these areas. The end-to-end understanding and developments from the theoretical device physics to the astronomical observations and interpretation has made this group uniquely productive.
An inductorless multi-mode RF front end for GNSS receiver in 55 nm CMOS
NASA Astrophysics Data System (ADS)
Yanbin, Luo; Chengyan, Ma; Yebing, Gan; Min, Qian; Tianchun, Ye
2015-10-01
An inductorless multi-mode RF front end for a global navigation satellite system (GNSS) receiver is presented. Unlike the traditional topology of a low noise amplifier (LNA), the inductorless current-mode noise-canceling LNA is applied in this design. The high-impedance-input radio frequency amplifier (RFA) further amplifies the GNSS signals and changes the single-end signal path into fully differential. The passive mixer down-converts the signals to the intermediate frequency (IF) band and conveys the signals to the analogue blocks. The local oscillator (LO) buffer divides the output frequency of the voltage controlled oscillator (VCO) and generates 25%-duty-cycle quadrature square waves to drive the mixer. Our measurement results display that the implemented RF front end achieves good overall performance while consuming only 6.7 mA from 1.2 V supply. The input return loss is better than -26 dB and the ultra low noise figure of 1.43 dB leads to high sensitivity of the GNSS receiver. The input 1 dB compression point is -43 dBm at the high gain of 48 dB. The designed circuit is fabricated in 55 nm CMOS technology and the die area, which is much smaller than traditional circuit, is around 220 × 280 μm2.
Turbofan forced mixer-nozzle internal flowfield. Volume 1: A benchmark experimental study
NASA Technical Reports Server (NTRS)
Paterson, R. W.
1982-01-01
An experimental investigation of the flow field within a model turbofan forced mixer nozzle is described. Velocity and thermodynamic state variable data for use in assessing the accuracy and assisting the further development of computational procedures for predicting the flow field within mixer nozzles are provided. Velocity and temperature data suggested that the nozzle mixing process was dominated by circulations (secondary flows) of a length scale on the order the lobe dimensions which were associated with strong radial velocities observed near the lobe exit plane. The 'benchmark' model mixer experiment conducted for code assessment purposes is discussed.
Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires
NASA Astrophysics Data System (ADS)
Wang, Ziyu; Liu, Jingying; Xu, Zai-Quan; Xue, Yunzhou; Jiang, Liangcong; Song, Jingchao; Huang, Fuzhi; Wang, Yusheng; Zhong, Yu Lin; Zhang, Yupeng; Cheng, Yi-Bing; Bao, Qiaoliang
2016-03-01
Hybrid organic-inorganic perovskites have emerged as new photovoltaic materials with impressively high power conversion efficiency due to their high optical absorption coefficient and long charge carrier diffusion length. In addition to high photoluminescence quantum efficiency and chemical tunability, hybrid organic-inorganic perovskites also show intriguing potential for diverse photonic applications. In this work, we demonstrate that polycrystalline organic-inorganic perovskite microwires can function as active optical waveguides with small propagation loss. The successful production of high quality perovskite microwires with different halogen elements enables the guiding of light with different colours. Furthermore, it is interesting to find that out-coupled light intensity from the microwire can be effectively modulated by an external electric field, which behaves as an electro-optical modulator. This finding suggests the promising applications of perovskite microwires as effective building blocks in micro/nano scale photonic circuits.
Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires.
Wang, Ziyu; Liu, Jingying; Xu, Zai-Quan; Xue, Yunzhou; Jiang, Liangcong; Song, Jingchao; Huang, Fuzhi; Wang, Yusheng; Zhong, Yu Lin; Zhang, Yupeng; Cheng, Yi-Bing; Bao, Qiaoliang
2016-03-28
Hybrid organic-inorganic perovskites have emerged as new photovoltaic materials with impressively high power conversion efficiency due to their high optical absorption coefficient and long charge carrier diffusion length. In addition to high photoluminescence quantum efficiency and chemical tunability, hybrid organic-inorganic perovskites also show intriguing potential for diverse photonic applications. In this work, we demonstrate that polycrystalline organic-inorganic perovskite microwires can function as active optical waveguides with small propagation loss. The successful production of high quality perovskite microwires with different halogen elements enables the guiding of light with different colours. Furthermore, it is interesting to find that out-coupled light intensity from the microwire can be effectively modulated by an external electric field, which behaves as an electro-optical modulator. This finding suggests the promising applications of perovskite microwires as effective building blocks in micro/nano scale photonic circuits.
Large dynamic range terahertz spectrometers based on plasmonic photomixers (Conference Presentation)
NASA Astrophysics Data System (ADS)
Wang, Ning; Javadi, Hamid; Jarrahi, Mona
2017-02-01
Heterodyne terahertz spectrometers are highly in demand for space explorations and astrophysics studies. A conventional heterodyne terahertz spectrometer consists of a terahertz mixer that mixes a received terahertz signal with a local oscillator signal to generate an intermediate frequency signal in the radio frequency (RF) range, where it can be easily processed and detected by RF electronics. Schottky diode mixers, superconductor-insulator-superconductor (SIS) mixers and hot electron bolometer (HEB) mixers are the most commonly used mixers in conventional heterodyne terahertz spectrometers. While conventional heterodyne terahertz spectrometers offer high spectral resolution and high detection sensitivity levels at cryogenic temperatures, their dynamic range and bandwidth are limited by the low radiation power of existing terahertz local oscillators and narrow bandwidth of existing terahertz mixers. To address these limitations, we present a novel approach for heterodyne terahertz spectrometry based on plasmonic photomixing. The presented design replaces terahertz mixer and local oscillator of conventional heterodyne terahertz spectrometers with a plasmonic photomixer pumped by an optical local oscillator. The optical local oscillator consists of two wavelength-tunable continuous-wave optical sources with a terahertz frequency difference. As a result, the spectrometry bandwidth and dynamic range of the presented heterodyne spectrometer is not limited by radiation frequency and power restrictions of conventional terahertz sources. We demonstrate a proof-of-concept terahertz spectrometer with more than 90 dB dynamic range and 1 THz spectrometry bandwidth.
Variable volume combustor with nested fuel manifold system
McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael
2016-09-13
The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles, a fuel manifold system in communication with the micro-mixer fuel nozzles to deliver a flow of fuel thereto, and a linear actuator to maneuver the micro-mixer fuel nozzles and the fuel manifold system.
Airfoil-shaped micro-mixers for reducing fouling on membrane surfaces
Ho, Clifford K; Altman, Susan J; Clem, Paul G; Hibbs, Michael; Cook, Adam W
2012-10-23
An array of airfoil-shaped micro-mixers that enhances fluid mixing within permeable membrane channels, such as used in reverse-osmosis filtration units, while minimizing additional pressure drop. The enhanced mixing reduces fouling of the membrane surfaces. The airfoil-shaped micro-mixer can also be coated with or comprised of biofouling-resistant (biocidal/germicidal) ingredients.
Analysis of Fuel Vaporization, Fuel-Air Mixing, and Combustion in Integrated Mixer-Flame Holders
NASA Technical Reports Server (NTRS)
Deur, J. M.; Cline, M. C.
2004-01-01
Requirements to limit pollutant emissions from the gas turbine engines for the future High-Speed Civil Transport (HSCT) have led to consideration of various low-emission combustor concepts. One such concept is the Integrated Mixer-Flame Holder (IMFH). This report describes a series of IMFH analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. To meet the needs of this study, KIVA-II's boundary condition and chemistry treatments are modified. The study itself examines the relationships between fuel vaporization, fuel-air mixing, and combustion. Parameters being considered include: mixer tube diameter, mixer tube length, mixer tube geometry (converging-diverging versus straight walls), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases are run with and without combustion to examine the variations in fuel-air mixing and potential for flashback due to the above parameters. The degree of fuel-air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state. Results indicate that fuel-air mixing can be enhanced by a variety of means, the best being a combination of air inlet swirl and a converging-diverging mixer tube geometry. With the IMFH configuration utilized in the present study, flashback becomes more common as the mixer tube diameter is increased and is instigated by disturbances associated with the dilution hole flow.
A 220-GHz SIS Mixer Tightly Integrated With a Sub-Hundred-Microwatt SiGe IF Amplifier
NASA Astrophysics Data System (ADS)
Montazeri, Shirin; Grimes, Paul K.; Tong, Cheuk-Yu Edward; Bardin, Joseph C.
2016-01-01
Future kilopixel-scale heterodyne focal plane arrays based on superconductor-insulator-superconductor (SIS) mixers will require submilliwatt power consumption low-noise amplifiers (LNAs) which are tightly integrated with the mixers. In this paper, an LNA that is optimized for direct connection to a 220-GHz SIS mixer chip and requires less than 100 μW of dc power is reported. The amplifier design process is described, and measurement results are presented. It is shown that, when pumped at local oscillator frequencies between 214 and 226 GHz, the mixer/amplifier module achieves a double-sideband system noise temperature between 35 and 50 K over the 3.3-6 GHz IF frequency range while requiring just 90 μW of dc power. Moreover, the potential to further reduce the power consumption is explored and successful operation is demonstrated for LNA power consumption as low as 60 μW.
Fabrication and characterization of 8.87 THz schottky barrier mixer diodes for mixer
NASA Astrophysics Data System (ADS)
Wang, Wenjie; Li, Qian; An, Ning; Tong, Xiaodong; Zeng, Jianping
2018-04-01
In this paper we report on the fabrication and characterization of GaAs-based THz schottky barrier mixer diodes. Considering the analyzed results as well as fabrication cost and complexity, a group of trade-off parameters was determined. Electron-beam lithography and air-bridge technique have been used to obtain schottky diodes with a cut off frequency of 8.87 THz. Equivalent values of series resistance, ideal factor and junction capacitance of 10.2 (1) Ω, 1.14 (0.03) and 1.76(0.03) respectively have been measured for 0.7um diameter anode devices by DC and RF measurements. The schottky barrier diodes fabrication process is fully planar and very suitable for integration in THz frequency multiplier and mixer circuits. THz Schottky barrier diodes based on such technology with 2 μm diameter anodes have been tested at 1.6 THz in a sub-harmonic mixer.
CFD simulation of vertical linear motion mixing in anaerobic digester tanks.
Meroney, Robert N; Sheker, Robert E
2014-09-01
Computational fluid dynamics (CFD) was used to simulate the mixing characteristics of a small circular anaerobic digester tank (diameter 6 m) equipped sequentially with 13 different plunger type vertical linear motion mixers and two different type internal draft-tube mixers. Rates of mixing of step injection of tracers were calculated from which active volume (AV) and hydraulic retention time (HRT) could be calculated. Washout characteristics were compared to analytic formulae to estimate any presence of partial mixing, dead volume, short-circuiting, or piston flow. Active volumes were also estimated based on tank regions that exceeded minimum velocity criteria. The mixers were ranked based on an ad hoc criteria related to the ratio of AV to unit power (UP) or AV/UP. The best plunger mixers were found to behave about the same as the conventional draft-tube mixers of similar UP.
Gas turbine engine combustor can with trapped vortex cavity
Burrus, David Louis; Joshi, Narendra Digamber; Haynes, Joel Meier; Feitelberg, Alan S.
2005-10-04
A gas turbine engine combustor can downstream of a pre-mixer has a pre-mixer flowpath therein and circumferentially spaced apart swirling vanes disposed across the pre-mixer flowpath. A primary fuel injector is positioned for injecting fuel into the pre-mixer flowpath. A combustion chamber surrounded by an annular combustor liner disposed in supply flow communication with the pre-mixer. An annular trapped dual vortex cavity located at an upstream end of the combustor liner is defined between an annular aft wall, an annular forward wall, and a circular radially outer wall formed therebetween. A cavity opening at a radially inner end of the cavity is spaced apart from the radially outer wall. Air injection first holes are disposed through the forward wall and air injection second holes are disposed through the aft wall. Fuel injection holes are disposed through at least one of the forward and aft walls.
Nonlinear Modeling and Control of a Propellant Mixer
NASA Technical Reports Server (NTRS)
Barbieri, Enrique; Richter, Hanz; Figueroa, Fernando
2003-01-01
A mixing chamber used in rocket engine combustion testing at NASA Stennis Space Center is modeled by a second order nonlinear MIMO system. The mixer is used to condition the thermodynamic properties of cryogenic liquid propellant by controlled injection of the same substance in the gaseous phase. The three inputs of the mixer are the positions of the valves regulating the liquid and gas flows at the inlets, and the position of the exit valve regulating the flow of conditioned propellant. The outputs to be tracked and/or regulated are mixer internal pressure, exit mass flow, and exit temperature. The outputs must conform to test specifications dictated by the type of rocket engine or component being tested downstream of the mixer. Feedback linearization is used to achieve tracking and regulation of the outputs. It is shown that the system is minimum-phase provided certain conditions on the parameters are satisfied. The conditions are shown to have physical interpretation.
Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
TEMPLETON, A.M.
2000-03-06
This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissionsmore » Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.« less
Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
TEMPLETON, A.M.
2000-01-31
This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissionsmore » Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.« less
Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
TEMPLETON, A.M.
2000-04-10
This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissionsmore » Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.« less
Quasi-optical antenna-mixer-array design for terahertz frequencies
NASA Technical Reports Server (NTRS)
Guo, Yong; Potter, Kent A.; Rutledge, David B.
1992-01-01
A new quasi-optical antenna-mixer-array design for terahertz frequencies is presented. In the design, antenna and mixer are combined into an entity, based on the technology in which millimeter-wave horn antenna arrays have been fabricated in silicon wafers. It consists of a set of forward- and backward-looking horns made with a set of silicon wafers. The front side is used to receive incoming signal, and the back side is used to feed local oscillator signal. Intermediate frequency is led out from the side of the array. Signal received by the horn array is picked up by antenna probes suspended on thin silicon-oxynitride membranes inside the horns. Mixer diodes will be located on the membranes inside the horns. Modeling of such an antenna-mixer-array design is done on a scaled model at microwave frequencies. The impedance matching, RF and LO isolation, and patterns of the array have been tested and analyzed.
NASA Technical Reports Server (NTRS)
Salikuddin, M.; Wisler, S.; Majjigi, R.
2004-01-01
The principle objectives of the current program were to experimentally investigate the repeatability of acoustic and aerodynamic characteristics of 2D-CD mixer-ejector nozzles and the effects on the acoustic and aerodynamic characteristics of 2D mixer-ejectors due to (1) the configurational variations, which include mixers with aligned CD chutes, aligned convergent chutes, and staggered CD chutes and aerodynamic cycle variables, (2) treatment variations by using different treatment materials, treating the ejector with varying area, location, and treatment thickness for a mixer-ejector configuration, and (3) secondary inlet shape (i.e., a more realistic inlet) and the blockage across the inlet (a possible fin-like structure needed for installation purpose) by modifying one of the inlet of a mixer-ejector configuration. The objectives also included the measurement dynamic pressures internal to the ejector for a few selected configuration to examine the internal noise characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobbitt, Jonathan M.; Mendivelso-Pérez, Deyny; Smith, Emily A.
A scanning angle (SA) Raman spectroscopy method was developed to simultaneously measure the chemical composition and thickness of waveguide mixed polymer films with varying fractional compositions. In order to test the method, six films of polystyrene-block-poly(methyl methacrylate), some mixed with poly(methyl methacrylate) homopolymer (PS-b-PMMA:PMMA), and two films of poly(2-vinylnapthalene)-block-poly(methyl methacrylate) (P2VN-b-PMMA) were prepared. The film thickness ranged from 495 to 971 nm. The chemical composition and thickness of PS-b-PMMA:PMMA films was varied by the addition of the PMMA homopolymer and annealing the films in toluene. SA Raman peak amplitude ratios (1001 cm -1 for PS, 812 cm -1 for PMMA,more » and 1388 cm -1 for P2VN) were used to calculate the refractive index of the polymer film, an input parameter in calculations of the sum square electric field (SSEF). The film thickness was determined by SSEF models of the experimental Raman amplitudes versus the incident angle of light. The average film thickness determined by the developed SA Raman spectroscopy method was within 5% of the value determined by optical profilometry. In conclusion, SA Raman spectroscopy will be useful for in situ label-free analyses of mixed polymer waveguide films.« less
The Wet-Weather Flow Technologies Pilot of the EPA's Environmental Technology Verification (ETV) Program under a partnership with NSF International has verified the performance of the GAS MASTRRR Series 32 Submersible Chemical Induction Mixers used for disinfection of wet-weather...
Symmetric Gain Optoelectronic Mixers for LADAR
2008-12-01
photodetector in the receiver is used as an optoelectronic mixer (OEM). Adding gain to the optoelectronic mixer allows the following transimpedance ...output is the low frequency difference signal, several orders of magnitude lower than the LO signal. Therefore, the gain of the transimpedance ... amplifier (TZA) following the photodetector can be increased, improving LADAR range. The metal-semiconductor- metal (MSM) Schottky detector is such a
Dupoly process for treatment of depleted uranium and production of beneficial end products
Kalb, Paul D.; Adams, Jay W.; Lageraaen, Paul R.; Cooley, Carl R.
2000-02-29
The present invention provides a process of encapsulating depleted uranium by forming a homogenous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles.
Methodology for calculating power consumption of planetary mixers
NASA Astrophysics Data System (ADS)
Antsiferov, S. I.; Voronov, V. P.; Evtushenko, E. I.; Yakovlev, E. A.
2018-03-01
The paper presents the methodology and equations for calculating the power consumption necessary to overcome the resistance of a dry mixture caused by the movement of cylindrical rods in the body of a planetary mixer, as well as the calculation of the power consumed by idling mixers of this type. The equations take into account the size and physico-mechanical properties of mixing material, the size and shape of the mixer's working elements and the kinematics of its movement. The dependence of the power consumption on the angle of rotation in the plane perpendicular to the axis of rotation of the working member is presented.
Characterization of MgB2 Superconducting Hot Electron Bolometers
NASA Technical Reports Server (NTRS)
Cunnane, D.; Kawamura, J. H.; Wolak, M. A.; Acharya, N.; Tan, T.; Xi, X. X.; Karasik, B. S.
2014-01-01
Hot-Electron Bolometer (HEB) mixers have proven to be the best tool for high-resolution spectroscopy at the Terahertz frequencies. However, the current state of the art NbN mixers suffer from a small intermediate frequency (IF) bandwidth as well as a low operating temperature. MgB2 is a promising material for HEB mixer technology in view of its high critical temperature and fast thermal relaxation allowing for a large IF bandwidth. In this work, we have fabricated and characterized thin-film (approximately 15 nanometers) MgB2-based spiral antenna-coupled HEB mixers on SiC substrate. We achieved the IF bandwidth greater than 8 gigahertz at 25 degrees Kelvin and the device noise temperature less than 4000 degrees Kelvin at 9 degrees Kelvin using a 600 gigahertz source. Using temperature dependencies of the radiation power dissipated in the device we have identified the optical loss in the integrated microantenna responsible as a cause of the limited sensitivity of the current mixer devices. From the analysis of the current-voltage (IV) characteristics, we have derived the effective thermal conductance of the mixer device and estimated the required local oscillator power in an optimized device to be approximately 1 microwatts.
Research of UHPC properties prepared with industrial mixer
NASA Astrophysics Data System (ADS)
Šerelis, E.; Vaitkevičius, V.; Kerševičius, V.
2017-09-01
Ultra-high performance concrete (UHPC) mixture with advanced mechanical and durability properties was created using decent Zyklos ZZ50HE mixer. Zyklos ZZ50HE rotating pan mixer is similar to mixer which has common concrete plants. In experiment UHPC was prepared with Zyklos ZZ50HE mixer and thereafter best composition was selected and prepared with industrial HPGM 1125 mixer. Experiment results revealed that UHPC with W/C=0.29 and advanced mechanical and durability properties can be prepared. In experiment tremendous amount of micro steel fibres (up to 147 kg/m3) were incorporated in UHPC. Concrete with excellent salt scaling resistance and great mechanical properties was obtained. Compressive strength was increased about 30 % from 116 MPa to 150 MPa and flexural strength was increased about 5 times from 6.7 to 36.2 MPa. Salt-scaling resistance at 40 cycles in 3 % NaCl solution varied from 0.006 kg/m2 to 0.197 kg/m2. There were a few attempts to create UHPC and UHPFRC with decent technology, however, unsuccessfully till now. In the world practice this new material is currently used in the construction of bridges and viaducts.
Low-noise SIS mixer for far-infrared radio astronomy
NASA Astrophysics Data System (ADS)
Karpov, Alexandre; Miller, David; Rice, Frank R.; Stern, Jeffrey A.; Bumble, Bruce; LeDuc, Henry G.; Zmuidzinas, Jonas
2004-10-01
We present a low noise SIS mixer developed for the 1.2 THz band of the heterodyne spectrometer of the Herschel Space Observatory. With the launch of the Herschel SO in 2007, this device will be among the first SIS mixers flown in space. This SIS mixer has a quasi-optical design, with a double slot planar antenna and an extended spherical lens made of pure Si. The SIS junctions are Nb/AlN/NbTiN with a critical current density of about 30 KA/cm2 and with the junction area of a quarter of a micron square. Our mixer circuit uses two SIS junctions biased in parallel. To improve the simultaneous suppression of the Josephson current in each of them, we use diamond-shaped junctions. A low loss Nb/Au micro-strip transmission line is used for the first time in the mixer circuit well above the gap frequency of Nb. The minimum uncorrected Double Sideband receiver noise is 550 K (Y=1.34). The minimum receiver noise corrected for the local oscillator beam splitter and for the cryostat window is 340 K, about 6 hv/k, the lowest value achieved thus far in the THz frequencies range.
Computer design of microfluidic mixers for protein/RNA folding studies.
Inguva, Venkatesh; Kathuria, Sagar V; Bilsel, Osman; Perot, Blair James
2018-01-01
Kinetic studies of biological macromolecules increasingly use microfluidic mixers to initiate and monitor reaction progress. A motivation for using microfluidic mixers is to reduce sample consumption and decrease mixing time to microseconds. Some applications, such as small-angle x-ray scattering, also require large (>10 micron) sampling areas to ensure high signal-to-noise ratios and to minimize parasitic scattering. Chaotic to marginally turbulent mixers are well suited for these applications because this class of mixers provides a good middle ground between existing laminar and turbulent mixers. In this study, we model various chaotic to marginally turbulent mixing concepts such as flow turning, flow splitting, and vortex generation using computational fluid dynamics for optimization of mixing efficiency and observation volume. Design iterations show flow turning to be the best candidate for chaotic/marginally turbulent mixing. A qualitative experimental test is performed on the finalized design with mixing of 10 M urea and water to validate the flow turning unsteady mixing concept as a viable option for RNA and protein folding studies. A comparison of direct numerical simulations (DNS) and turbulence models suggests that the applicability of turbulence models to these flow regimes may be limited.
A Low Power 2.4 GHz CMOS Mixer Using Forward Body Bias Technique for Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Yin, C. J.; Murad, S. A. Z.; Harun, A.; Ramli, M. M.; Zulkifli, T. Z. A.; Karim, J.
2018-03-01
Wireless sensor network (WSN) is a highly-demanded application since the evolution of wireless generation which is often used in recent communication technology. A radio frequency (RF) transceiver in WSN should have a low power consumption to support long operating times of mobile devices. A down-conversion mixer is responsible for frequency translation in a receiver. By operating a down-conversion mixer at a low supply voltage, the power consumed by WSN receiver can be greatly reduced. This paper presents a development of low power CMOS mixer using forward body bias technique for wireless sensor network. The proposed mixer is implemented using CMOS 0.13 μm Silterra technology. The forward body bias technique is adopted to obtain low power consumption. The simulation results indicate that a low power consumption of 0.91 mW is achieved at 1.6 V supply voltage. Moreover, the conversion gain (CG) of 21.83 dB, the noise figure (NF) of 16.51 dB and the input-referred third-order intercept point (IIP3) of 8.0 dB at 2.4 GHz are obtained. The proposed mixer is suitable for wireless sensor network.
Kwak, Tae Joon; Nam, Young Gyu; Najera, Maria Alejandra; Lee, Sang Woo; Strickler, J Rudi; Chang, Woo-Jin
2016-01-01
The liquid streams in a microchannel are hardly mixed to form laminar flow, and the mixing issue is well described by a low Reynolds number scheme. The staggered herringbone mixer (SHM) using repeated patterns of grooves in the microchannel have been proved to be an efficient passive micro-mixer. However, only a negative pattern of the staggered herringbone mixer has been used so far after it was first suggested, to the best of our knowledge. In this study, the mixing efficiencies from negative and positive staggered herringbone mixer patterns as well as from opposite flow directions were tested to investigate the effect of the micro-structure geometry on the surrounding laminar flow. The positive herringbone pattern showed better mixing efficiency than the conventionally used negative pattern. Also, generally used forward flow gives better mixing efficiency than reverse flow. The mixing was completed after two cycles of staggered herringbone mixer with both forward and reverse flow in a positive pattern. The traditional negative pattern showed complete mixing after four and five cycles in forward and reverse flow direction, respectively. The mixing effect in all geometries was numerically simulated, and the results confirmed more efficient mixing in the positive pattern than the negative. The results can further enable the design of a more efficient microfluidic mixer, as well as in depth understanding of the phenomena of positive and negative patterns existing in nature with regards to the surrounding fluids.
Nam, Young Gyu; Najera, Maria Alejandra; Lee, Sang Woo; Strickler, J. Rudi; Chang, Woo-Jin
2016-01-01
The liquid streams in a microchannel are hardly mixed to form laminar flow, and the mixing issue is well described by a low Reynolds number scheme. The staggered herringbone mixer (SHM) using repeated patterns of grooves in the microchannel have been proved to be an efficient passive micro-mixer. However, only a negative pattern of the staggered herringbone mixer has been used so far after it was first suggested, to the best of our knowledge. In this study, the mixing efficiencies from negative and positive staggered herringbone mixer patterns as well as from opposite flow directions were tested to investigate the effect of the micro-structure geometry on the surrounding laminar flow. The positive herringbone pattern showed better mixing efficiency than the conventionally used negative pattern. Also, generally used forward flow gives better mixing efficiency than reverse flow. The mixing was completed after two cycles of staggered herringbone mixer with both forward and reverse flow in a positive pattern. The traditional negative pattern showed complete mixing after four and five cycles in forward and reverse flow direction, respectively. The mixing effect in all geometries was numerically simulated, and the results confirmed more efficient mixing in the positive pattern than the negative. The results can further enable the design of a more efficient microfluidic mixer, as well as in depth understanding of the phenomena of positive and negative patterns existing in nature with regards to the surrounding fluids. PMID:27814386
Monolithic InP strictly non-blocking 8×8 switch for high-speed WDM optical interconnection.
Kwack, Myung-Joon; Tanemura, Takuo; Higo, Akio; Nakano, Yoshiaki
2012-12-17
A strictly non-blocking 8 × 8 switch for high-speed WDM optical interconnection is realized on InP by using the phased-array scheme for the first time. The matrix switch architecture consists of over 200 functional devices such as star couplers, phase-shifters and so on without any waveguide cross-section. We demonstrate ultra-broad optical bandwidth covering the entire C-band through several Input/Output ports combination with extinction ratio performance of more than 20dB. Also, nanoseconds reconfiguration time was successfully achieved by dynamic switching experiment. Error-free transmission was verified for 40-Gbps (10-Gbps × 4ch) WDM signal.
NASA Technical Reports Server (NTRS)
1995-01-01
We have determined that the multi-pin 'microprocessor style' packages in which current Blocked Impurity Band (BIB) devices are mounted will not meet our IF bandwidth spec of greater than 2 GHz for a practical mixer. Hence we have started to repackage the Ga:Ge BIB devices in new microwave compatible packages. The smaller size of the microwave package mount necessitates cutting the BIB array down to include only the 3 smallest detectors: 0.2, 0.4, and 0.6 mm sq. A FIR beam incident at f/1.5 can be focussed on the smallest element for wavelengths shorter than 100 microns. A more typical (easier) beam convergence of f/3 will require 0.4 mm elements at 100 microns and 0.6 mm elements at 170 microns wavelength. Since the device capacitance (parasitic loss) scales with detector size, there is a tradeoff of speed of response and optical convenience. Our existing optics produce only the slower convergence beam, so we need to redesign the optical layout and are looking at long focal length all-reflective microscope objectives. BIB detectors and the edge-coupled microbolometers have restricted IF bandwidths, an order of magnitude less than what is possible with the Schottky-diode mixers we currently use for astronomical observations. Consequently the frequencies of the FIR laser lines must be close to the astronomical line of interest to be an effective Local Oscillator (LO). We have therefore begun a coordinated effort to discover and measure new FIR laser transition lines in close frequency coincidence with important astrophysical lines. Most of this effort involves pumping isotopic variants of known good laser molecules with laser lines from isotopic variants of CO2. We have been most successful in detecting new FIR lines in deuterated ammonia. One line in particular is very close to the frequency of HD rotational line at 2675 GHz.
Numerical analysis on a passive chaotic micromixer with helical microchannel.
Wang, Ruijin; Lin, Jianzhong
2006-01-01
In order to improve the mixing efficiency, the diffusion and mixing of species in the helical micro-mixer are simulated numerically. The results show that the mixing efficiency in the helical micromixer is much higher than that in the straight micro-channel and obviously higher than that in the serpentine micro-channel when Reynolds number is low. At high Reynolds number, even though the mixing efficiency in the helical micro-mixer is still much higher than that in the straight micro-channel, no obvious difference of mixing efficiency in the helical micro-mixer and serpentine micro-channel is found. The conclusions are helpful to optimize the structure of the micro-mixer.
DUPoly process for treatment of depleted uranium and production of beneficial end products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalb, P.D.; Adams, J.W.; Lageraaen, P.R.
2000-02-29
The present invention provides a process of encapsulating depleted uranium by forming a homogeneous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships,more » missiles, armor or projectiles.« less
A picoliter-volume mixer for microfluidic analytical systems.
He, B; Burke, B J; Zhang, X; Zhang, R; Regnier, F E
2001-05-01
Mixing confluent liquid streams is an important, but difficult operation in microfluidic systems. This paper reports the construction and characterization of a 100-pL mixer for liquids transported by electroosmotic flow. Mixing was achieved in a microfabricated device with multiple intersecting channels of varying lengths and a bimodal width distribution. All channels running parallel to the direction of flow were 5 microm in width whereas larger 27-microm-width channels ran back and forth through the parallel channel network at a 45 degrees angle. The channel network composing the mixer was approximately 10 microm deep. It was observed that little mixing of the confluent solvent streams occurred in the 100-microm-wide, 300-microm-long mixer inlet channel where mixing would be achieved almost exclusively by diffusion. In contrast, after passage through the channel network in the approximately 200-microm-length static mixer bed, mixing was complete as determined by confocal microscopy and CCD detection. Theoretical simulations were also performed in an attempt to describe the extent of mixing in microfabricated systems.
NASA Technical Reports Server (NTRS)
Yang, Jian-Xun; Agahi, Farid; Dai, Dong; Musante, Charles F.; Grammer, Wes; Lau, Kei M.; Yngvesson, K. S.
1993-01-01
This paper presents a new type of electron bolometric ('hot electron') mixer. We have demonstrated a 3 order-of-magnitude improvement in the bandwidth compared with previously known types of electron bolometric mixers, by using the two-dimensional electron gas (2DEG) medium at the heterointerface between AlGaAs and GaAs. We have tested both in-house MOCVD-grown material and MBE material, with similar results. The conversion loss (Lc) at 94 GHz is presently 18 dB for a mixer operating at 20 K, and calculations indicate that Lc can be decreased to about 10 dB in future devices. Calculated and measured curves of Lc versus P(LO), and I(DC), respectively, agree well. We argue that there are several different configurations of electron bolometric mixers, which will all show wide bandwidth, and that these devices are likely to become important as low-noise THz receivers in the future.
A Multidisciplinary Approach to Mixer-Ejector Analysis and Design
NASA Technical Reports Server (NTRS)
Hendricks, Eric, S.; Seidel, Jonathan, A.
2012-01-01
The design of an engine for a civil supersonic aircraft presents a difficult multidisciplinary problem to propulsion system engineers. There are numerous competing requirements for the engine, such as to be efficient during cruise while yet quiet enough at takeoff to meet airport noise regulations. The use of mixer-ejector nozzles presents one possible solution to this challenge. However, designing a mixer-ejector which will successfully address both of these concerns is a difficult proposition. Presented in this paper is an integrated multidisciplinary approach to the analysis and design of these systems. A process that uses several low-fidelity tools to evaluate both the performance and acoustics of mixer-ejectors nozzles is described. This process is further expanded to include system-level modeling of engines and aircraft to determine the effects on mission performance and noise near airports. The overall process is developed in the OpenMDAO framework currently being developed by NASA. From the developed process, sample results are given for a notional mixer-ejector design, thereby demonstrating the capabilities of the method.
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.
1996-01-01
The flat-band voltage is the Schottky junction voltage required to shrink the depletion width to zero. At cryogenic temperatures, mixer diodes are generally biased and/or pumped beyond the flat-band condition to minimize conversion loss and noise figure. This occurs despite the presumed sharp increase in junction capacitance near flat-band, which should instead limit mixer performance. Past moderate forward bias, the diode C-V relationship is difficult to measure. A simple analytic expression for C(V) is usually used to model and predict mixer performance. This letter provides experimental data on C(V) at 77 K based on a microwave measurement and modeling technique. Data is also provided on the conversion loss of a singly balanced mixer optimized for 77 K operation. The connection between junction capacitance, flat-band potential, and conversion loss is examined. It is shown that the analytic expression greatly overestimates the junction capacitance that occurs as flat-band is approached.
Research in millimeter wave techniques
NASA Technical Reports Server (NTRS)
Mcmillan, R. W.
1978-01-01
During the past six months, efforts on this project have been devoted to: (1) continuation of construction and testing of a 6 GHz subharmonic mixer model with extension of the pumping frequency of this mixer to omega sub s/4, (2) construction of a 183 GHz subharmonic mixer based on the results of tests on this 6 GHz model, (3) ground-based radiometric measurements at 183 GHz, (4) fabrication and testing of wire grid interferometers, (5) calculations of reflected and lost power in these interferometers, and (6) calculations of the antenna temperature due to water vapor to be expected in down-looking radiometry as a function of frequency. Significant events during the past six months include: (1) Receipt of a 183 GHz single-ended fundamental mixer, (2) attainment of 6 db single sideband conversion loss with the 6 GHz subharmonic mixer model by using a 1.5 GHz (omega sub s/4) pump frequency, (3) additional ground-based radiometric measurements and (4) derivation of equations for reflection and loss for wire grid interferometers.
Electronically Tuned Local Oscillators for the NOEMA Interferometer
NASA Astrophysics Data System (ADS)
Mattiocco, Francois; Garnier, Olivier; Maier, Doris; Navarrini, Alessandro; Serres, Patrice
2016-03-01
We present an overview of the electronically tuned local oscillator (LO) system developed at the Institut de RadioAstronomie millimetrique (IRAM) for the superconductor-insulator-superconductor (SIS) receivers of the NOrthern Extended Millimeter Array interferometer (NOEMA). We modified the frequency bands and extended the bandwidths of the LO designs developed by the National Radio Astronomy Observatory (NRAO) for the Atacama Large Millimeter Array (ALMA) project to cover the four NOEMA LO frequency ranges 82-108.3 GHz (Band 1), 138.6-171.3 GHz (Band 2), 207.7-264.4 GHz (Band 3), and 283-365 GHz (Band 4). The NOEMA LO system employs commercially available MMICs and GaAs millimeter MMICs from NRAO which are micro-assembled into active multiplied chain (AMC) and power amplifier (PA) modules. We discuss the problem of the LO spurious harmonics and of the LO signal directly multiplied by the SIS mixers that add extra noise and lead to detections of unwanted spectral lines from higher order sidebands. A waveguide filter in the LO path is used to reduce the higher order harmonics level of the LO at the output of the final frequency multiplier, thus mitigating the undesired effects and improving the system noise temperature.
Heterodyne detection of the 752.033-GHz H2O rotational absorption line
NASA Technical Reports Server (NTRS)
Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.
1980-01-01
A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.
Spin selective filtering of polariton condensate flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, T.; Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Crete; Antón, C.
2015-07-06
Spin-selective spatial filtering of propagating polariton condensates, using a controllable spin-dependent gating barrier, in a one-dimensional semiconductor microcavity ridge waveguide is reported. A nonresonant laser beam provides the source of propagating polaritons, while a second circularly polarized weak beam imprints a spin dependent potential barrier, which gates the polariton flow and generates polariton spin currents. A complete spin-based control over the blocked and transmitted polaritons is obtained by varying the gate polarization.
QCGAT mixer compound exhaust system design and static big model test report
NASA Technical Reports Server (NTRS)
Blackmore, W. L.; Thompson, C. E.
1978-01-01
A mixer exhaust system was designed to meet the proposed performance and exhaust jet noise goals for the AiResearch QCGAT engine. Some 0.35 scale models of the various nozzles were fabricated and aerodynamically and acoustically tested. Preliminary optimization, engine cycle matching, model test data and analysis are presented. A final mixer exhaust system is selected for optimum performance for the overall flight regime.
NASA Astrophysics Data System (ADS)
Zorin, A. B.
1985-03-01
In the present, quantum-statistical analysis of SIS heterodyne mixer performance, the conventional three-port model of the mixer circuit and the microscopic theory of superconducting tunnel junctions are used to derive a general expression for a noise parameter previously used for the case of parametric amplifiers. This expression is numerically evaluated for various quasiparticle current step widths, dc bias voltages, local oscillator powers, signal frequencies, signal source admittances, and operation temperatures.
Implementation of an optimized microfluidic mixer in alumina employing femtosecond laser ablation
NASA Astrophysics Data System (ADS)
Juodėnas, M.; Tamulevičius, T.; Ulčinas, O.; Tamulevičius, S.
2018-01-01
Manipulation of liquids at the lowest levels of volume and dimension is at the forefront of materials science, chemistry and medicine, offering important time and resource saving applications. However, manipulation by mixing is troublesome at the microliter and lower scales. One approach to overcome this problem is to use passive mixers, which exploit structural obstacles within microfluidic channels or the geometry of channels themselves to enforce and enhance fluid mixing. Some applications require the manipulation and mixing of aggressive substances, which makes conventional microfluidic materials, along with their fabrication methods, inappropriate. In this work, implementation of an optimized full scale three port microfluidic mixer is presented in a slide of a material that is very hard to process but possesses extreme chemical and physical resistance—alumina. The viability of the selected femtosecond laser fabrication method as an alternative to conventional lithography methods, which are unable to process this material, is demonstrated. For the validation and optimization of the microfluidic mixer, a finite element method (FEM) based numerical modeling of the influence of the mixer geometry on its mixing performance is completed. Experimental investigation of the laminar flow geometry demonstrated very good agreement with the numerical simulation results. Such a laser ablation microfabricated passive mixer structure is intended for use in a capillary force assisted nanoparticle assembly setup (CAPA).
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.
1998-01-01
The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.
Lobed Mixer Design for Noise Suppression Acoustic and Aerodynamic Test Data Analysis
NASA Technical Reports Server (NTRS)
Mengle, Vinod G.; Dalton, William N.; Boyd, Kathleen (Technical Monitor); Bridges, James (Technical Monitor)
2002-01-01
A comprehensive database for the acoustic and aerodynamic characteristics of several model-scale lobe mixers of bypass ratio 5 to 6 has been created for mixed jet speeds up to 1080 ft/s at typical take-off (TO) conditions of small-to-medium turbofan engines. The flight effect was simulated for Mach numbers up to 0.3. The static thrust performance and plume data were also obtained at typical TO and cruise conditions. The tests were done at NASA Lewis anechoic dome and ASK's FluiDyne Laboratories. The effect of several lobe mixer and nozzle parameters, such as, lobe scalloping, lobe count, lobe penetration and nozzle length was examined in terms of flyover noise at constant altitude. Sound in the nozzle reference frame was analyzed to understand the source characteristics. Several new concepts, mechanisms and methods are reported for such lobed mixers, such as, "boomerang" scallops, "tongue" mixer, detection of "excess" internal noise sources, and extrapolation of flyover noise data from one flight speed to different flight speeds. Noise reduction of as much as 3 EPNdB was found with a deeply scalloped mixer compared to annular nozzle at net thrust levels of 9500 lb for a 29 in. diameter nozzle after optimizing the nozzle length.
Gikanga, Benson; Chen, Yufei; Stauch, Oliver B; Maa, Yuh-Fun
2015-01-01
Using bottom-mounted mixers, particularly those that are magnetically driven, is becoming increasingly common during the mixing process in pharmaceutical and biotechnology manufacturing because of their associated low risk of contamination, ease of use, and ability to accommodate low minimum mixing volumes. Despite these benefits, the impact of bottom-mounted mixers on biologic drug product is not yet fully understood and is scarcely reported. This study evaluated four bottom-mounted mixers to assess their impact on monoclonal antibody formulations. Changes in product quality (size variants, particles, and turbidity) and impact on process performance (sterile filtration) were evaluated after mixing. The results suggested that mixers that are designed to function with no contact between the impeller and the drive unit are the most favorable and gentle to monoclonal antibody molecules. Designs with contact or a narrow clearance tended to shear and grind the protein and resulted in high particle count in the liquid, which would subsequently foul a filter membrane during sterile filtration using a 0.22 μm pore size filter. Despite particle formation, increases in turbidity of the protein solution and protein aggregation/fragmentation were not detected. Further particle analysis indicated particles in the range of 0.2-2 μm are responsible for filter fouling. A small-scale screening model was developed using two types of magnetic stir bars mimicking the presence or absence of contact between the impeller and drive unit in the bottom-mounted mixers. The model is capable of differentiating the sensitivity of monoclonal antibody formulations to bottom-mounted mixers with a small sample size. This study fills an important gap in understanding a critical bioprocess unit operation. Mixing is an important unit operation in drug product manufacturing for compounding (dilution, pooling, homogenization, etc.). The current trend in adopting disposable bottom-mounted mixers has raised concerns about their impact on drug product quality and process performance. However, investigations into the effects of their use for biopharmaceutical products, particularly monoclonal antibody formulations, are rarely published. The purpose of this study is three-fold: (1) to understand the impact of bottom-mounted disposable mixer design on drug product quality and process performance, (2) to identify the mixing mechanism that is most gentle to protein particle formation, (3) to apply the learning to practical mixing operations using bottom-mounted mixers. The outcomes of this study will benefit scientists and engineers who develop biologic product manufacturing process by providing a better understanding of mixing principles and challenges. © PDA, Inc. 2015.
Speaker Recognition Using Real vs. Synthetic Parallel Data for DNN Channel Compensation
2016-09-08
Speaker Recognition Using Real vs Synthetic Parallel Data for DNN Channel Compensation Fred Richardson, Michael Brandstein, Jennifer Melot, and...DNNs trained with real Mixer 2 multichannel data perform only slightly better than DNNs trained with synthetic multichannel data for microphone SR on...Mixer 6. Large re- ductions in pooled error rates of 50% EER and 30% min DCF are achieved using DNNs trained on real Mixer 2 data. Nearly the same
Compact terahertz passive spectrometer with wideband superconductor-insulator-superconductor mixer.
Kikuchi, K; Kohjiro, S; Yamada, T; Shimizu, N; Wakatsuki, A
2012-02-01
We developed a compact terahertz (THz) spectrometer with a superconductor-insulator-superconductor (SIS) mixer, aiming to realize a portable and highly sensitive spectrometer to detect dangerous gases at disaster sites. The receiver cryostat which incorporates the SIS mixer and a small cryocooler except for a helium compressor has a weight of 27 kg and dimensions of 200 mm × 270 mm × 690 mm. In spite of the small cooling capacity of the cryocooler, the SIS mixer is successfully cooled lower than 4 K, and the temperature variation is suppressed for the sensitive measurement. By adopting a frequency sweeping system using photonic local oscillator, we demonstrated a spectroscopic measurement of CH(3)CN gas in 0.2-0.5 THz range.
Efficient gas-liquid contact using microfluidic membrane devices with staggered herringbone mixers.
Femmer, Tim; Eggersdorfer, Max L; Kuehne, Alexander J C; Wessling, Matthias
2015-08-07
We describe a novel membrane based gas-liquid-contacting device with increased mass transport and reduced pressure loss by combining a membrane with a staggered herringbone static mixer. Herringbone structures are imposed on the microfluidic channel geometry via soft lithography, acting as mixers which introduce secondary flows at the membrane interface. Such flows include Dean vortices and Taylor flows generating effective mixing while improving mass transport and preventing concentration polarization in microfluidic channels. Furthermore, our static herringbone mixer membranes effectively reduce pressure losses leading to devices with enhanced transfer properties for microfluidic gas-liquid contact. We investigate the red blood cell distribution to tailor our devices towards miniaturised extracorporeal membrane oxygenation and improved comfort of patients with lung insufficiencies.
NASA Technical Reports Server (NTRS)
Cullom, R. R.; Johnson, R. L.
1977-01-01
The specific fuel consumption of a low-bypass-ratio, confluent-flow, turbofan engine was measured with and without a mixer installed. Tests were conducted for flight Mach numbers from 0.3 to 1.4 and altitudes from 10,670 to 14,630 meters (35,000 to 48,000 ft) for core-stream-to-fan-stream temperature ratios of 2.0 and 2.5 and mixing-length-to-diameter ratios of 0.95 and 1.74. For these test conditions, the reduction in specific fuel consumption varied from 2.5 percent to 4.0 percent. Pressure loss measurements as well as temperature and pressure surveys at the mixer inlet, the mixer exit, and the nozzle inlet were made.
NASA Technical Reports Server (NTRS)
Kreskovsky, J. P.; Briley, W. R.; Mcdonald, H.
1982-01-01
A finite difference method is developed for making detailed predictions of three dimensional subsonic turbulent flow in turbofan lobe mixers. The governing equations are solved by a forward-marching solution procedure which corrects an inviscid potential flow solution for viscous and thermal effects, secondary flows, total pressure distortion and losses, internal flow blockage and pressure drop. Test calculations for a turbulent coaxial jet flow verify that the turbulence model performs satisfactorily for this relatively simple flow. Lobe mixer flows are presented for two geometries typical of current mixer design. These calculations included both hot and cold flow conditions, and both matched and mismatched Mach number and total pressure in the fan and turbine streams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stallard, B. R.; Kaushik, S.; Hadley, G. R.
1996-02-01
This report pertains to a Laboratory Directed Research and Development project which was funded for FY94 and FY95. The goal was to develop building blocks for small, cheap sensors that use optical spectroscopy as a means of detecting chemical analytes. Such sensors can have an impact on a wide variety of technologies, such as: industrial process control, environmental monitors, chemical analysis in medicine, and automotive monitors. We describe work in fabricating and demonstrating a waveguide/grating device that can serve as the wavelength dispersive component in a miniature spectrometer. Also, we describe the invention and modeling of a new way tomore » construct an array of optical interference filters using sub-wavelength lithography to tune the index of refraction of a fixed Fabry-Perot cavity. Next we describe progress in more efficiently calculating the fields in grating devices. Finally we present the invention of a new type of near field optical probe, applicable to scanning microscopy or optical data storage, which is based on a circular grating constructed in a waveguide. This result diverges from the original goal of the project but is quite significant in that it promises to increase the data storage capacity of CD-ROMs by 10 times.« less
Coupling Ideality of Integrated Planar High-Q Microresonators
NASA Astrophysics Data System (ADS)
Pfeiffer, Martin H. P.; Liu, Junqiu; Geiselmann, Michael; Kippenberg, Tobias J.
2017-02-01
Chip-scale optical microresonators with integrated planar optical waveguides are useful building blocks for linear, nonlinear, and quantum-optical photonic devices alike. Loss reduction through improving fabrication processes results in several integrated microresonator platforms attaining quality (Q ) factors of several millions. Beyond the improvement of the quality factor, the ability to operate the microresonator with high coupling ideality in the overcoupled regime is of central importance. In this regime, the dominant source of loss constitutes the coupling to a single desired output channel, which is particularly important not only for quantum-optical applications such as the generation of squeezed light and correlated photon pairs but also for linear and nonlinear photonics. However, to date, the coupling ideality in integrated photonic microresonators is not well understood, in particular, design-dependent losses and their impact on the regime of high ideality. Here we investigate design-dependent parasitic losses described by the coupling ideality of the commonly employed microresonator design consisting of a microring-resonator waveguide side coupled to a straight bus waveguide, a system which is not properly described by the conventional input-output theory of open systems due to the presence of higher-order modes. By systematic characterization of multimode high-Q silicon nitride microresonator devices, we show that this design can suffer from low coupling ideality. By performing 3D simulations, we identify the coupling to higher-order bus waveguide modes as the dominant origin of parasitic losses which lead to the low coupling ideality. Using suitably designed bus waveguides, parasitic losses are mitigated with a nearly unity ideality and strong overcoupling (i.e., a ratio of external coupling to internal resonator loss rate >9 ) are demonstrated. Moreover, we find that different resonator modes can exchange power through the coupler, which, therefore, constitutes a mechanism that induces modal coupling, a phenomenon known to distort resonator dispersion properties. Our results demonstrate the potential for significant performance improvements of integrated planar microresonators for applications in quantum optics and nonlinear photonics achievable by optimized coupler designs.
Performance and Uniformity of Mass-Produced SIS Mixers for ALMA Band 8 Receiver Cartridges
NASA Astrophysics Data System (ADS)
Tomura, Tomonuri; Noguchi, Takashi; Sekimoto, Yutaro; Shan, Wenlei; Sato, Naohisa; Iizuka, Yoshizo; Kumagai, Kazuyoshi; Niizeki, Yasuaki; Iwakuni, Mikio; Ito, Tetsuya
2015-05-01
The Atacama large millimeter/submillimeter array (ALMA), which was jointly built in Chile by Europe, North America and East Asia, has an observational band from 30 to 950 GHz [1], [2]. We developed receiver cartridges for ALMA Band 8 (385-500 GHz) [3]-[5] which is one of ALMA 10 frequency bands. The Band 8 receiver cartridges were produced as 73 cartridges, and 292 SIS mixers were installed in their cartridges. Also, their all cartridges were required to meet following ALMA specifications: 1. The noise temperature is less than 196 K over 80% of the frequency range and less than 292 K at any frequency from 385 to 500 GHz. 2. The image rejection ratio is larger than 10 dB over 90% of the frequency range. 3. The IF output power variation is less than 7.0 dB peak-to-peak in the 4-8 GHz band. 4. The gain compression to RF load temperatures between 77 and 373 K is less than 5%. 5. The Allan variance of the IF output power is less than 4.0×10-7 in the time scale of 0.05 s≤T≤100 s and 3.0×10-6 at 300 s. To meet these specifications, the performance and uniformity of the SIS mixers are crucial. The SIS mixers with Nb/Al-AlOx/Nb superconductor-insulator-superconductor (SIS) tunnel junctions were fabricated in a clean room of National Astronomical Observatory of Japan and over 1000 mixer chips were mass-produced. After screening these mixers, 73 Band 8 receivers were assembled and tested. We report the test results of the mass-produced mixers and the receiver cartridges in detail from a statistical point of view.
Phased-Array Study of Dual-Flow Jet Noise: Effect of Nozzles and Mixers
NASA Technical Reports Server (NTRS)
Soo Lee, Sang; Bridges, James
2006-01-01
A 16-microphone linear phased-array installed parallel to the jet axis and a 32-microphone azimuthal phased-array installed in the nozzle exit plane have been applied to identify the noise source distributions of nozzle exhaust systems with various internal mixers (lobed and axisymmetric) and nozzles (three different lengths). Measurements of velocity were also obtained using cross-stream stereo particle image velocimetry (PIV). Among the three nozzle lengths tested, the medium length nozzle was the quietest for all mixers at high frequency on the highest speed flow condition. Large differences in source strength distributions between nozzles and mixers occurred at or near the nozzle exit for this flow condition. The beamforming analyses from the azimuthal array for the 12-lobed mixer on the highest flow condition showed that the core flow and the lobe area were strong noise sources for the long and short nozzles. The 12 noisy spots associated with the lobe locations of the 12-lobed mixer with the long nozzle were very well detected for the frequencies 5 KHz and higher. Meanwhile, maps of the source strength of the axisymmetric splitter show that the outer shear layer was the most important noise source at most flow conditions. In general, there was a good correlation between the high turbulence regions from the PIV tests and the high noise source regions from the phased-array measurements.
Feng, Xiangsong; Ren, Yukun; Jiang, Hongyuan
2013-01-01
It is difficult to mix two liquids on a microfluidic chip because the small dimensions and velocities effectively prevent the turbulence. This paper describes two 2-layer PDMS passive micromixers based on the concept of splitting and recombining the flow that exploits a self-rotated contact surface to increase the concentration gradients to obtain fast and efficient mixing. The designed micromixers were simulated and the mixing performance was assessed. The mixers have shown excellent mixing efficiency over a wide range of Reynolds number. The mixers were reasonably fabricated by multilayer soft lithography, and the experimental measurements were performed to qualify the mixing performance of the realized mixer. The results show that the mixing efficiency for one realized mixer is from 91.8% to 87.7% when the Reynolds number increases from 0.3 to 60, while the corresponding value for another mixer is from 89.4% to 72.9%. It is rather interesting that the main mechanism for the rapid mixing is from diffusion to chaotic advection when the flow rate increases, but the mixing efficiency has not obvious decline. The smart geometry of the mixers with total length of 10.25 mm makes it possible to be integrated with many microfluidic devices for various applications in μ-TAS and Lab-on-a-chip systems. PMID:24396530
Feng, Xiangsong; Ren, Yukun; Jiang, Hongyuan
2013-01-01
It is difficult to mix two liquids on a microfluidic chip because the small dimensions and velocities effectively prevent the turbulence. This paper describes two 2-layer PDMS passive micromixers based on the concept of splitting and recombining the flow that exploits a self-rotated contact surface to increase the concentration gradients to obtain fast and efficient mixing. The designed micromixers were simulated and the mixing performance was assessed. The mixers have shown excellent mixing efficiency over a wide range of Reynolds number. The mixers were reasonably fabricated by multilayer soft lithography, and the experimental measurements were performed to qualify the mixing performance of the realized mixer. The results show that the mixing efficiency for one realized mixer is from 91.8% to 87.7% when the Reynolds number increases from 0.3 to 60, while the corresponding value for another mixer is from 89.4% to 72.9%. It is rather interesting that the main mechanism for the rapid mixing is from diffusion to chaotic advection when the flow rate increases, but the mixing efficiency has not obvious decline. The smart geometry of the mixers with total length of 10.25 mm makes it possible to be integrated with many microfluidic devices for various applications in μ-TAS and Lab-on-a-chip systems.
NASA Technical Reports Server (NTRS)
Salikuddin, M.; Martens, S.; Shin, H.; Majjigi, R. K.; Krejsa, Gene (Technical Monitor)
2002-01-01
The objective of this task was to develop a design methodology and noise reduction concepts for high bypass exhaust systems which could be applied to both existing production and new advanced engine designs. Special emphasis was given to engine cycles with bypass ratios in the range of 4:1 to 7:1, where jet mixing noise was a primary noise source at full power takeoff conditions. The goal of this effort was to develop the design methodology for mixed-flow exhaust systems and other novel noise reduction concepts that would yield 3 EPNdB noise reduction relative to 1992 baseline technology. Two multi-lobed mixers, a 22-lobed axisymmetric and a 21-lobed with a unique lobe, were designed. These mixers along with a confluent mixer were tested with several fan nozzles of different lengths with and without acoustic treatment in GEAE's Cell 41 under the current subtask (Subtask C). In addition to the acoustic and LDA tests for the model mixer exhaust systems, a semi-empirical noise prediction method for mixer exhaust system is developed. Effort was also made to implement flowfield data for noise prediction by utilizing MGB code. In general, this study established an aero and acoustic diagnostic database to calibrate and refine current aero and acoustic prediction tools.
Bobbitt, Jonathan M.; Mendivelso-Pérez, Deyny; Smith, Emily A.
2016-11-03
A scanning angle (SA) Raman spectroscopy method was developed to simultaneously measure the chemical composition and thickness of waveguide mixed polymer films with varying fractional compositions. In order to test the method, six films of polystyrene-block-poly(methyl methacrylate), some mixed with poly(methyl methacrylate) homopolymer (PS-b-PMMA:PMMA), and two films of poly(2-vinylnapthalene)-block-poly(methyl methacrylate) (P2VN-b-PMMA) were prepared. The film thickness ranged from 495 to 971 nm. The chemical composition and thickness of PS-b-PMMA:PMMA films was varied by the addition of the PMMA homopolymer and annealing the films in toluene. SA Raman peak amplitude ratios (1001 cm -1 for PS, 812 cm -1 for PMMA,more » and 1388 cm -1 for P2VN) were used to calculate the refractive index of the polymer film, an input parameter in calculations of the sum square electric field (SSEF). The film thickness was determined by SSEF models of the experimental Raman amplitudes versus the incident angle of light. The average film thickness determined by the developed SA Raman spectroscopy method was within 5% of the value determined by optical profilometry. In conclusion, SA Raman spectroscopy will be useful for in situ label-free analyses of mixed polymer waveguide films.« less
NASA Technical Reports Server (NTRS)
Siegel, P. H.; Kerr, A. R.
1979-01-01
A user oriented computer program for analyzing microwave and millimeter wave mixers with a single Schottky barrier diode of known I-V and C-V characteristics is described. The program first performs a nonlinear analysis to determine the diode conductance and capacitance waveforms produced by the local oscillator. A small signal linear analysis is then used to find the conversion loss, port impedances, and input noise temperature of the mixer. Thermal noise from the series resistance of the diode and shot noise from the periodically pumped current in the diode conductance are considered. The effects of the series inductance and diode capacitance on the performance of some simple mixer circuits using a conventional Schottky diode, a Schottky diode in which there is no capacitance variation, and a Mott diode are studied. It is shown that the parametric effects of the voltage dependent capacitance of a conventional Schottky diode may be either detrimental or beneficial depending on the diode and circuit parameters.
An inductorless active mixer using stacked nMOS/pMOS configuration and LO shaping technique
NASA Astrophysics Data System (ADS)
Guo, Benqing; Chen, Jun; Wang, Xuebing; Chen, Hongpeng
2018-04-01
In this paper, a CMOS active down-conversion mixer is presented for wideband applications. Specifically, a LO generation chain is suggested to convert AC LO signal to shaped trapezoid burst, which reduces the sinusoidal LO power level requirement by the mixer. The current-reuse technique by stacked nMOS/pMOS architecture is used to save the power consumption of the circuit. Moreover, this complementary configuration is also employed to compensate second-order nonlinearity of the circuit. Implemented in a 0.18-μm CMOS process, post-simulations show that, driven by only ‑10 dBm sinusoidal LO signal, the proposed inductorless mixer provides a maximal conversion gain of 15.7 dB and a noise figure (NF) of 9.1-12 dB across RF input frequency range 0.5-1.6 GHz. The IIP3 and IP1dB of 3.5 dBm and ‑4.8 dBm are obtained, respectively. The mixer core only consumes 3.6 mW from a 1.8-V supply.
AlGaAs/GaAs quasi-bulk effect mixers: Analysis and experiments
NASA Technical Reports Server (NTRS)
Yngvesson, K. S.; Yang, J.-X.; Agahi, F.; Dai, D.; Musante, C.; Grammer, W.; Lau, K. M.
1992-01-01
The lowest noise temperature for any receiver in the 0.5 to 1 THz range has been achieved with the bulk InSb hot electron mixer, which unfortunately suffers from the problem of having a very narrow bandwidth (1-2 MHz). We have demonstrated a three order of magnitude improvement in the bandwidth of hot electron mixers, by using the two-dimensional electron gas (2DEG) medium at the hetero-interface between AlGaAs and GaAs. We have tested both inhouse MOCVD-grown material, and MBE materials, with similar results. The conversion loss (L(sub c)) at 94 GHz is presently 18 dB for a mixer operating at 20 K, and calculations indicate that L(sub c) can be decreased to about 10 dB in future devices. Calculated and measured curves of L(sub c), versus PLO and IDC, respectively, agree well. We argue that there are several different configurations of hot electron mixers, which will also show wide bandwidth, and that these devices are likely to become important as low-noise THz receivers in the future.
NASA Astrophysics Data System (ADS)
Gao, Xiang; Du, Jia; Zhang, Ting; Jay Guo, Y.; Foley, Cathy P.
2017-11-01
This paper presents a systematic investigation of a broadband thin-film antenna-coupled high-temperature superconducting (HTS) terahertz (THz) harmonic mixer at relatively high operating temperature from 40 to 77 K. The mixer device chip was fabricated using the CSIRO established step-edge YBa2Cu3O7-x (YBCO) Josephson junction technology, packaged in a well-designed module and cooled in a temperature adjustable cryocooler. Detailed experimental characterizations were carried out for the broadband HTS mixer at both the 200 and 600 GHz bands in harmonic mixing mode. The DC current-voltage characteristics (IVCs), bias current condition, local oscillator (LO) power requirement, frequency response, as well as conversion efficiency under different bath temperatures were thoroughly investigated for demonstrating the frequency down-conversion performance.
1981-05-01
2.13 14.20 - Mixer S.D. 1.05 4.92 - Oven Proofer Range Glazes (bread) X 1.28 3.69 - Range S.D. 1.12 2.91 - Mixer Dough (breed) X 4.53 9.34 - Mixer SS.D...Steamer S.D. 0 - - Tomatoes X 16.00 17.00 - Range S.D. 21.21 12.73 - Steam kettle Fryer Desserts: Cookies X 1.92 10.97 - Range S.D. 1.21 1.85 - Mixer...88.30 Salad Dressing 550 24.07 51.21 Sandwiches 1,100 346.69 307.14 Beverages, cold 550 93.33 88.92 Dessert, cookies 550 15.05 67.19 Totals 550 599.94 lb
Laboratory Investigations in Support of Carbon Dioxide-Limestone Sequestration in the Ocean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan Golomb; Eugene Barry; David Ryan
2006-04-01
This semi-annual progress reports includes further findings on CO{sub 2}-in-Water emulsions stabilized by fine particles of limestone (CaCO{sub 3}). Specifically, here we report on the tests performed in the DOE National Energy Technology Laboratory High Pressure Water Tunnel Facility (HPWTF) using a Kenics-type static mixer for the formation of a CO{sub 2}-H{sub 2}O emulsion stabilized by fine particles of CaCO{sub 3}. The tested static mixer has an ID of 0.5 cm, length 23.5 cm, number of baffles 27. Under pressure, a slurry of CaCO{sub 3} particles (mean particle size 6 {micro}m) in reverse osmosis (RO) water and liquid CO{sub 2}more » were co-injected into the mixer. From the mixer, the resulting emulsion flowed into the HPWTF, which was filled with RO water kept at 6.8 MPa pressure and 4, 8 or 12 C. The emulsion plume was photographed by three video cameras through spy windows mounted on the wall of the HPWTF. The mixer produced an emulsion consisting of tiny CO{sub 2} droplets sheathed with a layer of CaCO{sub 3} particles dispersed in water. The sheathed droplets are called globules. The globules diameter was measured to be in the 300-500 {micro}m range. The globules were sinking in the HPWTF, indicating that they are heavier than the ambient water. The tests in the HPWTF confirmed that the Kenics-type static mixer is an efficient device for forming a CO{sub 2}-H{sub 2}O emulsion stabilized by fine particles of CaCO{sub 3}. The static mixer may prove to be a practical device for sequestering large quantities of CO{sub 2} in the deep ocean in the form of a CO{sub 2}-H{sub 2}O-CaCO{sub 3} emulsion. The static mixer can be mounted at the end of pipelines feeding the mixer. The static mixer has no moving parts. The pressure drop across the mixer that is necessary to sustain good mixing is created by the hydrostatic pressure of liquid CO{sub 2} and the slurry of CaCO{sub 3} in the pipes that feed the mixer. The tests in the HPWTF demonstrated that the emulsion plume is heavier than ambient seawater, hence the plume will sink to greater depth from the release point. Preliminary modeling indicates that an emulsion plume released at 500 m depth (the minimum depth required to prevent liquid CO{sub 2} flashing into vapor) may sink hundreds of meters before the plume comes to rest in the density stratified ocean water. Furthermore, tests in our laboratory showed that the emulsion is slightly alkaline, not acidic, because of the excess of CaCO{sub 3} particles present in the plume. Thus, the release of the CO{sub 2}-H{sub 2}OCaCO{sub 3} emulsion in the deep ocean is not likely to acidify the seawater around the release point. The possible acidification of seawater is the major environmental hazard if pure liquid CO{sub 2} were released in the deep ocean.« less
Distributed meandering waveguides (DMWs) for novel photonic circuits (Conference Presentation)
NASA Astrophysics Data System (ADS)
Dag, Ceren B.; Anil, Mehmet Ali; Serpengüzel, Ali
2017-05-01
Meandering waveguide distributed feedback structures are novel integrated photonic lightwave and microwave circuit elements. Meandering waveguide distributed feedback structures with a variety of spectral responses can be designed for a variety of lightwave and microwave circuit element functions. Distributed meandering waveguide (DMW) structures [1] show a variety of spectral behaviors with respect to the number of meandering loop mirrors (MLMs) [2] used in their composition as well as their internal coupling constants (Cs). DMW spectral behaviors include Fano resonances, coupled resonator induced transparency (CRIT), notch, add-drop, comb, and hitless filters. What makes the DMW special is the self-coupling property intrinsic to the DMW's nature. The basic example of DMW's nature is motivated through the analogy between the so-called symmetric meandering resonator (SMR), which consists of two coupled MLMs, and the resonator enhanced Mach-Zehnder interferometer (REMZI) [3]. A SMR shows the same spectral characteristics of Fano resonances with its self-coupling property, similar to the single, distributed and binary self coupled optical waveguide (SCOW) resonators [4]. So far DMWs have been studied for their electric field intensity, phase [5] and phasor responses [6]. The spectral analysis is performed using the coupled electric field analysis and the generalization of single meandering loop mirrors to multiple meandering distributed feedback structures is performed with the transfer matrix method. The building block of the meandering waveguide structures, the meandering loop mirror (MLM), is the integrated analogue of the fiber optic loop mirrors. The meandering resonator (MR) is composed of two uncoupled MLM's. The meandering distributed feedback (MDFB) structure is the DFB of the MLM. The symmetric MR (SMR) is composed of two coupled MLM's, and has the characteristics of a Fano resonator in the general case, and tunable power divider or tunable hitless filter in special cases. The antisymmetric MR (AMR) is composed of two coupled MLM's. The AMR has the characteristics of an add-drop filter in the general case, and coupled resonator induced transparency (CRIT) filter in a special case. The symmetric MDFB (SMDFB) is composed of multiple coupled MLM's. The antisymmetric MDFB (AMDFB) is composed of multiple coupled MLM's. The SMDFB and AMDFB can be utilized as band-pass, Fano, or Lorentzian filters, or Rabi splitters. Distributed meandering waveguide elements with extremely rich spectral and phase responses can be designed with creative combinations of distributed meandering waveguides structures for various novel photonic circuits. References [1 ] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Meandering Waveguide Distributed Feedback Lightwave Circuits," J. Lightwave Technol, vol. 33, no. 9, pp. 1691-1702, May 2015. [2] N. J. Doran and D. Wood, "Nonlinear-optical loop mirror," Opt. Lett. vol. 13, no. 1, pp. 56-58, Jan. 1988. [3] L. Zhou and A. W. Poon, "Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers," Opt. Lett. vol. 32, no. 7, pp. 781-783, Apr. 2007. [4] Z. Zou, L. Zhou, X. Sun, J. Xie, H. Zhu, L. Lu, X. Li, and J. Chen, "Tunable two-stage self-coupled optical waveguide resonators," Opt. Lett. vol. 38, no. 8, pp. 1215-1217, Apr. 2013. [5] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Novel distributed feedback lightwave circuit elements," in Proc. SPIE, San Francisco, 2015, vol. 9366, p. 93660A. [6] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Meandering Waveguide Distributed Feedback Lightwave Elements: Phasor Diagram Analysis," in Proc. PIERS, Prague, 1986-1990 (2015).
180-GHz I-Q Second Harmonic Resistive Mixer MMIC
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka P.; Lai, Richard; Mei, Xiaobing
2010-01-01
An indium phosphide MMIC (monolithic microwave integrated circuit) mixer was developed, processed, and tested in the NGC 35-nm-gate-length HEMT (high electron mobility transistor) process. This innovation is very compact in size and operates with very low LO power. Because it is a resistive mixer, this innovation does not require DC power. This is an enabling technology for the miniature receiver modules for the GeoSTAR instrument, which is the only viable option for the NRC decadal study mission PATH.
AZ-101 Mixer Pump Test Qualification Test Procedures (QTP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
THOMAS, W.K.
2000-01-10
Describes the Qualification test procedure for the AZ-101 Mixer Pump Data Acquisition System (DAS). The purpose of this Qualification Test Procedure (QTP) is to confirm that the AZ-101 Mixer Pump System has been properly programmed and hardware configured correctly. This QTP will test the software setpoints for the alarms and also check the wiring configuration from the SIMcart to the HMI. An Acceptance Test Procedure (ATP), similar to this QTP will be performed to test field devices and connections from the field.
NASA Technical Reports Server (NTRS)
Bauhahn, P.; Contolatis, A.; Sokolov, V.; Chao, C.
1986-01-01
An all ion-implanted Schottky barrier mixer diode which has a cutoff frequency greater than 1000 GHz has been developed. This new device is planar and FET-compatible and employs a projection lithography 3-inch wafer process. A Ka-band monolithic balanced mixer based on this device has been designed, fabricated and tested. A conversion loss of 8 dB has been measured with a LO drive of 10 dBm at 30 GHz.
2017-04-01
INTERFERENCE-CANCELLATION AND N-PATH-MIXER FILTERING Harish Krishnaswamy, Negar Reiskarimian, and Linxiao Zhang Columbia University APRIL 2017 Final...INTERFERENCE-CANCELLATION AND N- PATH-MIXER FILTERING 5a. CONTRACT NUMBER FA8650-14-1-7414 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61101E/62716E 6...techniques for developing interference mitigation technology (IMT) enabling frequency-agile, reconfigurable filter -less receivers. Wideband noise
Ethylene thiourea: thyroid function in two groups of exposed workers.
Smith, D M
1984-01-01
Ethylene thiourea is manufactured at one factory in the United Kingdom and is mixed into masterbatch rubber at another. Clinical examinations and thyroid function tests were carried out over a period of three years on eight process workers and five mixers and on matched controls. The results show that the exposed mixers, but not exposed process workers, have significantly lower levels of total thyroxine (T4) than the controls. One mixer had an appreciably raised level of thyroid stimulation hormone (TSH). PMID:6743584
Ethylene thiourea: thyroid function in two groups of exposed workers.
Smith, D M
1984-08-01
Ethylene thiourea is manufactured at one factory in the United Kingdom and is mixed into masterbatch rubber at another. Clinical examinations and thyroid function tests were carried out over a period of three years on eight process workers and five mixers and on matched controls. The results show that the exposed mixers, but not exposed process workers, have significantly lower levels of total thyroxine (T4) than the controls. One mixer had an appreciably raised level of thyroid stimulation hormone (TSH).
Production of high-quality polydisperse construction mixes for additive 3D technologies.
NASA Astrophysics Data System (ADS)
Gerasimov, M. D.; Brazhnik, Yu V.; Gorshkov, P. S.; Latyshev, S. S.
2018-03-01
The paper describes a new design of a mixer allowing production of high quality polydisperse powders, used in additive 3D technologies. A new principle of dry powder particle mixing is considered, implementing a possibility of a close-to-ideal distribution of such particles in common space. A mathematical model of the mixer is presented, allowing evaluating quality indicators of the produced mixture. Experimental results are shown and rational values of process parameters of the mixer are obtained.
Acid mine water aeration and treatment system
Ackman, Terry E.; Place, John M.
1987-01-01
An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.
Variable volume combustor with aerodynamic support struts
Ostebee, Heath Michael; Johnson, Thomas Edward; Stewart, Jason Thurman; Keener, Christopher Paul
2017-03-07
The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and providing the flow of fuel therethrough. The support struts may include an aerodynamic contoured shape so as to distribute evenly a flow of air to the micro-mixer fuel nozzles.
High-quality poly-dispersed mixtures applied in additive 3D technologies.
NASA Astrophysics Data System (ADS)
Gerasimov, M. D.; Brazhnik, Yu V.; Gorshkov, P. S.; Latyshev, S. S.
2018-03-01
The paper describes the new mixer design to obtain high-quality poly-dispersed powders applied in additive 3D technologies. It also considers a new mixing principle of dry powder particles ensuring the distribution of such particles in the total volume, which is close to ideal. The paper presents the mathematical model of mixer operation providing for the quality assessment of the ready mixtures. Besides, it demonstrates experimental results and obtained rational values of mixer process parameters.
Forced Mixer Nozzle Optimization
NASA Technical Reports Server (NTRS)
Sheoran, Yogi; Hoover, Robert; Schuster, William; Anderson, Morris; Weir, Donald S.
1999-01-01
Computational fluid dynamic (CFD) and computational acoustic analyses (CAA) were performed for a TFE731-40 compound nozzle, a TFE731-60 mixer nozzle and an Energy Efficient Engine (E(sup 3)) mixer nozzle for comparison with available data. The CFD analyses were performed with a three dimensional, Navier-Stokes solution of the flowfield on an unstructured grid using the RAMPANT program. The CAA analyses were performed with the NASA Glenn MGB program using a structured grid. A successful aerodynamic solution for the TFE731-40 compound nozzle operating statically was obtained, simulating an engine operating on a test stand. Analysis of the CFD results of the TFE731-40 with the MGB program produced predicted sound power levels that agree quite well with the measured data front full-scale static engine tests. Comparison of the predicted sound pressure with the data show good agreement near the jet axis, but the noise levels are overpredicted at angles closer to the inlet. The predicted sound power level for the TFE731-60 did not agree as well with measured static engine data as the TFE731-40. Although a reduction in the predicted noise level due to the mixed flow was observed, the reduction was not as significant as the measured data. The analysis of the V2 mixer from the E(sup 3) study showed that peak temperatures predicted in the mixer exit flowfield were within 5 percent of the values measured by the exit probes. The noise predictions of the V2 mixer nozzle tended to be 3-5 dB higher in peak noise level than the measurements. In addition, the maximum frequency of the noise was also overpredicted. An analysis of the 3 candidate mixer nozzle configurations demonstrated the feasibility of using centerbody lobes and porosity to improve mixing efficiency. A final configuration was designed with a predicted thermal mixing efficiency that was 5 percent higher than the 3 candidate mixers. The results of the MGB noise calculations show that the final design will exceed the design goal of a 3 dB reduction in noise as compared to the baseline TFE731-40.
41. JL photographer, summer 1978, view of chemical mixer from ...
41. JL photographer, summer 1978, view of chemical mixer from atop chemical spray nozzels. - Division Avenue Pumping Station & Filtration Plant, West 45th Street and Division Avenue, Cleveland, Cuyahoga County, OH
Apparatus for silicon nitride precursor solids recovery
Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.
1995-04-04
Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.
Method for silicon nitride precursor solids recovery
Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.
1992-12-15
Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.
Terahertz Radiation Heterodyne Detector Using Two-Dimensional Electron Gas in a GaN Heterostructure
NASA Technical Reports Server (NTRS)
Karasik, Boris S.; Gill, John J.; Mehdi, Imran; Crawford, Timothy J.; Sergeev, Andrei V.; Mitin, Vladimir V.
2012-01-01
High-resolution submillimeter/terahertz spectroscopy is important for studying atmospheric and interstellar molecular gaseous species. It typically uses heterodyne receivers where an unknown (weak) signal is mixed with a strong signal from the local oscillator (LO) operating at a slightly different frequency. The non-linear mixer devices for this frequency range are unique and are not off-the-shelf commercial products. Three types of THz mixers are commonly used: Schottky diode, superconducting hot-electron bolometer (HEB), and superconductor-insulation-superconductor (SIS) junction. A HEB mixer based on the two-dimensional electron gas (2DEG) formed at the interface of two slightly dissimilar semiconductors was developed. This mixer can operate at temperatures between 100 and 300 K, and thus can be used with just passive radiative cooling available even on small spacecraft.
Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation
NASA Astrophysics Data System (ADS)
Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Papa, D. C.; Hunter, T. R.; Paine, S. N.; Patt, F.; Gol'Tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E.
2000-04-01
In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-μm atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is Trx=970 K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is PLO ≈ 1 microwatt. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.
NASA Technical Reports Server (NTRS)
Tacina, Kathleen M.; Hicks, Yolanda R.
2017-01-01
The combustion dynamics of two 7-point lean direct injection (LDI) combustor configurations are compared. This 7-point LDI configuration has a circular cross section, with a center ("pilot") fuel-air mixer surrounded by six outer ("main") fuel-air mixers. Each fuel-air mixer consists of an axial air swirler followed by a converging-diverging venturi. A simplex fuel injector is inserted through the center of the air swirler, with the fuel injector tip located near the venturi throat. All 7 fuel-air mixers are identical except for the swirler blade angle. In the 'all-60' configuration, the swirler blade angle was 60 deg for all fuel-air mixers. In the '45-60' configuration, the swirler blade angle was 60 deg on the center and 45 deg on the outer fuel-air mixers. Testing was done in a 5-atm flame tube with inlet air temperatures from 630 to 830 F and equivalence ratios from 0.2 to 0.7. Combustion dynamics were measured using a cooled PCB pressure transducer flush-mounted in the wall of the combustor test section. Both configurations had large pressure fluctuations (greater than 2 psi peak-peak) near 730 Hz, the quarter-wave frequency. The all-60 configuration also had large pressure fluctuations near 1170 Hz; the 45-60 configuration did not. The 45-60 configuration had large pressure fluctuations near 480 Hz; the all-60 configuration did not.
NASA Technical Reports Server (NTRS)
Wyss, R. A.; Karasik, B. S.; McGrath, W. R.; Bumble, B.; LeDuc, H.
1999-01-01
Diffusion-cooled Nb hot-electron bolometer (HEB) mixers have the potential to simultaneously achieve high intermediate frequency (IF) bandwidths and low mixer noise temperatures for operation at THz frequencies (above the superconductive gap energy). We have measured the IF signal bandwidth at 630 GHz of Nb devices with lengths L = 0.3, 0.2, and 0.1 micrometer in a quasioptical mixer configuration employing twin-slot antennas. The 3-dB EF bandwidth increased from 1.2 GHz for the 0.3 gm long device to 9.2 GHz for the 0.1 gm long device. These results demonstrate the expected 1/L squared dependence of the IF bandwidth at submillimeter wave frequencies for the first time, as well as the largest EF bandwidth obtained to date. For the 0.1 gm device, which had the largest bandwidth, the double sideband (DSB) noise temperature of the receiver was 320-470 K at 630 GHz with an absorbed LO power of 35 nW, estimated using the isothermal method. A version of this mixer with the antenna length scaled for operation at 2.5 THz has also been tested. A DSB receiver noise temperature of 1800 plus or minus 100 K was achieved, which is about 1,000 K lower than our previously reported results. These results demonstrate that large EF bandwidth and low-noise operation of a diffusion-cooled HEB mixer is possible at THz frequencies with the same device geometry.
Colloidal PbS nanocrystals integrated to Si-based photonics for applications at telecom wavelengths
NASA Astrophysics Data System (ADS)
Humer, M.; Guider, R.; Jantsch, W.; Fromherz, T.
2013-05-01
In the last decade, Si based photonics has made major advances in terms of design, fabrication, and device implementation. But due to Silicon's indirect bandgap, it still remains a challenge to create efficient Si-based light emitting devices. In order to overcome this problem, an approach is to develop hybrid systems integrating light-emitting materials into Si. A promising class of materials for this purpose is the class of semiconducting nanocrystal quantum dots (NCs) that are synthesized by colloidal chemistry. As their absorption and emission wavelength depends on the dot size, which can easily be controlled during synthesis, they are extremely attractive as building blocks for nanophotonic applications. For applications in telecom wavelength, Lead chalcogenide colloidal NCs are optimum materials due to their unique optical, electronic and nonlinear properties. In this work, we experimentally demonstrate the integration of PbS nanocrystals into Si-based photonic structures like slot waveguides and ring resonators as optically pumped emitters for room temperature applications. In order to create such hybrid structures, the NCs were dissolved into polymer resists and drop cast on top of the device. Upon optical pumping, intense photoluminescence emission from the resonating modes is recorded at the output of the waveguide with transmission quality factors up to 14000. The polymer host material was investigated with respect to its ability to stabilize the NC's photoluminescence emission against degradation under ambient conditions. The waveguide-ring coupling efficiency was also investigated as function of the NCs concentrations blended into the polymer matrix. The integration of colloidal quantum dots into Silicon photonic structures as demonstrated in this work is a very versatile technique and thus opens a large range of applications utilizing the linear and nonlinear optical properties of PbS NCs at telecom wavelengths.
NASA Astrophysics Data System (ADS)
Agnarsson, Björn; Mapar, Mokhtar; Sjöberg, Mattias; Alizadehheidari, Mohammadreza; Höök, Fredrik
2018-06-01
Organic and inorganic solid materials form the building blocks for most of today’s high-technological instruments and devices. However, challenges related to dissimilar material properties have hampered the synthesis of thin-film devices comprised of both organic and inorganic films. We here give a detailed description of a carefully optimized processing protocol used for the construction of a three-layered hybrid organic–inorganic waveguide-chip intended for combined scattering and fluorescence evanescent-wave microscopy in aqueous environments using conventional upright microscopes. An inorganic core layer (SiO2 or Si3N4), embedded symmetrically in an organic cladding layer (CYTOP), aids simple, yet efficient in-coupling of light, and since the organic cladding layer is refractive index matched to water, low stray-light (background) scattering of the propagating light is ensured. Another major advantage is that the inorganic core layer makes the chip compatible with multiple well-established surface functionalization schemes that allows for a broad range of applications, including detection of single lipid vesicles, metallic nanoparticles or cells in complex environments, either label-free—by direct detection of scattered light—or by use of fluorescence excitation and emission. Herein, focus is put on a detailed description of the fabrication of the waveguide-chip, together with a fundamental characterization of its optical properties and performance, particularly in comparison with conventional epi illumination. Quantitative analysis of images obtained from both fluorescence and scattering intensities from surface-immobilized polystyrene nanoparticles in suspensions of different concentrations, revealed enhanced signal-to-noise and signal-to-background ratios for the waveguide illumination compared to the epi-illumination.
Turbofan forced mixer lobe flow modeling. 1: Experimental and analytical assessment
NASA Technical Reports Server (NTRS)
Barber, T.; Paterson, R. W.; Skebe, S. A.
1988-01-01
A joint analytical and experimental investigation of three-dimensional flowfield development within the lobe region of turbofan forced mixer nozzles is described. The objective was to develop a method for predicting the lobe exit flowfield. In the analytical approach, a linearized inviscid aerodynamical theory was used for representing the axial and secondary flows within the three-dimensional convoluted mixer lobes and three-dimensional boundary layer analysis was applied thereafter to account for viscous effects. The experimental phase of the program employed three planar mixer lobe models having different waveform shapes and lobe heights for which detailed measurements were made of the three-dimensional velocity field and total pressure field at the lobe exit plane. Velocity data was obtained using Laser Doppler Velocimetry (LDV) and total pressure probing and hot wire anemometry were employed to define exit plane total pressure and boundary layer development. Comparison of data and analysis was performed to assess analytical model prediction accuracy. As a result of this study a planar mixed geometry analysis was developed. A principal conclusion is that the global mixer lobe flowfield is inviscid and can be predicted from an inviscid analysis and Kutta condition.
GUI for Computational Simulation of a Propellant Mixer
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Richter, Hanz; Barbieri, Enrique; Granger, Jamie
2005-01-01
Control Panel is a computer program that generates a graphical user interface (GUI) for computational simulation of a rocket-test-stand propellant mixer in which gaseous hydrogen (GH2) is injected into flowing liquid hydrogen (LH2) to obtain a combined flow having desired thermodynamic properties. The GUI is used in conjunction with software that models the mixer as a system having three inputs (the positions of the GH2 and LH2 inlet valves and an outlet valve) and three outputs (the pressure inside the mixer and the outlet flow temperature and flow rate). The user can specify valve characteristics and thermodynamic properties of the input fluids via userfriendly dialog boxes. The user can enter temporally varying input values or temporally varying desired output values. The GUI provides (1) a set-point calculator function for determining fixed valve positions that yield desired output values and (2) simulation functions that predict the response of the mixer to variations in the properties of the LH2 and GH2 and manual- or feedback-control variations in valve positions. The GUI enables scheduling of a sequence of operations that includes switching from manual to feedback control when a certain event occurs.
Numerical Analysis of Micromixers for Optimization of Mixing Action
NASA Astrophysics Data System (ADS)
Panta, Yogendra; Adhikari, Param
2011-03-01
Micro-bio/chemical applications often require rapid and uniform mixing of a number of fluid streams that carries bio/chemical species in the solution. At microscale, fluid flow is highly laminar with low Reynolds number, fluids mixing mechanism is primarily by diffusion and free from any turbulence. Demand for highly efficient micromixers for microfluidic networks is due to slower mixing process for larger bio-molecules such as peptides, proteins, and nucleic acids compared to micro-scale molecules. Passive and active mixers are two basic mixers that are currently in use for these applications. Passive mixers often require very long mixing channels where are most active mixers require bulky moving parts to stir the fluids. In this study, electroosmotic effects orthogonally aligned with the fluid flowstream are utilized for optimum mixing effect in various micromixers. Cross-dependencies among several geometrical, electrical, and fluid parameters and their significance are studied in order to achieve an optimum mixing effect. It has been planned to optimize the mixer by non-moving stirring actions provided by an external magnetic field. Acknowledgements to School of Graduate Studies and Research at YSU for URC Grant and RP Award 2009-2010.
FRONT (SOUTH) ELEVATION, MIXER RUINS (CENTER) WITH STACKS (LEFT) AND ...
FRONT (SOUTH) ELEVATION, MIXER RUINS (CENTER) WITH STACKS (LEFT) AND POWER HOUSE (RIGHT). - Tennessee Coal & Iron Company, Ensley Works, Open Hearth Furnace (Ruins), West of Ensley commercial & residential districts, Birmingham, Jefferson County, AL
FRONT (SOUTH) ELEVATION, MIXER RUINS (CENTER) WITH STACKS (LEFT) AND ...
FRONT (SOUTH) ELEVATION, MIXER RUINS (CENTER) WITH STACKS (LEFT) AND POWER HOUSE (RIGHT - Tennessee Coal & Iron Company, Ensley Works, Open Hearth Furnace (Ruins), West of Ensley commercial & residential districts, Birmingham, Jefferson County, AL
Jung, Youngho; Shim, Jaeho; Kwon, Kyungmook; You, Jong-Bum; Choi, Kyunghan; Yu, Kyoungsik
2016-01-01
Optofluidic manipulation mechanisms have been successfully applied to micro/nano-scale assembly and handling applications in biophysics, electronics, and photonics. Here, we extend the laser-based optofluidic microbubble manipulation technique to achieve hybrid integration of compound semiconductor microdisk lasers on the silicon photonic circuit platform. The microscale compound semiconductor block trapped on the microbubble surface can be precisely assembled on a desired position using photothermocapillary convective flows induced by focused laser beam illumination. Strong light absorption within the micro-scale compound semiconductor object allows real-time and on-demand microbubble generation. After the assembly process, we verify that electromagnetic radiation from the optically-pumped InGaAsP microdisk laser can be efficiently coupled to the single-mode silicon waveguide through vertical evanescent coupling. Our simple and accurate microbubble-based manipulation technique may provide a new pathway for realizing high precision fluidic assembly schemes for heterogeneously integrated photonic/electronic platforms as well as microelectromechanical systems. PMID:27431769
The role of Snell's law for a magnonic majority gate.
Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B; Ross, Caroline A; Takagi, Hiroyuki; Nakamura, Yuichi; Uchida, Hironaga; Inoue, Mitsuteru
2017-08-11
In the fifty years since the postulation of Moore's Law, the increasing energy consumption in silicon electronics has motivated research into emerging devices. An attractive research direction is processing information via the phase of spin waves within magnonic-logic circuits, which function without charge transport and the accompanying heat generation. The functional completeness of magnonic logic circuits based on the majority function was recently proved. However, the performance of such logic circuits was rather poor due to the difficulty of controlling spin waves in the input junction of the waveguides. Here, we show how Snell's law describes the propagation of spin waves in the junction of a Ψ-shaped magnonic majority gate composed of yttrium iron garnet with a partially metallized surface. Based on the analysis, we propose a magnonic counterpart of a core-cladding waveguide to control the wave propagation in the junction. This study has therefore experimentally demonstrated a fundamental building block of a magnonic logic circuit.
Credit WCT. Original 2Y4" x 2Y4" color negative is housed ...
Credit WCT. Original 2-Y4" x 2-Y4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. JPL staff members Harold Anderson and John Morrow cast grain from the 1-gallon BakerPerkins model 4-PU mixer. A 1-pint Baker-Perkins model 2-PX mixer stands to the left in this view (JPL negative no. JPL-10295BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Mixer & Casting Building, Edwards Air Force Base, Boron, Kern County, CA
A compact design for the Josephson mixer: The lumped element circuit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pillet, J.-D.; Collège de France, 11 place Marcelin Berthelot, 75005 Paris; Flurin, E.
2015-06-01
We present a compact and efficient design in terms of gain, bandwidth, and dynamical range for the Josephson mixer, the superconducting circuit performing three-wave mixing at microwave frequencies. In an all lumped-element based circuit with galvanically coupled ports, we demonstrate nondegenerate amplification for microwave signals over a bandwidth up to 50 MHz for a power gain of 20 dB. The quantum efficiency of the mixer is shown to be about 70%, and its saturation power reaches −112 dBm.
Variable volume combustor with aerodynamic fuel flanges for nozzle mounting
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward
2016-09-20
The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.
Chemical-assisted femtosecond laser writing of lab-in-fibers.
Haque, Moez; Lee, Kenneth K C; Ho, Stephen; Fernandes, Luís A; Herman, Peter R
2014-10-07
The lab-on-chip (LOC) platform has presented a powerful opportunity to improve functionalization, parallelization, and miniaturization on planar or multilevel geometries that has not been possible with fiber optic technology. A migration of such LOC devices into the optical fiber platform would therefore open the revolutionary prospect of creating novel lab-in-fiber (LIF) systems on the basis of an efficient optical transport highway for multifunctional sensing. For the LIF, the core optical waveguide inherently offers a facile means to interconnect numerous types of sensing elements along the optical fiber, presenting a radical opportunity for optimizing the packaging and densification of diverse components in convenient geometries beyond that available with conventional LOCs. In this paper, three-dimensional patterning inside the optical fiber by femtosecond laser writing, together with selective chemical etching, is presented as a powerful tool to form refractive index structures such as optical waveguides and gratings as well as to open buried microfluidic channels and optical resonators inside the flexible and robust glass fiber. In this approach, optically smooth surfaces (~12 nm rms) are introduced for the first time inside the fiber cladding that precisely conform to planar nanograting structures when formed by aberration-free focusing with an oil-immersion lens across the cylindrical fiber wall. This process has enabled optofluidic components to be precisely embedded within the fiber to be probed by either the single-mode fiber core waveguide or the laser-formed optical circuits. We establish cladding waveguides, X-couplers, fiber Bragg gratings, microholes, mirrors, optofluidic resonators, and microfluidic reservoirs that define the building blocks for facile interconnection of inline core-waveguide devices with cladding optofluidics. With these components, more advanced, integrated, and multiplexed fiber microsystems are presented demonstrating fluorescence detection, Fabry-Perot interferometric refractometry, and simultaneous sensing of refractive index, temperature, and bending strain. The flexible writing technique and multiplexed sensors described here open powerful prospects to migrate the benefits of LOCs into a more flexible and miniature LIF platform for highly functional and distributed sensing capabilities. The waveguide backbone of the LIF inherently provides an efficient exchange of information, combining sensing data that are attractive in telecom networks, smart catheters for medical procedures, compact sensors for security and defense, shape sensors, and low-cost health care products.
HgCdTe Photoconductive Mixers for 2-8 THz
NASA Technical Reports Server (NTRS)
Betz, A. L.; Boreiko, R. T.; Sivananthan, S.; Ashokan, R.
2001-01-01
Heterodyne spectroscopy has been taken to wavelengths as short as 63 micrometers with Schottky-diode mixers. Schottkys, however, are relatively insensitive compared to superconducting mixers such as the hot-electron microbolometer (HEB), which has an effective quantum efficiency of 3% at 120 micrometers (2.5 THz). Although HEB sensitivities are bound to improve, there will always be losses associated with antenna coupling of radiation into sub-micron size devices. Another approach to far infrared (FIR) mixer design is to use a photoconductive device which can be made much larger than a wavelength, and thus act as its own antenna. For example, HgCdTe photodiodes have been used as mixers in the lambda = 10 micrometers band for over 25 years, with sensitivities now only a factor of 2 from the quantum-noise-limit. HgCdTe can also be applied at FIR wavelengths, but surprisingly little work has been done to date. The exception is the pioneering work of Spears and Kostiuk and Spears, who developed HgCdTe photomixers for the 20-120 micrometer region. The spectral versatility of the HgCdTe alloy is well recognized for wavelengths as long as 8-20 micrometers. What is not so recognized, however, is that theoretically there is no long wavelength limit for appropriately composited HgCdTe. Although Spears successfully demonstrated a photoconductive response from HgCdTe at 120 micrometers, this initial effort was apparently never followed up, in part because of the difficulty of controlling the HgCdTe alloy composition with liquid-phase-epitaxy (LPE) techniques. With the availability of precise molecular-beam-epitaxy (MBE) since the early 1990's, it is now appropriate to reconsider HgCdTe for detector applications longward of lambda = 20 micrometers. We recently initiated an effort to fabricate detectors and mixers using II-VI materials for FIR wavelengths. Of particular interest are device structures called superlattices, which offer a number of advantages for high sensitivity direct detectors and very long wavelength heterodyne mixers.
Superconducting hot electron bolometers for terahertz sensing
NASA Astrophysics Data System (ADS)
Reese, Matthew Owen
Superconducting Hot Electron Bolometers (HEBs) are good candidates for detecting weak signals in the submillimeter or terahertz range. In this thesis work, a novel fabrication method was developed to make two types of niobium HEBs for different applications. HEBs were designed, fabricated, and then characterized at dc, microwave, and THz frequencies. The first type is a diffusion-cooled HEB, made with a short bridge that determines its cooling time. In this thesis, bridges were typically 400 nm long with bandwidths of about 1 GHz. These diffusion-cooled HEBs were developed as part of a collaboration with the University of Arizona (UA), to develop a proof-of-concept heterodyne array submillimeter camera. Devices were fabricated on thin fused quartz and silica substrates for waveguide coupling in the UA system for the astrophysically interesting 345 and 810 GHz atmospheric windows. The goal of this collaboration is to provide a basis of comparison between Nb diffusion-cooled HEB mixers and superconductorinsulator-superconductor mixers at these frequencies. The second type is a phonon-cooled HEB, made with a ˜3 mum long bridge. Its thermal response is dictated by the electron-phonon relaxation time. These devices were developed in collaboration with Prof. C. Schmuttenmaer's lab in the Yale Chemistry department, Prof. G. Blake at Caltech, and Dr. J. Pearson at the Jet Propulsion Laboratory. These devices were developed for use in quasi-optic systems to be used as fast (>100 MHz) direct detectors that can view room temperature sources without saturating. A variety of experimental applications are envisioned for these detectors including charge transport measurements of novel materials. A series of dc and microwave measurements were performed on the diffusion-cooled devices. A better understanding of the resistance vs. temperature profile was realized, including what design/fabrication parameters affect it and insight into how it affects device performance. This led to a do screening process that can identify good quality devices. The Nb phonon-cooled HEBs studied in this thesis were fully carried through the design, fabrication, and characterization process at dc, microwave and THz frequencies. The saturation power, responsivity, thermal response time, and noise performance were all measured to be within the expected range predicted by the initial design parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veselov, D. A., E-mail: dmitriy90@list.ru; Shashkin, I. S.; Bakhvalov, K. V.
Semiconductor lasers based on MOCVD-grown AlGaInAs/InP separate-confinement heterostructures are studied. It is shown that raising only the energy-gap width of AlGaInAs-waveguides without the introduction of additional barriers results in more pronounced current leakage into the cladding layers. It is found that the introduction of additional barrier layers at the waveguide–cladding-layer interface blocks current leakage into the cladding layers, but results in an increase in the internal optical loss with increasing pump current. It is experimentally demonstrated that the introduction of blocking layers makes it possible to obtain maximum values of the internal quantum efficiency of stimulated emission (92%) and continuouswavemore » output optical power (3.2 W) in semiconductor lasers in the eye-safe wavelength range (1400–1600 nm).« less
FDC Mentor-Mentee Mixer Breaks the Ice Between Investigators and Trainees | Poster
The Frederick Diversity Committee’s mentor-mentee mixer gave research trainees, senior investigators, scientists, and administrative staff a chance to meet and mingle over refreshments and games following the Spring Research Festival.
Gen 2.0 Mixer/Ejector Nozzle Test at LSAF June 1995 to July 1996
NASA Technical Reports Server (NTRS)
Arney, L. D.; Sandquist, D. L.; Forsyth, D. W.; Lidstone, G. L.; Long-Davis, Mary Jo (Technical Monitor)
2005-01-01
Testing of the HSCT Generation 2.0 nozzle model hardware was conducted at the Boeing Low Speed Aeroacoustic Facility, LSAF. Concurrent measurements of noise and thrust were made at critical takeoff design conditions for a variety of mixer/ejector model hardware. Design variables such as suppressor area ratio, mixer area ratio, liner type and thickness, ejector length, lobe penetration, and mixer chute shape were tested. Parallel testing was conducted at G.E.'s Cell 41 acoustic free jet facility to augment the LSAF test. The results from the Gen 2.0 testing are being used to help shape the current nozzle baseline configuration and guide the efforts in the upcoming Generation 2.5 and 3.0 nozzle tests. The Gen 2.0 results have been included in the total airplane system studies conducted at MDC and Boeing to provide updated noise and thrust performance estimates.
Photoresponsive Passive Micromixers Based on Spiropyran Size-Tunable Hydrogels.
Ter Schiphorst, Jeroen; Melpignano, Giuseppe G; Amirabadi, Hossein Eslami; Houben, Menno H J M; Bakker, Sterre; den Toonder, Jaap M J; Schenning, Albertus P H J
2018-01-01
Microfluidic devices allow the manipulation of fluids down to the micrometer scale and are receiving a lot of attention for applications where low volumes and high throughputs are required. In these micro channels, laminar flow usually dominates, which requires long residence times of the fluids, limiting the flow speed and throughput. Here a switchable passive mixer has been developed to control mixing and to easily clean microchannels. The mixer is based on a photoresponsive spiropyran based hydrogel of which the dimensions can be tuned by changing the intensity of the light. The size-tunable gels have been used to fabricate a passive slanted groove mixer that can be switched off by light allowing to change mixing of microfluidics to non-mixed flows. These findings open new possibilities for multi-purpose microfluidic devices where mixers and valves can be tuned by light. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Experimental and theoretical characterization of an AC electroosmotic micromixer.
Sasaki, Naoki; Kitamori, Takehiko; Kim, Haeng-Boo
2010-01-01
We have reported on a novel microfluidic mixer based on AC electroosmosis. To elucidate the mixer characteristics, we performed detailed measurements of mixing under various experimental conditions including applied voltage, frequency and solution viscosity. The results are discussed through comparison with results obtained from a theoretical model of AC electroosmosis. As predicted from the theoretical model, we found that a larger voltage (approximately 20 V(p-p)) led to more rapid mixing, while the dependence of the mixing on frequency (1-5 kHz) was insignificant under the present experimental conditions. Furthermore, the dependence of the mixing on viscosity was successfully explained by the theoretical model, and the applicability of the mixer in viscous solution (2.83 mPa s) was confirmed experimentally. By using these results, it is possible to estimate the mixing performance under given conditions. These estimations can provide guidelines for using the mixer in microfluidic chemical analysis.
Drug residues recovered in feed after various feedlot mixer truck cleanout procedures.
Van Donkersgoed, Joyce; Sit, Dan; Gibbons, Nicole; Ramogida, Caterina; Hendrick, Steve
2010-01-01
A study was conducted to determine the effectiveness of two methods of equipment cleanout, sequencing or flushing, for reducing drug carryover in feedlot mixer trucks. Feed samples were collected from total mixed rations before and after various feed mixer equipment cleanout procedures. Medicated rations contained either 11 ppm of tylosin or 166 or 331 ppm of chlortetracycline. There were no differences between sequencing and flushing or between flushing with dry barley and flushing with barley silage in the median proportion of drug recovered in the next ration. A larger drug reduction was achieved using flush material at a volume of 10 versus 5% of the mixer capacity and mixing the flush material for 3 versus 4 min. Regardless of the drug or prescription concentrations in the total mixed rations or the equipment cleanout procedure used, concentrations of chlortetracycline and tylosin recovered were very low.
Energy Efficient Engine exhaust mixer model technology report addendum; phase 3 test program
NASA Technical Reports Server (NTRS)
Larkin, M. J.; Blatt, J. R.
1984-01-01
The Phase 3 exhaust mixer test program was conducted to explore the trends established during previous Phases 1 and 2. Combinations of mixer design parameters were tested. Phase 3 testing showed that the best performance achievable within tailpipe length and diameter constraints is 2.55 percent better than an optimized separate flow base line. A reduced penetration design achieved about the same overall performance level at a substantially lower level of excess pressure loss but with a small reduction in mixing. To improve reliability of the data, the hot and cold flow thrust coefficient analysis used in Phases 1 and 2 was augmented by calculating percent mixing from traverse data. Relative change in percent mixing between configurations was determined from thrust and flow coefficient increments. The calculation procedure developed was found to be a useful tool in assessing mixer performance. Detailed flow field data were obtained to facilitate calibration of computer codes.
Instrumentation for measurement of aircraft noise and sonic boom
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J. (Inventor)
1975-01-01
A jet aircraft noise and sonic boom measuring device which converts sound pressure into electric current is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable, amplified by a zero drive amplifier and recorded on magnetic tape. The converter is comprised of a local oscillator, a dual-gate field-effect transistor (FET) mixer and a voltage regulator/impedance translator. A carrier voltage that is applied to one of the gates of the FET mixer is generated by the local oscillator. The microphone signal is mixed with the carrier to produce an electrical current at the frequency of vibration of the microphone diaphragm by the FET mixer. The voltage of the local oscillator and mixer stages is regulated, the carrier at the output is eliminated, and a low output impedance at the cable terminals is provided by the voltage regulator/impedance translator.
Waveguide arrangements based on adiabatic elimination
Suchowski, Haim; Mrejen, Michael; Wu, Chihhui; Zhang, Xiang
2016-09-13
This disclosure provides systems, methods, and apparatus related to nanophotonics. In one aspect, an arrangement of waveguides includes a substrate and three waveguides. Each of the three waveguides may be a linear waveguide. A second waveguide is positioned between a first waveguide and a third waveguide. The dimensions and positions of the first, the second, and the third waveguides are specified to substantially eliminate coupling between the first waveguide and the third waveguide over a distance of about 1 millimeter to 2 millimeters along lengths of the first waveguide, the second waveguide, and the third waveguide.
Terahertz Radiometer for Outer Planet and Moon Atmospheres (TROPA)
NASA Technical Reports Server (NTRS)
Schlecht, E. T.; Jamnejad, V.; Jarnot, R. F.; Raffanti, R.; Lin, R.
2012-01-01
We are developing a prototype instrument platform to demonstrate the feasibility of a wideband spectrometer for planetary applications under a three-year NASA research program. This development focuses on three specific areas needing advancement. First, the terahertz portion consists of an optical bench with dual heterodyne Schottky-mixer based receivers, one for each band. The beams entering the horns of the two receivers are de-multiplexed from the input beam by a polarizing beam splitter. The blocks containing the 560 and 1200 GHz mixer are more highly integrated than previous space instruments to reduce mass and volume. The receivers take a fundamental pump frequency near 30 GHz and multiply up to the submillimeter range. Second, a rapid-tuning, low-phase noise, and low-power 33 GHz range LO synthesizer is being prototyped. The low phase noise requirement is needed because of the factor of 36 multiplication to reach 1200 GHz, giving a requirement that the integrated phase noise from 100 kHz up be less than 0.6 degrees. The synthesizer will require about 6 watts. Finally, we are developing an advanced polyphase filter back-end spectrum analyzer with a bandwidth of 750 MHz, and power consumption of about 3 Watts and 4096 channels. This system is based on a simple three-chip architecture, having a commercial 1.5 GS/s analog-to-digital converter, an ASIC to do the filtering and an advanced FPGA for data processing and control.
A Q-band two-beam cryogenic receiver for the Tianma Radio Telescope
NASA Astrophysics Data System (ADS)
Zhong, Wei-Ye; Dong, Jian; Gou, Wei; Yu, Lin-Feng; Wang, Jin-Qing; Xia, Bo; Jiang, Wu; Liu, Cong; Zhang, Hui; Shi, Jun; Yin, Xiao-Xing; Shi, Sheng-Cai; Liu, Qing-Hui; Shen, Zhi-Qiang
2018-04-01
A Q-band two-beam cryogenic receiver for the Tianma Radio Telescope (TMRT) has been developed, and it uses the independently-developed key microwave and millimeter-wave components operating from 35 to 50GHz with a fractional bandwidth of 35%. The Q-band receiver consists of three parts: optics, cold unit assembly and warm unit assembly, and it can receive simultaneously the left-handed and right-handed circularly polarized waves. The cold unit assembly of each beam is composed of a feed horn, a noise injection coupler, a differential phase shifter, an orthomode transducer and two low-noise amplifiers, and it works at a temperature range near 20 K to greatly improve the detection sensitivity of the receiving system. The warm unit assembly includes four radio-frequency amplifiers, four radio-frequency high-pass filters, four waveguide biased mixers, four 4–12 GHz intermediate-frequency amplifiers and one 31–38 GHz frequency synthesizer. The measured Q-band four-channel receiver noise temperatures are roughly 30–40 K. In addition, the single-dish spectral line and international very long baseline interferometry (VLBI) observations between the TMRT and East Asia VLBI Network at the Q-band have been successfully carried out, demonstrating the advantages of the TMRT equipped with the state-of-the-art Q-band receiver.
NASA Technical Reports Server (NTRS)
Zmuidzinas, J.
2004-01-01
Our group has designed a heterodyne submillimeter receiver that offers a very wide IF bandwidth of 12 GHz, while still maintaining a low noise temperature. The 180-300 GHz double-sideband design uses a single SI5 device excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output frequency (limited by the MMIC low noise IF preamplifier) is 6-18 GHz. providing an instantaneous RF bandwidth of 24 GHz (double-sideband). Intensive simulations predict that the junction will achieve a conversion loss better than 1-2 dB and a mixer noise temperature of less than 20 K across the band (twice the quantum limit). The single sideband receiver noise temperature goal is 70 K. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical and environmental observations beyond the capabilities of current instruments. Lab testing of the receiver will begin this summer, and first light on the CSO should be in the Spring of 2003. At the CSO, we plan to use receiver with WASP2, a wideband spectrometer, to search for spectral lines from SCUBA sources. This approach should allow us to rapidly develop a catalog of redshifts for these objects.
Fabrication of High-T(sub c) Hot-Electron Bolometric Mixers for Terahertz Applications
NASA Technical Reports Server (NTRS)
Burns, M. J.; Kleinsasser, A. W.; Delin, K. A.; Vasquez, R. P.; Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.
1996-01-01
Superocnducting hot-electron bolometers (HEB) represent a promising candidate for heterodyne mixing at frequencies exceeding 1 THz. Nb HEB mixers offer performance competitive with tunnel junctions without the frequency limit imposed by the superconducting energy gap.
CHEMICAL INDUCTION MIXER VERIFICATION - ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM
The Wet-Weather Flow Technologies Pilot of the Environmental Technology Verification (ETV) Program, which is supported by the U.S. Environmental Protection Agency and facilitated by NSF International, has recently evaluated the performance of chemical induction mixers used for di...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-22
... Certain Electronic Device Mixer Apparatus for use in the Audio Disc-Jockey Industry, DN 2761; the... within the United States after importation of certain electronic device mixer apparatus for use in the...
VERIFICATION TESTING OF HIGH-RATE MECHANICAL INDUCTION MIXERS FOR CHEMICAL DISINFECTANTS
This paper describes the results of verification testing of mechanical induction mixers for dispersion of chemical disinfectants in wet-weather flow (WWF) conducted under the U.S. Environmental Protection Agency's Environmental Technology Verification (ETV) WWF Pilot Program. Th...
High linearity current communicating passive mixer employing a simple resistor bias
NASA Astrophysics Data System (ADS)
Rongjiang, Liu; Guiliang, Guo; Yuepeng, Yan
2013-03-01
A high linearity current communicating passive mixer including the mixing cell and transimpedance amplifier (TIA) is introduced. It employs the resistor in the TIA to reduce the source voltage and the gate voltage of the mixing cell. The optimum linearity and the maximum symmetric switching operation are obtained at the same time. The mixer is implemented in a 0.25 μm CMOS process. The test shows that it achieves an input third-order intercept point of 13.32 dBm, conversion gain of 5.52 dB, and a single sideband noise figure of 20 dB.
High pressure liquid chromatographic gradient mixer
Daughton, Christian G.; Sakaji, Richard H.
1985-01-01
A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".
High-pressure liquid chromatographic gradient mixer
Daughton, C.G.; Sakaji, R.H.
1982-09-08
A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.
The spurious response of microwave photonic mixer
NASA Astrophysics Data System (ADS)
Xiao, Yongchuan; Zhong, Guoshun; Qu, Pengfei; Sun, Lijun
2018-02-01
Microwave photonic mixer is a potential solution for wideband information systems due to the ultra-wide operating bandwidth, high LO-to-RF isolation, the intrinsic immunity to electromagnetic interference, and the compatibility with exsiting microwave photonic transmission systems. The spurious response of microwave photonic mixer cascading in series a pair of Mach-Zehnder interferometric intensity modulators has been simulated and analyzed in this paper. The low order spurious products caused by the nonlinearity of modulators are non-negligible, and the proper IF frequency and accurate bias-controlling are of great importance to mitigate the impact of spurious products.
A corner-reflector mixer mount for far infrared wavelengths.
Zmuidzinas, J; Betz, A L; Boreiko, R T
1989-01-01
A new type of corner-reflector mixer mount, which has the advantages of ease of fabrication and assembly as well as frequency versatility, has been designed and constructed. The mixer works with arbitrary antenna lengths > or = 4 lambda with the reflector to antenna spacing adjusted to give a strong and symmetric central lobe. The predicted response patterns have been experimentally verified for various antenna lengths and operating frequencies between 800 and 2000 GHz. An important design feature is the incorporation of a microstrip matching network which eliminates IF impedance mismatch and provides mechanical isolation of the whisker antenna.
NASA Astrophysics Data System (ADS)
Safin, R. R.; Khasanshin, R. R.; Mukhametzyanov, S. R.
2018-03-01
The existing installations for heat treatment of the crushed wood are analyzed. The technology of heat treatment of the crushed wood in the devices of disk-shaped type is offered. The results of modeling for the purpose of determination of interrelation of the key design and technological parameters of the disk-shaped device are presented. It is established that the major factors, affecting duration of stay of the material in a device, are the speed of rotation of the mixer, the number of mixers and the number of rakes on the mixer.
Optimal Elevation and Configuration of Hanford's Double-Shell Tank Waste Mixer Pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Yasuo; Yokuda, Satoru T.; Majumder, Catherine A.
The objective of this study was to compare the mixing performance of the Lawrence pump, which has injection nozzles at the top, with an alternative pump that has injection nozzles at the bottom, and to determine the optimal elevation for the alternative pump. Sixteen cases were evaluated: two sludge thicknesses at eight levels. A two-step evaluation approach was used: Step 1 to evaluate all 16 cases with the non-rotating mixer pump model and Step 2 to further evaluate four of those cases with the more realistic rotating mixer pump model. The TEMPEST code was used.
NASA Astrophysics Data System (ADS)
Kawasaki, Shin-Ichiro; Sue, Kiwamu; Ookawara, Ryuto; Wakashima, Yuichiro; Suzuki, Akira
2015-12-01
In the synthesis of metal oxide fine particles by continuous supercritical hydrothermal method, the particle characteristics are greatly affected by not only the reaction conditions (temperature, pressure, residence time, concentration, etc.), but also the heating rate from ambient to reaction temperature. Therefore, the heating method by direct mixing of starting solution at room temperature with supercritical water is a key technology for the particle production having smaller size and narrow distribution. In this paper, mixing engineering study through comparison between conventional T-shaped mixers and recently developed swirl mixers was carried out in the hydrothermal synthesis of NiO nanoparticles from Ni(NO3)2 aqueous solution at 400 °C and 30 MPa. Inner diameter in the mixers and total flow rates were varied. Furthermore, the heating rate was calculated by computational fluid dynamics (CFD) simulation. Relationship between the heating rate and the average particle size were discussed. It was clarified that the miniaturization of mixer inner diameter and the use of the swirl flow were effective for improving mixing performance and contributed to produce small and narrow distribution particle under same experimental condition of flow rate, temperature, pressure, residence time, and concentration of the starting materials. We have focused the mixer optimization due to a difference in fluid viscosity.
NASA Astrophysics Data System (ADS)
Kohjiro, S.; Shitov, S. V.; Wang, Z.; Uzawa, Y.; Miki, S.; Kawakami, A.; Shoji, A.
2004-05-01
For the optimum design of integrated receivers operating above the gap frequency of Nb, we have designed, fabricated and tested NbN-based quasi-optical superconductor/insulator/superconductor (SIS) mixers. The mixer chip incorporates a resonant half-wavelength epitaxial NbN/AlN/NbN junction, a twin-slot antenna and their coupling circuits. We adopted two kinds of coupling circuit between the antenna and the SIS junction: one is an in-phase feed with a length of 95 µm and the other is an anti-phase feed of 30 µm length. It was found that the anti-phase mixer reveals a 3 dB bandwidth of 43% of the centre frequency; the uncorrected double-sideband receiver noise temperature TRX = 691 K at 0.91 THz and TRX = 844 K at 0.80 THz, while 17% and TRX = 1250 K at 0.79 THz for the in-phase version. Possible reasons for this difference are discussed, which could be transmission loss and its robustness with respect to the variation of junction parameters. These experimental results suggest the NbN-based distributed mixer with the anti-phase feed is a better candidate for wide-band integrated receivers operating above 0.7 THz.
Third order intermodulation distortion in HTS Josephson Junction downconverter at 12GHz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Katsumi; Hayashi, Kunihiko; Fujimoto, Manabu
1994-12-31
Here the authors first report on the microwave characteristics of the third order intermodulation distortion(IMD3) in High-Tc Superconductor (HTS) Josephson Junction (JJ) Downconverter at 12GHz. They have successfully developed high quality nonlinear YBCO microbridge Josephson junctions for such an active MMIC as a mixer with RF, LO, IF and bias filters, which have been fabricated on (100) MgO substrates with 20mm x 20mm x 0.5mm dimensions. The minimum conversion loss of the JJ mixer is 11 dB at very small local microwave input power LO= {minus}20dBm which is two order less than Schottky diode mixer. Consequently, this small optimum LOmore » power gives the small RF input power at which the output IF power of the YBCO mixer saturates. Two-tone third-order intercept point(IP3) performance is a significantly important figure of merit typically used to define linearity of devices and circuits. The RF input power = {minus}15dBm at the IP3 point is obtained for the YBCO mixer at 15K and LO = 10.935GHz with {minus}22dBm. The have successfully measured the dependence of IMD3 on temperature, bias current and LO power.« less
40 CFR 63.9500 - What emission limitations must I meet?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Friction Materials Manufacturing..., reconstructed, or existing large solvent mixer at your friction materials manufacturing facility, you must limit...) For each new, reconstructed, or existing small solvent mixer at your friction materials manufacturing...
40 CFR 63.9500 - What emission limitations must I meet?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Friction Materials Manufacturing..., reconstructed, or existing large solvent mixer at your friction materials manufacturing facility, you must limit...) For each new, reconstructed, or existing small solvent mixer at your friction materials manufacturing...
40 CFR 63.9500 - What emission limitations must I meet?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Friction Materials Manufacturing..., reconstructed, or existing large solvent mixer at your friction materials manufacturing facility, you must limit...) For each new, reconstructed, or existing small solvent mixer at your friction materials manufacturing...
VERIFICATION TESTING OF HIGH-RATE MECHANICAL INDUCTION MIXERS FOR CHEMICAL DISINFECTANTS, Oregon
This paper describes the results of verification testing of mechanical induction mixers for dispersion of chemical disinfectants in wet-weather flow (WWF) conducted under the U.S. Environmental Protection Agency's Environmental Technology Verification (ETV) WWF Pilot Program. Th...
40 CFR 63.9500 - What emission limitations must I meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Friction Materials Manufacturing..., reconstructed, or existing large solvent mixer at your friction materials manufacturing facility, you must limit...) For each new, reconstructed, or existing small solvent mixer at your friction materials manufacturing...
16. VIEW OF THE CONCRETE MIXER THAT WAS USED AT ...
16. VIEW OF THE CONCRETE MIXER THAT WAS USED AT THE MERCER MUSEUM AND ON THE INDIAN HOUSE TOWER. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA
Quasi-Optical SIS Mixer Development
NASA Technical Reports Server (NTRS)
Zmuidzinas, J.
1997-01-01
This grant supported our ongoing development of sensitive quasi-optical SIS mixers for the submillimeter band. The technology developed under this grant is now being applied to NASA missions, including the NASA/USRA SOFIA airborne observatory and and the ESA/NASA FIRST/Herschel space astronomy mission.
Li, Ying; Xu, Fei; Liu, Chao; Xu, Youzhi; Feng, Xiaojun; Liu, Bi-Feng
2013-08-21
Kinetic measurement of biomacromolecular interaction plays a significant role in revealing the underlying mechanisms of cellular activities. Due to the small diffusion coefficient of biomacromolecules, it is difficult to resolve the rapid kinetic process with traditional analytical methods such as stopped-flow or laminar mixers. Here, we demonstrated a unique continuous-flow laminar mixer based on microfluidic dual-hydrodynamic focusing to characterize the kinetics of DNA-protein interactions. The time window of this mixer for kinetics observation could cover from sub-milliseconds to seconds, which made it possible to capture the folding process with a wide dynamic range. Moreover, the sample consumption was remarkably reduced to <0.55 μL min⁻¹, over 1000-fold saving in comparison to those reported previously. We further interrogated the interaction kinetics of G-quadruplex and the single-stranded DNA binding protein, indicating that this novel micromixer would be a useful approach for analyzing the interaction kinetics of biomacromolecules.
Electrospray micromixer chip for on-line derivatization and kinetic studies.
Abonnenc, Mélanie; Dayon, Loïc; Perruche, Brice; Lion, Niels; Girault, Hubert H
2008-05-01
An electrospray microchip for mass spectrometry comprising an integrated passive mixer to carry out on-chip chemical derivatizations is described. The microchip fabricated using UV-photoablation is composed of two microchannels linked together by a liquid junction. Downstream of this liquid junction, a mixing unit made of parallel oblique grooves is integrated to the microchannel in order to create flow perturbations. Several mixer designs are evaluated. The mixer efficiency is investigated both by fluorescence study and mass spectrometric monitoring of the tagging reaction of cysteinyl peptides with 1,4-benzoquinone. The comparisons with a microchip without a mixing unit and a kinetic model are used to assess the efficiency of the mixer showing tagging kinetics close to that of bulk reactions in an ideally mixed reactor. As an ultimate application, the electrospray micromixer is implemented in a LC-MS workflow. On-line derivatization of albumin tryptic peptides after a reversed-phase separation and counting of their cysteines drastically enhance the protein identification.
Very high-current-density Nb/AlN/Nb tunnel junctions for low-noise submillimeter mixers
NASA Astrophysics Data System (ADS)
Kawamura, Jonathan; Miller, David; Chen, Jian; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.
2000-04-01
We have fabricated and tested submillimeter-wave superconductor-insulator-superconductor (SIS) mixers using very high-current-density Nb/AlN/Nb tunnel junctions (Jc≈30 kA cm-2). The junctions have low-resistance-area products (RNA≈5.6 Ω μm2), good subgap-to-normal resistance ratios Rsg/RN≈10, and good run-to-run reproducibility. From Fourier transform spectrometer measurements, we infer that ωRNC=1 at 270 GHz. This is a factor of 2.5 improvement over what is generally available with Nb/AlOx/Nb junctions suitable for low-noise mixers. The AlN-barrier junctions are indeed capable of low-noise operation: we measure an uncorrected double-sideband receiver noise temperature of TRX=110 K at 533 GHz for an unoptimized device. In addition to providing wider bandwidth operation at lower frequencies, the AlN-barrier junctions will considerably improve the performance of THz SIS mixers by reducing rf loss in the tuning circuits.
NASA Technical Reports Server (NTRS)
Olsen, W. A.; Friedman, R.
1973-01-01
Noise data were obtained with a small scale model stationary STOL configuration that used an eight lobe mixer nozzle with deflector mounted above a 32-cm-chord wing section. The factors varied to determine their effect upon the noise were wing flap angle, nozzle shape, nozzle location, deflector configuration, and jet velocity. The noise from the mixer nozzle model was compared to the noise from a model using a circular nozzle of the same area. The mixer nozzle model was quieter at the low to middle frequencies, while the circular nozzle was quieter at high frequencies. The perceived noise level (PNL) was calculated for an aircraft 10 times larger than the model. The PNL at 500 feet for the mixer nozzle turned out to be within 1 db of the PNL for the circular nozzle. For some configurations at highly directional broadband noise, which could be eliminated by changes in nozzle and/or deflector location, occurred below the wing.
Markwalter, Chester E; Prud'homme, Robert K
2018-05-14
Flash NanoPrecipitation (FNP) is a scalable approach to generate polymeric nanoparticles using rapid micromixing in specially-designed geometries such as a confined impinging jets (CIJ) mixer or a Multi-Inlet Vortex Mixer (MIVM). A major limitation of formulation screening using the MIVM is that a single run requires tens of milligrams of the therapeutic. To overcome this, we have developed a scaled-down version of the MIVM, requiring as little as 0.2 mg of therapeutic, for formulation screening. The redesigned mixer can then be attached to pumps for scale-up of the identified formulation. It was shown that Reynolds Number allowed accurate scaling between the two MIVM designs. The utility of the small-scale MIVM for formulation development was demonstrated through the encapsulation of a number of hydrophilic macromolecules using inverse Flash NanoPrecipitation with target loadings as high as 50% by mass. Copyright © 2018. Published by Elsevier Inc.
A compact D-band monolithic APDP-based sub-harmonic mixer
NASA Astrophysics Data System (ADS)
Zhang, Shengzhou; Sun, Lingling; Wang, Xiang; Wen, Jincai; Liu, Jun
2017-11-01
The paper presents a compact D-band monolithic sub-harmonic mixer (SHM) with 3 μm planar hyperabrupt schottky-varactor diodes offered by 70 nm GaAs mHEMT technology. According to empirical equivalent-circuit models, a wide-band large signal equivalent circuit model of the diode is proposed. Based on the extracted model, the mixer is implemented and optimized with a shunt-mounted anti-parallel diode pair (APDP) to fulfill the sub-harmonic mixing mechanism. Furthermore, a modified asymmetric three-transmission-line coupler is devised to achieve high-level coupling and minimize the chip size. The measured results show that the conversion gain varies between -13.9 dB and -17.5 dB from 110 GHz to 145 GHz, with a local oscillator (LO) power level of 14 dBm and an intermediate frequency (IF) of 1 GHz. The total chip size including probe GSG pads is 0.57 × 0.68mm2. In conclusion, the mixer exhibits outstanding figure-of-merits.
Qualification test of the Ross Double Planetary Mixer
NASA Technical Reports Server (NTRS)
Lueders, Kurt F.
1993-01-01
This test report describes the qualification test of the Ross Double Planetary Mixer used to mix room temperature vulcanized (RTV) silicone (Dow Corning 90-006-2) for the redesigned solid rocket motor (RSRM) nozzle joints. Testing was completed 18 June 1993 in the M-113A Nozzle Fabrication Facility at Thiokol Corporation, Space Operations, Brigham City, Utah. The Ross mixer provides better mixing and better control on temperature and humidity, resulting in better quality RTV and a longer usable pot life. The test began on 3 May 1993 and was stopped due to operator error during the tensile strength and elongation testing. Specimens were ruined without gathering any useful data. A 'no test' was declared, the problem was remedied, and the test was re-run with MSFC approval. The test was run and all pass/fail criteria were met, most with a considerable margin. The Ross Double Planetary Mixer met all certification objectives and is recommended for immediate use for mixing RTV silicone for RSRM nozzle joints.
A three-dimensional turbulent compressible flow model for ejector and fluted mixers
NASA Technical Reports Server (NTRS)
Rushmore, W. L.; Zelazny, S. W.
1978-01-01
A three dimensional finite element computer code was developed to analyze ejector and axisymmetric fluted mixer systems whose flow fields are not significantly influenced by streamwise diffusion effects. A two equation turbulence model was used to make comparisons between theory and data for various flow fields which are components of the ejector system, i.e., (1) turbulent boundary layer in a duct; (2) rectangular nozzle (free jet); (3) axisymmetric nozzle (free jet); (4) hypermixing nozzle (free jet); and (5) plane wall jet. Likewise, comparisons of the code with analytical results and/or other numerical solutions were made for components of the axisymmetric fluted mixer system. These included: (1) developing pipe flow; (2) developing flow in an annular pipe; (3) developing flow in an axisymmetric pipe with conical center body and no fluting and (4) developing fluted pipe flow. Finally, two demonstration cases are presented which show the code's ability to analyze both the ejector and axisymmetric fluted mixers.
A general numerical analysis program for the superconducting quasiparticle mixer
NASA Technical Reports Server (NTRS)
Hicks, R. G.; Feldman, M. J.; Kerr, A. R.
1986-01-01
A user-oriented computer program SISCAP (SIS Computer Analysis Program) for analyzing SIS mixers is described. The program allows arbitrary impedance terminations to be specified at all LO harmonics and sideband frequencies. It is therefore able to treat a much more general class of SIS mixers than the widely used three-frequency analysis, for which the harmonics are assumed to be short-circuited. An additional program, GETCHI, provides the necessary input data to program SISCAP. The SISCAP program performs a nonlinear analysis to determine the SIS junction voltage waveform produced by the local oscillator. The quantum theory of mixing is used in its most general form, treating the large signal properties of the mixer in the time domain. A small signal linear analysis is then used to find the conversion loss and port impedances. The noise analysis includes thermal noise from the termination resistances and shot noise from the periodic LO current. Quantum noise is not considered. Many aspects of the program have been adequately verified and found accurate.
Compact waveguide circular polarizer
Tantawi, Sami G.
2016-08-16
A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.
A Fully Integrated Sensor SoC with Digital Calibration Hardware and Wireless Transceiver at 2.4 GHz
Kim, Dong-Sun; Jang, Sung-Joon; Hwang, Tae-Ho
2013-01-01
A single-chip sensor system-on-a-chip (SoC) that implements radio for 2.4 GHz, complete digital baseband physical layer (PHY), 10-bit sigma-delta analog-to-digital converter and dedicated sensor calibration hardware for industrial sensing systems has been proposed and integrated in a 0.18-μm CMOS technology. The transceiver's building block includes a low-noise amplifier, mixer, channel filter, receiver signal-strength indicator, frequency synthesizer, voltage-controlled oscillator, and power amplifier. In addition, the digital building block consists of offset quadrature phase-shift keying (OQPSK) modulation, demodulation, carrier frequency offset compensation, auto-gain control, digital MAC function, sensor calibration hardware and embedded 8-bit microcontroller. The digital MAC function supports cyclic redundancy check (CRC), inter-symbol timing check, MAC frame control, and automatic retransmission. The embedded sensor signal processing block consists of calibration coefficient calculator, sensing data calibration mapper and sigma-delta analog-to-digital converter with digital decimation filter. The sensitivity of the overall receiver and the error vector magnitude (EVM) of the overall transmitter are −99 dBm and 18.14%, respectively. The proposed calibration scheme has a reduction of errors by about 45.4% compared with the improved progressive polynomial calibration (PPC) method and the maximum current consumption of the SoC is 16 mA. PMID:23698271
NASA Technical Reports Server (NTRS)
Decrossas, Emmanuel (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer (Inventor); Tang, Adrian J. (Inventor)
2016-01-01
A lens for interconnecting a metallic waveguide with a dielectric waveguide is provided. The lens may be coupled a metallic waveguide and a dielectric waveguide, and minimize a signal loss between the metallic waveguide and the dielectric waveguide.
Tantawi, Sami G.; Dolgashev, Valery A.; Yeremian, Anahid D.
2016-03-15
A high-power microwave RF window is provided that includes a cylindrical waveguide, where the cylindrical waveguide includes a ceramic disk concentrically housed in a central region of the cylindrical waveguide, a first rectangular waveguide, where the first rectangular waveguide is connected by a first elliptical joint to a proximal end of the cylindrical waveguide, and a second rectangular waveguide, where the second rectangular waveguide is connected by a second elliptical joint to a distal end of the cylindrical waveguide.
Artificial sweeteners, caffeine, and alcohol intoxication in bar patrons.
Rossheim, Matthew E; Thombs, Dennis L
2011-10-01
Previous laboratory research on alcohol absorption has found that substitution of artificially sweetened alcohol mixers for sucrose-based mixers has a marked effect on the rate of gastric emptying, resulting in elevated blood alcohol concentrations. Studies conducted in natural drinking settings, such as bars, have indicated that caffeine ingestion while drinking is associated with higher levels of intoxication. To our knowledge, research has not examined the effects of alcohol mixers that contain both an artificial sweetener and caffeine, that is, diet cola. Therefore, we assessed the event-specific association between diet cola consumption and alcohol intoxication in bar patrons. We sought to determine whether putative increases in blood alcohol, produced by accelerated gastric emptying following diet cola consumption, as identified in the laboratory, also appear in a natural setting associated with impaired driving. We conducted a secondary analysis of data from 2 nighttime field studies that collected anonymous information from 413 randomly selected bar patrons in 2008 and 2010. Data sets were merged and recoded to distinguish between energy drink, regular cola, diet cola, and noncaffeinated alcohol mixers. Caffeinated alcohol mixers were consumed by 33.9% of the patrons. Cola-caffeinated mixed drinks were much more popular than those mixed with energy drinks. A large majority of regular cola-caffeinated mixed drink consumers were men (75%), whereas diet cola-caffeinated mixed drink consumers were more likely to be women (57%). After adjusting for the number of drinks consumed and other potential confounders, number of diet cola mixed drinks had a significant association with patron intoxication (β = 0.233, p < 0.0001). Number of drinks mixed with regular (sucrose-sweetened) cola and energy drinks did not have significant associations with intoxication (p > 0.05). Caffeine's effect on intoxication may be most pronounced when mixers are artificially sweetened, that is, lack sucrose which slows the rate of gastric emptying of alcohol. Risks associated with on-premise drinking may be reduced by greater attention given to types of mixers, particularly diet colas. Copyright © 2011 by the Research Society on Alcoholism.
Method of making compost and spawned compost, mushroom spawn and generating methane gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoller, B.B.
1981-04-28
Newly designed ribbon-type mixers provide an improved method for making composts, aerating composts, growing mushroom spawn, generating methane gas, and filling conveyors in the mushroom-growing industry. The mixers may be the double-ribbon type for purely mixing operations or the single-ribbon type for moving the material from one place to another. Both types can operate under pressure. In preparing compost for mushroom growing, operators can first use the airtight mixers for a preliminary anaerobic fermentation to produce methane, then by changing the atmosphere to an oxidizing one, complete the compost preparation under the necessary aerobic conditions.
A User's Guide for the Differential Reduced Ejector/Mixer Analysis "DREA" Program. 1.0
NASA Technical Reports Server (NTRS)
DeChant, Lawrence J.; Nadell, Shari-Beth
1999-01-01
A system of analytical and numerical two-dimensional mixer/ejector nozzle models that require minimal empirical input has been developed and programmed for use in conceptual and preliminary design. This report contains a user's guide describing the operation of the computer code, DREA (Differential Reduced Ejector/mixer Analysis), that contains these mathematical models. This program is currently being adopted by the Propulsion Systems Analysis Office at the NASA Glenn Research Center. A brief summary of the DREA method is provided, followed by detailed descriptions of the program input and output files. Sample cases demonstrating the application of the program are presented.
NASA Astrophysics Data System (ADS)
Seliverstov, S. V.; Anfertyev, V. A.; Tretyakov, I. V.; Ozheredov, I. A.; Solyankin, P. M.; Revin, L. S.; Vaks, V. L.; Rusova, A. A.; Goltsman, G. N.; Shkurinov, A. P.
2017-12-01
We study characteristics of the laboratory prototype of a terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser. The results obtained demonstrate the possibility to use this receiver as a basis for creation of a high-sensitivity terahertz spectrometer, which can be used in many basic and practical applications. A significant advantage of this receiver will be the possibility of placing the mixer and heterodyne in the same cryostat, which will reduce the device dimensions considerably. The obtained experimental results are analyzed, and methods of optimizing the parameters of the receiver are proposed.
Factors which influence the behavior of turbofan forced mixer nozzles
NASA Technical Reports Server (NTRS)
Anderson, B. H.; Povinelli, L. A.
1981-01-01
A finite difference procedure was used to compute the mixing for three experimentally tested mixer geometries. Good agreement was obtained between analysis and experiment when the mechanisms responsible for secondary flow generation were properly modeled. Vorticity generation due to flow turning and vorticity generated within the centerbody lobe passage were found to be important. Results are presented for two different temperature ratios between fan and core streams and for two different free stream turbulence levels. It was concluded that the dominant mechanisms in turbofan mixers is associated with the secondary flows arising within the lobe region and their development within the mixing section.
This photocopy of an engineering drawing shows the BakerPerkins 150gallon ...
This photocopy of an engineering drawing shows the Baker-Perkins 150-gallon mixer installation in the building. Austin, Field & Fry, Architects Engineers, 22311 West Third Street, Los Angeles 57, California: Edwards Test Station Complex, Jet Propulsion Laboratory, California Institute of Technology, Edwards Air Force Base, Edwards, California: "150 Gallon Mixer System Bldg. E-34, Plans, Sections & Details," drawing no. E34/6-0, 10 July 1963. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Mixer, Edwards Air Force Base, Boron, Kern County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
WHITE, D.A.
1999-12-29
This Software Configuration Management Plan (SCMP) provides the instructions for change control of the AZ1101 Mixer Pump Demonstration Data Acquisition System (DAS) and the Sludge Mobilization Cart (Gamma Cart) Data Acquisition and Control System (DACS).
NASA Technical Reports Server (NTRS)
Fabris, Gracio
1994-01-01
Improved devices mix gases and liquids into bubbly or foamy flows. Generates flowing, homogeneous foams or homogeneous dispersions of small, noncoalescing bubbles entrained in flowing liquids. Mixers useful in liquid-metal magnetohydrodynamic electric-power generator, froth flotation in mining industry, wastewater treatment, aerobic digestion, and stripping hydrocarbon contaminants from ground water.
Ostebee, Heath Michael; Ziminsky, Willy Steve; Johnson, Thomas Edward; Keener, Christopher Paul
2017-01-17
The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a linear actuator so as to maneuver the micro-mixer fuel nozzles axially along the liner.
Development of hot-electron THz bolometric mixers using MgB2 thin films
NASA Astrophysics Data System (ADS)
Cunnane, Daniel; Kawamura, Jonathan; Karasik, Boris S.; Wolak, Matthaeus A.; Xi, X. X.
2014-07-01
Terahertz high-resolution spectroscopy of interstellar molecular clouds greatly relies on hot-electron superconducting bolometric (HEB) mixers. Current state-of-the-art receivers use mixer devices made from ultrathin (~ 3-5 nm) films of NbN with critical temperature ~ 9-11 K. Such mixers have been deployed on a number of groundbased, suborbital, and orbital platforms including the HIFI instrument on the Hershel Space Observatory. Despite its good sensitivity and well-established fabrication process, the NbN HEB mixer suffers from the narrow intermediate frequency (IF) bandwidth ~ 2-3 GHz and is limited to operation at liquid Helium temperature. As the heterodyne receivers are now trending towards "high THz" frequencies, the need in a larger IF bandwidth becomes more pressing since the same velocity resolution for a Doppler shifted line at 5 THz requires a 5-times greater IF bandwidth than at 1 THz. Our work is focusing on the realization of practical HEB mixers using ultrathin (10-20 nm) MgB2 films. They are prepared using a Hybrid Physical-Chemical Vapor Deposition (HPCVD) process yielding ultrathin films with critical temperature ~ 37-39 K. The expectation is that the combination of small thickness, high acoustic phonon transparency at the interface with the substrate, and very short electron-phonon relaxation time may lead to IF bandwidth ~ 10 GHz or even higher. SiC continues to be the most favorable substrate for MgB2 growth and as a result, a study has been conducted on the transparency of SiC at THz frequencies. FTIR measurements show that semi-insulating SiC substrates are at least as transparent as Si up to 2.5 THz. Currently films are passivated using a thin (10 nm) SiO2 layer which is deposited ex-situ via RF magnetron sputtering. Micron-sized spiral antenna-coupled HEB mixers have been fabricated using MgB2 films as thin as 10 nm. Fabrication was done using contact UV lithography and Ar Ion milling, with E-beam evaporated Au films deposited for the antenna. Measurements have been carried out on these devices in the DC, Microwave, and THz regimes. The devices are capable of mixing signals above 20 K indicating that operation may be possible using a cryogen-free cooling system. We will report the results of all measurements taken to indicate the local oscillator power requirements and the IF bandwidth of MgB2 HEB mixers.
Mixing in microfluidic devices and enhancement methods
Ward, Kevin; Fan, Z Hugh
2015-01-01
Mixing in microfluidic devices presents a challenge due to laminar flows in microchannels, which result from low Reynolds numbers determined by the channel’s hydraulic diameter, flow velocity, and solution’s kinetic viscosity. To address this challenge, novel methods of mixing enhancement within microfluidic devices have been explored for a variety of applications. Passive mixing methods have been created, including those using ridges or slanted wells within the microchannels, as well as their variations with improved performance by varying geometry and patterns, by changing the properties of channel surfaces, and by optimization via simulations. In addition, active mixing methods including microstirrers, acoustic mixers, and flow pulsation have been investigated and integrated into microfluidic devices to enhance mixing in a more controllable manner. In general, passive mixers are easy to integrate, but difficult to control externally by users after fabrication. Active mixers usually take efforts to integrate within a device and they require external components (e.g. power sources) to operate. However, they can be controlled by users to a certain degree for tuned mixing. In this article, we provide a general overview of a number of passive and active mixers, discuss their advantages and disadvantages, and make suggestions on choosing a mixing method for a specific need as well as advocate possible integration of key elements of passive and active mixers to harness the advantages of both types. PMID:26549938
A "twisted" microfluidic mixer suitable for a wide range of flow rate applications.
Sivashankar, Shilpa; Agambayev, Sumeyra; Mashraei, Yousof; Li, Er Qiang; Thoroddsen, Sigurdur T; Salama, Khaled Nabil
2016-05-01
This paper proposes a new "twisted" 3D microfluidic mixer fabricated by a laser writing/microfabrication technique. Effective and efficient mixing using the twisted micromixers can be obtained by combining two general chaotic mixing mechanisms: splitting/recombining and chaotic advection. The lamination of mixer units provides the splitting and recombination mechanism when the quadrant of circles is arranged in a two-layered serial arrangement of mixing units. The overall 3D path of the microchannel introduces the advection. An experimental investigation using chemical solutions revealed that these novel 3D passive microfluidic mixers were stable and could be operated at a wide range of flow rates. This micromixer finds application in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted micromixer was made to evaluate the efficiency of mixing. The efficiency of mixing was calculated within the channel by acquiring intensities using ImageJ software. Results suggested that efficient mixing can be obtained when more than 3 units were consecutively placed. The geometry of the device, which has a length of 30 mm, enables the device to be integrated with micro total analysis systems and other lab-on-chip devices.
A “twisted” microfluidic mixer suitable for a wide range of flow rate applications
Sivashankar, Shilpa; Agambayev, Sumeyra; Mashraei, Yousof; Li, Er Qiang; Thoroddsen, Sigurdur T.; Salama, Khaled Nabil
2016-01-01
This paper proposes a new “twisted” 3D microfluidic mixer fabricated by a laser writing/microfabrication technique. Effective and efficient mixing using the twisted micromixers can be obtained by combining two general chaotic mixing mechanisms: splitting/recombining and chaotic advection. The lamination of mixer units provides the splitting and recombination mechanism when the quadrant of circles is arranged in a two-layered serial arrangement of mixing units. The overall 3D path of the microchannel introduces the advection. An experimental investigation using chemical solutions revealed that these novel 3D passive microfluidic mixers were stable and could be operated at a wide range of flow rates. This micromixer finds application in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted micromixer was made to evaluate the efficiency of mixing. The efficiency of mixing was calculated within the channel by acquiring intensities using ImageJ software. Results suggested that efficient mixing can be obtained when more than 3 units were consecutively placed. The geometry of the device, which has a length of 30 mm, enables the device to be integrated with micro total analysis systems and other lab-on-chip devices. PMID:27453767
Mixing in microfluidic devices and enhancement methods.
Ward, Kevin; Fan, Z Hugh
2015-09-01
Mixing in microfluidic devices presents a challenge due to laminar flows in microchannels, which result from low Reynolds numbers determined by the channel's hydraulic diameter, flow velocity, and solution's kinetic viscosity. To address this challenge, novel methods of mixing enhancement within microfluidic devices have been explored for a variety of applications. Passive mixing methods have been created, including those using ridges or slanted wells within the microchannels, as well as their variations with improved performance by varying geometry and patterns, by changing the properties of channel surfaces, and by optimization via simulations. In addition, active mixing methods including microstirrers, acoustic mixers, and flow pulsation have been investigated and integrated into microfluidic devices to enhance mixing in a more controllable manner. In general, passive mixers are easy to integrate, but difficult to control externally by users after fabrication. Active mixers usually take efforts to integrate within a device and they require external components (e.g. power sources) to operate. However, they can be controlled by users to a certain degree for tuned mixing. In this article, we provide a general overview of a number of passive and active mixers, discuss their advantages and disadvantages, and make suggestions on choosing a mixing method for a specific need as well as advocate possible integration of key elements of passive and active mixers to harness the advantages of both types.
Static Mixer for Heat Transfer Enhancement for Mold Cooling Application
NASA Astrophysics Data System (ADS)
Becerra, Rodolfo; Barbosa, Raul; Lee, Kye-Hwan; Park, Younggil
Injection molding is the process by which a material is melted in a barrel and then it is injected through a nozzle in the mold cavity. When it cools down, the material solidifies into the shape of the cavity. Typical injection mold has cooling channels to maintain constant mold temperature during injection molding process. Even and constant temperature throughout the mold are very critical for a part quality and productivity. Conformal cooling improves the quality and productivity of injection molding process through the implementation of cooling channels that ``conform'' to the shape of the molded part. Recent years, the use of conformal cooling increases with advance of 3D printing technology such as Selective Laser Melting (SLM). Although it maximizes cooling, material and dimension limitations make SLM methods highly expensive. An alternative is the addition of static mixers in the molds with integrated cooling channels. A static mixer is a motionless mixing device that enhances heat transfer by producing improved flow mixing in the pipeline. In this study, the performance of the cooling channels will be evaluated with and without static mixers, by measuring temperature, pressure drop, and flow rate. The following question is addressed: Can a static mixer effectively enhance heat transfer for mold cooling application processes? This will provide insight on the development of design methods and guidelines that can be used to increase cooling efficiency at a lower cost.
Influence of Geometry and Flow Variations on NO Formation in the Quick Mixer of a Staged Combustor
NASA Technical Reports Server (NTRS)
Hatch, M. S.; Sowa, W. A.; Samuelsen, G. S.; Holdeman, J. D.
1995-01-01
Staged combustion, such as Rich-Burn/Quick-Mix/Lean-Burn (RQL), is a viable strategy to meet nitric oxide (NO) emission goals for both stationary and propulsion gas turbine engines. A critical element of the design is the quick mixer section where the potential for NO production is high. While numerical calculations of the quick mixer under reacting conditions have been conducted, the hostile environment and lack of appropriate diagnostics have, to date, precluded experimental probing of the reacting case. As an alternative to understanding the effect of geometry and flow variations on the production of NO in the quick mixer, the present paper presents (1) a series of non-reacting parametric studies, and (2) a computational method to extrapolate the results of the non-reacting experiments to reacting conditions. The results show that the rate of NO production is highest in the immediate vicinity of the injection plane. For a given momentum flux ratio between the jets and mainstream, the most effective mixing geometry is that which mixes effectively in both (1) the plane of injection, and (2) the wall regions downstream of the plan of injection. The tailoring of the mixing is key to minimize the NO formed. As a result, the best overall mixer with respect to the minimization of NO production may depend on the system specific characteristics of the particular application.
A 1.5 THz hot-electron bolometer mixer operated by a planar diode based local oscillator
NASA Technical Reports Server (NTRS)
Tong, C. Y. E.; Meledin, D.; Blundell, R.; Erickson, N.; Mehdi, I.; Goltsman, G.
2003-01-01
We have developed a 1.5 THz superconducting NbN Hot-Electron Bolometer mixer. It is oprated by an all-solid-state Local Oscillator comprising of a cascade of 4 planar doublers following an MMIC based W-band power amplifier.
Apparatus and method for gelling liquefied gasses
NASA Technical Reports Server (NTRS)
Elliott, Adam (Inventor); DiSalvo, Roberto (Inventor); Shepherd, Phillip (Inventor); Kosier, Ryan (Inventor)
2011-01-01
A method and apparatus for gelling liquid propane and other liquefied gasses includes a temperature controlled churn mixer, vacuum pump, liquefied gas transfer tank, and means for measuring amount of material entering the mixer. The apparatus and method are particularly useful for the production of high quality rocket fuels and propellants.
29 CFR 1926.702 - Requirements for equipment and tools.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry... the ejection system is not to be operated. (b) Concrete mixers. Concrete mixers with one cubic yard... the skip of materials; and (2) Guardrails installed on each side of the skip. (c) Power concrete...
29 CFR 570.62 - Occupations involved in the operation of bakery machines (Order 11).
Code of Federal Regulations, 2013 CFR
2013-07-01
..., or cleaning any horizontal or vertical dough mixer; batter mixer; bread dividing, rounding, or molding machine; dough brake; dough sheeter; combination bread slicing and wrapping machine; or cake cutting band saw. (2) The occupation of setting up or adjusting a cookie or cracker machine. (b...
29 CFR 570.62 - Occupations involved in the operation of bakery machines (Order 11).
Code of Federal Regulations, 2014 CFR
2014-07-01
..., or cleaning any horizontal or vertical dough mixer; batter mixer; bread dividing, rounding, or molding machine; dough brake; dough sheeter; combination bread slicing and wrapping machine; or cake cutting band saw. (2) The occupation of setting up or adjusting a cookie or cracker machine. (b...
29 CFR 570.62 - Occupations involved in the operation of bakery machines (Order 11).
Code of Federal Regulations, 2011 CFR
2011-07-01
..., or cleaning any horizontal or vertical dough mixer; batter mixer; bread dividing, rounding, or molding machine; dough brake; dough sheeter; combination bread slicing and wrapping machine; or cake cutting band saw. (2) The occupation of setting up or adjusting a cookie or cracker machine. (b...
29 CFR 570.62 - Occupations involved in the operation of bakery machines (Order 11).
Code of Federal Regulations, 2012 CFR
2012-07-01
..., or cleaning any horizontal or vertical dough mixer; batter mixer; bread dividing, rounding, or molding machine; dough brake; dough sheeter; combination bread slicing and wrapping machine; or cake cutting band saw. (2) The occupation of setting up or adjusting a cookie or cracker machine. (b...
Analysis of a High-Tc Hot-Electron Superconducting Mixer for Terahertz Applications
NASA Technical Reports Server (NTRS)
Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.
1996-01-01
The prospects of a YBa2Cu3O7(delta)(YBCO) hot-electron bolometer (HEB) mixer for a THz heterodyne receiver is discussed. The modeled device is a submicron bridge made from a 10 nm thick film on a high thermal conductance substrate.
88. VIEW OF THE CONCRETE MIXER THAT WAS USED AT ...
88. VIEW OF THE CONCRETE MIXER THAT WAS USED AT THE MERCER MUSEUM AND ON THE INDIAN HOUSE TOWER. SAME VIEW AS PA-107-16. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA
7 CFR 58.228 - Dump hoppers, screens, mixers and conveyors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT... DAIRY PRODUCTS 1 General Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Equipment and Utensils § 58.228 Dump hoppers, screens, mixers and conveyors. The product contact...
Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids
Man, Weining; Florescu, Marian; Williamson, Eric Paul; He, Yingquan; Hashemizad, Seyed Reza; Leung, Brian Y. C.; Liner, Devin Robert; Torquato, Salvatore; Chaikin, Paul M.; Steinhardt, Paul J.
2013-01-01
Recently, disordered photonic media and random textured surfaces have attracted increasing attention as strong light diffusers with broadband and wide-angle properties. We report the experimental realization of an isotropic complete photonic band gap (PBG) in a 2D disordered dielectric structure. This structure is designed by a constrained optimization method, which combines advantages of both isotropy due to disorder and controlled scattering properties due to low-density fluctuations (hyperuniformity) and uniform local topology. Our experiments use a modular design composed of Al2O3 walls and cylinders arranged in a hyperuniform disordered network. We observe a complete PBG in the microwave region, in good agreement with theoretical simulations, and show that the intrinsic isotropy of this unique class of PBG materials enables remarkable design freedom, including the realization of waveguides with arbitrary bending angles impossible in photonic crystals. This experimental verification of a complete PBG and realization of functional defects in this unique class of materials demonstrate their potential as building blocks for precise manipulation of photons in planar optical microcircuits and has implications for disordered acoustic and electronic band gap materials. PMID:24043795
NASA Astrophysics Data System (ADS)
Gill, Douglas M.; Rasras, Mahmoud; Tu, Kun-Yii; Chen, Young-Kai; White, Alice E.; Patel, Sanjay S.; Carothers, Daniel; Pomerene, Andrew; Kamocsai, Robert; Beattie, James; Kopa, Anthony; Apsel, Alyssa; Beals, Mark; Mitchel, Jurgen; Liu, Jifeng; Kimerling, Lionel C.
2008-02-01
Integrating electronic and photonic functions onto a single silicon-based chip using techniques compatible with mass-production CMOS electronics will enable new design paradigms for existing system architectures and open new opportunities for electro-optic applications with the potential to dramatically change the management, cost, footprint, weight, and power consumption of today's communication systems. While broadband analog system applications represent a smaller volume market than that for digital data transmission, there are significant deployments of analog electro-optic systems for commercial and military applications. Broadband linear modulation is a critical building block in optical analog signal processing and also could have significant applications in digital communication systems. Recently, broadband electro-optic modulators on a silicon platform have been demonstrated based on the plasma dispersion effect. The use of the plasma dispersion effect within a CMOS compatible waveguide creates new challenges and opportunities for analog signal processing since the index and propagation loss change within the waveguide during modulation. We will review the current status of silicon-based electrooptic modulators and also linearization techniques for optical modulation.
Integrated waveguide Bragg gratings for microwave photonics signal processing.
Burla, Maurizio; Cortés, Luis Romero; Li, Ming; Wang, Xu; Chrostowski, Lukas; Azaña, José
2013-10-21
Integrated Microwave photonics (IMWP) signal processing using Photonic Integrated Circuits (PICs) has attracted a great deal of attention in recent years as an enabling technology for a number of functionalities not attainable by purely microwave solutions. In this context, integrated waveguide Bragg grating (WBG) devices constitute a particularly attractive approach thanks to their compactness and flexibility in producing arbitrarily defined amplitude and phase responses, by directly acting on coupling coefficient and perturbations of the grating profile. In this article, we review recent advances in the field of integrated WBGs applied to MWP, analyzing the advantages leveraged by an integrated realization. We provide a perspective on the exciting possibilities offered by the silicon photonics platform in the field of MWP, potentially enabling integration of highly-complex active and passive functionalities with high yield on a single chip, with a particular focus on the use of WBGs as basic building blocks for linear filtering operations. We demonstrate the versatility of WBG-based devices by proposing and experimentally demonstrating a novel, continuously-tunable, integrated true-time-delay (TTD) line based on a very simple dual phase-shifted WBG (DPS-WBG).
A V-band wafer probe using ridge-trough waveguide
NASA Astrophysics Data System (ADS)
Godshalk, Edward M.
1991-12-01
A V-band (50-75 GHz) wafer probe is presented. The probe features a type of waveguide developed to allow transition from rectangular waveguide to coplanar waveguide. The waveguide consists of a ridge extending from the upper waveguide wall into a trough in the lower waveguide wall, and is known as the ridge-trough waveguide. A mathematical model is presented that allows important properties of the ridge-trough waveguide, such as the cutoff frequency and characteristic impedance, to be calculated.
A millimeter wave Josephson mixer employing a high-T(c) GdBaCuO point contact
NASA Technical Reports Server (NTRS)
Olsson, H. K.; Claeson, T.; Eriksson, S.; Johansson, L.-G.; Mcgrath, W. R.
1987-01-01
A Josephson effect heterodyne mixer for the millimeter wave band was investigated employing high-T(c) GdBaCuO point contacts. Mixer performance was in qualitative agreement with theory. A mixing response was observed up to 55 K, the highest operating temperature achieved for such a device to date. The voltage separation of RF-induced steps gave a value of h/2e = 2.08 x 10 to the -15th V s, which is in excellent agreement with the value expected for Cooper pairs. In addition, the temperature dependence of the I(0)R product was found to agree with Bardeen-Cooper-Schrieffer theory in the weak coupling limit.
All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter.
Gao, Yongsheng; Wen, Aijun; Chen, Wei; Li, Xiaoyan
2017-03-15
An all-optical and ultra-wideband microwave in-phase/quadrature (I/Q) mixer, based on a dual-parallel Mach-Zehnder modulator and a wavelength division multiplexer, is proposed. Due to the simultaneous frequency down-conversion and 360-deg tunable phase shifting in the optical domain, the proposed I/Q mixer has the advantages of high conversion gain and excellent quadrature phase balance (<±1.3 deg) with a wide operating frequency from 10 to 40 GHz. Assisted by an analog or digital intermediate-frequency quadrature coupler, an image-reject frequency down-converter is then implemented, with an image rejection exceeding 50 dB over the working band.
Accurate and rapid micromixer for integrated microfluidic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Dam, R. Michael; Liu, Kan; Shen, Kwang -Fu Clifton
2015-09-22
The invention may provide a microfluidic mixer having a droplet generator and a droplet mixer in selective fluid connection with the droplet generator. The droplet generator comprises first and second fluid chambers that are structured to be filled with respective first and second fluids that can each be held in isolation for a selectable period of time. The first and second fluid chambers are further structured to be reconfigured into a single combined chamber to allow the first and second fluids in the first and second fluid chambers to come into fluid contact with each other in the combined chambermore » for a selectable period of time prior to being brought into the droplet mixer.« less
Design of an Efficient Turbulent Micro-Mixer for Protein Folding Experiments
NASA Astrophysics Data System (ADS)
Inguva, Venkatesh; Perot, Blair
2015-11-01
Protein folding studies require the development of micro-mixers that require less sample, mix at faster rates, and still provide a high signal to noise ratio. Chaotic to marginally turbulent micro-mixers are promising candidates for this application. In this study, various turbulence and unsteadiness generation concepts are explored that avoid cavitation. The mixing enhancements include flow turning regions, flow splitters, and vortex shedding. The relative effectiveness of these different approaches for rapid micro-mixing is discussed. Simulations found that flow turning regions provided the best mixing profile. Experimental validation of the optimal design is verified through laser confocal microscopy experiments. This work is support by the National Science Foundation.
Modeling and Optimization of a High-Tc Hot-Electron Superconducting Mixer for Terahertz Applicaitons
NASA Technical Reports Server (NTRS)
Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.; Burns, M. J.; Kleinsasser, A. W.; Delin, K. A.; Vasquez, R. P.
1996-01-01
The development of a YBa(sub 2)Cu(sub 3)O(sub 7-(kronecker delta))(YBCO) hot-electron bolometer (HEB) quasioptical mixer for a 2.5 heterodyne receiver is discussed. The modeled device is a submicron bridge made from a 10 nm thick film on a high thermal conductance substrate. The mixer performance expected for this device is analyzed in the framework of a two-temperature model which includes heating both of the electrons and the lattice. Also, the contribution of heat diffusion from the film through the substrate and from the film to the normal metal contacts is evaluated....a single sideband temperature of less than 2000k is predicted.
Shot-noise in resistive-diode mixers and the attenuator noise model
NASA Technical Reports Server (NTRS)
Kerr, A. R.
1979-01-01
The representation of a pumped exponential diode, operating as a mixer, by an equivalent lossy network, is reexamined. It is shown that the model is correct provided the network has ports for all sideband frequencies at which (real) power flow can occur between the diode and its embedding. The temperature of the equivalent network is eta/2 times the physical temperature of the diode. The model is valid only if the series resistance and nonlinear capacitance of the diode are negligible. Expressions are derived for the input and output noise temperature and the noise-temperature ratio of ideal mixers. Some common beliefs concerning noise-figure and noise-temperature ratio are shown to be incorrect.
Zhuang, Leimeng; Beeker, Willem; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris
2013-02-11
We propose and demonstrate a novel wideband microwave photonic polarization network for dual linear-polarized antennas. The polarization network is based on a waveguide-implemented fully-reconfigurable optical interleaver using a two-ring resonator-assisted asymmetric Mach-Zehnder structure. For microwave photonic signal processing, this structure is able to serve as a wideband 2 × 2 RF coupler with reconfigurable complex coefficients, and therefore can be used as a polarization network for wideband antennas. Such a device can equip the antennas with not only the polarization rotation capability for linear-polarization signals but also the capability to operate with and tune between two opposite circular polarizations. Operating together with a particular modulation scheme, the device is also able to serve for simultaneous feeding of dual-polarization signals. These photonic-implemented RF functionalities can be applied to wideband antenna systems to perform agile polarization manipulations and tracking operations. An example of such a interleaver has been realized in TriPleX waveguide technology, which was designed with a free spectral range of 20 GHz and a mask footprint of smaller than 1 × 1 cm. Using the realized device, the reconfigurable complex coefficients of the polarization network were demonstrated with a continuous bandwidth from 2 to 8 GHz and an in-band phase ripple of smaller than 5 degree. The waveguide structure of the device allows it to be further integrated with other functional building blocks of a photonic integrated circuit to realize on-chip, complex microwave photonic processors. Of particular interest, it can be included in an optical beamformer for phased array antennas, so that simultaneous wideband beam and polarization trackings can be achieved photonically. To our knowledge, this is the first-time on-chip demonstration of an integrated microwave photonic polarization network for dual linear-polarized antennas.
NASA Astrophysics Data System (ADS)
Orekhova, T. N.; Nosov, O. A.; Prokopenko, V. S.; Kachaev, A. E.
2018-03-01
The improvement of the design of the pneumatic mixers aimed at the possibility of obtaining homogeneous disperse systems, while the resource and energy saving issues play an important role in the conditions of enterprises that use this type of equipment in their technological chain, is described in the article.
High-Tc superconducting microbolometer for terahertz applications
NASA Astrophysics Data System (ADS)
Ulysse, C.; Gaugue, A.; Adam, A.; Kreisler, A. J.; Villégier, J.-C.; Thomassin, J.-L.
2002-05-01
Superconducting hot electron bolometer mixers are now a competitive alternative to Schottky diode mixers in the terahertz frequency range because of their ultra wideband (from millimeter waves to visible light), high conversion gain, and low intrinsic noise level. High Tc superconductor materials can be used to make hot electron bolometers and present some advantage in term of operating temperature and cooling. In this paper, we present first a model for the study of superconducting hot electron bolometers responsivity in direct detection mode, in order to establish a firm basis for the design of future THz mixers. Secondly, an original process to realize YBaCuO hot electron bolometer mixers will be described. Submicron YBaCuO superconducting structures are expitaxially sputter deposited on MgO substrates and patterned by using electron beam lithography in combination with optical lithography. Metal masks achieved by electron beam lithography are insuring a good bridge definition and protection during ion etching. Finally, detection experiments are being performed with a laser at 850 nm wavelength, in homodyne mode in order to prove the feasibility and potential performances of these devices.
Lobed Mixer Optimization for Advanced Ejector Geometries
NASA Technical Reports Server (NTRS)
Waitz, Ian A.
1996-01-01
The overall objectives are: 1) to pursue analytical, computational, and experimental studies that enhance basic understanding of forced mixing phenomena relevant to supersonic jet noise reduction, and 2) to integrate this enhanced understanding (analytical, computational, and empirical) into a design-oriented model of a mixer-ejector noise suppression system. The work is focused on ejector geometries and flow conditions typical of those being investigated in the NASA High Speed Research Program (HSRP). The research will be carried out in collaboration with the NASA HSRP Nozzle Integrated Technology Development (ITD) Team, and will both contribute to, and benefit from, the results of other HSRP research. The noise suppressor system model that is being developed under this grant is distinct from analytical tools developed by industry because it directly links details of lobe geometry to mixer-ejector performance. In addition, the model provides a 'technology road map to define gaps in the current understanding of various phenomena related to mixer-ejector design and to help prioritize research areas. This report describes research completed in the past year, as well as work proposed for the following year.
Summary of JAYGO mixing and FSM-1 application of castable inhibitor and liner
NASA Technical Reports Server (NTRS)
Evans, Kurt B.
1990-01-01
Two JAYGO planetary mixers (12 and 42 gallon) are being qualified to mix STW5-3224 liner and STW5-3223 castable inhibitor. These mixers are an integral part of a mix process which allows for safe addition of the asbestos component. An essential part of the engineering evaluation (ETP-0347) of these mixers is the generation of static test fire data. Ultimately, these results will help confirm the adequacy of these mixers for production mixing of liner and inhibitor. (These data are not required for qualification of the Certification Test Plan CTP-0125). The details on the mixing, inhibiting, and sling-lining of JAYGO-mixed castable inhibitor and liner which were applied to the FSM-1 segments are presented. The objectives are the following: (1) to document processing events surrounding the JAYO mixing of castable inhibitor and liner, and the subsequent inhibiting and sling lining onto the FSM-1 segments; and (2) to substantiate the measured properties of these JAYGO-mixed materials (rheological and mechanical) and compare these properties to existing production database.
Very High Current Density Nb/AlN/Nb Tunnel Junctions for Low-Noise Submillimeter Mixers
NASA Technical Reports Server (NTRS)
Kawamura, Jonathan; Miller, David; Chen, Jian; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.
2000-01-01
We have fabricated and tested submillimeter-wave superconductor-insulator-superconductor (SIS) mixers using very high current density Nb/AlN/Nb tunnel junctions (J(sub c) approximately equal 30 kA/sq cm) . The junctions have low resistance-area products (R(sub N)A approximately 5.6 Omega.sq micron), good subgap to normal resistance ratios R(sub sg)/R(sub N) approximately equal 10, and good run-to-run reproducibility. From Fourier transform spectrometer measurements, we infer that omega.R(sub N)C = 1 at 270 GHz. This is a factor of 2.5 improvement over what is generally available with Nb/AlO(x)/Nb junctions suitable for low-noise mixers. The AlN-barrier junctions are indeed capable of low-noise operation: we measure an uncorrected receiver noise temperature of T(sub RX) = 110 K (DSB) at 533 GHz for an unoptimized device. In addition to providing wider bandwidth operation at lower frequencies, the AlN-barrier junctions will considerably improve the performance of THz SIS mixers by reducing RF loss in the tuning circuits.
Ceramic membrane ozonator for soluble organics removal from produced water
NASA Astrophysics Data System (ADS)
Siagian, U. W. R.; Dwipramana, A. S.; Perwira, S. B.; Khoiruddin; Wenten, I. G.
2018-01-01
In this work, the performance of ozonation for degradation of soluble organic compounds in produced water was investigated. Tubular ceramic membrane diffuser (with and without a static mixer in the lumen side) was used to facilitate contact between ozone and produced water. The ozonation was conducted at ozone flow rate of 8 L.min-1, ozone concentration of 0.4 ppm, original pH of the solution, and pressure of 1.2 bar, while the flow rates of the produced water were varied (192, 378 and 830 mL.min-1). It was found that the reduction of benzene, toluene, ethylbenzene, and xylene were 85%, 99%, 85%, and 95%, respectively. A lower liquid flow rate in a laminar state showed a better component reduction due to the longer contacting time between the liquid and the gas phase. The introduction of the static mixer in the lumen side of the membrane as a turbulence promoter provided a positive effect on the performance of the membrane diffuser. The twisted static mixer exhibited the better removal rate than the spiral static mixer.
House microbiotas as sources of lactic acid bacteria and yeasts in traditional Italian sourdoughs.
Minervini, Fabio; Lattanzi, Anna; De Angelis, Maria; Celano, Giuseppe; Gobbetti, Marco
2015-12-01
This study aimed at understanding the extent of contamination by lactic acid bacteria (LAB) and yeasts from the house microbiotas during sourdough back-slopping. Besides sourdoughs, wall, air, storage box, dough mixer and flour of four bakeries were analyzed. Based on plate counts, LAB and yeasts dominated the house microbiota. Based on high throughput sequencing of the 16S rRNA genes, flour harbored the highest number of Firmicutes, but only few of them adapted to storage box, dough mixer and sourdough. Lactobacillus sanfranciscensis showed the highest abundance in dough mixer and sourdoughs. Lactobacillus plantarum persisted only in storage box, dough mixer and sourdough of two bakeries. Weissella cibaria also showed higher adaptability in sourdough than in bakery equipment, suggesting that flour is the main origin of this species. Based on 18S rRNA data, Saccharomyces cerevisiae was the dominant yeast in house and sourdough microbiotas, excepted one bakery dominated by Kazachstania exigua. The results of this study suggest that the dominant species of sourdough LAB and yeasts dominated also the house microbiota. Copyright © 2015 Elsevier Ltd. All rights reserved.
Soft Mixer Assignment in a Hierarchical Generative Model of Natural Scene Statistics
Schwartz, Odelia; Sejnowski, Terrence J.; Dayan, Peter
2010-01-01
Gaussian scale mixture models offer a top-down description of signal generation that captures key bottom-up statistical characteristics of filter responses to images. However, the pattern of dependence among the filters for this class of models is prespecified. We propose a novel extension to the gaussian scale mixture model that learns the pattern of dependence from observed inputs and thereby induces a hierarchical representation of these inputs. Specifically, we propose that inputs are generated by gaussian variables (modeling local filter structure), multiplied by a mixer variable that is assigned probabilistically to each input from a set of possible mixers. We demonstrate inference of both components of the generative model, for synthesized data and for different classes of natural images, such as a generic ensemble and faces. For natural images, the mixer variable assignments show invariances resembling those of complex cells in visual cortex; the statistics of the gaussian components of the model are in accord with the outputs of divisive normalization models. We also show how our model helps interrelate a wide range of models of image statistics and cortical processing. PMID:16999575
Mohammad, Ahmad W; Shams, Haymen; Balakier, Katarzyna; Graham, Chris; Natrella, Michele; Seeds, Alwyn J; Renaud, Cyril C
2018-02-05
We report the first demonstration of a uni-traveling carrier photodiode (UTC-PD) used as a 5 Gbps wireless receiver. In this experiment, a 35.1 GHz carrier was electrically modulated with 5 Gbps non-return with zero on-off keying (NRZ-OOK) data and transmitted wirelessly over a distance of 1.3 m. At the receiver, a UTC-PD was used as an optically pumped mixer (OPM) to down-convert the received radio frequency (RF) signal to an intermediate frequency (IF) of 11.7 GHz, before it was down-converted to the baseband using an electronic mixer. The recovered data show a clear eye diagram, and a bit error rate (BER) of less than 10 -8 was measured. The conversion loss of the UTC-PD optoelectronic mixer has been measured at 22 dB. The frequency of the local oscillator (LO) used for the UTC-PD is defined by the frequency spacing between the two optical tones, which can be broadly tuneable offering the frequency agility of this photodiode-based receiver.
An inverted micro-mixer based on a magnetically-actuated cilium made of Fe doped PDMS
NASA Astrophysics Data System (ADS)
Liu, Fengli; Zhang, Jun; Alici, Gursel; Yan, Sheng; Mutlu, Rahim; Li, Weihua; Yan, Tianhong
2016-09-01
In this paper, we report a new micromixer based on a flexible artificial cilium activated by an external magnetic field. The cilium is fabricated from Polydimethylsiloxane doped with Fe microparticles. The fabrication method is based on the standard sacrificial layer technology. The cilium was built on a glass slide, and then was bonded on the top of the micro-mixer chamber in a microfluidic chip. This fabrication process for the miniaturized active mixers is simple and cost effective. An electromagnetic system was used to drive the cilium and induce strong convective flows of the fluid in the chamber. In the presence of an alternating magnetic field, the cilium applied a corresponding alternating force on the surrounding fluids. The performance of the electromagnetically activated cilium was quantified and optimized in order to obtain maximum mixing performance. In addition, the mixing performance of the cilium in a circular micro-chamber was compared with pure diffusion. Up to 80% of a 60 ul liquid in the chamber can be fully mixed after 2 min using a cilium mixer under a magnetic flux density of 22 mT in contrast to the 20 min which were needed to obtain the same mixing percentage under pure diffusion. Furthermore, for a mixing degree of 80%, the mixing speed for the cilia micromixer proposed in this study was 9 times faster than that of the diffusion-based micro-mixers reported in the literature.
NASA Technical Reports Server (NTRS)
2003-01-01
Topics include: Tool for Bending a Metal Tube Precisely in a Confined Space; Multiple-Use Mechanisms for Attachment to Seat Tracks; Force-Measuring Clamps; Cellular Pressure-Actuated Joint; Block QCA Fault-Tolerant Logic Gates; Hybrid VLSI/QCA Architecture for Computing FFTs; Arrays of Carbon Nanotubes as RF Filters in Waveguides; Carbon Nanotubes as Resonators for RF Spectrum Analyzers; Software for Viewing Landsat Mosaic Images; Updated Integrated Mission Program; Software for Sharing and Management of Information; Optical-Quality Thin Polymer Membranes; Rollable Thin Shell Composite-Material Paraboloidal Mirrors; Folded Resonant Horns for Power Ultrasonic Applications; Touchdown Ball-Bearing System for Magnetic Bearings; Flux-Based Deadbeat Control of Induction-Motor Torque; Block Copolymers as Templates for Arrays of Carbon Nanotubes; Throttling Cryogen Boiloff To Control Cryostat Temperature; Collaborative Software Development Approach Used to Deliver the New Shuttle Telemetry Ground Station; Turbulence in Supercritical O2/H2 and C7H16/N2 Mixing Layers; and Time-Resolved Measurements in Optoelectronic Microbioanal.
NASA Technical Reports Server (NTRS)
Harrington, Douglas E.
1998-01-01
The aerospace industry is currently investigating the effect of installing mixer/ejector nozzles on the core flow exhaust of high-bypass-ratio turbofan engines. This effort includes both full-scale engine tests at sea level conditions and subscale tests in static test facilities. Subscale model tests are to be conducted prior to full-scale testing. With this approach, model results can be analyzed and compared with analytical predications. Problem areas can then be identified and design changes made and verified in subscale prior to committing to any final design configurations for engine ground tests. One of the subscale model test programs for the integrated mixer/ejector development was a joint test conducted by the NASA Lewis Research Center and Pratt & Whitney Aircraft. This test was conducted to study various mixer/ejector nozzle configurations installed on the core flow exhaust of advanced, high-bypass-ratio turbofan engines for subsonic, commercial applications. The mixer/ejector concept involves the introduction of largescale, low-loss, streamwise vortices that entrain large amounts of secondary air and rapidly mix it with the primary stream. This results in increased ejector pumping relative to conventional ejectors and in more complete mixing within the ejector shroud. The latter improves thrust performance through the efficient energy exchange between the primary and secondary streams. This experimental program was completed in April 1997 in Lewis' CE-22 static test facility. Variables tested included the nozzle area ratio (A9/A8), which ranged from 1.6 to 3.0. This ratio was varied by increasing or decreasing the nozzle throat area, A8. Primary nozzles tested included both lobed mixers and conical primaries. These configurations were tested with and without an outer shroud, and the shroud position was varied by inserting spacers in it. In addition, data were acquired with and without secondary flow.
Laboratory Investigations in Support of Carbon Dioxide-Limestone Sequestration in the Ocean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan Golomb; Eugene Barry; David Ryan
2005-11-01
This semi-annual progress reports includes further findings on CO{sub 2}-in-Water (C/W) emulsions stabilized by fine particles. In previous semi-annual reports we described the formation of stable C/W emulsions using pulverized limestone (CaCO{sub 3}), flyash, beach sand, shale and lizardite, a rock rich in magnesium silicate. For the creation of these emulsions we used a High-Pressure Batch Reactor (HPBR) equipped with view windows for illumination and video camera recording. For deep ocean sequestration, a C/W emulsion using pulverized limestone may be the most suitable. (a) Limestone (mainly CaCO{sub 3}) is cheap and plentiful; (b) limestone is innocuous for marine organisms (inmore » fact, it is the natural ingredient of shells and corals); (c) it buffers the carbonic acid that forms when CO{sub 2} dissolves in water. For large-scale sequestration of a CO{sub 2}/H{sub 2}O/CaCO{sub 3} emulsion a device is needed that mixes the ingredients, liquid carbon dioxide, seawater, and a slurry of pulverized limestone in seawater continuously, rather than incrementally as in a batch reactor. A practical mixing device is a Kenics-type static mixer. The static mixer has no moving parts, and the shear force for mixing is provided by the hydrostatic pressure of liquid CO{sub 2} and CaCO{sub 3} slurry in the delivery pipes from the shore to the disposal depth. This semi-annual progress report is dedicated to the description of the static mixer and the results that have been obtained using a bench-scale static mixer for the continuous formation of a CO{sub 2}/H{sub 2}O/CaCO{sub 3} emulsion. The static mixer has an ID of 0.63 cm, length 23.5 cm, number of baffles 27. Under pressure, a slurry of CaCO{sub 3} in artificial seawater (3.5% by weight NaCl) and liquid CO{sub 2} are co-injected into the mixer. From the mixer, the resulting emulsion flows into a Jerguson cell with two oblong windows on opposite sides, then it is vented. A fully ported ball valve inserted after the Jerguson cell allows the emulsion to be stopped in the cell. In such a manner the emulsion can be photographed while it is flowing through the cell, or after it has stagnated in the cell. A slurry of 10 g/L CaCO{sub 3} (Sigma Chemicals C-4830 reagent grade) in artificial seawater, co-injected into the static mixer at a rate of 1.5 L/min with liquid CO{sub 2} at a rate of 150 mL/min, at temperature 5-10 C, pressure 10 MPa, produced an emulsion with mean globule diameter in the 70-100 {micro}m range. In a HPBR, using the same materials, proportions, temperature and pressure, mixed with a magnetic stir bar at 1300 rpm, the mean globule diameter is in the 200-300 {micro}m range. Evidently, the static mixer produces an emulsion with smaller globule diameters and narrower distribution of globule diameters than a batch reactor.« less
Microminiature optical waveguide structure and method for fabrication
Strand, O.T.; Deri, R.J.; Pocha, M.D.
1998-12-08
A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat. 32 figs.
Microminiature optical waveguide structure and method for fabrication
Strand, Oliver T.; Deri, Robert J.; Pocha, Michael D.
1998-01-01
A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat.
High Resolution Imaging with MUSTANG-2 on the GBT
NASA Astrophysics Data System (ADS)
Stanchfield, Sara; Ade, Peter; Aguirre, James; Brevik, Justus A.; Cho, Hsiao-Mei; Datta, Rahul; Devlin, Mark; Dicker, Simon R.; Dober, Bradley; Duff, Shannon M.; Egan, Dennis; Ford, Pam; Hilton, Gene; Hubmayr, Johannes; Irwin, Kent; Knowles, Kenda; Marganian, Paul; Mason, Brian Scott; Mates, John A. B.; McMahon, Jeff; Mello, Melinda; Mroczkowski, Tony; Romero, Charles; Sievers, Jonathon; Tucker, Carole; Vale, Leila R.; Vissers, Michael; White, Steven; Whitehead, Mark; Ullom, Joel; Young, Alexander
2018-01-01
We present early science results from MUSTANG-2, a 90 GHz feedhorn-coupled, microwave SQUID-multiplexed TES bolometer array operating on the Robert C. Byrd Green Bank Telescope (GBT). The feedhorn and waveguide-probe-coupled detector technology is a mature technology, which has been used on instruments such as the South Pole Telescope, the Atacama Cosmology Telescope, and the Atacama B-mode Search telescope. The microwave SQUID multiplexer-based readout system developed for MUSTANG-2 currently reads out 66 detectors with a single coaxial cable and will eventually allow thousands of detectors to be multiplexed. This microwave SQUID multiplexer combines the proven abilities of millimeter wave TES detectors with the multiplexing capabilities of KIDs with no degradation in noise performance of the detectors. Each multiplexing device is read out using warm electronics consisting of a commercially available ROACH board, a DAC/ADC card, and an Intermediate Frequency mixer circuit. The hardware was originally developed by the Collaboration for Astronomy Signal Processing and Electronic Research (CASPER) group, whose primary goal is to develop scalable FPGA-based hardware with the flexibility to be used in a wide range of radio signal processing applications. MUSTANG-2 is the first on-sky instrument to use microwave SQUID multiplexing and is available as a shared-risk/PI instrument on the GBT. In MUSTANG-2’s first season 7 separate proposals were awarded a total of 230 hours of telescope time.
Method and apparatus for preventing cyclotron breakdown in partially evacuated waveguide
Moeller, Charles P.
1987-01-01
Cyclotron breakdown is prevented in a partially evacuated waveguide by providing a section of waveguide having an axial cut therein in order to apply a potential across the two halves of the waveguide. This section is positioned in the waveguide crossing the area of electron cyclotron resonance. The potential applied across the waveguide halves is used to deflect seed electrons into the wall of the waveguide in order to prevent ionization of gas molecules and creation of more electron ion pairs which would result in cyclotron breakdown. Support means is also disclosed for electrically isolating the waveguide halves and transition means is provided between the section of the waveguide with the axial cut and the solid waveguide at either end thereof.
Phase Conjugation Scaling for High Energy Lasers.
1985-05-30
PFPORT b PfRiOE) C"v’’’ NV Pnase cor, uqatio. scaling for high. energy’ lasers FIna 718 PF RF06MING OR,’ 04EPOPT NUM14EP C 7. AUHRo. CONTRACT QN GRA#%T...nocoo..wy dind ld9ntalY DY OoCw K~b * - High energy lasers ; phase conjugation; stimulated Brillouin scattering,’ infrared waveguides 2. ABSTRACT...coiw on meoe eti if I r’w~ o ldenIr by block n’.inb..) * Phase conjugation of both cv and pulsed 10.6 micron lasers by stimulated * Brillouin
Nonimaging light concentrator with uniform irradiance
Winston, Roland; Gee, Randy C.
2003-04-01
A nonimaging light concentrator system including a primary collector of light, an optical mixer disposed near the focal zone for collecting light from the primary collector, the optical mixer having a transparent entrance aperture, an internally reflective housing for substantially total internal reflection of light, a transparent exit aperture and an array of photovoltaic cells disposed near the transparent exit aperture.
NASA Technical Reports Server (NTRS)
Hurley, J. F.; Anson, L.; Wilson, C.
1978-01-01
This report describes the design configuration and method used to design the forced engine exhaust to bypass air mixing system for Lycoming's QCGAT engine. This mixer is an integral part of the total engine and nacelle system and was configured to reduce the propulsion system noise and fuel consumption levels.
29 CFR 570.62 - Occupations involved in the operation of bakery machines (Order 11).
Code of Federal Regulations, 2010 CFR
2010-07-01
... dough mixer; batter mixer; bread dividing, rounding, or molding machine; dough brake; dough sheeter... cookie or cracker machine. (b) Exceptions. (1) This section shall not apply to the operation, including... as prohibited by § 570.61(a)(4). (2) This section shall not apply to the operation of pizza-dough...
Digital-Difference Processing For Collision Avoidance.
NASA Technical Reports Server (NTRS)
Shores, Paul; Lichtenberg, Chris; Kobayashi, Herbert S.; Cunningham, Allen R.
1988-01-01
Digital system for automotive crash avoidance measures and displays difference in frequency between two sinusoidal input signals of slightly different frequencies. Designed for use with Doppler radars. Characterized as digital mixer coupled to frequency counter measuring difference frequency in mixer output. Technique determines target path mathematically. Used for tracking cars, missiles, bullets, baseballs, and other fast-moving objects.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-08
... Section 1605 of ARRA. This action permits the purchase of the selected vertical linear motion mixers not...: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The Regional Administrator of EPA Region 6 is... purchase of ten (10) vertical linear motion mixers for the Clean Water State Revolving Fund (CWSRF) Hornsby...
ERIC Educational Resources Information Center
Baz-Rodríguez, Sergio; Herrera-Soberanis, Natali; Rodríguez-Novelo, Miguel; Guillén-Francisc, Juana; Rocha-Uribe, José
2016-01-01
An experiment for teaching mixing intensification in reaction engineering is described. For this, a simple tubular reactor was constructed; helical static mixer elements were fabricated from stainless steel strips and inserted into the reactor. With and without the internals, the equipment operates as a static mixer reactor or a laminar flow…
INTERIOR VIEW, LOOKING WEST, WITH CRANE OPERATOR, TED SEALS, POURING ...
INTERIOR VIEW, LOOKING WEST, WITH CRANE OPERATOR, TED SEALS, POURING MOLTEN METAL INTO A 1,300 TON ELECTRIC HOLDING FURNACE OR MIXER. AN ELECTRONIC SCALE RECORDED THAT 50.5 TONS OF METAL WERE POURED INTO THE FURNACE DURING THIS POUR. - American Cast Iron Pipe Company, Mixer Building, 1501 Thirty-first Avenue North, Birmingham, Jefferson County, AL
Influence of melt mixer on injection molding of thermoset elastomers
NASA Astrophysics Data System (ADS)
Rochman, Arif; Zahra, Keith
2016-10-01
One of the drawbacks in injection molding is that the plasticizing screw is short such that polymers having high concentrations of additives, such as thermoset elastomers, might not mix homogeneously within the short period of time during the plasticizing stage. In this study, various melt mixers inside the nozzle chamber, together forming a mixing nozzle, were developed. Three different materials were investigated, namely nitrile butadiene rubber (NBR), ethylene propylene-diene monomer (EPDM) and fluorocarbon (FKM). The use of these melt mixers resulted in better homogeneity and properties of the molded parts despite a curing time reduction of 10 s. This was due to the increase in mixing and shearing introduced a higher rate of crosslinking formation in the molded parts.
AC electroosmotic micromixer for chemical processing in a microchannel.
Sasaki, Naoki; Kitamori, Takehiko; Kim, Haeng-Boo
2006-04-01
A rapid micromixer of fluids in a microchannel is presented. The mixer uses AC electroosmotic flow, which is induced by applying an AC voltage to a pair of coplanar meandering electrodes configured in parallel to the channel. To demonstrate performance of the mixer, dilution experiments were conducted using a dye solution in a channel of 120 microm width. Rapid mixing was observed for flow velocity up to 12 mm s(-1). The mixing time was 0.18 s, which was 20-fold faster than that of diffusional mixing without an additional mixing mechanism. Compared with the performance of reported micromixers, the present mixer worked with a shorter mixing length, particularly at low Peclet numbers (Pe < 2 x 10(3)).
NASA Astrophysics Data System (ADS)
Kohjiro, Satoshi; Kikuchi, Kenichi; Maezawa, Masaaki; Furuta, Tomofumi; Wakatsuki, Atsushi; Ito, Hiroshi; Shimizu, Naofumi; Nagatsuma, Tadao; Kado, Yuichi
2008-09-01
We have demonstrated that a superconductor-insulator-superconductor (SIS) mixer pumped by a photonic local oscillator (LO) covers the whole frequency range of 0.2-0.5THz. In the bandwidth of 74% of the center frequency, this single-band receiver exhibits noise temperature of TRX⩽20hf/kB, where h is Planck's constant, f is the frequency, and kB is Boltzmann's constant. Resultant TRX is almost equal to TRX of the identical SIS mixer pumped by three conventional frequency-multiplier-based LOs which share the 0.2-0.5THz band. This technique will contribute to simple, wide-band, and low-noise heterodyne receivers in the terahertz region.
Ionic electroactive polymer actuators as active microfluidic mixers
Meis, Catherine; Montazami, Reza; Hashemi, Nastaran
2015-11-06
On-chip sample processing is integral to the continued development of lab-on-a-chip devices for various applications. An active microfluidic mixer prototype is proposed using ionic electroactive polymer actuators (IEAPAs) as artificial cilia. A proof-of-concept experiment was performed in which the actuators were shown to produce localized flow pattern disruptions in the laminar flow regime. Suggestions for further engineering and optimization of a scaled-down, complete device are provided. Furthermore, the device in its current state of development necessitates further engineering, the use of IEAPAs addresses issues currently associated with the use of electromechanical actuators as active microfluidic mixers and may prove tomore » be a useful alternative to other similar materials.« less
Source conductance scaling for high frequency superconducting quasiparticle receivers
NASA Technical Reports Server (NTRS)
Ke, Qing; Feldman, M. J.
1992-01-01
It has been suggested that the optimum source conductance G(sub s) for the superconductor-insulator-superconductor (SIS) quasiparticle mixer should have a l/f dependence. This would imply that the critical current density of SIS junctions used for mixing should increase as frequency squared, a stringent constraint on the design of submillimeter SIS mixers, rather than in simple proportion to frequency as previously believed. We have used Tucker's quantum theory of mixing for extensive numerical calculations to determine G(sub s) for an optimized SIS receiver. We find that G(sub s) is very roughly independent of frequency (except for the best junctions at low frequency), and discuss the implications of our results for the design of submillimeter SIS mixers.
Fiber-optic delay-line stabilization of heterodyne optical signal generator and method using same
NASA Technical Reports Server (NTRS)
Logan, Ronald T. (Inventor)
1997-01-01
The present invention is a laser heterodyne frequency generator system with a stabilizer for use in the microwave and millimeter-wave frequency ranges utilizing a photonic mixer as a photonic phase detector in a stable optical fiber delay-line. Phase and frequency fluctuations of the heterodyne laser signal generators are stabilized at microwave and millimeter wave frequencies by a delay line system operating as a frequency discriminator. The present invention is free from amplifier and mixer 1/.function. noise at microwave and millimeter-wave frequencies that typically limit phase noise performance in electronic cavity stabilized electronic oscillators. Thus, 1/.function. noise due to conventional mixers is eliminated and stable optical heterodyne generation of electrical signals is achieved.
Kong, Deqing; Tsubokawa, Makoto
2015-07-27
We numerically analyzed the power-coupling characteristics between a high-index-contrast dielectric slot waveguide and a metal-insulator-metal (MIM) plasmonic slot waveguide as functions of structural parameters. Couplings due mainly to the transfer of evanescent components in two waveguides generated high transmission efficiencies of 62% when the slot widths of the two waveguides were the same and 73% when the waveguides were optimized by slightly different widths. The maximum transmission efficiency in the slot-to-slot coupling was about 10% higher than that in the coupling between a normal slab waveguide and an MIM waveguide. Large alignment tolerance of the slot-to-slot coupling was also proved. Moreover, a small gap inserted into the interface between two waveguides effectively enhances the transmission efficiency, as in the case of couplings between a normal slab waveguide and an MIM waveguide. In addition, couplings with very wideband transmissions over a wavelength region of a few hundred nanometers were validated.
Slotted Polyimide-Aerogel-Filled-Waveguide Arrays
NASA Technical Reports Server (NTRS)
Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.
2013-01-01
Polyimide aerogels were considered to serve as a filling for millimeter-wave waveguides. While these waveguides present a slightly higher loss than hollow waveguides, they have less losses than Duroid substrate integrated waveguides (less than 0.15 dB at Ka-band, in a 20 mm section), and exhibit an order of magnitude of mass reduction when compared to commercial waveguides. A Ka-band slotted aerogel-filled-waveguide array was designed, which provided the same gain (9 dBi) as its standard waveguide counterpart, and a slotted aerogel-filled-waveguide array using folded-slots was designed for comparison, obtaining a gain of 9 dB and a bandwidth of 590 MHz.
Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode
NASA Astrophysics Data System (ADS)
Yuan, Sheng-Nan; Fang, Yun-Tuan
2017-10-01
In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA < 0.09a; only dielectric waveguide modes occur for rA > 0.25a; two kinds of modes coexist for 0.09a < rA < 0.25a. The plasmonic waveguide mode has advantages in achieving slow light.
NASA Astrophysics Data System (ADS)
Schrage, J.; Soenmez, Y.; Happel, T.; Gubler, U.; Lukowicz, P.; Mrozynski, G.
2006-02-01
From long haul, metro access and intersystem links the trend goes to applying optical interconnection technology at increasingly shorter distances. Intrasystem interconnects such as data busses between microprocessors and memory blocks are still based on copper interconnects today. This causes a bottleneck in computer systems since the achievable bandwidth of electrical interconnects is limited through the underlying physical properties. Approaches to solve this problem by embedding optical multimode polymer waveguides into the board (electro-optical circuit board technology, EOCB) have been reported earlier. The principle feasibility of optical interconnection technology in chip-to-chip applications has been validated in a number of projects. For reasons of cost considerations waveguides with large cross sections are used in order to relax alignment requirements and to allow automatic placement and assembly without any active alignment of components necessary. On the other hand the bandwidth of these highly multimodal waveguides is restricted due to mode dispersion. The advance of WDM technology towards intrasystem applications will provide sufficiently high bandwidth which is required for future high-performance computer systems: Assuming that, for example, 8 wavelength-channels with 12Gbps (SDR1) each are given, then optical on-board interconnects with data rates a magnitude higher than the data rates of electrical interconnects for distances typically found at today's computer boards and backplanes can be realized. The data rate will be twice as much, if DDR2 technology is considered towards the optical signals as well. In this paper we discuss an approach for a hybrid integrated optoelectronic WDM package which might enable the application of WDM technology to EOCB.
NASA Astrophysics Data System (ADS)
Lee, Chia-Yen; Lee, Gwo-Bin; Fu, Lung-Ming; Lee, Kuo-Hoong; Yang, Ruey-Jen
2004-10-01
This paper presents a new electrokinetically driven active micro-mixer which uses localized capacitance effects to induce zeta potential variations along the surface of silica-based microchannels. The mixer is fabricated by etching bulk flow and shielding electrode channels into glass substrates and then depositing Au/Cr thin films within the latter to form capacitor electrodes, which establish localized zeta potential variations near the electrical double layer (EDL) region of the electroosmotic flow (EOF) within the microchannels. The potential variations induce flow velocity changes within a homogeneous fluid and a rapid mixing effect if an alternating electric field is provided. The current experimental data confirm that the fluid velocity can be actively controlled by using the capacitance effect of the buried shielding electrodes to vary the zeta potential along the channel walls. While compared with commonly used planar electrodes across the microchannels, the buried shielding electrodes prevent current leakage caused by bad bonding and allow direct optical observation during operation. It also shows that the buried shielding electrodes can significantly induce the field effect, resulting in higher variations of zeta potential. Computational fluid dynamic simulations are also used to study the fluid characteristics of the developed active mixers. The numerical and experimental results demonstrate that the developed microfluidic device permits a high degree of control over the fluid flow and an efficient mixing effect. Moreover, the developed device could be used as a pumping device as well. The development of the active electrokinetically driven micro-mixer could be crucial for micro-total-analysis-systems.
Mixing Study in a Multi-dimensional Motion Mixer
NASA Astrophysics Data System (ADS)
Shah, R.; Manickam, S. S.; Tomei, J.; Bergman, T. L.; Chaudhuri, B.
2009-06-01
Mixing is an important but poorly understood aspect in petrochemical, food, ceramics, fertilizer and pharmaceutical processing and manufacturing. Deliberate mixing of granular solids is an essential operation in the production of industrial powder products usually constituted from different ingredients. The knowledge of particle flow and mixing in a blender is critical to optimize the design and operation. Since performance of the product depends on blend homogeneity, the consequence of variability can be detrimental. A common approach to powder mixing is to use a tumbling blender, which is essentially a hollow vessel horizontally attached to a rotating shaft. This single axis rotary blender is one of the most common batch mixers among in industry, and also finds use in myriad of application as dryers, kilns, coaters, mills and granulators. In most of the rotary mixers the radial convection is faster than axial dispersion transport. This slow dispersive process hinders mixing performance in many blending, drying and coating applications. A double cone mixer is designed and fabricated which rotates around two axes, causing axial mixing competitive to its radial counterpart. Discrete Element Method (DEM) based numerical model is developed to simulate the granular flow within the mixer. Digitally recorded mixing states from experiments are used to fine tune the numerical model. Discrete pocket samplers are also used in the experiments to quantify the characteristics of mixing. A parametric study of the effect of vessel speeds, relative rotational speed (between two axes of rotation), on the granular mixing is investigated by experiments and numerical simulation. Incorporation of dual axis rotation enhances axial mixing by 60 to 85% in comparison to single axis rotation.
Waveguide-mode polarization gaps in square spiral photonic crystals
NASA Astrophysics Data System (ADS)
Liu, Rong-Juan; John, Sajeev; Li, Zhi-Yuan
2015-09-01
We designed waveguide channels in two types of square spiral photonic crystals. Wide polarization gaps, in which only one circular polarization wave is allowed while the other counter-direction circular polarization wave is forbidden, can be opened up on the waveguide modes within the fundamental photonic band gap according to the calculation of band structures and transmission spectra. This phenomenon is ascribed to the chirality of the waveguide and is independent of the chirality of the background photonic crystal. Moreover, the transmission spectra show a good one-way property of the waveguide channels. The chiral quality factor demonstrates the handedness of the allowed and impeded chiral waveguide modes, and further proved the property of the waveguide-mode polarization gap. Such waveguides with waveguide-mode polarization gap are a good candidate for one-way waveguides with robust backscattering-immune transport.
NASA Technical Reports Server (NTRS)
Kollberg, Eric (Editor)
1986-01-01
The design and performance of spectroscopic instruments for submm-wave astronomy are discussed in reviews and reports. Topics examined include superconducting mixers, Schottky-diode mixers, local oscillators, antennas and quasi-optical components, spectrometry, and systems aspects. Special emphasis is given to candidate components for the 8-m heterodyne FIR and Submm Space Telescope being developed by ESA.
Reductant injection and mixing system
Reeves, Matt; Henry, Cary A.; Ruth, Michael J.
2016-02-16
A gaseous reductant injection and mixing system is described herein. The system includes an injector for injecting a gaseous reductant into an exhaust gas stream, and a mixer attached to a surface of the injector. The injector includes a plurality of apertures through which the gaseous reductant is injected into an exhaust gas stream. The mixer includes a plurality of fluid deflecting elements.
ERIC Educational Resources Information Center
Poli, Bonnie; Fluker, Sam S.
Written in English and Spanish and completely illustrated, this manual provides basic safety information for pesticide workers. Mixers, loaders, and applicators work with pesticides at their greatest strength and have the highest risk of poisoning. Understanding the pesticide label is the first step to pesticide safety. The words…
ERIC Educational Resources Information Center
Nopparatjamjomras, Suchai; Chitaree, Ratchapak; Panijpan, Bhinyo
2009-01-01
To overcome students' inaccurate prior knowledge on primary additive colours, a coloured-light mixer has been constructed to enable students to observe directly the colours produced and reach the conclusion by themselves that the three primary colours of light are red, green, and blue (NOT red, yellow, and blue). Three closely packed tiny…
Receiver System Analysis and Optimization
2013-01-01
designers to make best use of advanced silicon processes (scale, fast devices) while minimizing the disadvantages (low-Q passives, low transimpedance ). A...components such as amplifiers , filters, mixers, oscillators, etc. Specifications for the components are then passed on to design teams. The digital and...cascade connection of an LNA, Mixer, Voltage Controlled Oscillator [VCO], Amplifier and Analog to Digital Converter [ADC] as well as appropriate
Credit BG. View looks west (286°) at the east facade. ...
Credit BG. View looks west (286°) at the east facade. This structure stands between two blast barricades, which protect surrounding structures from damage in case an explosion were to occur while propellants were being mixed in the 150 gallon Baker-Perkins mixer - Jet Propulsion Laboratory Edwards Facility, Mixer, Edwards Air Force Base, Boron, Kern County, CA
NASA Technical Reports Server (NTRS)
Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)
2016-01-01
A multimode directional coupler is provided. In some embodiments, the multimode directional coupler is configured to receive a primary signal and a secondary signal at a first port of a primary waveguide. The primary signal is configured to propagate through the primary waveguide and be outputted at a second port of the primary waveguide. The multimode directional coupler also includes a secondary waveguide configured to couple the secondary signal from the primary waveguide with no coupling of the primary signal into the secondary waveguide. The secondary signal is configured to propagate through the secondary waveguide and be outputted from a port of the secondary waveguide.
Modeling interfacial area transport in multi-fluid systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarbro, Stephen Lee
1996-11-01
Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacialmore » area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.« less
Low-Noise Wide Bandwith, Hot Electron Bolometer Mixers for Submillimeter Wavelengths
NASA Technical Reports Server (NTRS)
McGrath, W. R.
1995-01-01
Recently a novel superconductive hot-electron micro-bolometer has been proposed which is both fast and sensitive (D. E. Prober, Appl. Phys. Lett. 62, 2119, 1993). This device has several important properties which make it useful as a heterodyne sensor for radioastronomy applications at frequencies above 1 THz. The thermal response time of the device is fast enough, several 10's of picoseconds, to allow for IF's of several GHz. This bolometer mixer should operate well up to at least 10 THz. There is no energy gap limitation as in an SIS mixer, since the mixing process relies on heating of the electron gas. In fact, rf power is absorbed more uniformly above the gap frequency. The mixer noise should be near quantum-limited, and the local oscillator (LO) power requirement is very low: / 10 nW for a Nb device. One of the unique features of this device is that it employs rapid electron diffusion into a normal metal, rather than phonon emission, as the thermal conductance that cools the heated electrons. In order for diffusion to dominate over phonon emission, the device must be short, less than 0.5.
3. Credit BG. The interior of the control room appears ...
3. Credit BG. The interior of the control room appears in this view, looking north (0°). The control console in the room center permitted remote control of various propellant grinders and mixers in surrounding buildings. Television monitors (absent from their mounts in this view) permitted direct viewing of operating machinery. From foreground to background: Panel (1) contains OGAR warning light switches for Curing Buildings E-39, E-40, E-41 and E-86; (O=off, G=green safe, A=amber caution, R=red danger) Panel (2) E-85 Oxidizer Dryer Building console: OGAR switch Panel (3) E-84 Oxidizer Grinder Building console: controls for vibrator, feed, and hammer; Panel (4) E-36 Oxidizer Grinder Building console: controls for vibrator, feed, hammer, attritor, and SWECO ("SWECO" undefined) Panels (5) & (6) blank Panel (7) E-38 Mixer & Casting Building console: vacuum pump, blender, heating and cooling controls Panel (8) E-37 Mixer & Casting Building console: motor controls for 1 pint, 1 gallon, 5 gallon and 30 gallon mixers; vacuum pump, deluge (fire suppression), pot up/down, vibrator, feed, and SWECO. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA
Pratt & Whitney 2D Model in LeRC 9 ft x 15 ft Acoustics
NASA Technical Reports Server (NTRS)
Bridges, James; Marino, Jodilyn
1999-01-01
The theory of mixer-ejectors for noise suppression is illustrated in this cartoon. Since jet noise SPL scales as velocity to the eighth power and diameter squared, increasing the jet diameter while lowering its velocity and keeping thrust constant decreases the noise. However, in supersonic craft, the drag penalty for increasing diameter at supersonic cruise makes this option very expensive. One would like to have a large engine during takeoff which could be shrunk during cruise. The retractable ejector is such an expandable engine. If the mixer flow can be expanded to the size of the ejector exit, the noise generated downstream of the ejector will be much less than the small diameter mixer nozzle alone. Of course, this also requires that the noise created in expanding the flow to fill the ejector be absorbed by a liner in the ejector walls so that none of this noise is heard. Since this mixing of internal hot gas and external cold air must take place in as short a distance as possible, the mixer must be very effective and therefore probably much noisier than a simple nozzle.
Generation 1.5 High Speed Civil Transport (HSCT) Exhaust Nozzle Program
NASA Technical Reports Server (NTRS)
Thayer, E. B.; Gamble, E. J.; Guthrie, A. R.; Kehret, D. F.; Barber, T. J.; Hendricks, G. J.; Nagaraja, K. S.; Minardi, J. E.
2004-01-01
The objective of this program was to conduct an experimental and analytical evaluation of low noise exhaust nozzles suitable for future High-Speed Civil Transport (HSCT) aircraft. The experimental portion of the program involved parametric subscale performance model tests of mixer/ejector nozzles in the takeoff mode, and high-speed tests of mixer/ejectors converted to two-dimensional convergent-divergent (2-D/C-D), plug, and single expansion ramp nozzles (SERN) in the cruise mode. Mixer/ejector results show measured static thrust coefficients at secondary flow entrainment levels of 70 percent of primary flow. Results of the high-speed performance tests showed that relatively long, straight-wall, C-D nozzles could meet supersonic cruise thrust coefficient goal of 0.982; but the plug, ramp, and shorter C-D nozzles required isentropic contours to reach the same level of performance. The computational fluid dynamic (CFD) study accurately predicted mixer/ejector pressure distributions and shock locations. Heat transfer studies showed that a combination of insulation and convective cooling was more effective than film cooling for nonafterburning, low-noise nozzles. The thrust augmentation study indicated potential benefits for use of ejector nozzles in the subsonic cruise mode if the ejector inlet contains a sonic throat plane.
Method of making hermetic seals for hermetic terminal assemblies
Hsu, John S.; Marlino, Laura D.; Ayers, Curtis W.
2010-04-13
This invention teaches methods of making a hermetic terminal assembly comprising the steps of: inserting temporary stops, shims and jigs on the bottom face of a terminal assembly thereby blocking assembly core open passageways; mounting the terminal assembly inside a vacuum chamber using a temporary assembly perimeter seal and flange or threaded assembly interfaces; mixing a seal admixture and hardener in a mixer conveyor to form a polymer seal material; conveying the polymer seal material into a polymer reservoir; feeding the polymer seal material from the reservoir through a polymer outlet valve and at least one polymer outlet tube into the terminal assembly core thereby filling interstitial spaces in the core adjacent to service conduits, temporary stop, and the terminal assembly casing; drying the polymer seal material at room temperature thereby hermetically sealing the core of the terminal assembly; removing the terminal assembly from the vacuum chamber, and; removing the temporary stops, shims.
Terahertz technology for imaging and spectroscopy
NASA Astrophysics Data System (ADS)
Crowe, T. W.; Porterfield, D. W.; Hesler, J. L.; Bishop, W. L.; Kurtz, D. S.; Hui, K.
2006-05-01
The terahertz region of the electromagnetic spectrum has unique properties that make it especially useful for imaging and spectroscopic detection of concealed weapons, explosives and chemical and biological materials. However, terahertz energy is difficult to generate and detect, and this has led to a technology gap in this frequency band. Nonlinear diodes can be used to bridge this gap by translating the functionality achieved at microwave frequencies to the terahertz band. Basic building blocks include low-noise mixers, frequency multipliers, sideband generators and direct detectors. These terahertz components rely on planar Schottky diodes and recently developed integrated diode circuits make them easier to assemble and more robust. The new generation of terahertz sources and receivers requires no mechanical tuning, yet achieves high efficiency and broad bandwidth. This paper reviews the basic design of terahertz transmitters and receivers, with special emphasis on the recent development of systems that are compact, easy to use and have excellent performance.
Gigahertz flexible graphene transistors for microwave integrated circuits.
Yeh, Chao-Hui; Lain, Yi-Wei; Chiu, Yu-Chiao; Liao, Chen-Hung; Moyano, David Ricardo; Hsu, Shawn S H; Chiu, Po-Wen
2014-08-26
Flexible integrated circuits with complex functionalities are the missing link for the active development of wearable electronic devices. Here, we report a scalable approach to fabricate self-aligned graphene microwave transistors for the implementation of flexible low-noise amplifiers and frequency mixers, two fundamental building blocks of a wireless communication receiver. A devised AlOx T-gate structure is used to achieve an appreciable increase of device transconductance and a commensurate reduction of the associated parasitic resistance, thus yielding a remarkable extrinsic cutoff frequency of 32 GHz and a maximum oscillation frequency of 20 GHz; in both cases the operation frequency is an order of magnitude higher than previously reported. The two frequencies work at 22 and 13 GHz even when subjected to a strain of 2.5%. The gigahertz microwave integrated circuits demonstrated here pave the way for applications which require high flexibility and radio frequency operations.
Development of a high-resolution cavity-beam position monitor
NASA Astrophysics Data System (ADS)
Inoue, Yoichi; Hayano, Hitoshi; Honda, Yosuke; Takatomi, Toshikazu; Tauchi, Toshiaki; Urakawa, Junji; Komamiya, Sachio; Nakamura, Tomoya; Sanuki, Tomoyuki; Kim, Eun-San; Shin, Seung-Hwan; Vogel, Vladimir
2008-06-01
We have developed a high-resolution cavity-beam position monitor (BPM) to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ˜nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF) beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5μm.
Photonic Waveguide Choke Joint with Absorptive Loading
NASA Technical Reports Server (NTRS)
Wollack, Edward J. (Inventor); U-Yen, Kongpop (Inventor); Chuss, David T. (Inventor)
2016-01-01
A photonic waveguide choke includes a first waveguide flange member having periodic metal tiling pillars, a dissipative dielectric material positioned within an area between the periodic metal tiling pillars and a second waveguide flange member disposed to be coupled with the first waveguide flange member and in spaced-apart relationship separated by a gap. The first waveguide flange member has a substantially smooth surface, and the second waveguide flange member has an array of two-dimensional pillar structures formed therein.
Acoustic one-way mode conversion and transmission by sonic crystal waveguides
NASA Astrophysics Data System (ADS)
Ouyang, Shiliang; He, Hailong; He, Zhaojian; Deng, Ke; Zhao, Heping
2016-09-01
We proposed a scheme to achieve one-way acoustic propagation and even-odd mode switching in two mutually perpendicular sonic crystal waveguides connected by a resonant cavity. The even mode in the entrance waveguide is able to switch to the odd mode in the exit waveguide through a symmetry match between the cavity resonant modes and the waveguide modes. Conversely, the odd mode in the exit waveguide is unable to be converted into the even mode in the entrance waveguide as incident waves and eigenmodes are mismatched in their symmetries at the waveguide exit. This one-way mechanism can be applied to design an acoustic diode for acoustic integration devices and can be used as a convertor of the acoustic waveguide modes.
All-solid-state radiometers for environmental studies to 700 GHz
NASA Technical Reports Server (NTRS)
Zimmermann, Ralph; Zimmermann, Ruediger; Zimmermann, Peter
1992-01-01
We report results with an all-solid-state radiometer for measurements of the ClO molecule at 649 GHz. The project is part of a program to provide low-noise, low-weight, low-power radiometers for space operation, and special effort has been expended on the development of high-efficiency solid-state frequency multipliers and Schottky-barrier mixers with low local oscillator power requirements. The best measured system noise temperature was 1750 K with the mixer and preamplifier cooled to 77 K. The mixer diode was easily pumped into saturation, indicating that the design has excellent prospects of operating at higher frequencies - our present design goal being 1 THz. We comment on the principal design features of such systems and will report on stratospheric measurements performed with this system.
Passive micromixer using by convection and surface tension effects with air-liquid interface.
Ju, Jongil; Warrick, Jay
2013-12-01
This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15-20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation.
Passive micromixer using by convection and surface tension effects with air-liquid interface
Ju, Jongil; Warrick, Jay
2014-01-01
This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15–20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation. PMID:25104979
Review of mixer design for low voltage - low power applications
NASA Astrophysics Data System (ADS)
Nurulain, D.; Musa, F. A. S.; Isa, M. Mohamad; Ahmad, N.; Kasjoo, S. R.
2017-09-01
A mixer is used in almost all radio frequency (RF) or microwave systems for frequency translation. Nowadays, the increase market demand encouraged the industry to deliver circuit designs to create proficient and convenient equipment with very low power (LP) consumption and low voltage (LV) supply in both digital and analogue circuits. This paper focused on different Complementary Metal Oxide Semiconductor (CMOS) design topologies for LV and LP mixer design. Floating Gate Metal Oxide Semiconductor (FGMOS) is an alternative technology to replace CMOS due to their high ability for LV and LP applications. FGMOS only required a few transistors per gate and can have a shift in threshold voltage (VTH) to increase the LP and LV performances as compared to CMOS, which makes an attractive option to replace CMOS.
Engine with pulse-suppressed dedicated exhaust gas recirculation
Keating, Edward J.; Baker, Rodney E.
2016-06-07
An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.
Towards Measurement of the Time-resolved Heat Release of Protein Conformation Dynamics
NASA Technical Reports Server (NTRS)
Puchalla, Jason; Adamek, Daniel; Austin, Robert
2004-01-01
We present a way to observe time-resolved heat release using a laminar flow diffusional mixer coupled with a highly sensitive infrared camera which measures the temperature change of the solvent. There are significant benefits to the use of laminar flow mixers for time-resolved calorimetry: (1) The thermal signal can be made position and time- stationary to allow for signal integration; (2) Extremely small volumes (nl/s) of sample are required for a measurement; (3) The same mixing environment can be observed spectroscopically to obtain state occupation information; (4) The mixer allows one to do out of equilibrium dynamic studies. The hope is that these measurements will allow us probe the non-equilibrium thermodynamics as a protein moves along a free energy trajectory from one state to another.
Development of SIS Mixers for 1 THz
NASA Technical Reports Server (NTRS)
Zmuidzinas, J.; Kooi, J.; Chattopadhyay, G.; Bumble, B.; LeDuc, H. G.; Stern, J. A.
1998-01-01
SIS heterodyne mixer technology based on niobium tunnel junctions has now been pushed to frequencies over 1 THz, clearly demonstrating that the SIS junctions are capable of mixing at frequencies up to twice the energy gap frequency (4 Delta/h). However, the performance degrades rapidly above the gap frequency of niobium (2 Delta/h approx. 700 GHz) due to substantial ohmic losses in the on-chip tuning circuit. To solve this problem, the tuning circuit should be fabricated using a superconducting film with a larger energy gap, such as NbN; unfortunately, NbN films often have a substantial excess surface resistance in the submillimeter band. In contrast, the SIS mixer measurements we present in this paper indicate that the losses for NbTiN thin films can be quite low.
Optical waveguide device with an adiabatically-varying width
Watts,; Michael R. , Nielson; Gregory, N [Albuquerque, NM
2011-05-10
Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.
NASA Astrophysics Data System (ADS)
Burckel, David Bruce
One of the anticipated advantages of photonic crystal waveguides is the ability to tune waveguide dispersion and propagation characteristics to achieve desired properties. The majority of research into photonic crystal waveguides centers around high index contrast photonic crystal waveguides with complete in-plane bandgaps in the photonic crystal cladding. This work focuses on linear photonic crystal waveguides in moderate index materials, with insufficient index contrast to guarantee a complete in-plane bandgap. Using a technique called Interferometric Lithography (IL) as well as standard semiconductor processing steps, a process flow for creating large area (˜cm 2), linear photonic crystal waveguides in a spin-deposited photocurable polymer is outlined. The study of such low index contrast photonic crystal waveguides offers a unique opportunity to explore the mechanisms governing waveguide confinement and photonic crystal behavior in general. Results from two optical characterization experiments are provided. In the first set of experiments, rhodamine 590 organic laser dye was incorporated into the polymer prior to fabrication of the photonic crystal slab. Emission spectra from waveguide core modes exhibit no obvious spectral selectivity owing to variation in the periodicity or geometry of the photonic crystal. In addition, grating coupled waveguides were fabricated, and a single frequency diode laser was coupled into the waveguide in order to study the transverse mode structure. To this author's knowledge, the optical mode profile images are the first taken of photonic crystal slab waveguides, exhibiting both simple low order mode structure as well as complex high order mode structure inconsistent with effective index theory. However, no obvious correlation between the mode structure and photonic crystal period or geometry was evident. Furthermore, in both the laser dye-doped and grating coupled waveguides, low loss waveguiding was observed regardless of wavelength to period ratio. These optical results indicated a need for a deeper understanding of the confinement/guiding mechanisms in such waveguide structures. A simplification of the full 2-D problem to a more tractable "tilted 1-D" geometry led to the proposal of a new waveguide geometry, Generalized Transverse Bragg Waveguides (GTBW), as well as a new propagation mode characterized by spatial variation in both the transverse direction as well as the direction of propagation. GTBW demonstrate many of the same dispersion tunability traits exhibited in complete bandgap photonic crystal waveguides, under more modest fabrication demands, and moreover provide much insight into photonic crystal waveguide modes of all types. Generalized Transverse Bragg Waveguides are presented in terms of the standard physical properties associated with waveguides, including the dispersion relation, expressions for the spatial field profile, and the concepts of phase and group velocity. In addition, the proposal of at least one obvious application, semiconductor optical amplifiers, is offered.
Vawter, G Allen [Corrales, NM
2008-02-26
A self-electrooptic effect device ("SEED") is integrated with waveguide interconnects through the use of vertical directional couplers. Light initially propagating in the interconnect waveguide is vertically coupled to the active waveguide layer of the SEED and, if the SEED is in the transparent state, the light is coupled back to the interconnect waveguide.
Reduced T(sub c) Niobium Superconducting HEB Mixers
NASA Technical Reports Server (NTRS)
Siddiqi, I.; Prober, D. E.; Bumble, B.; LeDuc, H. G.
2001-01-01
A reduction in the mixer noise is expected when using superconductors with a lower transition temperature (T(sub c)) since the thermal noise components of the mixer noise should scale with T(sub c). Also, the local oscillator (LO) power required for a diffusion-cooled device should decrease as T(sub c) when T(sub bath) << T(sub c). We previously studied mixing in aluminum based hot-electron bolometers (HEBs) at microwave frequencies (approximately 30 GHz), and observed a significant improvement in noise performance, and a reduction in LO power as predicted. However, the bias voltage range over which good mixer performance was observed was approximately 5 - 10 microV. These devices are thus susceptible to saturation effects, in particular output saturation. In the present work, we have investigated Nb HEBs whose T(sub c) is lowered by applying a magnetic field. The goal is to study a case intermediate between Nb and Al, and hopefully to find properties that will allow use in practical receivers. A 15 kOe perpendicular magnetic field was applied to a Nb HEB (L = 0.16 micrometers, W = 0.08 micrometers, R(sub N) = 90 ohms) to reduce T(sub c) from 5.2 K to 2.4 K. The mixer noise, as inferred from the output noise and the conversion efficiency, decreased from 390 K, DSB to 171 K, DSB. The LO power required for near optimum mixer conversion efficiency (eta(sub mixer) = -9 dB in this device) was 8 nW in zero field, and approximately 2 nW when T(sub c) was reduced to 2.4 K. T(sub bath) = 0.22 K. The conversion bandwidth was previously measured to be 2.4 GHz and the same bandwidth was observed in the presence of a magnetic field. By lowering T(sub c), the voltage range over which good mixing was observed also decreased. However, even with T(sub c) reduced to 2.4 K, the conversion efficiency dropped by 3 dB from its maximum value only when the bias voltage was changed by approximately 90 microV. Saturation effects should thus be much less of a concern in these devices than in Al HEBS. In situations where the application of a large magnetic field is not feasible, we suggest using Ta based HEBS. Ta HEBs should have T(sub c) = 3 - 3.5 K and material properties very similar to Nb.
Simplified flangeless unisex waveguide coupler assembly
Michelangelo, Dimartino; Moeller, Charles P.
1993-01-01
A unisex coupler assembly is disclosed capable of providing a leak tight coupling for waveguides with axial alignment of the waveguides and rotational capability. The sealing means of the coupler assembly are not exposed to RF energy, and the coupler assembly does not require the provision of external flanges on the waveguides. In a preferred embodiment, O ring seals are not used and the coupler assembly is, therefore, bakeable at a temperature up to about 150.degree. C. The coupler assembly comprises a split collar which clamps around the waveguides and a second collar which fastens to the split collar. The split collar contains an inner annular groove. Each of the waveguides is provided with an external annular groove which receives a retaining ring. The split collar is clamped around one of the waveguides with the inner annular groove of the split collar engaging the retaining ring carried in the external annular groove in the waveguide. The second collar is then slipped over the second waveguide behind the annular groove and retaining ring therein and the second collar is coaxially secured by fastening means to the split collar to draw the respective waveguides together by coaxial force exerted by the second collar against the retaining ring on the second waveguide. A sealing ring is placed against an external sealing surface at a reduced external diameter end formed on one waveguide to sealingly engage a corresponding sealing surface on the other waveguide as the waveguides are urged toward each other.
Simplified flangeless unisex waveguide coupler assembly
Michelangelo, D.; Moeller, C.P.
1993-05-04
A unisex coupler assembly is disclosed capable of providing a leak tight coupling for waveguides with axial alignment of the waveguides and rotational capability. The sealing means of the coupler assembly are not exposed to RF energy, and the coupler assembly does not require the provision of external flanges on the waveguides. In a preferred embodiment, O ring seals are not used and the coupler assembly is, therefore, bakeable at a temperature up to about 150 C. The coupler assembly comprises a split collar which clamps around the waveguides and a second collar which fastens to the split collar. The split collar contains an inner annular groove. Each of the waveguides is provided with an external annular groove which receives a retaining ring. The split collar is clamped around one of the waveguides with the inner annular groove of the split collar engaging the retaining ring carried in the external annular groove in the waveguide. The second collar is then slipped over the second waveguide behind the annular groove and retaining ring therein and the second collar is coaxially secured by fastening means to the split collar to draw the respective waveguides together by coaxial force exerted by the second collar against the retaining ring on the second waveguide. A sealing ring is placed against an external sealing surface at a reduced external diameter end formed on one waveguide to sealingly engage a corresponding sealing surface on the other waveguide as the waveguides are urged toward each other.
Simplified flangeless unisex waveguide coupler assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michelangelo, D.; Moeller, C.P.
1993-05-04
A unisex coupler assembly is disclosed capable of providing a leak tight coupling for waveguides with axial alignment of the waveguides and rotational capability. The sealing means of the coupler assembly are not exposed to RF energy, and the coupler assembly does not require the provision of external flanges on the waveguides. In a preferred embodiment, O ring seals are not used and the coupler assembly is, therefore, bakeable at a temperature up to about 150 C. The coupler assembly comprises a split collar which clamps around the waveguides and a second collar which fastens to the split collar. Themore » split collar contains an inner annular groove. Each of the waveguides is provided with an external annular groove which receives a retaining ring. The split collar is clamped around one of the waveguides with the inner annular groove of the split collar engaging the retaining ring carried in the external annular groove in the waveguide. The second collar is then slipped over the second waveguide behind the annular groove and retaining ring therein and the second collar is coaxially secured by fastening means to the split collar to draw the respective waveguides together by coaxial force exerted by the second collar against the retaining ring on the second waveguide. A sealing ring is placed against an external sealing surface at a reduced external diameter end formed on one waveguide to sealingly engage a corresponding sealing surface on the other waveguide as the waveguides are urged toward each other.« less