Sample records for waveguide three-port network

  1. W-band six-port network analyzer for two-port characterization of millimeter wave transistors

    NASA Technical Reports Server (NTRS)

    Moeller, Karl J.; Schaffner, James H.; Fetterman, Harold R.

    1989-01-01

    A W-band (75-100 GHz) six-port junction network analyzer was constructed from commercially available descrete waveguide components and was used for the direct two-port S-parameter measurement of active three-terminal devices. A comparison between the six-port and a down-converter-type frequency extender for a conventional network analyzer revealed the superior performance of the six-port. The application of the six-port to characterize a 0.1-micron gate-length HEMT at W-band is described, and representative results are presented.

  2. Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics.

    PubMed

    Rokhsari, H; Vahala, K J

    2004-06-25

    We demonstrate a low-loss, optical four port resonant coupler (add-drop geometry), using ultrahigh Q (>10(8)) toroidal microcavities. Different regimes of operation are investigated by variation of coupling between resonator and fiber taper waveguides. As a result, waveguide-to-waveguide power transfer efficiency of 93% (0.3 dB loss) and nonresonant insertion loss of 0.02% (<0.001 dB) for narrow bandwidth (57 MHz) four port couplers are achieved in this work. The combination of low-loss, fiber compatibility, and wafer-scale design would be suitable for a variety of applications ranging from quantum optics to photonic networks.

  3. Compact waveguide circular polarizer

    DOEpatents

    Tantawi, Sami G.

    2016-08-16

    A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.

  4. Ka-Band Waveguide Three-Way Serial Combiner for MMIC Amplifiers

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Freeman, Jon C.; Chevalier, Christine T.

    2012-01-01

    In this innovation, the three-way combiner consists internally of two branch-line hybrids that are connected in series by a short length of waveguide. Each branch-line hybrid is designed to combine input signals that are in phase with an amplitude ratio of two. The combiner is constructed in an E-plane split-block arrangement and is precision machined from blocks of aluminum with standard WR-28 waveguide ports. The port impedances of the combiner are matched to that of a standard WR-28 waveguide. The component parts include the power combiner and the MMIC (monolithic microwave integrated circuit) power amplifiers (PAs). The three-way series power combiner is a six-port device. For basic operation, power that enters ports 3, 5, and 6 is combined in phase and appears at port 1. Ports 2 and 4 are isolated ports. The application of the three-way combiner for combining three PAs with unequal output powers was demonstrated. NASA requires narrow-band solid-state power amplifiers (SSPAs) at Ka-band frequencies with output power in the range of 3 to 5 W for radio or gravity science experiments. In addition, NASA also requires wideband, high-efficiency SSPAs at Ka-band frequencies with output power in the range of 5 to 15 W for high-data-rate communications from deep space to Earth. The three-way power combiner is designed to operate over the frequency band of 31.8 to 32.3 GHz, which is NASA s deep-space frequency band.

  5. Design and Validation of a Ten-Port Waveguide Reflectometer Sensor: Application to Efficiency Measurement and Optimization of Microwave-Heating Ovens

    PubMed Central

    Pedreño-Molina, Juan L.; Monzó-Cabrera, Juan; Lozano-Guerrero, Antonio; Toledo-Moreo, Ana

    2008-01-01

    This work presents the design, manufacturing process, calibration and validation of a new microwave ten-port waveguide reflectometer based on the use of neural networks. This low-cost novel device solves some of the shortcomings of previous reflectometers such as non-linear behavior of power sensors, noise presence and the complexity of the calibration procedure, which is often based on complex mathematical equations. These problems, which imply the reduction of the reflection coefficient measurement accuracy, have been overcome by using a higher number of probes than usual six-port configurations and by means of the use of Radial Basis Function (RBF) neural networks in order to reduce the influence of noise and non-linear processes over the measurements. Additionally, this sensor can be reconfigured whenever some of the eight coaxial power detectors fail, still providing accurate values in real time. The ten-port performance has been compared against a high-cost measurement instrument such as a vector network analyzer and applied to the measurement and optimization of energy efficiency of microwave ovens, with good results. PMID:27873961

  6. Multiqubit subradiant states in N -port waveguide devices: ɛ-and-μ-near-zero hubs and nonreciprocal circulators

    NASA Astrophysics Data System (ADS)

    Liberal, Iñigo; Engheta, Nader

    2018-02-01

    Quantum emitters interacting through a waveguide setup have been proposed as a promising platform for basic research on light-matter interactions and quantum information processing. We propose to augment waveguide setups with the use of multiport devices. Specifically, we demonstrate theoretically the possibility of exciting N -qubit subradiant, maximally entangled, states with the use of suitably designed N -port devices. Our general methodology is then applied based on two different devices: an epsilon-and-mu-near-zero waveguide hub and a nonreciprocal circulator. A sensitivity analysis is carried out to assess the robustness of the system against a number of nonidealities. These findings link and merge the designs of devices for quantum state engineering with classical communication network methodologies.

  7. Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Tsilipakos, Odysseas; Kriezis, Emmanouil E.; Bozhevolnyi, Sergey I.

    2011-04-01

    Thermo-optic switching elements made of dielectric-loaded plasmonic (DLSPP) waveguides are theoretically investigated by utilizing the three-dimensional vector finite element method. The configurations considered employ microring resonators, whose resonant frequency is varied by means of thermal tuning. First, a classic add-drop filter with parallel access waveguides is examined. Such a component features very poor drop port extinction ratio (ER). We therefore extend the analysis to add-drop filters with perpendicular access waveguides, which are found to exhibit superior drop port ERs, due to interference effects associated with the drop port transmission. In the process, the performance of a DLSPP waveguide crossing is also assessed, since it is a building block of those filters whose bus waveguides intersect. An elliptic tapering scheme is proposed for minimizing cross talk and its effect on the filter performance is explored. The dual-resonator add-drop filter with perpendicular bus waveguides and an untreated waveguide crossing of Sec. V can act as an efficient 2×2 switching element (the single-resonator variant can only act as a 1×2 switch due to structure asymmetry), possessing two equivalent input ports and featuring high ERs for both output ports over a broad wavelength range. Specifically, an extinction ratio of at least 8 dB can be attained for both output ports over a wavelength range of 3.2 nm, accommodating four 100-GHz-spaced channels. Switching times are in the order of a few microseconds, rendering the aforementioned structure capable of handling real-world routing scenarios.

  8. Dielectric-loaded waveguide circulator for cryogenically cooled and cascaded maser waveguide structures

    NASA Technical Reports Server (NTRS)

    Clauss, R. C.; Quinn, R. B. (Inventor)

    1980-01-01

    A dielectrically loaded four port waveguide circulator is used with a reflected wave maser connected to a second port between first and third ports to form one of a plurality of cascaded maser waveguide structures. The fourth port is connected to a waveguide loaded with microwave energy absorbing material. The third (output signal) port of one maser waveguide structure is connected by a waveguide loaded with dielectric material to the first (input) port of an adjacent maser waveguide structure, and the second port is connected to a reflected wave maser by a matching transformer which passes the signal to be amplified into and out of the reflected wavemaser and blocks pumping energy in the reflected wave maser from entering the circulator. A number of cascaded maser waveguide structures are thus housed in a relatively small volume of conductive material placed within a cryogenically cooled magnet assembly.

  9. Biaxial Anisotropic Material Development and Characterization using Rectangular to Square Waveguide

    DTIC Science & Technology

    2015-03-26

    holder 68 Figure 29. Measurement Setup with Test port cables and Network Analyzer VNA and the waveguide adapters are torqued to specification with...calibrated torque wrenches and waveguide flanges are aligned using precision alignment pins. A TRL calibration is performed prior to measuring the sample as...set to 0.0001. This enables the Frequency domain solver to refine the mesh until the tolerance is achieved. Tightening the error tolerance results in

  10. Single-photon routing with whispering-gallery resonators

    NASA Astrophysics Data System (ADS)

    Huang, Jin-Song; Zhang, Jia-Hao; Wei, L. F.

    2018-04-01

    Quantum routing of single photons in a system with two waveguides coupled to two whispering-gallery resonators (WGRs) are investigated theoretically. Using a real-space full quantum theory, photonic scattering amplitudes along four ports of the waveguide network are analytically obtained. It is shown that, by adjusting the geometric and physical parameters of the two-WGR configuration, the quantum routing properties of single photons along the present waveguide network can be controlled effectively. The routing capability from input waveguide to another one can significantly exceed 0.5 near the resonance point of scattering spectra, which can be achieved with only one resonator. By properly designing the distance between two WGRs and the waveguide-WGR coupling strengths, the transfer rate between the waveguides can also reach certain sufficiently high values even in the non-resonance regime. Moreover, Fano-like resonances in the scattering spectra are designable. The proposed system may provide a potential application in controlling single-photon quantum routing.

  11. Dielectric Waveguides Splitter and Hybrid/Isolator for Bidirectional Link

    NASA Technical Reports Server (NTRS)

    Tang, Adrian Joseph (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer E. (Inventor); Decrossas, Emmanuel (Inventor)

    2016-01-01

    A system, method, device, and apparatus provide a dielectric waveguide splitter/bi-directional link. A dielectric substrate fabricated into a first Y-junction waveguide with a first port splitting into a first branch leading to a second port and a second branch leading to a third port. An angle between the first branch and the second branch is below ninety degrees (90.degree.). The dielectric waveguide splitter enables millimeter-wave (mmWave) transmission between the first port and the second port while reducing feedback of the mmWave between the second and third port. Two Y-junction waveguides may be fabricated back-to-back to provide simultaneous bidirectional mmWave transmission at a single frequency.

  12. Multimode Directional Coupler

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2016-01-01

    A multimode directional coupler is provided. In some embodiments, the multimode directional coupler is configured to receive a primary signal and a secondary signal at a first port of a primary waveguide. The primary signal is configured to propagate through the primary waveguide and be outputted at a second port of the primary waveguide. The multimode directional coupler also includes a secondary waveguide configured to couple the secondary signal from the primary waveguide with no coupling of the primary signal into the secondary waveguide. The secondary signal is configured to propagate through the secondary waveguide and be outputted from a port of the secondary waveguide.

  13. 24-Way Radial Power Combiner/Divider for 31 to 36 GHz

    NASA Technical Reports Server (NTRS)

    Epp, Larry; Hoppe, Daniel; Khan, Abdur; Kelley, Daniel

    2008-01-01

    The figure shows a prototype radial power-combining waveguide structure, capable of operation at frequencies from 31 to 36 GHz, that features an unusually large number (N = 24) of combining (input) ports. The combination of wide-band operation and large N is achieved by incorporating several enhancements over a basic radial power-combiner design. In addition, the structure can be operated as a power divider by reversing the roles of the input and output ports. In this structure, full-height waveguides at the combining ports are matched in impedance to reduced-height radial waveguides inside the combiner base. This match is effected by impedance-transforming stepped waveguide sections. This matching scheme is essential to achievement of large N because N is limited by the height of the waveguides in the base. Power is coupled from the 24 reduced- height radial waveguides into the TE01 mode of a circular waveguide in the base with the help of a matching post at the bottom of the base. ( TE signifies transverse electric, the first subscript is the azimuthal mode number, and the second subscript is the radial mode number.) More specifically, the matching post matches the reflections from the walls of the 24 reduced-height waveguides and enables the base design to exceed the bandwidth requirement. After propagating along the circular waveguide, the combined power is coupled, via a mode transducer, to a rectangular waveguide output port. The mode transducer is divided into three sections, each sized and shaped as part of an overall design to satisfy the mode-conversion and output-coupling requirements while enabling the circular waveguide to be wide enough for combining the 24 inputs over the frequency range of 31 to 36 GHz. During the design process, it was found that two different rectangular waveguide outputs could be accommodated through modification of only the first section of the mode converter, thereby enabling operation in multiple frequency ranges.

  14. Traveling wave device for combining or splitting symmetric and asymmetric waves

    DOEpatents

    Möbius, Arnold; Ives, Robert Lawrence

    2005-07-19

    A traveling wave device for the combining or splitting of symmetric and asymmetric traveling wave energy includes a feed waveguide for traveling wave energy, the feed waveguide having an input port and a launching port, a reflector for coupling wave energy between the feed waveguide and a final waveguide for the collection and transport of wave energy to or from the reflector. The power combiner has a launching port for symmetrical waves which includes a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which includes a sawtooth rotated about a central axis.

  15. Substrate integrated waveguide (SIW) 3 dB coupler for K-Band applications

    NASA Astrophysics Data System (ADS)

    Khalid, Nurehansafwanah; Zuraidah Ibrahim, Siti; Wee, Fwen Hoon; Shazuani Mahmud, Farah

    2017-11-01

    This paper presented a designed coupler by using Rogers RO4003C with thickness (h) 0.508 mm and relative permittivity (ɛr) 3.55. The four port network coupler operates in K-band (18-27 GHz) and design by using substrate integrated waveguide (SIW) method. The reflection coefficient and isolation coefficient of propose Substrate Integrated Waveguide (SIW) coupler is below than -10 dB. Meanwhile the coupler requirements are phase shift 90° between coupled port and output. SIW are high performance broadband interconnects with excellent immunity to electromagnetic interference and suitable for use in microwave and communication electronics, as well as increase bandwidth systems. The designs of coupler are investigated using CST Microwave Studio simulation tool. This proposed couplers are varied from parameters that cover the frequency range (21 -24 GHz) and better performance of scattering (S-parameter).

  16. Reconfigurable Network Routing with Spatial Soliton Crossbar Switches

    DTIC Science & Technology

    1999-01-31

    Properties of Quadratic Solitons", Acta Physica Polonica , in press 32. G.I. Stegeman and M. Segev, "Bright Spatial Soliton Interactions", book chapter for...put and output poVts. the central idea is to use the solitons as a waveguide for guiding signals. Deflecting the soliton electro-optically...as reconfigurable interconnects for guiding signals between multiple input and output ports. The central idea is to use the solitons as a waveguide

  17. Spoof Surface Plasmon Polaritons Power Divider with large Isolation.

    PubMed

    Zhou, Shiyan; Lin, Jing-Yu; Wong, Sai-Wai; Deng, Fei; Zhu, Lei; Yang, Yang; He, Yejun; Tu, Zhi-Hong

    2018-04-13

    Periodic corrugated metal structure is designed to support and propagate spoof surface plasmon polaritons (SSPPs) wave in the microwave frequencies. In this paper, firstly a plasmonic waveguide consisting of oval-ring shaped cells is proposed with the performance of high transmission efficiency in a wide frequency range. The coplanar waveguides (CPWs) with 50 Ω impedance are adopted to feed the energies or extract signals at both ends of the plasmonic waveguide. Then a well-isolated power divider is constructed based on the SSPPs waveguides aiming to equally split the energy of the SSPPs wave into two equal parts. The stepped-impedances are co-designed with the three input/output ports of the power divider to achieve the impedance-matching between the SSPPs waveguides and the coplanar waveguides. Besides, a single resistor is placed in the middle of two symmetrical half oval-rings to realize the isolation between the two output ports over the spectrum of 4.5-7.5 GHz. Finally, both plasmonic waveguide and the power divider are fabricated and tested to verify the predicted characteristics.

  18. Six-port optical switch for cluster-mesh photonic network-on-chip

    NASA Astrophysics Data System (ADS)

    Jia, Hao; Zhou, Ting; Zhao, Yunchou; Xia, Yuhao; Dai, Jincheng; Zhang, Lei; Ding, Jianfeng; Fu, Xin; Yang, Lin

    2018-05-01

    Photonic network-on-chip for high-performance multi-core processors has attracted substantial interest in recent years as it offers a systematic method to meet the demand of large bandwidth, low latency and low power dissipation. In this paper we demonstrate a non-blocking six-port optical switch for cluster-mesh photonic network-on-chip. The architecture is constructed by substituting three optical switching units of typical Spanke-Benes network to optical waveguide crossings. Compared with Spanke-Benes network, the number of optical switching units is reduced by 20%, while the connectivity of routing path is maintained. By this way the footprint and power consumption can be reduced at the expense of sacrificing the network latency performance in some cases. The device is realized by 12 thermally tuned silicon Mach-Zehnder optical switching units. Its theoretical spectral responses are evaluated by establishing a numerical model. The experimental spectral responses are also characterized, which indicates that the optical signal-to-noise ratios of the optical switch are larger than 13.5 dB in the wavelength range from 1525 nm to 1565 nm. Data transmission experiment with the data rate of 32 Gbps is implemented for each optical link.

  19. Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide.

    PubMed

    Shinya, Akihiko; Mitsugi, Satoshi; Kuramochi, Eiichi; Notomi, Masaya

    2005-05-30

    We have devised an ultra-small multi-channel drop filter based on a two-port resonant tunneling system in a two-dimensional photonic crystal with a triangular air-hole lattice. This filter does not require careful consideration of the interference process to achieve a high dropping efficiency. First we develop three-port systems based on a two-port resonant tunneling filter. Next we devise a multi-port channel drop filter by cascading these three-port systems. In this paper, we demonstrate a ten-channel drop filter with an 18 mum device size by 2D-FDTD calculation, and a three-port resonant tunneling filter with 65+/- 20 % dropping efficiency by experiment.

  20. Power combiner

    DOEpatents

    Arnold, Mobius; Ives, Robert Lawrence

    2006-09-05

    A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

  1. Ka-Band Waveguide Two-Way Hybrid Combiner for MMIC Amplifiers

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chevalier, Christine T.; Wintucky, Edwin G.; Freeman, Jon C.

    2010-01-01

    The design, simulation, and characterization of a novel Ka-band (32.05 0.25 GHz) rectangular waveguide two-way branch-line hybrid unequal power combiner (with port impedances matched to that of a standard WR-28 waveguide) has been created to combine input signals, which are in phase and with an amplitude ratio of two. The measured return loss and isolation of the branch-line hybrid are better than 22 and 27 dB, respectively. The measured combining efficiency is 92.9 percent at the center frequency of 32.05 GHz. This circuit is efficacious in combining the unequal output power from two Ka-band GaAs pseudomorphic high electron mobility transistor (pHEMT) monolithic microwave integrated circuit (MMIC) power amplifiers (PAs) with high efficiency. The component parts include the branch-line hybrid-based power combiner and the MMIC-based PAs. A two-way branch-line hybrid is a four-port device with all ports matched; power entering port 1 is divided in phase, and into the ratio 2:1 between ports 3 and 4. No power is coupled to port 2. MMICs are a type of integrated circuit fabricated on GaAs that operates at microwave frequencies, and performs the function of signal amplification. The power combiner is designed to operate over the frequency band of 31.8 to 32.3 GHz, which is NASA's deep space frequency band. The power combiner would have an output return loss better than 20 dB. Isolation between the output port and the isolated port is greater than 25 dB. Isolation between the two input ports is greater than 25 dB. The combining efficiency would be greater than 90 percent when the ratio of the two input power levels is two. The power combiner is machined from aluminum with E-plane split-block arrangement, and has excellent reliability. The flexibility of this design allows the combiner to be customized for combining the power from MMIC PAs with an arbitrary power output ratio. In addition, it allows combining a low-power GaAs MMIC with a high-power GaN MMIC. The arbitrary port impedance allows matching the output impedance of the MMIC PA directly to the waveguide impedance without transitioning first into a transmission line with characteristic impedance of 50 ohms. Thus, by eliminating the losses associated with a transition, the overall SSPA efficiency is enhanced. For reducing the cost and weight when required in very large quantities, such as in the beam-forming networks of phased-array antenna systems, the combiner can be manufactured using metal-plated plastic. Two hybrid unequal power combiners can be cascaded to realize a non-binary combiner (for e.g., a three-way) and can be synergistically optimized for low VSWR (voltage standing wave ratio), low insertion loss, high isolation, and wide bandwidth using commercial off-the-shelf electromagnetic software design tools.

  2. Copper nanorod array assisted silicon waveguide polarization beam splitter.

    PubMed

    Kim, Sangsik; Qi, Minghao

    2014-04-21

    We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology.

  3. Adiabatic/diabatic polarization beam splitter

    DOEpatents

    DeRose, Christopher; Cai, Hong

    2017-09-12

    The various presented herein relate to an on-chip polarization beam splitter (PBS), which is adiabatic for the transverse magnetic (TM) mode and diabatic for the transverse electric (TE) mode. The PBS comprises a through waveguide and a cross waveguide, wherein an electromagnetic beam comprising TE mode and TM mode components is applied to an input port of the through waveguide. The PBS can be utilized to separate the TE mode component from the TM mode component, wherein the TE mode component exits the PBS via an output port of the through waveguide, and the TM mode component exits the PBS via an output port of the cross waveguide. The PBS has a structure that is tolerant to manufacturing variations and exhibits high polarization extinction ratios over a wide bandwidth.

  4. A C-band broadband ortho-mode transducer for radioastronomy polarimetry.

    PubMed

    Ferreira, Ivan S; Tello, Camilo; Bergano, Miguel; Villela, Thyrso; Barbosa, Domingos; Smoot, George F

    2016-01-01

    We describe the design, the construction and performance of a narrow band ortho-mode transducer, currently used in the 5 GHz polarimetric receiver of the Galactic Emission Mapping project. The ortho-mode transducer was designed to achieve a high degree of transmission within the 400 MHz of the GEM band around the 5 GHz (4.8-5.2 GHz). It is composed of a circular-to-square waveguide transition, a septum polarizer, a thin waveguide coupler and a smooth square-to-rectangular waveguide transition with custom waveguide bends to the output ports. Our simulations and measurements show a very low level of cross-polarization of about -60 dB and a good impedance match for all three ports (S11; S22; S33 < -30 dB) with only 0:25 dB of insertion loss offset across the 400 MHz (4.8-5.2 GHz) of the reception bandwidth.

  5. Copper nanorod array assisted silicon waveguide polarization beam splitter

    PubMed Central

    Kim, Sangsik; Qi, Minghao

    2014-01-01

    We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology. PMID:24787839

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Keyu; Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Shenzhen 518067; College of Electronic Science and Technology, Shenzhen University, Shenzhen 518067

    We present a versatile add-drop integrated photonic filter (ADF) consisting of nonreciprocal waveguides in which the propagation of light is restricted in one predetermined direction. With the bus and add/drop waveguides symmetrically coupled through a cavity, the four-port device allows each individual port to add and/or drop a signal of the same frequency. The scheme is general and we demonstrate the nonreciprocal ADF with magneto-optical photonic crystals. The filter is immune to waveguide defects, allowing straightforward implementation of multi-channel ADFs by cascading the four-port designs. The results should find applications in wavelength-division multiplexing and related integrated photonic techniques.

  7. K-Band Substrate Integrated Waveguide (SIW) Coupler

    NASA Astrophysics Data System (ADS)

    Khalid, N.; Ibrahim, S. Z.; Hoon, W. F.

    2018-03-01

    This paper presents a designed coupler by using substrate Roger RO4003. The four port network coupler operates at (18-26 GHz) and designed by using substrate integrated waveguide (SIW) method. Substrate Integrated Waveguide (SIW) are high performance broadband interconnects with excellent immunity to electromagnetic interference and suitable in microwave and millimetre-wave electronics applications, as well as wideband systems. The designs of the coupler are investigated using CST Microwave Studio simulation tool. These proposed couplers are capable of covering the frequency range and provide better performance of scattering parameter (S-parameter). This technology is successfully approached for millimetre-wave and microwave applications. Designs and results are presented and discussed in this paper. The overall simulated percentage bandwidth of the proposed coupler is covered from 18 to 26 GHz with percentage bandwidth of 36.36%.

  8. Four-Way Ka-Band Power Combiner

    NASA Technical Reports Server (NTRS)

    Perez, Raul; Li, Samuel

    2007-01-01

    A waveguide structure for combining the outputs of four amplifiers operating at 35 GHz (Ka band) is based on a similar prior structure used in the X band. The structure is designed to function with low combining loss and low total reflected power at a center frequency of 35 GHz with a 160 MHz bandwidth. The structure (see figure) comprises mainly a junction of five rectangular waveguides in a radial waveguide. The outputs of the four amplifiers can be coupled in through any four of the five waveguide ports. Provided that these four signals are properly phased, they combine and come out through the fifth waveguide port.

  9. Measurements by a Vector Network Analyzer at 325 to 508 GHz

    NASA Technical Reports Server (NTRS)

    Fung, King Man; Samoska, Lorene; Chattopadhyay, Goutam; Gaier, Todd; Kangaslahti, Pekka; Pukala, David; Lau, Yuenie; Oleson, Charles; Denning, Anthony

    2008-01-01

    Recent experiments were performed in which return loss and insertion loss of waveguide test assemblies in the frequency range from 325 to 508 GHz were measured by use of a swept-frequency two-port vector network analyzer (VNA) test set. The experiments were part of a continuing effort to develop means of characterizing passive and active electronic components and systems operating at ever increasing frequencies. The waveguide test assemblies comprised WR-2.2 end sections collinear with WR-3.3 middle sections. The test set, assembled from commercially available components, included a 50-GHz VNA scattering- parameter test set and external signal synthesizers, augmented with recently developed frequency extenders, and further augmented with attenuators and amplifiers as needed to adjust radiofrequency and intermediate-frequency power levels between the aforementioned components. The tests included line-reflect-line calibration procedures, using WR-2.2 waveguide shims as the "line" standards and waveguide flange short circuits as the "reflect" standards. Calibrated dynamic ranges somewhat greater than about 20 dB for return loss and 35 dB for insertion loss were achieved. The measurement data of the test assemblies were found to substantially agree with results of computational simulations.

  10. Resent Status of ITER Equatorial Launcher Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, K.; Kajiwara, K.; Kasugai, A.

    2009-11-26

    The ITER equatorial launcher is divided into a front shield and a port plug. The front shield is composed of fourteen blanket shield modules so as to form three openings for the injection of mm-wave beams into plasma. Twenty-four waveguide transmission lines, internal shields, cooling pipes and so on are installed in the port plug. The transmission lines consist of the corrugated waveguides, miter bends and the free space propagation region utilizing two mirrors in front of the waveguide outlet. The analysis of mm-wave beam propagation in the region shows that the transmission efficiency more than 99.5% is attained. Themore » high power experiments of the launcher mock-up have been carried out and the measured field patterns at each mirror and the outlet of the launcher are agreed with the calculations. It is concluded that the transmission line components in the launcher mock-up are fabricated as designed and the present mm-wave design in the launcher is feasible.« less

  11. RF waveguide phase-directed power combiners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nantista, Christopher D.; Dolgashev, Valery A.; Tantawi, Sami G.

    2017-05-02

    High power RF phase-directed power combiners include magic H hybrid and/or superhybrid circuits oriented in orthogonal H-planes and connected using E-plane bends and/or twists to produce compact 3D waveguide circuits, including 8.times.8 and 16.times.16 combiners. Using phase control at the input ports, RF power can be directed to a single output port, enabling fast switching between output ports for applications such as multi-angle radiation therapy.

  12. Noise tolerance in optical waveguide circuits for recognition of optical 16 quadrature amplitude modulation codes

    NASA Astrophysics Data System (ADS)

    Inoshita, Kensuke; Hama, Yoshimitsu; Kishikawa, Hiroki; Goto, Nobuo

    2016-12-01

    In photonic label routers, various optical signal processing functions are required; these include optical label extraction, recognition of the label, optical switching and buffering controlled by signals based on the label information and network routing tables, and label rewriting. Among these functions, we focus on photonic label recognition. We have proposed two kinds of optical waveguide circuits to recognize 16 quadrature amplitude modulation codes, i.e., recognition from the minimum output port and from the maximum output port. The recognition function was theoretically analyzed and numerically simulated by finite-difference beam-propagation method. We discuss noise tolerance in the circuit and show numerically simulated results to evaluate bit-error-rate (BER) characteristics against optical signal-to-noise ratio (OSNR). The OSNR required to obtain a BER less than 1.0×10-3 for the symbol rate of 2.5 GBaud was 14.5 and 27.0 dB for recognition from the minimum and maximum output, respectively.

  13. Spin coating and plasma process for 2.5D and hybrid 3D micro-resonators on multilayer polymers

    NASA Astrophysics Data System (ADS)

    Bêche, B.; Gaviot, E.; Godet, C.; Zebda, A.; Potel, A.; Barbe, J.; Camberlein, L.; Vié, V.; Panizza, P.; Loas, G.; Hamel, C.; Zyss, J.; Huby, N.

    2009-05-01

    We have designed and realized three integrated photonic families of micro-resonators (MR) on multilayer organic materials. Such so-called 2.5D-MR and 3D-MR structures show off radius values ranging from 40 to 200μm. Both first and second families are especially designed on organic multilayer materials and shaped as ring- and disk-MR organics structures arranged upon (and coupled with) a pair of SU8-organic waveguides. The third family is related to hybrid 3D-MR structures composed of spherical glass-MR coupled to organic waveguides by a Langmuir-Blodgett lipid film about three nanometers in thickness. At first, polymer spin coating, surface plasma treatment and selective UV-lithography processes have been developed to realize 2.5D photonic micro-resonators. Secondly, we have designed and characterized photonic-quadripoles made of 3D-glass-MR arranged upon a pair of SU8 waveguides. Such structures are defined by a 4-ports or 4-waveguides coupled by the spherical glass-MR. We have achieved an evanescent photonic coupling between the 3D-MR and the 4-ports structure. Spectral resonances have been measured for 4-whispering gallery-modes (WGM) into such 3D-structures respectively characterized by a 0.97 nm free spectral range (FSR) and a high quality Q-factor up to 4.104.

  14. Forecast analysis of optical waveguide bus performance

    NASA Technical Reports Server (NTRS)

    Ledesma, R.; Rourke, M. D.

    1979-01-01

    Elements to be considered in the design of a data bus include: architecture; data rate; modulation, encoding, detection; power distribution requirements; protocol, work structure; bus reliability, maintainability; interterminal transmission medium; cost; and others specific to application. Fiber- optic data bus considerations for a 32 port transmissive star architecture, are discussed in a tutorial format. General optical-waveguide bus concepts, are reviewed. The electrical and optical performance of a 32 port transmissive star bus, and the effects of temperature on the performance of optical-waveguide buses are examined. A bibliography of pertinent references and the bus receiver test results are included.

  15. Acrylic and metal based Y-branch plastic optical fiber splitter with optical NOA63 polymer waveguide taper region

    NASA Astrophysics Data System (ADS)

    Ehsan, Abang Annuar; Shaari, Sahbudin; Rahman, Mohd Kamil Abd.

    2011-01-01

    We proposed a simple low-cost acrylic and metal-based Y-branch plastic optical fiber (POF) splitter which utilizes a low cost optical polymer glue NOA63 as the main waveguiding medium at the waveguide taper region. The device is composed of three sections: an input POF waveguide, a middle waveguide taper region and output POF waveguides. A desktop high speed CNC engraver is utilized to produce the mold inserts used for the optical devices. Short POF fibers are inserted into the engraved slots at the input and output ports. UV curable optical polymer glue NOA63 is injected into the waveguide taper region and cured. The assembling is completed when the top plate is positioned to enclose the device structure and connecting screws are secured. Both POF splitters have an average insertion loss of 7.8 dB, coupling ratio of 55: 45 and 57: 43 for the acrylic and metal-based splitters respectively. The devices have excess loss of 4.82 and 4.73 dB for the acrylic and metal-based splitters respectively.

  16. Cup Cylindrical Waveguide Antenna

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Darby, William G.; Kory, Carol L.; Lambert, Kevin M.; Breen, Daniel P.

    2008-01-01

    The cup cylindrical waveguide antenna (CCWA) is a short backfire microwave antenna capable of simultaneously supporting the transmission or reception of two distinct signals having opposite circular polarizations. Short backfire antennas are widely used in mobile/satellite communications, tracking, telemetry, and wireless local area networks because of their compactness and excellent radiation characteristics. A typical prior short backfire antenna contains a half-wavelength dipole excitation element for linear polarization or crossed half-wavelength dipole elements for circular polarization. In order to achieve simultaneous dual circular polarization, it would be necessary to integrate, into the antenna feed structure, a network of hybrid components, which would introduce significant losses. The CCWA embodies an alternate approach that entails relatively low losses and affords the additional advantage of compactness. The CCWA includes a circular cylindrical cup, a circular disk subreflector, and a circular waveguide that serves as the excitation element. The components that make it possible to obtain simultaneous dual circular polarization are integrated into the circular waveguide. These components are a sixpost polarizer and an orthomode transducer (OMT) with two orthogonal coaxial ports. The overall length of the OMT and polarizer (for the nominal middle design frequency of 2.25 GHz) is about 11 in. (approximately equal to 28 cm), whereas the length of a commercially available OMT and polarizer for the same frequency is about 32 in. (approximately equal to 81 cm).

  17. Magneto-optical non-reciprocal devices in silicon photonics

    PubMed Central

    Shoji, Yuya; Mizumoto, Tetsuya

    2014-01-01

    Silicon waveguide optical non-reciprocal devices based on the magneto-optical effect are reviewed. The non-reciprocal phase shift caused by the first-order magneto-optical effect is effective in realizing optical non-reciprocal devices in silicon waveguide platforms. In a silicon-on-insulator waveguide, the low refractive index of the buried oxide layer enhances the magneto-optical phase shift, which reduces the device footprints. A surface activated direct bonding technique was developed to integrate a magneto-optical garnet crystal on the silicon waveguides. A silicon waveguide optical isolator based on the magneto-optical phase shift was demonstrated with an optical isolation of 30 dB and insertion loss of 13 dB at a wavelength of 1548 nm. Furthermore, a four port optical circulator was demonstrated with maximum isolations of 15.3 and 9.3 dB in cross and bar ports, respectively, at a wavelength of 1531 nm. PMID:27877640

  18. Reconfigurable origami-inspired acoustic waveguides

    PubMed Central

    Babaee, Sahab; Overvelde, Johannes T. B.; Chen, Elizabeth R.; Tournat, Vincent; Bertoldi, Katia

    2016-01-01

    We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation of sound. We design reconfigurable systems that, depending on the externally applied deformation, can act as networks of waveguides oriented along one, two, or three preferential directions. Moreover, we demonstrate that the capability of the structure to guide and radiate acoustic energy along predefined directions can be easily switched on and off, as the networks of tubes are reversibly formed and disrupted. The proposed designs expand the ability of existing acoustic metamaterials and exploit complex waveguiding to enhance control over propagation and radiation of acoustic energy, opening avenues for the design of a new class of tunable acoustic functional systems. PMID:28138527

  19. Chiral spiral waveguides based on MMI crossings: theory and experiments

    NASA Astrophysics Data System (ADS)

    Cherchi, Matteo; Ylinen, Sami; Harjanne, Mikko; Kapulainen, Markku; Vehmas, Tapani; Aalto, Timo

    2016-03-01

    We introduce a novel type of chiral spiral waveguide where the usual waveguide crossings are replaced by 100:0 Multimode Interferometers (MMIs), i.e. 2x2 splitters that couple all the input light in the cross output port. Despite the topological equivalence with the standard configuration, we show how resorting to long MMIs has non-trivial advantages in terms of footprint and propagation length. An accurate analytic model is also introduced to show the impact of nonidealities on the spiral performances, including propagation loss and cross-talk. We have designed and fabricated three chiral spirals on our platform, based on 3 μm thick silicon strip waveguides with 0.13 dB/cm propagation loss, and 1.58 mm long MMIs. The fabricated spirals have 7, 13 and 49 loops respectively, corresponding to the effective lengths 6.6 cm, 12.5 cm and 47.9 cm. The proposed model is successfully applied to the experimental results, highlighting MMI extinction ratio of about 16.5 dB and MMI loss of about 0.08 dB, that are much worse compared to the simulated 50 dB extinction and 0.01 dB loss. This imposes an upper limit to the number of rounds, because light takes shortcuts through the bar MMI ports. Nevertheless, the novel chiral spiral waveguides outperform what is achievable in mainstream silicon photonics platforms based on submicron waveguides in terms of length and propagation losses, and they are promising candidates for the realization of integrated gyroscopes. They can be significantly further improved by replacing the MMIs with adiabatic 100:0 splitters, ensuring lower cross-talk and broader bandwidth.

  20. Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports.

    PubMed

    Kröckel, Lars; Frosch, Torsten; Schmidt, Markus A

    2015-05-22

    In conventional absorption spectrometers, the range of accessible concentrations of analytes in aqueous solution is significantly limited by the dynamic range of the measurement system. Here we introduce the concept of multiscale spectroscopy allowing extending that range by orders of magnitude within one single device. The concept relies on using multiple light-sample interaction lengths, boosting the accessible concentration range by a particular extension factor. We experimentally implement our concept by a liquid core waveguide having multiple fiber ports side-wise attached to the waveguide, thus probing the light propagating inside the core at predefined distances from the input. This configuration provides three orders of magnitude of interaction length in one device. To verify the concept we exemplarily determine the concentrations of nitrate and of Rhodamine 6G in water, showing one hundred times improved measurement capabilities. The multiscale spectrometer uses the entire sample volume and allows the simultaneous measurement of fluorescence and attenuance. Due to its integrated design and the extended measurements capabilities, we anticipate application of our device in many application-relevant areas such as water quality analysis or environmental science. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Non-blocking four-port optical router based on thermooptic silicon microrings

    NASA Astrophysics Data System (ADS)

    Dang, Pei-pei; Li, Cui-ting; Zheng, Wen-xue; Zheng, Chuan-tao; Wang, Yi-ding

    2016-07-01

    By using silicon-on-insulator (SOI) platform, 12 channel waveguides, and four parallel-coupling one-microring resonator routing elements, a non-blocking four-port optical router is proposed. Structure design and optimization are performed on the routing elements at 1 550 nm. At drop state with a power consumption of 0 mW, the insertion loss of the drop port is less than 1.12 dB, and the crosstalk between the two output ports is less than -28 dB; at through state with a power consumption of 22 mW, the insertion loss of the through port is less than 0.45 dB, and the crosstalk between the two output ports is below -21 dB. Routing topology and function are demonstrated for the four-port optical router. The router can work at nine non-blocking routing states using the thermo-optic (TO) effect of silicon for tuning the resonance of each switching element. Detailed characterizations are presented, including output spectrum, insertion loss, and crosstalk. According to the analysis on all the data links of the router, the insertion loss is within the range of 0.13—3.36 dB, and the crosstalk is less than -19.46 dB. The router can meet the need of large-scale optical network-on-chip (ONoC).

  2. Practical aspects of complex permittivity reconstruction with neural-network-controlled FDTD modeling of a two-port fixture.

    PubMed

    Eves, E Eugene; Murphy, Ethan K; Yakovlev, Vadim V

    2007-01-01

    The paper discusses characteristics of a new modeling-based technique for determining dielectric properties of materials. Complex permittivity is found with an optimization algorithm designed to match complex S-parameters obtained from measurements and from 3D FDTD simulation. The method is developed on a two-port (waveguide-type) fixture and deals with complex reflection and transmission characteristics at the frequency of interest. A computational part is constructed as an inverse-RBF-network-based procedure that reconstructs dielectric constant and the loss factor of the sample from the FDTD modeling data sets and the measured reflection and transmission coefficients. As such, it is applicable to samples and cavities of arbitrary configurations provided that the geometry of the experimental setup is adequately represented by the FDTD model. The practical implementation of the method considered in this paper is a section of a WR975 waveguide containing a sample of a liquid in a cylindrical cutout of a rectangular Teflon cup. The method is run in two stages and employs two databases--first, built for a sparse grid on the complex permittivity plane, in order to locate a domain with an anticipated solution and, second, made as a denser grid covering the determined domain, for finding an exact location of the complex permittivity point. Numerical tests demonstrate that the computational part of the method is highly accurate even when the modeling data is represented by relatively small data sets. When working with reflection and transmission coefficients measured in an actual experimental fixture and reconstructing a low dielectric constant and the loss factor the technique may be less accurate. It is shown that the employed neural network is capable of finding complex permittivity of the sample when experimental data on the reflection and transmission coefficients are numerically dispersive (noise-contaminated). A special modeling test is proposed for validating the results; it confirms that the values of complex permittivity for several liquids (including salt water acetone and three types of alcohol) at 915 MHz are reconstructed with satisfactory accuracy.

  3. Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor); Forouhar, Siamak (Inventor)

    1994-01-01

    A semiconductor optical integrated circuit for wave division multiplexing has a semiconductor waveguide layer, a succession of diffraction grating points in the waveguide layer along a predetermined diffraction grating contour, a semiconductor diode array in the waveguide layer having plural optical ports facing the succession of diffraction grating points along a first direction, respective semiconductor diodes in the array corresponding to respective ones of a predetermined succession of wavelengths, an optical fiber having one end thereof terminated at the waveguide layer, the one end of the optical fiber facing the succession of diffraction grating points along a second direction, wherein the diffraction grating points are spatially distributed along the predetermined contour in such a manner that the succession of diffraction grating points diffracts light of respective ones of the succession of wavelengths between the one end of the optical fiber and corresponding ones of the optical ports.

  4. Dynamically reconfigurable optical packet switch (DROPS)

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Heng; Chou, Hsu-Feng; Bowers, John E.; Toudeh-Fallah, Farzam; Gyurek, Russ

    2006-12-01

    A novel Dynamically Reconfigurable Optical Packet Switch (DROPS) that combines both spectral and spatial switching capabilities is proposed and experimentally demonstrated for the first time. Compared with an Arrayed Waveguide Grating Router (AWGR), the added spatial switching capability provided by the microelectromechanical systems (MEMS) enables dynamically reconfigurable routing that is not possible with an AWGR alone. This methodology has several advantages over an AWGR including scalability, additional degrees of freedom in routing a packet from an ingress port to an egress port and more flexibility in path or line card recovery. The experimental demonstration implemented with 10-Gb/s packets shows that the added spatial switching does not degrade the bit-error-rate performance, indicating the promising potential of DROPS as a versatile and ultra-high capacity switch for optical packet-switched networks.

  5. Design of novel dual-port tapered waveguide plasma apparatus by numerical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, D.; Zhou, R.; Yang, X. Q., E-mail: yyxxqq-mail@163.com

    Microwave plasma apparatus is often of particular interest due to their superiority of low cost, electrode contamination free, and suitability for industrial production. However, there exist problems of unstable plasma and low electron density in conventional waveguide apparatus based on single port, due to low strength and non-uniformity of microwave field. This study proposes a novel dual-port tapered waveguide plasma apparatus based on power-combining technique, to improve the strength and uniformity of microwave field for the applications of plasma. A 3D model of microwave-induced plasma (field frequency 2.45 GHz) in argon at atmospheric pressure is presented. On the condition thatmore » the total input power is 500 W, simulations indicate that coherent power-combining will maximize the electric-field strength to 3.32 × 10{sup 5 }V/m and improve the uniformity of distributed microwave field, which raised 36.7% and 47.2%, respectively, compared to conventional waveguide apparatus of single port. To study the optimum conditions for industrial application, a 2D argon fluid model based on above structure is presented. It demonstrates that relatively uniform and high-density plasma is obtained at an argon flow rate of 200 ml/min. The contrastive result of electric-field distribution, electron density, and gas temperature is also valid and clearly proves the superiority of coherent power-combining to conventional technique in flow field.« less

  6. InGaAsP/InP optical waveguide switch operated by a carrier-induced change in the refractive index

    NASA Astrophysics Data System (ADS)

    Mikami, O.; Nakagome, H.

    1985-11-01

    Waveguided semiconductor optical switches operated by a carrier-induced change in the refractive-index associated with the plasma dispersion are proposed. InGaAsP/InP four-port switches having two intersecting single-mode channel waveguides are fabricated by selective liquid-phase epitaxy and investigated at 1.5 microns wavelength. Optical switching is observed as a result of mode interference in the waveguide intersection region.

  7. Constitutive parameter de-embedding using inhomogeneously-filled rectangular waveguides with longitudinal section modes

    NASA Technical Reports Server (NTRS)

    Park, A.; Dominek, A. K.

    1990-01-01

    Constitutive parameter extraction from S parameter data using a rectangular waveguide whose cross section is partially filled with a material sample as opposed to being completely filled was examined. One reason for studying a partially filled geometry is to analyze the effect of air gaps between the sample and fixture for the extraction of constitutive parameters. Air gaps can occur in high temperature parameter measurements when the sample was prepared at room temperature. Single port and two port measurement approaches to parameter extraction are also discussed.

  8. Ka-Band TWT High-Efficiency Power Combiner for High-Rate Data Transmission

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee; Vaden, Karl R.; Lesny, Gary G.; Glass, Jeffrey L.

    2007-01-01

    A four-port magic-T hybrid waveguide junction serves as the central component of a high-efficiency two-way power combiner circuit for transmitting a high-rate phase-modulated digital signal at a carrier frequency in the Ka-band (between 27 and 40 GHz). This power combiner was developed to satisfy a specific requirement to efficiently combine the coherent outputs of two traveling-wavetube (TWT) amplifiers that are typically characterized by power levels on the order of 100 W or more. In this application, the use of a waveguide-based power combiner (instead of a coaxial-cable- or microstrip-based power combiner, for example) is dictated by requirements for low loss, high power-handling capability, and broadband response. Combiner efficiencies were typically 90 percent or more over both the linear and saturated output power regions of operation of the TWTs . Figure 1 depicts the basic configuration of the magic-T hybrid junction. The coherent outputs of the two TWTs enter through ports 1 and 4. As a result of the orientations of the electromagnetic fields, which also provides a needed high port-to-port isolation, of these two input signals and the interior design of the magic-T junction, the input powers are divided so as to add in phase at one output port (port 2), and to be opposite in phase and hence cancel each other at the opposite coplanar output port (port 3). The net result is that the output power at port 2 is essentially double that of the output of one TWT, minus the power lost in the magic-T hybrid junction. Optimum performance as a high-efficiency power combiner thus requires a balance of both power and phase at the input ports of the magic-T. Replicas of this two-way combiner can be arranged in a binary configuration to obtain a 2n-way (where n is an integer) combiner. For example, Figure 2 illustrates the use of three two-way combiners to combine the outputs of four TWTs.

  9. A four-port vertical-coupling optical interface based on two-dimensional grating coupler

    NASA Astrophysics Data System (ADS)

    Zhang, Zan; Zhang, Zanyun; Huang, Beiju; Cheng, Chuantong; Gao, Tianxi; Hu, Xiaochuan; Zhang, Lin; Chen, Hongda

    2016-10-01

    In this work, a fiber-to-chip optical interface with four output ports is proposed. External lights irradiate vertically from single mode fiber to the center of optical interface can be coupled into silicon photonic chips and split into four siliconon- insulator (SOI) waveguides. If the light is circular polarized, the power of light will be equally split into four ports. Meanwhile, all lights travel in the four channel will be converted into TE polarization. The optical interface is based on a two-dimensional grating coupler with carefully designed duty cycle and period. Simulation results show that the coupling efficiency of each port can reach 11.6% so that the total coupling efficiency of the interface is 46.4%. And Lights coupled into four waveguides are all converted into TE polarization. Further, the optical interface has a simple grating structure allowing for easy fabrication.

  10. Four-port coupled channel-guide device based on 2D photonic crystal structure

    NASA Astrophysics Data System (ADS)

    Camargo, Edilson A.; Chong, Harold M. H.; De La Rue, Richard M.

    2004-12-01

    We have fabricated and measured a four-port coupled channel-waveguide device using W1 channel waveguides oriented along ΓK directions in a two-dimensional (2D) hole-based planar photonic crystal (PhC) based on silicon-on-insulator (SOI) waveguide material, at operation wavelengths around 1550 nm. 2D FDTD simulations and experimental results are shown and compared. The structure has been designed using a mode conversion approach, combined with coupled-mode concepts. The overall length of the photonic crystal structure is typically about 39 μm and the structure has been fabricated using a combination of direct-write electron-beam lithography (EBL) and dry-etch processing. Devices were measured using a tunable laser with end-fire coupling into the planar structure.

  11. High-Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Colliders

    NASA Astrophysics Data System (ADS)

    Tantawi, Sami G.; Tamura, Fumihiko

    2000-04-01

    We describe the potential of semiconductor X-band RF switch arrays as a means of developing high power RF pulse compression systems for future linear colliders. The switch systems described here have two designs. Both designs consist of two 3dB hybrids and active modules. In the first design the module is composed of a cascaded active phase shifter. In the second design the module uses arrays of SPST (Single Pole Single Throw) switches. Each cascaded element of the phase shifter and the SPST switch has similar design. The active element consists of symmetrical three-port tee-junctions and an active waveguide window in the symmetrical arm of the tee-junction. The design methodology of the elements and the architecture of the whole switch system are presented. We describe the scaling law that governs the relation between power handling capability and number of elements. The design of the active waveguide window is presented. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of tens of megawatts at X-band.

  12. Mechanical circulator for elastic waves by using the nonreciprocity of flexible rotating rings

    NASA Astrophysics Data System (ADS)

    Beli, Danilo; Silva, Priscilla Brandão; Arruda, José Roberto de França

    2018-01-01

    Circulators have a wide range of applications in wave manipulation. They provide a nonreciprocal response by breaking the time-reversal symmetry. In the mechanical field, nonlinear isolators and ferromagnetic circulators can be used for this objective. However, they require high power and high volumes. Herein, a flexible rotating ring is used to break the time-reversal symmetry as a result of the combined effect of Coriolis acceleration and material damping. Complete asymmetry of oscillating and evanescent components of wavenumbers is achieved. The elastic ring produces a nonreciprocal response that is used to design a three port mechanical circulator. The rotational speed for maximum transmission in one port and isolation in the other one is determined using analytical equations. A spectral element formulation is used to compute the complex dispersion diagrams and the forced response. Waveguides that support longitudinal and flexural waves are investigated. In this case, the ring nonreciprocity is modulated by the waveguide reciprocal response and the transmission coefficients can be affected. The proposed device is compact, nonferromagnetic, and may open new directions for elastic wave manipulation.

  13. Direct laser written polymer waveguides with out of plane couplers for optical chips

    NASA Astrophysics Data System (ADS)

    Landowski, Alexander; Zepp, Dominik; Wingerter, Sebastian; von Freymann, Georg; Widera, Artur

    2017-10-01

    Optical technologies call for waveguide networks featuring high integration densities, low losses, and simple operation. Here, we present polymer waveguides fabricated from a negative tone photoresist via two-photon-lithography in direct laser writing, and show a detailed parameter study of their performance. Specifically, we produce waveguides featuring bend radii down to 40 μ m, insertion losses of the order of 10 dB, and loss coefficients smaller than 0.81 dB mm-1, facilitating high integration densities in writing fields of 300 μ m×300 μ m. A novel three-dimensional coupler design allows for coupling control as well as direct observation of outputs in a single field of view through a microscope objective. Finally, we present beam-splitting devices to construct larger optical networks, and we show that the waveguide material is compatible with the integration of quantum emitters.

  14. Scalable, high-capacity optical switches for Internet routers and moving platforms

    NASA Astrophysics Data System (ADS)

    Joe, In-Sung

    Internet traffic nearly doubles every year, and we need faster routers with higher ports count, yet lower electrical power consumption. Current internet routers use electrical switches that consume large amounts of electrical power to operate at high data rates. These internet routers dissipate ˜ 10kW per rack, and their capacity is limited by cooling constraints. The power consumption is also critical for moving platforms. As avionics advance, the demand for larger capacity networks increases. Optical fibers are already chosen for high speed data transmission in advanced aircraft. In optical communication systems, integrated passive optical components, such as Array Waveguide Gratings (AWGs), have provided larger capacity with lower power consumption, because minimal electrical power is required for their operation. In addition, compact, wavelength-tunable semiconductor lasers with wide tuning ranges that can switch their wavelengths in tens of nanoseconds have been demonstrated. Here we present a wavelength-selective optical packet switch based on Waveguide Grating Routers (WGRs), passive splitters, and combiners. Tunable lasers on the transmitter side are the only active switching elements. The WGR is operated on multiple Free Spectral Ranges (FSRs) to achieve increased port count and switching capacity while maintaining strict-sense, non-blocking operation. Switching times of less than 24ns between two wavelengths covering three FSRs is demonstrated experimentally. The electrical power consumption, size, weight, and cost of our optical switch is compared with those of conventional electrical switches, showing substantial improvements at large throughputs (˜2 Tb/s full duplex). A revised switch design that does not suffer optical loss from star couplers is proposed. This switch design uses only WGRs, and it is suitable for networks with stringent power budgets. The burst nature of the optical packet transmission requires clock recovery for every incoming packet, and conventional continuous-mode receivers are not suitable for this application. An Embedded Clock Transport (ECT) technique is adopted here. The ECT combines a clock tone with the data payload before the transmission. Simple band pass filtering can extract the transmitted clock tone, and low pass filtering can recover the data. Error-free transmissions at 2.488 Gb/s with ˜16 ns clock recovery time were demonstrated.

  15. Optical coupling elements for coherent optical multiport receivers

    NASA Astrophysics Data System (ADS)

    Langenhorst, Ralf

    1992-05-01

    Three by three (3 by 3) and four by four (4 by 4) port coupling elements and receivers for heterodyne multiport systems are realized. Commercial (3 by 3) fiber coupling elements were used to achieve a usual (3 by 3) port receiver and a (3 by 3) port receiver in pushpull switching, whose concept was theoretically and experimentally analyzed. It is established that intensity oscillations of laser sources are suppressed by pushpull switching. The influence of thermal noise of opto-electronic input levels is shown to be weaker than in usual (3 by 3) port and (4 by 4) port receivers. Thermal noise effect in pushpull switching is similar to this one in heterodyne receivers. An integrated optical coupling element in LiNbO3 was made with bridge circuit from four waveguide coupling elements and two phase converters, which are electro-optically tunable so that a continuous regulation of intermediate frequency phase can be compensated by temperature variations of the element. To obtain fiber-to-fiber losses lower than a dB, a compact crystal optical coupling element was developed with reference to polarization properties of optical waves. This element supplied the eight necessary intermediate frequency output signals. A direct experimental comparison of bandwidth efficiency of multiport and heterodyne receivers shows a factor two in optical area and a factor three in electrical frequency area.

  16. Wideband unbalanced waveguide power dividers and combiners

    DOEpatents

    Halligan, Matthew; McDonald, Jacob Jeremiah; Strassner, II, Bernd H.

    2016-05-17

    The various technologies presented herein relate to waveguide dividers and waveguide combiners for application in radar systems, wireless communications, etc. Waveguide dividers-combiners can be manufactured in accordance with custom dimensions, as well as in accordance with waveguide standards such that the input and output ports are of a defined dimension and have a common impedance. Various embodiments are presented which can incorporate one or more septum(s), one or more pairs of septums, an iris, an input matching region, a notch located on the input waveguide arm, waveguide arms having stepped transformer regions, etc. The various divider configurations presented herein can be utilized in high fractional bandwidth applications, e.g., a fractional bandwidth of about 30%, and RF applications in the Ka frequency band (e.g., 26.5-40 GHz).

  17. Portable six-port reflectometer for determining moisture content of biomass material

    USDA-ARS?s Scientific Manuscript database

    A portable six-port reflectometer (SPR) for determining moisture content of biomass material is proposed for the first time in this paper. The proposed system consists of a 5.13 GHz reflectometer used with an open-ended half-mode substrateintegrated waveguide (HMSIW) sensor. The complex permittivity...

  18. Multimodal Freight Distribution to Support Increased Port Operations

    DOT National Transportation Integrated Search

    2016-10-01

    To support improved port operations, three different aspects of multimodal freight distribution are investigated: (i) Efficient load planning for double stack trains at inland ports; (ii) Optimization of a multimodal network for environmental sustain...

  19. Integrated five-port non-blocking optical router based on mode-selective property

    NASA Astrophysics Data System (ADS)

    Jia, Hao; Zhou, Ting; Fu, Xin; Ding, Jianfeng; Zhang, Lei; Yang, Lin

    2018-05-01

    In this paper, we propose and demonstrate a five-port optical router based on mode-selective property. It utilizes different combinations of four spatial modes at input and output ports as labels to distinguish its 20 routing paths. It can direct signals from the source port to the destination port intelligently without power consumption and additional switching time to realize various path steering. The proposed architecture is constructed by asymmetric directional coupler based mode-multiplexers/de-multiplexers, multimode interference based waveguide crossings and single-mode interconnect waveguides. The broad optical bandwidths of these constituents make the device suitable to combine with wavelength division multiplexing signal transmission, which can effectively increase the data throughput. Measurement results show that the insertion loss of its 20 routing paths are lower than 8.5 dB and the optical signal-to-noise ratios are larger than 16.3 dB at 1525-1565 nm. To characterize its routing functionality, a 40-Gbps data transmission with bit-error-rate (BER) measurement is implemented. The power penalties for the error-free switching (BER<10-9) are 1.0 dB and 0.8 dB at 1545 nm and 1565 nm, respectively.

  20. A Novel Multimode Waveguide Coupler for Accurate Power Measurement of Traveling Wave Tube Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.

    2014-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies.

  1. Demonstration of a High-Order Mode Input Coupler for a 220-GHz Confocal Gyrotron Traveling Wave Tube

    NASA Astrophysics Data System (ADS)

    Guan, Xiaotong; Fu, Wenjie; Yan, Yang

    2018-02-01

    A design of high-order mode input coupler for 220-GHz confocal gyrotron travelling wave tube is proposed, simulated, and demonstrated by experimental tests. This input coupler is designed to excite confocal TE 06 mode from rectangle waveguide TE 10 mode over a broadband frequency range. Simulation results predict that the optimized conversion loss is about 2.72 dB with a mode purity excess of 99%. Considering of the gyrotron interaction theory, an effective bandwidth of 5 GHz is obtained, in which the beam-wave coupling efficiency is higher than half of maximum. The field pattern under low power demonstrates that TE 06 mode is successfully excited in confocal waveguide at 220 GHz. Cold test results from the vector network analyzer perform good agreements with simulation results. Both simulation and experimental results illustrate that the reflection at input port S11 is sensitive to the perpendicular separation of two mirrors. It provides an engineering possibility for estimating the assembly precision.

  2. Coax-to-channelised coplanar waveguide in-phase N-way, radial power divider

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Ponchak, G. E.

    1990-01-01

    A novel nonplanar, wideband power divider which makes use of a coax-to-CCPW transition is demonstrated. The transition utilizes a coaxial transformer whose outer conductor is slotted along the length for RF power division and also for exciting the CCPWs in equal amplitude and phase at the radial junction. The measured (8-16 GHz) excess insertion loss at the output ports is 0.5 dB for a four-way divider. The amplitude and phase balance are within 0.5 dB and 5 deg, respectively. The power divider should find applications in the feed network of phased arrays.

  3. Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media

    NASA Astrophysics Data System (ADS)

    Schmidt, Felix; Lünenschloss, Peter; Mai, Juliane; Wagner, Norman; Töpfer, Hannes; Bumberger, Jan

    2016-04-01

    The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections. Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric layers in different configurations. With a Thru Reflect Line calibration (TRL) the influences of connectors and adapters at the coaxial line sample holder were removed. The combination of the full two port calibration procedure and broadband modeling approach turns out to achieve a good accordance of modeling and experimental results. The next step is the implementation of an inversion to calculate the material parameters of every layer out of the s-parameters of the layered sample.

  4. Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media

    NASA Astrophysics Data System (ADS)

    Schmidt, Felix; Wagner, Norman; Lünenschloß, Peter; Toepfer, Hannes; Dietrich, Peter; Kaliorias, Andreas; Bumberger, Jan

    2015-04-01

    The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric layers in different configurations. With a Thru Reflect Line calibration (TRL) the influences of connectors and adapters at the coaxial line sample holder were removed. The combination of the full two port calibration procedure and broadband modeling approach turns out to achieve a good accordance of modeling and experimental results. The next step is the implementation of an inversion to calculate the material parameters of every layer out of the s-parameters of the layered sample.

  5. A high power microwave triggered RF opening switch.

    PubMed

    Beeson, S; Dickens, J; Neuber, A

    2015-03-01

    A 4-port S-band waveguide structure was designed and fabricated such that a signal of any amplitude (less than 1 MW) can be switched from a normally closed state, <0.5 dB insertion loss (IL), to an open state >30 dB IL by initiating plasma in a gas cell situated at the junction of this waveguide and one propagating a megawatt level magnetron pulse. The 90/10 switching time is as low as 20 ns with a delay of ∼30 ns between the onset of the high power microwave pulse and the initial drop of the signal. Two ports of this device are for the high power triggering pulse while the other two ports are for the triggered signal in a Moreno-like coupler configuration. In order to maintain high isolation, these two sets of waveguides are rotated 90° from each other with a TE111 resonator/plasma cell located at the intersection. This manuscript describes the design and optimization of this structure using COMSOL 4.4 at the design frequency of 2.85 GHz, comparison of simulated scattering parameters with measured "cold tests" (testing without plasma), and finally the temporal waveforms of this device being used to successfully switch a low power CW signal from 2 W to <5 mW on a sub-microsecond timescale.

  6. Coplanar waveguide discontinuities for P-I-N diode switches and filter applications

    NASA Technical Reports Server (NTRS)

    Dib, N. I.; Katehi, P. B.; Ponchak, George E.; Simons, Rainee N.

    1990-01-01

    A full wave space domain integral equation (SDIE) analysis of coplanar waveguide (CPW) two port discontinuities is presented. An experimental setup to measure the S-parameters of such discontinuities is described. Experimental and theoretical results for CPW realizations of pass-band and stop-band filters are presented. The S-parameters of such structures are plotted in the frequency range 5 to 25 GHz.

  7. The design of a simulated in-line side-coupled 6 MV linear accelerator waveguide.

    PubMed

    St Aubin, Joel; Steciw, Stephen; Fallone, B G

    2010-02-01

    The design of a 3D in-line side-coupled 6 MV linac waveguide for medical use is given, and the effect of the side-coupling and port irises on the radio frequency (RF), beam dynamics, and dosimetric solutions is examined. This work was motivated by our research on a linac-MR hybrid system, where accurate electron trajectory information for a clinical medical waveguide in the presence of an external magnetic field was needed. For this work, the design of the linac waveguide was generated using the finite element method. The design outlined here incorporates the necessary geometric changes needed to incorporate a full-end accelerating cavity with a single-coupling iris, a waveguide-cavity coupling port iris that allows power transfer into the waveguide from the magnetron, as well as a method to control the RF field magnitude within the first half accelerating cavity into which the electrons from the gun are injected. With the full waveguide designed to resonate at 2998.5 +/- 0.1 MHz, a full 3D RF field solution was obtained. The accuracy of the 3D RF field solution was estimated through a comparison of important linac parameters (Q factor, shunt impedance, transit time factor, and resonant frequency) calculated for one accelerating cavity with the benchmarked program SUPERFISH. It was found that the maximum difference between the 3D solution and SUPERFISH was less than 0.03%. The eigenvalue solver, which determines the resonant frequencies of the 3D side-coupled waveguide simulation, was shown to be highly accurate through a comparison with lumped circuit theory. Two different waveguide geometries were examined, one incorporating a 0.5 mm first side cavity shift and another with a 1.5 mm first side cavity shift. The asymmetrically placed side-coupling irises and the port iris for both models were shown to introduce asymmetries in the RF field large enough to cause a peak shift and skewing (center of gravity minus peak shift) of an initially cylindrically uniform electron beam accelerating within the waveguide. The shifting and skewing of the electron beam were found to be greatest due to the effects of the side-coupling irises on the RF field. A further Monte Carlo study showed that this effect translated into a 1% asymmetry in a 40 x 40 cm2 field dose profile. A full 3D design for an in-line side-coupled 6 MV linear accelerator that emulates a common commercial waveguide has been given. The effect of the side coupling on the dose distribution has been shown to create a slight asymmetry, but overall does not affect the clinical applicability of the linac. The 3D in-line side-coupled linac model further provides a tool for the investigation of linac performance within an external magnetic field, which exists in an integrated linac-MR system.

  8. Lack of security of networked medical equipment in radiology.

    PubMed

    Moses, Vinu; Korah, Ipeson

    2015-02-01

    OBJECTIVE. There are few articles in the literature describing the security and safety aspects of networked medical equipment in radiology departments. Most radiologists are unaware of the security issues. We review the security of the networked medical equipment of a typical radiology department. MATERIALS AND METHODS. All networked medical equipment in a radiology department was scanned for vulnerabilities with a port scanner and a network vulnerability scanner, and the vulnerabilities were classified using the Common Vulnerability Scoring System. A network sniffer was used to capture and analyze traffic on the radiology network for exposure of confidential patient data. We reviewed the use of antivirus software and firewalls on the networked medical equipment. USB ports and CD and DVD drives in the networked medical equipment were tested to see whether they allowed unauthorized access. Implementation of the virtual private network (VPN) that vendors use to access the radiology network was reviewed. RESULTS. Most of the networked medical equipment in our radiology department used vulnerable software with open ports and services. Of the 144 items scanned, 64 (44%) had at least one critical vulnerability, and 119 (83%) had at least one high-risk vulnerability. Most equipment did not encrypt traffic and allowed capture of confidential patient data. Of the 144 items scanned, two (1%) used antivirus software and three (2%) had a firewall enabled. The USB ports were not secure on 49 of the 58 (84%) items with USB ports, and the CD or DVD drive was not secure on 17 of the 31 (55%) items with a CD or DVD drive. One of three vendors had an insecure implementation of VPN access. CONCLUSION. Radiologists and the medical industry need to urgently review and rectify the security issues in existing networked medical equipment. We hope that the results of our study and this article also raise awareness among radiologists about the security issues of networked medical equipment.

  9. A high-power microwave circular polarizer and its application on phase shifter.

    PubMed

    Shao, Hao; Hu, Yongmei; Chang, Chao; Guo, Letian

    2016-04-01

    A high-power waveguide dual circular polarizer was theoretically designed and proof-of-principle was experimentally tested. It consists of two incident rectangular waveguides with a perpendicular H-plane junction, one circular waveguide with a pair of trapezoidal grooves coupled in E-plane at the top, a spherical crown located at the bottom, and an iris at the perpendicular junction of two rectangular waveguides. When wave incidents at one of the two separated rectangular waveguides, it, respectively, generates a left-hand circular polarized wave or a right-hand circular polarized wave in the circular waveguide. By adding a dumbbell-like metal plug driven with a high speed servomotor, a movable short circuit is formed along the circular waveguide to adjust the output RF phase of the rectangular port, realizing a high-speed high-power phase shifter. The C-band high power microwave (HPM) experiments were carried out, and the power capacity of the HPM polarizer and phase shifter was demonstrated to reach gigawatt level.

  10. Optical waveguides with memory effect using photochromic material for neural network

    NASA Astrophysics Data System (ADS)

    Tanimoto, Keisuke; Amemiya, Yoshiteru; Yokoyama, Shin

    2018-04-01

    An optical neural network using a waveguide with a memory effect, a photodiode, CMOS circuits and LEDs was proposed. To realize the neural network, optical waveguides with a memory effect were fabricated using a cladding layer containing the photochromic material “diarylethene”. The transmittance of green light was decreased by UV light irradiation and recovered by the passage of green light through the waveguide. It was confirmed that the transmittance versus total energy of the green light that passed through the waveguide well fit the universal exponential curve.

  11. Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation.

    PubMed

    Pafchek, R; Tummidi, R; Li, J; Webster, M A; Chen, E; Koch, T L

    2009-02-10

    A thermal oxidation fabrication technique is employed to form low-loss high-index-contrast silicon shallow-ridge waveguides in silicon-on-insulator (SOI) with maximally tight vertical confinement. Drop-port responses from weakly coupled ring resonators demonstrate propagation losses below 0.36 dB/cm for TE modes. This technique is also combined with "magic width" designs mitigating severe lateral radiation leakage for TM modes to achieve propagation loss values of 0.94 dB/cm. We discuss the fabrication process utilized to form these low-loss waveguides and implications for sensor devices in particular.

  12. Waveguide Multimode Directional Coupler for Harvesting Harmonic Power from the Output of Traveling-Wave Tube Amplifiers

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2017-01-01

    This paper presents the design, fabrication, and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from dissimilar frequency band waveguides, is capable of isolating power at the 2nd harmonic frequency from the fundamental power at the output port of traveling-wave tube amplifiers. Test results from proof-of-concept demonstrations are presented for Ku/Ka-band and Ka/E-band MDCs, which demonstrate sufficient power in the 2nd harmonic for a space borne beacon source for mm-wave atmospheric propagation studies.

  13. Waveguide Multimode Directional Coupler for Harvesting Harmonic Power from the Output of Traveling-Wave Tube Amplifiers

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2017-01-01

    The paper presents the design, fabrication, and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from dissimilar frequency band waveguides, is capable of isolating power at the 2nd harmonic frequency from the fundamental power at the output port of a high power traveling-wave tube amplifier. The major advantage of the MDC is significantly lower insertion loss compared to a diplexer. The presentation slides for the paper that was approved is attached. The tracking number for the paper that was approved is TN 37015.

  14. A Short Open Calibration (SOC) Technique to Calculate the Propagation Characteristics of Substrate Integrated Waveguide

    DTIC Science & Technology

    2015-07-01

    integrated with the commercial electromagnetic software for accurate extraction of propagation constant of substrate integrated waveguide ( SIW ) with...respectively. After three distinctive equivalent circuit networks are described for SOC de-embedding procedure. The propagation constants of SIW with...final, the phase and attenuation constants of SIW are derived to demonstrate the propagation and leakage characteristics of SIW . Index Terms

  15. Hybrid finite element/waveguide mode analysis of passive RF devices

    NASA Astrophysics Data System (ADS)

    McGrath, Daniel T.

    1993-07-01

    A numerical solution for time-harmonic electromagnetic fields in two-port passive radio frequency (RF) devices has been developed, implemented in a computer code, and validated. Vector finite elements are used to represent the fields in the device interior, and field continuity across waveguide apertures is enforced by matching the interior solution to a sum of waveguide modes. Consequently, the mesh may end at the aperture instead of extending into the waveguide. The report discusses the variational formulation and its reduction to a linear system using Galerkin's method. It describes the computer code, including its interface to commercial CAD software used for geometry generation. It presents validation results for waveguide discontinuities, coaxial transitions, and microstrip circuits. They demonstrate that the method is an effective and versatile tool for predicting the performance of passive RF devices.

  16. Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler

    PubMed Central

    Xu, Yin; Xiao, Jinbiao

    2016-01-01

    On-chip polarization manipulation is pivotal for silicon-on-insulator material platform to realize polarization-transparent circuits and polarization-division-multiplexing transmissions, where polarization splitters and rotators are fundamental components. In this work, we propose an ultracompact and high efficient silicon-based polarization splitter-rotator (PSR) using a partially-etched subwavelength grating (SWG) coupler. The proposed PSR consists of a taper-integrated SWG coupler combined with a partially-etched waveguide between the input and output strip waveguides to make the input transverse-electric (TE) mode couple and convert to the output transverse-magnetic (TM) mode at the cross port while the input TM mode confine well in the strip waveguide during propagation and directly output from the bar port with nearly neglected coupling. Moreover, to better separate input polarizations, an additional tapered waveguide extended from the partially-etched waveguide is also added. From results, an ultracompact PSR of only 8.2 μm in length is achieved, which is so far the reported shortest one. The polarization conversion loss and efficiency are 0.12 dB and 98.52%, respectively, together with the crosstalk and reflection loss of −31.41/−22.43 dB and −34.74/−33.13 dB for input TE/TM mode at wavelength of 1.55 μm. These attributes make the present device suitable for constructing on-chip compact photonic integrated circuits with polarization-independence. PMID:27306112

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, E.; Floether, F. F.; Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE

    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using themore » on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.« less

  18. Performance Analysis of Triple Asymmetrical Optical Micro Ring Resonator with 2 × 2 Input-Output Bus Waveguide

    NASA Astrophysics Data System (ADS)

    Ranjan, Suman; Mandal, Sanjoy

    2017-12-01

    Modeling of triple asymmetrical optical micro ring resonator (TAOMRR) in z-domain with 2 × 2 input-output system with detailed design of its waveguide configuration using finite-difference time-domain (FDTD) method is presented. Transfer function in z-domain using delay-line signal processing technique of the proposed TAOMRR is determined for different input and output ports. The frequency response analysis is carried out using MATLAB software. Group delay and dispersion characteristics are also determined in MATLAB. The electric field analysis is done using FDTD. The method proposes a new methodology to design and draw multiple configurations of coupled ring resonators having multiple in and out ports. Various important parameters such as coupling coefficients and FSR are also determined.

  19. Performance Analysis of Triple Asymmetrical Optical Micro Ring Resonator with 2 × 2 Input-Output Bus Waveguide

    NASA Astrophysics Data System (ADS)

    Ranjan, Suman; Mandal, Sanjoy

    2018-02-01

    Modeling of triple asymmetrical optical micro ring resonator (TAOMRR) in z-domain with 2 × 2 input-output system with detailed design of its waveguide configuration using finite-difference time-domain (FDTD) method is presented. Transfer function in z-domain using delay-line signal processing technique of the proposed TAOMRR is determined for different input and output ports. The frequency response analysis is carried out using MATLAB software. Group delay and dispersion characteristics are also determined in MATLAB. The electric field analysis is done using FDTD. The method proposes a new methodology to design and draw multiple configurations of coupled ring resonators having multiple in and out ports. Various important parameters such as coupling coefficients and FSR are also determined.

  20. The complex network of global cargo ship movements.

    PubMed

    Kaluza, Pablo; Kölzsch, Andrea; Gastner, Michael T; Blasius, Bernd

    2010-07-06

    Transportation networks play a crucial role in human mobility, the exchange of goods and the spread of invasive species. With 90 per cent of world trade carried by sea, the global network of merchant ships provides one of the most important modes of transportation. Here, we use information about the itineraries of 16 363 cargo ships during the year 2007 to construct a network of links between ports. We show that the network has several features that set it apart from other transportation networks. In particular, most ships can be classified into three categories: bulk dry carriers, container ships and oil tankers. These three categories do not only differ in the ships' physical characteristics, but also in their mobility patterns and networks. Container ships follow regularly repeating paths whereas bulk dry carriers and oil tankers move less predictably between ports. The network of all ship movements possesses a heavy-tailed distribution for the connectivity of ports and for the loads transported on the links with systematic differences between ship types. The data analysed in this paper improve current assumptions based on gravity models of ship movements, an important step towards understanding patterns of global trade and bioinvasion.

  1. The complex network of global cargo ship movements

    PubMed Central

    Kaluza, Pablo; Kölzsch, Andrea; Gastner, Michael T.; Blasius, Bernd

    2010-01-01

    Transportation networks play a crucial role in human mobility, the exchange of goods and the spread of invasive species. With 90 per cent of world trade carried by sea, the global network of merchant ships provides one of the most important modes of transportation. Here, we use information about the itineraries of 16 363 cargo ships during the year 2007 to construct a network of links between ports. We show that the network has several features that set it apart from other transportation networks. In particular, most ships can be classified into three categories: bulk dry carriers, container ships and oil tankers. These three categories do not only differ in the ships' physical characteristics, but also in their mobility patterns and networks. Container ships follow regularly repeating paths whereas bulk dry carriers and oil tankers move less predictably between ports. The network of all ship movements possesses a heavy-tailed distribution for the connectivity of ports and for the loads transported on the links with systematic differences between ship types. The data analysed in this paper improve current assumptions based on gravity models of ship movements, an important step towards understanding patterns of global trade and bioinvasion. PMID:20086053

  2. Modeling and Optimization of Optical Half Adder in Two Dimensional Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Sonth, Mahesh V.; Soma, Savita; Gowre, Sanjaykumar C.; Biradar, Nagashettappa

    2018-05-01

    The output of photonic integrated devices is enhanced using crystal waveguides and cavities but optimization of these devices is a topic of research. In this paper, optimization of the optical half adder in two-dimensional (2-D) linear photonic crystals using four symmetric T-shaped waveguides with 180° phase shift inputs is proposed. The input section of a T-waveguide acts as a beam splitter, and the output section acts as a power combiner. The constructive and destructive interference phenomenon will provide an output optical power. Output port Cout will receive in-phase power through the 180° phase shifter cavity designed near the junction. The optical half adder is modeled in a 2-D photonic crystal using the finite difference time domain method (FDTD). It consists of a cubic lattice with an array of 39 × 43 silicon rods of radius r 0.12 μm and 0.6 μm lattice constant a. The extinction ratio r e of 11.67 dB and 12.51 dB are achieved at output ports using the RSoft FullWAVE-6.1 software package.

  3. Relaxed tolerance adiabatic silicon coupler for high I/O port-density optical interconnects (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fard, Erfan; Norwood, Robert A.; Peyghambarian, Nasser N.; Koch, Thomas L.

    2017-02-01

    Widespread deployment of silicon photonics will benefit strongly from improved high-port-density interconnect solutions between chips, interposers, and other waveguide fabrics. We present an adiabatic silicon waveguide to polymer waveguide coupler design incorporating strong vertical asymmetries offering high efficiency, small footprint, and improved tolerance to lateral misalignment. The design incorporates a standard 450nm-wide silicon waveguide tapered down to 50nm over a distance of 200μm with a 1.6μm-thick polymer waveguide having a 4μm-wide core atop the taper. The coupler exhibits <0.1dB loss for both TE and TM modes based on 3-dimensional finite element modeling. Moreover, the modeled device exhibits less than 0.1dB excess loss with lateral misalignment of +/-2μm between polymer and silicon waveguide for TE mode, and 0.2dB excess loss with +/-1.6μm offset for the TM mode, and 1dB excess loss for both TE and TM modes with +/-2.7μm misalignment. This taper design should enable reduction in manufacturing costs due to a reduced on-chip footprint and the potential for lower-precision, higher-throughput assembly tools. The authors would like to acknowledge the support of AIM Photonics. This material is based on research sponsored by Air Force Research Laboratory under agreement number FA8650-15-2-5220. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory or the U.S. Government.

  4. Active high-power RF switch and pulse compression system

    DOEpatents

    Tantawi, Sami G.; Ruth, Ronald D.; Zolotorev, Max

    1998-01-01

    A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

  5. Compact photonic crystal circulator with flat-top transmission band created by cascading magneto-optical resonance cavities.

    PubMed

    Wang, Qiong; Ouyang, Zhengbiao; Lin, Mi; Liu, Qiang

    2015-11-20

    A new type of compact three-port circulator with flat-top transmission band (FTTB) in a two-dimensional photonic crystal has been proposed, through coupling the cascaded magneto-optical resonance cavities to waveguides. The coupled-mode theory is applied to investigate the coupled structure and analyze the condition to achieve FTTB. According to the theoretical analysis, the structure is further optimized to ensure that the condition for achieving FTTB can be satisfied for both cavity-cavity coupling and cavity-waveguide coupling. Through the finite-element method, it is demonstrated that the design can realize a high quality, nonreciprocal circulating propagation of waves with an insertion loss of 0.023 dB and an isolation of 23.3 dB, covering a wide range of operation frequency. Such a wideband circulator has potential applications in large-scale integrated photonic circuits for guiding or isolating harmful optical reflections from load elements.

  6. Theory of a Traveling Wave Feed for a Planar Slot Array Antenna

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2012-01-01

    Planar arrays of waveguide-fed slots have been employed in many radar and remote sensing applications. Such arrays are designed in the standing wave configuration because of high efficiency. Traveling wave arrays can produce greater bandwidth at the expense of efficiency due to power loss in the load or loads. Traveling wave planar slot arrays may be designed with a long feed waveguide consisting of centered-inclined coupling slots. The feed waveguide is terminated in a matched load, and the element spacing in the feed waveguide is chosen to produce a beam squinted from the broadside. The traveling wave planar slot array consists of a long feed waveguide containing resonant-centered inclined coupling slots in the broad wall, coupling power into an array of stacked radiating waveguides orthogonal to it. The radiating waveguides consist of longitudinal offset radiating slots in a standing wave configuration. For the traveling wave feed of a planar slot array, one has to design the tilt angle and length of each coupling slot such that the amplitude and phase of excitation of each radiating waveguide are close to the desired values. The coupling slot spacing is chosen for an appropriate beam squint. Scattering matrix parameters of resonant coupling slots are used in the design process to produce appropriate excitations of radiating waveguides with constraints placed only on amplitudes. Since the radiating slots in each radiating waveguide are designed to produce a certain total admittance, the scattering (S) matrix of each coupling slot is reduced to a 2x2 matrix. Elements of each 2x2 S-matrix and the amount of coupling into the corresponding radiating waveguide are expressed in terms of the element S11. S matrices are converted into transmission (T) matrices, and the T matrices are multiplied to cascade the coupling slots and waveguide sections, starting from the load end and proceeding towards the source. While the use of non-resonant coupling slots may provide an additional degree of freedom in the design, resonant coupling slots simplify the design process. The amplitude of the wave going to the load is set at unity. The S11 parameter, r of the coupling slot closest to the load, is assigned an arbitrary value. A larger value of r will reduce the power dissipated in the load while increasing the reflection coefficient at the input port. It is now possible to obtain the excitation of the radiating waveguide closest to the load and the coefficients of the wave incident and reflected at the input port of this coupling slot. The next coupling slot parameter, r , is chosen to realize the excitation of that radiating waveguide. One continues this process moving towards the source, until all the coupling slot parameters r and hence the S11 parameter of the 4-port coupler, r, are known for each coupling slot. The goal is to produce the desired array aperture distribution in the feed direction. From an interpolation of the computed moment method data for the slot parameters, all the coupling slot tilt angles and lengths are obtained. From the excitations of the radiating waveguides computed from the coupling values, radiating slot parameters may be obtained so as to attain the desired total normalized slot admittances. This process yields the radiating slot parameters, offsets, and lengths. The design is repeated by choosing different values of r for the last coupling slot until the percentage of power dissipated in the load and the input reflection coefficient values are satisfactory. Numerical results computed for the radiation pattern, the tilt angles and lengths of coupling slots, and excitation phases of the radiating waveguides, are presented for an array with uniform amplitude excitation. The design process has been validated using computer simulations. This design procedure is valid for non-uniform amplitude excitations as well.

  7. KAHVE Laboratory RF circulator and transmission line project

    NASA Astrophysics Data System (ADS)

    Cetinkaya, Hakan; ćaǧlar, Aslıhan; ćiçek, Cihan; Özbey, Aydın; Sunar, Ezgi; Türemen, Görkem; Yıldız, Hüseyin; Yüncü, Alperen; Özcan, Erkcan; Ünel, Gökhan; Yaman, Fatih

    2018-02-01

    An 800 MHz RF circulator and transmission line project has recently started at the newly commissioned Kandilli Detector, Accelerator and Instrumentation (KAHVE) Laboratory at the Boğaziçi University. The aims are to design, build and construct an RF circulator and transmission line in Turkey for high power and high frequency applications. The project consists of 8 transmission line elements: 800 MHz RF generator with 60 kW power (klystron), klystron to waveguide converter, waveguides, E and H bends, 3-port circulator and waveguide to coaxial converter to transmit RF power to a pillbox RF cavity. Design studies and details of the ongoing project will be presented.

  8. High Efficiency Ka-Band Solid State Power Amplifier Waveguide Power Combiner

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.; Chevalier, Christine T.; Freeman, Jon C.

    2010-01-01

    A novel Ka-band high efficiency asymmetric waveguide four-port combiner for coherent combining of two Monolithic Microwave Integrated Circuit (MMIC) Solid State Power Amplifiers (SSPAs) having unequal outputs has been successfully designed, fabricated and characterized over the NASA deep space frequency band from 31.8 to 32.3 GHz. The measured combiner efficiency is greater than 90 percent, the return loss greater than 18 dB and input port isolation greater than 22 dB. The manufactured combiner was designed for an input power ratio of 2:1 but can be custom designed for any arbitrary power ratio. Applications considered are NASA s space communications systems needing 6 to 10 W of radio frequency (RF) power. This Technical Memorandum (TM) is an expanded version of the article recently published in Institute of Engineering and Technology (IET) Electronics Letters.

  9. Ka-Band Waveguide 2-Way Hybrid Combiner for MMIC Amplifiers with Unequal and Arbitrary Power Output Ratio

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N (Inventor); Chevalier, Christine T (Inventor); Wintucky, Edwin G (Inventor); Freeman, Jon C (Inventor)

    2016-01-01

    One or more embodiments of the present invention describe an apparatus and method to combine unequal powers. The apparatus includes a first input port, a second input port, and a combiner. The first input port is operably connected to a first power amplifier and is configured to receive a first power from the first power amplifier. The second input port is operably connected to a second power amplifier and is configured to receive a second power from the second power amplifier. The combiner is configured to simultaneously receive the first power from the first input port and the second power from the second input port. The combiner is also configured to combine the first power and second power to produce a maximized power. The first power and second power are unequal.

  10. 54. View from ground level in building no. 105 showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. View from ground level in building no. 105 showing lower radar scanner switch at open port door. Note incoming waveguide and control switch at lower left of photograph and note several waveguides leaving top of scanner switch around the circumference of switch. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  11. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    PubMed Central

    Chakravarty, Swapnajit; Yang, Chun-Ju; Wang, Zheng; Tang, Naimei; Fan, Donglei; Chen, Ray T.

    2015-01-01

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed. PMID:25829549

  12. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon-Gallium-Nitride Slot Waveguide Structures.

    PubMed

    Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev

    2016-06-25

    In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)-gallium nitride (GaN) slot waveguide structure is presented-to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530-1565 nm) into four output ports with low insertion losses (0.07 dB).

  13. Compact broadband polarization beam splitter using a symmetric directional coupler with sinusoidal bends.

    PubMed

    Zhang, Fan; Yun, Han; Wang, Yun; Lu, Zeqin; Chrostowski, Lukas; Jaeger, Nicolas A F

    2017-01-15

    We design and demonstrate a compact broadband polarization beam splitter (PBS) using a symmetric directional coupler with sinusoidal bends on a silicon-on-insulator platform. The sinusoidal bends in our PBS suppress the power exchange between two parallel symmetric strip waveguides for the transverse-electric (TE) mode, while allowing for the maximum power transfer to the adjacent waveguide for the transverse-magnetic (TM) mode. Our PBS has a nominal coupler length of 8.55 μm, and it has an average extinction ratio (ER) of 12.0 dB for the TE mode, an average ER of 20.1 dB for the TM mode, an average polarization isolation (PI) of 20.6 dB for the through port, and an average PI of 11.5 dB for the cross port, all over a bandwidth of 100 nm.

  14. Multi-function all optical packet switch by periodic wavelength arrangement in an arrayed waveguide grating and wideband optical filters.

    PubMed

    Feng, Kai-Ming; Wu, Chung-Yu; Wen, Yu-Hsiang

    2012-01-16

    By utilizing the cyclic filtering function of an NxN arrayed waveguide grating (AWG), we propose and experimentally demonstrate a novel multi-function all optical packet switching (OPS) architecture by applying a periodical wavelength arrangement between the AWG in the optical routing/buffering unit and a set of wideband optical filters in the switched output ports to achieve the desired routing and buffering functions. The proposed OPS employs only one tunable wavelength converter at the input port to convert the input wavelength to a designated wavelength which reduces the number of active optical components and thus the complexity of the traffic control is simplified in the OPS. With the proposed OPS architecture, multiple optical packet switching functions, including arbitrary packet switching and buffering, first-in-first-out (FIFO) packet multiplexing, packet demultiplexing and packet add/drop multiplexing, have been successfully demonstrated.

  15. Parity-Time-Symmetric Whispering-Gallery Microcavities

    DTIC Science & Technology

    2014-04-06

    Stone, A. D. PT - symmetry breaking and laser -absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011). 31. Liang, G. Q. & Chong...see that only when the PT - symmetry is broken, the field is localized in the active resonator and thus the signal at the output port of the fiber ...peaks. Fig.S9. Localization of the optical field in the active resonator in the broken- PT symmetry phase. Fiber taper waveguide with ports 1 and

  16. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hai, E-mail: hai.yan@utexas.edu; Zou, Yi; Yang, Chun-Ju

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experimentmore » showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.« less

  17. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon–Gallium-Nitride Slot Waveguide Structures

    PubMed Central

    Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev

    2016-01-01

    In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)–gallium nitride (GaN) slot waveguide structure is presented—to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530–1565 nm) into four output ports with low insertion losses (0.07 dB). PMID:28773638

  18. Comparison of measured and predicted performance of a SIS waveguide mixer at 345 GHz

    NASA Technical Reports Server (NTRS)

    Honingh, C. E.; Delange, G.; Dierichs, M. M. T. M.; Schaeffer, H. H. A.; Wezelman, J.; Vandekuur, J.; Degraauw, T.; Klapwijk, T. M.

    1992-01-01

    The measured gain and noise of a SIS waveguide mixer at 345 GHz have been compared with theoretical values, calculated from the quantum mixer theory using a three port model. As a mixing element, we use a series array of two Nb-Al2O3-Nb SIS junctions. The area of each junction is 0.8 sq microns and the normal state resistance is 52 omega. The embedding impedance of the mixer has been determined from the pumped DC-IV curves of the junction and is compared to results from scale model measurements (105 x). Good agreement was obtained. The measured mixer gain, however, is a factor of 0.45 plus or minus 0.5 lower than the theoretical predicted gain. The measured mixer noise temperature is a factor of 4-5 higher than the calculated one. These discrepancies are independent on pump power and are valid for a broad range of tuning conditions.

  19. Ultra-High Speed Analog-to-Digital Converters in 14nm FinFET Process and Usage in Digital and Hybrid Phased Array Systems

    DTIC Science & Technology

    2017-03-01

    enable extremely high dynamic range receivers to be realized in very compact dimensions. This paper provides information on the performance...this is the “Butler Matrix” topology in which N beam angular positions into N matrix ports. With this topology , by selecting a particular...waveguide port to connect a receiver or transmitter chain to a particular beam direction would be enabled. RF phase shifters and amplitude weighting

  20. Wavelength-tunable filter utilizing non-cyclic arrayed waveguide grating to create colorless, directionless, contentionless ROADMs

    NASA Astrophysics Data System (ADS)

    Niwa, Masaki; Takashina, Shoichi; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi; Watanabe, Toshio

    2015-01-01

    With the continuous increase in Internet traffic, reconfigurable optical add-drop multiplexers (ROADMs) have been widely adopted in the core and metro core networks. Current ROADMs, however, allow only static operation. To realize future dynamic optical-network services, and to minimize any human intervention in network operation, the optical signal add/drop part should have colorless/directionless/contentionless (C/D/C) capabilities. This is possible with matrix switches or a combination of splitter-switches and optical tunable filters. The scale of the matrix switch increases with the square of the number of supported channels, and hence, the matrix-switch-based architecture is not suitable for creating future large-scale ROADMs. In contrast, the numbers of splitter ports, switches, and tunable filters increase linearly with the number of supported channels, and hence the tunable-filter-based architecture will support all future traffic. So far, we have succeeded in fabricating a compact tunable filter that consists of multi-stage cyclic arrayed-waveguide gratings (AWGs) and switches by using planar-lightwave-circuit (PLC) technologies. However, this multistage configuration suffers from large insertion loss and filter narrowing. Moreover, power-consuming temperature control is necessary since it is difficult to make cyclic AWGs athermal. We propose here novel tunable-filter architecture that sandwiches a single-stage non-cyclic athermal AWG having flatter-topped passbands between small-scale switches. With this configuration, the optical tunable filter attains low insertion loss, large passband bandwidths, low power consumption, compactness, and high cost-effectiveness. A prototype is monolithically fabricated with PLC technologies and its excellent performance is experimentally confirmed utilizing 80-channel 30-GBaud dual-polarization quadrature phase-shift-keying (QPSK) signals.

  1. Experimental study on the statistic characteristics of a 3x3 RF MIMO channel over a single conventional multimode fiber.

    PubMed

    Lei, Yi; Li, Jianqiang; Wu, Rui; Fan, Yuting; Fu, Songnian; Yin, Feifei; Dai, Yitang; Xu, Kun

    2017-06-01

    Based on the observed random fluctuation phenomenon of speckle pattern across multimode fiber (MMF) facet and received optical power distribution across three output ports, we experimentally investigate the statistic characteristics of a 3×3 radio frequency multiple-input multiple-output (MIMO) channel enabled by mode division multiplexing in a conventional 50 µm MMF using non-mode-selective three-dimensional waveguide photonic lanterns as mode multiplexer and demultiplexer. The impacts of mode coupling on the MIMO channel coefficients, channel matrix, and channel capacity have been analyzed over different fiber lengths. The results indicate that spatial multiplexing benefits from the greater fiber length with stronger mode coupling, despite a higher optical loss.

  2. Observational demonstration of a high image rejection SIS mixer receiver using a new waveguide filter at 230 GHz

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yutaka; Asayama, Shinichiro; Harada, Ryohei; Tokuda, Kazuki; Kimura, Kimihiro; Ogawa, Hideo; Onishi, Toshikazu

    2017-12-01

    A new sideband separation method was developed for use in millimeter-/submillimeter-band radio receivers using a novel waveguide frequency separation filter (FSF), which consists of two branch line hybrid couplers and two waveguide high-pass filters. The FSF was designed to allow the radio frequency (RF) signal to pass through to an output port when the frequency is higher than a certain value (225 GHz), and to reflect the RF signal back to another output port when the frequency is lower. The FSF is connected to two double sideband superconductor-insulator-superconductor (SIS) mixers, and an image rejection ratio (IRR) is determined by the FSF characteristics. With this new sideband separation method, we can achieve good and stable IRR without the balancing two SIS mixers such as is necessary for conventional sideband-separating SIS mixers. To demonstrate the applicability of this method, we designed and developed an FSF for simultaneous observations of the J = 2-1 rotational transition lines of three CO isotopes (12CO, 13CO, and C18O): the 12CO line is in the upper sideband and the others are in the lower sideband with an intermediate-frequency range of 4-8 GHz at the radio frequency of 220/230 GHz. This FSF was then installed in the receiver system of the 1.85 m radio telescope of Osaka Prefecture University, and was used during the 2014 observation season. The observation results indicate that the IRR of the proposed receiver is 25 dB or higher for the 12CO line, and no significant fluctuation larger than 1 dB in the IRR was observed throughout the season. These results demonstrate the practical utility of the FSF receiver for observations like extensive molecular cloud surveys in specified lines with a fixed frequency setting.

  3. Free space and waveguide Talbot effect: phase relations and planar light circuit applications

    NASA Astrophysics Data System (ADS)

    Nikkhah, H.; Zheng, Q.; Hasan, I.; Abdul-Majid, S.; Hall, T. J.

    2012-10-01

    Optical fields that are periodic in the transverse plane self-image periodically as they propagate along the optical axis: a phenomenon known as the Talbot effect. A transfer matrix may be defined that relates the amplitude and phase of point sources placed on a particular grid at the input to their respective multiple images at an image plane. The free-space Talbot effect may be mapped to the waveguide Talbot effect. Applying this mapping to the transfer matrix enables the prediction of the phase and amplitude relations between the ports of a Multimode Interference (MMI) coupler- a planar waveguide device. The transfer matrix approach has not previously been applied to the free-space case and its mapping to the waveguide case provides greater clarity and physical insight into the phase relationships than previous treatments. The paper first introduces the underlying physics of the Talbot effect in free space with emphasis on the positions along the optical axis at which images occur; their multiplicity; and their relative phase relations determined by the Gauss Quadratic Sum of number theory. The analysis is then adapted to predict the phase relationships between the ports of an MMI. These phase relationships are critical to planar light circuit (PLC) applications such as 90° optical hybrids for coherent optical receiver front-ends, external optical I-Q modulators for coherent optical transmitters; and optical phased array switches. These applications are illustrated by results obtained from devices that have been fabricated and tested by the PTLab in Si micro-photonic integration platforms.

  4. Realization of a compact polarization splitter-rotator on silicon.

    PubMed

    Dai, Daoxin; Wu, Hao

    2016-05-15

    A novel compact polarization splitter-rotator (PSR) is proposed and realized with silicon-on-insulator nanowires. The present PSR consists of an adiabatic taper, an asymmetric directional coupler (ADC), and a multimode interference (MMI) mode filter. The adiabatic taper enables an efficient mode conversion from the launched TM0 mode to the TE1 mode in a wide waveguide, which is then coupled to the TE0 mode of a narrow waveguide through the ADC. Meanwhile, the launched TE0 mode does not have mode conversion and outputs from the through port directly. The MMI mode filter is cascaded at the through port to filter out the residual power of the TE1 mode so that the extinction ratio of the PSR is improved greatly. The total length of the PSR is ∼70  μm and the fabricated PSR has an extinction ratio of ∼20  dB over a broadband ranging from 1547 to 1597 nm.

  5. A Novel Ku-Band/Ka-Band and Ka-Band/E-Band Multimode Waveguide Couplers for Power Measurement of Traveling-Wave Tube Amplifier Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.

    2015-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).

  6. High-speed optical switch fabrics with large port count.

    PubMed

    Yeo, Yong-Kee; Xu, Zhaowen; Wang, Dawei; Liu, Jianguo; Wang, Yixin; Cheng, Tee-Hiang

    2009-06-22

    We report a novel architecture that can be used to construct optical switch fabrics with very high port count and nanoseconds switching speed. It is well known that optical switch fabrics with very fast switching time and high port count are challenging to realize. Currently, one of the most promising solutions is based on a combination of wavelength-tunable lasers and the arrayed waveguide grating router (AWGR). To scale up the number of ports in such switches, a direct method is to use AWGRs with a high channel count. However, such AWGRs introduce very large crosstalk noise due to the close wavelength channel spacing. In this paper, we propose an architecture for realizing a high-port count optical switch fabric using a combination of low-port count AWGRs, optical ON-OFF gates and WDM couplers. Using this new methodology, we constructed a proof-of concept experiment to demonstrate the feasibility of a 256 x 256 optical switch fabric. To our knowledge, this port count is the highest ever reported for switch fabrics of this type.

  7. Chemiomics: network reconstruction and kinetics of port wine aging.

    PubMed

    Monforte, Ana Rita; Jacobson, Dan; Silva Ferreira, A C

    2015-03-11

    Network reconstruction (NR) has proven to be useful in the detection and visualization of relationships among the compounds present in a Port wine aging data set. This view of the data provides a considerable amount of information with which to understand the kinetic contexts of the molecules represented by peaks in each chromatogram. The aim of this study was to use NR together with the determination of kinetic parameters to extract more information about the mechanisms involved in Port wine aging. The volatile compounds present in samples of Port wines spanning 128 years in age were measured with the use of GC-MS. After chromatogram alignment, a peak matrix was created, and all peak vectors were compared to one another to determine their Pearson correlations over time. A correlation network was created and filtered on the basis of the resulting correlation values. Some nodes in the network were further studied in experiments on Port wines stored under different conditions of oxygen and temperature in order to determine their kinetic parameters. The resulting network can be divided into three main branches. The first branch is related to compounds that do not directly correlate to age, the second branch contains compounds affected by temperature, and the third branch contains compounds associated with oxygen. Compounds clustered in the same branch of the network have similar expression patterns over time as well as the same kinetic order, thus are likely to be dependent on the same technological parameters. Network construction and visualization provides more information with which to understand the probable kinetic contexts of the molecules represented by peaks in each chromatogram. The approach described here is a powerful tool for the study of mechanisms and kinetics in complex systems and should aid in the understanding and monitoring of wine quality.

  8. Method to optimize optical switch topology for photonic network-on-chip

    NASA Astrophysics Data System (ADS)

    Zhou, Ting; Jia, Hao

    2018-04-01

    In this paper, we propose a method to optimize the optical switch by substituting optical waveguide crossings for optical switching units and an optimizing algorithm to complete the optimization automatically. The functionality of the optical switch remains constant under optimization. With this method, we simplify the topology of optical switch, which means the insertion loss and power consumption of the whole optical switch can be effectively minimized. Simulation result shows that the number of switching units of the optical switch based on Spanke-Benes can be reduced by 16.7%, 20%, 20%, 19% and 17.9% for the scale from 4 × 4 to 8 × 8 respectively. As a proof of concept, the experimental demonstration of an optimized six-port optical switch based on Spanke-Benes structure by means of silicon photonics chip is reported.

  9. Slow Controls Using the Axiom M5235BCC

    NASA Astrophysics Data System (ADS)

    Hague, Tyler

    2008-10-01

    The Forward Vertex Detector group at PHENIX plans to adopt the Axiom M5235 Business Card Controller for use as slow controls. It is also being evaluated for slow controls on FermiLab e906. This controller features the Freescale MCF5235 microprocessor. It also has three parallel buses, these being the MCU port, BUS port, and enhanced Time Processing Unit (eTPU) port. The BUS port uses a chip select module with three external chip selects to communicate with peripherals. This will be used to communicate with and configure Field Programmable Gate Arrays (FPGAs). The controller also has an Ethernet port which can use several different protocols such as TCP and UDP. This will be used to transfer files with computers on a network. The M5235 Business Card Controller will be placed in a VME crate along with VME card and a Spartan-3 FPGA.

  10. Electro Optic Modulation In a Polymer Ringresonator

    NASA Astrophysics Data System (ADS)

    Leinse, A.; Driessen, A.; Diemeer, M. B. J.

    2004-05-01

    A thermo optic and electro optic (EO) tunable polymer ringresonator was realized and tested. The device consisted of a microring resonator made of the 4-dimethylamino-4‵-nitrostilbene (DANS) containing polymer and measurements were done on the through port of this device. The ring was used in a vertical coupling structure. The port waveguides were made of the photo-definable epoxy (SU8). The rings used had a diameter of 100 μm and thermo optic tuning of about 170 pm/°C was measured. EO modulation was measured for TE polarization.

  11. Quantum model of light transmission in array waveguide gratings.

    PubMed

    Capmany, J; Mora, J; Fernández-Pousa, C R; Muñoz, P

    2013-06-17

    We develop, to the best of our knowledge, the first model for an array waveguide grating (AWG) device subject to quantum inputs and analyze its basic transformation functionalities for single-photon states. A commercial, cyclic AWG is experimentally characterized with weak input coherent states as a means of exploring its behaviour under realistic quantum detection. In particular it is shown the existence of a cutoff value of the average photon number below which quantum crosstalk between AWG ports is negligible with respect to dark counts. These results can be useful when considering the application of AWG devices to integrated quantum photonic systems.

  12. Excitation of a Parallel Plate Waveguide by an Array of Rectangular Waveguides

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2011-01-01

    This work addresses the problem of excitation of a parallel plate waveguide by an array of rectangular waveguides that arises in applications such as the continuous transverse stub (CTS) antenna and dual-polarized parabolic cylindrical reflector antennas excited by a scanning line source. In order to design the junction region between the parallel plate waveguide and the linear array of rectangular waveguides, waveguide sizes have to be chosen so that the input match is adequate for the range of scan angles for both polarizations. Electromagnetic wave scattered by the junction of a parallel plate waveguide by an array of rectangular waveguides is analyzed by formulating coupled integral equations for the aperture electric field at the junction. The integral equations are solved by the method of moments. In order to make the computational process efficient and accurate, the method of weighted averaging was used to evaluate rapidly oscillating integrals encountered in the moment matrix. In addition, the real axis spectral integral is evaluated in a deformed contour for speed and accuracy. The MoM results for a large finite array have been validated by comparing its reflection coefficients with corresponding results for an infinite array generated by the commercial finite element code, HFSS. Once the aperture electric field is determined by MoM, the input reflection coefficients at each waveguide port, and coupling for each polarization over the range of useful scan angles, are easily obtained. Results for the input impedance and coupling characteristics for both the vertical and horizontal polarizations are presented over a range of scan angles. It is shown that the scan range is limited to about 35 for both polarizations and therefore the optimum waveguide is a square of size equal to about 0.62 free space wavelength.

  13. Compound semiconductor optical waveguide switch

    DOEpatents

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  14. Optical source and apparatus for remote sensing

    NASA Technical Reports Server (NTRS)

    Coyle, Donald Barry (Inventor)

    2011-01-01

    An optical amplifier is configured to amplify an injected seed optical pulse. The optical amplifier may include two or more gain sections coupled to form a continuous solid waveguide along a primary optical path. Each gain section may include: (i) an optical isolator forming an input to that gain section; (ii) a doped optical fiber having a first end coupled to the optical isolator and having a second end; (iii) a plurality of pump laser diodes; (iv) a controller providing drive signals to each of the plurality, the controller being configured to provide at least pulsed drive signals; and (v) an optical coupler having a first input port coupled to the second end, and a second input port coupled to the plurality and an output port.

  15. Analysis of a single ring resonator with 2×2 90-degree multimode waveguide turning couplers

    NASA Astrophysics Data System (ADS)

    Chiu, C. L.; Liao, Yen-Hsun

    2016-02-01

    A novel design of a single ring resonator with two low-loss 2×2 90-degree multimode waveguide turning mirror couplers based on a InP structure. The coupling factor of the 2×2 90-degree multimode waveguide turning mirror coupler is inversed for K=0.85 to K=0.15 when one folding is achieved. The 2×2 90-degree turning mirror coupler for K=0.15 is (3/4)Lπ in length. Its length is reduced 3 times than the conventional straight 2×2 multimode waveguide interference coupler (9/4)Lπ in length for K=0.15. The cavity length of the curve waveguide (90-degree arc length) in this ring resonator with two 2×2 90-degree multimode waveguide turning couplers is decreased 1/2 times than with two 2×2 MMI couplers (180-degree arc length). The free spectral range (FSR) is increased 2 times. The output spectral response gets a FSR of 82 GHz for the device and a contrast of 4 dB and FWHM of 0.24 nm for the drop port. The results of numerical analysis calculated by the transfer functions in a single ring resonator are agreement with the experimental results.

  16. Dielectric loaded surface plasmon waveguides for datacom applications

    NASA Astrophysics Data System (ADS)

    Weeber, J.-C.; Hassan, K.; Nielsen, M. G.; Pitilakis, A.; Tsilipakos, O.; Kriezis, E. E.; Fatome, J.; Finot, C.; Markey, L.; Albrektsen, O.; Bozhevolnyi, S. I.; Dereux, A.

    2012-04-01

    We rst report on design, fabrication and characterizations of thermally-controlled plasmonic routers relying on the interference of a plasmonic and a photonic mode supported by wide enough dielectric loaded waveguides. We show that, by owing a current through the gold lm on which the dielectric waveguides are deposited, the length of the beating created by the interference of the two modes can be controlled accurately. By operating such a plasmonic dual-mode interferometer switch, symmetric extinction ratio of 7dB are obtained at the output ports of a 2x2 router. Next, we demonstrate ber-to-ber characterizations of stand-alone dielectric loaded surface plasmon waveguide (DLSPPW) devices by using grating couplers. The couplers are comprised of dielectric loaded gratings with carefully chosen periods and duty-cycles close to 0.5. We show that insertion loss below 10dB per coupler can be achieved with optimized gratings. This coupling scheme is used to operate Bit-Error-Rate (BER) measurements for the transmission of a 10Gbits/s signal along a stand-alone straight DLSPPW. We show in particular that these waveguides introduce a rather small BER power penalty (below 1dB) demonstrating the suitability of this plasmonic waveguiding platform for high-bit rate transmission.

  17. Channel add-drop filter based on dual photonic crystal cavities in push-pull mode.

    PubMed

    Poulton, Christopher V; Zeng, Xiaoge; Wade, Mark T; Popović, Miloš A

    2015-09-15

    We demonstrate an add-drop filter based on a dual photonic crystal nanobeam cavity system that emulates the operation of a traveling wave resonator, and, thus, provides separation of the through and drop port transmission from the input port. The device is on a 3×3  mm chip fabricated in an advanced microelectronics silicon-on-insulator complementary metal-oxide semiconductor (SOI CMOS) process (IBM 45 nm SOI) without any foundry process modifications. The filter shows 1 dB of insertion loss in the drop port with a 3 dB bandwidth of 64 GHz, and 16 dB extinction in the through port. To the best of our knowledge, this is the first implementation of a port-separating, add-drop filter based on standing wave cavities coupled to conventional waveguides, and demonstrates a performance that suggests potential for photonic crystal devices within optical immersion lithography-based advanced CMOS electronics-photonics integration.

  18. On-chip non-reciprocal optical devices based on quantum inspired photonic lattices

    NASA Astrophysics Data System (ADS)

    El-Ganainy, R.; Eisfeld, A.; Levy, Miguel; Christodoulides, D. N.

    2013-10-01

    We propose integrated optical structures that can be used as isolators and polarization splitters based on engineered photonic lattices. Starting from optical waveguide arrays that mimic Fock space (quantum state with a well-defined particle number) representation of a non-interacting two-site Bose Hubbard Hamiltonian, we show that introducing magneto-optic nonreciprocity to these structures leads to a superior optical isolation performance. In the forward propagation direction, an input TM polarized beam experiences a perfect state transfer between the input and output waveguide channels while surface Bloch oscillations block the backward transmission between the same ports. Our analysis indicates a large isolation ratio of 75 dB after a propagation distance of 8 mm inside seven coupled waveguides. Moreover, we demonstrate that, a judicious choice of the nonreciprocity in this same geometry can lead to perfect polarization splitting.

  19. Direct slow-light excitation in photonic crystal waveguides forming ultra-compact splitters.

    PubMed

    Zhang, Min; Groothoff, Nathaniel; Krüger, Asger Christian; Shi, Peixing; Kristensen, Martin

    2011-04-11

    Based on a series of 1x2 beam splitters, novel direct excitation of slow-light from input- to output-region in photonic crystal waveguides is investigated theoretically and experimentally. The study shows that the slow-light excitation provides over 50 nm bandwidth for TE-polarized light splitting between two output ports, and co-exists together with self-imaging leading to ~20 nm extra bandwidth. The intensity of the direct excitation is qualitatively explained by the overlap integral of the magnetic fields between the ground input- and excited output-modes. The direct excitation of slow light is practically lossless compared with transmission in a W1 photonic crystal waveguides, which broadens the application-field for slow-light and further minimizes the size of a 1x2 splitter. © 2011 Optical Society of America

  20. Waveguide arrangements based on adiabatic elimination

    DOEpatents

    Suchowski, Haim; Mrejen, Michael; Wu, Chihhui; Zhang, Xiang

    2016-09-13

    This disclosure provides systems, methods, and apparatus related to nanophotonics. In one aspect, an arrangement of waveguides includes a substrate and three waveguides. Each of the three waveguides may be a linear waveguide. A second waveguide is positioned between a first waveguide and a third waveguide. The dimensions and positions of the first, the second, and the third waveguides are specified to substantially eliminate coupling between the first waveguide and the third waveguide over a distance of about 1 millimeter to 2 millimeters along lengths of the first waveguide, the second waveguide, and the third waveguide.

  1. Maximum and minimum return losses from a passive two-port network terminated with a mismatched load

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.

    1993-01-01

    This article presents an analytical method for determining the exact distance a load is required to be offset from a passive two-port network to obtain maximum or minimum return losses from the terminated two-port network. Equations are derived in terms of two-port network S-parameters and load reflection coefficient. The equations are useful for predicting worst-case performances of some types of networks that are terminated with offset short-circuit loads.

  2. Reconfigurable optical interconnection network for multimode optical fiber sensor arrays

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.

    1992-01-01

    A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.

  3. Steerable sound transport in a 3D acoustic network

    NASA Astrophysics Data System (ADS)

    Xia, Bai-Zhan; Jiao, Jun-Rui; Dai, Hong-Qing; Yin, Sheng-Wen; Zheng, Sheng-Jie; Liu, Ting-Ting; Chen, Ning; Yu, De-Jie

    2017-10-01

    Quasi-lossless and asymmetric sound transports, which are exceedingly desirable in various modern physical systems, are almost always based on nonlinear or angular momentum biasing effects with extremely high power levels and complex modulation schemes. A practical route for the steerable sound transport along any arbitrary acoustic pathway, especially in a three-dimensional (3D) acoustic network, can revolutionize the sound power propagation and the sound communication. Here, we design an acoustic device containing a regular-tetrahedral cavity with four cylindrical waveguides. A smaller regular-tetrahedral solid in this cavity is eccentrically emplaced to break spatial symmetry of the acoustic device. The numerical and experimental results show that the sound power flow can unimpededly transport between two waveguides away from the eccentric solid within a wide frequency range. Based on the quasi-lossless and asymmetric transport characteristic of the single acoustic device, we construct a 3D acoustic network, in which the sound power flow can flexibly propagate along arbitrary sound pathways defined by our acoustic devices with eccentrically emplaced regular-tetrahedral solids.

  4. Bi-directional ROADM with one pair of NxN cyclic-AWGs for over N wavelength channels configuration

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Mu

    2018-01-01

    This paper presents a bidirectional optical add-drop multiplexer (BROADM) with permitting white spectral channels input in bidirectional configuration. The filter routing rule of array waveguide grating (AWG) is applied for the wavelength channels (WCs) that need to be added and dropped by using the corresponding tunable fiber Bragg gratings (FBGs). The other WCs pass through output by tuning FBG filter spectra away from the WCs. The bandwidth between two adjacent WCs of each pair of ports in AWG is wider than one channel spacing so that the filter spectra of FBG is tuned to free spectral range (FSR) region to realize the wavelength routing function without interfering other WCs. The WCs can be flexibly handled by installing the corresponding tunable FBG. Therefore, the proposed BROADM is more flexible and has higher transmission capacity in the optical network.

  5. Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings.

    PubMed

    Xu, Fang; Poon, Andrew W

    2008-06-09

    We report silicon cross-connect filters using microring resonator coupled multimode-interference (MMI) based waveguide crossings. Our experiments reveal that the MMI-based cross-connect filters impose lower crosstalk at the crossing than the conventional cross-connect filters using plain crossings, while offering a nearly symmetric resonance line shape in the drop-port transmission. As a proof-of-concept for cross-connection applications, we demonstrate on a silicon-on-insulator substrate (i) a 4-channel 1 x 4 linear-cascaded MMI-based cross-connect filter, and (ii) a 2-channel 2 x 2 array-cascaded MMI-based cross-connect filter.

  6. High-Efficiency Ka-Band Waveguide Two-Way Asymmetric Power Combiner

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Simons, R. N.; Freeman, J. C.; Chevalier, C. T.

    2011-01-01

    NASA is planning a number of Space Exploration, Earth Observation and Space Science missions where Ka-band solid-state power amplifiers (SSPAs) could have a role. Monolithic microwave integrated circuit (MMIC) based SSPAs with output powers on the order of 10 W at Ka-band frequencies would be adequate to satisfy the data transmission rate requirements at the distances involved. MMICs are a type of integrated circuit fabricated on a GaAs wafer, which operates at micro wave frequencies and performs the function of signal amplification. The highest power Ka-band (31.8 to 32.3 GHz) SSPA to have flown in space had an output power of 2.6 W with an overall efficiency of 14.3 percent. This SSPA was built around discrete GaAs pHEMT (high electron mobility transistor) devices and flew aboard the Deep Space One spacecraft. State-of-the-art GaAs pHEMT-based MMIC power amplifiers (PAs) can deliver RF power at Ka-band frequencies anywhere from 3 W with a power added efficiency (PAE) of 32 percent to 6 W with a PAE of 26 percent. However, to achieve power levels higher than 6 W, the output of several MMIC PAs would need to be combined using a high-efficiency power combiner. Conventional binary waveguide power combiners, based on short-slot and magic-T circuits, require MMIC PAs with identical amplitude and phase characteristics for high combining efficiency. However, due to manufacturing process variations, the output powers of the MMIC PAs tend to be unequal, and hence the need to develop unequal power combiners. A two-way asymmetric magic-T based power combiner for MMIC power amplifiers, which can take in unequal inputs, has been successfully designed, fabricated, and characterized over NASA s Deep Space Network (DSN) frequency range of 31.8 to 32.3 GHz. The figure is a transparent view of the a sym - metric combiner that shows the 4-port configuration and the internal structure. The rod, post, and iris are positioned by design to achieve the desired asymmetric power ratio, phase equality, and port isolation. Although the combiner was designed for an input power ratio of 2:1, it can be custom-designed for any arbitrary power ratio and frequency range. The manufactured prototype combiner was precision machined from aluminum and is less than 2 in.3 (32.8 cm3). Previously investigated rectangular waveguide unequal power combiners were based on shunt/series coupling slots, E-plane septums, or H-plane T-junctions. All the prior art unequal power combiners operated at or below X-band (10 GHz) frequencies and were primarily used in the feed network of antenna arrays. The only reported asymmetric magic-T was developed as a 2:1 power divider for operation at a much lower frequency, around 500 MHz. The measured power ratio when tested as a power divider was very close to 2 and the phase balance was within 2.6, resulting in near ideal performance. When tested as a combiner using two MMIC SSPAs with a 2:1 power output ratio, an efficiency greater than 90 percent was demonstrated over the 500 MHz DSN frequency range. The return loss at the combiner output port (1) was greater than 18 dB and the input port (2 and 3) isolation was greater than 22 dB. The results show the asymmetric combiner to be a good candidate for high-efficiency power combining of two or more SSPAs needed to achieve the 6 to 10 W required by space communications systems of future NASA missions.

  7. Switch-connected HyperX network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Heidelberger, Philip

    A network system includes a plurality of sub-network planes and global switches. The sub-network planes have a same network topology as each other. Each of the sub-network planes includes edge switches. Each of the edge switches has N ports. Each of the global switches is configured to connect a group of edge switches at a same location in the sub-network planes. In each of the sub-network planes, some of the N ports of each of the edge switches are connected to end nodes, and others of the N ports are connected to other edge switches in the same sub-network plane,more » other of the N ports are connected to at least one of the global switches.« less

  8. Chemiomics: Network Reconstruction and Kinetics of Port Wine Aging

    DOE PAGES

    Monforte, Ana Rita; Jacobson, Dan; Silva Ferreira, A. C.

    2015-02-11

    Network reconstruction (NR) has proven to be useful in the detection and visualization of relationships among the compounds present in a Port wine aging data set. This view of the data provides a considerable amount of information with which to understand the kinetic contexts of the molecules represented by peaks in each chromatogram. The aim of this paper was to use NR together with the determination of kinetic parameters to extract more information about the mechanisms involved in Port wine aging. The volatile compounds present in samples of Port wines spanning 128 years in age were measured with the usemore » of GC-MS. After chromatogram alignment, a peak matrix was created, and all peak vectors were compared to one another to determine their Pearson correlations over time. A correlation network was created and filtered on the basis of the resulting correlation values. Some nodes in the network were further studied in experiments on Port wines stored under different conditions of oxygen and temperature in order to determine their kinetic parameters. The resulting network can be divided into three main branches. The first branch is related to compounds that do not directly correlate to age, the second branch contains compounds affected by temperature, and the third branch contains compounds associated with oxygen. Compounds clustered in the same branch of the network have similar expression patterns over time as well as the same kinetic order, thus are likely to be dependent on the same technological parameters. Network construction and visualization provides more information with which to understand the probable kinetic contexts of the molecules represented by peaks in each chromatogram. Finally, the approach described here is a powerful tool for the study of mechanisms and kinetics in complex systems and should aid in the understanding and monitoring of wine quality.« less

  9. Air Force highly integrated photonics program: development and demonstration of an optically transparent fiber optic network for avionics applications

    NASA Astrophysics Data System (ADS)

    Whaley, Gregory J.; Karnopp, Roger J.

    2010-04-01

    The goal of the Air Force Highly Integrated Photonics (HIP) program is to develop and demonstrate single photonic chip components which support a single mode fiber network architecture for use on mobile military platforms. We propose an optically transparent, broadcast and select fiber optic network as the next generation interconnect on avionics platforms. In support of this network, we have developed three principal, single-chip photonic components: a tunable laser transmitter, a 32x32 port star coupler, and a 32 port multi-channel receiver which are all compatible with demanding avionics environmental and size requirements. The performance of the developed components will be presented as well as the results of a demonstration system which integrates the components into a functional network representative of the form factor used in advanced avionics computing and signal processing applications.

  10. Phonon Networks with Silicon-Vacancy Centers in Diamond Waveguides

    NASA Astrophysics Data System (ADS)

    Lemonde, M.-A.; Meesala, S.; Sipahigil, A.; Schuetz, M. J. A.; Lukin, M. D.; Loncar, M.; Rabl, P.

    2018-05-01

    We propose and analyze a novel realization of a solid-state quantum network, where separated silicon-vacancy centers are coupled via the phonon modes of a quasi-one-dimensional diamond waveguide. In our approach, quantum states encoded in long-lived electronic spin states can be converted into propagating phonon wave packets and be reabsorbed efficiently by a distant defect center. Our analysis shows that under realistic conditions, this approach enables the implementation of high-fidelity, scalable quantum communication protocols within chip-scale spin-qubit networks. Apart from quantum information processing, this setup constitutes a novel waveguide QED platform, where strong-coupling effects between solid-state defects and individual propagating phonons can be explored at the quantum level.

  11. Phonon Networks with Silicon-Vacancy Centers in Diamond Waveguides.

    PubMed

    Lemonde, M-A; Meesala, S; Sipahigil, A; Schuetz, M J A; Lukin, M D; Loncar, M; Rabl, P

    2018-05-25

    We propose and analyze a novel realization of a solid-state quantum network, where separated silicon-vacancy centers are coupled via the phonon modes of a quasi-one-dimensional diamond waveguide. In our approach, quantum states encoded in long-lived electronic spin states can be converted into propagating phonon wave packets and be reabsorbed efficiently by a distant defect center. Our analysis shows that under realistic conditions, this approach enables the implementation of high-fidelity, scalable quantum communication protocols within chip-scale spin-qubit networks. Apart from quantum information processing, this setup constitutes a novel waveguide QED platform, where strong-coupling effects between solid-state defects and individual propagating phonons can be explored at the quantum level.

  12. Optofluidic wavelength division multiplexing for single-virus detection

    PubMed Central

    Ozcelik, Damla; Parks, Joshua W.; Wall, Thomas A.; Stott, Matthew A.; Cai, Hong; Parks, Joseph W.; Hawkins, Aaron R.; Schmidt, Holger

    2015-01-01

    Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context––the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip. Each target is identified by its time-dependent fluorescence signal without the need for spectral demultiplexing upon detection. We demonstrate detection of individual fluorescently labeled virus particles of three influenza A subtypes in two implementations: labeling of each virus using three different colors and two-color combinatorial labeling. By extending combinatorial multiplexing to three or more colors, MMI-based WDM provides the multiplexing power required for differentiated clinical tests and the growing field of personalized medicine. PMID:26438840

  13. The hybrid photonic planar integrated receiver with a polymer optical waveguide

    NASA Astrophysics Data System (ADS)

    Busek, Karel; Jerábek, Vitezslav; Armas Arciniega, Julio; Prajzler, Václav

    2008-11-01

    This article describes design of the photonic receiver composed of the system polymer planar waveguides, InGaAs p-i-n photodiode and integrated HBT amplifier on a low loss composite substrate. The photonic receiver was the main part of the hybrid integrated microwave optoelectronic transceiver TRx (transciever TRx) for the optical networks PON (passive optical networks) with FTTH (fiber-to-the-home) topology. In this article are presented the research results of threedimensional field between output facet of a optical waveguide and p-i-n photodiode. In terms of our research, there was optimized the optical coupling among the facet waveguide and pi-n photodiode and the electrical coupling among p-i-n photodiode and input of HBT amplifier. The hybrid planar lightwave circuit (PLC) of the transceiver TRx will be composed from a two parts - polymer optical waveguide including VHGT filter section and a optoelectronic microwave section.

  14. A High Isolation Series-Shunt RF MEMS Switch

    PubMed Central

    Yu, Yuan-Wei; Zhu, Jian; Jia, Shi-Xing; Shi, Yi

    2009-01-01

    This paper presents a wide band compact high isolation microelectromechanical systems (MEMS) switch implemented on a coplanar waveguide (CPW) with three ohmic switch cells, which is based on the series-shunt switch design. The ohmic switch shows a low intrinsic loss of 0.1 dB and an isolation of 24.8 dB at 6 GHz. The measured average pull-in voltage is 28 V and switching time is 47 μs. In order to shorten design period of the high isolation switch, a structure-based small-signal model for the 3-port ohmic MEMS switch is developed and parameters are extracted from the measured results. Then a high isolation switch has been developed where each 3-port ohmic MEMS switch is closely located. The agreement of the measured and modeled radio frequency (RF) performance demonstrates the validity of the electrical equivalent model. Measurements of the series-shunt switch indicate an outstanding isolation of more than 40 dB and a low insertion loss of 0.35 dB from DC to 12 GHz with total chip size of 1 mm × 1.2 mm. PMID:22408535

  15. Design and VNA-measurement of coplanar waveguide (CPW) on benzocyclobutene (BCB) at THz frequencies

    NASA Astrophysics Data System (ADS)

    Cao, Lei; Grimault-Jacquin, Anne-Sophie; Zerounian, Nicolas; Aniel, Frédéric

    2014-03-01

    The low permittivity and the low loss tangent of the benzocyclobutene polymer (BCB) offers to coplanar waveguides (CPW) a low dispersive propagation properties at THz frequency. These transmission lines have been designed, modeled with a three dimensional (3D) solver of Maxwell equations based on finite element method (FEM) from 20 to 1000 GHz at various characteristic impedances (Zc). Their dispersion and losses (radiation, conduction and dielectric) have been investigated separately versus the waveguide size, the nature of the substrate (dielectric or semiconductor) to optimize the THz signal propagation. Monomode CPW on BCB numerically designed for various Zc were realized and measured with vector network analyzer (VNA). S-parameters of CPW are de-embedded by optimization of the accesses' model. A good agreement is found between experimental and numerical results with low attenuation constants of 2.7 dB/mm and 3.5 dB/mm at 400 GHz and 500 GHz, respectively.

  16. Compact rf polarizer and its application to pulse compression systems

    DOE PAGES

    Franzi, Matthew; Wang, Juwen; Dolgashev, Valery; ...

    2016-06-01

    We present a novel method of reducing the footprint and increasing the efficiency of the modern multi-MW rf pulse compressor. This system utilizes a high power rf polarizer to couple two circular waveguide modes in quadrature to a single resonant cavity in order to replicate the response of a traditional two cavity configuration using a 4-port hybrid. The 11.424 GHz, high-Q, spherical cavity has a 5.875 cm radius and is fed by the circularly polarized signal to simultaneously excite the degenerate TE 114 modes. The overcoupled spherical cavity has a Q 0 of 9.4×10 4 and coupling factor (β) ofmore » 7.69 thus providing a loaded quality factor Q L of 1.06×10 4 with a fill time of 150 ns. Cold tests of the polarizer demonstrated good agreement with the numerical design, showing transmission of -0.05 dB and reflection back to the input rectangular WR 90 waveguide less than -40 dB over a 100 MHz bandwidth. This novel rf pulse compressor was tested at SLAC using XL-4 Klystron that provided rf power up to 32 MW and generated peak output power of 205 MW and an average of 135 MW over the discharged signal. A general network analysis of the polarizer is discussed as well as the design and high power test of the rf pulse compressor.« less

  17. Development of Balanced SIS Mixers for ALMA Band-10

    NASA Astrophysics Data System (ADS)

    Shitov, Sergey V.; Koryukin, Oleg V.; Uzawa, Yoshinory; Noguchi, Takashi; Uvarov, Andrey V.; Cohn, Ilya A.

    2006-05-01

    A few concepts of a wide-band balanced SIS mixer employing submicron-sized SIS junctions are under development for 787-950 GHz frequency range. A quasioptical DSB balanced mixer with integrated cross-slot antenna is considered as the less laborious and cheaper option. The silicon lens-antenna beam efficiency is expected above 80 % across the whole band with first-order sidelobe below -16 dB. To use the conservative horn antenna solution, a single chamber waveguide DSB balanced mixer is developed. Two equal probe-type SIS chips are inserted into a full-height waveguide through its opposite broad walls; these two mixers are driven by the signal waveguide in series. The LO current is transferred to the mixers in parallel via a capacitive probe inserted through the narrow wall of the signal waveguide from the neighboring LO waveguide. The HFSS model demonstrated the LO power coupling efficiency above -3 dB, almost perfect signal transfer and the LO cross talk below -30 dB that take into account misalignment (misbalance) of the chips. It is demonstrated numerically using Tucker's 3-port model that unequal pump of junctions of a twin-SIS mixer can lead, in spite of the perfect signal coupling, to degradation of the gain performance up to -3 dB, especially at the top of the ALMA Band-10.

  18. Multiport power router and its impact on future smart grids

    NASA Astrophysics Data System (ADS)

    Kado, Yuichi; Shichijo, Daiki; Wada, Keiji; Iwatsuki, Katsumi

    2016-07-01

    We propose a Y configuration power router as a unit cell to easily construct a power delivery system that can meet many types of user requirements. The Y configuration power router controls the direction and magnitude of power flows between three ports regardless of DC or AC. We constructed a prototype three-way isolated DC/DC converter that is the core unit of the Y configuration power router. The electrical insulation between three ports assures safety and reliability for power network systems. We then tested the operation of power flow control. The experimental results revealed that our methodology based on a governing equation was appropriate to control the power flow of the three-way DC/DC converter. In addition, a distribution network composed of power routers had the ability to easily enable interchanges of electrical power between autonomous microgrid cells. We also explored the requirements for communication between energy routers to achieve dynamic adjustments of energy flows in a coordinated manner and their impact on resilient power grid systems.

  19. Two-mode division multiplexing in a silicon-on-insulator ring resonator.

    PubMed

    Dorin, Bryce A; Ye, Winnie N

    2014-02-24

    Mode-division multiplexing (MDM) is an emerging multiple-input multiple-output method, utilizing multimode waveguides to increase channel numbers. In the past, silicon-on-insulator (SOI) devices have been primarily focused on single-mode waveguides. We present the design and fabrication of a two-mode SOI ring resonator for MDM systems. By optimizing the device parameters, we have ensured that each mode is treated equally within the ring. Using adiabatic Bezier curves in the ring bends, our ring demonstrated a signal-to-crosstalk ratio above 18 dB for both modes at the through and drop ports. We conclude that the ring resonator has the potential for filtering and switching for MDM systems on SOI.

  20. Optical 1's and 2's complement devices using lithium-niobate-based waveguide

    NASA Astrophysics Data System (ADS)

    Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep

    2016-12-01

    Optical 1's and 2's complement devices are proposed with the help of lithium-niobate-based Mach-Zehnder interferometers. It has a powerful capability of switching an optical signal from one port to the other port with the help of an electrical control signal. The paper includes the optical conversion scheme using sets of optical switches. 2's complement is common in computer systems and is used in binary subtraction and logical manipulation. The operation of the circuits is studied theoretically and analyzed through numerical simulations. The truth table of these complement methods is verified with the beam propagation method and MATLAB® simulation results.

  1. Research on two-port network of wavelet transform processor using surface acoustic wavelet devices and its application.

    PubMed

    Liu, Shoubing; Lu, Wenke; Zhu, Changchun

    2017-11-01

    The goal of this research is to study two-port network of wavelet transform processor (WTP) using surface acoustic wave (SAW) devices and its application. The motive was prompted by the inconvenience of the long research and design cycle and the huge research funding involved with traditional method in this field, which were caused by the lack of the simulation and emulation method of WTP using SAW devices. For this reason, we introduce the two-port network analysis tool, which has been widely used in the design and analysis of SAW devices with uniform interdigital transducers (IDTs). Because the admittance parameters calculation formula of the two-port network can only be used for the SAW devices with uniform IDTs, this analysis tool cannot be directly applied into the design and analysis of the processor using SAW devices, whose input interdigital transducer (IDT) is apodized weighting. Therefore, in this paper, we propose the channel segmentation method, which can convert the WTP using SAW devices into parallel channels, and also provide with the calculation formula of the number of channels, the number of finger pairs and the static capacitance of an interdigital period in each parallel channel firstly. From the parameters given above, we can calculate the admittance parameters of the two port network for each channel, so that we can obtain the admittance parameter of the two-port network of the WTP using SAW devices on the basis of the simplification rule of parallel two-port network. Through this analysis tool, not only can we get the impulse response function of the WTP using SAW devices but we can also get the matching circuit of it. Large numbers of studies show that the parameters of the two-port network obtained by this paper are consistent with those measured by network analyzer E5061A, and the impulse response function obtained by the two-port network analysis tool is also consistent with that measured by network analyzer E5061A, which can meet the accuracy requirements of the analysis of the WTP using SAW devices. Therefore the two-port network analysis tool discussed in this paper has comparatively higher theoretical and practical value. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Slotted Waveguide and Antenna Study for HPM and RF Applications

    DTIC Science & Technology

    2017-07-25

    parallel metal plates separated by lmm, depending on the particular characteristics of the case (waveguide dimensions, SEY (secondary e lectron yield...waveguide antenna, shown in Figure 23, was studied . A new feed ing network based on a composite right-hand/left-hand (CRLH) waveguide structure was...approach is based on the assumption that the external coupling between the array elements is negligible, which is acceptable in the case of the

  3. Apparatus and method for fusion of compute and switching functions of exascale system into a single component by using configurable network-on-chip fabric with distributed dual mode input-output ports and programmable network interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, Surhud; Somasekhar, Dinesh; More, Ankit

    Described is an apparatus which comprises: a Network-On-Chip fabric using crossbar switches, having distributed ingress and egress ports; and a dual-mode network interface coupled to at least one crossbar switch, the dual-mode network interface is to include: a dual-mode circuitry; a controller operable to: configure the dual-mode circuitry to transmit and receive differential signals via the egress and ingress ports, respectively, and configure the dual-mode circuitry to transmit and receive signal-ended signals via the egress and ingress ports, respectively.

  4. TU-H-BRA-02: The Physics of Magnetic Field Isolation in a Novel Compact Linear Accelerator Based MRI-Guided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, D; Mutic, S; Shvartsman, S

    Purpose: To develop a method for isolating the MRI magnetic field from field-sensitive linear accelerator components at distances close to isocenter. Methods: A MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. In order to accomplish this, the magnetron, port circulator, radiofrequency waveguide, gun driver, and linear accelerator needed to be placed in locations with low magnetic fields. The system was also required to be compact, so moving these components far from the main magnetic field and isocenter was not an option. The magnetic field sensitive components (exclusive of the waveguide) were placedmore » in coaxial steel sleeves that were electrically and mechanically isolated and whose thickness and placement were optimized using E&M modeling software. Six sets of sleeves were placed 60° apart, 85 cm from isocenter. The Faraday effect occurs when the direction of propagation is parallel to the magnetic RF field component, rotating the RF polarization, subsequently diminishing RF power. The Faraday effect was avoided by orienting the waveguides such that the magnetic field RF component was parallel to the magnetic field. Results: The magnetic field within the shields was measured to be less than 40 Gauss, significantly below the amount needed for the magnetron and port circulator. Additional mu-metal was employed to reduce the magnetic field at the linear accelerator to less than 1 Gauss. The orientation of the RF waveguides allowed the RT transport with minimal loss and reflection. Conclusion: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of creating low magnetic field environments for the magnetic-field sensitive components, has been solved. The measured magnetic fields are sufficiently small to enable system integration. This work supported by ViewRay, Inc.« less

  5. Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons

    NASA Astrophysics Data System (ADS)

    Xu, Jun Jun; Yin, Jia Yuan; Zhang, Hao Chi; Cui, Tie Jun

    2016-03-01

    We propose a splitter feeding network for array radiations of spoof surface plasmon polaritons (SPPs), which are guided by ultrathin corrugated metallic strips. Based on the coupled mode theory, SPP fields along a single waveguide in a certain frequency range can be readily coupled into two adjacent branch waveguides with the same propagation constants. We propose to load U-shaped particles anti-symmetrically at the ends of such two branch waveguides, showing a high integration degree of the feeding network. By controlling linear phase modulations produced by the U-shaped particle chain, we demonstrate theoretically and experimentally that the SPP fields based on bound modes can be efficiently radiated to far fields in broadside direction. The proposed method shows that the symmetry of electromagnetic field modes can be exploited to the SPP transmission network, providing potential solutions to compact power dividers and combiners for microwave and optical devices and systems.

  6. Polarization-dependent photon switch in a one-dimensional coupled-resonator waveguide.

    PubMed

    Zhang, Zhe-Yong; Dong, Yu-Li; Zhang, Sheng-Li; Zhu, Shi-Qun

    2013-09-09

    Polarization-dependent photon switch is one of the most important ingredients in building future large-scale all-optical quantum network. We present a scheme for a single-photon switch in a one-dimensional coupled-resonator waveguide, where N(a) Λ-type three-level atoms are individually embedded in each of the resonator. By tuning the interaction between atom and field, we show that an initial incident photon with a certain polarization can be transformed into its orthogonal polarization state. Finally, we use the fidelity as a figure of merit and numerically evaluate the performance of our photon switch scheme in varieties of system parameters, such as number of atoms, energy detuning and dipole couplings.

  7. Microwave applicator for in-drum processing of radioactive waste slurry

    DOEpatents

    White, Terry L.

    1994-01-01

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE.sub.10 rectangular mode to TE.sub.01 circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power.

  8. Ultra-low crosstalk, CMOS compatible waveguide crossings for densely integrated photonic interconnection networks.

    PubMed

    Jones, Adam M; DeRose, Christopher T; Lentine, Anthony L; Trotter, Douglas C; Starbuck, Andrew L; Norwood, Robert A

    2013-05-20

    We explore the design space for optimizing CMOS compatible waveguide crossings on a silicon photonics platform. This paper presents simulated and experimental excess loss and crosstalk suppression data for vertically integrated silicon nitride over silicon-on-insulator waveguide crossings. Experimental results show crosstalk suppression exceeding -49/-44 dB with simulation results as low as -65/-60 dB for the TE/TM mode in a waveguide crossing with a 410 nm vertical gap.

  9. Fiberless multicolor neural optoelectrode for in vivo circuit analysis.

    PubMed

    Kampasi, Komal; Stark, Eran; Seymour, John; Na, Kyounghwan; Winful, Herbert G; Buzsáki, György; Wise, Kensall D; Yoon, Euisik

    2016-08-03

    Maximizing the potential of optogenetic approaches in deep brain structures of intact animals requires optical manipulation of neurons at high spatial and temporal resolutions, while simultaneously recording electrical data from those neurons. Here, we present the first fiber-less optoelectrode with a monolithically integrated optical waveguide mixer that can deliver multicolor light at a common waveguide port to achieve multicolor modulation of the same neuronal population in vivo. We demonstrate successful device implementation by achieving efficient coupling between a side-emitting injection laser diode (ILD) and a dielectric optical waveguide mixer via a gradient-index (GRIN) lens. The use of GRIN lenses attains several design features, including high optical coupling and thermal isolation between ILDs and waveguides. We validated the packaged devices in the intact brain of anesthetized mice co-expressing Channelrhodopsin-2 and Archaerhodopsin in pyramidal cells in the hippocampal CA1 region, achieving high quality recording, activation and silencing of the exact same neurons in a given local region. This fully-integrated approach demonstrates the spatial precision and scalability needed to enable independent activation and silencing of the same or different groups of neurons in dense brain regions while simultaneously recording from them, thus considerably advancing the capabilities of currently available optogenetic toolsets.

  10. Tunable filters based on an SOI nano-wire waveguide micro ring resonator

    NASA Astrophysics Data System (ADS)

    Shuai, Li; Yuanda, Wu; Xiaojie, Yin; Junming, An; Jianguang, Li; Hongjie, Wang; Xiongwei, Hu

    2011-08-01

    Micro ring resonator (MRR) filters based on a silicon on insulator (SOI) nanowire waveguide are fabricated by electron beam photolithography (EBL) and inductive coupled plasma (ICP) etching technology. The cross-section size of the strip waveguides is 450 × 220 nm2, and the bending radius of the micro ring is around 5 μm. The test results from the tunable filter based on a single ring show that the free spectral range (FSR) is 16.8 nm and the extinction ratio (ER) around the wavelength 1550 nm is 18.1 dB. After thermal tuning, the filter's tuning bandwidth reaches 4.8 nm with a tuning efficiency of 0.12 nm/°C Meanwhile, we fabricated and studied multi-channel filters based on a single ring and a double ring. After measurement, we drew the following conclusions: during the signal transmission of multi-channel filters, crosstalk exists mainly among different transmission channels and are fairly distinct when there are signals input to add ports.

  11. Highly Compact Circulators in Square-Lattice Photonic Crystal Waveguides

    PubMed Central

    Jin, Xin; Ouyang, Zhengbiao; Wang, Qiong; Lin, Mi; Wen, Guohua; Wang, Jingjing

    2014-01-01

    We propose, demonstrate and investigate highly compact circulators with ultra-low insertion loss in square-lattice- square-rod-photonic-crystal waveguides. Only a single magneto- optical square rod is required to be inserted into the cross center of waveguides, making the structure very compact and ultra efficient. The square rods around the center defect rod are replaced by several right-angled-triangle rods, reducing the insertion loss further and promoting the isolations as well. By choosing a linear-dispersion region and considering the mode patterns in the square magneto-optical rod, the operating mechanism of the circulator is analyzed. By applying the finite-element method together with the Nelder-Mead optimization method, an extremely low insertion loss of 0.02 dB for the transmitted wave and ultra high isolation of 46 dB∼48 dB for the isolated port are obtained. The idea presented can be applied to build circulators in different wavebands, e.g., microwave or Tera-Hertz. PMID:25415417

  12. Highly compact circulators in square-lattice photonic crystal waveguides.

    PubMed

    Jin, Xin; Ouyang, Zhengbiao; Wang, Qiong; Lin, Mi; Wen, Guohua; Wang, Jingjing

    2014-01-01

    We propose, demonstrate and investigate highly compact circulators with ultra-low insertion loss in square-lattice- square-rod-photonic-crystal waveguides. Only a single magneto- optical square rod is required to be inserted into the cross center of waveguides, making the structure very compact and ultra efficient. The square rods around the center defect rod are replaced by several right-angled-triangle rods, reducing the insertion loss further and promoting the isolations as well. By choosing a linear-dispersion region and considering the mode patterns in the square magneto-optical rod, the operating mechanism of the circulator is analyzed. By applying the finite-element method together with the Nelder-Mead optimization method, an extremely low insertion loss of 0.02 dB for the transmitted wave and ultra high isolation of 46 dB∼48 dB for the isolated port are obtained. The idea presented can be applied to build circulators in different wavebands, e.g., microwave or Tera-Hertz.

  13. Demonstration of 720×720 optical fast circuit switch for intra-datacenter networks

    NASA Astrophysics Data System (ADS)

    Ueda, Koh; Mori, Yojiro; Hasegawa, Hiroshi; Matsuura, Hiroyuki; Ishii, Kiyo; Kuwatsuka, Haruhiko; Namiki, Shu; Sato, Ken-ichi

    2016-03-01

    Intra-datacenter traffic is growing more than 20% a year. In typical datacenters, many racks/pods including servers are interconnected via multi-tier electrical switches. The electrical switches necessitate power-consuming optical-to- electrical (OE) and electrical-to-optical (EO) conversion, the power consumption of which increases with traffic. To overcome this problem, optical switches that eliminate costly OE and EO conversion and enable low power consumption switching are being investigated. There are two major requirements for the optical switch. First, it must have a high port count to construct reduced tier intra-datacenter networks. Second, switching speed must be short enough that most of the traffic load can be offloaded from electrical switches. Among various optical switches, we focus on those based on arrayed-waveguide gratings (AWGs), since the AWG is a passive device with minimal power consumption. We previously proposed a high-port-count optical switch architecture that utilizes tunable lasers, route-and-combine switches, and wavelength-routing switches comprised of couplers, erbium-doped fiber amplifiers (EDFAs), and AWGs. We employed conventional external cavity lasers whose wavelength-tuning speed was slower than 100 ms. In this paper, we demonstrate a large-scale optical switch that offers fast wavelength routing. We construct a 720×720 optical switch using recently developed lasers whose wavelength-tuning period is below 460 μs. We evaluate the switching time via bit-error-ratio measurements and achieve 470-μs switching time (includes 10-μs guard time to handle EDFA surge). To best of our knowledge, this is the first demonstration of such a large-scale optical switch with practical switching time.

  14. Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates.

    PubMed

    Gao, Long; Chen, Li; Wei, Hong; Xu, Hongxing

    2018-06-14

    Fabricating plasmonic nanowire waveguides and circuits by lithographic fabrication methods is highly desired for nanophotonic circuitry applications. Here we report an approach for fabricating metal nanowire networks by using electron beam lithography and metal film deposition techniques. The gold nanowire structures are fabricated on quartz substrates without using any adhesion layer but coated with a thin layer of Al2O3 film for immobilization. The thermal annealing during the Al2O3 deposition process decreases the surface plasmon loss. In a Y-shaped gold nanowire network, the surface plasmons can be routed to different branches by controlling the polarization of the excitation light, and the routing behavior is dependent on the length of the main nanowire. Simulated electric field distributions show that the zigzag distribution of the electric field in the nanowire network determines the surface plasmon routing. By using two laser beams to excite surface plasmons in a Y-shaped nanowire network, the output intensity can be modulated by the interference of surface plasmons, which can be used to design Boolean logic gates. We experimentally demonstrate that AND, OR, XOR and NOT gates can be realized in three-terminal nanowire networks, and NAND, NOR and XNOR gates can be realized in four-terminal nanowire networks. This work takes a step toward the fabrication of on-chip integrated plasmonic circuits.

  15. Tunable plasmonic dual wavelength multi/demultiplexer based on graphene sheets and cylindrical resonator

    NASA Astrophysics Data System (ADS)

    Asgari, Somayyeh; Granpayeh, Nosrat

    2017-06-01

    Two parallel graphene sheet waveguides and a graphene cylindrical resonator between them is proposed, analyzed, and simulated numerically by using the finite-difference time-domain method. One end of each graphene waveguide is the input and output port. The resonance and the prominent mid-infrared band-pass filtering effect are achieved. The transmittance spectrum is tuned by varying the radius of the graphene cylindrical resonator, the dielectric inside it, and also the chemical potential of graphene utilizing gate voltage. Simulation results are in good agreement with theoretical calculations. As an application, a multi/demultiplexer is proposed and analyzed. Our studies demonstrate that graphene based ultra-compact, nano-scale devices can be designed for optical processing and photonic integrated devices.

  16. Development of Opportunity Zones Utilizing Transportation Assets : Executive Summary Report

    DOT National Transportation Integrated Search

    2012-06-01

    The challenge that spurred this project is that transportation is traditionally an afterthought when it comes : to company site selection. This yields three chief problems: : 1. Ohios expansive transportation network (ex. roads, rails, ports, and ...

  17. Microwave applicator for in-drum processing of radioactive waste slurry

    DOEpatents

    White, T.L.

    1994-06-28

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE[sub 10] rectangular mode to TE[sub 01] circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power. 4 figures.

  18. Low-to-high refractive index contrast transition (RICT) device for low loss polymer-based optical coupling

    NASA Astrophysics Data System (ADS)

    Calabretta, N.; Cooman, I. A.; Stabile, R.

    2018-04-01

    We propose for the first time a coupling device concept for passive low-loss optical coupling, which is compatible with the ‘generic’ indium phosphide (InP) multi-project-wafer manufacturing. A low-to-high vertical refractive index contrast transition InP waveguide is designed and tapered down to adiabatically couple light into a top polymer waveguide. The on-chip embedded polymer waveguide is engineered at the chip facets for offering refractive-index and spot-size-matching to silica fiber-arrays. Numerical analysis shows that coupling losses lower than 1.5 dB can be achieved for a TE-polarized light between the InP waveguide and the on-chip embedded polymer waveguide at 1550 nm wavelength. The performance is mainly limited by the difficulty to control single-mode operation. However, coupling losses lower than 1.9 dB can be achieved for a bandwidth as large as 200 nm. Moreover, the foreseen fabrication process steps are indicated, which are compatible with the ‘generic’ InP multi-project-wafer manufacturing. A fabrication error tolerance study is performed, indicating that fabrication errors occur only in 0.25 dB worst case excess losses, as long as high precision lithography is used. The obtained results are promising and may open the route to large port counts and cheap packaging of InP-based photonic integrated chips.

  19. The design of H- and V-pol waveguide slot array feeds for a scanned offset dual-polarized reflectarray

    NASA Technical Reports Server (NTRS)

    Zawadzki, Mark; Rengarajan, Sembiam; Hodges, Richard E.

    2005-01-01

    While the design of waveguide slot arrays in not new, this particular design effort shows that very good results can be achieved on a first attempt using established slot array design techniques and commercial software for the waveguide power divider network. The presentation will discuss this design process in detail.

  20. Wideband waveguide polarizer development for SETI

    NASA Technical Reports Server (NTRS)

    Lee, P.; Stanton, P.

    1991-01-01

    A wideband polarizer for the Deep Space Network (DSN) 34 meter beam waveguide antenna is needed for the Search for Extraterrestrial Intelligence (SETI) project. The results of a computer analysis of a wideband polarizer are presented.

  1. Design and measurement of a TE{sub 13} input converter for high order mode gyrotron travelling wave amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan; Liu, Guo, E-mail: liuguo@uestc.edu.cn; Shu, Guoxiang

    2016-03-15

    A technique to launch a circular TE{sub 13} mode to interact with the helical electron beam of a gyrotron travelling wave amplifier is proposed and verified by simulation and cold test in this paper. The high order (HOM) TE{sub 13} mode is excited by a broadband Y-type power divider with the aid of a cylindrical waveguide system. Using grooves and convex strips loaded at the lateral planes of the output cylindrical waveguide, the electric fields of the potential competing TE{sub 32} and TE{sub 71} modes are suppressed to allow the transmission of the dominant TE{sub 13} mode. The converter performancemore » for different structural dimensions of grooves and convex strips is studied in detail and excellent results have been achieved. Simulation predicts that the average transmission is ∼−1.8 dB with a 3 dB bandwidth of 7.2 GHz (91.5–98.7 GHz) and port reflection is less than −15 dB. The conversion efficiency to the TE{sub 32} and TE{sub 71} modes are, respectively, under −15 dB and −24 dB in the operating frequency band. Such an HOM converter operating at W-band has been fabricated and cold tested with the radiation boundary. Measurement from the vector network analyzer cold test and microwave simulations show a good reflection performance for the converter.« less

  2. Theory of absorption integrated optical sensor of gaseous materials

    NASA Astrophysics Data System (ADS)

    Egorov, A. A.

    2010-10-01

    The eigen and noneigen (leaky) modes of a three-layer planar integrated optical waveguide are described. The dispersion relation of a three-layer planar waveguide and other dependences are derived, and the cutoff conditions are analyzed. The diagram of propagation constants of the guided and radiation modes of an irregular asymmetric three-layer waveguide and the dependence of the electric field amplitudes of radiation modes of substrate on vertical coordinate in a tantalum integrated optical waveguide are presented. The operating principles of an absorption integrated optical waveguide sensor are investigated. The dependences of sensitivity of an integrated optical waveguide sensor on the sensory cell length, the coupling efficiency of the laser radiation into the waveguide, the absorption cross-section of the studied material, and the level of additive statistical noise are investigated. Some of the prospective areas of application of integrated-optical waveguide sensors are outlined.

  3. Using Cognitive Control in Software Defined Networking for Port Scan Detection

    DTIC Science & Technology

    2017-07-01

    ARL-TR-8059 ● July 2017 US Army Research Laboratory Using Cognitive Control in Software-Defined Networking for Port Scan...Cognitive Control in Software-Defined Networking for Port Scan Detection by Vinod K Mishra Computational and Information Sciences Directorate, ARL...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) July 2017 2. REPORT TYPE

  4. Mach-Zehnder Interferometer Biochemical Sensor Based on Silicon-on-Insulator Rib Waveguide with Large Cross Section

    PubMed Central

    Yuan, Dengpeng; Dong, Ying; Liu, Yujin; Li, Tianjian

    2015-01-01

    A high-sensitivity Mach-Zehnder interferometer (MZI) biochemical sensing platform based on Silicon-in-insulator (SOI) rib waveguide with large cross section is proposed in this paper. Based on the analyses of the evanescent field intensity, the mode polarization and cross section dimensions of the SOI rib waveguide are optimized through finite difference method (FDM) simulation. To realize high-resolution MZI read-out configuration based on the SOI rib waveguide, medium-filled trenches are employed and their performances are simulated through two-dimensional finite-difference-time domain (2D-FDTD) method. With the fundamental EH-polarized mode of the SOI rib waveguide with a total rib height of 10 μm, an outside rib height of 5 μm and a rib width of 2.5 μm at the operating wavelength of 1550 nm, when the length of the sensitive window in the MZI configuration is 10 mm, a homogeneous sensitivity of 7296.6%/refractive index unit (RIU) is obtained. Supposing the resolutions of the photoelectric detectors connected to the output ports are 0.2%, the MZI sensor can achieve a detection limit of 2.74 × 10−6 RIU. Due to high coupling efficiency of SOI rib waveguide with large cross section with standard single-mode glass optical fiber, the proposed MZI sensing platform can be conveniently integrated with optical fiber communication systems and (opto-) electronic systems, and therefore has the potential to realize remote sensing, in situ real-time detecting, and possible applications in the internet of things. PMID:26343678

  5. Evolutionary multidimensional access architecture featuring cost-reduced components

    NASA Astrophysics Data System (ADS)

    Farjady, Farsheed; Parker, Michael C.; Walker, Stuart D.

    1998-12-01

    We describe a three-stage wavelength-routed optical access network, utilizing coarse passband-flattened arrayed- waveguide grating routers. An N-dimensional addressing strategy enables 6912 customers to be bi-directionally addressed with multi-Gb/s data using only 24 wavelengths spaced by 1.6 nm. Coarse wavelength separation allows use of increased tolerance WDM components at the exchange and customer premises. The architecture is designed to map onto standard access network topologies, allowing elegant upgradability from legacy PON infrastructures at low cost. Passband-flattening of the routers is achieved through phase apodization.

  6. Array processor architecture connection network

    NASA Technical Reports Server (NTRS)

    Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)

    1982-01-01

    A connection network is disclosed for use between a parallel array of processors and a parallel array of memory modules for establishing non-conflicting data communications paths between requested memory modules and requesting processors. The connection network includes a plurality of switching elements interposed between the processor array and the memory modules array in an Omega networking architecture. Each switching element includes a first and a second processor side port, a first and a second memory module side port, and control logic circuitry for providing data connections between the first and second processor ports and the first and second memory module ports. The control logic circuitry includes strobe logic for examining data arriving at the first and the second processor ports to indicate when the data arriving is requesting data from a requesting processor to a requested memory module. Further, connection circuitry is associated with the strobe logic for examining requesting data arriving at the first and the second processor ports for providing a data connection therefrom to the first and the second memory module ports in response thereto when the data connection so provided does not conflict with a pre-established data connection currently in use.

  7. Synthesis and Characterization of Germanium Dioxide - Dioxide Waveguides

    NASA Astrophysics Data System (ADS)

    Chen, Din-Guo

    The increasing use of single mode fibers in local -area networks (LAN) and customer premises networks (CPN) will increase the need for passive optical components, such as branching devices, mixers, etc. Integrated optical devices are potentially ideal for these applications, provided that they can be made compatible with single mode fibers. The use of GeO_2 as the core dopant and SiO_2 as the substrate ensures that these waveguides will have virtually identical characteristics to single mode fibers. Additionally, glasses in the form of waveguides have recently been used to study various nonlinear optical phenomena, which provide great potential applications such as data storage and information processing. The present study has for the first time demonstrated the feasibility of employing both sol-gel multiple dip -coating and low pressure chemical vapor deposition (LPCVD) in the production of GeO_2-SiO _2 waveguiding films with various germania contents. The thin film characteristics were studied by various analytical techniques (e.g. ellipsometry, waveguiding Raman spectroscopy, FTIR, XPS, SEM/TEM, etc.). The composition dependence of the linear refractive index of GeO _2-SiO_2 films follows that predicted by the Lorenz-Lorenz model. Vibrational spectroscopy revealed the existence of Si-O-Ge linkages in GeO_2-SiO_2 glass network. The addition of GeO_2 in SiO_2 caused a decrease in the size of both the D1 and D2 defect bands in the SiO _2 Raman spectra. The structure of the LPCVD film appears to be dominated by D1 and D2 defect bands. Using a three-prism loss measurement technique, the propagation losses were found to be 3.31 dB/cm and 2.59dB/cm for sol-gel and LPCVD films, respectively. These losses are attributed to various scattering processes in the films. The mode indices of the waveguide were measured using a prism coupling technique. The measured mode indices were found to agree with the calculated value based upon a step-index profile assumption. The theoretical electromagnetic field distribution profiles for a step-index planar waveguide has been calculated and compared to the experimentally measured mode profiles using a near field technique. The nonlinear refractive indices of the sol-gel films (GeO_2-SiO_2 and GeO_2-TiO_2 ) were measured using a THG interferometry fringe technique. The relation between n_{ rm 2THG} and n_1 was found to follow that predicted by the empirical BGO model. An additive model was used to calculate the linear refractive indices, Abbe numbers, and n_1 dispersion curves of the films.

  8. Multistage WDM access architecture employing cascaded AWGs

    NASA Astrophysics Data System (ADS)

    El-Nahal, F. I.; Mears, R. J.

    2009-03-01

    Here we propose passive/active arrayed waveguide gratings (AWGs) with enhanced performance for system applications mainly in novel access architectures employing cascaded AWG technology. Two technologies were considered to achieve space wavelength switching in these networks. Firstly, a passive AWG with semiconductor optical amplifiers array, and secondly, an active AWG. Active AWG is an AWG with an array of phase modulators on its arrayed-waveguides section, where a programmable linear phase-profile or a phase hologram is applied across the arrayed-waveguide section. This results in a wavelength shift at the output section of the AWG. These architectures can address up to 6912 customers employing only 24 wavelengths, coarsely separated by 1.6 nm. Simulation results obtained here demonstrate that cascaded AWGs access architectures have a great potential in future local area networks. Furthermore, they indicate for the first time that active AWGs architectures are more efficient in routing signals to the destination optical network units than passive AWG architectures.

  9. Ultra compact triplexing filters based on SOI nanowire AWGs

    NASA Astrophysics Data System (ADS)

    Jiashun, Zhang; Junming, An; Lei, Zhao; Shijiao, Song; Liangliang, Wang; Jianguang, Li; Hongjie, Wang; Yuanda, Wu; Xiongwei, Hu

    2011-04-01

    An ultra compact triplexing filter was designed based on a silicon on insulator (SOI) nanowire arrayed waveguide grating (AWG) for fiber-to-the-home FTTH. The simulation results revealed that the design performed well in the sense of having a good triplexing function. The designed SOI nanowire AWGs were fabricated using ultraviolet lithography and induced coupler plasma etching. The experimental results showed that the crosstalk was less than -15 dB, and the 3 dB-bandwidth was 11.04 nm. The peak wavelength output from ports a, c, and b were 1455, 1510 and 1300 nm, respectively, which deviated from our original expectations. The deviation of the wavelength is mainly caused by 45 nm width deviation of the arrayed waveguides during the course of the fabrication process and partly caused by material dispersion.

  10. Fiberless multicolor neural optoelectrode for in vivo circuit analysis

    PubMed Central

    Kampasi, Komal; Stark, Eran; Seymour, John; Na, Kyounghwan; Winful, Herbert G.; Buzsáki, György; Wise, Kensall D.; Yoon, Euisik

    2016-01-01

    Maximizing the potential of optogenetic approaches in deep brain structures of intact animals requires optical manipulation of neurons at high spatial and temporal resolutions, while simultaneously recording electrical data from those neurons. Here, we present the first fiber-less optoelectrode with a monolithically integrated optical waveguide mixer that can deliver multicolor light at a common waveguide port to achieve multicolor modulation of the same neuronal population in vivo. We demonstrate successful device implementation by achieving efficient coupling between a side-emitting injection laser diode (ILD) and a dielectric optical waveguide mixer via a gradient-index (GRIN) lens. The use of GRIN lenses attains several design features, including high optical coupling and thermal isolation between ILDs and waveguides. We validated the packaged devices in the intact brain of anesthetized mice co-expressing Channelrhodopsin-2 and Archaerhodopsin in pyramidal cells in the hippocampal CA1 region, achieving high quality recording, activation and silencing of the exact same neurons in a given local region. This fully-integrated approach demonstrates the spatial precision and scalability needed to enable independent activation and silencing of the same or different groups of neurons in dense brain regions while simultaneously recording from them, thus considerably advancing the capabilities of currently available optogenetic toolsets. PMID:27485264

  11. Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications.

    PubMed

    Bellanca, Gaetano; Calò, Giovanna; Kaplan, Ali Emre; Bassi, Paolo; Petruzzelli, Vincenzo

    2017-07-10

    In this paper we propose a novel hybrid optical plasmonic Vivaldi antenna for operation in the standard C telecommunication band for wavelengths in the 1550 nm range. The antenna is fed by a silicon waveguide and is designed to have high gain and large bandwidth. The shape of the radiation pattern, with a main lobe along the antenna axis, makes this antenna suitable for point-to-point connections for inter- or intra-chip optical communications. Direct port-to-port short links for different connection distances and in a homogeneous environment have also been simulated to verify, by comparing the results of a full-wave simulation with the Friis transmission equation, the correctness of the antenna parameters obtained via near-to-far field transformation.

  12. Realization of an ultra-compact polarization beam splitter using asymmetric MMI based on silicon nitride / silicon-on-insulator platform.

    PubMed

    Sun, Xiao; Aitchison, J Stewart; Mojahedi, Mo

    2017-04-03

    We have experimentally demonstrated a compact polarization beam splitter (PBS) based on the silicon nitride/silicon-on-insulator platform using the recently proposed augmented-low-index-guiding (ALIG) waveguide structure. The two orthogonal polarizations are split in an asymmetric multimode interference (MMI) section, which was 1.6 μm wide and 4.8 μm long. The device works well over the entire C-band wavelength range and has a measured low insertion loss of less than 1 dB. The polarization extinction ratio at the Bar Port is approximately 17 dB and at the Cross Port is approximately 25 dB. The design of the device is robust and has a good fabrication tolerance.

  13. Site Effects in the City of Port au Prince (Haiti) Inferred From 2010 Earthquake Aftershocks Recordings.

    NASA Astrophysics Data System (ADS)

    ST Fleur, S.; Courboulex, F.; Bertrand, E.; Deschamps, A.; Mercier De Lepinay, B. F.; Boisson, D.; Prepetit, C.; Hough, S. E.

    2014-12-01

    The Haitian earthquake of 12 January 2010 (Mw=7) caused an unprecedented disaster in Port-au-Prince as well as in smaller cities close to the epicenter. The extent of damage appears to be initially attributed to the proximity of the earthquake in Port-au-Prince, the extreme vulnerability of many structures, and a high population density. However, the damage distribution for this earthquake suggests a general correlation of damage with small-scale topographical features and local geological structure. The main objective of this work is to investigate site effects in the city of Port-au-Prince. It is also to better define the response of different sites to earthquakes and establish transfer functions between each site and a particular site defined as a reference site. Specific soil columns is determined in the vicinity of each station in order to carry out 1D simulations of soil response at these sites. About 90 earthquakes (2

  14. Dynamic baseline detection method for power data network service

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    2017-08-01

    This paper proposes a dynamic baseline Traffic detection Method which is based on the historical traffic data for the Power data network. The method uses Cisco's NetFlow acquisition tool to collect the original historical traffic data from network element at fixed intervals. This method uses three dimensions information including the communication port, time, traffic (number of bytes or number of packets) t. By filtering, removing the deviation value, calculating the dynamic baseline value, comparing the actual value with the baseline value, the method can detect whether the current network traffic is abnormal.

  15. A Ka-Band Wide-Bandgap Solid-State Power Amplifier: Architecture Performance Estimates

    NASA Technical Reports Server (NTRS)

    Epp, L.; Khan, P.; Silva, A.

    2005-01-01

    Motivated by recent advances in wide-bandgap (WBG) gallium nitride (GaN) semiconductor technology, there is considerable interest in developing efficient solidstate power amplifiers (SSPAs) as an alternative to the traveling-wave tube amplifier (TWTA) for space applications. This article documents the results of a study to investigate power-combining technology and SSPA architectures that can enable a 120-W, 40 percent power-added efficiency (PAE) SSPA. Results of the study indicate that architectures based on at least three power combiner designs are likely to enable the target SSPA. The proposed architectures can power combine 16 to 32 individual monolithic microwave integrated circuits (MMICs) with >80 percent combining efficiency. This corresponds to MMIC requirements of 5- to 10-W output power and >48 percent PAE. For the three proposed architectures [1], detailed analysis and design of the power combiner are presented. The first architecture studied is based on a 16-way septum combiner that offers low loss and high isolation over the design band of 31 to 36 GHz. Analysis of a 2-way prototype septum combiner had an input match >25 dB, output match >30 dB, insertion loss <0.02 dB, and isolation >30 dB over the design band. A 16-way design, based on cascading this combiner in a binary fashion, is documented. The second architecture is based on a 24-way waveguide radial combiner. A prototype 24-way radial base was analyzed to have an input match >30 dB (under equal excitation of all input ports). The match of the mode transducer that forms the output of a radial combiner was found to be >27 dB. The functional bandwidth of the radial base and mode transducer, which together will form a radial combiner/divider, exceeded the design band. The third architecture employs a 32-way, parallel-plate radial combiner. Simulation results indicated an input match >24 dB, output match >22 dB, insertion loss <0.23 dB, and adjacent port isolation >20 dB over the design band. All three architectures utilize a low-loss MMIC amplifier module based on commercial MMIC packaging and a custom microstrip-to-rectangular-waveguide transition. The insertion loss of the module is expected to be 0.45 dB over the design band.

  16. Single-mode glass waveguide technology for optical interchip communication on board level

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a hybrid packaging process and design issues are discussed.

  17. The BlueGene/L supercomputer

    NASA Astrophysics Data System (ADS)

    Bhanota, Gyan; Chen, Dong; Gara, Alan; Vranas, Pavlos

    2003-05-01

    The architecture of the BlueGene/L massively parallel supercomputer is described. Each computing node consists of a single compute ASIC plus 256 MB of external memory. The compute ASIC integrates two 700 MHz PowerPC 440 integer CPU cores, two 2.8 Gflops floating point units, 4 MB of embedded DRAM as cache, a memory controller for external memory, six 1.4 Gbit/s bi-directional ports for a 3-dimensional torus network connection, three 2.8 Gbit/s bi-directional ports for connecting to a global tree network and a Gigabit Ethernet for I/O. 65,536 of such nodes are connected into a 3-d torus with a geometry of 32×32×64. The total peak performance of the system is 360 Teraflops and the total amount of memory is 16 TeraBytes.

  18. Miniaturized Wilkinson Power Dividers Utilizing Capacitive Loading

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Ponchak, George E.; Weller, Thomas M.

    2001-01-01

    This letter reports the miniaturization of a planar Wilkinson power divider by capacitive loading of the quarter wave transmission lines employed in conventional Wilkinson power dividers. Reduction of the transmission line segments from lambda/4 to between lambda/5 and lambda/12 are reported here. The input and output lines at the three ports and the lines comprising the divider itself are coplanar waveguide (CPW) and asymmetric coplanar stripline (ACPS), respectively. The 10 GHZ power dividers are fabricated on high resistivity silicon (HRS) and alumina wafers. These miniaturized dividers are 74% smaller than conventional Wilkinson power dividers, and have a return loss better than +30 dB and an insertion loss less than 0.55 dB. Design equations and a discussion about the effect of parasitic reactance on the isolation are presented for the first time.

  19. Resonant spin wave excitations in a magnonic crystal cavity

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Prabhakar, A.

    2018-03-01

    Spin polarized electric current, injected into permalloy (Py) through a nano contact, exerts a torque on the magnetization. The spin waves (SWs) thus excited propagate radially outward. We propose an antidot magnonic crystal (MC) with a three-hole defect (L3) around the nano contact, designed so that the frequency of the excited SWs, lies in the band gap of the MC. L3 thus acts as a resonant SW cavity. The energy in this magnonic crystal cavity can be tapped by an adjacent MC waveguide (MCW). An analysis of the simulated micromagnetic power spectrum, at the output port of the MCW reveals stable SW oscillations. The quality factor of the device, calculated using the decay method, was estimated as Q > 105 for an injected spin current density of 7 ×1012 A/m2.

  20. On-chip passive three-port circuit of all-optical ordered-route transmission.

    PubMed

    Liu, Li; Dong, Jianji; Gao, Dingshan; Zheng, Aoling; Zhang, Xinliang

    2015-05-13

    On-chip photonic circuits of different specific functions are highly desirable and becoming significant demands in all-optical communication network. Especially, the function to control the transmission directions of the optical signals in integrated circuits is a fundamental research. Previous schemes, such as on-chip optical circulators, are mostly realized by Faraday effect which suffers from material incompatibilities between semiconductors and magneto-optical materials. Achieving highly functional circuits in which light circulates in a particular direction with satisfied performances are still difficult in pure silicon photonics platform. Here, we propose and experimentally demonstrate a three-port passive device supporting optical ordered-route transmission based on silicon thermo-optic effect for the first time. By injecting strong power from only one port, the light could transmit through the three ports in a strict order (1→2, 2→3, 3→1) while be blocked in the opposite order (1→3, 3→2, 2→1). The blocking extinction ratios and operation bandwidths have been investigated in this paper. Moreover, with compact size, economic fabrication process and great extensibility, this proposed photonic integrated circuit is competitive to be applied in on-chip all-optical information processing systems, such as path priority selector.

  1. On-chip passive three-port circuit of all-optical ordered-route transmission

    PubMed Central

    Liu, Li; Dong, Jianji; Gao, Dingshan; Zheng, Aoling; Zhang, Xinliang

    2015-01-01

    On-chip photonic circuits of different specific functions are highly desirable and becoming significant demands in all-optical communication network. Especially, the function to control the transmission directions of the optical signals in integrated circuits is a fundamental research. Previous schemes, such as on-chip optical circulators, are mostly realized by Faraday effect which suffers from material incompatibilities between semiconductors and magneto-optical materials. Achieving highly functional circuits in which light circulates in a particular direction with satisfied performances are still difficult in pure silicon photonics platform. Here, we propose and experimentally demonstrate a three-port passive device supporting optical ordered-route transmission based on silicon thermo-optic effect for the first time. By injecting strong power from only one port, the light could transmit through the three ports in a strict order (1→2, 2→3, 3→1) while be blocked in the opposite order (1→3, 3→2, 2→1). The blocking extinction ratios and operation bandwidths have been investigated in this paper. Moreover, with compact size, economic fabrication process and great extensibility, this proposed photonic integrated circuit is competitive to be applied in on-chip all-optical information processing systems, such as path priority selector. PMID:25970855

  2. [Spectral Study on the Effects of Angle-Tuned Filter Wedge Angle Parameter to Reflecting Characteristics].

    PubMed

    Yu, Kan; Huang, De-xiu; Yin, Juan-juan; Bao, Jia-qi

    2015-08-01

    Three-port tunable optical filter is a key device in the all-optic intelligent switching network and dense wavelength division multiplexing system. The characteristics of the reflecting spectrum, especially the reflectivity and the isolation degree are very important to the three-port filter. Angle-tuned thin film filter is widely used as a three-port tunable filter for its high rectangular degree and good temperature stability. The characteristics of the reflecting spectrum are greatly influenced not only by the incident angle, but also by the wedge angle parameter of the non-paralleled wedge thin film filter. In the present paper, the influences of the wedge angle parameter to the reflectivity and the half bandwidth are analyzed, and the reflecting spectrum characterstics are simulationed in different wedge angle parameter and polarity. The wedge angle-tuned thin film filter with 0.8° wedge angle parameter is fabricated. The experimental results show that keeping the wedge angle the same orientation to the incident angle will worsen the reflectivity and the rectangular degree of the reflecting spectrum. However, keeping the wedge angle orientation reverse to the incident angle will enhance the reflectivity and decrease the bandwidth, which will give higher reflectivity and isolation degree to the three-port filter than that of high parallel degree angle-tuned thin film filter.

  3. Robust flow of light in three-dimensional dielectric photonic crystals.

    PubMed

    Chen, Wen-Jie; Jiang, Shao-Ji; Dong, Jian-Wen

    2013-09-01

    Chiral defect waveguides and waveguide bend geometry were designed in diamond photonic crystal to mold the flow of light in three dimensions. Propagations of electromagnetic waves in chiral waveguides are robust against isotropic obstacles, which would suppress backscattering in waveguides or integrated devices. Finite-difference time-domain simulations demonstrate that high coupling efficiency through the bend corner is preserved in the polarization gap, as it provides an additional constraint on the polarization state of the backscattered wave. Transport robustness is also demonstrated by inserting two metallic slabs into the waveguide bend.

  4. Design and analysis of O-S-C triple band wavelength division demultiplexer using cascaded MMI couplers

    NASA Astrophysics Data System (ADS)

    Chack, Devendra; Kumar, V.; Raghuwanshi, Sanjeev Kumar; Singh, Dev Prakash

    2017-01-01

    Compact triple O-S-C band wavelength demultiplexer, which consists of series cascaded multimode interference (MMI) couplers has been carried out in this paper. The MMI coupler has been used to drop the wavelengths of 1510 nm and 1550 nm at bar port while the wavelength 1300 nm into the cross port. Then another MMI coupler has been designed to separate the wavelength 1510 nminto one port and wavelength 1550 nm into another port. The triple wavelength demultiplexer function has been performed by choosing a suitable refractive index of the guiding region and geometrical parameters such as the width and length of MMI coupler. Numerical simulation with finite difference beam propagation method (BPM) has been utilized to design and optimize the operation of the proposed triple wavelength demultiplexer. The simulation results show that insertion losses of wavelength O, S and C, bands are 1.884 dB, 1.452 dB and 2.568 dB, respectively, with isolations for each output waveguide ranging from 10 dB to 28.72 dB. The 3-dB bandwidth of insertion loss for 1300 nm, 1510 nm and 1550 nm are 80 nm, 20 nm and 10 nm, respectively.

  5. Superconducting multiport antenna arrays

    NASA Astrophysics Data System (ADS)

    Chaloupka, H.

    1993-10-01

    Applications of HTS to radiating elements and beam-forming networks of multibeam and/or multifrequency arrays are discussed. This includes radiating elements which meet special requirements with respect to size and frequency response. Realized versions of both a three-port HTS array and a 4 x 4 Butler matrix are presented.

  6. Multimode Directional Coupler for Utilization of Harmonic Frequencies from TWTAs

    NASA Technical Reports Server (NTRS)

    Simmons, Rainee N.; Wintucky, Edwin G.

    2013-01-01

    A novel waveguide multimode directional coupler (MDC) intended for the measurement and potential utilization of the second and higher order harmonic frequencies from high-power traveling wave tube amplifiers (TWTAs) has been successfully designed, fabricated, and tested. The design is based on the characteristic multiple propagation modes of the electrical and magnetic field components of electromagnetic waves in a rectangular waveguide. The purpose was to create a rugged, easily constructed, more efficient waveguide- based MDC for extraction and exploitation of the second harmonic signal from the RF output of high-power TWTs used for space communications. The application would be a satellitebased beacon source needed for Qband and V/W-band atmospheric propagation studies. The MDC could function as a CW narrow-band source or as a wideband source for study of atmospheric group delay effects on highdata- rate links. The MDC is fabricated from two sections of waveguide - a primary one for the fundamental frequency and a secondary waveguide for the second harmonic - that are joined together such that the second harmonic higher order modes are selectively coupled via precision- machined slots for propagation in the secondary waveguide. In the TWTA output waveguide port, both the fundamental and the second harmonic signals are present. These signals propagate in the output waveguide as the dominant and higher order modes, respectively. By including an appropriate mode selective waveguide directional coupler, such as the MDC presented here at the output of the TWTA, the power at the second harmonic can be sampled and amplified to the power level needed for atmospheric propagation studies. The important conclusions from the preliminary test results for the multimode directional coupler are: (1) the second harmonic (Ka-band) can be measured and effectively separated from the fundamental (Ku-band) with no coupling of the latter, (2) power losses in the fundamental frequency are negligible, and (3) the power level of the extracted second harmonic is sufficient for further amplification to power levels needed for practical applications. It was also demonstrated that third order and potentially higher order harmonics are measurable with this device. The design is frequency agnostic, and with the appropriate choice of waveguides, is easily scaled to higher frequency TWTs. The MDC has the same function but with a number of important advantages over the conventional diplexer.

  7. Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices

    DOEpatents

    Yang, Peidong; Law, Matt; Sirbuly, Donald J.; Johnson, Justin C.; Saykally, Richard; Fan, Rong; Tao, Andrea

    2012-10-02

    Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.

  8. Optofluidic waveguides: I. Concepts and implementations

    PubMed Central

    Schmidt, Holger; Hawkins, Aaron R.

    2011-01-01

    We review recent developments and current status of liquid-core optical waveguides in optofluidics with emphasis on suitability for creating fully planar optofluidic labs-on-a-chip. In this first of two contributions, we give an overview of the different waveguide types that are being considered for effectively combining micro and nanofluidics with integrated optics. The large number of approaches is separated into conventional index-guided waveguides and more recent implementations using wave interference. The underlying principle for waveguiding and the current status are described for each type. We then focus on reviewing recent work on microfabricated liquid-core antiresonant reflecting optical (ARROW) waveguides, including the development of intersecting 2D waveguide networks and optical fluorescence and Raman detection with planar beam geometry. Single molecule detection capability and addition of electrical control for electrokinetic manipulation and analysis of single bioparticles are demonstrated. The demonstrated performance of liquid-core ARROWs is representative of the potential of integrated waveguides for on-chip detection with ultrahigh sensitivity, and points the way towards the next generation of high-performance, low-cost and portable biomedical instruments. PMID:21442048

  9. Self port scanning tool : providing a more secure computing Environment through the use of proactive port scanning

    NASA Technical Reports Server (NTRS)

    Kocher, Joshua E; Gilliam, David P.

    2005-01-01

    Secure computing is a necessity in the hostile environment that the internet has become. Protection from nefarious individuals and organizations requires a solution that is more a methodology than a one time fix. One aspect of this methodology is having the knowledge of which network ports a computer has open to the world, These network ports are essentially the doorways from the internet into the computer. An assessment method which uses the nmap software to scan ports has been developed to aid System Administrators (SAs) with analysis of open ports on their system(s). Additionally, baselines for several operating systems have been developed so that SAs can compare their open ports to a baseline for a given operating system. Further, the tool is deployed on a website where SAs and Users can request a port scan of their computer. The results are then emailed to the requestor. This tool aids Users, SAs, and security professionals by providing an overall picture of what services are running, what ports are open, potential trojan programs or backdoors, and what ports can be closed.

  10. Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Bracher, Gregor; Schraml, Konrad; Blauth, Mäx; Wierzbowski, Jakob; López, Nicolás Coca; Bichler, Max; Müller, Kai; Finley, Jonathan J.; Kaniber, Michael

    2014-07-01

    We present optical investigations of hybrid plasmonic nanosystems consisting of lithographically defined plasmonic Au-waveguides or beamsplitters on GaAs substrates coupled to proximal self-assembled InGaAs quantum dots. We designed a sample structure that enabled us to precisely tune the distance between quantum dots and the sample surface during nano-fabrication and demonstrated that non-radiative processes do not play a major role for separations down to ˜ 10 nm. A polarized laser beam focused on one end of the plasmonic nanostructure generates propagating surface plasmon polaritons that, in turn, create electron-hole pairs in the GaAs substrate during propagation. These free carriers are subsequently captured by the quantum dots ˜ 25 nm below the surface, giving rise to luminescence. The intensity of the spectrally integrated quantum dot luminescence is used to image the propagating plasmon modes. As the waveguide width reduces from 5 μ m to 1 μ m, we clearly observe different plasmonic modes at the remote waveguide end, enabling their direct imaging in real space. This imaging technique is applied to a plasmonic beamsplitter facilitating the determination of the splitting ratio between the two beamsplitter output ports as the interaction length L i is varied. A splitting ratio of 50:50 is observed for L i ˜ 9 ± 1 μ m and 1 μ m wide waveguides for excitation energies close to the GaAs band edge. Our experimental findings are in good agreement with mode profile and finite difference time domain simulations for both waveguides and beamsplitters.

  11. Silica waveguide devices and their applications

    NASA Astrophysics Data System (ADS)

    Sun, C. J.; Schmidt, Kevin M.; Lin, Wenhua

    2005-03-01

    Silica waveguide technology transitioned from laboratories to commercial use in early 1990. Since then, various applications have been exploited based on this technology. Tens of thousands of array waveguide grating (AWG) devices have been installed worldwide for DWDM Mux and Demux. The recent FTTH push in Japan has renewed the significance of this technology for passive optical network (PON) application. This paper reviews the past development of this technology, compare it with competing technologies, and outline the future role of this technology in the evolving optical communications.

  12. Scalability analysis methodology for passive optical interconnects in data center networks using PAM

    NASA Astrophysics Data System (ADS)

    Lin, R.; Szczerba, Krzysztof; Agrell, Erik; Wosinska, Lena; Tang, M.; Liu, D.; Chen, J.

    2017-11-01

    A framework is developed for modeling the fundamental impairments in optical datacenter interconnects, i.e., the power loss and the receiver noises. This framework makes it possible, to analyze the trade-offs between data rates, modulation order, and number of ports that can be supported in optical interconnect architectures, while guaranteeing that the required signal-to-noise ratios are satisfied. To the best of our knowledge, this important assessment methodology is not yet available. As a case study, the trade-offs are investigated for three coupler-based top-of-rack interconnect architectures, which suffer from serious insertion loss. The results show that using single-port transceivers with 10 GHz bandwidth, avalanche photodiode detectors, and quadratical pulse amplitude modulation, more than 500 ports can be supported.

  13. All-optical routing and switching for three-dimensional photonic circuitry

    PubMed Central

    Keil, Robert; Heinrich, Matthias; Dreisow, Felix; Pertsch, Thomas; Tünnermann, Andreas; Nolte, Stefan; Christodoulides, Demetrios N.; Szameit, Alexander

    2011-01-01

    The ability to efficiently transmit and rapidly process huge amounts of data has become almost indispensable to our daily lives. It turned out that all-optical networks provide a very promising platform to deal with this task. Within such networks opto-optical switches, where light is directed by light, are a crucial building block for an effective operation. In this article, we present an experimental analysis of the routing and switching behaviour of light in two-dimensional evanescently coupled waveguide arrays of Y- and T-junction geometries directly inscribed into fused silica using ultrashort laser pulses. These systems have the fundamental advantage of supporting three-dimensional network topologies, thereby breaking the limitations on complexity associated with planar structures while maintaining a high dirigibility of the light. Our results show how such arrays can be used to control the flow of optical signals within integrated photonic circuits. PMID:22355612

  14. Interfacing 3D micro/nanochannels with a branch-shaped reservoir enhances fluid and mass transport

    NASA Astrophysics Data System (ADS)

    Kumar, Prasoon; Gandhi, Prasanna S.; Majumder, Mainak

    2017-01-01

    Three-dimensional (3D) micro/nanofluidic devices can accelerate progress in numerous fields such as tissue engineering, drug delivery, self-healing and cooling devices. However, efficient connections between networks of micro/nanochannels and external fluidic ports are key to successful applications of 3D micro/nanofluidic devices. Therefore, in this work, the extent of the role of reservoir geometry in interfacing with vascular (micro/nanochannel) networks, and in the enabling of connections with external fluidic ports while maintaining the compactness of devices, has been experimentally and theoretically investigated. A statistical modelling suggested that a branch-shaped reservoir demonstrates enhanced interfacing with vascular networks when compared to other regular geometries of reservoirs. Time-lapse dye flow experiments by capillary action through fabricated 3D micro/nanofluidic devices confirmed the connectivity of branch-shaped reservoirs with micro/nanochannel networks in fluidic devices. This demonstrated a ~2.2-fold enhancement of the volumetric flow rate in micro/nanofluidic networks when interfaced to branch-shaped reservoirs over rectangular reservoirs. The enhancement is due to a ~2.8-fold increase in the perimeter of the reservoirs. In addition, the mass transfer experiments exhibited a ~1.7-fold enhancement in solute flux across 3D micro/nanofluidic devices that interfaced with branch-shaped reservoirs when compared to rectangular reservoirs. The fabrication of 3D micro/nanofluidic devices and their efficient interfacing through branch-shaped reservoirs to an external fluidic port can potentially enable their use in complex applications, in which enhanced surface-to-volume interactions are desirable.

  15. 52. View from ground level showing lower radar scanner switch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. View from ground level showing lower radar scanner switch with open port door in radar scanner building 105 showing emanating waveguides from lower switch in vertical run; photograph also shows catwalk to upper scanner switch in upper left side of photograph and structural supports. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  16. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    NASA Astrophysics Data System (ADS)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  17. A study of the electrical properties of complex resistor network based on NW model

    NASA Astrophysics Data System (ADS)

    Chang, Yunfeng; Li, Yunting; Yang, Liu; Guo, Lu; Liu, Gaochao

    2015-04-01

    The power and resistance of two-port complex resistor network based on NW small world network model are studied in this paper. Mainly, we study the dependence of the network power and resistance on the degree of port vertices, the connection probability and the shortest distance. Qualitative analysis and a simplified formula for network resistance are given out. Finally, we define a branching parameter and give out its physical meaning in the analysis of complex resistor network.

  18. Dual Check Valve and Method of Controlling Flow Through the Same

    NASA Technical Reports Server (NTRS)

    Corallo, Roger (Inventor)

    2016-01-01

    A dual check valve includes, a housing having a cavity fluidically connecting three ports, a movable member movably engaged within the cavity from at least a first position occluding a first port of the three ports, a second position occluding a second port of the three ports, and a third position allowing flow between both the first port, the second port and a third port of the three ports.

  19. RePORT International: Advancing Tuberculosis Biomarker Research Through Global Collaboration.

    PubMed

    Hamilton, Carol D; Swaminathan, Soumya; Christopher, Devasahayam J; Ellner, Jerrold; Gupta, Amita; Sterling, Timothy R; Rolla, Valeria; Srinivasan, Sudha; Karyana, Muhammad; Siddiqui, Sophia; Stoszek, Sonia K; Kim, Peter

    2015-10-15

    Progress in tuberculosis clinical research is hampered by a lack of reliable biomarkers that predict progression from latent to active tuberculosis, and subsequent cure, relapse, or failure. Regional Prospective Observational Research in Tuberculosis (RePORT) International represents a consortium of regional cohorts (RePORT India, RePORT Brazil, and RePORT Indonesia) that are linked through the implementation of a Common Protocol for data and specimen collection, and are poised to address this critical research need. Each RePORT network is designed to support local, in-country tuberculosis-specific data and specimen biorepositories, and associated research. Taken together, the expected results include greater global clinical research capacity in high-burden settings, and increased local access to quality data and specimens for members of each network and their domestic and international collaborators. Additional networks are expected to be added, helping to spur tuberculosis treatment and prevention research around the world. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Architecture for on-die interconnect

    DOEpatents

    Khare, Surhud; More, Ankit; Somasekhar, Dinesh; Dunning, David S.

    2016-03-15

    In an embodiment, an apparatus includes: a plurality of islands configured on a semiconductor die, each of the plurality of islands having a plurality of cores; and a plurality of network switches configured on the semiconductor die and each associated with one of the plurality of islands, where each network switch includes a plurality of output ports, a first set of the output ports are each to couple to the associated network switch of an island via a point-to-point interconnect and a second set of the output ports are each to couple to the associated network switches of a plurality of islands via a point-to-multipoint interconnect. Other embodiments are described and claimed.

  1. Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng-Nan; Fang, Yun-Tuan

    2017-10-01

    In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA < 0.09a; only dielectric waveguide modes occur for rA > 0.25a; two kinds of modes coexist for 0.09a < rA < 0.25a. The plasmonic waveguide mode has advantages in achieving slow light.

  2. Ink-jet printed fluorescent materials as light sources for planar optical waveguides on polymer foils

    NASA Astrophysics Data System (ADS)

    Bollgruen, Patrick; Gleissner, Uwe; Wolfer, Tim; Megnin, Christof; Mager, Dario; Overmeyer, Ludger; Korvink, Jan G.; Hanemann, Thomas

    2016-10-01

    Polymer-based optical sensor networks on foils (planar optronic systems) are a promising research field, but it can be challenging to supply them with light. We present a solvent-free, ink-jet printable material system with optically active substances to create planar light sources for these networks. The ink is based on a UV-curable monomer, the fluorescent agents are EuDBMPhen or 9,10-diphenylantracene, which fluoresce at 612 or 430 nm, respectively. We demonstrate the application as light source by printing a small area of fluorescent material on an optical waveguide fabricated by flexographic printing on PMMA foil, resulting in a simple polymer-optical device fabricated entirely by additive deposition techniques. When excited by a 405-nm laser of 10 mW, the emitted light couples into the waveguide and appears at the end of the waveguide. In comparison to conventional light sources, the intensity is weak but could be detected with a photodiode power sensor. In return, the concept has the advantage of being completely independent of any electrical elements or external cable connections.

  3. Fabrication and RF characterization of a single nickel silicide nanowire for an interconnect.

    PubMed

    Lee, Dongjin; Kang, Myunggil; Hong, Suheon; Hwang, Donghoon; Heo, Keun; Joo, Won-Jae; Kim, Sangsig; Whang, Dongmok; Hwang, Sung Woo

    2013-09-01

    We fabricated a nickel silicide nanowire (NiSi NW) device with a low thermal budget and characterized it by measuring the S-parameters in the radio-frequency (RF) regime. A single silicon nanowire (Si NW) was assembled on a substrate with a two-port coplanar waveguide structure using the dielectrophoresis method. Then, the Si NW on the device was perfectly transformed into a NiSi NW. The NiSi NW device was characterized by performing measurements in the DC and RF regimes. The transformation into the NiSi NW resulted in reducing about three-order more the resistance than before the transformation. Hence, the transmission of the NiSi NW device was 25 dB higher than that of the Si NW device up to gigahertz. We also discussed extracting the intrinsic properties of the NiSi NW by using de-embedding, circuit modeling, and simulation.

  4. Broadband wavelength conversion in hydrogenated amorphous silicon waveguide with silicon nitride layer

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Li, Yongfang; Wang, Zhaolu; Han, Jing; Huang, Nan; Liu, Hongjun

    2018-01-01

    Broadband wavelength conversion based on degenerate four-wave mixing is theoretically investigated in a hydrogenated amorphous silicon (a-Si:H) waveguide with silicon nitride inter-cladding layer (a-Si:HN). We have found that enhancement of the non-linear effect of a-Si:H waveguide nitride intermediate layer facilitates broadband wavelength conversion. Conversion bandwidth of 490 nm and conversion efficiency of 11.4 dB were achieved in a numerical simulation of a 4 mm-long a-Si:HN waveguide under 1.55 μm continuous wave pumping. This broadband continuous-wave wavelength converter has potential applications in photonic networks, a type of readily manufactured low-cost highly integrated optical circuits.

  5. A Plasmonic based Ultracompact Polarization Beam Splitter on Silicon-on-Insulator Waveguides

    PubMed Central

    Tan, Qilong; Huang, Xuguang; Zhou, Wen; Yang, Kun

    2013-01-01

    An ultracompact polarization beam splitter (PBS) is designed on silicon-on-insulator (SOI) platform based on the localized surface plasmons (LSPs) excited by particular polarization light. The device uses nanoscale silver cylinders as the polarization selection between two silicon waveguides of a directional coupler. The transverse-magnetic (TM) polarization light excites localized surface plasmons and is coupled into the cross port of the directional coupler with a low insert loss, while the transverse-electric (TE) polarization light is under restriction. The PBS has a coupling layer with 50 nm width and 1.1 μm length supporting broadband operation. The simulation calculations show that 22.06dB and 23.06dB of extinction ratios for the TE and TM polarizations were obtained, together with insertion losses of 0.09dB and 0.40dB. PMID:23856635

  6. Broadband arrayed waveguide grating multiplexers on indium phosphide

    NASA Astrophysics Data System (ADS)

    Rausch, Kameron

    2005-11-01

    Coarse Wavelength Division Multiplexing (CWDM) is becoming a popular way to increase the optical throughput of fibers for short to medium haul networks at a reduced cost. The International Telecommunications Union (ITU) has defined the CWDM network to consist of eighteen channels with channel spacings of 20 nm starting at 1270 nm and ending at 1610 nm. Four and eight channel AWGs suitable for CWDM were fabricated using a versatile S-shape design novel to InP. The standard horseshoe layout will not work on semiconductor for AWGs with a free spectral range (FSR) larger than 30 nm. The AWG design provides operation insensitive to thermal and polarization fluctuations; which is key for low cost operation and packaging. It will be shown that, refractive index changes over the large operating wavelength band produced negligible effects in the transmission spectrum. Standard AWG design assumes refractive index is a constant over the operating wavelength band. As a result, the output waveguide separations are held constant on the second star coupler. As the channel number increases, secondary focal dispersion caused from a changing refractive index can have detrimental effects on performance. A new design method will be introduced which includes refractive index dispersion by allowing the output waveguide separations to vary. The new design is consistent with standard design but is applicable in materials with a linear index dispersion over an arbitrarily large wavelength band. Lastly, a method for increasing the transmission using multimode waveguides is discussed. Traditionally, single mode waveguides are required in order to prevent higher order waveguide modes creating ghost images in the output spectrum. Using bend loss and waveguide junction offsets, higher order modes can be filtered from the output, thereby eliminating ghost images and at the same time, increase transmission.

  7. Analysis and synthesis of (SAR) waveguide phased array antennas

    NASA Astrophysics Data System (ADS)

    Visser, H. J.

    1994-02-01

    This report describes work performed due to ESA contract No. 101 34/93/NL/PB. Started is with a literature study on dual polarized waveguide radiators, resulting in the choice for the open ended square waveguide. After a thorough description of the mode matching infinite waveguide array analysis method - including finiteness effects - that forms the basis for all further described analysis and synthesis methods, the accuracy of the analysis software is validated by comparison with measurements on two realized antennas. These antennas have centered irises in the waveguide apertures and a dielectric wide angle impedance matching sheet in front of the antenna. A synthesis method, using simulated annealing and downhill simplex, is described next and different antenna designs, based on the analysis of a single element in an infinite array environment, are presented. Next, designs of subarrays are presented. Shown is the paramount importance of including the array environment in the design of a subarray. A microstrip patch waveguide exciter and subarray feeding network are discussed and the depth of the waveguide radiator is estimated. Chosen is a rectangular grid array with waveguides of 2.5 cm depth without irises and without dielectric sheet, grouped in linear 8 elements subarrays.

  8. Three-Dimensional Waveguide Arrays for Coupling Between Fiber-Optic Connectors and Surface-Mounted Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Seiki; Kinoshita, Masao

    2005-09-01

    This paper describes the fabrication of novel surface-mountable waveguide connectors and presents test results for them. To ensure more highly integrated and low-cost fabrication, we propose new three-dimensional (3-D) waveguide arrays that feature two-dimensionally integrated optical inputs/outputs and optical path redirection. A wafer-level stack and lamination process was used to fabricate the waveguide arrays. Vertical-cavity surface-emitting lasers (VCSELs) and photodiodes were directly mounted on the arrays and combined with mechanical transferable ferrule using active alignment. With the help of a flip-chip bonder, the waveguide connectors were mounted on a printed circuit board by solder bumps. Using mechanical transferable connectors, which can easily plug into the waveguide connectors, we obtained multi-gigabits-per-second transmission performance.

  9. Indications of marine bioinvasion from network theory. An analysis of the global cargo ship network

    NASA Astrophysics Data System (ADS)

    Kölzsch, A.; Blasius, B.

    2011-12-01

    The transport of huge amounts of small aquatic organisms in the ballast tanks and at the hull of large cargo ships leads to ever increasing rates of marine bioinvasion. In this study, we apply a network theoretic approach to examine the introduction of invasive species into new ports by global shipping. This is the first stage of the invasion process where it is still possible to intervene with regulating measures. We compile a selection of widely used and newly developed network properties and apply these to analyse the structure and spread characteristics of the directed and weighted global cargo ship network (GCSN). Our results reveal that the GCSN is highly efficient, shows small world characteristics and is positive assortative, indicating that quick spread of invasive organisms between ports is likely. The GCSN shows strong community structure and contains two large communities, the Atlantic and Pacific trading groups. Ports that appear as connector hubs and are of high centralities are the Suez and Panama Canal, Singapore and Shanghai. Furthermore, from robustness analyses and the network's percolation behaviour, we evaluate differences of onboard and in-port ballast water treatment, set them into context with previous studies and advise bioinvasion management strategies.

  10. Prospects for Classifying Complex Imagery Using a Self-Organizing Neural Network

    DTIC Science & Technology

    1989-01-11

    complex imagery. In his original re- port, Fukushima demonstrated that this system could discriminate between simple alphabetical characters...on a VAX-8600 minicomputer. Wire frame models of three different vehicles were used to test the properties which Fukushima had demonstrated. The...Table No. Page 3-1 Parameters for Training on Three Input Images 14 3-2 Trained Results 17 vn 1. INTRODUCTION The Neocognitron of Fukushima [2

  11. Characterization of the near-source population around five ...

    EPA Pesticide Factsheets

    Many ports are currently preparing for increased freight traffic, which may result in elevated local air pollution in areas near the port and freight transportation corridors. In this study, a geographical information system (GIS) analysis of areas surrounding five ports – Port of New York and New Jersey, Port of Virginia, Port of Savannah, Port of Miami, and Port of Houston – was conducted to characterize the population that might be affected by air emissions from the freight transportation network and to determine which sources had the potential to affect the most people. Defining “near-source” populations as living within 300 m of the freight transportation network, namely the port and associated truck routes, railroads, and intermodal facilities (e. g. rail yards and warehouses); near-source populations ranged from 37,000 to over a million within 10 km of a port. At the ports considered, the population living within 300 m of the port boundary constituted <10 % of the total near-source population. Sensitive population exposure was also indicated, such as the 81 day care centers and K-12 schools in near-source environments within 2 km of the Port of New York and New Jersey. Minority groups constituted 55 % to 85 % of the near-source populations in the five port areas. For four of the five ports, the mean and median income of the near-source population was lower and the minority percentage was higher than the population living adjacent to the near-sou

  12. 2.32 THz quantum cascade laser frequency-locked to the harmonic of a microwave synthesizer source.

    PubMed

    Danylov, Andriy A; Light, Alexander R; Waldman, Jerry; Erickson, Neal R; Qian, Xifeng; Goodhue, William D

    2012-12-03

    Frequency stabilization of a THz quantum cascade laser (QCL) to the harmonic of a microwave source has been accomplished using a Schottky diode waveguide mixer designed for harmonic mixing. The 2.32 THz, 1.0 milliwatt CW QCL is coupled into the signal port of the mixer and a 110 GHz signal, derived from a harmonic of a microwave synthesizer, is coupled into the IF port. The difference frequency between the 21st harmonic of 110 GHz and the QCL is used in a discriminator to adjust the QCL bias current to stabilize the frequency. The short-term frequency jitter is reduced from 550 kHz to 4.5 kHz (FWHM) and the long-term frequency drift is eliminated. This performance is compared to that of several other THz QCL frequency stabilization techniques.

  13. Low threshold all-optical crossbar switch on GaAs-GaAlAs channel waveguide arrays

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Kostrzewski, Andrew

    1994-09-01

    During the Phase 2 project entitled 'Low Threshold All-Optical Crossbar Switch on GaAs - GaAlAs Channel Waveguide Array,' Physical Optics Corporation (POC) developed the basic principles for the fabrication of all-optical crossbar switches. Based on this development. POC fabricated a 2 x 2 GaAs/GaAlAs switch that changes the direction of incident light with minimum insertion loss and nonlinear distortion. This unique technology can be used in both analog and digital networks. The applications of this technology are widespread. Because the all-optical network does not have any speed limitations (RC time constant), POC's approach will be beneficial to SONET networks, phased array radar networks, very high speed oscilloscopes, all-optical networks, IR countermeasure systems, BER equipment, and the fast growing video conferencing network market. The novel all-optical crossbar switch developed in this program will solve interconnect problems. and will be a key component in the widely proposed all-optical 200 Gb/s SONET/ATM networks.

  14. A Fully Implemented 12 × 12 Data Vortex Optical Packet Switching Interconnection Network

    NASA Astrophysics Data System (ADS)

    Shacham, Assaf; Small, Benjamin A.; Liboiron-Ladouceur, Odile; Bergman, Keren

    2005-10-01

    A fully functional optical packet switching (OPS) interconnection network based on the data vortex architecture is presented. The photonic switching fabric uniquely capitalizes on the enormous bandwidth advantage of wavelength division multiplexing (WDM) wavelength parallelism while delivering minimal packet transit latency. Utilizing semiconductor optical amplifier (SOA)-based switching nodes and conventional fiber-optic technology, the 12-port system exhibits a capacity of nearly 1 Tb/s. Optical packets containing an eight-wavelength WDM payload with 10 Gb/s per wavelength are routed successfully to all 12 ports while maintaining a bit error rate (BER) of 10-12 or better. Median port-to-port latencies of 110 ns are achieved with a distributed deflection routing network that resolves packet contention on-the-fly without the use of optical buffers and maintains the entire payload path in the optical domain.

  15. Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure.

    PubMed

    Zhuang, Leimeng; Beeker, Willem; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-02-11

    We propose and demonstrate a novel wideband microwave photonic polarization network for dual linear-polarized antennas. The polarization network is based on a waveguide-implemented fully-reconfigurable optical interleaver using a two-ring resonator-assisted asymmetric Mach-Zehnder structure. For microwave photonic signal processing, this structure is able to serve as a wideband 2 × 2 RF coupler with reconfigurable complex coefficients, and therefore can be used as a polarization network for wideband antennas. Such a device can equip the antennas with not only the polarization rotation capability for linear-polarization signals but also the capability to operate with and tune between two opposite circular polarizations. Operating together with a particular modulation scheme, the device is also able to serve for simultaneous feeding of dual-polarization signals. These photonic-implemented RF functionalities can be applied to wideband antenna systems to perform agile polarization manipulations and tracking operations. An example of such a interleaver has been realized in TriPleX waveguide technology, which was designed with a free spectral range of 20 GHz and a mask footprint of smaller than 1 × 1 cm. Using the realized device, the reconfigurable complex coefficients of the polarization network were demonstrated with a continuous bandwidth from 2 to 8 GHz and an in-band phase ripple of smaller than 5 degree. The waveguide structure of the device allows it to be further integrated with other functional building blocks of a photonic integrated circuit to realize on-chip, complex microwave photonic processors. Of particular interest, it can be included in an optical beamformer for phased array antennas, so that simultaneous wideband beam and polarization trackings can be achieved photonically. To our knowledge, this is the first-time on-chip demonstration of an integrated microwave photonic polarization network for dual linear-polarized antennas.

  16. Optical logic gates based on electro-optic modulation with Sagnac interferometer.

    PubMed

    Li, Qiliang; Zhu, Mengyun; Li, Dongqiang; Zhang, Zhen; Wei, Yizhen; Hu, Miao; Zhou, Xuefang; Tang, Xianghong

    2014-07-20

    In this work, we present a new structure to realize optical logic operation in a Sagnac interferometer with electro-optical modulation. In the scheme, we divide two counterpropagation signals in a Sagnac loop to two different arms with the electro-optical crystal by using two circulators. Lithium niobate materials whose electro-optical coefficient can be as large as 32.2×10(-12)  m/V make up the arms of the waveguides. Using the transfer matrix of the fiber coupler, we analyze the propagation of signals in this system and obtain the transmission characteristic curves and the extinction ratio. The results indicate that this optical switching has a high extinction ratio of about 60 dB and an ultrafast response time of 2.036 ns. In addition, the results reveal that the change of the dephasing between the two input signals and the modification of the modulation voltage added to the electro-optical crystal leads to the change of the extinction ratio. We also conclude that, in cases of the dephasing of two initial input signals Δφ=0, we can obtain the various logical operations, such as the logical operations D=A¯·B, D=A·B¯, C=A+B, and D=A⊕B in ports C and D of the system by adjusting the modulation voltage. When Δφ≠0, we obtain the arithmetic operations D=A+B, C=A⊕B, D=A·B¯, and C=A¯·B in ports C and D. This study is significant for the design of all optical networks by adjusting the modulation voltage.

  17. Multi-port power router and its impact on resilient power grid systems

    NASA Astrophysics Data System (ADS)

    Kado, Yuichi; Iwatsuki, Katsumi; Wada, Keiji

    2016-02-01

    We propose a Y-configuration power router as a unit cell to easily construct a power delivery system that can meet many types of user requirements. The Y-configuration power router controls the direction and magnitude of power flow among three ports regardless of DC and AC. We constructed a prototype three-way isolated DC/DC converter that is the core unit of the Y-configuration power router and tested the power flow control operation. Experimental results revealed that our methodology based on the governing equation was appropriate for the power flow control of the three-way DC/DC converter. In addition, the hexagonal distribution network composed of the power routers has the ability to easily interchange electric power between autonomous microgrid cells. We also explored the requirements for communication between energy routers to achieve dynamic adjustments of energy flow in a coordinated manner and its impact on resilient power grid systems.

  18. Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracher, Gregor; Schraml, Konrad; Blauth, Mäx

    2014-07-21

    We present optical investigations of hybrid plasmonic nanosystems consisting of lithographically defined plasmonic Au-waveguides or beamsplitters on GaAs substrates coupled to proximal self-assembled InGaAs quantum dots. We designed a sample structure that enabled us to precisely tune the distance between quantum dots and the sample surface during nano-fabrication and demonstrated that non-radiative processes do not play a major role for separations down to ∼10 nm. A polarized laser beam focused on one end of the plasmonic nanostructure generates propagating surface plasmon polaritons that, in turn, create electron-hole pairs in the GaAs substrate during propagation. These free carriers are subsequently captured bymore » the quantum dots ∼25 nm below the surface, giving rise to luminescence. The intensity of the spectrally integrated quantum dot luminescence is used to image the propagating plasmon modes. As the waveguide width reduces from 5 μm to 1 μm, we clearly observe different plasmonic modes at the remote waveguide end, enabling their direct imaging in real space. This imaging technique is applied to a plasmonic beamsplitter facilitating the determination of the splitting ratio between the two beamsplitter output ports as the interaction length L{sub i} is varied. A splitting ratio of 50:50 is observed for L{sub i}∼9±1 μm and 1 μm wide waveguides for excitation energies close to the GaAs band edge. Our experimental findings are in good agreement with mode profile and finite difference time domain simulations for both waveguides and beamsplitters.« less

  19. Assessment of Performance Measures for Security of the Maritime Transportation Network, Port Security Metrics : Proposed Measurement of Deterrence Capability

    DOT National Transportation Integrated Search

    2007-01-03

    This report is the thirs in a series describing the development of performance measures pertaining to the security of the maritime transportation network (port security metrics). THe development of measures to guide improvements in maritime security ...

  20. Multiple-mode reconfigurable electro-optic switching network for optical fiber sensor array

    NASA Technical Reports Server (NTRS)

    Chen, Ray T.; Wang, Michael R.; Jannson, Tomasz; Baumbick, Robert

    1991-01-01

    This paper reports the first switching network compatible with multimode fibers. A one-to-many cascaded reconfigurable interconnection was built. A thin glass substrate was used as the guiding medium which provides not only higher coupling efficiency from multimode fiber to waveguide but also better tolerance of phase-matching conditions. Involvement of a total-internal-reflection hologram and multimode waveguide eliminates interface problems between fibers and waveguides. The DCG polymer graft has proven to be reliable from -180 C to +200 C. Survivability of such an electrooptic system in harsh environments is further ensured. LiNbO3 was chosen as the E-O material because of its stability at high temperatures (phase-transition temperature of more than 1000 C) and maturity of E-O device technology. Further theoretical calculation was conducted to provide the optimal interaction length and device capacitance.

  1. Experimental demonstration of topologically protected efficient sound propagation in an acoustic waveguide network

    NASA Astrophysics Data System (ADS)

    Wei, Qi; Tian, Ye; Zuo, Shu-Yu; Cheng, Ying; Liu, Xiao-Jun

    2017-03-01

    Acoustic topological states support sound propagation along the boundary in a one-way direction with inherent robustness against defects and disorders, leading to the revolution of the manipulation on acoustic waves. A variety of acoustic topological states relying on circulating fluid, chiral coupling, or temporal modulation have been proposed theoretically. However, experimental demonstration has so far remained a significant challenge, due to the critical limitations such as structural complexity and high losses. Here, we experimentally demonstrate an acoustic anomalous Floquet topological insulator in a waveguide network. The acoustic gapless edge states can be found in the band gap when the waveguides are strongly coupled. The scheme features simple structure and high-energy throughput, leading to the experimental demonstration of efficient and robust topologically protected sound propagation along the boundary. The proposal may offer a unique, promising application for design of acoustic devices in acoustic guiding, switching, isolating, filtering, etc.

  2. InP-based monolithically integrated 1310/1550nm diplexer/triplexer

    NASA Astrophysics Data System (ADS)

    Silfvenius, C.; Swillo, M.; Claesson, J.; Forsberg, E.; Akram, N.; Chacinski, M.; Thylén, L.

    2008-11-01

    Multiple streams of high definition television (HDTV) and improved home-working infrastructure are currently driving forces for potential fiber to the home (FTTH) customers [1]. There is an interest to reduce the cost and physical size of the FTTH equipment. The current fabrication methods have reached a cost minimum. We have addressed the costchallenge by developing 1310/(1490)/1550nm bidirectional diplexers, by monolithic seamless integration of lasers, photodiodes and wavelength division multiplexing (WDM) couplers into one single InP-based device. A 250nm wide optical gain profile covers the spectrum from 1310 to 1550nm and is the principal building block. The device fabrication is basically based on the established configuration of using split-contacts on continuos waveguides. Optical and electrical cross-talks are further addressed by using a Y-configuration to physically separate the components from each other and avoid inline configurations such as when the incoming signal travels through the laser component or vice versa. By the eliminated butt-joint interfaces which can reflect light between components or be a current leakage path and by leaving optically absorbing (unpumped active) material to surround the components to absorb spontaneous emission and nonintentional reflections the devices are optically and electrically isolated from each other. Ridge waveguides (RWG) form the waveguides and which also maintain the absorbing material between them. The WDM functionality is designed for a large optical bandwidth complying with the wide spectral range in FTTH applications and also reducing the polarization dependence of the WDM-coupler. Lasing is achieved by forming facet-free, λ/4-shifted, DFB (distributed feedback laser) lasers emitting directly into the waveguide. The photodiodes are waveguide photo-diodes (WGPD). Our seamless technology is also able to array the single channel diplexers to 4 to 12 channel diplexer arrays with 250μm fiber port waveguide spacing to comply with fiber optic ribbons. This is an important feature in central office applications were small physical space is important.

  3. Polarization-analyzing circuit on InP for integrated Stokes vector receiver.

    PubMed

    Ghosh, Samir; Kawabata, Yuto; Tanemura, Takuo; Nakano, Yoshiaki

    2017-05-29

    Stokes vector modulation and direct detection (SVM/DD) has immense potentiality to reduce the cost burden for the next-generation short-reach optical communication networks. In this paper, we propose and demonstrate an InGaAsP/InP waveguide-based polarization-analyzing circuit for an integrated Stokes vector (SV) receiver. By transforming the input state-of-polarization (SOP) and projecting its SV onto three different vectors on the Poincare sphere, we show that the actual SOP can be retrieved by simple calculation. We also reveal that this projection matrix has a flexibility and its deviation due to device imperfectness can be calibrated to a certain degree, so that the proposed device would be fundamentally robust against fabrication errors. A proof-of-concept photonic integrated circuit (PIC) is fabricated on InP by using half-ridge waveguides to successfully demonstrate detection of different SOPs scattered on the Poincare sphere.

  4. Control of single-photon routing in a T-shaped waveguide by another atom

    NASA Astrophysics Data System (ADS)

    Huang, Jin-Song; Wang, Jing-Wen; Wang, Yan; Li, Yan-Ling; Huang, You-Wen

    2018-04-01

    Quantum routers with a high routing rate of much more than 0.5 are of great importance for quantum networks. We provide a scheme to perform bidirectional high routing-rate transfer in a T-shaped coupled-resonator waveguide (CRW), which extends a recent unidirectional scheme proposed by Lu et al. (Opt Express 23:22955, 2015). By locating an extra two-level atom in the infinite CRW channel of the T-shaped CRW with a three-level system, an effective potential is generated. Our numerical results show that high routing capability from the infinite CRW channel to the semi-infinite channel can be achieved, and routing capability from the semi-infinite CRW channel to the infinite channel can also be significantly enhanced, with the help of the effective potential. Therefore, the proposed double-atom configuration could be utilized as a bidirectional quantum routing controller to implement high transfer rate routing of single photons.

  5. Analysis of a disk-on-rod surface wave element inside a corrugated horn using the mode-matching technique

    NASA Technical Reports Server (NTRS)

    Chen, J. C.

    1995-01-01

    A disk-on-rod inside a corrugated horn is one of the horn configurations for dual-frequency or wide-band operation. A mode-matching analysis method is described. A disk-on-rod inside a corrugated horn is represented as a series of coaxial waveguide sections and circular waveguide sections connected to each other. Three kinds of junctions need to be considered: coaxial-to-coaxial, coaxial-to-circular, and circular-to-circular. A computer program was developed to calculate the scattering matrix and the radiation pattern of a disk-on-rod inside a corrugated horn. The software as verified by experiment, and good agreement between calculation and measurement was obtained. The disk-on-rod inside a corrugated horn design gives an option to the Deep Space Network dual-frequency operation system, which currently is a two-horn/one-dichroic plate system.

  6. Simulation of light propagation in the thin-film waveguide lens

    NASA Astrophysics Data System (ADS)

    Malykh, M. D.; Divakov, D. V.; Sevastianov, L. A.; Sevastianov, A. L.

    2018-04-01

    In this paper we investigate the solution of the problem of modeling the propagation of electromagnetic radiation in three-dimensional integrated optical structures, such as waveguide lenses. When propagating through three-dimensional waveguide structures the waveguide modes can be hybridized, so the mathematical model of their propagation must take into account the connection of TE- and TM-mode components. Therefore, an adequate consideration of hybridization of the waveguide modes is possible only in vector formulation of the problem. An example of three-dimensional structure that hybridizes waveguide modes is the Luneburg waveguide lens, which also has focusing properties. If the waveguide lens has a radius of the order of several tens of wavelengths, its variable thickness at distances of the order of several wavelengths is almost constant. Assuming in this case that the electromagnetic field also varies slowly in the direction perpendicular to the direction of propagation, one can introduce a small parameter characterizing this slow varying and decompose the solution in powers of the small parameter. In this approach, in the zeroth approximation, scalar diffraction problems are obtained, the solution of which is less resource-consuming than the solution of vector problems. The calculated first-order corrections of smallness describe the connection of TE- and TM-modes, so the solutions obtained are weakly-hybridized modes. The formulation of problems and methods for their numerical solution in this paper are based on the authors' research on waveguide diffraction on a lens in a scalar formulation.

  7. Compact cladding-pumped planar waveguide amplifier and fabrication method

    DOEpatents

    Bayramian, Andy J.; Beach, Raymond J.; Honea, Eric; Murray, James E.; Payne, Stephen A.

    2003-10-28

    A low-cost, high performance cladding-pumped planar waveguide amplifier and fabrication method, for deployment in metro and access networks. The waveguide amplifier has a compact monolithic slab architecture preferably formed by first sandwich bonding an erbium-doped core glass slab between two cladding glass slabs to form a multi-layer planar construction, and then slicing the construction into multiple unit constructions. Using lithographic techniques, a silver stripe is deposited and formed at a top or bottom surface of each unit construction and over a cross section of the bonds. By heating the unit construction in an oven and applying an electric field, the silver stripe is then ion diffused to increase the refractive indices of the core and cladding regions, with the diffusion region of the core forming a single mode waveguide, and the silver diffusion cladding region forming a second larger waveguide amenable to cladding pumping with broad area diodes.

  8. Influence of gold nanoparticles on the 805 nm gain in Tm3+/Yb3+ codoped PbO-GeO2 pedestal waveguides

    NASA Astrophysics Data System (ADS)

    de Assumpção, T. A. A.; Camilo, M. E.; Alayo, M. I.; da Silva, D. M.; Kassab, L. R. P.

    2017-10-01

    The production and characterization of pedestal waveguides based on PbO-GeO2 amorphous thin films codoped with Tm3+/Yb3+, with and without gold nanoparticles (NPs), are reported. Pedestal structure was obtained by conventional photolithography and plasma etching. Tm3+/Yb3+ codoped PGO amorphous thin film was obtained by RF Magnetron Sputtering deposition and used as core layer in the pedestal optical waveguide. The minimum propagation losses in the waveguide were 3.6 dB/cm at 1068 nm. The internal gain at 805 nm was enhanced and increased to 8.67 dB due to the presence of gold NPs. These results demonstrate for the first time that Tm3+/Yb3+ codoped PbO-GeO2 waveguides are promising for first telecom window and integrated photonics, especially for applications on fiber network at short distances.

  9. High Field Side Lower Hybrid Current Drive Launcher Design for DIII-D

    NASA Astrophysics Data System (ADS)

    Wallace, G. M.; Leccacori, R.; Doody, J.; Vieira, R.; Shiraiwa, S.; Wukitch, S. J.; Holcomb, C.; Pinsker, R. I.

    2017-10-01

    Efficient off-axis current drive scalable to reactors is a key enabling technology for a steady-state tokamak. Simulations of DIII-D discharges have identified high performance scenarios with excellent lower hybrid (LH) wave penetration, single pass absorption and high current drive efficiency. The strategy was to adapt known launching technology utilized in previous experiments on C-Mod (poloidal splitter) and Tore Supra (bi-junction) and remain within power density limits established in JET and Tore Supra. For a 2 MW source power antenna, the launcher consists of 32 toroidal apertures and 4 poloidal rows. The aperture is 60 mm x 5 mm with 1 mm septa and the peak n| | is 2.7+/-0.2 for 90□ phasing. Eight WR187 waveguides are routed from the R-1 port down under the lower cryopump, under the existing divertor, and up the central column with the long waveguide dimension along the vacuum vessel. Above the inner strike point region, each waveguide is twisted to orient the long dimension perpendicular to the vacuum vessel and splits into 4 toroidal apertures via bi-junctions. To protect the waveguide, the inner wall radius will need to increase by 2.5 cm. RF, disruption, and thermal analysis of the latest design will be presented. Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using User Facility DIII-D, under Award Number DE-FC02-04ER54698 and by MIT PSFC cooperative agreement DE-SC0014264.

  10. All-optical LAN architectures based on arrayed waveguide grating multiplexers

    NASA Astrophysics Data System (ADS)

    Woesner, Hagen

    1998-10-01

    The paper presents optical LAN topologies which are made possible using an Arrayed Waveguide Grating Multiplexer (AWGM) instead of a passive star coupler to interconnect stations in an all-optical LAN. Due to the collision-free nature of an AWGM it offers the n-fold bandwidth compared to the star coupler. Virtual ring topologies appear (one ring on each wavelength) if the number of stations attached to the AWGM is a prime number. A method to construct larger networks using Cayley graphs is shown. An access protocol to avoid collisions on the proposed network is outlined.

  11. Quantum memory and gates using a Λ -type quantum emitter coupled to a chiral waveguide

    NASA Astrophysics Data System (ADS)

    Li, Tao; Miranowicz, Adam; Hu, Xuedong; Xia, Keyu; Nori, Franco

    2018-06-01

    By coupling a Λ -type quantum emitter to a chiral waveguide, in which the polarization of a photon is locked to its propagation direction, we propose a controllable photon-emitter interface for quantum networks. We show that this chiral system enables the swap gate and a hybrid-entangling gate between the emitter and a flying single photon. It also allows deterministic storage and retrieval of single-photon states with high fidelities and efficiencies. In short, this chirally coupled emitter-photon interface can be a critical building block toward a large-scale quantum network.

  12. Polymer-based platform for microfluidic systems

    DOEpatents

    Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Maghribi, Mariam [Livermore, CA; Hamilton, Julie [Tracy, CA; Rose, Klint [Boston, MA; Wang, Amy W [Oakland, CA

    2009-10-13

    A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.

  13. A 16-Channel Distributed-Feedback Laser Array with a Monolithic Integrated Arrayed Waveguide Grating Multiplexer for a Wavelength Division Multiplex-Passive Optical Network System Network

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Yi; Chen, Xin; Zhou, Ning; Huang, Xiao-Dong; Cao, Ming-De; Liu, Wen

    2014-07-01

    A 16-channel distributed-feedback (DFB) laser array with a monolithic integrated arrayed waveguide grating multiplexer for a wavelength division multiplex-passive optical network system is fabricated by using the butt-joint metal organic chemical vapor deposition technology and nanoimpirnt technology. The results show that the threshold current is about 20-30 mA at 25°C. The DFB laser side output power is about 16 mW with a 150 mA injection current. The lasing wavelength is from 1550 nm to 1575 nm covering a more than 25 nm range with 200 GHz channel space. A more than 55 dB sidemode suppression ratio is obtained.

  14. Stripline Antenna Beam-Forming Network

    NASA Technical Reports Server (NTRS)

    Cramer, P. W.

    1984-01-01

    Stripline antenna beam-forming network includes 87 beam ports and 136 feed-element ports and contained on only two microstrip boards. Both uplink and downlink strips supported on same boards. Originally used for communications coverage of continental United States for Land Mobile Satellite System, structure of interest to antenna designers in other applications.

  15. Measured results of polarization crosstalk cancellation using LMS control. [Least Mean Square

    NASA Technical Reports Server (NTRS)

    Baird, C. A.; Rassweiler, G. G.

    1977-01-01

    This paper discusses the use of wideband decoupling networks for the cancellation of polarization crosstalk in dual-polarized communication links. Measured cancellation performance for an all-electronic IF network and an RF electro-mechanical waveguide network are presented. Each of these networks utilizes LMS-type adaptive control techniques to adjust the cancellation network.

  16. Interference Cognizant Network Scheduling

    NASA Technical Reports Server (NTRS)

    Hall, Brendan (Inventor); Bonk, Ted (Inventor); DeLay, Benjamin F. (Inventor); Varadarajan, Srivatsan (Inventor); Smithgall, William Todd (Inventor)

    2017-01-01

    Systems and methods for interference cognizant network scheduling are provided. In certain embodiments, a method of scheduling communications in a network comprises identifying a bin of a global timeline for scheduling an unscheduled virtual link, wherein a bin is a segment of the timeline; identifying a pre-scheduled virtual link in the bin; and determining if the pre-scheduled and unscheduled virtual links share a port. In certain embodiments, if the unscheduled and pre-scheduled virtual links don't share a port, scheduling transmission of the unscheduled virtual link to overlap with the scheduled transmission of the pre-scheduled virtual link; and if the unscheduled and pre-scheduled virtual links share a port: determining a start time delay for the unscheduled virtual link based on the port; and scheduling transmission of the unscheduled virtual link in the bin based on the start time delay to overlap part of the scheduled transmission of the pre-scheduled virtual link.

  17. 360 PORT MDA - A Strategy to Improve Port Security

    DTIC Science & Technology

    2006-09-01

    Participating Agencies (After: Executive Briefing..........................27 Table 6. Designated Joint Operations Center Participants (From: SAFE...Investigations CGIP Coast Guard Intelligence Program CHOC Charleston Harbor Operations Center CIO Command Intelligence Officer CMT Combating Maritime... EXECUTIVE SUMMARY Ports are critical to our economy and national security. Key hubs in the international trade network, U.S. ports accounted for more than

  18. Crossbar Switches For Optical Data-Communication Networks

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P.

    1994-01-01

    Optoelectronic and electro-optical crossbar switches called "permutation engines" (PE's) developed to route packets of data through fiber-optic communication networks. Basic network concept described in "High-Speed Optical Wide-Area Data-Communication Network" (NPO-18983). Nonblocking operation achieved by decentralized switching and control scheme. Each packet routed up or down in each column of this 5-input/5-output permutation engine. Routing algorithm ensures each packet arrives at its designated output port without blocking any other packet that does not contend for same output port.

  19. High-aggregate-capacity visible light communication links using stacked multimode polymer waveguides and micro-pixelated LED arrays

    NASA Astrophysics Data System (ADS)

    Bamiedakis, N.; McKendry, J. J. D.; Xie, E.; Gu, E.; Dawson, M. D.; Penty, R. V.; White, I. H.

    2018-02-01

    In recent years, light emitting diodes (LEDs) have gained renewed interest for use in visible light communication links (VLC) owing to their potential use as both high-quality power-efficient illumination sources as well as low-cost optical transmitters in free-space and guided-wave links. Applications that can benefit from their use include optical wireless systems (LiFi and Internet of Things), in-home and automotive networks, optical USBs and short-reach low-cost optical interconnects. However, VLC links suffer from the limited LED bandwidth (typically 100 MHz). As a result, a combination of novel LED devices, advanced modulation formats and multiplexing methods are employed to overcome this limitation and achieve high-speed (>1 Gb/s) data transmission over such links. In this work, we present recent advances in the formation of high-aggregate-capacity low cost guided wave VLC links using stacked polymer multimode waveguides and matching micro-pixelated LED (μLED) arrays. μLEDs have been shown to exhibit larger bandwidths (>200 MHz) than conventional broad-area LEDs and can be formed in large array configurations, while multimode polymer waveguides enable the formation of low-cost optical links onto standard PCBs. Here, three- and four-layered stacks of multimode waveguides, as well as matching GaN μLED arrays, are fabricated in order to generate high-density yet low-cost optical interconnects. Different waveguide topologies are implemented and are investigated in terms of loss and crosstalk performance. The initial results presented herein demonstrate good intrinsic crosstalk performance and indicate the potential to achieve >= 0.5 Tb/s/mm2 aggregate interconnection capacity using this low-cost technology.

  20. Compact beam splitters in coupled waveguides using shortcuts to adiabaticity

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Wen, Rui-Dan; Shi, Jie-Long; Tseng, Shuo-Yen

    2018-04-01

    There are various works on adiabatic (three) waveguide coupler devices but most are focused on the quantum optical analogies and the physics itself. We successfully apply shortcuts to adiabaticity techniques to the coupled waveguide system with a suitable length for integrated optics devices. Especially, the counter-diabatic driving protocol followed by unitary transformation overcomes the previously unrealistic implemention, and is used to design feasible and robust 1 × 2 and 1 × 3 beam splitters for symmetric and asymmetric three waveguide couplers. Numerical simulations with the beam propagation method demonstrate that these shortcut designs for beam splitters are shorter than the adiabatic ones, and also have a better tolerance than parallel waveguides resonant beam splitters with respect to spacing errors and wavelength variation.

  1. Beyond G-band : a 235 GHz InP MMIC amplifier

    NASA Technical Reports Server (NTRS)

    Dawson, Douglas; Samoska, Lorene; Fung, A. K.; Lee, Karen; Lai, Richard; Grundbacher, Ronald; Liu, Po-Hsin; Raja, Rohit

    2005-01-01

    We present results on an InP monolithic millimeter- wave integrated circuit (MMIC) amplifier having 10-dB gain at 235 GHz. We designed this circuit and fabricated the chip in Northrop Grumman Space Technology's (NGST) 0.07- m InP high electron mobility transistor (HEMT) process. Using a WR3 (220-325 GHz) waveguide vector network analyzer system interfaced to waveguide wafer probes, we measured this chip on-wafer for -parameters. To our knowledge, this is the first time a WR3 waveguide on-wafer measurement system has been used to measure gain in a MMIC amplifier above 230 GHz.

  2. Maritime Transportation Risk Assessment of Tianjin Port with Bayesian Belief Networks.

    PubMed

    Zhang, Jinfen; Teixeira, Ângelo P; Guedes Soares, C; Yan, Xinping; Liu, Kezhong

    2016-06-01

    This article develops a Bayesian belief network model for the prediction of accident consequences in the Tianjin port. The study starts with a statistical analysis of historical accident data of six years from 2008 to 2013. Then a Bayesian belief network is constructed to express the dependencies between the indicator variables and accident consequences. The statistics and expert knowledge are synthesized in the Bayesian belief network model to obtain the probability distribution of the consequences. By a sensitivity analysis, several indicator variables that have influence on the consequences are identified, including navigational area, ship type and time of the day. The results indicate that the consequences are most sensitive to the position where the accidents occurred, followed by time of day and ship length. The results also reflect that the navigational risk of the Tianjin port is at the acceptable level, despite that there is more room of improvement. These results can be used by the Maritime Safety Administration to take effective measures to enhance maritime safety in the Tianjin port. © 2016 Society for Risk Analysis.

  3. Feed network and electromagnetic radiation source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardavan, Arzhang; Singleton, John; Linehan, Kevin E.

    An antenna may include a volume polarization current radiator and a feed network. The volume polarization current radiator, includes a dielectric solid (such as a dielectric strip), and a plurality of closely-spaced excitation elements (24), each excitation element (24) being configured to induce a volume polarization current distribution in the dielectric solid proximate to the excitation element when a voltage is applied to the excitation element. The feed network is coupled to the volume polarization current radiator. The feed network also includes a plurality of passive power divider elements (32) and a plurality of passive delay elements (d1-d6) coupling themore » first port (30) and the plurality of second ports (108, 109, 164), the plurality of power divider elements (32) and the plurality of phase delay elements (d1-d6) being configured such that a radio-frequency signal that is applied to the first port (30) experiences a progressive change of phase as it is coupled to the plurality of second ports (108, 109, 164) so as to cause the volume polarization current distribution to propagate along the dielectric solid.« less

  4. A novel wavelength multiplexer/demutiplexer based on side-port multimode interference coupler

    NASA Astrophysics Data System (ADS)

    Wei, Shile; Jian, Wu; Zhao, Lingjuan; Qiu, Jifang; Yin, Zuoshan; Hui, Rongqing

    2014-05-01

    Based on side-port multimode interference coupler, a novel design of 1.31/1.55-μm wavelength multiplexer/demutiplexer on SOI platform with conventional channel waveguides is proposed and analyzed by using wide-angle beam propagation method. With a 25.9μm long ultra-short MMI section, nearly an order of magnitude shorter than that of the previously reported 1.31/1.55-μm wavelength MMI splitters on SOI, simulation results exhibit contrasts of 28dB and 25dB at wavelength 1.31 and 1.55 μm, respectively, and the insertion losses are both below 0.55dB. Meanwhile, the analysis shows that the proposed structure has larger fabrication tolerances than restricted MMI based structures and the present design methodology also applies to split other wavelengths and in different material platforms, such as InP, GaAs and PLC guides, etc.

  5. Inland waterway ports nodal attraction indices relevant in development strategies on regional level

    NASA Astrophysics Data System (ADS)

    Dinu, O.; Burciu, Ş.; Oprea, C.; Ilie, A.; Rosca, M.

    2016-08-01

    Present paper aims to propose a set of ranking indices and related criteria, concerning mainly spatial analysis, for the inland waterway port, with special view on inland ports of Danube. Commonly, the attraction potential of a certain transport node is assessed by its spatial accessibility indices considering both spatial features of the location provided by the networks that connect into that node and its economic potential defining the level of traffic flows depending on the economic centers of its hinterland. Paper starts with a overview of the critical needs that are required for potential sites to become inland waterway ports and presents nodal functions that coexist at different levels, leading to a port hierarchy from the points of view of: capacity, connection to hinterland, traffic structure and volume. After a brief review of the key inland waterway port ranking criterion, a selection of nodal attraction measures is made. Particular considerations for the Danube inland port case follows proposed methodology concerning indices of performance for network scale and centrality. As expected, the shorter the distance from an inland port to the nearest access point the greater accessibility. Major differences in ranking, dependent on selected criterion, were registered.

  6. Atto-Joule, high-speed, low-loss plasmonic modulator based on adiabatic coupled waveguides

    NASA Astrophysics Data System (ADS)

    Dalir, Hamed; Mokhtari-Koushyar, Farzad; Zand, Iman; Heidari, Elham; Xu, Xiaochuan; Pan, Zeyu; Sun, Shuai; Amin, Rubab; Sorger, Volker J.; Chen, Ray T.

    2018-05-01

    In atomic multi-level systems, adiabatic elimination (AE) is a method used to minimize complicity of the system by eliminating irrelevant and strongly coupled levels by detuning them from one another. Such a three-level system, for instance, can be mapped onto physically in the form of a three-waveguide system. Actively detuning the coupling strength between the respective waveguide modes allows modulating light to propagate through the device, as proposed here. The outer waveguides act as an effective two-photonic-mode system similar to ground and excited states of a three-level atomic system, while the center waveguide is partially plasmonic. In AE regime, the amplitude of the middle waveguide oscillates much faster when compared to the outer waveguides leading to a vanishing field build up. As a result, the plasmonic intermediate waveguide becomes a "dark state," hence nearly zero decibel insertion loss is expected with modulation depth (extinction ratio) exceeding 25 dB. Here, the modulation mechanism relies on switching this waveguide system from a critical coupling regime to AE condition via electrostatically tuning the free-carrier concentration and hence the optical index of a thin indium thin oxide (ITO) layer resides in the plasmonic center waveguide. This alters the effective coupling length and the phase mismatching condition thus modulating in each of its outer waveguides. Our results also promise a power consumption as low as 49.74aJ/bit. Besides, we expected a modulation speed of 160 GHz reaching to millimeter wave range applications. Such anticipated performance is a direct result of both the unity-strong tunability of the plasmonic optical mode in conjunction with utilizing ultra-sensitive modal coupling between the critically coupled and the AE regimes. When taken together, this new class of modulators paves the way for next generation both for energy and speed conscience optical short-reach communication such as those found in interconnects.

  7. Scenario analysis and disaster preparedness for port and maritime logistics risk management.

    PubMed

    Kwesi-Buor, John; Menachof, David A; Talas, Risto

    2016-08-01

    System Dynamics (SD) modelling is used to investigate the impacts of policy interventions on industry actors' preparedness to mitigate risks and to recover from disruptions along the maritime logistics and supply chain network. The model suggests a bi-directional relation between regulation and industry actors' behaviour towards Disaster Preparedness (DP) in maritime logistics networks. The model also showed that the level of DP is highly contingent on forecast accuracy, technology change, attitude to risk prevention, port activities, and port environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Ultracompact and broadband polarization beam splitter based on polarization-dependent critical guiding condition.

    PubMed

    Ying, Zhoufeng; Wang, Guanghui; Zhang, Xuping; Ho, Ho-pui; Huang, Ying

    2015-05-01

    An ultracompact and broadband polarization beam splitter (PBS) based on the polarization-dependent critical guiding condition of an asymmetrical directional coupler is proposed. The device consists of a pair of silicon waveguides with different height and width. Due to the different cutoff conditions for the TE and TM polarization modes, it is possible to have the TM mode guided in one waveguide while the TE mode is supported in both. Therefore, only the phase-matching condition for the cross-coupling of the TE mode needs to be considered. This approach not only simplifies the design procedures but also significantly improves device performance with smaller total length and larger bandwidth. Finally, regardless of the contribution of S-bend waveguides, our proposed PBS has a coupling region as short as 0.2 μm, which is the shortest reported until now. The simulation result shows that the extinction ratios for the TE and TM polarization are 13.5 and 16.6 dB at their respective output ports, and their insertion losses are 0.29 and 0.13 dB, respectively. Numerical simulations also show that the device offers a very large bandwidth (∼140  nm) with large extinction ratio (>10  dB) and low insertion loss (<1  dB).

  9. Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer.

    PubMed

    Li, Chenlei; Dai, Daoxin

    2017-11-01

    A polarization beam splitter (PBS) is proposed and realized for silicon photonic integrated circuits with a 340-nm-thick silicon core layer by introducing an asymmetric directional coupler (ADC), which consists of a silicon-on-insulator (SOI) nanowire and a subwavelength grating (SWG) waveguide. The SWG is introduced to provide an optical waveguide which has much higher birefringence than a regular 340-nm-thick SOI nanowire, so that it is possible to make the phase-matching condition satisfied for TE polarization only in the present design when the waveguide dimensions are optimized. Meanwhile, there is a significant phase mismatching for TM polarization automatically. In this way, the present ADC enables strong polarization selectivity to realize a PBS that separates TE and TM polarizations to the cross and through ports, respectively. The realized PBS has a length of ∼2  μm for the coupling region. For the fabricated PBS, the extinction ratio (ER) is 15-30 dB and the excess loss is 0.2-2.6 dB for TE polarization while the ER is 20-27 dB and the excess loss is 0.3-2.8 dB for TM polarization when operating in the wavelength range of 1520-1580 nm.

  10. Optical splitter design for telecommunication access networks with triple-play services

    NASA Astrophysics Data System (ADS)

    Agalliu, Rajdi; Burtscher, Catalina; Lucki, Michal; Seyringer, Dana

    2018-01-01

    In this paper, we present various designs of optical splitters for access networks, such as GPON and XG-PON by ITU-T with triple-play services (ie data, voice and video). The presented designs exhibit a step forward, compared to the solutions recommended by the ITU, in terms of performance in transmission systems using WDM. The quality of performance is represented by the bit error rate and the Q-factor. Besides the standard splitter design, we propose a new length-optimized splitter design with a smaller waveguide core, providing some reduction of non-uniformity of the power split between the output waveguides. The achieved splitting parameters are incorporated in the simulations of passive optical networks. For this purpose, the OptSim tool employing Time Domain Split Step method was used.

  11. Efficient 30-W, 140-MHz rf amplifier for CW CO2 waveguide laser excitation

    NASA Technical Reports Server (NTRS)

    Hochuli, U. E.; Haldemann, P. R.

    1988-01-01

    Details of a 30-W, 140-MHz rf amplifier for CW CO2 waveguide laser excitation are presented. The amplifier delivers 30 W into a 50-Ohm load while requiring only 40 W of dc power from a 28-V supply and 100 mW of rf drive power for an overall efficiency of 75 percent. A coupling-starting network design theory is given that provides the initiation over voltage for the discharge plasma from an rf power source of limited output voltage capability. The network then matches the drive circuit to the new input impedance of the operating discharge without any adjustments. This design theory applies to the whole class of networks whose losses can be approximated by a loss conductance in parallel with the gas discharge.

  12. Guided-Wave Optic Devices for Integrated Optic Information Processing.

    DTIC Science & Technology

    1984-08-08

    Modulation and switching of light waves in Yttrium iron garnet (YIG)- Gadolinium gallium garnet (GGG) waveguides using Farady rotation , and light...switch, an electrooptic analog-to-digital converter using a Fabry -Perot modula- tor array, and a noncollinear magnetooptic modulator using magnetostatic...data routing in electronic computer networks. ELECTROOPTIC ANALOG-TO-DIGITAL CONVERTER USING CHANNEL WAVEGUIDE FABRY -PEROT MODULATOR ARRAY One of the

  13. An efficient high-frequency analysis of modal reflection and transmission coefficients for a class of waveguide discontinuities

    NASA Technical Reports Server (NTRS)

    Pathak, P. H.; Altintas, A.

    1988-01-01

    A high-frequency analysis of electromagnetic modal reflection and transmission coefficients is presented for waveguide discontinuities formed by joining different waveguide sections. The analysis uses an extended version of the concept of geometrical theory of diffraction based equivalent edge currents in conjunction with the reciprocity theorem to describe interior scattering effects. If the waveguide modes and their associated modal rays can be found explicitly, general two- and three-dimensional waveguide geometries can be analyzed. Expressions are developed for two-dimensional reflection and transmission coefficients. Numerical results are given for a flanged, semi-infinite parallel plate waveguide and for the junction between two linearly tapered waveguides.

  14. 46 CFR Section 1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... stock company, business trust, or other organized group of persons, or any trustee, receiver, assignee... designated port or group of ports upon deployment of the Armed Forces of the United States, or other... traffic network of an ocean or Great Lakes port, or outport location, including beach loading sites...

  15. 1x3 beam splitter for TE polarization based on self-imaging phenomena in photonic crystal waveguides.

    PubMed

    Zhang, Min; Malureanu, Radu; Krüger, Asger Christian; Kristensen, Martin

    2010-07-05

    Based on inspiration from multi-mode interference self-imaging and theoretical FDTD simulations, a 1x3 beam splitter was designed, fabricated and characterized. Measurements show that for TE-polarized incident light the power is distributed equally between the output ports within 1dB in the range from 1541nm to 1552nm, and the total transmission of the 1x3 splitter is equal to the corresponding length of a single-line-defect PhCW within the measurement uncertainty.

  16. High-Power Copper Gratings for a Sheet-Beam Traveling-Wave Amplifier at G-Band

    DTIC Science & Technology

    2013-01-01

    respectively). A. Two-Port CTF The CTF was CNC machined from OFHC copper. The gratings were tightly clamped into place in the fixture. The results of the... CNC machined such that only ten slots were exposed, followed by a short for the rest of the grating. Adaptors to standard WR5 and WR10 waveguides were...of low-voltage grating Cerenkov amplifiers,” Phys. Plasmas , vol. 1, no. 1, pp. 176–188, Jan. 1994. [11] C. D. Joye, J. P. Calame, K. T. Nguyen, and M

  17. Deterministic quantum state transfer between remote qubits in cavities

    NASA Astrophysics Data System (ADS)

    Vogell, B.; Vermersch, B.; Northup, T. E.; Lanyon, B. P.; Muschik, C. A.

    2017-12-01

    Performing a faithful transfer of an unknown quantum state is a key challenge for enabling quantum networks. The realization of networks with a small number of quantum links is now actively pursued, which calls for an assessment of different state transfer methods to guide future design decisions. Here, we theoretically investigate quantum state transfer between two distant qubits, each in a cavity, connected by a waveguide, e.g., an optical fiber. We evaluate the achievable success probabilities of state transfer for two different protocols: standard wave packet shaping and adiabatic passage. The main loss sources are transmission losses in the waveguide and absorption losses in the cavities. While special cases studied in the literature indicate that adiabatic passages may be beneficial in this context, it remained an open question under which conditions this is the case and whether their use will be advantageous in practice. We answer these questions by providing a full analysis, showing that state transfer by adiabatic passage—in contrast to wave packet shaping—can mitigate the effects of undesired cavity losses, far beyond the regime of coupling to a single waveguide mode and the regime of lossless waveguides, as was proposed so far. Furthermore, we show that the photon arrival probability is in fact bounded in a trade-off between losses due to non-adiabaticity and due to coupling to off-resonant waveguide modes. We clarify that neither protocol can avoid transmission losses and discuss how the cavity parameters should be chosen to achieve an optimal state transfer.

  18. Broadband photonic transport between waveguides by adiabatic elimination

    NASA Astrophysics Data System (ADS)

    Oukraou, Hassan; Coda, Virginie; Rangelov, Andon A.; Montemezzani, Germano

    2018-02-01

    We propose an adiabatic method for the robust transfer of light between the two outer waveguides in a three-waveguide directional coupler. Unlike the established technique inherited from stimulated Raman adiabatic passage (STIRAP), the method proposed here is symmetric with respect to an exchange of the left and right waveguides in the structure and permits the transfer in both directions. The technique uses the adiabatic elimination of the middle waveguide together with level crossing and adiabatic passage in an effective two-state system involving only the external waveguides. It requires a strong detuning between the outer and the middle waveguide and does not rely on the adiabatic transfer state (dark state) underlying the STIRAP process. The suggested technique is generalized to an array of N waveguides and verified by numerical beam propagation calculations.

  19. Modular architecture for robotics and teleoperation

    DOEpatents

    Anderson, Robert J.

    1996-12-03

    Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.

  20. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer

    NASA Astrophysics Data System (ADS)

    Coles, R. J.; Price, D. M.; Dixon, J. E.; Royall, B.; Clarke, E.; Kok, P.; Skolnick, M. S.; Fox, A. M.; Makhonin, M. N.

    2016-03-01

    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95+/-5% and have potential to serve as the basis of spin-logic and network implementations.

  1. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer

    PubMed Central

    Coles, R. J.; Price, D. M.; Dixon, J. E.; Royall, B.; Clarke, E.; Kok, P.; Skolnick, M. S.; Fox, A. M.; Makhonin, M. N.

    2016-01-01

    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations. PMID:27029961

  2. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer.

    PubMed

    Coles, R J; Price, D M; Dixon, J E; Royall, B; Clarke, E; Kok, P; Skolnick, M S; Fox, A M; Makhonin, M N

    2016-03-31

    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations.

  3. An analog of photon-assisted tunneling in a periodically modulated waveguide array

    PubMed Central

    Li, Liping; Luo, Xiaobing; Yang, Xiaoxue; Wang, Mei; Lü, Xinyou; Wu, Ying

    2016-01-01

    We theoretically report an analog of photon-assisted tunneling (PAT) originated from dark Floquet state in a periodically driven lattice array without a static biased potential by studying a three-channel waveguide system in a non-high-frequency regime. This analog of PAT can be achieved by only periodically modulating the top waveguide and adjusting the distance between the bottom and its adjacent waveguide. It is numerically shown that the PAT resonances also exist in the five-channel waveguide system and probably exist in the waveguide arrays with other odd numbers of waveguides, but they will become weak as the number of waveguides increases. With origin different from traditional PAT, this type of PAT found in our work is closely linked to the existence of the zero-energy (dark) Floquet states. It is readily observable under currently accessible experimental conditions and may be useful for controlling light propagation in waveguide arrays. PMID:27767189

  4. Network Analysis with SiLK

    DTIC Science & Technology

    2015-01-06

    Carnegie Mellon University rwcut Default Display By default • sIP , sPort • dIP, dPort • protocol • packets, bytes • flags • sTime, eTime, duration...TCP/IP SOCKET IP address: 10.0.0.1 L4 protocol : TCP High-numbered ephemeral port # TCP/IP SOCKET IP address: 203.0.113.1 L4 protocol : TCP Low-numbered...Fields found to be useful in analysis: • source address, destination address • source port, destination port (Internet Control Message Protocol

  5. Bridging the Gap in Port Security; Network Centric Theory Applied to Public/Private Collaboration

    DTIC Science & Technology

    2007-03-01

    commercial_enforcement/ ctpat /security_guideline/guideline_port.xml [Accessed January 2, 2007] 16 The four core elements of CSI include:36 • Identify high...www.cbp.gov/xp/cgov/import/commercial_enforcement/ ctpat /security_guideline/guideline_port.xml [Accessed January 2, 2007]. 17 Connecting them

  6. Ultrafast all-optical flip-flop based on passive micro Sagnac waveguide ring with photonic crystal fiber.

    PubMed

    Xu, Ming; Yang, Wan; Hong, Tao; Kang, TangZhen; Ji, JianHua; Wang, Ke

    2017-06-01

    Ultrafast all-optical flip-flop based on a passive micro Sagnac waveguide ring is studied through theoretical analysis and numerical simulation in this paper. The types of D, R-S, J-K, and T flip-flop are designed by controlling the cross-phase modulation effect of lights in this special microring. The high nonlinearity of the hollow-core photonic crystal fiber is implanted on a chip to shorten the length of the ring and reduce input power. By sensible management, the pulse width ratio of the input and the control signal, problems of pulse narrowing, and residual pedestal at the out port are solved. The parameters affecting the performance of flip-flops are optimized. The results show that the all-optical flip-flops have stable performance, low power consumption, high transmission rate (up to 100  Gb/s), and response time in picosecond order. The small size microwaveguide structure is suitable for photonic integration.

  7. Enhanced Transmissions Through Three-dimensional Cascade Sharp Waveguide Bends Using C-slit Diaphragms.

    PubMed

    Yang, Rui; Hu, Bowei; Zhang, Aofang; Gao, Dongxing; Wang, Hui; Shi, Ayuan; Lei, Zhenya; Yang, Pei

    2017-03-21

    Transmission properties through sharp rectangular waveguide bends are investigated to determine the cut-off bending angles of the wave propagation. We show that a simple metallic diaphragm at the bending corner with properly devised sub-wavelength defect apertures of C-slits would be readily to turn on the transmissions with scarce reflections of the propagating modes, while preserving the integrity of the transmitting fields soon after the bends. In particularly, our design also demonstrates the capability of eliminating all the unwanted cavity resonant transmissions that exist in the three-dimensional cascade sharp waveguide bends, and solely let the desired signals travel along the whole passage of the waveguide. The present approach, using C-slit diaphragms to support the sharp bending behaviors of the guided waves with greatly enhanced transmissions, would be especially effective in constructing novel waveguides and pave the way for the development of more compact and miniaturized electromagnetic systems that exploit these waveguide bends.

  8. Quantum State Transfer via Noisy Photonic and Phononic Waveguides

    NASA Astrophysics Data System (ADS)

    Vermersch, B.; Guimond, P.-O.; Pichler, H.; Zoller, P.

    2017-03-01

    We describe a quantum state transfer protocol, where a quantum state of photons stored in a first cavity can be faithfully transferred to a second distant cavity via an infinite 1D waveguide, while being immune to arbitrary noise (e.g., thermal noise) injected into the waveguide. We extend the model and protocol to a cavity QED setup, where atomic ensembles, or single atoms representing quantum memory, are coupled to a cavity mode. We present a detailed study of sensitivity to imperfections, and apply a quantum error correction protocol to account for random losses (or additions) of photons in the waveguide. Our numerical analysis is enabled by matrix product state techniques to simulate the complete quantum circuit, which we generalize to include thermal input fields. Our discussion applies both to photonic and phononic quantum networks.

  9. Femtosecond laser-written double line waveguides in germanate and tellurite glasses

    NASA Astrophysics Data System (ADS)

    S. da Silva, Diego; Wetter, Niklaus U.; de Rossi, Wagner; Samad, Ricardo E.; Kassab, Luciana R. P.

    2018-02-01

    The authors report the fabrication and characterization of passive waveguides in GeO2-PbO and TeO2-ZnO glasses written with a femtosecond laser delivering pulses with 3μJ, 30μJ and 80fs at 4kHz repetition rate. Permanent refractive index change at the focus of the laser beam was obtained and waveguides were formed by two closely spaced laser written lines, where the light guiding occurs between them. The refractive index change at 632 nm is around 10-4 . The value of the propagation losses was around 2.0 dB/cm. The output mode profiles indicate multimodal guiding behavior. Raman measurements show structural modification of the glassy network. The results show that these materials are potential candidates for passive waveguides applications as low-loss optical components.

  10. SPM of nonlinear surface plasmon waveguides

    NASA Astrophysics Data System (ADS)

    Li, Yuee; Zhang, Xiaoping

    2008-10-01

    Pulse propagation equation of nonlinear dispersion surface plasmon waveguide is educed strictly from wave equation. The nonlinear coefficient is defined and then used to assess and compare the nonlinear characteristic of three popular 1-D surface plasmon waveguides: the single metal-dielectric interface, the metal slab bounded by dielectric and the dielectric slab bounded by metal. SPM (self-phase modulation) of the typical surface plasmon waveguide is predicted and discussed.

  11. Hyperbolic-cosine waveguide tapers and oversize rectangular waveguide for reduced broadband insertion loss in W-band electron paramagnetic resonance spectroscopy. II. Broadband characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidabras, Jason W.; Anderson, James R.; Mainali, Laxman

    Experimental results have been reported on an oversize rectangular waveguide assembly operating nominally at 94 GHz. It was formed using commercially available WR28 waveguide as well as a pair of specially designed tapers with a hyperbolic-cosine shape from WR28 to WR10 waveguide [R. R. Mett et al., Rev. Sci. Instrum. 82, 074704 (2011)]. The oversize section reduces broadband insertion loss for an Electron Paramagnetic Resonance (EPR) probe placed in a 3.36 T magnet. Hyperbolic-cosine tapers minimize reflection of the main mode and the excitation of unwanted propagating waveguide modes. Oversize waveguide is distinguished from corrugated waveguide, overmoded waveguide, or quasi-opticmore » techniques by minimal coupling to higher-order modes. Only the TE{sub 10} mode of the parent WR10 waveguide is propagated. In the present work, a new oversize assembly with a gradual 90° twist was implemented. Microwave power measurements show that the twisted oversize waveguide assembly reduces the power loss in the observe and pump arms of a W-band bridge by an average of 2.35 dB and 2.41 dB, respectively, over a measured 1.25 GHz bandwidth relative to a straight length of WR10 waveguide. Network analyzer measurements confirm a decrease in insertion loss of 2.37 dB over a 4 GHz bandwidth and show minimal amplitude distortion of approximately 0.15 dB. Continuous wave EPR experiments confirm these results. The measured phase variations of the twisted oversize waveguide assembly, relative to an ideal distortionless transmission line, are reduced by a factor of two compared to a straight length of WR10 waveguide. Oversize waveguide with proper transitions is demonstrated as an effective way to increase incident power and the return signal for broadband EPR experiments. Detailed performance characteristics, including continuous wave experiment using 1 μM 2,2,6,6-tetramethylpiperidine-1-oxyl in aqueous solution, provided here serve as a benchmark for other broadband low-loss probes in millimeter-wave EPR bridges.« less

  12. Hybrid WDM/OCDMA for next generation access network

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Wada, Naoya; Miyazaki, T.; Cincotti, G.; Kitayama, Ken-ichi

    2007-11-01

    Hybrid wavelength division multiplexing/optical code division multiple access (WDM/OCDMA) passive optical network (PON), where asynchronous OCDMA traffic transmits over WDM network, can be one potential candidate for gigabit-symmetric fiber-to-the-home (FTTH) services. In a cost-effective WDM/OCDMA network, a large scale multi-port encoder/decoder can be employed in the central office, and a low cost encoder/decoder will be used in optical network unit (ONU). The WDM/OCDMA system could be one promising solution to the symmetric high capacity access network with high spectral efficiency, cost effective, good flexibility and enhanced security. Asynchronous WDM/OCDMA systems have been experimentally demonstrated using superstructured fiber Bragg gratings (SSFBG) and muti-port OCDMA en/decoders. The total throughput has reached above Tera-bit/s with spectral efficiency of about 0.41. The key enabling techniques include ultra-long SSFBG, multi-port E/D with high power contrast ratio, optical thresholding, differential phase shift keying modulation with balanced detection, forward error correction, and etc. Using multi-level modulation formats to carry multi-bit information with single pulse, the total capacity and spectral efficiency could be further enhanced.

  13. Enterprise Considerations for Ports and Protocols

    DTIC Science & Technology

    2016-10-21

    selected communications. These protocols are restricted to specific ports or addresses in the receiving web service. HTTPS is familiarly restricted...in use by the web services and applications that are connected to the network are required for interoperability and security. Policies specify the...network or reside at the end-points (i.e., web services or clients). ____________________________ Manuscript received June 1, 2016; revised July

  14. A third-order silicon racetrack add-drop filter with a moderate feature size

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhou, Xin; Chen, Qian; Shao, Yue; Chen, Xiangning; Huang, Qingzhong; Jiang, Wei

    2018-01-01

    In this work, we design and fabricate a highly compact third-order racetrack add-drop filter consisting of silicon waveguides with modified widths on a silicon-on-insulator (SOI) wafer. Compared to the previous approach that requires an exceedingly narrow coupling gap less than 100nm, we propose a new approach that enlarges the minimum feature size of the whole device to be 300 nm to reduce the process requirement. The three-dimensional finite-difference time-domain (3D-FDTD) method is used for simulation. Experiment results show good agreement with simulation results in property. In the experiment, the filter shows a nearly box-like channel dropping response, which has a large flat 3-dB bandwidth ({3 nm), relatively large FSR ({13.3 nm) and out-of-band rejection larger than 14 dB at the drop port with a footprint of 0.0006 mm2 . The device is small and simple enough to have a wide range of applications in large scale on-chip photonic integration circuits.

  15. High resolution structural characterisation of laser-induced defect clusters inside diamond

    NASA Astrophysics Data System (ADS)

    Salter, Patrick S.; Booth, Martin J.; Courvoisier, Arnaud; Moran, David A. J.; MacLaren, Donald A.

    2017-08-01

    Laser writing with ultrashort pulses provides a potential route for the manufacture of three-dimensional wires, waveguides, and defects within diamond. We present a transmission electron microscopy study of the intrinsic structure of the laser modifications and reveal a complex distribution of defects. Electron energy loss spectroscopy indicates that the majority of the irradiated region remains as sp3 bonded diamond. Electrically conductive paths are attributed to the formation of multiple nano-scale, sp2-bonded graphitic wires and a network of strain-relieving micro-cracks.

  16. Modeling the Effects of a Transportation Security Incident on the Commercial Container Transportation System

    DTIC Science & Technology

    2009-09-01

    19 4. Domestic Port to Transportation Analysis Zone Distances ...........19 5. Truck Travel Times...20 6. Rail Travel Times...............................................................................20 7. Rail and...commercial container transportation network. An import container begins travel in a foreign port, enters the U.S. via a domestic port and can either

  17. Production and characterization of femtosecond laser-written double line waveguides in heavy metal oxide glasses

    NASA Astrophysics Data System (ADS)

    da Silva, Diego Silvério; Wetter, Niklaus Ursus; de Rossi, Wagner; Kassab, Luciana Reyes Pires; Samad, Ricardo Elgul

    2018-01-01

    We report the fabrication and characterization of double line waveguides directly written in tellurite and germanate glasses using a femtosecond laser delivering 30 μJ, 80 fs pulses at 4 kHz repetition rate. The double line waveguides produced presented internal losses inferior to 2.0 dB/cm. The output mode profile and the M2 measurements indicate multimodal guiding behavior. A better beam quality for the GeO2 - PbO waveguide was observed when compared with TeO2 - ZnO glass. Raman spectroscopy of the waveguides showed structural modification of the glassy network and indicates that a negative refractive index modification occurs at the focus of the laser beam, therefore allowing for light guiding in between two closely spaced laser written lines. The refractive index change at 632 nm is around 10-4, and the structural changes in the laser focal region of the writing, evaluated by Raman spectroscopy, corroborated our findings that these materials are potential candidates for optical waveguides and passive components. To the best of our knowledge, the two double line configuration demonstrated in the present work was not reported before for germanate or tellurite glasses.

  18. Slotline fed microstrip antenna array modules

    NASA Technical Reports Server (NTRS)

    Lo, Y. T.; Oberhart, M. L.; Brenneman, J. S.; Aoyagi, P.; Moore, J.; Lee, R. Q. H.

    1988-01-01

    A feed network comprised of a combination of coplanar waveguide and slot transmission line is described for use in an array module of four microstrip elements. Examples of the module incorporating such networks are presented as well as experimentally obtained impedance and radiation characteristics.

  19. A combined source and site-effect study of ground motions generated by an earthquake in Port au Prince (Haiti)

    NASA Astrophysics Data System (ADS)

    St Fleur, Sadrac; Courboulex, Francoise; Bertrand, Etienne; Deschamps, Anne; Mercier de Lepinay, Bernard; Prepetit, Claude; Hough, Suzan

    2013-04-01

    We present the preliminary results of a study with the aim of understanding how some combinations of source and site effects can generate extreme ground motions in the city of Port au Prince. For this study, we have used the recordings of several tens of earthquakes with magnitude larger than 3.0 at 3 to 14 stations from three networks: 3 stations of the Canadian Broad-band network (RNCan), 2 stations of the educational French network (SaE) and 9 stations of the accelerometric network (Bureau des Mines et de l'Energie of Port au Prince and US Geological survey). In order to estimate site effects under each station, we have applied classical spectral ratio methods: The H/V (Horizontal/Vertical) method was first used to select a reference station, which was itself used in a site/reference method. Because a true reference station was not available, we have used successively stations HCEA, then station PAPH, then an average value of 3 stations. In the frequency range studied (0.5 - 20 Hz), we found a site-to-reference ratio up to 3 to 8. However, these values present a large variability, depending on the earthquake recordings. This may indicate that the observed amplification from one station to the other depends not only from the local site effect but also from the source. We then used the same earthquake recordings as Empirical Green's Functions (EGF) in order to simulate the ground motions generated by a virtual earthquake. For this simulation, we have used a stochastic EGF summation method. We have worked on the simulation of a magnitude Mw=6.8 using successively 2 smaller events that occurred on the Leogane fault as EGF. The results obtained using the two events are surprisingly very different. Using the first EGF, we obtained almost the same ground motion values at each station in Port au Prince, whereas with the second EGF, the results highlight large differences. The large variability obtained in the results indicates that a particular combination of site and source effects may be responsible of large ground motions, especially at some given sites.

  20. Two semiconductor ring lasers coupled by a single-waveguide for optical memory operation

    NASA Astrophysics Data System (ADS)

    Van der Sande, Guy; Coomans, Werner; Gelens, Lendert

    2014-05-01

    Semiconductor ring lasers are semiconductor lasers where the laser cavity consists of a ring-shaped waveguide. SRLs are highly integrable and scalable, making them ideal candidates for key components in photonic integrated circuits. SRLs can generate light in two counterpropagating directions between which bistability has been demonstrated. Hence, information can be coded into the emission direction. This bistable operation allows SRLs to be used in systems for all-optical switching and as all-optical memories. For the demonstration of fast optical flip-flop operation, Hill et al. [Nature 432, 206 (2004)] fabricated two SRLs coupled by a single waveguide, rather than a solitary SRL. Nevertheless, the literature shows that a single SRL can also function perfectly as an all-optical memory. In our recent paper [W. Coomans et al., Phys. Rev. A 88, 033813, (2013)], we have raised the question whether coupling two SRLs to realize a single optical memory has any advantage over using a solitary SRL, taking into account the obvious disadvantage of a doubled footprint and power consumption. To provide the answer, we have presented in that paper a numerical study of the dynamical behavior of semiconductor ring lasers coupled by a single bus waveguide, both when weakly coupled and when strongly coupled. We have provided a detailed analysis of the multistable landscape in the coupled system, analyzed the stability of all solutions and related the internal dynamics in the individual lasers to the field effectively measured at the output of the waveguide. We have shown which coupling phases generally promote instabilities and therefore need to be avoided in the design. Regarding all-optical memory operation, we have demonstrated that there is no real advantage for bistable memory operation compared to using a solitary SRL. An increased power suppression ratio has been found to be mainly due to the destructive interference of the SRL fields at the low power port. Also, multistability between several modal configurations has been shown to remain unavoidable.

  1. Compensation of Gravity-Induced Structural Deformations on a Beam- Waveguide Antenna Using a Deformable Mirror

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Moore, M.; Rochblatt, D. J.; Veruttipong, W.

    1995-01-01

    At the NASA Deep Space Network (DSN) Goldstone Complex, a 34-meter- diameter beam-waveguide antenna, DSS-13, was constructed in 1988-1990 and has become an integral part of an advanced systems program and a test bed for technologies being developed to introduce Ka-band (32 GHz) frequencies into the DSN. A method for compensating the gravity- induced structural deformations in this large antenna is presented.

  2. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, D.B.

    1996-12-31

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor to a plurality of slave processors to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor`s status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer, a digital signal processor, a parallel transfer controller, and two three-port memory devices. A communication switch within each node connects it to a fast parallel hardware channel through which all high density data arrives or leaves the node. 6 figs.

  3. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, Dario B.

    1996-01-01

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor (100) to a plurality of slave processors (200) to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor's status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer (104), a digital signal processor (114), a parallel transfer controller (106), and two three-port memory devices. A communication switch (108) within each node (100) connects it to a fast parallel hardware channel (70) through which all high density data arrives or leaves the node.

  4. A unique all-optic switch based on an innovatively designed liquid crystal waveguide

    NASA Astrophysics Data System (ADS)

    Nam, Sung-Hyun; Su, Wei-Hung; Chavez, Jesus; Yin, Shizhuo

    2003-10-01

    A unique, all-optic switch based on an innovatively designed planar lightwave circuit (PLC) is presented in this paper. The switching function is achieved by using ultra large birefringence of nematic liquid crystals (NLC) filled at the trench of waveguides. The trench at the crossing forms a waveguide mirror or a matching medium when extraordinary and ordinary refractive indices of NLC are employed, respectively. The major advantages of our unique design are: (1) the limitation that refractive index of liquid crystal must be less than that of waveguide material itself is eliminated so that conventional NCL material such as E7 can be used; (2) it is a self aligned fabrication process that alleviates the tight tolerance of later tilt error; (3) the design is thermally stable. The successful fabrication of this unqiue switch could result in an enabling element for the next generation all-optic networks.

  5. A Comparison of Single-, Two- and Three-Port Laparoscopic Myomectomy

    PubMed Central

    Kim, Su Mi; Baek, Jong Min; Park, Eun Kyung; Jeung, In Cheul; Choi, Ji Hyang; Kim, Chan Joo

    2015-01-01

    Background and Objective: A recent FDA safety communication has discouraged the use of a power morcellator for myoma extraction and has called for a change in surgical techniques for myomectomy. The objective of this study was to compare surgical outcomes of laparoscopic single-, two-, and conventional three-port myomectomy and to evaluate the feasibility of contained manual morcellation for uterine myoma. Methods: This retrospective study was a review and analysis of data from 191 consecutive women who underwent single-, two-, or three-port myomectomy for the management of uterine myoma from January 1, 2009, through December 31, 2014. Results: The 3 study groups did not differ demographically. Apart from operative time, the single- and two-port groups showed operative outcomes comparable to those of the multiport group. The single-port group had significantly longer operative times (P = .0053) than the two- and three-port groups. However, in the latter half of the single-port cases, the operative time was similar to those in the three-port group. The two-port surgery group showed a consistent operative time without a learning period. Conclusion: Single- or two-port myomectomy with transumbilical myoma morcellation is feasible and safe, with outcomes comparable to those of three-port myomectomy. These results suggest the potential for minimally invasive management of symptomatic uterine myoma, without the use of a power morcellator. PMID:26648680

  6. Ultra-large nonlinear parameter in graphene-silicon waveguide structures.

    PubMed

    Donnelly, Christine; Tan, Dawn T H

    2014-09-22

    Mono-layer graphene integrated with optical waveguides is studied for the purpose of maximizing E-field interaction with the graphene layer, for the generation of ultra-large nonlinear parameters. It is shown that the common approach used to minimize the waveguide effective modal area does not accurately predict the configuration with the maximum nonlinear parameter. Both photonic and plasmonic waveguide configurations and graphene integration techniques realizable with today's fabrication tools are studied. Importantly, nonlinear parameters exceeding 10(4) W(-1)/m, two orders of magnitude larger than that in silicon on insulator waveguides without graphene, are obtained for the quasi-TE mode in silicon waveguides incorporating mono-layer graphene in the evanescent part of the optical field. Dielectric loaded surface plasmon polariton waveguides incorporating mono-layer graphene are observed to generate nonlinear parameters as large as 10(5) W(-1)/m, three orders of magnitude larger than that in silicon on insulator waveguides without graphene. The ultra-large nonlinear parameters make such waveguides promising platforms for nonlinear integrated optics at ultra-low powers, and for previously unobserved nonlinear optical effects to be studied in a waveguide platform.

  7. Evaluation of waveguide coating materials

    NASA Technical Reports Server (NTRS)

    Chen, W. C. J.; Baker, B. W.

    1982-01-01

    Waveguide coating materials were tested at 8470 MHz for insertion loss. Samples of these coatings on waveguide pieces without flanges were tested in an environmental chamber to simulate the effects of high power microwave heating. Test results indicated that three types of coating materials are acceptable with regard to insertion loss. However, simulated microwave heating caused debonding of Metcot 7 and BD-991 coatings, resulting in peelings in the waveguide. The higher cost Chemglaze R104 does not exhibit this problem.

  8. Design of an All-Optical Network Based on LCoS Technologies

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Shiau, Yhi

    2016-06-01

    In this paper, an all-optical network composed of the ROADMs (reconfigurable optical add-drop multiplexer), L2/L3 optical packet switches, and the fiber optical cross-connection for fiber scheduling and measurement based on LCoS (liquid crystal on silicon) technologies is proposed. The L2/L3 optical packet switches are designed with optical output buffers. Only the header of optical packets is converted to electronic signals to control the wavelength of input ports and the packet payloads can be transparently destined to their output ports. An optical output buffer is designed to queue the packets when more than one incoming packet should reach to the same destination output port. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The wavelength of input ports is designed for routing incoming packets using LCoS technologies. Finally, the proposed OFS (optical flow switch) with input buffers can quickly transfer the big data to the output ports and the main purpose of the OFS is to reduce the number of wavelength reflections. The all-optical content delivery network is comprised of the OFSs for a large amount of audio and video data transmissions in the future.

  9. The vulnerability of the global container shipping network to targeted link disruption

    NASA Astrophysics Data System (ADS)

    Viljoen, Nadia M.; Joubert, Johan W.

    2016-11-01

    Using complex network theory to describe the relational geography of maritime networks has provided great insights regarding their hierarchy and evolution over the past two decades. Unlike applications in other transport fields, notably air transport, complex network theory has had limited application in studying the vulnerability of maritime networks. This study uses targeted link disruption to investigate the strategy specific vulnerability of the network. Although nodal infrastructure such as ports can render a network vulnerable as a result of labour strikes, trade embargoes or natural disasters, it is the shipping lines connecting the ports that are more probably disrupted, either from within the industry, or outside. In this paper, we apply and evaluate two link-based disruption strategies on the global container shipping network, one based on link betweenness, and the other on link salience, to emulate the impact of large-scale service reconfiguration affecting priority links. The results show that the network is by and large robust to such reconfiguration. Meanwhile the flexibility of the network is reduced by both strategies, but to a greater degree by betweenness, resulting in a reduction of transshipment and dynamic rerouting potential amongst the busiest port regions. The results further show that the salience strategy is highly effective in reducing the commonality of shortest path sets, thereby diminishing opportunities for freight consolidation and scale economies.

  10. Thermoelectric properties of semiconductor nanowire networks

    DOE PAGES

    Roslyak, Oleksiy; Piryatinski, Andrei

    2016-03-28

    To examine the thermoelectric (TE) properties of a semiconductor nanowire (NW) network, we propose a theoretical approach mapping the TE network on a two-port network. In contrast to a conventional single-port (i.e., resistor)network model, our model allows for large scale calculations showing convergence of TE figure of merit, ZT, with an increasing number of junctions. Using this model, numerical simulations are performed for the Bi 2Te 3 branched nanowire (BNW) and Cayley tree NW (CTNW) network. We find that the phonon scattering at the network junctions plays a dominant role in enhancing the network ZT. Specifically, disordered BNW and CTNWmore » demonstrate an order of magnitude higher ZT enhancement compared to their ordered counterparts. Formation of preferential TE pathways in CTNW makes the network effectively behave as its BNW counterpart. In conclusion, we provide formalism for simulating large scale nanowire networks hinged upon experimentally measurable TE parameters of a single T-junction.« less

  11. A transmission line method for the measurement of microwave permittivity and permeability

    NASA Astrophysics Data System (ADS)

    Lederer, P. G.

    1990-12-01

    A method for determining complex permittivity and permeability at microwave frequencies from two port S parameter measurements of lossy solids in coaxial or waveguide transmission lines is described. The use of the TRL (Through Reflect Line) calibration scheme allows the measuring system to be calibrated right up to the specimen faces thereby eliminating most of the sample cell from the measurement and allowing suitable materials to be molded directly into the specimen cell in order to eliminate air gaps between specimen and transmission line walls. Some illustrative measurements for dielectric and magnetic materials are presented.

  12. Single Fiber Star Couplers. [optical waveguides for spacecraft communication

    NASA Technical Reports Server (NTRS)

    Asawa, C. K.

    1979-01-01

    An ion exchange process was developed and used in the fabrication of state-of-the-art planar star couplers for distribution of optical radiation between optical fibers. An 8 x 8 planar transmission star coupler was packaged for evaluation purposes with sixteen fiber connectors and sixteen pigtails. Likewise a transmission star coupler and an eight-port reflection star coupler with eight-fiber ribbons rigidly attached to these couplers, and a planar coupler with silicon guides and a parallel channel guide with pigtails were also fabricated. Optical measurements of the transmission star couplers are included with a description of the manufacturing process.

  13. Photonic crystal based 1-bit full-adder optical circuit by using ring resonators in a nonlinear structure

    NASA Astrophysics Data System (ADS)

    Alipour-Banaei, Hamed; Seif-Dargahi, Hamed

    2017-05-01

    In this paper we proposed a novel design for realizing all optical 1*bit full-adder based on photonic crystals. The proposed structure was realized by cascading two optical 1-bit half-adders. The final structure is consisted of eight optical waveguides and two nonlinear resonant rings, created inside rod type two dimensional photonic crystal with square lattice. The structure has ;X;, ;Y; and ;Z; as input and ;SUM; and ;CARRY; as output ports. The performance and functionality of the proposed structure was validated by means of finite difference time domain method.

  14. Waveguide Calibrator for Multi-Element Probe Calibration

    NASA Technical Reports Server (NTRS)

    Sommerfeldt, Scott D.; Blotter, Jonathan D.

    2007-01-01

    A calibrator, referred to as the spider design, can be used to calibrate probes incorporating multiple acoustic sensing elements. The application is an acoustic energy density probe, although the calibrator can be used for other types of acoustic probes. The calibrator relies on the use of acoustic waveguide technology to produce the same acoustic field at each of the sensing elements. As a result, the sensing elements can be separated from each other, but still calibrated through use of the acoustic waveguides. Standard calibration techniques involve placement of an individual microphone into a small cavity with a known, uniform pressure to perform the calibration. If a cavity is manufactured with sufficient size to insert the energy density probe, it has been found that a uniform pressure field can only be created at very low frequencies, due to the size of the probe. The size of the energy density probe prevents one from having the same pressure at each microphone in a cavity, due to the wave effects. The "spider" design probe is effective in calibrating multiple microphones separated from each other. The spider design ensures that the same wave effects exist for each microphone, each with an indivdual sound path. The calibrator s speaker is mounted at one end of a 14-cm-long and 4.1-cm diameter small plane-wave tube. This length was chosen so that the first evanescent cross mode of the plane-wave tube would be attenuated by about 90 dB, thus leaving just the plane wave at the termination plane of the tube. The tube terminates with a small, acrylic plate with five holes placed symmetrically about the axis of the speaker. Four ports are included for the four microphones on the probe. The fifth port is included for the pre-calibrated reference microphone. The ports in the acrylic plate are in turn connected to the probe sensing elements via flexible PVC tubes. These five tubes are the same length, so the acoustic wave effects are the same in each tube. The flexible nature of the tubes allows them to be positioned so that each tube terminates at one of the microphones of the energy density probe, which is mounted in the acrylic structure, or the calibrated reference microphone. Tests performed verify that the pressure did not vary due to bends in the tubes. The results of these tests indicate that the average sound pressure level in the tubes varied by only 0.03 dB as the tubes were bent to various angles. The current calibrator design is effective up to a frequency of approximately 4.5 kHz. This upper design frequency is largely due to the diameter of the plane-wave tubes.

  15. International Standardization in the Design of "Shore to Ship" - Power Supply Systems of Ships in Port

    NASA Astrophysics Data System (ADS)

    Tarnapowicz, Dariusz; German-Galkin, Sergiej

    2018-03-01

    The decisive source of air pollution emissions in ports is the berthed ships. This is primarily caused by the work of ship's autonomous generator sets. One way of reducing the air pollution emissions in ports is the supply of ships from electricity inland system. The main problem connected with the power connection of ships to the inland network is caused by different values of levels and frequencies of voltages in these networks (in various countries) in relation to different values of levels and frequencies of voltages present in the ship's network. It is also important that the source power can range from a few hundred kW up to several MW. In order to realize a universal „Shore to Ship" system that allows the connection of ships to the electricity inland network, the international standardization is necessary. This article presents the current recommendations, standards and regulations for the design of „Shore to Ship" systems.

  16. Microwave Power Combiner/Switch Utilizing a Faraday Rotator

    NASA Technical Reports Server (NTRS)

    Perez, Raul

    2008-01-01

    A proposed device for combining or switching electromagnetic beams would have three ports, would not contain any moving parts, and would be switchable among three operating states: Two of the ports would be for input; the remaining port would be for output. In one operating state, the signals at both input ports would be coupled through to the output port. In each of the other two operating states, the signal at only one input port would be coupled to the output port. The input port would be selected through choice of the operating state.

  17. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam

    PubMed Central

    Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya

    2016-01-01

    We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm. PMID:27346285

  18. Monolithically integrated self-rolled-up microtube-based vertical coupler for three-dimensional photonic integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xin; Arbabi, Ehsan; Goddard, Lynford L.

    2015-07-20

    We demonstrate a self-rolled-up microtube-based vertical photonic coupler monolithically integrated on top of a ridge waveguide to achieve three-dimensional (3D) photonic integration. The fabrication process is fully compatible with standard planar silicon processing technology. Strong light coupling between the vertical coupler and the ridge waveguide was observed experimentally, which may provide an alternative route for 3D heterogeneous photonic integration. The highest extinction ratio observed in the transmission spectrum passing through the ridge waveguide was 23 dB.

  19. Quantum walks of correlated photon pairs in two-dimensional waveguide arrays.

    PubMed

    Poulios, Konstantinos; Keil, Robert; Fry, Daniel; Meinecke, Jasmin D A; Matthews, Jonathan C F; Politi, Alberto; Lobino, Mirko; Gräfe, Markus; Heinrich, Matthias; Nolte, Stefan; Szameit, Alexander; O'Brien, Jeremy L

    2014-04-11

    We demonstrate quantum walks of correlated photons in a two-dimensional network of directly laser written waveguides coupled in a "swiss cross" arrangement. The correlated detection events show high-visibility quantum interference and unique composite behavior: strong correlation and independence of the quantum walkers, between and within the planes of the cross. Violations of a classically defined inequality, for photons injected in the same plane and in orthogonal planes, reveal nonclassical behavior in a nonplanar structure.

  20. Electromagnetic Design of a Magnetically-Coupled Spatial Power Combiner

    NASA Technical Reports Server (NTRS)

    Bulcha, B.; Cataldo, G.; Stevenson, T. R.; U-Yen, K.; Moseley, S. H.; Wollack, E. J.

    2017-01-01

    The design of a two-dimensional beam-combining network employing a parallel-plate superconducting waveguide with a mono-crystalline silicon dielectric is presented. This novel beam-combining network structure employs an array of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multi-mode region defined by the parallel-plate waveguide. These attributes enable the structures use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. When configured with a suitable corporate-feed power-combiner, this fully sampled array can be used to realize a low-sidelobe apodized response without incurring a reduction in coupling efficiency. To control undesired reflections over a wide range of angles in the finite-sized parallel-plate waveguide region, a wideband meta-material electromagnetic absorber structure is implemented. This adiabatic structure absorbs greater than 99 of the power over the 1.7:1 operational band at angles ranging from normal (0 degree) to near parallel (180 degree) incidence. Design, simulations, and application of the device will be presented.

  1. Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits

    NASA Astrophysics Data System (ADS)

    Zeuner, Jonas; Sharma, Aditya N.; Tillmann, Max; Heilmann, René; Gräfe, Markus; Moqanaki, Amir; Szameit, Alexander; Walther, Philip

    2018-03-01

    Recent progress in integrated-optics technology has made photonics a promising platform for quantum networks and quantum computation protocols. Integrated optical circuits are characterized by small device footprints and unrivalled intrinsic interferometric stability. Here, we take advantage of femtosecond-laser-written waveguides' ability to process polarization-encoded qubits and present an implementation of a heralded controlled-NOT gate on chip. We evaluate the gate performance in the computational basis and a superposition basis, showing that the gate can create polarization entanglement between two photons. Transmission through the integrated device is optimized using thermally expanded core fibers and adiabatically reduced mode-field diameters at the waveguide facets. This demonstration underlines the feasibility of integrated quantum gates for all-optical quantum networks and quantum repeaters.

  2. Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayn, I.; Mouradian, S.; Li, L.

    2014-11-24

    A scalable approach for integrated photonic networks in single-crystal diamond using triangular etching of bulk samples is presented. We describe designs of high quality factor (Q = 2.51 × 10{sup 6}) photonic crystal cavities with low mode volume (V{sub m} = 1.062 × (λ/n){sup 3}), which are connected via waveguides supported by suspension structures with predicted transmission loss of only 0.05 dB. We demonstrate the fabrication of these structures using transferred single-crystal silicon hard masks and angular dry etching, yielding photonic crystal cavities in the visible spectrum with measured quality factors in excess of Q = 3 × 10{sup 3}.

  3. Monolithic coupling of a SU8 waveguide to a silicon photodiode

    NASA Astrophysics Data System (ADS)

    Nathan, M.; Levy, O.; Goldfarb, I.; Ruzin, A.

    2003-12-01

    We present quantitative results of light coupling from SU8 waveguides into silicon p-n photodiodes in monolithically integrated structures. Multimode, 12 μm thick, and 20 μm wide SU8 waveguides were fabricated to overlap 40×180 μm2 photodiodes, with three different waveguide-photodiode overlap lengths. The attenuation due to leaky-mode coupling in the overlap area was then calculated from photocurrent measurements. The overlap attenuation ranged from a minimum of 2.2 dB per mm overlap length to a maximum of about 3 dB/mm, comparing favorably with reported nonpolymeric waveguide-Si photodiode attenuations.

  4. Intercepted Scolytidae (Coleoptera) at U.S. ports of entry: 1985-2000.

    Treesearch

    Robert A. Haack

    2001-01-01

    Since 1985, the U.S. Department of Agriculture, Animal and Plant Health Inspection Service has maintained the 'Port Information Network' (PIN) database for plant pests intercepted at the U.S. ports of entry. As of August 2001, PIN contained 6825 records of beetles (Coleoptera) in the family Scolytidae that had been intercepted during the years 1985-2000 from...

  5. Low-loss multimode interference couplers for terahertz waves

    NASA Astrophysics Data System (ADS)

    Themistos, Christos; Kalli, Kyriacos; Komodromos, Michael; Markides, Christos; Quadir, Anita; Rahman, B. M. Azizur; Grattan, Kenneth T. V.

    2012-04-01

    The terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, metal-clad plasmonic waveguides and specifically hollow core structures, coated with insulating material are the most promising low-loss waveguides used in both active and passive devices. Optical power splitters are important components in the design of optoelectronic systems and optical communication networks such as Mach-Zehnder Interferometric switches, polarization splitter and polarization scramblers. Several designs for the implementation of the 3dB power splitters have been proposed in the past, such as the directional coupler-based approach, the Y-junction-based devices and the MMI-based approach. In the present paper a novel MMI-based 3dB THz wave splitter is implemented using Gold/polystyrene (PS) coated hollow glass rectangular waveguides. The H-field FEM based full-vector formulation is used here to calculate the complex propagation characteristics of the waveguide structure and the finite element beam propagation method (FE-BPM) and finite difference time domain (FDTD) approach to demonstrate the performance of the proposed 3dB splitter.

  6. THz wavefront manipulation based on metal waveguides

    NASA Astrophysics Data System (ADS)

    Wu, Mengru; Lang, Tingting; Shen, Changyu; Shi, Guohua; Han, Zhanghua

    2018-07-01

    In this paper, two waveguiding structures for arbitrary wavefront manipulation in the terahertz spectral region were proposed, designed and characterized. The first structure consists of parallel stack copper plates forming an array of parallel-plate waveguides (PPWGs). The second structure is three-dimensional metal rectangular waveguides array. The phase delay of the input wave after passing through the waveguide array is mainly determined by the effective index of the waveguides. Therefore, the waveguide array can be engineered using different core width distribution to generate any desired light beam. Examples, working at the frequency of 0.3 THz show that good focusing phenomenon with different focus lengths and spot sizes were observed, as well as arbitrarily tilted propagation of incident plane waves. The structure introduces a new method to perform wavefront manipulation, and can be utilized in many important applications in terahertz imaging and communication systems.

  7. Retrospective Comparison of Single-Port Sleeve Gastrectomy Versus Three-Port Laparoscopic Sleeve Gastrectomy: a Propensity Score Adjustment Analysis.

    PubMed

    Mauriello, Claudio; Chouillard, Elie; d'alessandro, Antonio; Marte, Gianpaolo; Papadimitriou, Argyri; Chahine, Elias; Kassir, Radwan

    2018-04-16

    Evaluate the efficacy of single-port sleeve gastrectomy (SPSG) and then compare it to a less-invasive sleeve approach (three-port) (3PSG) according to a propensity score (PS) matching analysis. We analyzed all patients who underwent SG through a three-port or a single-port laparoscopic approach. After 2 years, the follow-up was completed in 84% patients treated with 3PSG and 95% patients of the SPSG group. Excess weight loss (EWL) was comparable for the first year of follow-up within the two groups except for the controls at 3 months in which the SPSG group showed a higher EWL (p = 0.0243). We demonstrated the efficacy of SPSG in bariatric surgery even compared to another, less invasive, laparoscopic SG approach (three-port).

  8. Analysis of three-dimensional-cavity-backed aperture antennas using a Combined Finite Element Method/Method of Moments/Geometrical Theory of Diffraction technique

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.

    1995-01-01

    A combined finite element method (FEM) and method of moments (MoM) technique is presented to analyze the radiation characteristics of a cavity-fed aperture in three dimensions. Generalized feed modeling has been done using the modal expansion of fields in the feed structure. Numerical results for some feeding structures such as a rectangular waveguide, circular waveguide, and coaxial line are presented. The method also uses the geometrical theory of diffraction (GTD) to predict the effect of a finite ground plane on radiation characteristics. Input admittance calculations for open radiating structures such as a rectangular waveguide, a circular waveguide, and a coaxial line are shown. Numerical data for a coaxial-fed cavity with finite ground plane are verified with experimental data.

  9. Digitally controlled distributed phase shifter

    DOEpatents

    Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.

    1993-08-17

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  10. Digitally controlled distributed phase shifter

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1993-01-01

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  11. Nanoscale devices based on plasmonic coaxial waveguide resonators

    NASA Astrophysics Data System (ADS)

    Mahigir, A.; Dastmalchi, P.; Shin, W.; Fan, S.; Veronis, G.

    2015-02-01

    Waveguide-resonator systems are particularly useful for the development of several integrated photonic devices, such as tunable filters, optical switches, channel drop filters, reflectors, and impedance matching elements. In this paper, we introduce nanoscale devices based on plasmonic coaxial waveguide resonators. In particular, we investigate threedimensional nanostructures consisting of plasmonic coaxial stub resonators side-coupled to a plasmonic coaxial waveguide. We use coaxial waveguides with square cross sections, which can be fabricated using lithography-based techniques. The waveguides are placed on top of a silicon substrate, and the space between inner and outer coaxial metals is filled with silica. We use silver as the metal. We investigate structures consisting of a single plasmonic coaxial resonator, which is terminated either in a short or an open circuit, side-coupled to a coaxial waveguide. We show that the incident waveguide mode is almost completely reflected on resonance, while far from the resonance the waveguide mode is almost completely transmitted. We also show that the properties of the waveguide systems can be accurately described using a single-mode scattering matrix theory. The transmission and reflection coefficients at waveguide junctions are either calculated using the concept of the characteristic impedance or are directly numerically extracted using full-wave three-dimensional finite-difference frequency-domain simulations.

  12. DDN (Defense Data Network) Protocol Implementations and Vendors Guide,

    DTIC Science & Technology

    1988-02-01

    TELNET) TCP/IP on an ethernet network. The program simulates a Hayes modem through the serial port. BWFTP is a thorough implementation of the FTP...25 IMP interface at VV from 19.2 Kbps to 56K bps. The IP, ICMP, TCP, Telnet. FFP and SMTP protocols are implemented along with R-Utxities...WANs. microcomputers, dataswitches. minicomputers. "black boxes" and modems . DOCUMENTATION: Software System Overview, Generic X.25 Porting Guide

  13. A network thermodynamic two-port element to represent the coupled flow of salt and current. Improved alternative for the equivalent circuit.

    PubMed Central

    Mikulecky, D C

    1979-01-01

    A two-port for coupled salt and current flow is created by using the network thermodynamic approach in the same manner as that for coupled solute and volume flow (Mikulecky et al., 1977b; Mikulecky, 1977). This electrochemical two-port has distinct advantages over the equivalent circuit representation and overcomes difficulties pointed out by Finkelstein and Mauro (1963). The electrochemical two-port is used to produce a schematic diagram of the coupled flows through a tissue. The network is superimposable on the tissue morphology and preserves the physical qualities of the flows and forces in each part of an organized structure (e.g., an epithelium). The topological properties are manipulated independently from the constitutive (flow-force) relations. The constitutive relations are chosen from a number of alternatives depending on the detail and rigor desired. With the topology and constitutive parameters specified, the steady-state behavior is simulated with a network simulation program. By using capacitance to represent the filling and depletion of compartments, as well as the traditional electrical capacitances, time-dependent behavior is also simulated. Nonlinear effects arising from the integration of equations describing local behavior (e.g., the Nernst-Planck equations) are dealt with explicitly. The network thermodynamic approach provides a simple, straightforward method for representing a system diagrammatically and then simulating the system's behavior from the diagram with a minimum of mathematical manipulation. PMID:262391

  14. Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode.

    PubMed

    Kim, Guk-Hyun; Lee, Yong-Hee; Shinya, Akihiko; Notomi, Masaya

    2004-12-27

    Coupling characteristics between the single-cell hexapole mode and the triangular-lattice photonic crystal slab waveguide mode is studied by the finite-difference time-domain method. The single-cell hexapole mode has a high quality factor (Q) of 3.3Chi106 and a small modal volume of 1.18(lambda/n)3. Based on the symmetry, three representative types of coupling geometries (shoulder-couple, butt-couple and side-couple structures) are selected and tested. The coupling efficiency shows strong dependence on the transverse overlap of the cavity mode and the waveguide mode over the region of the waveguide. The shoulder-couple structure shows best coupling characteristics among three tested structures. For example, two shouldercouple waveguides and a hexapole cavity result in a high performance resonant-tunneling-filter with Q of 9.7Chi105 and transmittance of 0.48. In the side-couple structure, the coupling strength is much weaker than that of the shoulder-couple structure because of the poor spatial overlap between the mode profiles. In the direct-couple structure, the energy transfer from the cavity to the waveguide is prohibited because of the symmetry mismatch and no coupling is observed.

  15. New coplanar waveguide feed network for 2 x 2 linearly tapered slot antenna subarray

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Perl, Thomas D.; Lee, Richard Q.

    1992-01-01

    A novel feed method is presently demonstrated for a 2 x 2 linearly tapered slot antenna (LTSA) on the basis of a coplanar-waveguide (CPW)-to-slotline transition and a coax-to-CPW in-phase, four-way power divider. The LTSA subarray exhibits excellent radiation patterns and return-loss characteristics at 18 GHz, and has symmetric beamwidth; its compactness renders it applicable as either a feed for a reflector antenna or as a building-block for large arrays.

  16. Testing Fixture For Microwave Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert; Shalkhauser, Kurt

    1989-01-01

    Testing fixture facilitates radio-frequency characterization of microwave and millimeter-wave integrated circuits. Includes base onto which two cosine-tapered ridge waveguide-to-microstrip transitions fastened. Length and profile of taper determined analytically to provide maximum bandwidth and minimum insertion loss. Each cosine taper provides transformation from high impedance of waveguide to characteristic impedance of microstrip. Used in conjunction with automatic network analyzer to provide user with deembedded scattering parameters of device under test. Operates from 26.5 to 40.0 GHz, but operation extends to much higher frequencies.

  17. Laser printed glass planar lightwave circuits with integrated fiber alignment structures

    NASA Astrophysics Data System (ADS)

    Desmet, A.; Radosavljevic, A.; Missinne, J.; Van Thourhout, D.; Van Steenberge, G.

    2018-02-01

    Femtosecond laser inscription allows straightforward manufacturing of glass planar lightwave circuits such as waveguides, interferometers, directional couplers, resonators and more complex structures. Fiber alignment structures are needed to facilitate communication with the glass planar lightwave circuit. In this study, a technique is described to create optical waveguides and alignment structures in the same laser exposure step. Using an industrial ytterbium-doped 1030 nm fiber laser pulses of 400 fs were focused into glass with a 0.4 NA objective causing permanent alteration of the material. Depending on laser parameters this modification allows direct writing of waveguides or the creation of channels after exposing the irradiated volumes to an etchant such as KOH. Writing of channels and waveguides with different laser powers, frequencies, polarisations, stage translation speeds and scan densities were investigated in fused silica and borosilicate glass. Waveguides with controlled dimensions were created, as well as etched U-grooves with a diameter of 126 μm and a sidewall roughness Ra of 255 nm. Cut back measurements were performed giving a waveguide propagation loss of 1.1 dB/cm in borosilicate glass. A coupling loss of 0.7 dB was measured for a transition between the waveguide and standard single mode fiber at 1550 nm, using index matching liquid. The described technique eliminates active alignment requirements and is useful for many applications such as microfluidic sensing, PLCs, fan-out connectors for multicore fibers and quantum optical networks.

  18. Influence of disorder on electromagnetically induced transparency in chiral waveguide quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Mirza, Imran M.; Schotland, John C.

    2018-05-01

    We study single photon transport in a one-dimensional disordered lattice of three-level atoms coupled to an optical waveguide. In particular, we study atoms of \\Lambda-type that are capable of exhibiting electromagnetically induced transparency (EIT) and separately consider disorder in the atomic positions and transition frequencies. We mainly address the question of how preferential emission into waveguide modes (chirality) can influence the formation of spatially localized states. Our work has relevance to experimental studies of cold atoms coupled to nanoscale waveguides and has possible applications to quantum communications.

  19. Intracorporeal hybrid single port vs conventional laparoscopic appendectomy in children.

    PubMed

    Karam, Paul Anthony; Hiuser, Amy; Magnuson, David; Seifarth, Federico Gian Filippo

    2016-12-20

    Transumbilical laparoscopic assisted appendectomy combines laparoscopic single port dissection with open appendectomy after exteriorization of the appendix through the port site. Compared to the conventional three-port approach, this technique provides an alternative with excellent cosmetic outcome. We developed a safe and effective technique to perform an intracorporeal single port appendectomy, using the same laparoscope employed in the extracorporeal procedure. Retrospective review of 71 consecutively performed intracorporeal single port appendectomies and 30 conventional three-port appendectomies in children 6 to 17 years of age. A straight 10-mm Storz telescope with inbuilt 6 mm working channel is used to dissect the appendix, combined with one port-less 2.3 mm percutaneous grasper. Polymer WECK® hem-o-lock® clips are applied to seal the base of the appendix and the appendiceal vessels. No intraoperative complications were reported with the hybrid intracorporeal single port appendectomy or three-port appendectomy. There were two post-operative complications in the group treated with the single port hybrid technique: one intra-abdominal abscess and one surgical site infection. Groups did not differ in age, weight, and types of appendicitis. Operative times were shorter for the hybrid technique (70 vs 79 minutes) but did not differ significantly (P=0.19). This modified technique to a previously described single port extracorporeal appendectomy is easy to master and implement. It provides exposure similar to a three-port laparoscopic appendectomy, while maintaining virtually scarless results and potentially reduces the risk for surgical site infections compared to the extracorporeal technique.

  20. Polarization-dependent plasmonic splitter based on low-loss polymer optical materials

    NASA Astrophysics Data System (ADS)

    Qian, Guang; Fu, Xing-Chang; Zhang, Li-Jiang; Liu, Yi-Ran; Zhao, Ning; Zhang, Tong

    2018-01-01

    A polarization-dependent optical beam splitter consisting of a straight long-range surface plasmon polariton (LRSPP) waveguide and an S-bend polymer waveguide was designed, fabricated and measured in this paper. At the splitting section, the two different waveguides are vertically coupled. The measurenment results show that the splitter operated in dual-channel mode at TM polarization, and single-channel mode at TE polarization. In addition, the polymer waveguide and LRSPP waveguide in the splitter exhibit low propagation loss of 0.51 dB/cm and 1.7 dB/cm, respectively. The hybrid beam splitter has wide potential applications in three dimensional (3D) multilayer photonic integrated circuits (PICs).

  1. Midterm outcomes of single port thoracoscopic surgery for major pulmonary resection

    PubMed Central

    2017-01-01

    Introduction Single-port thoracoscopic surgery has widened the current minimally invasive surgical techniques toward more less invasive procedures in terms of reducing the number of incisions. However, the current status of oncologic outcome with this technique is not well known for lung cancer surgery. The purpose of this study is to evaluate the oncologic outcomes in early stage lung cancer for impact of the survival outcomes with our experience of conversion to a single-port approach from the conventional three-port approach. Materials and methods Retrospective data of patients who underwent thoracoscopic major lung resection for non-small cell lung cancer between January 2006 and June 2015 were analyzed. Patients’ characteristics, perioperative outcomes, pathologic result, and postoperative follow-up data of thoracoscopic surgery were reviewed and surgical outcomes were compared between conventional three-port (n = 168), two-port (n = 68), and single-port thoracoscopic surgery (n = 203). Results Of the 203 single-port thoracoscopic surgeries, we performed 167 single-port thoracoscopic lobectomy and mediastinal lymph node dissections. During the learning period of each thoracoscopic approach, the mean operation time for single-port thoracoscopic surgery (189±62 min) was not significantly different from those of two-port (175±46 min) and three-port (195±75 min) thoracoscopic lobectomy (p = 0.165). Perioperative outcomes including drain indwelling time (p <0.001), complication (p = 0.185) and conversion event (p = 0.911) were not worsened during learning period with two-port. Midterm survival (p = 0.753) and recurrence free survival (p = 0.656) of single port thoracoscopic lobectomy showed acceptable results compared with two- and three-port approach. Conclusions Single-port thoracoscopic surgery is safe and a feasible option for major lung resection in lung malignancy and this approach following experiences of two-port approach may yield similar oncologic results to those of conventional multi-port approach during thoracoscopic lobectomy. PMID:29136038

  2. Source localization in an ocean waveguide using supervised machine learning.

    PubMed

    Niu, Haiqiang; Reeves, Emma; Gerstoft, Peter

    2017-09-01

    Source localization in ocean acoustics is posed as a machine learning problem in which data-driven methods learn source ranges directly from observed acoustic data. The pressure received by a vertical linear array is preprocessed by constructing a normalized sample covariance matrix and used as the input for three machine learning methods: feed-forward neural networks (FNN), support vector machines (SVM), and random forests (RF). The range estimation problem is solved both as a classification problem and as a regression problem by these three machine learning algorithms. The results of range estimation for the Noise09 experiment are compared for FNN, SVM, RF, and conventional matched-field processing and demonstrate the potential of machine learning for underwater source localization.

  3. Integrated-Optic Wavelength Multiplexer In Glass Fabricated By A Charge Controlled Ion Exchange

    NASA Astrophysics Data System (ADS)

    Klein, R.; Jestel, D.; Lilienhof, H. J.; Rottman, F.; Voges, E.

    1989-02-01

    Integrated-optic wavelength division multiplexing (WDM) is commonly used in communication systems. These WDM-devices are also well suited to build up optical fiber networks for both intensity and interferometric sensor types. The operation principle of our wavelength division multiplexing devise is based on the wavelength dependent two-mode interference in a two-moded waveguide, which is coupled adiabatically to the single-mode input and output strip waveguides. The single-mode input and output waveguides are connected via two Y-branches ( "'kJ- 1° branching angle ) with a two-moded intersection region. The ratio of the light powers in the single-mode output waveguides depends on wavelength . The two-mode interference within the two-moded center waveguide leads to an almost wavelength periodic transmission caracteristic . Dual-channel multiplexers/demultiplexers were fabricated by a charge controlled field assisted pottasium exchange in B-270 glass (Desag). The devices have a typical channel separation of 30 - 40 nm and a far-end crosstalk attenuation of better than 16 dB. The operation wavelength regions of the fabricated devices are 0.6 - 0.8 µm and 1.3 - 1.6 µm, respectively.

  4. Ultrastrong extraordinary transmission and reflection in PT-symmetric Thue-Morse optical waveguide networks.

    PubMed

    Wu, Jiaye; Yang, Xiangbo

    2017-10-30

    In this paper, we construct a 1D PT-symmetric Thue-Morse aperiodic optical waveguide network (PTSTMAOWN) and mainly investigate the ultrastrong extraordinary transmission and reflection. We propose an approach to study the photonic modes and solve the problem of calculating photonic modes distributions in aperiodic networks due to the lack of dispersion functions and find that in a PTSTMAOWN there exist more photonic modes and more spontaneous PT-symmetric breaking points, which are quite different from other reported PT-symmetric optical systems. Additionally, we develop a method to sort spontaneous PT-symmetric breaking point zones to seek the strongest extraordinary point and obtain that at this point the strongest extraordinary transmission and reflection arrive at 2.96316 × 10 5 and 1.32761 × 10 5 , respectively, due to the PT-symmetric coupling resonance and the special symmetry pattern of TM networks. These enormous gains are several orders of magnitude larger than the previous results. This optical system may possess potential in designing optical amplifier, optical logic elements in photon computers and ultrasensitive optical switches with ultrahigh monochromatity.

  5. Improved optical efficiency of bulk laser amplifiers with femtosecond written waveguides

    NASA Astrophysics Data System (ADS)

    Bukharin, Mikhail A.; Lyashedko, Andrey; Skryabin, Nikolay N.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.

    2016-04-01

    In the paper we proposed improved technique of three-dimensional waveguides writing with direct femtosecond laser inscription technology. The technique allows, for the first time of our knowledge, production of waveguides with mode field diameter larger than 200 μm. This result broadens field of application of femtosecond writing technology into bulk laser schemes and creates an opportunity to develop novel amplifiers with increased efficiency. We proposed a novel architecture of laser amplifier that combines free-space propagation of signal beam with low divergence and propagation of pump irradiation inside femtosecond written waveguide with large mode field diameter due to total internal reflection effect. Such scheme provides constant tight confinement of pump irradiation over the full length of active laser element (3-10 cm). The novel amplifier architecture was investigated numerically and experimentally in Nd:phosphate glass. Waveguides with 200 μm mode field diameter were written with high frequency femtosecond oscillator. Proposed technique of three-dimensional waveguides writing based on decreasing and compensation of spherical aberration effect due to writing in heat cumulative regime and dynamic pulse energy adjustment at different depths of writing. It was shown, that written waveguides could increase optical efficiency of amplifier up to 4 times compared with corresponding usual free-space schemes. Novelty of the results consists in technique of femtosecond writing of waveguides with large mode field diameter. Actuality of the results consists in originally proposed architecture allows to improve up to 4 times optical efficiency of conventional bulk laser schemes and especially ultrafast pulse laser amplifiers.

  6. Simulation model for port shunting yards

    NASA Astrophysics Data System (ADS)

    Rusca, A.; Popa, M.; Rosca, E.; Rosca, M.; Dragu, V.; Rusca, F.

    2016-08-01

    Sea ports are important nodes in the supply chain, joining two high capacity transport modes: rail and maritime transport. The huge cargo flows transiting port requires high capacity construction and installation such as berths, large capacity cranes, respectively shunting yards. However, the port shunting yards specificity raises several problems such as: limited access since these are terminus stations for rail network, the in-output of large transit flows of cargo relatively to the scarcity of the departure/arrival of a ship, as well as limited land availability for implementing solutions to serve these flows. It is necessary to identify technological solutions that lead to an answer to these problems. The paper proposed a simulation model developed with ARENA computer simulation software suitable for shunting yards which serve sea ports with access to the rail network. Are investigates the principal aspects of shunting yards and adequate measures to increase their transit capacity. The operation capacity for shunting yards sub-system is assessed taking in consideration the required operating standards and the measure of performance (e.g. waiting time for freight wagons, number of railway line in station, storage area, etc.) of the railway station are computed. The conclusion and results, drawn from simulation, help transports and logistics specialists to test the proposals for improving the port management.

  7. Double mushroom 1.55-μm waveguide photodetectors for integrated E-band (60-90 GHz) wireless transmitter modules

    NASA Astrophysics Data System (ADS)

    Rymanov, Vitaly; Tekin, Tolga; Stöhr, Andreas

    2012-03-01

    High data rate photonic wireless systems operating at millimeter wave carrier frequencies are considered as a disruptive technology e.g. for reach extension in optical access networks and for mobile backhauling. Recently, we demonstrated 60 GHz photonic wireless systems with record data rates up to 27 Gbit/s. Because of the oxygen absorption at 60 GHz, it is beneficial for fixed wireless systems with spans exceeding 1 km to operate at even higher frequencies. Here, the recently regulated 10 GHz bandwidth within the E-band (60-90 GHz) is of particular interest, covering the 71-76 GHz and 81-86 GHz allocations for multi-gigabit wireless transmission. For this purpose, wideband waveguide photodetectors with high external quantum efficiency are required. Here, we report on double mushroom 1.55 μm waveguide photodetectors for integration in an E-band wireless transmitter module. The developed photodetector consists of a partially p-doped, partly non-intentionally doped absorbing layer centered in a mushroom-type optical waveguide, overcoming the compromise between the junction capacitance and the series resistance. For efficient fiber-chip coupling, a second mushroom-type passive optical waveguide is used. In contrast to the conventional shallow ridge waveguide approach, the mushroom-type passive waveguide allows to shift the center of the optical mode further away from the top surface, thus reducing waveguide losses due to the surface roughness. Experimentally, a very flat frequency response with a deviation up to +/-1 dB in the entire E-band has been found together with an output power level of -15.7 dBm at 10 mA photocurrent and at a frequency of 73 GHz.

  8. An uncertainty budget for VHF and UHF reflectometers

    NASA Astrophysics Data System (ADS)

    Ridler, N. M.; Medley, C. J.

    1992-05-01

    Details of the derivation of an uncertainty budget for one port immittance or complex voltage reflection coefficient measuring instruments, operating at VHF and UHF in the 14 mm 50 ohm coaxial line size, are reported. The principles of the uncertainty budget are given along with experimental results obtained using six ports and a network analyzer as the measuring instruments. Details of the types of calibration for which the uncertainty budget is suitable are reported. Various aspects of the uncertainty budget are considered and general principles and treatment of the type A and type B contributions are discussed. Experimental results obtained using the uncertainty budget are given. A summary of uncertainties for the six ports and HP8753B automatic network analyzer are also given.

  9. 16-channel arrayed waveguide grating (AWG) demultiplexer design on SOI wafer for application in CWDM-PON

    NASA Astrophysics Data System (ADS)

    Juhari, Nurjuliana; Menon, P. Susthitha; Ehsan, Abang Annuar; Shaari, Sahbudin

    2015-01-01

    Arrayed Waveguide Grating (AWG) functioning as a demultiplexer is designed on SOI platform with rib waveguide structure to be utilized in coarse wavelength division multiplexing-passive optical network (CWDM-PON) systems. Two design approaches; conventional and tapered configuration of AWG was developed with channel spacing of 20 nm that covers the standard transmission spectrum of CWDM ranging from 1311 nm to 1611 nm. The performance of insertion loss for tapered configuration offered the lowest insertion loss of 0.77 dB but the adjacent crosstalk gave non-significant relation for both designs. With average channel spacing of 20.4 nm, the nominal central wavelength of this design is close to the standard CWDM wavelength grid over 484 nm free spectrum range (FSR).

  10. Tutorial: Integrated-photonic switching structures

    NASA Astrophysics Data System (ADS)

    Soref, Richard

    2018-02-01

    Recent developments in waveguided 2 × 2 and N × M photonic switches are reviewed, including both broadband and narrowband resonant devices for the Si, InP, and AlN platforms. Practical actuation of switches by electro-optical and thermo-optical techniques is discussed. Present datacom-and-computing applications are reviewed, and potential applications are proposed for chip-scale photonic and optoelectronic integrated switching networks. Potential is found in the reconfigurable, programmable "mesh" switches that enable a promising group of applications in new areas beyond those in data centers and cloud servers. Many important matrix switches use gated semiconductor optical amplifiers. The family of broadband, directional-coupler 2 × 2 switches featuring two or three side-coupled waveguides deserves future experimentation, including devices that employ phase-change materials. The newer 2 × 2 resonant switches include standing-wave resonators, different from the micro-ring traveling-wave resonators. The resonant devices comprise nanobeam interferometers, complex-Bragg interferometers, and asymmetric contra-directional couplers. Although the fast, resonant devices offer ultralow switching energy, ˜1 fJ/bit, they have limitations. They require several trade-offs when deployed, but they do have practical application.

  11. Detection of Salmonella bacterium in drinking water using microring resonator.

    PubMed

    Bahadoran, Mahdi; Noorden, Ahmad Fakhrurrazi Ahmad; Mohajer, Faeze Sadat; Abd Mubin, Mohamad Helmi; Chaudhary, Kashif; Jalil, Muhammad Arif; Ali, Jalil; Yupapin, Preecha

    2016-01-01

    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.

  12. Design of optical seven-segment decoder using Pockel's effect inside lithium niobate-based waveguide

    NASA Astrophysics Data System (ADS)

    Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep

    2017-01-01

    Seven-segment decoder is a device that allows placing digital information from many inputs to many outputs optically, having 11 Mach-Zehnder interferometers (MZIs) for their implementation. The layout of the circuit is implemented to fit the electrical method on an optical logic circuit based on the beam propagation method (BPM). Seven-segment decoder is proposed using electro-optic effect inside lithium niobate-based MZIs. MZI structures are able to switch an optical signal to a desired output port. It consists of a mathematical explanation about the proposed device. The BPM is also used to analyze the study.

  13. The Talbot effect in a metamaterial

    NASA Astrophysics Data System (ADS)

    Nikkhah, H.; Hasan, M.; Hall, T. J.

    2018-02-01

    The effect of anisotropy and spatial dispersion of a metamaterial on the Talbot effect may be engineered in principle. This has profound implications for applications of the Talbot effect such as the design of a multimode interference coupler (MMI). The paper describes how a metamaterial can suppress the modal phase error which otherwise limits the scaling of MMI port dimension. A binary multilayer dielectric material described by the Kronig-Penney model is shown to provide a close approximation to the required dispersion relation. Results of simulations of a multi-slotted waveguide MMI engineered to provide a polarising beam splitter function are given as an example of the method.

  14. Research on SOI-based micro-resonator devices

    NASA Astrophysics Data System (ADS)

    Xiao, Xi; Xu, Haihua; Hu, Yingtao; Zhou, Liang; Xiong, Kang; Li, Zhiyong; Li, Yuntao; Fan, Zhongchao; Han, Weihua; Yu, Yude; Yu, Jinzhong

    2010-10-01

    SOI (silicon-on-insulator)-based micro-resonator is the key building block of silicon photonics, which is considered as a promising solution to alleviate the bandwidth bottleneck of on-chip interconnects. Silicon-based sub-micron waveguide, microring and microdisk devices are investigated in Institute of Semiconductors, Chinese Academy of Sciences. The main progress in recent years is presented in this talk, such as high Q factor single mode microdisk filters, compact thirdorder microring filters with the through/drop port extinctions to be ~ 30/40 dB, fast microring electro-optical switches with the switch time of < 400 ps and crosstalk < -23 dB, and > 10 Gbit/s high speed microring modulators.

  15. Tsunami hazard assessment at Port Alberni, BC, Canada: preliminary model results

    NASA Astrophysics Data System (ADS)

    Grilli, S. T.; Insua, T. L.; Grilli, A. R.; Douglas, K. L.; Shelby, M. R.; Wang, K.; Gao, D.

    2016-12-01

    Located in the heart of Vancouver Island, BC, Port Alberni has a well-known history of tsunamis. Many of the Nuu-Chah-Nulth First Nations share oral stories about a strong fight between a thunderbird and a whale that caused big waves in a winter night, a story that is compatible with the recently recognized great Cascadia tsunami in January, 1700. Port Alberni, with a total population of approximately 20,000 people, lies beside the Somass River, at the very end of Barkley Sound Inlet. The narrow canal connecting this town to the Pacific Ocean runs for more than 64 km ( 40 miles) between steep mountains, providing an ideal setting for the amplification of tsunami waves through funnelling effects. The devastating effects of tsunamis are still fresh in residents' memories from the impact of the 1964 Alaska tsunami that caused serious damage to the city. In June 2016, Emergency Management BC ran a coastal exercise in Port Alberni, simulating the response to an earthquake and a tsunami. During three days, the emergency teams in the City of Port Alberni practiced and learned from the experience. Ocean Networks Canada contributed to this exercise with the development of preliminary simulations of tsunami impact on the city from a buried rupture of the Cascadia Subduction Zone, including the Explorer segment. Wave propagation was simulated with the long-wave model FUNWAVE-TVD. Preliminary results indicate a strong amplification of tsunami waves in the Port Alberni area. The inundation zone in Port Alberni had a footprint similar to that of the 1700 Cascadia and 1964 Alaska tsunamis, inundating the area surrounding the Somass river and preferentially following the Kitsuksis and Roger Creek river margins into the city. Several other tsunami source scenarios, including splay faulting and trench-breaching ruptures are currently being modeled for the city of Port Alberni following a similar approach. These results will be presented at the conference.

  16. Wavelength selection by dielectric-loaded plasmonic components

    NASA Astrophysics Data System (ADS)

    Holmgaard, Tobias; Chen, Zhuo; Bozhevolnyi, Sergey I.; Markey, Laurent; Dereux, Alain; Krasavin, Alexey V.; Zayats, Anatoly V.

    2009-02-01

    Fabrication, characterization, and modeling of waveguide-ring resonators and in-line Bragg gratings for wavelength selection in the telecommunication range are reported utilizing dielectric-loaded surface plasmon-polariton waveguides. The devices were fabricated by depositing subwavelength-sized polymer ridges on a smooth gold film using industrially compatible large-scale UV photolithography. We demonstrate efficient and compact wavelength-selective filters, including waveguide-ring resonators with an insertion loss of ˜2 dB and a footprint of only 150 μm2 featuring narrow bandwidth (˜20 nm) and high contrast (˜13 dB) features in the transmission spectrum. The performance of the components is found in good agreement with the results obtained by full vectorial three-dimensional finite element simulations.

  17. Femtosecond-laser-written superficial cladding waveguides in Nd:CaF2 crystal

    NASA Astrophysics Data System (ADS)

    Li, Rang; Nie, Weijie; Lu, Qingming; Cheng, Chen; Shang, Zhen; Vázquez de Aldana, Javier R.; Chen, Feng

    2017-07-01

    We report on the superficial cladding waveguides fabricated by direct femtosecond laser writing in Nd: CaF2 crystal with three different groups of parameters. The lowest propagation loss of waveguides has been determined to be 0.7 dB/cm at wavelength of 632.8 nm along TE polarization. The near fundamental modal distributions have been imaged through the end-face coupling technique. The guidance of the waveguides is found to possess low sensitivity on polarization of the probe light. By using a confocal microscope system, the micro-photoluminescence mappings and micro-fluorescence spectra are also obtained, which indicates the photoluminescence features of the Nd3+ ions are well preserved in the waveguide cores after direct femtosecond laser writing.

  18. Validating Network Security Policies via Static Analysis of Router ACL Configuration

    DTIC Science & Technology

    2006-12-01

    this research effort. A. SOFTWARE IMPLEMENTATION The system software was created with Java, using NetBeans IDE 5.0 [12]. NetBeans is a free, open...11. P. Gupta, and N. McKeown (2001), Algorithms for Packet Classification, IEEE Network, vol. 15, issue 2, pp. 24-32. 12, NetBeans (2006), Welcome to... NetBeans , http://www.netbeans.org, last accessed on 25 November 2006. 13. IANA.org (2006), Port Numbers, http://www.iana.org/assignments/port

  19. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides.

    PubMed

    Verhagen, Ewold; de Waele, René; Kuipers, L; Polman, Albert

    2010-11-26

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.

  20. Effects in the network topology due to node aggregation: Empirical evidence from the domestic maritime transportation in Greece

    NASA Astrophysics Data System (ADS)

    Tsiotas, Dimitrios; Polyzos, Serafeim

    2018-02-01

    This article studies the topological consistency of spatial networks due to node aggregation, examining the changes captured between different network representations that result from nodes' grouping and they refer to the same socioeconomic system. The main purpose of this study is to evaluate what kind of topological information remains unalterable due to node aggregation and, further, to develop a framework for linking the data of an empirical network with data of its socioeconomic environment, when the latter are available for hierarchically higher levels of aggregation, in an effort to promote the interdisciplinary research in the field of complex network analysis. The research question is empirically tested on topological and socioeconomic data extracted from the Greek Maritime Network (GMN) that is modeled as a non-directed multilayer (bilayer) graph consisting of a port-layer, where nodes represent ports, and a prefecture-layer, where nodes represent coastal and insular prefectural groups of ports. The analysis highlights that the connectivity (degree) of the GMN is the most consistent aspect of this multilayer network, which preserves both the topological and the socioeconomic information through node aggregation. In terms of spatial analysis and regional science, such effects illustrate the effectiveness of the prefectural administrative division for the functionality of the Greek maritime transportation system. Overall, this approach proposes a methodological framework that can enjoy further applications about the grouping effects induced on the network topology, providing physical, technical, socioeconomic, strategic or political insights.

  1. Three-mode all-optical (de)multiplexing on a SOI chip

    NASA Astrophysics Data System (ADS)

    Le, Yan-Si; Wang, Zhi; Li, Zhi-Yong; Li, Ying; Li, Qiang; Cui, Can; Wu, Chong-Qing

    2018-01-01

    An on-chip three-mode division multiplexing circuit using a simple ADC-based TE0 & TE1 & TE2 (de)multiplexer is demonstrated to improve the link capacity of on-chip optical interconnects. The proposed (de)multiplexer does not contain any tapered waveguide which is different from the previous mode (de)multiplexer based on ADCs. Here, we choose multimode waveguide width first and then confirm corresponding width of the other two waveguides. Thus the bus waveguide without any tapers can not only reduce complexity of (de)multiplexer but also reduce difficulty of the fabrication. Our simulation results show that the hybrid multiplexer has relatively low loss and low crosstalk about -40 dB, -26.99 dB and -28.72 dB for each mode around 1550 nm with a width-variation w =± 25 nm. These properties make the proposed mode-(de)multiplexer suitable for application in high-capacity data transmission.

  2. Chemical-assisted femtosecond laser writing of lab-in-fibers.

    PubMed

    Haque, Moez; Lee, Kenneth K C; Ho, Stephen; Fernandes, Luís A; Herman, Peter R

    2014-10-07

    The lab-on-chip (LOC) platform has presented a powerful opportunity to improve functionalization, parallelization, and miniaturization on planar or multilevel geometries that has not been possible with fiber optic technology. A migration of such LOC devices into the optical fiber platform would therefore open the revolutionary prospect of creating novel lab-in-fiber (LIF) systems on the basis of an efficient optical transport highway for multifunctional sensing. For the LIF, the core optical waveguide inherently offers a facile means to interconnect numerous types of sensing elements along the optical fiber, presenting a radical opportunity for optimizing the packaging and densification of diverse components in convenient geometries beyond that available with conventional LOCs. In this paper, three-dimensional patterning inside the optical fiber by femtosecond laser writing, together with selective chemical etching, is presented as a powerful tool to form refractive index structures such as optical waveguides and gratings as well as to open buried microfluidic channels and optical resonators inside the flexible and robust glass fiber. In this approach, optically smooth surfaces (~12 nm rms) are introduced for the first time inside the fiber cladding that precisely conform to planar nanograting structures when formed by aberration-free focusing with an oil-immersion lens across the cylindrical fiber wall. This process has enabled optofluidic components to be precisely embedded within the fiber to be probed by either the single-mode fiber core waveguide or the laser-formed optical circuits. We establish cladding waveguides, X-couplers, fiber Bragg gratings, microholes, mirrors, optofluidic resonators, and microfluidic reservoirs that define the building blocks for facile interconnection of inline core-waveguide devices with cladding optofluidics. With these components, more advanced, integrated, and multiplexed fiber microsystems are presented demonstrating fluorescence detection, Fabry-Perot interferometric refractometry, and simultaneous sensing of refractive index, temperature, and bending strain. The flexible writing technique and multiplexed sensors described here open powerful prospects to migrate the benefits of LOCs into a more flexible and miniature LIF platform for highly functional and distributed sensing capabilities. The waveguide backbone of the LIF inherently provides an efficient exchange of information, combining sensing data that are attractive in telecom networks, smart catheters for medical procedures, compact sensors for security and defense, shape sensors, and low-cost health care products.

  3. Integrated polymer polarization rotator based on tilted laser ablation

    NASA Astrophysics Data System (ADS)

    Poulopoulos, Giannis; Kalavrouziotis, Dimitrios; Missinne, Jeroen; Bosman, Erwin; Van Steenberge, Geert; Apostolopoulos, Dimitrios; Avramopoulos, Hercules

    2017-02-01

    The ubiquitous need for compact, low-cost and mass production photonic devices, for next generation photonic enabled applications, necessitates the development of integrated components exhibiting functionalities that are, to date, carried out by free space elements or standard fiber equipment. The polarization rotator is a typical example of such tendency, as it is a crucial part of the PBS operation of future transceiver modules that leverage polarization multiplexing schemes for increasing the optical network capacity. Up to now, a variety of integrated polarization rotating concepts has been proposed and reported, relying, mainly, on special waveguide crossection configurations for achieving the rotation. Nevertheless, most of those concepts employ SiPh or III-V integration platforms, significantly increasing the fabrication complexity required for customizing the waveguide crossection, which in turn leads to either prohibitively increased cost or compromised quality and performance. In this manuscript we demonstrate the extensive design of a low-cost integrated polymer polarization rotator employing a right-trapezoidal waveguide interfaced to standard square polymer waveguides. First the crossection of the waveguide is defined by calculating and analyzing the components of the hybrid modes excited in the waveguide structure, using a Finite Difference mode solver. Mode overlaps between the fundamental polymer mode and each hybrid mode reveal the optimum lateral offset between the square polymer and the trapezoidal waveguide that ensures both minimum interface loss and maximized polarization rotation performance. The required trapezoidal waveguide length is obtained through EigenMode Expansion (EME) propagation simulations, while more than 95% maximum theoretical conversion efficiency is reported over the entire C-band, resulting to more than 13dB polarization extinction ratio. The polarization rotator design relies on the development of angled polymer waveguide sidewalls, employing the tilted laser ablation technology, currently available at CMST. Therefore, the aforementioned simulation steps adhere fully to the respective design rules, taking into account the anticipated fabrication variations

  4. Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers

    NASA Astrophysics Data System (ADS)

    Xu, Lin; Chen, Xia; Li, Chao; Tsang, Hon Ki

    2011-04-01

    We propose and demonstrate a bi-wavelength two dimensional (2D) waveguide grating coupler on silicon-on-insulator which has efficient coupling of optical light with two-wavelength bands independently between standard optical single mode fibers and nanophotonic waveguides. The details of design are described and the measurement results as well as system performance are experimentally characterized. The bi-wavelength grating coupler can be used as wavelength-division-multiplexing (WDM) splitter/combiner for monolithically silicon integrated transceivers, potentially meeting the low cost requirements for future WDM passive optical network (PON).

  5. Multi-Step Ka/Ka Dichroic Plate with Rounded Corners for NASA's 34m Beam Waveguide Antenna

    NASA Technical Reports Server (NTRS)

    Veruttipong, Watt; Khayatian, Behrouz; Hoppe, Daniel; Long, Ezra

    2013-01-01

    A multi-step Ka/Ka dichroic plate Frequency Selective Surface (FSS structure) is designed, manufactured and tested for use in NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antennas. The proposed design allows ease of manufacturing and ability to handle the increased transmit power (reflected off the FSS) of the DSN BWG antennas from 20kW to 100 kW. The dichroic is designed using HFSS and results agree well with measured data considering the manufacturing tolerances that could be achieved on the dichroic.

  6. Optimizing the G/T ratio of the DSS-13 34-meter beam-waveguide antenna

    NASA Technical Reports Server (NTRS)

    Esquivel, M. S.

    1992-01-01

    Calculations using Physical Optics computer software were done to optimize the gain-to-noise-temperature (G/T) ratio of Deep Space Station (DSS)-13, the Deep Space Network's (DSN's) 34-m beam-waveguide antenna, at X-band for operation with the ultra-low-noise amplifier maser system. A better G/T value was obtained by using a 24.2-dB far-field-gain smooth-wall dual-mode horn than by using the standard X-band 22.5-dB-gain corrugated horn.

  7. A novel protection scheme for a hybrid WDM/TDM PON

    NASA Astrophysics Data System (ADS)

    Chen, Jiajia; Wosinska, Lena; He, Sailing

    2007-11-01

    This paper proposes a novel protection scheme based on the cyclic property of an array waveguide grating (AWG) and neighboring connection pattern between two adjacent optical network units (ONUs) for the hybrid WDM/TDM passive optical networks (PONs). Our scheme uses 50% fewer wavelengths while offering one order of magnitude better connection availability than the existing scheme.

  8. Using the ACR/NEMA standard with TCP/IP and Ethernet

    NASA Astrophysics Data System (ADS)

    Chimiak, William J.; Williams, Rodney C.

    1991-07-01

    There is a need for a consolidated picture archival and communications system (PACS) in hospitals. At the Bowman Gray School of Medicine of Wake Forest University (BGSM), the authors are enhancing the ACR/NEMA Version 2 protocol using UNIX sockets and TCP/IP to greatly improve connectivity. Initially, nuclear medicine studies using gamma cameras are to be sent to PACS. The ACR/NEMA Version 2 protocol provides the functionality of the upper three layers of the open system interconnection (OSI) model in this implementation. The images, imaging equipment information, and patient information are then sent in ACR/NEMA format to a software socket. From there it is handed to the TCP/IP protocol, which provides the transport and network service. TCP/IP, in turn, uses the services of IEEE 802.3 (Ethernet) to complete the connectivity. The advantage of this implementation is threefold: (1) Only one I/O port is consumed by numerous nuclear medicine cameras, instead of a physical port for each camera. (2) Standard protocols are used which maximize interoperability with ACR/NEMA compliant PACSs. (3) The use of sockets allows a migration path to the transport and networking services of OSIs TP4 and connectionless network service as well as the high-performance protocol being considered by the American National Standards Institute (ANSI) and the International Standards Organization (ISO) -- the Xpress Transfer Protocol (XTP). The use of sockets also gives access to ANSI's Fiber Distributed Data Interface (FDDI) as well as other high-speed network standards.

  9. A black carbon air quality network

    NASA Astrophysics Data System (ADS)

    Kirchstetter, T.; Caubel, J.; Cados, T.; Preble, C.; Rosen, A.

    2016-12-01

    We developed a portable, power efficient black carbon sensor for deployment in an air quality network in West Oakland, California. West Oakland is a San Francisco Bay Area residential/industrial community adjacent to regional port and rail yard facilities, and is surrounded by major freeways. As such, the community is affected by diesel particulate matter emissions from heavy-duty diesel trucks, locomotives, and ships associated with freight movement. In partnership with Environmental Defense Fund, the Bay Area Air Quality Management District, and the West Oakland Environmental Indicators Project, we are collaborating with community members to build and operate a 100-sensor black carbon measurement network for a period of several months. The sensor employs the filter-based light transmission method to measure black carbon. Each sensor node in the network transmits data hourly via SMS text messages. Cost, power consumption, and performance are considered in choosing components (e.g., pump) and operating conditions (e.g., sample flow rate). In field evaluation trials over several weeks at three monitoring locations, the sensor nodes provided black carbon concentrations comparable to commercial instruments and ran autonomously for a week before sample filters and rechargeable batteries needed to be replaced. Buildup to the 100-sensor network is taking place during Fall 2016 and will overlap with other ongoing air monitoring projects and monitoring platforms in West Oakland. Sensors will be placed along commercial corridors, adjacent to freeways, upwind of and within the Port, and throughout the residential community. Spatial and temporal black carbon concentration patterns will help characterize pollution sources and demonstrate the value of sensing networks for characterizing intra-urban air pollution concentrations and exposure to air pollution.

  10. The Plurality of Harbors at Caesarea: The Southern Anchorage in Late Antiquity

    NASA Astrophysics Data System (ADS)

    Ratzlaff, Alexandra; Galili, Ehud; Waiman-Barak, Paula; Yasur-Landau, Assaf

    2017-08-01

    The engineering marvel of Sebastos, or Portus Augusti as it was called in Late Antiquity (284-638 CE), dominated Caesarea's harbor center along modern Israel's central coast but it was only one part of a larger maritime complex. The Southern Anchorage provides a case study as one portion of the Caesarea complex, as well as a node within the regional network of anchorages and small harbors. Ceramics recovered from here show a high percentage of locally, and provincially, produced storage jars engaged in maritime trade. The ceramic evidence points towards an intensified regional trade or cabotage rather than favouring long distance trade from large port to port. Working out of these small harbors, opportunities arose for greater flexibility in specialization of commodities and materials passing through the network of subsidiary ports, contributing to a more diversified market economy. This analysis provides another example in the growing focus on how these simple and semi-modified anchorages in the Eastern Mediterranean were often the predominant economic networks connecting hinterland and coastal trade.

  11. OAM-labeled free-space optical flow routing.

    PubMed

    Gao, Shecheng; Lei, Ting; Li, Yangjin; Yuan, Yangsheng; Xie, Zhenwei; Li, Zhaohui; Yuan, Xiaocong

    2016-09-19

    Space-division multiplexing allows unprecedented scaling of bandwidth density for optical communication. Routing spatial channels among transmission ports is critical for future scalable optical network, however, there is still no characteristic parameter to label the overlapped optical carriers. Here we propose a free-space optical flow routing (OFR) scheme by using optical orbital angular moment (OAM) states to label optical flows and simultaneously steer each flow according to their OAM states. With an OAM multiplexer and a reconfigurable OAM demultiplexer, massive individual optical flows can be routed to the demanded optical ports. In the routing process, the OAM beams act as data carriers at the same time their topological charges act as each carrier's labels. Using this scheme, we experimentally demonstrate switching, multicasting and filtering network functions by simultaneously steer 10 input optical flows on demand to 10 output ports. The demonstration of data-carrying OFR with nonreturn-to-zero signals shows that this process enables synchronous processing of massive spatial channels and flexible optical network.

  12. A three-dimensional wide-angle BPM for optical waveguide structures.

    PubMed

    Ma, Changbao; Van Keuren, Edward

    2007-01-22

    Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.

  13. Wiring up pre-characterized single-photon emitters by laser lithography

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Sontheimer, B.; Nikolay, N.; Schell, A. W.; Fischer, J.; Naber, A.; Benson, O.; Wegener, M.

    2016-08-01

    Future quantum optical chips will likely be hybrid in nature and include many single-photon emitters, waveguides, filters, as well as single-photon detectors. Here, we introduce a scalable optical localization-selection-lithography procedure for wiring up a large number of single-photon emitters via polymeric photonic wire bonds in three dimensions. First, we localize and characterize nitrogen vacancies in nanodiamonds inside a solid photoresist exhibiting low background fluorescence. Next, without intermediate steps and using the same optical instrument, we perform aligned three-dimensional laser lithography. As a proof of concept, we design, fabricate, and characterize three-dimensional functional waveguide elements on an optical chip. Each element consists of one single-photon emitter centered in a crossed-arc waveguide configuration, allowing for integrated optical excitation and efficient background suppression at the same time.

  14. A three-dimensional wide-angle BPM for optical waveguide structures

    NASA Astrophysics Data System (ADS)

    Ma, Changbao; van Keuren, Edward

    2007-01-01

    Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.

  15. Resonant photonic States in coupled heterostructure photonic crystal waveguides.

    PubMed

    Cox, Jd; Sabarinathan, J; Singh, Mr

    2010-02-09

    In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  16. Optical Forces on Non-Spherical Nanoparticles Trapped by Optical Waveguides

    NASA Astrophysics Data System (ADS)

    Hasan Ahmed, Dewan; Sung, Hyung Jin

    2011-07-01

    Numerical simulations of a solid-core polymer waveguide structure were performed to calculate the trapping efficiencies of particles with nanoscale dimensions smaller than the wavelength of the trapping beam. A three-dimensional (3-D) finite element method was employed to calculate the electromagnetic field. The inlet and outlet boundary conditions were obtained using an eigenvalue solver to determine the guided and evanescent mode profiles. The Maxwell stress tensor was considered for the calculation of the transverse and downward trapping efficiencies. A particle at the center of the waveguide showed minimal transverse trapping efficiency and maximal downward trapping efficiency. This trend gradually reversed as the particle moved away from the center of the waveguide. Particles with larger surface areas exhibited higher trapping efficiencies and tended to be trapped near the waveguide. Particles displaced from the wave input tended to be trapped at the waveguide surface. Simulation of an ellipsoidal particle showed that the orientation of the major axis along the waveguide's lateral z-coordinate significantly influenced the trapping efficiency. The particle dimensions along the z-coordinate were more critical than the gap distance (vertical displacement from the floor of the waveguide) between the ellipsoid particle and the waveguide. The present model was validated using the available results reported in the literature for different trapping efficiencies.

  17. Ultrafast laser inscription of 3D components for spatial multiplexing

    NASA Astrophysics Data System (ADS)

    Thomson, Robert R.

    2016-02-01

    The thirst for bandwidth in telecommunications networks is becoming ever larger due to bandwidth hungry applications such as video-on-demand. To further increase the bandwidth capacity, engineers are now seeking to imprint information on the last remaining degree of freedom of the lightwave carrier - space. This has given rise to the field of Space Division Multiplexing (SDM). In essence, the concept of SDM simple; we aim to use the different spatial modes of an optical fibre as multiplexed data transmission channels. These modes could either be in the form of separate singlemodes in a multicore optical fibre, individual spatial modes of a multimode fibre, or indeed the individual spatial modes of a multimode multicore optical fibre. Regardless of the particular "flavour" of SDM in question, it is clear that significant interfacing issues exist between the optical fibres used in SDM and the conventional single-mode planar lightwave circuits that are essential to process the light (e.g. arrayed waveguide gratings and splitters), and efficient interconnect technologies will be required. One fabrication technology that has emerged as a possible route to solve these interconnection issues is ultrafast laser inscription (ULI), which relies on the use of focused ultrashort laser pulses to directly inscribe three-dimensional waveguide structures inside a bulk dielectric. In this paper, I describe some of the work that has been conducted around the world to apply the unique waveguide fabrication capabilities of ULI to the development of 3D photonic components for applications in SDM.

  18. Single scan femtosecond laser transverse writing of depressed cladding waveguides enabled by three-dimensional focal field engineering.

    PubMed

    Zhang, Qian; Yang, Dong; Qi, Jia; Cheng, Ya; Gong, Qihuang; Li, Yan

    2017-06-12

    We report single scan transverse writing of depressed cladding waveguides inside ZBLAN glass with the longitudinally oriented annular ring-shaped focal intensity distribution of the femtosecond laser. The entire region of depressed cladding at the cross section, where a negative change of refraction index is induced, can be modified simultaneously with the ring-shaped focal intensity profile. The fabricated waveguides exhibit good single guided mode.

  19. Calibration Procedure for Measuring S-Parameters in Balun Applications on 150-ohm High-Speed Cables

    NASA Technical Reports Server (NTRS)

    Theofylaktos, Onoufrios; Warner, Joseph D.

    2012-01-01

    In the radiofrequency (RF) world, in order to characterize cables that do not conform to the typical 50-omega impedance, a time domain reflectometer (TDR) would probably be the simplest and quickest tool to attain this goal. In the real world, not every engineer has a TDR at their disposal; however, they most likely have a network analyzer available. Given a generic 50-omega vector network analyzer (VNA), we would like to make S-parameter measurements for non-50-omega devices (DUTs). For that, we utilize RF balanced/unbalanced transformers (called baluns for short), which are primarily used to match the impedance between the two VNA ports and the DUT's input and output ports, for the two-port S-parameter measurements.

  20. Universal method for constructing N-port non-blocking optical router based on 2 × 2 optical switch for photonic networks-on-chip.

    PubMed

    Chen, Qiaoshan; Zhang, Fanfan; Ji, Ruiqiang; Zhang, Lei; Yang, Lin

    2014-05-19

    We propose a universal method for constructing N-port non-blocking optical router for photonic networks-on-chip, in which all microring (MR) optical switches or Mach-Zehnder (M-Z) optical switches behave as 2 × 2 optical switches. The optical router constructed by the proposed method has minimum optical switches, in which the number of the optical switches is reduced about 50% compared to the reported optical routers based on MR optical switches and more than 30% compared to the reported optical routers based on M-Z optical switches, and therefore is more compact in footprint and more power-efficient. We also present a strict mathematical proof of the non-blocking routing of the proposed N-port optical router.

  1. Investigation of orifice aeroacoustics by means of multi-port methods

    NASA Astrophysics Data System (ADS)

    Sack, Stefan; Åbom, Mats

    2017-10-01

    Comprehensive methods to cascade active multi-ports, e.g., for acoustic network prediction, have until now only been available for plane waves. This paper presents procedures to combine multi-ports with an arbitrary number of considered duct modes. A multi-port method is used to extract complex mode amplitudes from experimental data of single and tandem in-duct orifice plates for Helmholtz numbers up to around 4 and, hence, beyond the cut-on of several higher order modes. The theory of connecting single multi-ports to linear cascades is derived for the passive properties (the scattering of the system) and the active properties (the source cross-spectrum matrix of the system). One scope of this paper is to investigate the influence of the hydrodynamic near field on the accuracy of both the passive and the active predictions in multi-port cascades. The scattering and the source cross-spectrum matrix of tandem orifice configurations is measured for three cases, namely, with a distance between the plates of 10 duct diameter, for which the downstream orifice is outside the jet of the upstream orifice, 4 duct diameter, and 2 duct diameter (both inside the jet). The results are compared with predictions from single orifice measurements. It is shown that the scattering is only sensitive to disturbed inflow in certain frequency ranges where coupling between the flow and sound field exists, whereas the source cross-spectrum matrix is very sensitive to disturbed inflow for all frequencies. An important part of the analysis is based on an eigenvalue analysis of the scattering matrix and the source cross-spectrum matrix to evaluate the potential of sound amplification and dominant source mechanisms.

  2. Slotted rectangular waveguide with dielectric sandwich structure inside

    NASA Astrophysics Data System (ADS)

    Abdullin, R. R.; Sokolov, R. I.

    2018-03-01

    This paper continues the series of works devoted to the investigation of leaky-wave antenna based on layered rectangular waveguide with periodic transverse slots in broad face. Previously developed wavenumber calculation technique has been adapted for analysis of slotted sandwich waveguide with three layers at least. The paper provides the numerical results of velocity factor dependencies for partially filled slotted rectangular waveguide containing a dielectric slab in the middle position inside or an air gap between two dielectric slabs. Additionally, dispersion properties are also considered for multilayer waveguide with linear laws combinations of thickness and permittivity. This allows recognizing the trends to develop new prospective antennas with complex patterns of tilt angle change. All numerical results obtained are confirmed with the in-situ measurements of transmission coefficient phase.

  3. Multifunction interferometry using the electron mobility visibility and mean free path relationship.

    PubMed

    Pornsuwancharoen, N; Youplao, P; Amiri, I S; Aziz, M S; Tran, Q L; Ali, J; Yupapin, P; Grattan, K T V

    2018-05-08

    A conventional Michelson interferometer is modified and used to form the various types of interferometers. The basic system consists of a conventional Michelson interferometer with silicon-graphene-gold embedded between layers on the ports. When light from the monochromatic source is input into the system via the input port (silicon waveguide), the change in optical path difference (OPD) of light traveling in the stacked layers introduces the change in the optical phase, which affects to the electron mean free path within the gold layer, induces the change in the overall electron mobility can be seen by the interferometer output visibility. Further plasmonic waves are introduced on the graphene thin film and the electron mobility occurred within the gold layer, in which the light-electron energy conversion in terms of the electron mobility can be observed, the gold layer length is 100 nm. The measurement resolution in terms of the OPD of ∼50 nm is achieved. In applications, the outputs of the drop port device of the modified Michelson interferometer can be arranged by the different detectors, where the polarized light outputs, the photon outputs, the electron spin outputs can be obtained by the interference fringe visibility, mobility visibility and the spin up-down splitting output energies. The modified Michelson interferometer theory and the detection schemes are given in details. © 2018 Wiley Periodicals, Inc.

  4. Dynamics of quantum correlation between separated nitrogen-vacancy centers embedded in plasmonic waveguide

    PubMed Central

    Yang, Wan-li; An, Jun-Hong; Zhang, Cheng-jie; Chen, Chang-yong; Oh, C. H.

    2015-01-01

    We investigate the dynamics of quantum correlation between two separated nitrogen vacancy centers (NVCs) placed near a one-dimensional plasmonic waveguide. As a common medium of the radiation field of NVCs propagating, the plasmonic waveguide can dynamically induce quantum correlation between the two NVCs. It is interesting to find that such dynamically induced quantum correlation can be preserved in the long-time steady state by locally applying individual driving on the two NVCs. In particular, we also show that a large degree of quantum correlation can be established by this scheme even when the distance between the NVCs is much larger than their operating wavelength. This feature may open new perspectives for devising active decoherence-immune solid-state optical devices and long-distance NVC-based quantum networks in the context of plasmonic quantum electrodynamics. PMID:26493045

  5. On-chip optical mode conversion based on dynamic grating in photonic-phononic hybrid waveguide

    PubMed Central

    Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang

    2015-01-01

    We present a scheme for reversible and tunable on-chip optical mode conversion based on dynamic grating in a hybrid photonic-phononic waveguide. The dynamic grating is built up through the acousto-optic effect and the theoretical model of the optical mode conversion is developed by considering the geometrical deformation and refractive index change. Three kinds of mode conversions are able to be realized using the same hybrid waveguide structure in a large bandwidth by only changing the launched acoustic frequency. The complete mode conversion can be achieved by choosing a proper acoustic power under a given waveguide length. PMID:25996236

  6. Dimension-sensitive optical responses of electromagnetically induced transparency vapor in a waveguide

    NASA Astrophysics Data System (ADS)

    Qi Shen, Jian; He, Sailing

    2006-12-01

    A three-level EIT (electromagnetically induced transparency) vapor is used to manipulate the transparency and absorption properties of the probe light in a waveguide. The most remarkable feature of the present scheme is such that the optical responses resulting from both electromagnetically induced transparency and large spontaneous emission enhancement are very sensitive to the frequency detunings of the probe light as well as to the small changes of the waveguide dimension. The potential applications of the dimension- and dispersion-sensitive EIT responses are discussed, and the sensitivity limits of some waveguide-based sensors, including electric absorption modulator, optical switch, wavelength sensor, and sensitive magnetometer, are analyzed.

  7. Geometrical representation of coherent tunneling process in two-waveguide and three-waveguide coupler

    NASA Astrophysics Data System (ADS)

    Shi, Jian; Ma, Rui-Qiong; Duan, Zuo-Liang; Liang, Meng; Chai, Bao-Yu; Dong, Jun

    2017-12-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11304247 and 61505161) and the Shaanxi Provincial Research Plan for Young Scientific and Technological New Stars, China (Grant No. 2015KJXX-40).

  8. Method and apparatus for powering an electrodeless lamp with reduced radio frequency interference

    DOEpatents

    Simpson, James E.

    1999-01-01

    An electrodeless lamp waveguide structure includes tuned absorbers for spurious RF signals. A lamp waveguide with an integral frequency selective attenuation includes resonant absorbers positioned within the waveguide to absorb spurious out-of-band RF energy. The absorbers have a negligible effect on energy at the selected frequency used to excite plasma in the lamp. In a first embodiment, one or more thin slabs of lossy magnetic material are affixed to the sidewalls of the waveguide at approximately one quarter wavelength of the spurious signal from an end wall of the waveguide. The positioning of the lossy material optimizes absorption of power from the spurious signal. In a second embodiment, one or more thin slabs of lossy magnetic material are used in conjunction with band rejection waveguide filter elements. In a third embodiment, one or more microstrip filter elements are tuned to the frequency of the spurious signal and positioned within the waveguide to couple and absorb the spurious signal's energy. All three embodiments absorb negligible energy at the selected frequency and so do not significantly diminish the energy efficiency of the lamp.

  9. Method and apparatus for powering an electrodeless lamp with reduced radio frequency interference

    DOEpatents

    Simpson, J.E.

    1999-06-08

    An electrodeless lamp waveguide structure includes tuned absorbers for spurious RF signals. A lamp waveguide with an integral frequency selective attenuation includes resonant absorbers positioned within the waveguide to absorb spurious out-of-band RF energy. The absorbers have a negligible effect on energy at the selected frequency used to excite plasma in the lamp. In a first embodiment, one or more thin slabs of lossy magnetic material are affixed to the sidewalls of the waveguide at approximately one quarter wavelength of the spurious signal from an end wall of the waveguide. The positioning of the lossy material optimizes absorption of power from the spurious signal. In a second embodiment, one or more thin slabs of lossy magnetic material are used in conjunction with band rejection waveguide filter elements. In a third embodiment, one or more microstrip filter elements are tuned to the frequency of the spurious signal and positioned within the waveguide to couple and absorb the spurious signal's energy. All three embodiments absorb negligible energy at the selected frequency and so do not significantly diminish the energy efficiency of the lamp. 18 figs.

  10. Optical waveguide loop for planar trapping of blood cells and microspheres

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Balpreet S.; Hellesø, Olav G.

    2013-09-01

    The evanescent field from a waveguide can be used to trap and propel a particle. An optical waveguide loop with an intentional gap at the center is used for planar transport and stable trapping of particles. The waveguide acts as a conveyor belt to trap and deliver spheres towards the gap. At the gap, the counter-diverging light fields hold the sphere at a fixed position. Numerical simulation based on the finite element method was performed in three dimensions using a computer cluster. The field distribution and optical forces for rib and strip waveguide designs are compared and discussed. The optical force on a single particle was computed for various positions of the particle in the gap. Simulation predicted stable trapping of particles in the gap. Depending on the gap separation (2-50 μm) a single or multiple spheres and red blood cells were trapped at the gap. Waveguides were made of tantalum pentaoxide material. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip.

  11. Electrification of the freight train network from the Ports of Los Angeles and Long Beach to the Inland Empire.

    DOT National Transportation Integrated Search

    2008-05-01

    The goal of this project was to evaluate the benefits of electrifying the freight railroads connecting the Ports of Los Angeles and Long Beach with the Inland Empire. These benefits include significant reduction in air pollution, and improvements in ...

  12. Framework for waveband switching in multigranular optical networks: part I-multigranular cross-connect architectures [Invited

    NASA Astrophysics Data System (ADS)

    Cao, Xiaojun; Anand, Vishal; Qiao, Chunming

    2006-12-01

    Optical networks using wavelength-division multiplexing (WDM) are the foremost solution to the ever-increasing traffic in the Internet backbone. Rapid advances in WDM technology will enable each fiber to carry hundreds or even a thousand wavelengths (using dense-WDM, or DWDM, and ultra-DWDM) of traffic. This, coupled with worldwide fiber deployment, will bring about a tremendous increase in the size of the optical cross-connects, i.e., the number of ports of the wavelength switching elements. Waveband switching (WBS), wherein wavelengths are grouped into bands and switched as a single entity, can reduce the cost and control complexity of switching nodes by minimizing the port count. This paper presents a detailed study on recent advances and open research issues in WBS networks. In this study, we investigate in detail the architecture for various WBS cross-connects and compare them in terms of the number of ports and complexity and also in terms of how flexible they are in adjusting to dynamic traffic. We outline various techniques for grouping wavelengths into bands for the purpose of WBS and show how traditional wavelength routing is different from waveband routing and why techniques developed for wavelength-routed networks (WRNs) cannot be simply applied to WBS networks. We also outline how traffic grooming of subwavelength traffic can be done in WBS networks. In part II of this study [Cao , submitted to J. Opt. Netw.], we study the effect of wavelength conversion on the performance of WBS networks with reconfigurable MG-OXCs. We present an algorithm for waveband grouping in wavelength-convertible networks and evaluate its performance. We also investigate issues related to survivability in WBS networks and show how waveband and wavelength conversion can be used to recover from failures in WBS networks.

  13. Structural, mechanical and optical studies on ultrafast laser inscribed chalcogenide glass waveguide

    NASA Astrophysics Data System (ADS)

    Ayiriveetil, Arunbabu; Varma, G. Sreevidya; Chaturvedi, Abhishek; Sabapathy, Tamilarasan; Ramamurty, Upadrasta; Asokan, Sundarrajan

    2017-04-01

    Multi-scan waveguides have been inscribed in GeS2 glass sample with different pulse energies and translation speeds. Mechanical and structural changes on GeS2 binary glass in response to irradiation to 1047 nm femto-second laser pulses have been investigated. The optical characterization of these waveguides has been done at 1550 nm of laser wavelength and the material response to laser exposure is characterized by both nanoindentation studies and micro-Raman spectroscopy. Nanoindentation investigations show a decrease in hardness (H) and elastic modulus (E) upon laser irradiation. The change in E and H are found to be varying with the translational speed, pulse energy and hence the net-fluence at the sample. These changes are correlated with variations in the Raman response of photo-exposed glass which is interpreted in terms of structural modifications made by the laser inscriptions to the glassy network. The mechanical behavior and local structural changes on waveguide writing is found to be dependent on net-fluence and it is correlated with the preparation conditions like melt temperature and cooling rate.

  14. Determining noise temperatures in beam waveguide systems

    NASA Technical Reports Server (NTRS)

    Imbriale, W.; Veruttipong, W.; Otoshi, T.; Franco, M.

    1994-01-01

    A new 34-m research and development antenna was fabricated and tested as a precursor to introducing beam waveguide (BWG) antennas and Ka-band (32 GHz) frequencies into the NASA/JPL Deep Space Network. For deep space use, system noise temperature is a critical parameter. There are thought to be two major contributors to noise temperature in a BWG system: the spillover past the mirrors, and the conductivity loss in the walls. However, to date, there are no generally accepted methods for computing noise temperatures in a beam waveguide system. An extensive measurement program was undertaken to determine noise temperatures in such a system along with a correspondent effort in analytic prediction. Utilizing a very sensitive radiometer, noise temperature measurements were made at the Cassegrain focus, an intermediate focal point, and the focal point in the basement pedestal room. Several different horn diameters were used to simulate different amounts of spillover past the mirrors. Two analytic procedures were developed for computing noise temperature, one utilizing circular waveguide modes and the other a semiempirical approach. The results of both prediction methods are compared to the experimental data.

  15. Dispersion of TE modes in slab waveguides with reference to double heterostructure semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Buus, J.

    1980-06-01

    The group index for TE modes in an asymmetrical slab waveguide is investigated, and a simple analytical expression is derived. It is shown that the product of the phase and group indices is related to the power fraction in each of the three layers of the waveguide. The results are of interest in the analysis of double heterostructure semiconductor lasers. Theoretical and experimental results for lasers emitting at 1.55 microns are compared.

  16. Characterizing Ship Navigation Patterns Using Automatic Identification System (AIS) Data in the Baltic Sea

    DTIC Science & Technology

    in the Saint Petersburg area. We use three random forest models, that differ in their use of past information , to predict a vessels next port of visit...network where past information is used to more accurately predict the future state. The transitional probabilities change when predictor variables are...added that reach deeper into the past. Our findings suggest that successful prediction of the movement of a vessel depends on having accurate information on its recent history.

  17. Dimensions and Measurements of Debuncher Band 3 and 4 Waveguide-Coax Launchers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ding; /Fermilab

    2000-09-13

    This note is a document about dimensions and measurement results of waveguide-coax launchers (Band 3 and 4) installed on the arrays in debuncher cooling upgrade. Shown in Figure 1 and 5 are schematic drawings of launchers (pick-up) in the cross section along the longitudinal direction (beam direction) of the arrays. The unit in these drawings is inch. Note: although there are upper band and lower band for pickup arrays, the launchers are the same to avoid possible confusion during installation. Launchers for band 3 and 4 kickers were made by Penn-engineering Inc., therefor no schematic drawings are presented in thismore » note. RF Measurements were made on all launchers (port) and printed in hard copies for future reference. Since the measurement results are similar to each other, only a few plots for each type of launcher/band are presented in this document. There are two types of measured S11 parameters. One is the measurement made at the end of design/tuning stage using a launcher and a straight section of band 3 or 4 waveguide terminated with a cone of absorber. I use 'Original' to denote this kind of measurement. As shown in Figure 2, 6, 9 and 12, the original S11 of all launchers are below or around -20 db over the full band 3 or 4. The other type of measurement is the one made after these launchers were installed onto the array including several type N feedthrough or connectors, elbows, waveguide bends (kicker) and magic Ts (kicker) etc. The kicker arrays were terminated with wedges of absorber. During all measurements (pickup array or kicker array) when one launcher was being measured, all other launchers were terminated with 50 ohm terminator. As shown in Figure 3, 4, 7, 8, 10, 11, 13 and 14 these 'final' S11s are around -15 db.« less

  18. Universal method for crosstalk noise and transmission loss analysis for N-port nonblocking optical router for photonic networks-on-chip

    NASA Astrophysics Data System (ADS)

    Xie, Yiyuan; Zhang, Zhendong; Song, Tingting; He, Chao; Li, Jiachao; Wang, Guijin

    2016-05-01

    Crosstalk noise and transmission loss are two key elements in determining the performance of optical routers. We propose a universal method for crosstalk noise and transmission loss analysis for the N-port nonblocking optical router used in photonic networks-on-chip. Utilizing this method, we study the crosstalk noise and transmission loss for the five-, six-, seven-, and eight-port optical routers. We ascertain that the crosstalk noise and transmission loss are different for different input-output pairs. For the five-port optical router, the maximum crosstalk noise ranges from 0 to -7.07 dBm, and the transmission loss ranges from -9.05 to -0.51 dB. Furthermore, based on the crosstalk noise and transmission loss, we analyze optical signal-to-noise ratio (OSNR) and bit error ratio (BER) for the five-, six-, seven-, and eight-port nonblocking optical routers. As the number of ports increases, the minimum average OSNR decreases and the average BER increases. In addition, in order to present the performance of the routers more visually, a fiber-optic communications system is designed to simulate the transmission processes of the signals of the different paths of the routers in Optisystem. The results show that the power amplitude of the input signal is obviously higher than the corresponding output signal. With this method, we can easily evaluate the transmission loss, crosstalk noise, OSNR, and BER of high-radix nonblocking optical routers and conveniently study the performance of the N-port optical router.

  19. Low-chirp high-extinction-ratio modulator based on graphene-silicon waveguide.

    PubMed

    Yang, Longzhi; Hu, Ting; Hao, Ran; Qiu, Chen; Xu, Chao; Yu, Hui; Xu, Yang; Jiang, Xiaoqing; Li, Yubo; Yang, Jianyi

    2013-07-15

    We present a hybrid graphene-silicon waveguide, which consists of a lateral slot waveguide with three layers of graphene flakes inside. Through a theoretical analysis, an effective index variation for about 0.05 is found in the waveguide by applying a voltage on the graphene. We designed a Mach-Zehnder modulator based on this waveguide and demonstrated it can process signals nearly chirp-free. The calculation shows that the driving voltage is only 1 V even if the length of the arm is shortened to be 43.54 μm. An extinction up to 34.7 dB and a minimum chirp parameter of -0.006 are obtained. Its insertion loss is roughly -1.37 dB. This modulator consumes low power and has a small footprint. It can potentially be ultrafast as well as CMOS compatible.

  20. Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends

    NASA Astrophysics Data System (ADS)

    Kakihara, Kuniaki; Kono, Naoya; Saitoh, Kunimasa; Koshiba, Masanori

    2006-11-01

    This paper presents a new full-vectorial finite-element method in a local cylindrical coordinate system, to effectively analyze bending losses in photonic wires. The discretization is performed in the cross section of a three-dimensional curved waveguide, using hybrid edge/nodal elements. The solution region is truncated by anisotropic, perfectly matched layers in the cylindrical coordinate system, to deal properly with leaky modes of the waveguide. This approach is used to evaluate bending losses in silicon wire waveguides. The numerical results of the present approach are compared with results calculated with an equivalent straight waveguide approach and with reported experimental data. These comparisons together demonstrate the validity of the present approach based on the cylindrical coordinate system and also clarifies the limited validity of the equivalent straight waveguide approximation.

  1. One-port video-assisted thoracic surgery versus three-port video-assisted thoracic surgery for primary spontaneous pneumothorax: a meta-analysis.

    PubMed

    Xu, Wu; Wang, Yang; Song, Jianping; Mo, Lanying; Jiang, Tao

    2017-01-01

    To further understand the effects of video-assisted thoracic surgery (VATS) with one-port versus three-port VATS for primary spontaneous pneumothorax (PSP). In this study, we searched information from the PubMed, Cochrane Library, Embase, ScienceDirect, Web of Science, China National Knowledge Infrastructure (CNKI), and Wanfang Data databases from inception to September 2015 to collect data of randomized controlled trials (RCTs) and cohort studies about one-port VATS versus three-port VATS for PSP. Two independent authors were committed to screen literature, extract data, and assess the risk of bias of related studies. Then, we used the RevMan 5.20 software for a meta-analysis of one-port VATS versus three-port VATS for PSP. Six cohort studies involving 310 patients were finally selected in this meta-analysis. The results of our study indicate that one-port VATS had a shorter hospital stay (SMD = -0.39, 95 % CI -0.69 to 0.09, P = 0.01), lower VAS score of 24-h post-operative pain (SMD = -0.78, 95 % CI -1.40 to -0.52, P < 0.00001), shorter chest drainage time (SMD = -0.68, 95 % CI -1.15 to -0.22, P = 0.004), and lower incidence of post-operative paraesthesia (OR = 0.13, 95 % CI 0.06 to 0.29, P < 0.00001) compared with three-port VATS. However, one-port VATS had a lower patient satisfaction score at 24 h (SMD = -0.65, 95 % CI -0.95 to -0.35, P < 0.0001) and 48 h (SMD = -0.46, 95 % CI -0.71 to -0.21, P = 0.0002). No differences in the recurrence of pneumothorax (OR = 0.58, 95 % CI 0.20 to 1.67, P = 0.32), the operation time (SMD = 1.01, 95 % CI -4.63 to 2.60, P = 0.58), and the satisfaction score at 72 h (SMD = -0.11, 95 % CI -0.44 to 0.22, P < 0.00001) were noted between the groups. Current evidence suggests that one-port VATS may have certain advantages over three-port VATS for PSP. More large-scale and high-quality studies are needed for authentication.

  2. Solution of cavity resonance and waveguide scattering problems using the eigenmode projection technique

    NASA Astrophysics Data System (ADS)

    Nasr, Mamdouh H.; Othman, Mohamed A. K.; Eshrah, Islam A.; Abuelfadl, Tamer M.

    2017-04-01

    New developments in the eigenmode projection technique (EPT) are introduced in solving problems of electromagnetic resonance in closed cavities as well as scattering from discontinuities in guided-wave structures. The EPT invokes the eigenmodes of a canonical predefined cavity in the solution procedure and uses the expansion of these eigenmodes to solve Maxwell's equations, in conjunction with a convenient choice of port boundary conditions. For closed cavities, a new spurious-mode separation method is developed, showing robust and efficient spurious-mode separation. This has been tested using more complex and practical examples demonstrating the powerful use of the presented approach. For waveguide scattering problems, convergence studies are being performed showing stable solutions for a relatively small number of expansion modes, and the proposed method has advantages over conventional solvers in analyzing electromagnetic problems with inhomogeneous materials. These convergence studies also lead to an efficient rule-of-thumb for the number of modes to be used in the simulation. The ability to handle closed and open structures is presented in a unified framework that highlights the generality of the EPT which could be used to analyze and design a variety of microwave components.

  3. Towards an Archaeology of Early Islamic Ports on the Western Red Sea Coast

    NASA Astrophysics Data System (ADS)

    Breen, Colin

    2013-12-01

    Against a background of developing research on Red Sea ports, a hypothetical model of the morphology of port towns during the early Islamic period is presented here. These places went through constant cycles of change as economic and political frameworks fluctuated. While their physical shape and form was strongly influenced by architectural features of the Islamic world their functionality was more aligned to commercial interaction. These were dynamic spaces where the daily life of their inhabitants was guided by trade, religion, weather and politics. The ports were intrinsically tied to the trade networks that connected Africa with Arabia and the broader Indian Ocean world.

  4. Vulnerability assessment of New Jersey's food supply to invasive species: the New Jersey IMPORT project.

    PubMed

    Gregory, Petros; Hamilton, George; Borjan, Marija; Robson, Mark

    2006-01-01

    The United States' environment and economy have been severely impacted by unintentionally introduced biological organisms for the last 100 years. Our ecosystems and biological reserves of conservation importance are regularly invaded by non-indigenous species. To help prevent future invaders from entering the ports, this project undertaken at the Port of Elizabeth proposed to: 1. Catalog the different vegetable and fruit crops entering this country; 2. Evaluate the potential risk to New Jersey crops that an introduced exotic pest might pose; and 3. Evaluate the potential that imported crops entering the U.S. have for harboring exotic pests. The New Jersey IMPORT report, or Invasive Management Promoting Open and Responsible Trade project, details a newly designed ecological risk assessment tool to evaluate entry potential of invasive pests at the Port of Elizabeth. Risk designations were assigned to shipments of four fruits; seven vegetables; and two field/forage crops based on: i) Country of origin; ii) Amounts of commodities imported; and iii) Endemic pests present in exporting countries. Between 5,000 and 180,000 tons of crops were imported into the Port of Elizabeth from October 2001 to 2003. Pest risk analyses were drafted for twenty-five intercepted insects taken from the Port Information Network. In addition, eighteen pest risk analyses were drafted for invasive fungi, bacteria, and viruses of global concern as alerted by ProMed Digest. It was concluded that three crops imported remain at high risk: apples, peppers, and tomatoes. Peaches, soybeans, lettuce, sweet corn, potatoes, squash, and eggplant imported were considered moderate risk. Blueberries, cranberries, and alfalfa were considered low risk.

  5. Monolithic InP strictly non-blocking 8×8 switch for high-speed WDM optical interconnection.

    PubMed

    Kwack, Myung-Joon; Tanemura, Takuo; Higo, Akio; Nakano, Yoshiaki

    2012-12-17

    A strictly non-blocking 8 × 8 switch for high-speed WDM optical interconnection is realized on InP by using the phased-array scheme for the first time. The matrix switch architecture consists of over 200 functional devices such as star couplers, phase-shifters and so on without any waveguide cross-section. We demonstrate ultra-broad optical bandwidth covering the entire C-band through several Input/Output ports combination with extinction ratio performance of more than 20dB. Also, nanoseconds reconfiguration time was successfully achieved by dynamic switching experiment. Error-free transmission was verified for 40-Gbps (10-Gbps × 4ch) WDM signal.

  6. KSC-2013-3782

    NASA Image and Video Library

    2013-11-01

    PORT CANAVERAL, Fla. – Following arrival at Port Canaveral, Fla., the United Launch Alliance Atlas V first stage and Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to Cape Canaveral Air Force Station's Atlas Spaceflight Operations Center for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Kim Shiflett

  7. KSC-2013-3781

    NASA Image and Video Library

    2013-11-01

    PORT CANAVERAL, Fla. – Following arrival at Port Canaveral, Fla., the United Launch Alliance Atlas V first stage and Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to Cape Canaveral Air Force Station's Atlas Spaceflight Operations Center for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Kim Shiflett

  8. Bragg gratings: Optical microchip sensors

    NASA Astrophysics Data System (ADS)

    Watts, Sam

    2010-07-01

    A direct UV writing technique that can create multiple Bragg gratings and waveguides in a planar silica-on-silicon chip is enabling sensing applications ranging from individual disposable sensors for biotechnology through to multiplexed sensor networks in pharmaceutical manufacturing.

  9. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

    NASA Astrophysics Data System (ADS)

    Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

    2016-05-01

    Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated. Additionally, we demonstrate optical links by adopting the aforementioned processes used for defining the simulation. We verify the feasibility of the developed processes for planar optronic systems by using an active alignment and conduct discussions for further improvements of optical alignment.

  10. Semiconductor ring lasers coupled by a single waveguide

    NASA Astrophysics Data System (ADS)

    Coomans, W.; Gelens, L.; Van der Sande, G.; Mezosi, G.; Sorel, M.; Danckaert, J.; Verschaffelt, G.

    2012-06-01

    We experimentally and theoretically study the characteristics of semiconductor ring lasers bidirectionally coupled by a single bus waveguide. This configuration has, e.g., been suggested for use as an optical memory and as an optical neural network motif. The main results are that the coupling can destabilize the state in which both rings lase in the same direction, and it brings to life a state with equal powers at both outputs. These are both undesirable for optical memory operation. Although the coupling between the rings is bidirectional, the destabilization occurs due to behavior similar to an optically injected laser system.

  11. Single-Photon Routing for a L-Shaped Channel

    NASA Astrophysics Data System (ADS)

    Yang, Xiong; Hou, Jiao-Jiao; Wu, Chun

    2018-02-01

    We have investigated the transport properties of a single photon scattered by a two-level atom embedded in a L-shaped waveguide, which is made of two one-dimensional (1D) semi-infinite coupled-resonator waveguides (CRWs). Single photons can be directed from one CRW to the other due to spontaneous emission of the atom. The result shows that the spontaneous emission of the TLS still routes single photon from one CRW to the other; the boundary existing makes the probability of finding single photon in a CRW could reach one. Our the scheme is helpful to construct a ring quantum networks.

  12. Design and analysis of photonic optical switches with improved wavelength selectivity

    NASA Astrophysics Data System (ADS)

    Wielichowski, Marcin; Patela, Sergiusz

    2005-09-01

    Efficient optical modulators and switches are the key elements of the future all-optical fiber networks. Aside from numerous advantages, the integrated optical devices suffer from excessive longitudinal dimensions. The dimensions may be significantly reduced with help of periodic structures, such as Bragg gratings, arrayed waveguides or multilayer structures. In this paper we describe methods of analysis and example of analytical results of a photonic switch with properties modified by the application of periodic change of effective refractive index. The switch is composed of a strip-waveguide directional coupler and a transversal Bragg grating.

  13. Microslab - Waveguide medium for the future

    NASA Astrophysics Data System (ADS)

    Sequeira, H. B.

    1986-09-01

    'Microslab' technology, which has the transmission properties of both microstrip and dielectric slab waveguides, and which is aimed for use in MIMIC devices, is described. The Microslab configuration consists of a guiding layer bonded to a metallized dielectric substrate (slab) and a metallized dielectric rod, with the dielectric material and thicknesses chosen for minimal loss and dispersion and for optimum control of the propagating energy. The propagating energy is confined mainly to the guiding layer. The new technology has been used to couple a GaAs Gunn oscillator directly to a GaAs Microslab network to produce 0.25 mW at 141 GHz.

  14. Analysis of silicon on insulator (SOI) optical microring add-drop filter based on waveguide intersections

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, Andrzej; Bogaerts, Wim; Van Thourhout, Dries; Drouard, Emmanuel; Rojo-Romeo, Pedro; Giannone, Domenico; Gaffiot, Frederic

    2008-04-01

    We present a compact passive optical add-drop filter which incorporates two microring resonators and a waveguide intersection in silicon-on-insulator (SOI) technology. Such a filter is a key element for designing simple layouts of highly integrated complex optical networks-on-chip. The filter occupies an area smaller than 10μm×10μm and exhibits relatively high quality factors (up to 4000) and efficient signal dropping capabilities. In the present work, the influence of filter parameters such as the microring-resonators radii and the coupling section shape are analyzed theoretically and experimentally

  15. Material characterization in partially filled waveguides using inverse scattering and multiple sample orientations

    NASA Astrophysics Data System (ADS)

    Sjöberg, Daniel; Larsson, Christer

    2015-06-01

    We present a method aimed at reducing uncertainties and instabilities when characterizing materials in waveguide setups. The method is based on measuring the S parameters for three different orientations of a rectangular sample block in a rectangular waveguide. The corresponding geometries are modeled in a commercial full-wave simulation program, taking any material parameters as input. The material parameters of the sample are found by minimizing the squared distance between measured and calculated S parameters. The information added by the different sample orientations is quantified using the Cramér-Rao lower bound. The flexibility of the method allows the determination of material parameters of an arbitrarily shaped sample that fits in the waveguide.

  16. Faunal and vegetation monitoring in response to harbor dredging in the Port of Miami

    USGS Publications Warehouse

    Daniels, Andre; Stevenson, Rachael; Smith, Erin; Robblee, Michael

    2018-04-11

    Seagrasses are highly productive ecosystems. A before-after-control-impact (BACI) design was used to examine effects of dredging on seagrasses and the animals that inhabit them. The control site North Biscayne Bay and the affected site Port of Miami had seagrass densities decrease during both the before, Fish and Invertebrate Assessment Network 2006-2011, and after, Faunal Monitoring in Response to Harbor Dredging 2014-2016, studies. Turbidity levels increased at North Biscayne Bay and Port of Miami basins during the Faunal Monitoring in Response to Harbor Dredging study, especially in 2016. Animal populations decreased significantly in North Biscayne Bay and Port of Miami in the Faunal Monitoring in Response to Harbor Dredging study compared to the Fish and Invertebrate Assessment Network study. Predictive modeling shows that numbers of animal populations will likely continue to decrease if the negative trends in seagrass densities continue unabated. There could be effects on several fisheries vital to the south Florida economy. Additional research could determine if animal populations and seagrass densities have rebounded or continued to decrease.

  17. S/Ka Dichroic Plate with Rounded Corners for NASA's 34-m Beam-Waveguide Antenna

    NASA Astrophysics Data System (ADS)

    Veruttipong, W.; Khayatian, B.; Imbriale, W.

    2016-02-01

    An S-/Ka-band frequency selective surface (FSS) or a dichroic plate is designed, manufactured, and tested for use in NASA's Deep Space Network (DSN) 34-m beam-waveguide (BWG) antennas. Due to its large size, the proposed dichroic incorporates a new design feature: waveguides with rounded corners to cut cost and allow ease of manufacturing the plate. The dichroic is designed using an analysis that combines the finite-element method (FEM) for arbitrarily shaped guides with the method of moments and Floquet mode theory for periodic structures. The software was verified by comparison with previously measured and computed dichroic plates. The large plate was manufactured with end-mill machining. The RF performance was measured and is in excellent agreement with the analytical results. The dichroic has been successfully installed and is operational at DSS-24, DSS-34, and DSS-54.

  18. Slot silicon-gallium nitride waveguide in MMI structures based 1x8 wavelength demultiplexer

    NASA Astrophysics Data System (ADS)

    Ben Zaken, Bar Baruch; Zanzury, Tal; Malka, Dror

    2017-06-01

    We propose a novel 8-channel wavelength multimode interference (MMI) demultiplexer in slot waveguide structures that operated at 1530 nm, 1535 nm, 1540 nm, 1545 nm, 1550 nm, 1555 nm, 1560 nm and 1565 nm wavelengths. Gallium nitride (GaN) surrounded by silicon (Si) was founded as suitable materials for the slot-waveguide structures. The proposed device was designed by seven 1x2 MMI couplers, fourteen S-band and one input taper. Numerical investigations were carried out on the geometrical parameters by using a full vectorial-beam propagation method (FVBPM). Simulation results show that the proposed device can transmit 8-channel that works in the whole C-band (1530- 1565 nm) with low crosstalk ((-19.97)-(-13.77) dB) and bandwidth (1.8-3.6 nm). Thus, the device can be very useful in optical networking systems that work on dense wavelength division multiplexing (DWDM) technology.

  19. 1 × 4 MMI visible light wavelength demultiplexer based on a GaN slot-waveguide structure

    NASA Astrophysics Data System (ADS)

    Shoresh, Tamir; Katanov, Nadav; Malka, Dror

    2018-07-01

    High transmission losses are the key problem that limits the performance of visible light communication systems, which work on wavelength division multiplexing (WDM) technology. To overcome this problem, we propose a novel design for a 1 × 4 optical demultiplexer based on the multimode interference in a slot-waveguide structure that operates at 547 nm, 559 nm, 566 nm, and 584 nm. Gallium nitride and silicon oxide were found to be excellent materials for the slot-waveguide structure. Simulation results showed that the proposed device can transmit four channels that work in the visible light range with a low transmission loss of 0.983-1.423 dB, crosstalk of 13.8-18.3 dB, and bandwidth of 1.8-3.2 nm. Thus, this device can be very useful in visible light networking systems, which work on the WDM technology.

  20. Network topology mapper

    DOEpatents

    Quist, Daniel A [Los Alamos, NM; Gavrilov, Eugene M [Los Alamos, NM; Fisk, Michael E [Jemez, NM

    2008-01-15

    A method enables the topology of an acyclic fully propagated network to be discovered. A list of switches that comprise the network is formed and the MAC address cache for each one of the switches is determined. For each pair of switches, from the MAC address caches the remaining switches that see the pair of switches are located. For each pair of switches the remaining switches are determined that see one of the pair of switches on a first port and the second one of the pair of switches on a second port. A list of insiders is formed for every pair of switches. It is determined whether the insider for each pair of switches is a graph edge and adjacent ones of the graph edges are determined. A symmetric adjacency matrix is formed from the graph edges to represent the topology of the data link network.

  1. Bi-directional four quadrant (BDQ4) power converter development

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C.

    1979-01-01

    The feasibility for implementation of a concept for direct ac/dc multikilowatt power conversion with bidirectional transfer of energy was investigated. A 10 kHz current carrier was derived directly from a common 60 Hz three phase power system. This carrier was modulated to remove the 360 Hz ripple, inherent in the three phase power supply and then demodulated and processed by a high frequency filter. The resulting dc power was then supplied to a load. The process was implemented without the use of low frequency transformers and filters. This power conversion processes was reversible and can operate in the four quadrants as viewed from any of the two of the converter's ports. Areas of application include: power systems on air and spacecraft; terrestrial traction; integration of solar and wind powered systems with utility networks; HVDC; asynchronous coupling of polyphase networks; heat treatment; industrial machine drives; and power supplies for any use including instrumentation.

  2. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system.

    PubMed

    Miao, Wang; Luo, Jun; Di Lucente, Stefano; Dorren, Harm; Calabretta, Nicola

    2014-02-10

    We propose and demonstrate an optical flat datacenter network based on scalable optical switch system with optical flow control. Modular structure with distributed control results in port-count independent optical switch reconfiguration time. RF tone in-band labeling technique allowing parallel processing of the label bits ensures the low latency operation regardless of the switch port-count. Hardware flow control is conducted at optical level by re-using the label wavelength without occupying extra bandwidth, space, and network resources which further improves the performance of latency within a simple structure. Dynamic switching including multicasting operation is validated for a 4 x 4 system. Error free operation of 40 Gb/s data packets has been achieved with only 1 dB penalty. The system could handle an input load up to 0.5 providing a packet loss lower that 10(-5) and an average latency less that 500 ns when a buffer size of 16 packets is employed. Investigation on scalability also indicates that the proposed system could potentially scale up to large port count with limited power penalty.

  3. Bent channel design in buried Er3+/Yb3+ codoped phosphate glass waveguide fabricated by field-assisted annealing

    NASA Astrophysics Data System (ADS)

    Zhao, Ruitu; Wang, Mu; Chen, Baojie; Liu, Ke; Pun, Edwin Yue-Bun; Lin, Hai

    2011-04-01

    Bent waveguide structures (S-, U-, and F-bend) based on buried Er3+/Yb3+ codoped phosphate glass waveguide channel fabricated by field-assisted annealing have been designed to achieve high-gain C-band integrated amplification. Using a simulated-bend method, the optimal radius for the curved structure is derived to be 0.90 cm with loss coefficient of 0.02 dB/cm, as the substrate size is schemed to be 4×3 cm2. In the wavelength range of 1520 to 1575 nm, obvious gain enhancement for the bent structure waveguides is anticipated, and for the F-bend waveguide, the internal gain at 1534-nm wavelength is derived to be 41.61 dB, which is much higher than the value of 26.22 and 13.81 dB in the U- and S-bend waveguides, respectively, and over three times higher than that of the straight one. The simulation results indicate that the bent structure design is beneficial in obtaining high signal gain in buried Er3+/Yb3+ codoped phosphate glass waveguides, which lays the foundation for further design and fabrication of integrated devices.

  4. Multi-Hop Link Capacity of Multi-Route Multi-Hop MRC Diversity for a Virtual Cellular Network

    NASA Astrophysics Data System (ADS)

    Daou, Imane; Kudoh, Eisuke; Adachi, Fumiyuki

    In virtual cellular network (VCN), proposed for high-speed mobile communications, the signal transmitted from a mobile terminal is received by some wireless ports distributed in each virtual cell and relayed to the central port that acts as a gateway to the core network. In this paper, we apply the multi-route MHMRC diversity in order to decrease the transmit power and increase the multi-hop link capacity. The transmit power, the interference power and the link capacity are evaluated for DS-CDMA multi-hop VCN by computer simulation. The multi-route MHMRC diversity can be applied to not only DS-CDMA but also other access schemes (i. e. MC-CDMA, OFDM, etc.).

  5. Analysis of coiled stator ultrasound motor: Fundamental study on analysis of wave propagation on acoustic waveguide for coiled stator

    NASA Astrophysics Data System (ADS)

    Ozeki, Seiya; Kurita, Keisuke; Uehara, Choyu; Nakane, Noriaki; Sato, Toshio; Takeuchi, Shinichi

    2018-07-01

    In our research group, we previously developed a coiled stator ultrasound motor (CS-USM) for medical applications such as intravascular ultrasound (IVUS) devices. However, wave propagation on acoustic waveguides has not been investigated sufficiently in previous studies. In this study, we analyze the propagation velocity of elastic waves from the simulated the vibration displacement mode profile along a straight line acoustic waveguide via three-dimensional finite element method (FEM). Concerning results, elastic waves with vibration displacement along the thickness direction show dispersion characteristics corresponding to the a0 and a1 mode plate waves (Lamb waves) in the acoustic waveguide. Our theoretical hypotheses of the propagation velocities were closely borne out by experimental results. We further find that the dispersion characteristic is affected by the width of the acoustic waveguide. We believe that our findings can contribute to improved CS-USM designs for practical application.

  6. Analysis of heating, ventilation, and air conditioning ducts as a radio frequency communication channel

    NASA Astrophysics Data System (ADS)

    Nikitin, Pavel Viktorovich

    2002-01-01

    A typical HVAC duct system is a network of interconnected hollow metal pipes which can serve as waveguides and carry electromagnetic waves. This work presents an analysis of this system as a radio frequency communication channel. Two main parts of the analysis include channel modelling and antenna design. The propagation modelling approach used here is based on the waveguide mode theory and employs the transfer matrix method to describe propagation through various cascaded HVAC elements. This allows one to model the channel response in the frequency domain. Impulse response characteristics of the ducts are also analyzed in this work. The approximate transfer matrices of cylindrical straight sections, bends, and tapers are derived analytically. The transforming properties of cylindrical T-junctions are analyzed experimentally. Antenna designs in waveguides and free-space are different. In waveguides, mode excitation characteristics are important as well as the impedance match. The criteria for antenna design in waveguides are presented here. Antennas analyzed in this work are monopole antennas, dipole antennas, and antenna arrays. The developed model can predict both channel response and antenna characteristics for a given geometry and dimensions of the duct system and the antennas. The model is computationally efficient and can potentially be applied to duct systems of multiple story buildings. The accuracy of the model has been validated with extensive experimental measurements on real HVAC ducts.

  7. Thoracoscopic enucleation of a large esophageal leiomyoma using a three thoracic ports technique.

    PubMed

    Akaraviputh, Thawatchai; Chinswangwatanakul, Vitoon; Swangsri, Jirawat; Lohsiriwat, Varut

    2006-10-04

    Video assisted thoracoscopic resection of an esophageal leiomyoma offers distinct advantages over an open approach. Many papers have described various techniques of thoracoscopic resection. We describe a 32-year old man who presented with intermittent dysphagia. Imaging studies showed a large esophageal leiomyoma. He underwent thoracoscopic enucleation using a three thoracic-ports technique. Thoracoscopic enucleation can be technically performed using a three thoracic-ports technique.

  8. Fabrication of a Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors

    NASA Technical Reports Server (NTRS)

    Crowe, Erik J.; Bennett, Charles L.; Chuss, David T.; Denis, Kevin L.; Eimer, Joseph; Lourie, Nathan; Marriage, Tobias; Moseley, Samuel H.; Rostem, Karwan; Stevenson, Thomas R.; hide

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for evidence for gravitational waves from a posited epoch of inflation early in the Universe s history. This measurement will require integration of superconducting transition-edge sensors with microwave waveguide inputs with excellent control of systematic errors, such as unwanted coupling to stray signals at frequencies outside of a precisely defined microwave band. To address these needs we present work on the fabrication of micromachined silicon, producing conductive quarter-wave backshort assemblies for the CLASS 40 GHz focal plane. Each 40 GHz backshort assembly consists of three degeneratively doped silicon wafers. Two spacer wafers are micromachined with through-wafer vias to provide a 2.04 mm long square waveguide delay section. The third wafer terminates the waveguide delay in a short. The three wafers are bonded at the wafer level by Au-Au thermal compression bonding then aligned and flip chip bonded to the CLASS detector at the chip level. The micromachining techniques used have been optimized to create high aspect ratio waveguides, silicon pillars, and relief trenches with the goal of providing improved out of band signal rejection. We will discuss the fabrication of integrated CLASS superconducting detector chips with the quarter-wave backshort assemblies.

  9. Low-loss 3D-laser-written mid-infrared LiNbO3 depressed-index cladding waveguides for both TE and TM polarizations.

    PubMed

    Nguyen, Huu-Dat; Ródenas, Airán; Vázquez de Aldana, Javier R; Martín, Guillermo; Martínez, Javier; Aguiló, Magdalena; Pujol, Maria Cinta; Díaz, Francesc

    2017-02-20

    We report mid-infrared LiNbO3 depressed-index microstructured cladding waveguides fabricated by three-dimensional laser writing showing low propagation losses (~1.5 dB/cm) at 3.68 µm wavelength for both the transverse electric and magnetic polarized modes, a feature previously unachieved due to the strong anisotropic properties of this type of laser microstructured waveguides and which is of fundamental importance for many photonic applications. Using a heuristic modeling-testing iteration design approach which takes into account cladding induced stress-optic index changes, the fabricated cladding microstructure provides low-loss single mode operation for the mid-IR for both orthogonal polarizations. The dependence of the localized refractive index changes within the cladding microstructure with post-fabrication thermal annealing processes was also investigated, revealing its complex dependence of the laser induced refractive index changes on laser fabrication conditions and thermal post-processing steps. The waveguide modes properties and their dependence on thermal post-processing were numerically modeled and fitted to the experimental values by systematically varying three fundamental parameters of this type of waveguides: depressed refractive index values at sub-micron laser-written tracks, track size changes, and piezo-optic induced refractive index changes.

  10. Using temperature to reduce noise in quantum frequency conversion.

    PubMed

    Kuo, Paulina S; Pelc, Jason S; Langrock, Carsten; Fejer, M M

    2018-05-01

    Quantum frequency conversion is important in quantum networks to interface nodes operating at different wavelengths and to enable long-distance quantum communication using telecommunications wavelengths. Unfortunately, frequency conversion in actual devices is not a noise-free process. One main source of noise is spontaneous Raman scattering, which can be reduced by lowering the device operating temperature. We explore frequency conversion of 1554 nm photons to 837 nm using a 1813 nm pump in a periodically poled lithium niobate waveguide device. By reducing the temperature from 85°C to 40°C, we show a three-fold reduction in dark count rates, which is in good agreement with theory.

  11. Broadband Upgrade for the 1.668-GHz (L-Band) Radio Astronomy Feed System on the DSN 70-m Antennas

    NASA Astrophysics Data System (ADS)

    Hoppe, D.; Khayatian, B.; Lopez, B.; Torrez, T.; Long, E.; Sosnowski, J.; Franco, M.; Teitelbaum, L.

    2015-08-01

    Currently, each of the three Deep Space Network (DSN) 70-m antennas provides a narrowband, 1.668-GHz (L-band) receive capability for radio astronomy observations. This capability is delivered by a large feedhorn mounted on the exterior of one of the feedcones. It provides a single polarization into a pair of redundant low-noise amplifiers. Recently, funding was obtained to upgrade this system to wideband (1.4-1.9 GHz) dual-polarization operation. This required development of a new feedhorn, polarizer, orthomode transducer (OMT), and waveguide transitions. In this article, we describe the design and laboratory testing of these components.

  12. 77 FR 73508 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... ``Disaster Recovery Systems'') in case of the occurrence of some manner of disaster which prevents NY4 from operating. These Disaster Recovery Systems can be accessed via Network Access Ports in Chicago (the... Access Ports in order to be able to connect to the Disaster Recovery Systems in case of such disaster...

  13. Examining the Effect of Organizational Roles in Shaping Network Traffic Activity

    DTIC Science & Technology

    2012-08-01

    absolute value, and are presented in Table 3. Role Correlation Feature Admin 0.3004 bpp 0.2845 portsPerFlow 0.2063 addrDist -0.1869...OS Correlation Feature XP 0.4783 notTcpUdp 0.2867 addrDist -0.2389 bpp 0.1933 protocol -0.1852 flowInt Windows 7 0.3884 portDist 0.2367...addrDist 0.2001 direction 0.1751 bpp 0.1653 portsPerFlow Mac -0.2376 notTcpUdp 0.1978 UDP 0.1885 duration -0.1783 addrDist -0.1736 countEmpties

  14. Design and fabrication of three-dimensional polymer mode multiplexer based on asymmetric waveguide couplers

    NASA Astrophysics Data System (ADS)

    He, Guobing; Gao, Yang; Xu, Yan; Ji, Lanting; Sun, Xiaoqiang; Wang, Xibin; Yi, Yunji; Chen, Changming; Wang, Fei; Zhang, Daming; Wu, Yuanda

    2018-05-01

    A polymer mode multiplexer based on asymmetric couplers is theoretically designed and experimentally demonstrated. The proposed X-junction coupler is formed by waveguides overlapped with different crossing angles in the vertical direction. A beam propagation method is adopted to optimize the dimensional parameters of the mode multiplexer to convert LP01 mode of two lower waveguides to LP11a and LP21a mode of the upper waveguide. The ultraviolet lithography and wet chemical etching are used in the fabrication process. A conversion ratio over 98% for both LP11a and LP21a mode in the wavelength range from 1530 to 1570 nm are experimentally demonstrated. This mode multiplexer has potential in broadband mode-division multiplexing transmission systems.

  15. Spot-size converter with a SiO(2) spacer layer between tapered Si and SiON waveguides for fiber-to-chip coupling.

    PubMed

    Maegami, Yuriko; Takei, Ryohei; Omoda, Emiko; Amano, Takeru; Okano, Makoto; Mori, Masahiko; Kamei, Toshihiro; Sakakibara, Youichi

    2015-08-10

    We experimentally demonstrate low-loss and polarization-insensitive fiber-to-chip coupling spot-size converters (SSCs) comprised of a three dimensionally tapered Si wire waveguide, a SiON secondary waveguide, and a SiO(2) spacer inserted between them. Fabricated SSCs with the SiO(2) spacer exhibit fiber-to-chip coupling loss of 1.5 dB/facet for both the quasi-TE and TM modes and a small wavelength dependence in the C- and L-band regions. The SiON secondary waveguide is present only around the SSC region, which significantly suppresses the influence of the well-known N-H absorption of plasma-deposited SiON at around 1510 nm.

  16. Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides.

    PubMed

    Nguyen, Huu-Dat; Ródenas, Airán; Vázquez de Aldana, Javier R; Martínez, Javier; Chen, Feng; Aguiló, Magdalena; Pujol, Maria Cinta; Díaz, Francesc

    2016-04-04

    Mid-infrared lithium niobate cladding waveguides have great potential in low-loss on-chip non-linear optical instruments such as mid-infrared spectrometers and frequency converters, but their three-dimensional femtosecond-laser fabrication is currently not well understood due to the complex interplay between achievable depressed index values and the stress-optic refractive index changes arising as a function of both laser fabrication parameters, and cladding arrangement. Moreover, both the stress-field anisotropy and the asymmetric shape of low-index tracks yield highly birefringent waveguides not useful for most applications where controlling and manipulating the polarization state of a light beam is crucial. To achieve true high performance devices a fundamental understanding on how these waveguides behave and how they can be ultimately optimized is required. In this work we employ a heuristic modelling approach based on the use of standard optical characterization data along with standard computational numerical methods to obtain a satisfactory approximate solution to the problem of designing realistic laser-written circuit building-blocks, such as straight waveguides, bends and evanescent splitters. We infer basic waveguide design parameters such as the complex index of refraction of laser-written tracks at 3.68 µm mid-infrared wavelengths, as well as the cross-sectional stress-optic index maps, obtaining an overall waveguide simulation that closely matches the measured mid-infrared waveguide properties in terms of anisotropy, mode field distributions and propagation losses. We then explore experimentally feasible waveguide designs in the search of a single-mode low-loss behaviour for both ordinary and extraordinary polarizations. We evaluate the overall losses of s-bend components unveiling the expected radiation bend losses of this type of waveguides, and finally showcase a prototype design of a low-loss evanescent splitter. Developing a realistic waveguide model with which robust waveguide designs can be developed will be key for exploiting the potential of the technology.

  17. Amorphous silicon as high index photonic material

    NASA Astrophysics Data System (ADS)

    Lipka, T.; Harke, A.; Horn, O.; Amthor, J.; Müller, J.

    2009-05-01

    Silicon-on-Insulator (SOI) photonics has become an attractive research topic within the area of integrated optics. This paper aims to fabricate SOI-structures for optical communication applications with lower costs compared to standard fabrication processes as well as to provide a higher flexibility with respect to waveguide and substrate material choice. Amorphous silicon is deposited on thermal oxidized silicon wafers with plasma-enhanced chemical vapor deposition (PECVD). The material is optimized in terms of optical light transmission and refractive index. Different a-Si:H waveguides with low propagation losses are presented. The waveguides were processed with CMOS-compatible fabrication technologies and standard DUV-lithography enabling high volume production. To overcome the large mode-field diameter mismatch between incoupling fiber and sub-μm waveguides three dimensional, amorphous silicon tapers were fabricated with a KOH etched shadow mask for patterning. Using ellipsometric and Raman spectroscopic measurements the material properties as refractive index, layer thickness, crystallinity and material composition were analyzed. Rapid thermal annealing (RTA) experiments of amorphous thin films and rib waveguides were performed aiming to tune the refractive index of the deposited a-Si:H waveguide core layer after deposition.

  18. Nano-optical conveyor belt with waveguide-coupled excitation.

    PubMed

    Wang, Guanghui; Ying, Zhoufeng; Ho, Ho-pui; Huang, Ying; Zou, Ningmu; Zhang, Xuping

    2016-02-01

    We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration.

  19. FIBER OPTICS: Ray invariants and wave equations for transverse modes in three-dimensional graded-index waveguides

    NASA Astrophysics Data System (ADS)

    Voevodin, V. G.; Morozov, A. N.; Stepanov, V. E.

    1992-09-01

    A theory of the second ray invariant is proposed using the theory of plane Frenet curves. Its existence requires that the coordinate dependence of the refractive index in the waveguide cross section should satisfy the regularity condition: curves of equal refractive index differ only by an amount which can be obtained using an isotropic scaling transformation. The theoretical conclusions are illustrated using the example of waveguides having the generalized refractive index distribution n ( r ) = n [ (x/ a) + (y/ b)q].

  20. Schottky Heterodyne Receivers With Full Waveguide Bandwidth

    NASA Technical Reports Server (NTRS)

    Hesler, Jeffrey; Crowe, Thomas

    2011-01-01

    Compact THz receivers with broad bandwidth and low noise have been developed for the frequency range from 100 GHz to 1 THz. These receivers meet the requirements for high-resolution spectroscopic studies of planetary atmospheres (including the Earth s) from spacecraft, as well as airborne and balloon platforms. The ongoing research is significant not only for the development of Schottky mixers, but also for the creation of a receiver system, including the LO chain. The new receivers meet the goals of high sensitivity, compact size, low total power requirement, and operation across complete waveguide bands. The exceptional performance makes these receivers ideal for the broader range of scientific and commercial applications. These include the extension of sophisticated test and measurement equipment to 1 THz and the development of low-cost imaging systems for security applications and industrial process monitoring. As a particular example, a WR-1.9SHM (400-600 GHz) has been developed (see Figure 1), with state-of-the-art noise temperature ranging from 1,000-1,800 K (DSB) over the full waveguide band. Also, a Vector Network Analyzer extender has been developed (see Figure 2) for the WR1.5 waveguide band (500 750 GHz) with 100-dB dynamic range.

  1. The effect of handpiece spray patterns on cutting efficiency.

    PubMed

    Siegel, Sharon C; von Fraunhofer, J Anthony

    2002-02-01

    High-speed handpieces' spray ports direct coolant at the cutting interface. The authors evaluated the effect of the number of ports and their positions on cutting rates, or CRs. The authors performed cutting studies on a machinable ceramic block using an established testing regimen. One-port, three-port and four-port handpieces from one manufacturer were operated at maximum torque and rotation speed under a water flow of 25 milliliters per minute. The authors made 6-millimeter long edge and groove cuts in 13-mm cross-section blocks using six medium-grit diamond burs for each handpiece. Each bur cut a total of 78 mm. The authors determined CR as the time to transect the block and analyzed the data by two-way analysis of variance with post hoc Scheffé tests. CRs varied by the type of cut and the number of spray ports. No differences were found in CRs for the three handpieces during edge cutting. The one-port handpiece cut significantly slower (P < .001) than did the three- and four-port handpieces during groove cutting. The data indicate that the number of handpiece spray ports, and their positioning relative to the bur affect water supply to the cutting interface and, consequently, the CR under these study conditions. Optimal cutting efficiency requires good coolant access, especially within restricted areas. A multiple-port handpiece may be advantageous when preparing the interproximal region for a crown or a proximal box, owing to the better water spray pattern. Dentists should consider the influence of the number of spray ports when selecting handpieces for cutting procedures.

  2. Pound--Drever--Hall error signals for the length control of three-port grating coupled cavities

    NASA Astrophysics Data System (ADS)

    Britzger, Michael; Friedrich, Daniel; Kroker, Stefanie; Brückner, Frank; Burmeister, Oliver; Kley, Ernst-Bernhard; Tünnermann, Andreas; Danzmann, Karsten; Schnabel, Roman

    2011-08-01

    Gratings enable light coupling into an optical cavity without transmission through any substrate. This concept reduces light absorption and substrate heating and was suggested for light coupling into the arm cavities of future gravitational wave detectors. One particularly interesting approach is based on all-reflective gratings with low diffraction efficiencies and three diffraction orders (three ports). However, it was discovered that, generally, three-port grating coupled cavities show an asymmetric resonance profile that results in asymmetric and low quality Pound--Drever--Hall error signals for cavity length control. We experimentally demonstrate that this problem is solved by the detection of light at both reflection ports of the cavity and the postprocessing of the two demodulated electronic signals.

  3. Monitoring and Indentification Packet in Wireless With Deep Packet Inspection Method

    NASA Astrophysics Data System (ADS)

    Fali Oklilas, Ahmad; Tasmi

    2017-04-01

    Layer 2 and Layer 3 are used to make a process of network monitoring, but with the development of applications on the network such as the p2p file sharing, VoIP, encrypted, and many applications that already use the same port, it would require a system that can classify network traffics, not only based on port number classification. This paper reports the implementation of the deep packet inspection method to analyse data packets based on the packet header and payload to be used in packet data classification. If each application can be grouped based on the application layer, then we can determine the pattern of internet users and also to perform network management of computer science department. In this study, a prototype wireless network and applications SSO were developed to detect the active user. The focus is on the ability of open DPI and nDPI in detecting the payload of an application and the results are elaborated in this paper.

  4. Atmospheric refraction correction for Ka-band blind pointing on the DSS-13 beam waveguide antenna

    NASA Technical Reports Server (NTRS)

    Perez-Borroto, I. M.; Alvarez, L. S.

    1992-01-01

    An analysis of the atmospheric refraction corrections at the DSS-13 34-m diameter beam waveguide (BWG) antenna for the period Jul. - Dec. 1990 is presented. The current Deep Space Network (DSN) atmospheric refraction model and its sensitivity with respect to sensor accuracy are reviewed. Refraction corrections based on actual atmospheric parameters are compared with the DSS-13 station default corrections for the six-month period. Average blind-pointing improvement during the worst month would have amounted to 5 mdeg at 10 deg elevation using actual surface weather values. This would have resulted in an average gain improvement of 1.1 dB.

  5. Guided-wave approaches to spectrally selective energy absorption

    NASA Technical Reports Server (NTRS)

    Stegeman, G. I.; Burke, J. J.

    1987-01-01

    Results of experiments designed to demonstrate spectrally selective absorption in dielectric waveguides on semiconductor substrates are reported. These experiments were conducted with three waveguides formed by sputtering films of PSK2 glass onto silicon-oxide layers grown on silicon substrates. The three waveguide samples were studied at 633 and 532 nm. The samples differed only in the thickness of the silicon-oxide layer, specifically 256 nm, 506 nm, and 740 nm. Agreement between theoretical predictions and measurements of propagation constants (mode angles) of the six or seven modes supported by these samples was excellent. However, the loss measurements were inconclusive because of high scattering losses in the structures fabricated (in excess of 10 dB/cm). Theoretical calculations indicated that the power distribution among all the modes supported by these structures will reach its steady state value after a propagation length of only 1 mm. Accordingly, the measured loss rates were found to be almost independent of which mode was initially excited. The excellent agreement between theory and experiment leads to the conclusion that low loss waveguides confirm the predicted loss rates.

  6. Three-dimensional transformation optics for arbitrary coordinate systems: transforming conductive materials and boundaries.

    PubMed

    Kazemzadeh, Mohammad-Rahim; Alighanbari, Abbas

    2018-04-16

    A three-dimensional transformation optics method, leading to homogeneous materials, applicable to any non-Cartesian coordinate systems or waveguides/objects of arbitrary cross-sections is presented. Both the conductive boundary and internal material of the desired device is determined by the proposed formulation. The method is applicable to a wide range of waveguide, radiation, and cloaking problems, and is demonstrated for circular waveguide couplers and an external cloak. An advantage of the present method is that the material properties are simplified by appropriately selecting the conductive boundaries. For instance, a right-angle circular waveguide bend is presented which uses only one homogenous material. Also, transformation of conductive materials and boundaries are studied. The conditions in which the transformed boundaries remain conductive are discussed. In addition, it is demonstrated that negative infinite conductivity can be replaced with positive conductivity, without affecting the field outside the conductive boundary. It is also observed that a negative finite conductivity can be replaced with a positive one, by accepting some small errors. The general mathematical procedure and formulation for calculating the parametric surface equations of the conductive peripheries are presented.

  7. Power combination of two phase-locked high power microwave beams from a new coaxial microwave source based on dual beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangmei; Zhang, Xiaoping, E-mail: plinafly@163.com; Zhang, Jiande

    2014-10-15

    The new coaxial high power microwave source based on dual beams has demonstrated two phase-locked output microwave beams generated by its two sub-sources. In order to achieve a single higher output power, we present a three-port waveguide-based power combiner to combine the two microwave beams. Particle-in-cell simulation results show that when the diode voltage is 675 kV and the guiding magnetic field is 0.8 T, a combined microwave with an average power of about 4.0 GW and a frequency of 9.74 GHz is generated; the corresponding power conversion efficiency is 29%. The combination effect of the combiner is further validated in the diodemore » voltage range from 675 kV to 755 kV as well as in the pulse regime. The simulations indicate that the maximum surface axial electric field strength of the electrodynamic structure is 720 kV/cm, which is relatively low corresponding to an output power of 4.0 GW. The stable combined output suggests the probability of long-pulse operation for the combined source.« less

  8. Development of a system of indicators for sustainable port management.

    PubMed

    Peris-Mora, E; Diez Orejas, J M; Subirats, A; Ibáñez, S; Alvarez, P

    2005-12-01

    The 1998 project ECOPORT, "Towards A Sustainable Transport Network", developed by the Valencia Port Authority (VPA), established the bases for implementing an Environmental Management System (EMS) in industrial harbours. The use of data and information shall always be required to develop an efficient EMS. The objective of the present research (INDAPORT) study is to propose a system of sustainable environmental management indicators to be used by any port authorities. All activities performed within a port area are analysed for any potential environmental impacts and risks. An environmental analysis of port activities has been carried out with the objective of designing the indicators system. Twenty-one corresponding activities have been identified for large industrial ports. Subsequently, the same methodology developed to date will be later applied to other Spanish and European ports. The study has been developed by using an original system and a methodology, which simultaneously use stage diagrams and systemic models (material and energy flow charts). Multi-criteria analysis techniques were used to evaluate potential impacts (identification of factors and evaluation of impacts).

  9. A social network typology and sexual risk-taking among men who have sex with men in Cape Town and Port Elizabeth, South Africa

    PubMed Central

    de Voux, Alex; Baral, Stefan; Bekker, Linda-Gail; Beyrer, Chris; Phaswana-Mafuya, Nancy; Siegler, Aaron; Sullivan, Patrick; Winskell, Kate; Stephenson, Rob

    2016-01-01

    Despite the high prevalence of HIV among men who have sex with men in South Africa, very little is known about their lived realities, including their social and sexual networks. Given the influence of social network structure on sexual risk behaviours, a better understanding of the social contexts of men who have sex with men is essential for informing the design of HIV programming and messaging. This study explored social network connectivity, an understudied network attribute, examining self-reported connectivity between friends, family and sex partners. Data were collected in Cape Town and Port Elizabeth, South Africa from 78 men who have sex with men who participated in in-depth interviews which included a social network mapping component. Five social network types emerged from the content analysis of these social network maps based on the level of connectivity between family, friends and sex partners, and ranged from disconnected to densely connected networks. The ways in which participants reported sexual risk-taking differed across the five network types revealing diversity in social network profiles. HIV programming and messaging for this population can greatly benefit from recognising the diversity in lived realities and social connections between men who have sex with men. PMID:26569376

  10. A social network typology and sexual risk-taking among men who have sex with men in Cape Town and Port Elizabeth, South Africa.

    PubMed

    de Voux, Alex; Baral, Stefan D; Bekker, Linda-Gail; Beyrer, Chris; Phaswana-Mafuya, Nancy; Siegler, Aaron J; Sullivan, Patrick S; Winskell, Kate; Stephenson, Rob

    2016-01-01

    Despite the high prevalence of HIV among men who have sex with men in South Africa, very little is known about their lived realities, including their social and sexual networks. Given the influence of social network structure on sexual risk behaviours, a better understanding of the social contexts of men who have sex with men is essential for informing the design of HIV programming and messaging. This study explored social network connectivity, an understudied network attribute, examining self-reported connectivity between friends, family and sex partners. Data were collected in Cape Town and Port Elizabeth, South Africa, from 78 men who have sex with men who participated in in-depth interviews that included a social network mapping component. Five social network types emerged from the content analysis of these social network maps based on the level of connectivity between family, friends and sex partners, and ranged from disconnected to densely connected networks. The ways in which participants reported sexual risk-taking differed across the five network types, revealing diversity in social network profiles. HIV programming and messaging for this population can greatly benefit from recognising the diversity in lived realities and social connections between men who have sex with men.

  11. Measurement of nanoparticle size, suspension polydispersity, and stability using near-field optical trapping and light scattering (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Schein, Perry; O'Dell, Dakota; Erickson, David

    2017-02-01

    Nanoparticles are becoming ubiquitous in applications including diagnostic assays, drug delivery and therapeutics. However, there remain challenges in the quality control of these products. Here we present methods for the orthogonal measurement of these parameters by tracking the motion of the nanoparticle in all three special dimensions as it interacts with an optical waveguide. These simultaneous measurements from a single particle basis address some of the gaps left by current measurement technologies such as nanoparticle tracking analysis, ζ-potential measurements, and absorption spectroscopy. As nanoparticles suspended in a microfluidic channel interact with the evanescent field of an optical waveguide, they experience forces and resulting motion in three dimensions: along the propagation axis of the waveguide (x-direction) they are propelled by the optical forces, parallel to the plane of the waveguide and perpendicular to the optical propagation axis (y-direction) they experience an optical gradient force generated from the waveguide mode profile which confines them in a harmonic potential well, and normal to the surface of the waveguide they experience an exponential downward optical force balanced by the surface interactions that confines the particle in an asymmetric well. Building on our Nanophotonic Force Microscopy technique, in this talk we will explain how to simultaneously use the motion in the y-direction to estimate the size of the particle, the comparative velocity in the x-direction to measure the polydispersity of a particle population, and the motion in the z-direction to measure the potential energy landscape of the interaction, providing insight into the colloidal stability.

  12. Effects of refraction by means flow velocity gradients on the standing wave pattern in three-dimensional, rectangular waveguides

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.

    1979-01-01

    The influence of a mean vortical flow on the connection between the standing wave pattern in a rectangular three dimensional waveguide and the corresponding duct axial impedance was determined analytically. The solution was derived using a perturbation scheme valid for low mean flow Mach numbers and plane wave sound frequencies. The results show that deviations of the standing wave pattern due to refraction by the mean flow gradients are small.

  13. On-chip remote charger model using plasmonic island circuit

    NASA Astrophysics Data System (ADS)

    Ali, J.; Youplao, P.; Pornsuwancharoen, N.; Aziz, M. S.; Chiangga, S.; Amiri, I. S.; Punthawanunt, S.; Singh, G.; Yupapin, P.

    2018-06-01

    We propose the remote charger model using the light fidelity (LiFi) transmission and integrate microring resonator circuit. It consists of the stacked layers of silicon-graphene-gold materials known as a plasmonic island placed at the center of the modified add-drop filter. The input light power from the remote LiFi can enter into the island via a silicon waveguide. The optimized input power is obtained by the coupled micro-lens on the silicon surface. The induced electron mobility generated in the gold layer by the interfacing layer between silicon-graphene. This is the reversed interaction of the whispering gallery mode light power of the microring system, in which the generated power is fed back into the microring circuit. The electron mobility is the required output and obtained at the device ports and characterized for the remote current source applications. The obtained calculation results have shown that the output current of ∼2.5 × 10-11 AW-1, with the gold height of 1.0 μm and the input power of 5.0 W is obtained at the output port, which is shown the potential application for a short range free pace remote charger.

  14. 77 FR 65596 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... to offer remote multi-cast ITCH Wave Ports for clients co-located at other third party data centers... delivery of third party market data to market center clients via a wireless network using millimeter wave... Multi- cast ITCH Wave Ports for clients co-located at other third-party data centers, through which...

  15. Guided Seismic Waves: Possible Diagnostics for Hot Plumes in the Mantle

    NASA Astrophysics Data System (ADS)

    Evans, J. R.; Julian, B. R.; Foulger, G. R.

    2005-12-01

    Seismic waves potentially provide by far the highest resolution view of the three-dimensional structure of the mantle, and the hope of detecting wave-speed anomalies caused by hot or compositionally buoyant mantle plumes has been a major incentive to the development of tomographic seismic techniques. Seismic tomography is limited, however, by the uneven geographical distribution of earthquakes and seismometers, which can produce artificial tomographic wave-speed anomalies that are difficult to distinguish from real structures in the mantle. An alternate approach may be possible, because hot plumes and possibly some compositional upwellings would have low seismic-wave speeds and would act as efficient waveguides over great depth ranges in the mantle. Plume-guided waves would be little affected by bends or other geometric complexities in the waveguides (analogously to French horns and fiber-optic cables), and their dispersion would make them distinctive on seismograms and would provide information on the size and structure of the waveguide. The main unanswered question is whether guided waves in plumes could be excited sufficiently to be observable. Earthquakes do not occur in the deep mantle, but at least two other possible sources of excitation can be imagined: (1) shallow earthquakes at or near plume-fed hotspots; and (2) coupling of plume-guided waves to seismic body waves near the bottom of the mantle. In the first case, downward-traveling guided waves transformed to seismic body waves at the bottom of the waveguide would have to be detected at teleseismic distances. In the second case, upward-traveling guided waves generated by teleseismic body waves would be detected on seismometers at hotspots. Qualitative reasoning based on considerations of reciprocity suggests that the signals in these two situations should be similar in size and appearance. The focusing of seismic core phases at caustics would amplify plume waves excited by either mechanism (1) or (2) at particular epicentral distances. A failure to find such guided waves experimentally could mean either that the waveguides (plumes) do not exist or that the excitation mechanisms and/or seismometer networks are inadequate. Distinguishing these two possibilities would require careful analysis. Anticipated major improvements in seismic instrumentation, such as the EarthScope initiative, make this a propitious time to undertake a search for plume-guided waves in the mantle.

  16. AWG-based WDM-PON monitoring system using an optical switch and a WDM filter

    NASA Astrophysics Data System (ADS)

    Liaw, S.-K.; Lai, Y.-T.; Chang, C.-L.; Shung, O.

    2008-09-01

    A new WDM-PON scheme with real-time monitoring based on a time-sharing method is proposed. It uses an optical time domain reflectometer (OTDR) to monitor multiple ports by integrating an optical switch (OSW) with a dense wavelength division multiplexer (DWDM) at the optical line terminal (OLT) site. Each downstream signal and its corresponding monitoring signal are separated by m times the free-space range (FSR) of an array waveguide grating (AWG). A bit error rate (BER) test in 2.5 Gb/s × 27 km is performed with and without turning on the OTDR. A small power penalty of 0.7 dB is observed compared to the back-to-back measurement.

  17. InP on SOI devices for optical communication and optical network on chip

    NASA Astrophysics Data System (ADS)

    Fedeli, J.-M.; Ben Bakir, B.; Olivier, N.; Grosse, Ph.; Grenouillet, L.; Augendre, E.; Phillippe, P.; Gilbert, K.; Bordel, D.; Harduin, J.

    2011-01-01

    For about ten years, we have been developing InP on Si devices under different projects focusing first on μlasers then on semicompact lasers. For aiming the integration on a CMOS circuit and for thermal issue, we relied on SiO2 direct bonding of InP unpatterned materials. After the chemical removal of the InP substrate, the heterostructures lie on top of silicon waveguides of an SOI wafer with a separation of about 100nm. Different lasers or photodetectors have been achieved for off-chip optical communication and for intra-chip optical communication within an optical network. For high performance computing with high speed communication between cores, we developed InP microdisk lasers that are coupled to silicon waveguide and produced 100μW of optical power and that can be directly modulated up to 5G at different wavelengths. The optical network is based on wavelength selective circuits with ring resonators. InGaAs photodetectors are evanescently coupled to the silicon waveguide with an efficiency of 0.8A/W. The fabrication has been demonstrated at 200mm wafer scale in a microelectronics clean room for CMOS compatibility. For off-chip communication, silicon on InP evanescent laser have been realized with an innovative design where the cavity is defined in silicon and the gain localized in the QW of bonded InP hererostructure. The investigated devices operate at continuous wave regime with room temperature threshold current below 100 mA, the side mode suppression ratio is as high as 20dB, and the fibercoupled output power is {7mW. Direct modulation can be achieved with already 6G operation.

  18. Broadband transverse magnetic pass polarizer with low insertion loss based on silicon nitride waveguide

    NASA Astrophysics Data System (ADS)

    Sharma, Tarun Kumar; Ranganath, Praveen; Nambiar, Siddharth; Selvaraja, Shankar Kumar

    2018-03-01

    A horizontally asymmetric transverse magnetic (TM) pass polarizer is presented. The device passes only TM mode and rejects transverse electric (TE) mode. The proposed device has an asymmetricity in the horizontal direction comprising a direction coupler region with a silicon waveguide, silicon nitride waveguide, and an air gap, all residing on silica. Between three equal width Si waveguides, we have one region filled with air and the other with SiN with unequal optimized widths. The device with its optimal dimensions yields an extremely low insertion loss (IL) of 0.16 dB for TM→TM, while TE is rejected by an IL of >48 dB. The proposed polarizer is operated between C&L bands with a high extinction ratio and broadband width of about 110 nm.

  19. Modal, ray, and beam techniques for analyzing the EM scattering by open-ended waveguide cavities

    NASA Technical Reports Server (NTRS)

    Pathak, Prabhakar H.; Burkholder, Robert J.

    1989-01-01

    The problem of high-frequency electromagnetic (EM) scattering by open-ended waveguide cavities with an interior termination is analyzed via three different approaches. When cavities can be adequately modeled by joining together piecewise separable waveguide sections, a hybrid combination of asymptotic high-frequency and modal techniques is employed. In the case of more arbitrarily shaped waveguide cavities for which modes cannot even be defined in the conventional sense, the geometrical optics ray approach proves to be highly useful. However, at sufficiently high frequencies, both of these approaches tend to become inefficient. Hence, a paraxial Gaussian batch technique, which retains much of the simplicity of the ray approximation but is potentially more efficient, is investigated. Typical numerical results based on the different approaches are discussed.

  20. Realization of optical multimode TSV waveguides for Si-Interposer in 3D-chip-stacks

    NASA Astrophysics Data System (ADS)

    Killge, S.; Charania, S.; Richter, K.; Neumann, N.; Al-Husseini, Z.; Plettemeier, D.; Bartha, J. W.

    2017-05-01

    Optical connectivity has the potential to outperform copper-based TSVs in terms of bandwidth at the cost of more complexity due to the required electro-optical and opto-electrical conversion. The continuously increasing demand for higher bandwidth pushes the breakeven point for a profitable operation to shorter distances. To integrate an optical communication network in a 3D-chip-stack optical through-silicon vertical VIAs (TSV) are required. While the necessary effort for the electrical/optical and vice versa conversion makes it hard to envision an on-chip optical interconnect, a chip-to-chip optical link appears practicable. In general, the interposer offers the potential advantage to realize electro-optical transceivers on affordable expense by specific, but not necessarily CMOS technology. We investigated the realization and characterization of optical interconnects as a polymer based waveguide in high aspect ratio (HAR) TSVs proved on waferlevel. To guide the optical field inside a TSV as optical-waveguide or fiber, its core has to have a higher refractive index than the surrounding material. Comparing different material / technology options it turned out that thermal grown silicon dioxide (SiO2) is a perfect candidate for the cladding (nSiO2 = 1.4525 at 850 nm). In combination with SiO2 as the adjacent polymer layer, the negative resist SU-8 is very well suited as waveguide material (nSU-8 = 1.56) for the core. Here, we present the fabrication of an optical polymer based multimode waveguide in TSVs proved on waferlevel using SU-8 as core and SiO2 as cladding. The process resulted in a defect-free filling of waveguide TSVs with SU-8 core and SiO2 cladding up to aspect ratio (AR) 20:1 and losses less than 3 dB.

  1. Dimensions and Measurements of Debuncher Band 1 and 2 Waveguide-Coax Launchers (Final Version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ding; /Fermilab

    2000-02-15

    This note is a document about dimensions and measurement results of waveguide-coax launchers (Band 1 and 2) installed on the arrays in debuncher cooling upgrade. Shown in Figure 1, 5, 8 and 12 are schematic drawings of launchers in the cross section along the longitudinal direction (beam direction) of the arrays. The unit in these drawings is inch. Note: although there are upper band and lower band for pickup arrays, the launchers are the same to avoid possible confusion during installation. RF Measurements were made on all launchers (port) and printed in hard copies for future reference. Since the measurementmore » results are similar to each other, only a few plots for each type of launcher/band are presented in this document. There are two types of measured S11 parameters. One is the measurement made at the end of design/tuning stage using a straight section of band 1 or 2 waveguide terminated with a cone of absorber. I use 'Original' to denote this kind of measurement. As shown in Figure 2, 6, 9 and 13, the original S11 of all launchers are below or around - 20 db over the full band 1 or 2. The other type of measurement is the one made after these launchers were installed onto the array including elbows and several type N feedthrough or connectors. The kicker arrays were terminated with wedges of absorber. During all measurements (pickup array or kicker array) when one launcher was being measured, all other launchers were terminated with 50 ohm terminator. As shown in Figure 3, 4, 7, 10, 11 and 14 these 'final' S11s are around -15 db.« less

  2. A design framework for teleoperators with kinesthetic feedback

    NASA Technical Reports Server (NTRS)

    Hannaford, Blake

    1989-01-01

    The application of a hybrid two-port model to teleoperators with force and velocity sensing at the master and slave is presented. The interfaces between human operator and master, and between environment and slave, are ports through which the teleoperator is designed to exchange energy between the operator and the environment. By computing or measuring the input-output properties of this two-port network, the hybrid two-port model of an actual or simulated teleoperator system can be obtained. It is shown that the hybrid model (as opposed to other two-port forms) leads to an intuitive representation of ideal teleoperator performace and applies to several teleoperator architectures. Thus measured values of the h matrix or values computed from a simulation can be used to compare performance with th ideal. The frequency-dependent h matrix is computed from a detailed SPICE model of an actual system, and the method is applied to a proposed architecture.

  3. Full Ka Band Waveguide-to-Microstrip Inline Transition Design

    NASA Astrophysics Data System (ADS)

    Li, Jianxing; Li, Lei; Qiao, Yu; Chen, Juan; Chen, Jianzhong; Zhang, Anxue

    2018-05-01

    In this paper, a compact and broadband inline waveguide-to-microstrip transition is proposed to cover the full Ka band. The transition can be segmented from the electric point of view into three building blocks, comprising a microstrip line to rectangular coaxial line, a wedged rectangular coaxial line to ridged waveguide, and a final tapered ridged waveguide impedance transformer to standard waveguide. Both good electrical performance and simple modular assembly without any soldering have been simultaneously obtained. The validation of the design concept has been conducted by numerical simulations and experimental measurements. The experimental results of a fabricated back-to-back transition prototype coincide with the simulated results. It shows that the proposed transition achieves good return loss of lower than 15.5 dB and low insertion loss with a fluctuation between 0.23 to 0.60 dB across the entire Ka band. Details of design considerations and operation mechanism as well as simulation and measurement results are presented.

  4. Goos-Hänchen effect in semiconductor metamaterial waveguide and its application as a biosensor

    NASA Astrophysics Data System (ADS)

    Tang, Tingting; Li, Chaoyang; Luo, Li; Zhang, Yanfen; Li, Jie

    2016-06-01

    We investigate Goos-Hänchen (GH) effect in a prism waveguide coupling structure with semiconductor metamaterial (SMM) of ZnGaO/ZnO multilayer and explore the possibility as a biosensor. The GH effect in three different waveguides and their performances as a refractive index sensor to detect glycerol concentration in water are analyzed. The SMM brings a periodic property of GH shift peaks which is not found in other waveguides. It is also verified that setting coupling layer of the prism waveguide coupling structure as sensing area is an effective method to significantly increase the sensitivity to refractive index variation. A schematic diagram for the biosensor configuration is designed, and the sensitivity distribution for different glycerol water index is given. Calculation results show that in the proposed biosensor the maximum sensitivity reaches 3.2 × 106 μm/RIU and resolution reaches 1.6 × 10-7 (around 1.33306) with high sensitive position sensitive detector.

  5. Synthesis of highly integrated optical network based on microdisk-resonator add-drop filters in silicon-on-insulator technology

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, Andrzej; Dortu, Fabian; Giannone, Domenico; Bogaerts, Wim; Drouard, Emmanuel; Rojo-Romeo, Pedro; Gaffiot, Frederic

    2009-10-01

    We analyze a highly compact optical add-drop filter topology based on a pair of microdisk resonators and a bus waveguide intersection. The filter is further assessed on an integrated optical 4×4 network for optical on-chip communication. The proposed network structure, as compact as 50×50 μm, is fabricated in a CMOS-compatible process on a silicon-on-insulator (SOI) substrate. Finally, the experimental results demonstrate the proper operation of the fabricated devices.

  6. Waveguide bandpass filter with easily adjustable transmission zeros and 3-dB bandwidth

    NASA Astrophysics Data System (ADS)

    Bage, Amit; Das, Sushrut; Murmu, Lakhindar; Pattapu, Udayabhaskar; Biswal, Sonika

    2018-07-01

    This paper presents a compact waveguide bandpass filter with adjustable transmission zeros (TZs) and bandwidth. The design provides the flexibility to place the TZs at the desired locations for better interference rejection. To demonstrate, initially a three-pole bandpass filter has been designed by placing three single slot resonator structures inside a WR-90 waveguide. Next, two additional asymmetrical slot structures have been used with each of the above resonators to generate two TZs, one on each side of the passband. Since three resonators were used, this process results in six asymmetric slot structures those results in six TZs. The final filter operates at 9.98 GHz with a 3-dB bandwidth of 1.02 GHz and TZs at 8.23/8.70/9.16/10.9/11.6 and 13.115 GHz. Equivalent circuits and necessary design equations have been provided. To validate the simulation, the proposed filter has been fabricated and measured. The measured data show good agreement with simulated data.

  7. Transforming guided waves with metamaterial waveguide cores

    NASA Astrophysics Data System (ADS)

    Viaene, S.; Ginis, V.; Danckaert, J.; Tassin, P.

    2016-04-01

    Metamaterials make use of subwavelength building blocks to enhance our control on the propagation of light. To determine the required material properties for a given functionality, i.e., a set of desired light flows inside a metamaterial device, metamaterial designs often rely on a geometrical design tool known as transformation optics. In recent years, applications in integrated photonics motivated several research groups to develop two-dimensional versions of transformation optics capable of routing surface waves along graphene-dielectric and metal-dielectric interfaces. Although guided electromagnetic waves are highly relevant to applications in integrated optics, no consistent transformation-optical framework has so far been developed for slab waveguides. Indeed, the conventional application of transformation optics to dielectric slab waveguides leads to bulky three-dimensional devices with metamaterial implementations both inside and outside of the waveguide's core. In this contribution, we develop a transformationoptical framework that still results in thin metamaterial waveguide devices consisting of a nonmagnetic metamaterial core of varying thickness [Phys. Rev. B 93.8, 085429 (2016)]. We numerically demonstrate the effectiveness and versatility of our equivalence relations with three crucial functionalities: a beam bender, a beam splitter and a conformal lens. Our devices perform well on a qualitative (comparison of fields) and quantitative (comparison of transmitted power) level compared to their bulky counterparts. As a result, the geometrical toolbox of transformation optics may lead to a plethora of integrated metamaterial devices to route guided waves along optical chips.

  8. Low-Power Testing of Losses in Millimeter-Wave Transmission Lines for High-Power Applications

    PubMed Central

    Han, S. T.; Comfoltey, E. N.; Shapiro, M. A.; Sirigiri, J. R.; Tax, D. S.; Temkin, R. J.; Woskov, P. P.; Rasmussen, D. A.

    2008-01-01

    We report the measurement of small losses in transmission line (TL) components intended for high-power millimeter-wave applications. Measurements were made using two different low-power techniques: a coherent technique using a vector network analyzer (VNA) and an incoherent technique using a radiometer. The measured loss in a 140 GHz 12.7 mm diameter TL system, consisting of 1.7 m of circular corrugated waveguide and three miter bends, is dominated by the miter bend loss. The measured loss was 0.3±0.1 dB per miter bend using a VNA; and 0.22±0.1 dB per miter bend using a radiometer. Good agreement between the two measurement techniques implies that both are useful for measuring small losses. To verify the methodology, the VNA technique was employed to measure the extremely small transmission loss in a 170 GHz ITER prototype TL system consisting of three lengths of 1 m, 63.5 mm diameter, circular corrugated waveguide and two miter bends. The measured loss of 0.05±0.02 dB per miter bend may be compared with the theoretical loss of 0.027 dB per miter bend. These results suggest that low-power testing of TL losses, utilizing a small, simple TL system and a VNA, is a reliable method for evaluating performance of low-loss millimeter-wave TL components intended for use in high-power applications. PMID:19081774

  9. Freight Modal Split Modeling: Conceptual Framework, Model Structure, and Data Sources

    DOT National Transportation Integrated Search

    2000-08-01

    This report discusses the modal split model for freight movements within the context of a larger model system that can forecast the effects of port expansions, market changes, and network changes on the statewide transportation network. Specifically,...

  10. Peripheral Venous Access Ports: Outcomes Analysis in 109 Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodner, Leonard J.; Nosher, John L.; Patel, Kaushik M.

    Purpose: To perform a retrospective outcomes analysis of central venous catheters with peripheral venous access ports, with comparison to published data.Methods: One hundred and twelve central venous catheters with peripherally placed access ports were placed under sonographic guidance in 109 patients over a 4-year period. Ports were placed for the administration of chemotherapy, hyperalimentation, long-term antibiotic therapy, gamma-globulin therapy, and frequent blood sampling. A vein in the upper arm was accessed in each case and the catheter was passed to the superior vena cava or right atrium. Povidone iodine skin preparation was used in the first 65 port insertions. Amore » combination of Iodophor solution and povidone iodine solution was used in the last 47 port insertions. Forty patients received low-dose (1 mg) warfarin sodium beginning the day after port insertion. Three patients received higher doses of warfarin sodium for preexistent venous thrombosis. Catheter performance and complications were assessed and compared with published data.Results: Access into the basilic or brachial veins was obtained in all cases. Ports remained functional for a total of 28,936 patient days. The port functioned in 50% of patients until completion of therapy, or the patient's expiration. Ports were removed prior to completion of therapy in 18% of patients. Eleven patients (9.9% of ports placed) suffered an infectious complication (0.38 per thousand catheter-days)-in nine, at the port implantation site, in two along the catheter. In all 11 instances the port was removed. Port pocket infection in the early postoperative period occurred in three patients (4.7%) receiving a Betadine prep vs two patients (4.2%) receiving a standard O.R. prep. This difference was not statistically significant (p = 0.9). Venous thrombosis occurred in three patients (6.8%) receiving warfarin sodium and in two patients (3%) not receiving warfarin sodium. This difference was not statistically significant (p = 0.6). Aspiration occlusion occurred in 13 patients (11.7%). Intracatheter urokinase was infused in eight of these patients and successfully restored catheter function in all but two instances. These complication rates are comparable to or better than those reported with chest ports.Conclusion: Peripheral ports for long-term central venous access placed by interventional radiologists in the interventional radiology suite are as safe and as effective as chest ports.« less

  11. Design of transportation and distribution Oil Palm Trunk of (OPT) in Indonesia

    NASA Astrophysics Data System (ADS)

    Norita, Defi; Arkeman, Yandra

    2018-03-01

    This research initiated from the area of oil palm plantations in Indonesia 13 million hectares, triggering consternation of abundance of oil palm trunk when garden regeneration is done. If 4 percent of the area is rehabilitated every year, almost 100 million cubic feet of oil palm will be trash. Biomass in the form of pellets can be processed from oil palm trunk. It is then disseminated back to the palm oil processing area into biomass. The amount of transportation cost of the used ships and trucks was defined as parameters. So the objective function determined the type and number of ship and truck trips that provide the minimum transportation cost. To optimize logistics transportation network in regional port cluster, combining hub-and-spoke transportation system among regional port with consolidation and dispersing transportation systems between ports and their own hinterlands, a nonlinear optimization model for two-stage logistics system in regional port cluster was introduced to simultaneously determine the following factors: the hinterlands serviced by individual ports and transportation capacity operated between each port and its hinterland, cargo transportation volume and corresponding transportation capacity allocated via a hub port from an original port to a destination port, cargo transportation volume and corresponding transportation capacity allocated directly from an original port to a destination port. Finally, a numerical example is given to demonstrate the application of the proposed model. It can be shown that the solution to the proposed non-linear model can be obtained by transforming it into linear programming models.

  12. Three Dimensionally Interconnected Silicon Nanomembranes for Optical Phased Array (OPA) and Optical True Time Delay (TTD) Applications

    DTIC Science & Technology

    2012-06-01

    Nanophotonic Waveguides," J. Lightwave Technol. 25 (1), 151-156 (2007). [7-4] Yongbo Tang, Zhechao Wang, Lech Wosinski, Urban Westergren, and Sailing...Waveguides," Photonics Journal, IEEE 3 (2), 203-208 (2011). [8-25] Zhechao Wang, Ning Zhu, Yongbo Tang, Lech Wosinski, Daoxin Dai, and Sailing He

  13. [Trial of "Huber Plus" in outpatients with chemotherapy by blood port system].

    PubMed

    Matsumura, Natsuko; Tazumi, Keiko; Kouji, Keiko; Kondo, Motoi; Mizuki, Masao

    2008-03-01

    We evaluated the advantages and disadvantages of Huber Plus through three outpatients treated with central venous (CV) port chemotherapy (FOLFOX). One of the three outpatients first received chemotherapy with safety huber (Huber Plus) in this study, and the huber needle was changed from non-safety to a safety huber (Huber Plus) in two of the three outpatients. All three outpatients were taught about needle removal methods and port care. In patients? education, 1) we used a skin model and training CV port, and 2) dressing materials were used as film dressing plus three-point fixation by Fixomull stretch. As a result, the safety system assured zero incidents. Moreover, the evaluation revealed that operability and pain of Huber Plus were not clinical problems. We suggest that Huber Plus is applicable in outpatient chemotherapy and that our care plan with patients? education might become a standard treatment.

  14. Remote coding scheme based on waveguide Bragg grating in PLC splitter chip for PON monitoring.

    PubMed

    Zhang, Xuan; Lu, Fengjun; Chen, Si; Zhao, Xingqun; Zhu, Min; Sun, Xiaohan

    2016-03-07

    A distributing arranged waveguide Bragg gratings (WBGs) in PLC splitter chip based remote coding scheme is proposed and analyzed for passive optical network (PON) monitoring, by which the management system can identify each drop fiber link through the same reflector in the terminal of each optical network unit, even though there exist several equidistant users. The corresponding coding and capacity models are respectively established and investigated so that we can obtain a minimum number of the WBGs needed under the condition of the distributed structure. Signal-to-noise ratio (SNR) model related to the number of equidistant users is also developed to extend the analyses for the overall performance of the system. Simulation results show the proposed scheme is feasible and allow the monitoring of a 64 users PON with SNR range of 7.5~10.6dB. The scheme can solve some of difficulties of construction site at the lower user cost for PON system.

  15. Recent progress in InP/polymer-based devices for telecom and data center applications

    NASA Astrophysics Data System (ADS)

    Kleinert, Moritz; Zhang, Ziyang; de Felipe, David; Zawadzki, Crispin; Maese Novo, Alejandro; Brinker, Walter; Möhrle, Martin; Keil, Norbert

    2015-02-01

    Recent progress on polymer-based photonic devices and hybrid photonic integration technology using InP-based active components is presented. High performance thermo-optic components, including compact polymer variable optical attenuators and switches are powerful tools to regulate and control the light flow in the optical backbone. Polymer arrayed waveguide gratings integrated with InP laser and detector arrays function as low-cost optical line terminals (OLTs) in the WDM-PON network. External cavity tunable lasers combined with C/L band thinfilm filter, on-chip U-groove and 45° mirrors construct a compact, bi-directional and color-less optical network unit (ONU). A tunable laser integrated with VOAs, TFEs and two 90° hybrids builds the optical front-end of a colorless, dual-polarization coherent receiver. Multicore polymer waveguides and multi-step 45°mirrors are demonstrated as bridging devices between the spatialdivision- multiplexing transmission technology using multi-core fibers and the conventional PLCbased photonic platforms, appealing to the fast development of dense 3D photonic integration.

  16. A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band.

    PubMed

    Albrecht, Boris; Farrera, Pau; Fernandez-Gonzalvo, Xavier; Cristiani, Matteo; de Riedmatten, Hugues

    2014-02-27

    Coherently converting the frequency and temporal waveform of single and entangled photons will be crucial to interconnect the various elements of future quantum information networks. Of particular importance is the quantum frequency conversion of photons emitted by material systems able to store quantum information, so-called quantum memories. There have been significant efforts to implement quantum frequency conversion using nonlinear crystals, with non-classical light from broadband photon-pair sources and solid-state emitters. However, solid state quantum frequency conversion has not yet been achieved with long-lived optical quantum memories. Here we demonstrate an ultra-low-noise solid state photonic quantum interface suitable for connecting quantum memories based on atomic ensembles to the telecommunication fibre network. The interface is based on an integrated-waveguide nonlinear device. We convert heralded single photons at 780 nm from a rubidium-based quantum memory to the telecommunication wavelength of 1,552 nm, showing significant non-classical correlations between the converted photon and the heralding signal.

  17. Photon hopping and nanowire based hybrid plasmonic waveguide and ring-resonator

    PubMed Central

    Gu, Zhiyuan; Liu, Shuai; Sun, Shang; Wang, Kaiyang; Lyu, Quan; Xiao, Shumin; Song, Qinghai

    2015-01-01

    Nanowire based hybrid plasmonic structure plays an important role in achieving nanodevices, especially for the wide band-gap materials. However, the conventional schemes of nanowire based devices such as nano-resonators are usually isolated from the integrated nano-network and have extremely low quality (Q) factors. Here we demonstrate the transmission of waves across a gap in hybrid plasmonic waveguide, which is termed as “photon hopping”. Based on the photon hopping, we show that the emissions from nanodevices can be efficiently collected and conducted by additional nanowires. The collection ratio can be higher than 50% for a wide range of separation distance, transverse shift, and tilt. Moreover, we have also explored the possibility of improving performances of individual devices by nano-manipulating the nanowire to a pseudo-ring. Our calculations show that both Q factor and Purcell factor have been increased by more than an order of magnitude. We believe that our researches will be essential to forming nanolasers and the following nano-networks.

  18. Coupling control based on Adiabatic elimination for densely integrated nano-photonics

    NASA Astrophysics Data System (ADS)

    Mrejen, Michael; Suchowski, Haim; Hatakeyama, Taiki; Wu, Chihhui; Feng, Liang; O'Brien, Kevin; Wang, Yuan; Zhang, Xiang

    2015-03-01

    The ever growing need for energy-efficient and fast communications is driving the development of highly integrated photonic circuits where controlling light at the nanoscale becomes the most critical aspect of information transfer. Here we develop a unique scheme of adiabatic elimination (AE) modulation to actively control the coupling among waveguides for densely integrated photonics. Analogous to atomic systems, AE is achieved by applying a decomposition on a three waveguide coupler, where the two outer waveguides serve as an effective two-mode system with an effective coupling of Veff = [(V*13 + V*23V*12/Δβ12) (V13-V23V12/Δβ23) ]1/2,and the middle waveguide is the equivalent to the intermediate level `dark state'. We experimentally demonstrate the first all optical AE modulation and its ability to control the coupling between the two waveguides by manipulating the mode index of the decoupled middle one. In addition, we show that the strong modes interactions allowed at the nano-scale offer a unique configuration of zero-coupling between all the waveguides, a phenomena that paves the way for ultra-high density photonic integrated circuits where small footprint is of crucial importance.

  19. Multipurpose silicon photonics signal processor core.

    PubMed

    Pérez, Daniel; Gasulla, Ivana; Crudgington, Lee; Thomson, David J; Khokhar, Ali Z; Li, Ke; Cao, Wei; Mashanovich, Goran Z; Capmany, José

    2017-09-21

    Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.Integrated optical circuits today are typically designed for a few special functionalities and require complex design and development procedures. Here, the authors demonstrate a reconfigurable but simple silicon waveguide mesh with different functionalities.

  20. Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide

    NASA Astrophysics Data System (ADS)

    Javadi, Alisa; Ding, Dapeng; Appel, Martin Hayhurst; Mahmoodian, Sahand; Löbl, Matthias Christian; Söllner, Immo; Schott, Rüdiger; Papon, Camille; Pregnolato, Tommaso; Stobbe, Søren; Midolo, Leonardo; Schröder, Tim; Wieck, Andreas Dirk; Ludwig, Arne; Warburton, Richard John; Lodahl, Peter

    2018-05-01

    The spin of an electron is a promising memory state and qubit. Connecting spin states that are spatially far apart will enable quantum nodes and quantum networks based on the electron spin. Towards this goal, an integrated spin-photon interface would be a major leap forward as it combines the memory capability of a single spin with the efficient transfer of information by photons. Here, we demonstrate such an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide. The spin can be deterministically prepared in the ground state with a fidelity of up to 96%. Subsequently, the system is used to implement a single-spin photonic switch, in which the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may enable on-chip photon-photon gates, single-photon transistors and the efficient generation of a photonic cluster state.

  1. Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms

    NASA Astrophysics Data System (ADS)

    Sayrin, Clément; Junge, Christian; Mitsch, Rudolf; Albrecht, Bernhard; O'Shea, Danny; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno

    2015-10-01

    The realization of nanophotonic optical isolators with high optical isolation even at ultralow light levels and low optical losses is an open problem. Here, we employ the link between the local polarization of strongly confined light and its direction of propagation to realize low-loss nonreciprocal transmission through a silica nanofiber at the single-photon level. The direction of the resulting optical isolator is controlled by the spin state of cold atoms. We perform our experiment in two qualitatively different regimes, i.e., with an ensemble of cold atoms where each atom is weakly coupled to the waveguide and with a single atom strongly coupled to the waveguide mode. In both cases, we observe simultaneously high isolation and high forward transmission. The isolator concept constitutes a nanoscale quantum optical analog of microwave ferrite resonance isolators, can be implemented with all kinds of optical waveguides and emitters, and might enable novel integrated optical devices for fiber-based classical and quantum networks.

  2. A cost-effective peripheral venous port system placed at the bedside.

    PubMed

    Finney, R; Albrink, M H; Hart, M B; Rosemurgy, A S

    1992-07-01

    High costs and a paucity of available operating time have led us to seek alternatives to operatively placed vascular access systems. This prospective study is the initial report of a peripheral port system (P.A.S. PORT System, Pharmacia Deltec, Inc.) placed at the bedside. Seventy-nine patients (52 male, 27 female), ages 3-92 years, had ports implanted by surgical residents with attending supervision. Sixty-eight (86%) received the P.A.S. PORT for long-term antibiotics, antifungal, or antiviral therapy; four (5%) for TPN infusion; three (4%) for blood products; two (3%) for chemotherapy; and two (3%) for iv narcotics. Ports were placed in 10 (13%) HIV(+) patients, three (4%) who were fully anticoagulated, and one who was a hemophiliac with a platelet count of zero. Eight patients (10%) developed superficial phlebitis, all of which resolved with nonsteroidal anti-inflammatory agents within 48 hr without port removal. Seven patients (9%) had their port removed due to infection. The average hospital charge to place the P.A.S. PORT System was $1488.00 vs $2811.00 for a tunneled external chest catheter and $3729.00 for the placement of a chest port. Bedside insertion of vascular access devices can be safely performed with acceptable infection rates allowing more efficient use of hospital operating rooms and with substantial cost savings.

  3. Polymeric variable optical attenuators based on magnetic sensitive stimuli materials

    NASA Astrophysics Data System (ADS)

    de Pedro, S.; Cadarso, V. J.; Ackermann, T. N.; Muñoz-Berbel, X.; Plaza, J. A.; Brugger, J.; Büttgenbach, S.; Llobera, A.

    2014-12-01

    Magnetically-actuable, polymer-based variable optical attenuators (VOA) are presented in this paper. The design comprises a cantilever which also plays the role of a waveguide and the input/output alignment elements for simple alignment, yet still rendering an efficient coupling. Magnetic properties have been conferred to these micro-opto-electromechanical systems (MOEMS) by implementing two different strategies: in the first case, a magnetic sensitive stimuli material (M-SSM) is obtained by a combination of polydimethylsiloxane (PDMS) and ferrofluid (FF) in ratios between 14.9 wt % and 29.9 wt %. An M-SSM strip under the waveguide-cantilever, defined with soft lithography (SLT), provides the required actuation capability. In the second case, specific volumes of FF are dispensed at the end of the cantilever tip (outside the waveguide) by means of inkjet printing (IJP), obtaining the required magnetic response while holding the optical transparency of the waveguide-cantilever. In the absence of a magnetic field, the waveguide-cantilever is aligned with the output fiber optics and thus the intrinsic optical losses can be obtained. Numerical simulations, validated experimentally, have shown that, for any cantilever length, the VOAs defined by IJP present lower intrinsic optical losses than their SLT counterparts. Under an applied magnetic field (Bapp), both VOA configurations experience a misalignment between the waveguide-cantilever and the output fiber optics. Thus, the proposed VOAs modulate the output power as a function of the cantilever displacement, which is proportional to Bapp. The experimental results for the three different waveguide-cantilever lengths and six different FF concentrations (three per technology) show maximum deflections of 220 µm at 29.9 wt % of FF for VOASLT and 250 µm at 22.3 wt % FF for VOAIJP, at 0.57 kG for both. These deflections provide maximum actuation losses of 16.1 dB and 18.9 dB for the VOASLT and VOAIJP, respectively.

  4. Particle-in-cell simulation of multipactor discharge on a dielectric in a parallel-plate waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakharov, A. S., E-mail: sakharov-as@mail.ru; Ivanov, V. A.; Konyzhev, M. E.

    2016-06-15

    An original 2D3V (two-dimensional in coordinate space and three-dimensional in velocity space) particle-in-cell code has been developed for simulation of multipactor discharge on a dielectric in a parallelplate metal waveguide with allowance for secondary electron emission (SEE) from the dielectric surface and waveguide walls, finite temperature of secondary electrons, electron space charge, and elastic and inelastic scattering of electrons from the dielectric and metal surfaces. The code allows one to simulate all stages of the multipactor discharge, from the onset of the electron avalanche to saturation. It is shown that the threshold for the excitation of a single-surface multipactor onmore » a dielectric placed in a low-profile waveguide with absorbing walls increases as compared to that in the case of an unbounded dielectric surface due to escape of electrons onto the waveguide walls. It is found that, depending on the microwave field amplitude and the SEE characteristics of the waveguide walls, the multipactor may operate in two modes. In the first mode, which takes place at relatively low microwave amplitudes, a single-surface multipactor develops only on the dielectric, the surface of which acquires a positively potential with respect to the waveguide walls. In the second mode, which occurs at sufficiently high microwave intensities, a single-surface multipactor on the dielectric and a two-surface multipactor between the waveguide walls operate simultaneously. In this case, both the dielectric surface and the interwall space acquire a negative potential. It is shown that electron scattering from the dielectric surface and waveguide walls results in the appearance of high-energy tails in the electron distribution function.« less

  5. Single-Port Video-Assisted Thoracic Surgery for Secondary Spontaneous Pneumothorax: Preliminary Results

    PubMed Central

    Kim, Min-Seok; Yang, Hee Chul; Bae, Mi-Kyung; Cho, Sukki; Kim, Kwhanmien; Jheon, Sanghoon

    2015-01-01

    Background The aim of this study was to evaluate the feasibility of single-port video-assisted thoracic surgery (VATS) in the treatment of secondary spontaneous pneumothorax (SSP). Methods Twenty-four patients who were scheduled to undergo single-port VATS for SSP were studied. The medical records of the patients were retrospectively reviewed. The mean follow-up duration was 26.1±19.8 months. In order to evaluate the feasibility of single-port VATS for SSP, the postoperative results of single-port VATS (n=15) in patients with emphysema were compared with those of emphysematous patients who underwent three-port VATS (n=15) during the study period. Results Single-port VATS was feasible in 19 of 24 patients (79.2%), while an additional port was needed in five patients. In the single-port VATS patients, the median operation time, duration of chest tube drainage, and hospital stay were 84.0 minutes, one day, and two days, respectively. Postoperative complications included prolonged chest tube drainage for more than five days (n=1), wound infection (n=1), and vocal fold palsy (n=1). No recurrence of pneumothorax was observed during the follow-up period. The median operation time, duration of chest tube drainage, and hospital stay of the emphysematous patients who underwent single-port VATS were shorter than those who underwent three-port VATS group (p<0.05 for all parameters). Conclusion Single-port VATS proved to be a feasible procedure in the treatment of patients with secondary spontaneous pneumothorax. PMID:26665104

  6. Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications.

    PubMed

    Shim, Euijae; Chen, Yu; Masmanidis, Sotiris; Li, Mo

    2016-03-04

    Optimal optogenetic perturbation of brain circuit activity often requires light delivery in a precise spatial pattern that cannot be achieved with conventional optical fibers. We demonstrate an implantable silicon-based probe with a compact light delivery system, consisting of silicon nitride waveguides and grating couplers for out-of-plane light emission with high spatial resolution. 473 nm light is coupled into and guided in cm-long waveguide and emitted at the output grating coupler. Using the direct cut-back and out-scattering measurement techniques, the propagation optical loss of the waveguide is measured to be below 3 dB/cm. The grating couplers provide collimated light emission with sufficient irradiance for neural stimulation. Finally, a probe with multisite light delivery with three output grating emitters from a single laser input is demonstrated.

  7. Optical Power Source Derived from Engine Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    1999-01-01

    An optical power source is disclosed that collects the spectra of the light emissions created in a combustion chamber to provide its optical output signals that serve the needs of optical networks. The light spectra is collected by a collection ring serving as an optical waveguide.

  8. On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide

    PubMed Central

    Kang, Zhe; Yuan, Jinhui; Zhang, Xianting; Sang, Xinzhu; Wang, Kuiru; Wu, Qiang; Yan, Binbin; Li, Feng; Zhou, Xian; Zhong, Kangping; Zhou, Guiyao; Yu, Chongxiu; Farrell, Gerald; Lu, Chao; Yaw Tam, Hwa; Wai, P. K. A.

    2016-01-01

    High performance all-optical quantizer based on silicon waveguide is believed to have significant applications in photonic integratable optical communication links, optical interconnection networks, and real-time signal processing systems. In this paper, we propose an integratable all-optical quantizer for on-chip and low power consumption all-optical analog-to-digital converters. The quantization is realized by the strong cross-phase modulation and interference in a silicon-organic hybrid (SOH) slot waveguide based Mach-Zehnder interferometer. By carefully designing the dimension of the SOH waveguide, large nonlinear coefficients up to 16,000 and 18,069 W−1/m for the pump and probe signals can be obtained respectively, along with a low pulse walk-off parameter of 66.7 fs/mm, and all-normal dispersion in the wavelength regime considered. Simulation results show that the phase shift of the probe signal can reach 8π at a low pump pulse peak power of 206 mW and propagation length of 5 mm such that a 4-bit all-optical quantizer can be realized. The corresponding signal-to-noise ratio is 23.42 dB and effective number of bit is 3.89-bit. PMID:26777054

  9. 670 GHz Schottky Diode Based Subharmonic Mixer with CPW Circuits and 70 GHz IF

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam (Inventor); Schlecht, Erich T. (Inventor); Lee, Choonsup (Inventor); Lin, Robert H. (Inventor); Gill, John J. (Inventor); Sin, Seth (Inventor); Mehdi, Imran (Inventor)

    2014-01-01

    A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.

  10. Strut Shaping of 34m Beam Waveguide Antenna for Reductions in Near-Field RF and Noise Temperature

    NASA Technical Reports Server (NTRS)

    Khayatian, Behrouz; Hoppe, Daniel J.; Britcliffe, Michael J.; Gama, Eric

    2012-01-01

    Strut shaping of NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antenna has been implemented to reduce near-field RF exposure while improving the antenna noise temperature. Strut shaping was achieved by introducing an RF shield that does not compromise the structural integrity of the existing antenna. Reduction in the RF near-field level will compensate for the planned transmit power increase of the antenna from 20 kW to 80 kW while satisfying safety requirements for RF exposure. Measured antenna noise temperature was also improved by as much as 1.5 K for the low elevation angles and 0.5 K in other areas.

  11. Generation and transfer of single photons on a photonic crystal chip.

    PubMed

    Englund, Dirk; Faraon, Andrei; Zhang, Bingyang; Yamamoto, Yoshihisa; Vucković, Jelena

    2007-04-30

    We present a basic building block of a quantum network consisting of a quantum dot coupled to a source cavity, which in turn is coupled to a target cavity via a waveguide. The single photon emission from the high-Q/V source cavity is characterized by twelve-fold spontaneous emission (SE) rate enhancement, SE coupling efficiency beta ~ 0.98 into the source cavity mode, and mean wavepacket indistinguishability of ~67%. Single photons are efficiently transferred into the target cavity via the waveguide, with a target/source field intensity ratio of 0.12 +/- 0.01. This system shows great promise as a building block of future on-chip quantum information processing systems.

  12. Freight movement, port facilities, and economic competitiveness.

    DOT National Transportation Integrated Search

    2014-07-01

    This research report examines how the Panama Canal expansion will affect freight at three ports, truck movement : between the ports and inland economic hubs and the economic impacts accompanying the shift in cargo shipping : patterns. Economic impact...

  13. Experimental demonstration of interferometric imaging using photonic integrated circuits.

    PubMed

    Su, Tiehui; Scott, Ryan P; Ogden, Chad; Thurman, Samuel T; Kendrick, Richard L; Duncan, Alan; Yu, Runxiang; Yoo, S J B

    2017-05-29

    This paper reports design, fabrication, and demonstration of a silica photonic integrated circuit (PIC) capable of conducting interferometric imaging with multiple baselines around λ = 1550 nm. The PIC consists of four sets of five waveguides (total of twenty waveguides), each leading to a three-band spectrometer (total of sixty waveguides), after which a tunable Mach-Zehnder interferometer (MZI) constructs interferograms from each pair of the waveguides. A total of thirty sets of interferograms (ten pairs of three spectral bands) is collected by the detector array at the output of the PIC. The optical path difference (OPD) of each interferometer baseline is kept to within 1 µm to maximize the visibility of the interference measurement. We constructed an experiment to utilize the two baselines for complex visibility measurement on a point source and a variable width slit. We used the point source to demonstrate near unity value of the PIC instrumental visibility, and used the variable slit to demonstrate visibility measurement for a simple extended object. The experimental result demonstrates the visibility of baseline 5 and 20 mm for a slit width of 0 to 500 µm in good agreement with theoretical predictions.

  14. Research on performance of three-layer MG-OXC system based on MLAG and OCDM

    NASA Astrophysics Data System (ADS)

    Wang, Yubao; Ren, Yanfei; Meng, Ying; Bai, Jian

    2017-10-01

    At present, as traffic volume which optical transport networks convey and species of traffic grooming methods increase rapidly, optical switching techniques are faced with a series of issues, such as more requests for the number of wavelengths and complicated structure management and implementation. This work introduces optical code switching based on wavelength switching, constructs the three layers multi-granularity optical cross connection (MG-OXC) system on the basis of optical code division multiplexing (OCDM) and presents a new traffic grooming algorithm. The proposed architecture can improve the flexibility of traffic grooming, reduce the amount of used wavelengths and save the number of consumed ports, hence, it can simplify routing device and enhance the performance of the system significantly. Through analyzing the network model of switching structure on multicast layered auxiliary graph (MLAG) and the establishment of traffic grooming links, and the simulation of blocking probability and throughput, this paper shows the excellent performance of this mentioned architecture.

  15. Invisibility Cloak Printed on a Photonic Chip

    PubMed Central

    Feng, Zhen; Wu, Bing-Hong; Zhao, Yu-Xi; Gao, Jun; Qiao, Lu-Feng; Yang, Ai-Lin; Lin, Xiao-Feng; Jin, Xian-Min

    2016-01-01

    Invisibility cloak capable of hiding an object can be achieved by properly manipulating electromagnetic field. Such a remarkable ability has been shown in transformation and ray optics. Alternatively, it may be realistic to create a spatial cloak by means of confining electromagnetic field in three-dimensional arrayed waveguides and introducing appropriate collective curvature surrounding an object. We realize the artificial structure in borosilicate by femtosecond laser direct writing, where we prototype up to 5,000 waveguides to conceal millimeter-scale volume. We characterize the performance of the cloak by normalized cross correlation, tomography analysis and continuous three-dimensional viewing angle scan. Our results show invisibility cloak can be achieved in waveguide optics. Furthermore, directly printed invisibility cloak on a photonic chip may enable controllable study and novel applications in classical and quantum integrated photonics, such as invisualising a coupling or swapping operation with on-chip circuits of their own. PMID:27329510

  16. Eigenvalue equation and core-mode cutoff of weakly guiding tapered fiber as three layer optical waveguide and used as biochemical sensor.

    PubMed

    Linslal, C L; Mohan, P M S; Halder, A; Gangopadhyay, T K

    2012-06-01

    The core-mode cutoff plays a major role in evanescent field absorption based sensors. A method has been proposed to calculate the core-mode cutoff by solving the eigenvalue equations of a weakly guiding three layer optical waveguide graphically. The variation of normalized waveguide parameter (V) is also calculated with different wavelengths at core-mode cutoff. At the first step, theoretical analysis of tapered fiber parameters has been performed for core-mode cutoff. The taper angle of an adiabatic tapered fiber is also analyzed using the length-scale criterion. Secondly, single-mode tapered fiber has been developed to make a precision sensor element suitable for chemical detection. Finally, the sensor element has been used to detect absorption peak of ethylenediamine. Results are presented in which an absorption peak at 1540 nm is observed.

  17. Invisibility Cloak Printed on a Photonic Chip

    NASA Astrophysics Data System (ADS)

    Feng, Zhen; Wu, Bing-Hong; Zhao, Yu-Xi; Gao, Jun; Qiao, Lu-Feng; Yang, Ai-Lin; Lin, Xiao-Feng; Jin, Xian-Min

    2016-06-01

    Invisibility cloak capable of hiding an object can be achieved by properly manipulating electromagnetic field. Such a remarkable ability has been shown in transformation and ray optics. Alternatively, it may be realistic to create a spatial cloak by means of confining electromagnetic field in three-dimensional arrayed waveguides and introducing appropriate collective curvature surrounding an object. We realize the artificial structure in borosilicate by femtosecond laser direct writing, where we prototype up to 5,000 waveguides to conceal millimeter-scale volume. We characterize the performance of the cloak by normalized cross correlation, tomography analysis and continuous three-dimensional viewing angle scan. Our results show invisibility cloak can be achieved in waveguide optics. Furthermore, directly printed invisibility cloak on a photonic chip may enable controllable study and novel applications in classical and quantum integrated photonics, such as invisualising a coupling or swapping operation with on-chip circuits of their own.

  18. Circuit-Switched Memory Access in Photonic Interconnection Networks for High-Performance Embedded Computing

    DTIC Science & Technology

    2010-07-22

    dependent , providing a natural bandwidth match between compute cores and the memory subsystem. • High Bandwidth Dcnsity. Waveguides crossing the chip...simulate this memory access architecture on a 2S6-core chip with a concentrated 64-node network lIsing detailed traces of high-performance embedded...memory modulcs, wc placc memory access poi nts (MAPs) around the pcriphery of the chip connected to thc nctwork. These MAPs, shown in Figure 4, contain

  19. Interceptions of nonindigenous plant pests at US ports of entry and border crossings over a 17-year period

    Treesearch

    Deborah G. McCullough; Timothy T. Work; Joseph F. Cavey; Andrew M. Liebhold; David Marshall

    2006-01-01

    Despite the substantial impacts of nonindigenous plant pests and weeds, relatively little is known about the pathways by which these organisms arrive in the U.S. One source of such information is the Port Information Network (PIN) database, maintained by the U.S. Department of Agriculture, Animal and Plant Health Inspection Service (APHIS) since 1984. The PIN database...

  20. Buried anti resonant reflecting optical waveguide based on porous silicon material for an integrated Mach Zehnder structure

    NASA Astrophysics Data System (ADS)

    Hiraoui, M.; Guendouz, M.; Lorrain, N.; Haji, L.; Oueslati, M.

    2012-11-01

    A buried anti resonant reflecting optical waveguide for an integrated Mach Zehnder structure based on porous silicon material is achieved using a classical photolithography process. Three distinct porous silicon layers are then elaborated in a single step, by varying the porosity (thus the refractive index) and the thickness while respecting the anti-resonance conditions. Simulations and experimental results clearly show the antiresonant character of the buried waveguides. Significant variation of the reflectance and light propagation with different behavior depending on the polarization and the Mach Zehnder dimensions is obtained. Finally, we confirm the feasibility of this structure for sensing applications.

  1. Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer

    NASA Astrophysics Data System (ADS)

    Helal, Alaa N. Abu; Taya, Sofyan A.; Elwasife, Khitam Y.

    2018-06-01

    The dispersion equation of an asymmetric three-layer slab waveguide, in which all layers are chiral materials is presented. Then, the dispersion equation of a symmetric slab waveguide, in which the claddings are chiral materials and the core layer is negative index material, is derived. Normalized cut-off frequencies, field profile, and energies flow of right-handed and left-handed circularly polarized modes are derived and plotted. We consider both odd and even guided modes. Numerical results of guided low-order modes are provided. Some novel features, such as abnormal dispersion curves, are found.

  2. Electromagnetic Characterization of Materials Using a Dual Chambered High Temperature Waveguide

    DTIC Science & Technology

    to just one day through simultaneous measurement of the sample and the empty second chamber. A vector network analyzer (VNA) will be used to run X-band...calculated from the Nicolson-Ross-Weir inversion algorithm for computing permittivity and permeability using VNA measured S-parameters at increasing temperatures.

  3. Optical MEMS platform for low-cost on-chip integration of planar light circuits and optical switching

    NASA Astrophysics Data System (ADS)

    German, Kristine A.; Kubby, Joel; Chen, Jingkuang; Diehl, James; Feinberg, Kathleen; Gulvin, Peter; Herko, Larry; Jia, Nancy; Lin, Pinyen; Liu, Xueyuan; Ma, Jun; Meyers, John; Nystrom, Peter; Wang, Yao Rong

    2004-07-01

    Xerox Corporation has developed a technology platform for on-chip integration of latching MEMS optical waveguide switches and Planar Light Circuit (PLC) components using a Silicon On Insulator (SOI) based process. To illustrate the current state of this new technology platform, working prototypes of a Reconfigurable Optical Add/Drop Multiplexer (ROADM) and a l-router will be presented along with details of the integrated latching MEMS optical switches. On-chip integration of optical switches and PLCs can greatly reduce the size, manufacturing cost and operating cost of multi-component optical equipment. It is anticipated that low-cost, low-overhead optical network products will accelerate the migration of functions and services from high-cost long-haul markets to price sensitive markets, including networks for metropolitan areas and fiber to the home. Compared to the more common silica-on-silicon PLC technology, the high index of refraction of silicon waveguides created in the SOI device layer enables miniaturization of optical components, thereby increasing yield and decreasing cost projections. The latching SOI MEMS switches feature moving waveguides, and are advantaged across multiple attributes relative to alternative switching technologies, such as thermal optical switches and polymer switches. The SOI process employed was jointly developed under the auspice of the NIST APT program in partnership with Coventor, Corning IntelliSense Corp., and MicroScan Systems to enable fabrication of a broad range of free space and guided wave MicroOptoElectroMechanical Systems (MOEMS).

  4. Estimation of the full marginal costs of port related truck traffic.

    PubMed

    Berechman, Joseph

    2009-11-01

    NY region is expected to grow by additional 1 million people by 2020, which translates into roughly 70 million more tons of goods to be delivered annually. Due to lack of rail capacity, mainly trucks will haul this volume of freight, challenging an already much constrained highway network. What are the total costs associated with this additional traffic, in particular, congestion, safety and emission? Since a major source of this expected flow is the Port of New York-New Jersey, this paper focuses on the estimation of the full marginal costs of truck traffic resulting from the further expansion of the port's activities.

  5. Fiber optic reference frequency distribution to remote beam waveguide antennas

    NASA Technical Reports Server (NTRS)

    Calhoun, Malcolm; Kuhnle, Paul; Law, Julius

    1995-01-01

    In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.

  6. Fiber optic reference frequency distribution to remote beam waveguide antennas

    NASA Astrophysics Data System (ADS)

    Calhoun, Malcolm; Kuhnle, Paul; Law, Julius

    1995-05-01

    In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.

  7. Measurement of ultrafast optical Kerr effect of Ge-Sb-Se chalcogenide slab waveguides by the beam self-trapping technique

    NASA Astrophysics Data System (ADS)

    Kuriakose, Tintu; Baudet, Emeline; Halenkovič, Tomáš; Elsawy, Mahmoud M. R.; Němec, Petr; Nazabal, Virginie; Renversez, Gilles; Chauvet, Mathieu

    2017-11-01

    We present a reliable and original experimental technique based on the analysis of beam self-trapping to measure ultrafast optical nonlinearities in planar waveguides. The technique is applied to the characterization of Ge-Sb-Se chalcogenide films that allow Kerr induced self-focusing and soliton formation. Linear and nonlinear optical constants of three different chalcogenide waveguides are studied at 1200 and 1550 nm in femtosecond regime. Waveguide propagation loss and two photon absorption coefficients are determined by transmission analysis. Beam broadening and narrowing results are compared with simulations of the nonlinear Schrödinger equation solved by BPM method to deduce the Kerr n2 coefficients. Kerr optical nonlinearities obtained by our original technique compare favorably with the values obtained by Z-scan technique. Nonlinear refractive index as high as (69 ± 11) × 10-18m2 / W is measured in Ge12.5Sb25Se62.5 at 1200 nm with low nonlinear absorption and low propagation losses which reveals the great characteristics of our waveguides for ultrafast all optical switching and integrated photonic devices.

  8. Roughness measurements on coupling structures for optical interconnections integrated on a printed circuit board

    NASA Astrophysics Data System (ADS)

    Hendrickx, Nina; Van Erps, Jürgen; Suyal, Himanshu; Taghizadeh, Mohammad; Thienpont, Hugo; Van Daele, Peter

    2006-04-01

    In this paper, laser ablation (at UGent), deep proton writing (at VUB) and laser direct writing (at HWU) are presented as versatile technologies that can be used for the fabrication of coupling structures for optical interconnections integrated on a printed circuit board (PCB). The optical layer, a highly cross-linked acrylate based polymer, is applied on an FR4 substrate. Both laser ablation and laser direct writing are used for the definition of arrays of multimode optical waveguides, which guide the light in the plane of the optical layer. In order to couple light vertically in/out of the plane of the optical waveguides, coupling structures have to be integrated into the optical layer. Out-of-plane turning mirrors, that deflect the light beam over 90°, are used for this purpose. The surface roughness and angle of three mirror configurations are evaluated: a laser ablated one that is integrated into the optical waveguide, a laser direct written one that is also directly written onto the waveguide and a DPW insert that is plugged into a cavity into the waveguiding layer.

  9. Maritime security report. June 1999 [Inter-American Port Security Program

    DOT National Transportation Integrated Search

    1999-06-01

    Three international port security training courses were organized and managed by the U.S. Maritime Administration (MARAD) and conducted during the fall of 1998 in Panama, Peru, and Barbados as principal activities of the Inter-American Port Security ...

  10. High-performance polymer waveguide devices via low-cost direct photolithography process

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Shustack, Paul J.; Garner, Sean M.

    2002-09-01

    All-optical networks provide unique opportunities for polymer waveguide devices because of their excellent mechanical, thermo-optic, and electro-optic properties. Polymer materials and components have been viewed as a viable solution for metropolitan and local area networks where high volume and low cost components are needed. In this paper, we present our recent progress on the design and development of photoresist-like highly fluorinated maleimide copolymers including waveguide fabrication and optical testing. We have developed and synthesized a series of thermally stable, (Tg>150 oC, Td>300 oC) highly fluorinated (>50%) maleimide copolymers by radical co-polymerization of halogenated maleimides with various halogenated co-monomers. A theoretical correlation between optical loss and different co-polymer structures has been quantitatively established from C-H overtone analysis. We studied this correlation through design and manipulation of the copolymer structure by changing the primary properties such as molecular weight, copolymer composition, copolymer sequence distribution, and variations of the side chain including photochemically functional side units. Detailed analysis has been obtained using various characterization methods such as (H, C13, F19) NMR, UV-NIR, FTIR, GPC and so forth. The co-polymers exhibit excellent solubility in ketone solvents and high quality thin films can be prepared by spin coating. The polymer films were found to have a refractive index range of 1.42-1.67 and optical loss in the range of 0.2 to 0.4 dB/cm at 1550nm depending on the composition as extrapolated from UV-NIR spectra. When glycidyl methacrylate is incorporated into the polymer backbone, the material behaves like a negative photoresist with the addition of cationic photoinitiator. The final crosslinked waveguides show excellent optical and thermal properties. The photolithographic processing of the highly fluorinated copolymer material was examined in detail using in-situ FTIR. The influence of various polymer

  11. A self-restorable architecture for bidirectional wavelength-division-multiplexed passive optical network with colorless ONUs

    NASA Astrophysics Data System (ADS)

    Lee, Kwanil; Lee, Sang Bae; Lee, Ju Han; Han, Young-Geun; Mun, Sil-Gu; Lee, Sang-Mook; Lee, Chang-Hee

    2007-04-01

    We propose and experimentally demonstrate a novel protection scheme for wavelength-division-multiplexed passive optical network (WDM-PON) employing colorless optical transceivers. The proposed network employs 2 × N arrayed waveguide grating (AWG) to utilize its routing characteristics. The colorless operation is achieved by using wavelength-locked Fabry-Perot laser diodes (FP-LDs) injected with spectrum-sliced amplified spontaneous emission (ASE) light. The experimental results show that the restoration can be achieved within 8 ms against the feeder fiber fault and the power penalty introduced by the restoration process is negligible.

  12. Molecular transport network security using multi-wavelength optical spins.

    PubMed

    Tunsiri, Surachai; Thammawongsa, Nopparat; Mitatha, Somsak; Yupapin, Preecha P

    2016-01-01

    Multi-wavelength generation system using an optical spin within the modified add-drop optical filter known as a PANDA ring resonator for molecular transport network security is proposed. By using the dark-bright soliton pair control, the optical capsules can be constructed and applied to securely transport the trapped molecules within the network. The advantage is that the dark and bright soliton pair (components) can securely propagate for long distance without electromagnetic interference. In operation, the optical intensity from PANDA ring resonator is fed into gold nano-antenna, where the surface plasmon oscillation between soliton pair and metallic waveguide is established.

  13. Control of acoustic absorption in one-dimensional scattering by resonant scatterers

    NASA Astrophysics Data System (ADS)

    Merkel, A.; Theocharis, G.; Richoux, O.; Romero-García, V.; Pagneux, V.

    2015-12-01

    We experimentally report perfect acoustic absorption through the interplay of the inherent losses and transparent modes with high Q factor. These modes are generated in a two-port, one-dimensional waveguide, which is side-loaded by isolated resonators of moderate Q factor. In symmetric structures, we show that in the presence of small inherent losses, these modes lead to coherent perfect absorption associated with one-sided absorption slightly larger than 0.5. In asymmetric structures, near perfect one-sided absorption is possible (96%) with a deep sub-wavelength sample ( λ / 28 , where λ is the wavelength of the sound wave in the air). The control of strong absorption by the proper tuning of the radiation leakage of few resonators with weak losses will open possibilities in various wave-control devices.

  14. IP Network Design and Implementation for the Caltech-USGS Element of TriNet

    NASA Astrophysics Data System (ADS)

    Johnson, M. L.; Busby, R.; Watkins, M.; Schwarz, S.; Hauksson, E.

    2001-12-01

    The new seismic network IP numbering scheme for the Caltech-USGS element of TriNet is designed to provide emergency response plans for computer outages and/or telemetry circuit failures so that data acquisition may continue with minimal interruption. IP numbers from the seismic stations through the Caltech acquisition machines are numbered using private, non-routable IP addresses, which allows the network administrator to create redundancy in the network design, more freedom in choosing IP numbers, and uniformity in the LAN and WAN network addressing. The network scheme used by the Caltech-USGS element of TriNet is designed to create redundancy and load sharing over three or more T1 circuits. A T1 circuit can support 80 dataloggers sending data at a design rate of 19.2 kbps or 120 dataloggers transmitting at a nominal rate of 12.8 kbps. During a circuit detour, the 80 dataloggers on the failed T1 are equally divided between the remaining two circuits. This increases the loads on the remaining two circuits to 120 dataloggers, which is the maximum load each T1 can handle at the nominal rate. Each T1 circuit has a router interface onto a LAN at Caltech with an independent subnet address. Some devices, such as Solaris computers, allow a single interface to be numbered with several IP addresses, a so called "multinetted" interface. This allows the central acquisition computers to appear with distinct addresses that are routable via different T1 circuits, but simplifies the physical cables between devices. We identify these T1 circuits as T1-1, T1-2, and T1-3. At the remote end, each Frame Relay Access Device (FRAD) and connected datalogger(s) is a subnetted LAN. The numbering is arranged so the second octet in the LAN IP address of the FRAD and datalogger identify the datalogger's primary and alternate T1 circuits. For example; a LAN with an IP address of 10.12.0.0/24 has T1-1 as its primary T1, and T1-2 as its alternate circuit. Stations with this number scheme are sometimes referred to as group "12". LANs with IP addresses of 10.23.0.0/24 have T1-2 as the primary circuit, and T1-3 as the alternate circuit. Static routes on the acquisition system are used to direct traffic through the primary T1. The network can operate in one of three modes. The most common and desirable mode is "normal", where all three T1's are operational and Caltech has both a primary and secondary central acquisition system running. The second mode is a "failover", where the primary acquisition system is down (due to maintenance or failure) and the secondary acquisition system assumes the primary role. This includes sending acknowledgments to dataloggers and multicasts to the rest of the network. The third mode is a circuit detour. The port numbers on the central acquisition system for the dataloggers on the failed T1 are changed to match the auxiliary ports on the dataloggers. This allows for the auxiliary ports on the dataloggers to receive acknowledgements from the acquiring system through the detoured circuit. The static routes on the system are changed to go through the detoured circuit as specified by the group's IP numbers. At this point the two working T1's will be running at full capacity but the data acquisition will continue with minimal interruption while the third T1 is being restored. The primary acquisition computer continues to listen for data on the failed T1 should things improve spontaneously.

  15. Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics

    PubMed Central

    Bian, Yusheng; Guo, Feng; Yang, Shujie; Mao, Zhangming; Bachman, Hunter; Tang, Shi-Yang; Ren, Liqiang; Zhang, Bin; Gong, Jianying; Guo, Xiasheng

    2017-01-01

    The precise manipulation of acoustic fields in microfluidics is of critical importance for the realization of many biomedical applications. Despite the tremendous efforts devoted to the field of acoustofluidics during recent years, dexterous control, with an arbitrary and complex acoustic wavefront, in a prescribed, microscale region is still out of reach. Here, we introduce the concept of acoustofluidic waveguide, a three-dimensional compact configuration that is capable of locally guiding acoustic waves into a fluidic environment. Through comprehensive numerical simulations, we revealed the possibility of forming complex field patterns with defined pressure nodes within a highly localized, pre-determined region inside the microfluidic chamber. We also demonstrated the tunability of the acoustic field profile through controlling the size and shape of the waveguide geometry, as well as the operational frequency of the acoustic wave. The feasibility of the waveguide concept was experimentally verified via microparticle trapping and patterning. Our acoustofluidic waveguiding structures can be readily integrated with other microfluidic configurations and can be further designed into more complex types of passive acoustofluidic devices. The waveguide platform provides a promising alternative to current acoustic manipulation techniques and is useful in many applications such as single-cell analysis, point-of-care diagnostics, and studies of cell–cell interactions. PMID:29358901

  16. Organic-inorganic hybrid material SUNCONNECT® for photonic integrated circuit

    NASA Astrophysics Data System (ADS)

    Nawata, Hideyuki; Oshima, Juro; Kashino, Tsubasa

    2018-02-01

    In this paper, we report the feature and properties about organic-inorganic hybrid material, "SUNCONNECT®" for photonic integrated circuit. "SUNCONNECT®" materials have low propagation loss at 1310nm (0.29dB/cm) and 1550nm (0.45dB/cm) respectively. In addition, the material has high thermal resistance both high temperature annealing test at 300°C and also 260°C solder heat resistance test. For actual device application, high reliability is required. 85°C /85% test was examined by using multi-mode waveguide. As a result, it indicated that variation of insertion loss property was not changed significantly after high temperature / high humidity test. For the application to photonic integrated circuit, it was demonstrated to fabricate polymer optical waveguide by using three different methods. Single-micron core pattern can be fabricated on cladding layer by using UV lithography with proximity gap exposure. Also, single-mode waveguide can be also fabricated with over cladding. On the other hands, "Mosquito method" and imprint method can be applied to fabricate polymer optical waveguide. Remarkably, these two methods can fabricate gradedindex type optical waveguide without using photo mask. In order to evaluate the optical performance, NFP's observation, measurement of insertion loss and propagation loss by cut-back methods were carried out by using each waveguide sample.

  17. Supply Chain Vulnerability Analysis Using Scenario-Based Input-Output Modeling: Application to Port Operations.

    PubMed

    Thekdi, Shital A; Santos, Joost R

    2016-05-01

    Disruptive events such as natural disasters, loss or reduction of resources, work stoppages, and emergent conditions have potential to propagate economic losses across trade networks. In particular, disruptions to the operation of container port activity can be detrimental for international trade and commerce. Risk assessment should anticipate the impact of port operation disruptions with consideration of how priorities change due to uncertain scenarios and guide investments that are effective and feasible for implementation. Priorities for protective measures and continuity of operations planning must consider the economic impact of such disruptions across a variety of scenarios. This article introduces new performance metrics to characterize resiliency in interdependency modeling and also integrates scenario-based methods to measure economic sensitivity to sudden-onset disruptions. The methods will be demonstrated on a U.S. port responsible for handling $36.1 billion of cargo annually. The methods will be useful to port management, private industry supply chain planning, and transportation infrastructure management. © 2015 Society for Risk Analysis.

  18. Ultrapure glass optical waveguide: Development in microgravity by the sol gel process

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.; Debsikdar, J. C.; Beam, T.

    1983-01-01

    The sol-gel process for the preparation of homogeneous gels in three binary oxide systems was investigated. The glass forming ability of certain compositions in the selected oxide systems (SiO-GeO2, GeO2-PbO, and SiO2-TiO2) were studied based on their potential importance in the design of optical waveguide at longer wavelengths.

  19. Efficient analysis of three dimensional EUV mask induced imaging artifacts using the waveguide decomposition method

    NASA Astrophysics Data System (ADS)

    Shao, Feng; Evanschitzky, Peter; Fühner, Tim; Erdmann, Andreas

    2009-10-01

    This paper employs the Waveguide decomposition method as an efficient rigorous electromagnetic field (EMF) solver to investigate three dimensional mask-induced imaging artifacts in EUV lithography. The major mask diffraction induced imaging artifacts are first identified by applying the Zernike analysis of the mask nearfield spectrum of 2D lines/spaces. Three dimensional mask features like 22nm semidense/dense contacts/posts, isolated elbows and line-ends are then investigated in terms of lithographic results. After that, the 3D mask-induced imaging artifacts such as feature orientation dependent best focus shift, process window asymmetries, and other aberration-like phenomena are explored for the studied mask features. The simulation results can help lithographers to understand the reasons of EUV-specific imaging artifacts and to devise illumination and feature dependent strategies for their compensation in the optical proximity correction (OPC) for EUV masks. At last, an efficient approach using the Zernike analysis together with the Waveguide decomposition technique is proposed to characterize the impact of mask properties for the future OPC process.

  20. Estimating economic impacts of regulatory changes to U.S. port operations

    DOT National Transportation Integrated Search

    2007-03-01

    This report describes a framework constructed to assist in understanding the long run : impacts of regulations proposed by the US Coast Guard on domestic marine ports. The : port impacts considered pertain to cost, time and reliability. These three f...

Top