Sample records for wavelength assignment problem

  1. Multicasting for all-optical multifiber networks

    NASA Astrophysics Data System (ADS)

    Kã¶Ksal, Fatih; Ersoy, Cem

    2007-02-01

    All-optical wavelength-routed WDM WANs can support the high bandwidth and the long session duration requirements of the application scenarios such as interactive distance learning or on-line diagnosis of patients simultaneously in different hospitals. However, multifiber and limited sparse light splitting and wavelength conversion capabilities of switches result in a difficult optimization problem. We attack this problem using a layered graph model. The problem is defined as a k-edge-disjoint degree-constrained Steiner tree problem for routing and fiber and wavelength assignment of k multicasts. A mixed integer linear programming formulation for the problem is given, and a solution using CPLEX is provided. However, the complexity of the problem grows quickly with respect to the number of edges in the layered graph, which depends on the number of nodes, fibers, wavelengths, and multicast sessions. Hence, we propose two heuristics layered all-optical multicast algorithm [(LAMA) and conservative fiber and wavelength assignment (C-FWA)] to compare with CPLEX, existing work, and unicasting. Extensive computational experiments show that LAMA's performance is very close to CPLEX, and it is significantly better than existing work and C-FWA for nearly all metrics, since LAMA jointly optimizes routing and fiber-wavelength assignment phases compared with the other candidates, which attack the problem by decomposing two phases. Experiments also show that important metrics (e.g., session and group blocking probability, transmitter wavelength, and fiber conversion resources) are adversely affected by the separation of two phases. Finally, the fiber-wavelength assignment strategy of C-FWA (Ex-Fit) uses wavelength and fiber conversion resources more effectively than the First Fit.

  2. Performance evaluation of distributed wavelength assignment in WDM optical networks

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Tomohiro; Wang, Xi; Morikawa, Hiroyuki; Aoyama, Tomonori

    2004-04-01

    In WDM wavelength routed networks, prior to a data transfer, a call setup procedure is required to reserve a wavelength path between the source-destination node pairs. A distributed approach to a connection setup can achieve a very high speed, while improving the reliability and reducing the implementation cost of the networks. However, along with many advantages, several major challenges have been posed by the distributed scheme in how the management and allocation of wavelength could be efficiently carried out. In this thesis, we apply a distributed wavelength assignment algorithm named priority based wavelength assignment (PWA) that was originally proposed for the use in burst switched optical networks to the problem of reserving wavelengths of path reservation protocols in the distributed control optical networks. Instead of assigning wavelengths randomly, this approach lets each node select the "safest" wavelengths based on the information of wavelength utilization history, thus unnecessary future contention is prevented. The simulation results presented in this paper show that the proposed protocol can enhance the performance of the system without introducing any apparent drawbacks.

  3. Wavelength assignment algorithm considering the state of neighborhood links for OBS networks

    NASA Astrophysics Data System (ADS)

    Tanaka, Yu; Hirota, Yusuke; Tode, Hideki; Murakami, Koso

    2005-10-01

    Recently, Optical WDM technology is introduced into backbone networks. On the other hand, as the future optical switching scheme, Optical Burst Switching (OBS) systems become a realistic solution. OBS systems do not consider buffering in intermediate nodes. Thus, it is an important issue to avoid overlapping wavelength reservation between partially interfered paths. To solve this problem, so far, the wavelength assignment scheme which has priority management tables has been proposed. This method achieves the reduction of burst blocking probability. However, this priority management table requires huge memory space. In this paper, we propose a wavelength assignment algorithm that reduces both the number of priority management tables and burst blocking probability. To reduce priority management tables, we allocate and manage them for each link. To reduce burst blocking probability, our method announces information about the change of their priorities to intermediate nodes. We evaluate its performance in terms of the burst blocking probability and the reduction rate of priority management tables.

  4. Wavelength converter placement for different RWA algorithms in wavelength-routed all-optical networks

    NASA Astrophysics Data System (ADS)

    Chu, Xiaowen; Li, Bo; Chlamtac, Imrich

    2002-07-01

    Sparse wavelength conversion and appropriate routing and wavelength assignment (RWA) algorithms are the two key factors in improving the blocking performance in wavelength-routed all-optical networks. It has been shown that the optimal placement of a limited number of wavelength converters in an arbitrary mesh network is an NP complete problem. There have been various heuristic algorithms proposed in the literature, in which most of them assume that a static routing and random wavelength assignment RWA algorithm is employed. However, the existing work shows that fixed-alternate routing and dynamic routing RWA algorithms can achieve much better blocking performance. Our study in this paper further demonstrates that the wavelength converter placement and RWA algorithms are closely related in the sense that a well designed wavelength converter placement mechanism for a particular RWA algorithm might not work well with a different RWA algorithm. Therefore, the wavelength converter placement and the RWA have to be considered jointly. The objective of this paper is to investigate the wavelength converter placement problem under fixed-alternate routing algorithm and least-loaded routing algorithm. Under the fixed-alternate routing algorithm, we propose a heuristic algorithm called Minimum Blocking Probability First (MBPF) algorithm for wavelength converter placement. Under the least-loaded routing algorithm, we propose a heuristic converter placement algorithm called Weighted Maximum Segment Length (WMSL) algorithm. The objective of the converter placement algorithm is to minimize the overall blocking probability. Extensive simulation studies have been carried out over three typical mesh networks, including the 14-node NSFNET, 19-node EON and 38-node CTNET. We observe that the proposed algorithms not only outperform existing wavelength converter placement algorithms by a large margin, but they also can achieve almost the same performance comparing with full wavelength conversion under the same RWA algorithm.

  5. An improved approximate network blocking probability model for all-optical WDM Networks with heterogeneous link capacities

    NASA Astrophysics Data System (ADS)

    Khan, Akhtar Nawaz

    2017-11-01

    Currently, analytical models are used to compute approximate blocking probabilities in opaque and all-optical WDM networks with the homogeneous link capacities. Existing analytical models can also be extended to opaque WDM networking with heterogeneous link capacities due to the wavelength conversion at each switch node. However, existing analytical models cannot be utilized for all-optical WDM networking with heterogeneous structure of link capacities due to the wavelength continuity constraint and unequal numbers of wavelength channels on different links. In this work, a mathematical model is extended for computing approximate network blocking probabilities in heterogeneous all-optical WDM networks in which the path blocking is dominated by the link along the path with fewer number of wavelength channels. A wavelength assignment scheme is also proposed for dynamic traffic, termed as last-fit-first wavelength assignment, in which a wavelength channel with maximum index is assigned first to a lightpath request. Due to heterogeneous structure of link capacities and the wavelength continuity constraint, the wavelength channels with maximum indexes are utilized for minimum hop routes. Similarly, the wavelength channels with minimum indexes are utilized for multi-hop routes between source and destination pairs. The proposed scheme has lower blocking probability values compared to the existing heuristic for wavelength assignments. Finally, numerical results are computed in different network scenarios which are approximately equal to values obtained from simulations. Since January 2016, he is serving as Head of Department and an Assistant Professor in the Department of Electrical Engineering at UET, Peshawar-Jalozai Campus, Pakistan. From May 2013 to June 2015, he served Department of Telecommunication Engineering as an Assistant Professor at UET, Peshawar-Mardan Campus, Pakistan. He also worked as an International Internship scholar in the Fukuda Laboratory, National Institute of Informatics, Tokyo, Japan on the topic large-scale simulation for internet topology analysis. His research interests include design and analysis of optical WDM networks, network algorithms, network routing, and network resource optimization problems.

  6. Multicast Routing and Wavelength Assignment with Shared Protection in Multi-Fiber WDM Mesh Networks: Optimal and Heuristic Solutions

    NASA Astrophysics Data System (ADS)

    Woradit, Kampol; Guyot, Matthieu; Vanichchanunt, Pisit; Saengudomlert, Poompat; Wuttisittikulkij, Lunchakorn

    While the problem of multicast routing and wavelength assignment (MC-RWA) in optical wavelength division multiplexing (WDM) networks has been investigated, relatively few researchers have considered network survivability for multicasting. This paper provides an optimization framework to solve the MC-RWA problem in a multi-fiber WDM network that can recover from a single-link failure with shared protection. Using the light-tree (LT) concept to support multicast sessions, we consider two protection strategies that try to reduce service disruptions after a link failure. The first strategy, called light-tree reconfiguration (LTR) protection, computes a new multicast LT for each session affected by the failure. The second strategy, called optical branch reconfiguration (OBR) protection, tries to restore a logical connection between two adjacent multicast members disconnected by the failure. To solve the MC-RWA problem optimally, we propose an integer linear programming (ILP) formulation that minimizes the total number of fibers required for both working and backup traffic. The ILP formulation takes into account joint routing of working and backup traffic, the wavelength continuity constraint, and the limited splitting degree of multicast-capable optical cross-connects (MC-OXCs). After showing some numerical results for optimal solutions, we propose heuristic algorithms that reduce the computational complexity and make the problem solvable for large networks. Numerical results suggest that the proposed heuristic yields efficient solutions compared to optimal solutions obtained from exact optimization.

  7. Multipoint to multipoint routing and wavelength assignment in multi-domain optical networks

    NASA Astrophysics Data System (ADS)

    Qin, Panke; Wu, Jingru; Li, Xudong; Tang, Yongli

    2018-01-01

    In multi-point to multi-point (MP2MP) routing and wavelength assignment (RWA) problems, researchers usually assume the optical networks to be a single domain. However, the optical networks develop toward to multi-domain and larger scale in practice. In this context, multi-core shared tree (MST)-based MP2MP RWA are introduced problems including optimal multicast domain sequence selection, core nodes belonging in which domains and so on. In this letter, we focus on MST-based MP2MP RWA problems in multi-domain optical networks, mixed integer linear programming (MILP) formulations to optimally construct MP2MP multicast trees is presented. A heuristic algorithm base on network virtualization and weighted clustering algorithm (NV-WCA) is proposed. Simulation results show that, under different traffic patterns, the proposed algorithm achieves significant improvement on network resources occupation and multicast trees setup latency in contrast with the conventional algorithms which were proposed base on a single domain network environment.

  8. A new routing enhancement scheme based on node blocking state advertisement in wavelength-routed WDM networks

    NASA Astrophysics Data System (ADS)

    Hu, Peigang; Jin, Yaohui; Zhang, Chunlei; He, Hao; Hu, WeiSheng

    2005-02-01

    The increasing switching capacity brings the optical node with considerable complexity. Due to the limitation in cost and technology, an optical node is often designed with partial switching capability and partial resource sharing. It means that the node is of blocking to some extent, for example multi-granularity switching node, which in fact is a structure using pass wavelength to reduce the dimension of OXC, and partial sharing wavelength converter (WC) OXC. It is conceivable that these blocking nodes will have great effects on the problem of routing and wavelength assignment. Some previous works studied the blocking case, partial WC OXC, using complicated wavelength assignment algorithm. But the complexities of these schemes decide them to be not in practice in real networks. In this paper, we propose a new scheme based on the node blocking state advertisement to reduce the retry or rerouting probability and improve the efficiency of routing in the networks with blocking nodes. In the scheme, node blocking state are advertised to the other nodes in networks, which will be used for subsequent route calculation to find a path with lowest blocking probability. The performance of the scheme is evaluated using discrete event model in 14-node NSFNET, all the nodes of which employ a kind of partial sharing WC OXC structure. In the simulation, a simple First-Fit wavelength assignment algorithm is used. The simulation results demonstrate that the new scheme considerably reduces the retry or rerouting probability in routing process.

  9. A new method for solving routing and wavelength assignment problems under inaccurate routing information in optical networks with conversion capability

    NASA Astrophysics Data System (ADS)

    Luo, Yanting; Zhang, Yongjun; Gu, Wanyi

    2009-11-01

    In large dynamic networks it is extremely difficult to maintain accurate routing information on all network nodes. The existing studies have illustrated the impact of imprecise state information on the performance of dynamic routing and wavelength assignment (RWA) algorithms. An algorithm called Bypass Based Optical Routing (BBOR) proposed by Xavier Masip-Bruin et al can reduce the effects of having inaccurate routing information in networks operating under the wavelength-continuity constraint. Then they extended the BBOR mechanism (for convenience it's called EBBOR mechanism below) to be applied to the networks with sparse and limited wavelength conversion. But it only considers the characteristic of wavelength conversion in the step of computing the bypass-paths so that its performance may decline with increasing the degree of wavelength translation (this concept will be explained in the section of introduction again). We will demonstrate the issue through theoretical analysis and introduce a novel algorithm which modifies both the lightpath selection and the bypass-paths computation in comparison to EBBOR algorithm. Simulations show that the Modified EBBOR (MEBBOR) algorithm improves the blocking performance significantly in optical networks with Conversion Capability.

  10. Optical slotted circuit switched network: a bandwidth efficient alternative to wavelength-routed network

    NASA Astrophysics Data System (ADS)

    Li, Yan; Collier, Martin

    2007-11-01

    Wavelength-routed networks have received enormous attention due to the fact that they are relatively simple to implement and implicitly offer Quality of Service (QoS) guarantees. However, they suffer from a bandwidth inefficiency problem and require complex Routing and Wavelength Assignment (RWA). Most attempts to address the above issues exploit the joint use of WDM and TDM technologies. The resultant TDM-based wavelength-routed networks partition the wavelength bandwidth into fixed-length time slots organized as a fixed-length frame. Multiple connections can thus time-share a wavelength and the grooming of their traffic leads to better bandwidth utilization. The capability of switching in both wavelength and time domains in such networks also mitigates the RWA problem. However, TMD-based wavelength-routed networks work in synchronous mode and strict synchronization among all network nodes is required. Global synchronization for all-optical networks which operate at extremely high speed is technically challenging, and deploying an optical synchronizer for each wavelength involves considerable cost. An Optical Slotted Circuit Switching (OSCS) architecture is proposed in this paper. In an OSCS network, slotted circuits are created to better utilize the wavelength bandwidth than in classic wavelength-routed networks. The operation of the protocol is such as to avoid the need for global synchronization required by TDM-based wavelength-routed networks.

  11. An improved least cost routing approach for WDM optical network without wavelength converters

    NASA Astrophysics Data System (ADS)

    Bonani, Luiz H.; Forghani-elahabad, Majid

    2016-12-01

    Routing and wavelength assignment (RWA) problem has been an attractive problem in optical networks, and consequently several algorithms have been proposed in the literature to solve this problem. The most known techniques for the dynamic routing subproblem are fixed routing, fixed-alternate routing, and adaptive routing methods. The first one leads to a high blocking probability (BP) and the last one includes a high computational complexity and requires immense backing from the control and management protocols. The second one suggests a trade-off between performance and complexity, and hence we consider it to improve in our work. In fact, considering the RWA problem in a wavelength routed optical network with no wavelength converter, an improved technique is proposed for the routing subproblem in order to decrease the BP of the network. Based on fixed-alternate approach, the first k shortest paths (SPs) between each node pair is determined. We then rearrange the SPs according to a newly defined cost for the links and paths. Upon arriving a connection request, the sorted paths are consecutively checked for an available wavelength according to the most-used technique. We implement our proposed algorithm and the least-hop fixed-alternate algorithm to show how the rearrangement of SPs contributes to a lower BP in the network. The numerical results demonstrate the efficiency of our proposed algorithm in comparison with the others, considering different number of available wavelengths.

  12. Minimal-delay traffic grooming for WDM star networks

    NASA Astrophysics Data System (ADS)

    Choi, Hongsik; Garg, Nikhil; Choi, Hyeong-Ah

    2003-10-01

    All-optical networks face the challenge of reducing slower opto-electronic conversions by managing assignment of traffic streams to wavelengths in an intelligent manner, while at the same time utilizing bandwidth resources to the maximum. This challenge becomes harder in networks closer to the end users that have insufficient data to saturate single wavelengths as well as traffic streams outnumbering the usable wavelengths, resulting in traffic grooming which requires costly traffic analysis at access nodes. We study the problem of traffic grooming that reduces the need to analyze traffic, for a class of network architecture most used by Metropolitan Area Networks; the star network. The problem being NP-complete, we provide an efficient twice-optimal-bound greedy heuristic for the same, that can be used to intelligently groom traffic at the LANs to reduce latency at the access nodes. Simulation results show that our greedy heuristic achieves a near-optimal solution.

  13. Routing and wavelength assignment based on normalized resource and constraints for all-optical network

    NASA Astrophysics Data System (ADS)

    Joo, Seong-Soon; Nam, Hyun-Soon; Lim, Chang-Kyu

    2003-08-01

    With the rapid growth of the Optical Internet, high capacity pipes is finally destined to support end-to-end IP on the WDM optical network. Newly launched 2D MEMS optical switching module in the market supports that expectations of upcoming a transparent optical cross-connect in the network have encouraged the field applicable research on establishing real all-optical transparent network. To open up a customer-driven bandwidth services, design of the optical transport network becomes more challenging task in terms of optimal network resource usage. This paper presents a practical approach to finding a route and wavelength assignment for wavelength routed all-optical network, which has λ-plane OXC switches and wavelength converters, and supports that optical paths are randomly set up and released by dynamic wavelength provisioning to create bandwidth between end users with timescales on the order of seconds or milliseconds. We suggest three constraints to make the RWA problem become more practical one on deployment for wavelength routed all-optical network in network view: limitation on maximum hop of a route within bearable optical network impairments, limitation on minimum hops to travel before converting a wavelength, and limitation on calculation time to find all routes for connections requested at once. We design the NRCD (Normalized Resource and Constraints for All-Optical Network RWA Design) algorithm for the Tera OXC: network resource for a route is calculated by the number of internal switching paths established in each OXC nodes on the route, and is normalized by ratio of number of paths established and number of paths equipped in a node. We show that it fits for the RWA algorithm of the wavelength routed all-optical network through real experiments on the distributed objects platform.

  14. A Survey on Next-Generation Mixed Line Rate (MLR) and Energy-Driven Wavelength-Division Multiplexed (WDM) Optical Networks

    NASA Astrophysics Data System (ADS)

    Iyer, Sridhar

    2015-06-01

    With the ever-increasing traffic demands, infrastructure of the current 10 Gbps optical network needs to be enhanced. Further, since the energy crisis is gaining increasing concerns, new research topics need to be devised and technological solutions for energy conservation need to be investigated. In all-optical mixed line rate (MLR) network, feasibility of a lightpath is determined by the physical layer impairment (PLI) accumulation. Contrary to PLI-aware routing and wavelength assignment (PLIA-RWA) algorithm applicable for a 10 Gbps wavelength-division multiplexed (WDM) network, a new Routing, Wavelength, Modulation format assignment (RWMFA) algorithm is required for the MLR optical network. With the rapid growth of energy consumption in Information and Communication Technologies (ICT), recently, lot of attention is being devoted toward "green" ICT solutions. This article presents a review of different RWMFA (PLIA-RWA) algorithms for MLR networks, and surveys the most relevant research activities aimed at minimizing energy consumption in optical networks. In essence, this article presents a comprehensive and timely survey on a growing field of research, as it covers most aspects of MLR and energy-driven optical networks. Hence, the author aims at providing a comprehensive reference for the growing base of researchers who will work on MLR and energy-driven optical networks in the upcoming years. Finally, the article also identifies several open problems for future research.

  15. Calculation and measurement of radiation corrections for plasmon resonances in nanoparticles

    NASA Astrophysics Data System (ADS)

    Hung, L.; Lee, S. Y.; McGovern, O.; Rabin, O.; Mayergoyz, I.

    2013-08-01

    The problem of plasmon resonances in metallic nanoparticles can be formulated as an eigenvalue problem under the condition that the wavelengths of the incident radiation are much larger than the particle dimensions. As the nanoparticle size increases, the quasistatic condition is no longer valid. For this reason, the accuracy of the electrostatic approximation may be compromised and appropriate radiation corrections for the calculation of resonance permittivities and resonance wavelengths are needed. In this paper, we present the radiation corrections in the framework of the eigenvalue method for plasmon mode analysis and demonstrate that the computational results accurately match analytical solutions (for nanospheres) and experimental data (for nanorings and nanocubes). We also demonstrate that the optical spectra of silver nanocube suspensions can be fully assigned to dipole-type resonance modes when radiation corrections are introduced. Finally, our method is used to predict the resonance wavelengths for face-to-face silver nanocube dimers on glass substrates. These results may be useful for the indirect measurements of the gaps in the dimers from extinction cross-section observations.

  16. Energy-Efficient Routing and Spectrum Assignment Algorithm with Physical-Layer Impairments Constraint in Flexible Optical Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Jijun; Zhang, Nawa; Ren, Danping; Hu, Jinhua

    2017-12-01

    The recently proposed flexible optical network can provide more efficient accommodation of multiple data rates than the current wavelength-routed optical networks. Meanwhile, the energy efficiency has also been a hot topic because of the serious energy consumption problem. In this paper, the energy efficiency problem of flexible optical networks with physical-layer impairments constraint is studied. We propose a combined impairment-aware and energy-efficient routing and spectrum assignment (RSA) algorithm based on the link availability, in which the impact of power consumption minimization on signal quality is considered. By applying the proposed algorithm, the connection requests are established on a subset of network topology, reducing the number of transitions from sleep to active state. The simulation results demonstrate that our proposed algorithm can improve the energy efficiency and spectrum resources utilization with the acceptable blocking probability and average delay.

  17. Dynamic multicast routing scheme in WDM optical network

    NASA Astrophysics Data System (ADS)

    Zhu, Yonghua; Dong, Zhiling; Yao, Hong; Yang, Jianyong; Liu, Yibin

    2007-11-01

    During the information era, the Internet and the service of World Wide Web develop rapidly. Therefore, the wider and wider bandwidth is required with the lower and lower cost. The demand of operation turns out to be diversified. Data, images, videos and other special transmission demands share the challenge and opportunity with the service providers. Simultaneously, the electrical equipment has approached their limit. So the optical communication based on the wavelength division multiplexing (WDM) and the optical cross-connects (OXCs) shows great potentials and brilliant future to build an optical network based on the unique technical advantage and multi-wavelength characteristic. In this paper, we propose a multi-layered graph model with inter-path between layers to solve the problem of multicast routing wavelength assignment (RWA) contemporarily by employing an efficient graph theoretic formulation. And at the same time, an efficient dynamic multicast algorithm named Distributed Message Copying Multicast (DMCM) mechanism is also proposed. The multicast tree with minimum hops can be constructed dynamically according to this proposed scheme.

  18. Method for Accurately Calibrating a Spectrometer Using Broadband Light

    NASA Technical Reports Server (NTRS)

    Simmons, Stephen; Youngquist, Robert

    2011-01-01

    A novel method has been developed for performing very fine calibration of a spectrometer. This process is particularly useful for modern miniature charge-coupled device (CCD) spectrometers where a typical factory wavelength calibration has been performed and a finer, more accurate calibration is desired. Typically, the factory calibration is done with a spectral line source that generates light at known wavelengths, allowing specific pixels in the CCD array to be assigned wavelength values. This method is good to about 1 nm across the spectrometer s wavelength range. This new method appears to be accurate to about 0.1 nm, a factor of ten improvement. White light is passed through an unbalanced Michelson interferometer, producing an optical signal with significant spectral variation. A simple theory can be developed to describe this spectral pattern, so by comparing the actual spectrometer output against this predicted pattern, errors in the wavelength assignment made by the spectrometer can be determined.

  19. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    PubMed

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  20. Experimental demonstration of wavelength domain rogue-free ONU based on wavelength-pairing for TDM/WDM optical access networks.

    PubMed

    Lee, Jie Hyun; Park, Heuk; Kang, Sae-Kyoung; Lee, Joon Ki; Chung, Hwan Seok

    2015-11-30

    In this study, we propose and experimentally demonstrate a wavelength domain rogue-free ONU based on wavelength-pairing of downstream and upstream signals for time/wavelength division-multiplexed optical access networks. The wavelength-pairing tunable filter is aligned to the upstream wavelength channel by aligning it to one of the downstream wavelength channels. Wavelength-pairing is implemented with a compact and cyclic Si-AWG integrated with a Ge-PD. The pairing filter covered four 100 GHz-spaced wavelength channels. The feasibility of the wavelength domain rogue-free operation is investigated by emulating malfunction of the misaligned laser. The wavelength-pairing tunable filter based on the Si-AWG blocks the upstream signal in the non-assigned wavelength channel before data collision with other ONUs.

  1. Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference.

    PubMed

    Park, Hyoung-Jun; Song, Minho

    2008-10-29

    The equidistantly spaced multi-passbands of a Fabry-Perot ITU filter are used as an efficient multi-wavelength reference for fiber Bragg grating sensor demodulation. To compensate for the nonlinear wavelength tuning effect in the FBG sensor demodulator, a polynomial fitting algorithm was applied to the temporal peaks of the wavelength-scanned ITU filter. The fitted wavelength values are assigned to the peak locations of the FBG sensor reflections, obtaining constant accuracy, regardless of the wavelength scan range and frequency. A linearity error of about 0.18% against a reference thermocouple thermometer was obtained with the suggested method.

  2. Multigranular integrated services optical network

    NASA Astrophysics Data System (ADS)

    Yu, Oliver; Yin, Leping; Xu, Huan; Liao, Ming

    2006-12-01

    Based on all-optical switches without requiring fiber delay lines and optical-electrical-optical interfaces, the multigranular optical switching (MGOS) network integrates three transport services via unified core control to efficiently support bursty and stream traffic of subwavelength to multiwavelength bandwidth. Adaptive robust optical burst switching (AR-OBS) aggregates subwavelength burst traffic into asynchronous light-rate bursts, transported via slotted-time light paths established by fast two-way reservation with robust blocking recovery control. Multiwavelength optical switching (MW-OS) decomposes multiwavelength stream traffic into a group of timing-related light-rate streams, transported via a light-path group to meet end-to-end delay-variation requirements. Optical circuit switching (OCS) simply converts wavelength stream traffic from an electrical-rate into a light-rate stream. The MGOS network employs decoupled routing, wavelength, and time-slot assignment (RWTA) and novel group routing and wavelength assignment (GRWA) to select slotted-time light paths and light-path groups, respectively. The selected resources are reserved by the unified multigranular robust fast optical reservation protocol (MG-RFORP). Simulation results show that elastic traffic is efficiently supported via AR-OBS in terms of loss rate and wavelength utilization, while connection-oriented wavelength traffic is efficiently supported via wavelength-routed OCS in terms of connection blocking and wavelength utilization. The GRWA-tuning result for MW-OS is also shown.

  3. Design of physical and logical topologies with fault-tolerant ability in wavelength-routed optical network

    NASA Astrophysics Data System (ADS)

    Chen, Chunfeng; Liu, Hua; Fan, Ge

    2005-02-01

    In this paper we consider the problem of designing a network of optical cross-connects(OXCs) to provide end-to-end lightpath services to label switched routers (LSRs). Like some previous work, we select the number of OXCs as our objective. Compared with the previous studies, we take into account the fault-tolerant characteristic of logical topology. First of all, using a Prufer number randomly generated, we generate a tree. By adding some edges to the tree, we can obtain a physical topology which consists of a certain number of OXCs and fiber links connecting OXCs. It is notable that we for the first time limit the number of layers of the tree produced according to the method mentioned above. Then we design the logical topologies based on the physical topologies mentioned above. In principle, we will select the shortest path in addition to some consideration on the load balancing of links and the limitation owing to the SRLG. Notably, we implement the routing algorithm for the nodes in increasing order of the degree of the nodes. With regarding to the problem of the wavelength assignment, we adopt the heuristic algorithm of the graph coloring commonly used. It is clear our problem is computationally intractable especially when the scale of the network is large. We adopt the taboo search algorithm to find the near optimal solution to our objective. We present numerical results for up to 1000 LSRs and for a wide range of system parameters such as the number of wavelengths supported by each fiber link and traffic. The results indicate that it is possible to build large-scale optical networks with rich connectivity in a cost-effective manner, using relatively few but properly dimensioned OXCs.

  4. Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference

    PubMed Central

    Park, Hyoung-Jun; Song, Minho

    2008-01-01

    The equidistantly spaced multi-passbands of a Fabry-Perot ITU filter are used as an efficient multi-wavelength reference for fiber Bragg grating sensor demodulation. To compensate for the nonlinear wavelength tuning effect in the FBG sensor demodulator, a polynomial fitting algorithm was applied to the temporal peaks of the wavelength-scanned ITU filter. The fitted wavelength values are assigned to the peak locations of the FBG sensor reflections, obtaining constant accuracy, regardless of the wavelength scan range and frequency. A linearity error of about 0.18% against a reference thermocouple thermometer was obtained with the suggested method. PMID:27873898

  5. Assignment Choice, Effort, and Assignment Completion: Does Work Ethic Predict Those Who Choose Higher-Effort Assignments?

    ERIC Educational Resources Information Center

    Parkhurst, John T.; Fleisher, Matthew S.; Skinner, Christopher H.; Woehr, David J.; Hawthorn-Embree, Meredith L.

    2011-01-01

    After completing the Multidimensional Work-Ethic Profile (MWEP), 98 college students were given a 20-problem math computation assignment and instructed to stop working on the assignment after completing 10 problems. Next, they were allowed to choose to finish either the partially completed assignment that had 10 problems remaining or a new…

  6. Simulated annealing algorithm for solving chambering student-case assignment problem

    NASA Astrophysics Data System (ADS)

    Ghazali, Saadiah; Abdul-Rahman, Syariza

    2015-12-01

    The problem related to project assignment problem is one of popular practical problem that appear nowadays. The challenge of solving the problem raise whenever the complexity related to preferences, the existence of real-world constraints and problem size increased. This study focuses on solving a chambering student-case assignment problem by using a simulated annealing algorithm where this problem is classified under project assignment problem. The project assignment problem is considered as hard combinatorial optimization problem and solving it using a metaheuristic approach is an advantage because it could return a good solution in a reasonable time. The problem of assigning chambering students to cases has never been addressed in the literature before. For the proposed problem, it is essential for law graduates to peruse in chambers before they are qualified to become legal counselor. Thus, assigning the chambering students to cases is a critically needed especially when involving many preferences. Hence, this study presents a preliminary study of the proposed project assignment problem. The objective of the study is to minimize the total completion time for all students in solving the given cases. This study employed a minimum cost greedy heuristic in order to construct a feasible initial solution. The search then is preceded with a simulated annealing algorithm for further improvement of solution quality. The analysis of the obtained result has shown that the proposed simulated annealing algorithm has greatly improved the solution constructed by the minimum cost greedy heuristic. Hence, this research has demonstrated the advantages of solving project assignment problem by using metaheuristic techniques.

  7. Efficient wavelength converters with flattop responses based on counterpropagating cascaded SFG and DFG in low-loss QPM LiNbO3 waveguides.

    PubMed

    Tehranchi, Amirhossein; Kashyap, Raman

    2009-10-12

    A wavelength converter based on counterpropagating quasi-phase matched cascaded sum and difference frequency generation in lossy lithium niobate waveguide is numerically evaluated and compared to a single-pass scheme assuming a large pump wavelength difference of 75 nm. A double-pass device is proposed to improve the conversion efficiency while the response flattening is accomplished by increasing the wavelength tuning of one pump. The criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, ripple and bandwidth are presented.

  8. Time Shared Optical Network (TSON): a novel metro architecture for flexible multi-granular services.

    PubMed

    Zervas, Georgios S; Triay, Joan; Amaya, Norberto; Qin, Yixuan; Cervelló-Pastor, Cristina; Simeonidou, Dimitra

    2011-12-12

    This paper presents the Time Shared Optical Network (TSON) as metro mesh network architecture for guaranteed, statistically-multiplexed services. TSON proposes a flexible and tunable time-wavelength assignment along with one-way tree-based reservation and node architecture. It delivers guaranteed sub-wavelength and multi-granular network services without wavelength conversion, time-slice interchange and optical buffering. Simulation results demonstrate high network utilization, fast service delivery, and low end-to-end delay on a contention-free sub-wavelength optical transport network. In addition, implementation complexity in terms of Layer 2 aggregation, grooming and optical switching has been evaluated. © 2011 Optical Society of America

  9. Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities

    NASA Astrophysics Data System (ADS)

    Krasniqi, F. S.; Zhong, Y.; Epp, S. W.; Foucar, L.; Trigo, M.; Chen, J.; Reis, D. A.; Wang, H. L.; Zhao, J. H.; Lemke, H. T.; Zhu, D.; Chollet, M.; Fritz, D. M.; Hartmann, R.; Englert, L.; Strüder, L.; Schlichting, I.; Ullrich, J.

    2018-03-01

    Long wavelength vibrational modes in the ferromagnetic semiconductor Ga0.91 Mn0.09 As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a single wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.

  10. Accurate Laboratory Wavelengths of the e 3 Σ-(ν' = 5) - X 1 Σ+(ν'' = 0) Band of 12C16O

    NASA Astrophysics Data System (ADS)

    Dickenson, G. D.; Nortje, A. C.; Steenkamp, C. M.; Rohwer, E. G.; Du Plessis, A.

    2010-05-01

    The forbidden singlet-triplet transitions of carbon monoxide (CO) are important in the interpretation of vacuum ultraviolet interstellar absorption spectra and in particular for the measurement of large CO column densities. Twenty rovibronic lines of the e 3Σ-(ν' = 5) - X 1Σ+(ν'' = 0) band of 12 C 16O for which laboratory wavelengths were previously unavailable were identified in laser-induced fluorescence excitation spectra. Wavelengths were assigned to five rovibronic transitions to an average accuracy of 0.0028 Å. A further 15 lines could not be fully resolved and average wavelengths were measured for these groups of closely spaced lines. A wavelength difference of 0.011 ± 0.0028 Å between the measured wavelengths and the calculated wavelengths in the atlas of Eidelsberg & Rostas demonstrates the need for more experimental data on CO.

  11. CE dual-homing protection in layer 1 VPN

    NASA Astrophysics Data System (ADS)

    Du, Shu; Peng, Yunfeng; Long, Keping

    2008-11-01

    Layer 1 VPN (L1VPN) extends the notion of VPN to the optical domain to provide virtually dedicated circuit like leased lines, so that the security is more enhanced. Despite their secure gains from channel isolation, VPNs still suffer fragilities resulting from link-failures or node-failures. Extensive activities on survivability designs for wavelength-routed optical networks are proposed, including various protection and restoration schemes, but concerns on network edge are rare. Dual-homing is an effective skill to achieve survivability gains for L1VPNs. There are two dual-homing mode: Active/Standby mode and Load-Sharing mode In this paper, we investigate the problem of PE assignment, which is the key of dual-homing design and is NP-hard. We formulate it as an integer programming problem, and propose heuristic solutions. Simulation results show that the proposed solutions work in a correct and effective way and the Load-Sharing mode has higher bandwidth efficiency than Active/Standby mode.

  12. Ultrafast excited-state dynamics of 2,5-dimethylpyrrole.

    PubMed

    Yang, Dongyuan; Min, Yanjun; Chen, Zhichao; He, Zhigang; Yuan, Kaijun; Dai, Dongxu; Yang, Xueming; Wu, Guorong

    2018-04-17

    The ultrafast excited-state dynamics of 2,5-dimethylpyrrole following excitation at wavelengths in the range of 265.7-216.7 nm is studied using the time-resolved photoelectron imaging method. It is found that excitation at longer wavelengths (265.7-250.2 nm) results in the population of the S1(1πσ*) state, which decays out of the photoionization window in about 90 fs. At shorter pump wavelengths (242.1-216.7 nm), the assignments are less clear-cut. We tentatively assign the initially photoexcited state(s) to the 1π3p Rydberg state(s) which has lifetimes of 159 ± 20, 125 ± 15, 102 ± 10 and 88 ± 10 fs for the pump wavelengths of 242.1, 238.1, 232.6 and 216.7 nm, respectively. Internal conversion to the S1(1πσ*) state represents at most a minor decay channel. The methyl substitution effects on the decay dynamics of the excited states of pyrrole are also discussed. Methyl substitution on the pyrrole ring seems to enhance the direct internal conversion from the 1π3p Rydberg state to the ground state, while methyl substitution on the N atom has less influence and the internal conversion to the S1(πσ*) state represents a main channel.

  13. Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasniqi, Faton S.; Zhong, Yinpeng; Epp, S. W.

    Long wavelength vibrational modes in the ferromagnetic semiconductor Ga 0.91M n0.09As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a singlemore » wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Lastly, our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.« less

  14. Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities

    DOE PAGES

    Krasniqi, Faton S.; Zhong, Yinpeng; Epp, S. W.; ...

    2018-03-08

    Long wavelength vibrational modes in the ferromagnetic semiconductor Ga 0.91M n0.09As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a singlemore » wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Lastly, our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.« less

  15. Current Usage and Future Prospects of Multispectral (RGB) Satellite Imagery in Support of NWS Forecast Offices and National Centers

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Fuell, Kevin; Knaff, John; Lee, Thomas

    2012-01-01

    What is an RGB Composite Image? (1) Current and future satellite instruments provide remote sensing at a variety of wavelengths. (2) RGB composite imagery assign individual wavelengths or channel differences to the intensities of the red, green, and blue components of a pixel color. (3) Each red, green, and blue color intensity is related to physical properties within the final composite image. (4) Final color assignments are therefore related to the characteristics of image pixels. (5) Products may simplify the interpretation of data from multiple bands by displaying information in a single image. Current Products and Usage: Collaborations between SPoRT, CIRA, and NRL have facilitated the use and evaluation of RGB products at a variety of NWS forecast offices and National Centers. These products are listed in table.

  16. Method and Apparatus for Accurately Calibrating a Spectrometer

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Simmons, Stephen M. (Inventor)

    2013-01-01

    A calibration assembly for a spectrometer is provided. The assembly includes a spectrometer having n detector elements, where each detector element is assigned a predetermined wavelength value. A first source emitting first radiation is used to calibrate the spectrometer. A device is placed in the path of the first radiation to split the first radiation into a first beam and a second beam. The assembly is configured so that one of the first and second beams travels a path-difference distance longer than the other of the first and second beams. An output signal is generated by the spectrometer when the first and second beams enter the spectrometer. The assembly includes a controller operable for processing the output signal and adapted to calculate correction factors for the respective predetermined wavelength values assigned to each detector element.

  17. Comparisons of laboratory wavelength measurements with theoretical calculations for neon-like through lithium-like argon, sulfur, and silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepson, J K; Beiersdorfer, P; Behar, E

    Atomic structure codes have a difficult time accurately calculating the wavelengths of many-electron ions without the benefit of laboratory measurements. This is especially true for wavelengths of lines in the extreme ultraviolet and soft x-ray regions. We are using the low-energy capability of the Livermore electron beam ion traps to compile a comprehensive catalog of astrophysically relevant emission lines in support of satellite x-ray observations. Our database includes wavelength measurements, relative intensities, and line assignments, and is compared to a full set of calculations using the Hebrew University - Lawrence Livermore Atomic Code (HULLAC). Mean deviation of HULLAC calculations frommore » our measured wavelength values is highest for L-shell transitions of neon-like ions and lowest for lithium-like ions, ranging from a mean deviation of over 0.5 {angstrom} for Si V to 12 m{angstrom} in Ar XVI.« less

  18. TWC and AWG based optical switching structure for OVPN in WDM-PON

    NASA Astrophysics Data System (ADS)

    Bai, Hui-feng; Chen, Yu-xin; Wang, Qin

    2015-03-01

    With the rapid development of optical elements with large capacity and high speed, the network architecture is of great importance in determing the performance of wavelength division multiplexing passive optical network (WDM-PON). This paper proposes a switching structure based on the tunable wavelength converter (TWC) and the arrayed-waveguide grating (AWG) for WDM-PON, in order to provide the function of opitcal virtual private network (OVPN). Using the tunable wavelength converter technology, this switch structure is designed and works between the optical line terminal (OLT) and optical network units (ONUs) in the WDM-PON system. Moreover, the wavelength assignment of upstream/downstream can be realized and direct communication between ONUs is also allowed by privite wavelength channel. Simulation results show that the proposed TWC and AWG based switching structure is able to achieve OVPN function and to gain better performances in terms of bite error rate (BER) and time delay.

  19. Unifying Temporal and Structural Credit Assignment Problems

    NASA Technical Reports Server (NTRS)

    Agogino, Adrian K.; Tumer, Kagan

    2004-01-01

    Single-agent reinforcement learners in time-extended domains and multi-agent systems share a common dilemma known as the credit assignment problem. Multi-agent systems have the structural credit assignment problem of determining the contributions of a particular agent to a common task. Instead, time-extended single-agent systems have the temporal credit assignment problem of determining the contribution of a particular action to the quality of the full sequence of actions. Traditionally these two problems are considered different and are handled in separate ways. In this article we show how these two forms of the credit assignment problem are equivalent. In this unified frame-work, a single-agent Markov decision process can be broken down into a single-time-step multi-agent process. Furthermore we show that Monte-Carlo estimation or Q-learning (depending on whether the values of resulting actions in the episode are known at the time of learning) are equivalent to different agent utility functions in a multi-agent system. This equivalence shows how an often neglected issue in multi-agent systems is equivalent to a well-known deficiency in multi-time-step learning and lays the basis for solving time-extended multi-agent problems, where both credit assignment problems are present.

  20. A Scenario-Based Parametric Analysis of Stable Marriage Approaches to the Army Officer Assignment Problem

    DTIC Science & Technology

    2017-03-23

    solutions obtained through their proposed method to comparative instances of a generalized assignment problem with either ordinal cost components or... method flag: Designates the method by which the changed/ new assignment problem instance is solved. methodFlag = 0:SMAWarmstart Returns a matching...of randomized perturbations. We examine the contrasts between these methods in the context of assigning Army Officers among a set of identified

  1. A Novel Dynamic Physical Layer Impairment-Aware Routing and Wavelength Assignment (PLI-RWA) Algorithm for Mixed Line Rate (MLR) Wavelength Division Multiplexed (WDM) Optical Networks

    NASA Astrophysics Data System (ADS)

    Iyer, Sridhar

    2016-12-01

    The ever-increasing global Internet traffic will inevitably lead to a serious upgrade of the current optical networks' capacity. The legacy infrastructure can be enhanced not only by increasing the capacity but also by adopting advance modulation formats, having increased spectral efficiency at higher data rate. In a transparent mixed-line-rate (MLR) optical network, different line rates, on different wavelengths, can coexist on the same fiber. Migration to data rates higher than 10 Gbps requires the implementation of phase modulation schemes. However, the co-existing on-off keying (OOK) channels cause critical physical layer impairments (PLIs) to the phase modulated channels, mainly due to cross-phase modulation (XPM), which in turn limits the network's performance. In order to mitigate this effect, a more sophisticated PLI-Routing and Wavelength Assignment (PLI-RWA) scheme needs to be adopted. In this paper, we investigate the critical impairment for each data rate and the way it affects the quality of transmission (QoT). In view of the aforementioned, we present a novel dynamic PLI-RWA algorithm for MLR optical networks. The proposed algorithm is compared through simulations with the shortest path and minimum hop routing schemes. The simulation results show that performance of the proposed algorithm is better than the existing schemes.

  2. Optimal processor assignment for pipeline computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Simha, Rahul; Choudhury, Alok N.; Narahari, Bhagirath

    1991-01-01

    The availability of large scale multitasked parallel architectures introduces the following processor assignment problem for pipelined computations. Given a set of tasks and their precedence constraints, along with their experimentally determined individual responses times for different processor sizes, find an assignment of processor to tasks. Two objectives are of interest: minimal response given a throughput requirement, and maximal throughput given a response time requirement. These assignment problems differ considerably from the classical mapping problem in which several tasks share a processor; instead, it is assumed that a large number of processors are to be assigned to a relatively small number of tasks. Efficient assignment algorithms were developed for different classes of task structures. For a p processor system and a series parallel precedence graph with n constituent tasks, an O(np2) algorithm is provided that finds the optimal assignment for the response time optimization problem; it was found that the assignment optimizing the constrained throughput in O(np2log p) time. Special cases of linear, independent, and tree graphs are also considered.

  3. A Multiple Ant Colony Metahuristic for the Air Refueling Tanker Assignment Problem

    DTIC Science & Technology

    2002-03-01

    Problem The tanker assignment problem can be modeled as a job shop scheduling problem ( JSSP ). The JSSP is made up of n jobs, composed of m ordered...points) to be processed on all the machines (tankers). The problem with using JSSP is that the tanker assignment problem has multiple objectives... JSSP will minimize the time it takes for all jobs, but this may take an inordinate number of tankers. Thus using JSSP alone is not necessarily a good

  4. Achieving spectrum conservation for the minimum-span and minimum-order frequency assignment problems

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.

    1992-01-01

    Effective and efficient solutions of frequency assignment problems assumes increasing importance as the radiofrequency spectrum experiences ever increasing utilization by diverse communications services, requiring that the most efficient use of this resource be achieved. The research presented explores a general approach to the frequency assignment problem, in which such problems are categorized by the appropriate spectrum conserving objective function, and are each treated as an N-job, M-machine scheduling problem appropriate for the objective. Results obtained and presented illustrate that such an approach presents an effective means of achieving spectrum conserving frequency assignments for communications systems in a variety of environments.

  5. Scalable software-defined optical networking with high-performance routing and wavelength assignment algorithms.

    PubMed

    Lee, Chankyun; Cao, Xiaoyuan; Yoshikane, Noboru; Tsuritani, Takehiro; Rhee, June-Koo Kevin

    2015-10-19

    The feasibility of software-defined optical networking (SDON) for a practical application critically depends on scalability of centralized control performance. The paper, highly scalable routing and wavelength assignment (RWA) algorithms are investigated on an OpenFlow-based SDON testbed for proof-of-concept demonstration. Efficient RWA algorithms are proposed to achieve high performance in achieving network capacity with reduced computation cost, which is a significant attribute in a scalable centralized-control SDON. The proposed heuristic RWA algorithms differ in the orders of request processes and in the procedures of routing table updates. Combined in a shortest-path-based routing algorithm, a hottest-request-first processing policy that considers demand intensity and end-to-end distance information offers both the highest throughput of networks and acceptable computation scalability. We further investigate trade-off relationship between network throughput and computation complexity in routing table update procedure by a simulation study.

  6. Integer Linear Programming for Constrained Multi-Aspect Committee Review Assignment

    PubMed Central

    Karimzadehgan, Maryam; Zhai, ChengXiang

    2011-01-01

    Automatic review assignment can significantly improve the productivity of many people such as conference organizers, journal editors and grant administrators. A general setup of the review assignment problem involves assigning a set of reviewers on a committee to a set of documents to be reviewed under the constraint of review quota so that the reviewers assigned to a document can collectively cover multiple topic aspects of the document. No previous work has addressed such a setup of committee review assignments while also considering matching multiple aspects of topics and expertise. In this paper, we tackle the problem of committee review assignment with multi-aspect expertise matching by casting it as an integer linear programming problem. The proposed algorithm can naturally accommodate any probabilistic or deterministic method for modeling multiple aspects to automate committee review assignments. Evaluation using a multi-aspect review assignment test set constructed using ACM SIGIR publications shows that the proposed algorithm is effective and efficient for committee review assignments based on multi-aspect expertise matching. PMID:22711970

  7. Molecular docking, spectroscopic studies and quantum calculations on nootropic drug.

    PubMed

    Uma Maheswari, J; Muthu, S; Sundius, Tom

    2014-04-05

    A systematic vibrational spectroscopic assignment and analysis of piracetam [(2-oxo-1-pyrrolidineacetamide)] have been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G++(d,p) basis set. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, and harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption wavelengths λmax were determined by the time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. Molecular docking studies have been carried out in the active site of piracetam by using Argus Lab. In addition, the potential energy surface, HOMO and LUMO energies, first-order hyperpolarizability and the molecular electrostatic potential have been computed. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Spectral resampling based on user-defined inter-band correlation filter: C3 and C4 grass species classification

    NASA Astrophysics Data System (ADS)

    Adjorlolo, Clement; Mutanga, Onisimo; Cho, Moses A.; Ismail, Riyad

    2013-04-01

    In this paper, a user-defined inter-band correlation filter function was used to resample hyperspectral data and thereby mitigate the problem of multicollinearity in classification analysis. The proposed resampling technique convolves the spectral dependence information between a chosen band-centre and its shorter and longer wavelength neighbours. Weighting threshold of inter-band correlation (WTC, Pearson's r) was calculated, whereby r = 1 at the band-centre. Various WTC (r = 0.99, r = 0.95 and r = 0.90) were assessed, and bands with coefficients beyond a chosen threshold were assigned r = 0. The resultant data were used in the random forest analysis to classify in situ C3 and C4 grass canopy reflectance. The respective WTC datasets yielded improved classification accuracies (kappa = 0.82, 0.79 and 0.76) with less correlated wavebands when compared to resampled Hyperion bands (kappa = 0.76). Overall, the results obtained from this study suggested that resampling of hyperspectral data should account for the spectral dependence information to improve overall classification accuracy as well as reducing the problem of multicollinearity.

  9. An Efficacy Study of Interleaved Mathematics Practice. Revised

    ERIC Educational Resources Information Center

    Rohrer, Doug; Dedrick, Robert F.; Burgess, Kaleena

    2013-01-01

    In a typical mathematics course, the material is divided into many lessons, and each lesson is followed by an assignment consisting of practice problems. Most commonly, each assignment consists solely of problems on the preceding lesson. For example, a lesson on ratios might be followed by an assignment with 12 problems on ratios. In other words,…

  10. Design of the Extreme Ultraviolet Explorer long-wavelength grazing incidence telescope optics

    NASA Technical Reports Server (NTRS)

    Finley, David S.; Jelinsky, Patrick; Bowyer, Stuart; Malina, Roger F.

    1988-01-01

    Designing optics for photometry in the long-wavelength portion of the EUV spectrum (400-900) A) poses different problems from those arising for optics, operating shortward of 400 A. The available filter materials which transmit radiation longward of 400 A are also highly transparent at wavelengths shortward of 100 A. Conventional EUV optics, with grazing engles of less than about 10 deg, have very high throughput in the EUV, which persists to wavelengths shortward of 100 A. Use of such optics with the longer-wavelength EUV filters thus results in an unacceptably large soft X-ray leak. This problem is overcome by developing a mirror design with larger graze angles of not less than 20 deg, which has high throughput at wavelengths longer than 400 A but at the same time very little throughput shortward of 100 A.

  11. Single Machine Scheduling and Due Date Assignment with Past-Sequence-Dependent Setup Time and Position-Dependent Processing Time

    PubMed Central

    Zhao, Chuan-Li; Hsu, Hua-Feng

    2014-01-01

    This paper considers single machine scheduling and due date assignment with setup time. The setup time is proportional to the length of the already processed jobs; that is, the setup time is past-sequence-dependent (p-s-d). It is assumed that a job's processing time depends on its position in a sequence. The objective functions include total earliness, the weighted number of tardy jobs, and the cost of due date assignment. We analyze these problems with two different due date assignment methods. We first consider the model with job-dependent position effects. For each case, by converting the problem to a series of assignment problems, we proved that the problems can be solved in O(n 4) time. For the model with job-independent position effects, we proved that the problems can be solved in O(n 3) time by providing a dynamic programming algorithm. PMID:25258727

  12. Single machine scheduling and due date assignment with past-sequence-dependent setup time and position-dependent processing time.

    PubMed

    Zhao, Chuan-Li; Hsu, Chou-Jung; Hsu, Hua-Feng

    2014-01-01

    This paper considers single machine scheduling and due date assignment with setup time. The setup time is proportional to the length of the already processed jobs; that is, the setup time is past-sequence-dependent (p-s-d). It is assumed that a job's processing time depends on its position in a sequence. The objective functions include total earliness, the weighted number of tardy jobs, and the cost of due date assignment. We analyze these problems with two different due date assignment methods. We first consider the model with job-dependent position effects. For each case, by converting the problem to a series of assignment problems, we proved that the problems can be solved in O(n(4)) time. For the model with job-independent position effects, we proved that the problems can be solved in O(n(3)) time by providing a dynamic programming algorithm.

  13. Control of Anion in Corporation in the Molecular Beam Epitaxy of Ternary Antimonide Superlattices for Very Long Wavelength Infrared Detection (Postprint)

    DTIC Science & Technology

    2015-10-01

    ASSIGNED DISTRIBUTION STATEMENT. //Signature// //Signature// GAIL J. BROWN DIANA M. CARLIN, Chief Nanoelectronic ...Materials Branch Nanoelectronic Materials Branch Functional Materials Division Functional Materials Division //Signature// KAREN

  14. QUICR-learning for Multi-Agent Coordination

    NASA Technical Reports Server (NTRS)

    Agogino, Adrian K.; Tumer, Kagan

    2006-01-01

    Coordinating multiple agents that need to perform a sequence of actions to maximize a system level reward requires solving two distinct credit assignment problems. First, credit must be assigned for an action taken at time step t that results in a reward at time step t > t. Second, credit must be assigned for the contribution of agent i to the overall system performance. The first credit assignment problem is typically addressed with temporal difference methods such as Q-learning. The second credit assignment problem is typically addressed by creating custom reward functions. To address both credit assignment problems simultaneously, we propose the "Q Updates with Immediate Counterfactual Rewards-learning" (QUICR-learning) designed to improve both the convergence properties and performance of Q-learning in large multi-agent problems. QUICR-learning is based on previous work on single-time-step counterfactual rewards described by the collectives framework. Results on a traffic congestion problem shows that QUICR-learning is significantly better than a Q-learner using collectives-based (single-time-step counterfactual) rewards. In addition QUICR-learning provides significant gains over conventional and local Q-learning. Additional results on a multi-agent grid-world problem show that the improvements due to QUICR-learning are not domain specific and can provide up to a ten fold increase in performance over existing methods.

  15. Research on Segmentation Monitoring Control of IA-RWA Algorithm with Probe Flow

    NASA Astrophysics Data System (ADS)

    Ren, Danping; Guo, Kun; Yao, Qiuyan; Zhao, Jijun

    2018-04-01

    The impairment-aware routing and wavelength assignment algorithm with probe flow (P-IA-RWA) can make an accurate estimation for the transmission quality of the link when the connection request comes. But it also causes some problems. The probe flow data introduced in the P-IA-RWA algorithm can result in the competition for wavelength resources. In order to reduce the competition and the blocking probability of the network, a new P-IA-RWA algorithm with segmentation monitoring-control mechanism (SMC-P-IA-RWA) is proposed. The algorithm would reduce the holding time of network resources for the probe flow. It segments the candidate path suitably for the data transmitting. And the transmission quality of the probe flow sent by the source node will be monitored in the endpoint of each segment. The transmission quality of data can also be monitored, so as to make the appropriate treatment to avoid the unnecessary probe flow. The simulation results show that the proposed SMC-P-IA-RWA algorithm can effectively reduce the blocking probability. It brings a better solution to the competition for resources between the probe flow and the main data to be transferred. And it is more suitable for scheduling control in the large-scale network.

  16. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing.

    PubMed

    Wang, Zhaocai; Pu, Jun; Cao, Liling; Tan, Jian

    2015-10-23

    The unbalanced assignment problem (UAP) is to optimally resolve the problem of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn) time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation.

  17. Measuring Conceptual Gains and Benefits of Student Problem Designs

    NASA Astrophysics Data System (ADS)

    Mandell, Eric; Snyder, Rachel; Oswald, Wayne

    2011-10-01

    Writing assignments can be an effective way of getting students to practice higher-order learning skills in physics. One example of such an assignment is that of problem design. One version of the problem design assignment asks the student to evaluate the material from a chapter, after all instruction and other activities are complete. The student is to decide what concepts and ideas are most central, or critical in the chapter, and construct a problem that he or she feels best encompasses the major themes. Here, we use two concept surveys (FCI and EMCS) to measure conceptual gains for students completing the problem design assignment and present the preliminary results, comparing across several categories including gender, age, degree program, and class standing.

  18. Losing focus: how lens position and viewing angle affect the function of multifocal lenses in fishes.

    PubMed

    Gagnon, Yakir Luc; Wilby, David; Temple, Shelby Eric

    2016-09-01

    Light rays of different wavelengths are focused at different distances when they pass through a lens (longitudinal chromatic aberration [LCA]). For animals with color vision this can pose a serious problem, because in order to perceive a sharp image the rays must be focused at the shallow plane of the photoreceptor's outer segments in the retina. A variety of fish and tetrapods have been found to possess multifocal lenses, which correct for LCA by assigning concentric zones to correctly focus specific wavelengths. Each zone receives light from a specific beam entrance position (BEP) (the lateral distance between incoming light and the center of the lens). Any occlusion of incoming light at specific BEPs changes the composition of the wavelengths that are correctly focused on the retina. Here, we calculated the effect of lens position relative to the plane of the iris and light entering the eye at oblique angles on how much of the lens was involved in focusing the image on the retina (measured as the availability of BEPs). We used rotational photography of fish eyes and mathematical modeling to quantify the degree of lens occlusion. We found that, at most lens positions and viewing angles, there was a decrease of BEP availability and in some cases complete absence of some BEPs. Given the implications of these effects on image quality, we postulate that three morphological features (aphakic spaces, curvature of the iris, and intraretinal variability in spectral sensitivity) may, in part, be adaptations to mitigate the loss of spectral image quality in the periphery of the eyes of fishes.

  19. Reliable Wide-Area Wavelength Division Multiplexing Passive Optical Network Accommodating Gigabit Ethernet and 10-Gb Ethernet Services

    NASA Astrophysics Data System (ADS)

    Nakamura, Hirotaka; Suzuki, Hiro; Kani, Jun-Ichi; Iwatsuki, Katsumi

    2006-05-01

    This paper proposes and demonstrates a reliable wide-area wavelength-division-multiplexing passive optical network (WDM-PON) with a wavelength-shifted protection scheme. This protection scheme utilizes the cyclic property of 2 × N athermal arrayed-waveguide grating and two kinds of wavelength allocations, each of which is assigned for working and protection, respectively. Compared with conventional protection schemes, this scheme does not need a 3-dB optical coupler, thus leading to ensure the large loss budget that is suited for wide-area WDM-PONs. It also features a passive access node and does not have a protection function in the optical network unit (ONU). The feasibility of the proposed scheme is experimentally confirmed by the carrier-distributed WDM-PON with gigabit Ethernet interface (GbE-IF) and 10-GbE-IF, in which the ONU does not employ a light source, and all wavelengths for upstream signals are centralized and distributed from the central office.

  20. The airport gate assignment problem: a survey.

    PubMed

    Bouras, Abdelghani; Ghaleb, Mageed A; Suryahatmaja, Umar S; Salem, Ahmed M

    2014-01-01

    The airport gate assignment problem (AGAP) is one of the most important problems operations managers face daily. Many researches have been done to solve this problem and tackle its complexity. The objective of the task is assigning each flight (aircraft) to an available gate while maximizing both conveniences to passengers and the operational efficiency of airport. This objective requires a solution that provides the ability to change and update the gate assignment data on a real time basis. In this paper, we survey the state of the art of these problems and the various methods to obtain the solution. Our survey covers both theoretical and real AGAP with the description of mathematical formulations and resolution methods such as exact algorithms, heuristic algorithms, and metaheuristic algorithms. We also provide a research trend that can inspire researchers about new problems in this area.

  1. The Airport Gate Assignment Problem: A Survey

    PubMed Central

    Ghaleb, Mageed A.; Salem, Ahmed M.

    2014-01-01

    The airport gate assignment problem (AGAP) is one of the most important problems operations managers face daily. Many researches have been done to solve this problem and tackle its complexity. The objective of the task is assigning each flight (aircraft) to an available gate while maximizing both conveniences to passengers and the operational efficiency of airport. This objective requires a solution that provides the ability to change and update the gate assignment data on a real time basis. In this paper, we survey the state of the art of these problems and the various methods to obtain the solution. Our survey covers both theoretical and real AGAP with the description of mathematical formulations and resolution methods such as exact algorithms, heuristic algorithms, and metaheuristic algorithms. We also provide a research trend that can inspire researchers about new problems in this area. PMID:25506074

  2. Differentiation of closely related isomers: application of data mining techniques in conjunction with variable wavelength infrared multiple photon dissociation mass spectrometry for identification of glucose-containing disaccharide ions.

    PubMed

    Stefan, Sarah E; Ehsan, Mohammad; Pearson, Wright L; Aksenov, Alexander; Boginski, Vladimir; Bendiak, Brad; Eyler, John R

    2011-11-15

    Data mining algorithms have been used to analyze the infrared multiple photon dissociation (IRMPD) patterns of gas-phase lithiated disaccharide isomers irradiated with either a line-tunable CO(2) laser or a free electron laser (FEL). The IR fragmentation patterns over the wavelength range of 9.2-10.6 μm have been shown in earlier work to correlate uniquely with the asymmetry at the anomeric carbon in each disaccharide. Application of data mining approaches for data analysis allowed unambiguous determination of the anomeric carbon configurations for each disaccharide isomer pair using fragmentation data at a single wavelength. In addition, the linkage positions were easily assigned. This combination of wavelength-selective IRMPD and data mining offers a powerful and convenient tool for differentiation of structurally closely related isomers, including those of gas-phase carbohydrate complexes.

  3. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing

    PubMed Central

    Wang, Zhaocai; Pu, Jun; Cao, Liling; Tan, Jian

    2015-01-01

    The unbalanced assignment problem (UAP) is to optimally resolve the problem of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn) time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation. PMID:26512650

  4. Decision Making In Assignment Problem With Multiple Attributes Under Intuitionistic Fuzzy Environment

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sathi; Basu, Kajla

    2010-10-01

    In this paper we develop a methodology to solve the multiple attribute assignment problems where the attributes are considered to be Intuitionistic Fuzzy Sets (IFS). We apply the concept of similarity measures of IFS to solve the Intuitionistic Fuzzy Multi-Attribute Assignment Problem (IFMAAP). The weights of the attributes are determined from expert opinion. An illustrative example is solved to verify the developed approach and to demonstrate its practicality.

  5. Studies on pulsed optogalvanic effect in Eu/Ne hollow cathode discharge.

    PubMed

    Saini, V K; Kumar, P; Dixit, S K; Nakhe, S V

    2014-07-01

    The optogalvanic (OG) effect has been observed in a Eu/Ne hollow cathode discharge lamp using pulsed laser irradiation. An OG spectrum is recorded in dye laser wavelength region 574–602 nm using a boxcar-averager. In total 41 atomic lines are observed. Of these, 38 lines are assigned to neon transitions. Two lines observed corresponding to wavelengths 576.519 and 601.815 nm are assigned to europium transitions; (4f 7 6s 2 , S 8 7/2 →4f 7 6s6p , zP 6 7/2 ) and (4f 7 6s 2 , S 8 7/2 →4f 7 6s6p , zP 8 9/2 ), respectively, and the remaining line at 582.475 nm could not be assigned. The effect of the discharge current on europium as well as neon OG signals is also studied. At moderate discharge current values, an extra positive peak is observed in neon OG signal for the transition (1s 5 →2p 2 ) at 588.189 nm, which is explained by Penning-ionization process using the quasi-resonant energy transfer interactions between excited neon and europium atoms lying in 2p 2 and D 10 9/2 states, respectively.

  6. Evaluation of a Brief Homework Assignment Designed to Reduce Citation Problems

    ERIC Educational Resources Information Center

    Schuetze, Pamela

    2004-01-01

    I evaluated a brief homework assignment designed to reduce citation problems in research-based term papers. Students in 2 developmental psychology classes received a brief presentation and handout defining plagiarism with tips on how to cite sources to avoid plagiarizing. In addition, students in 1 class completed 2 brief homework assignments in…

  7. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  8. Computing Role Assignments of Proper Interval Graphs in Polynomial Time

    NASA Astrophysics Data System (ADS)

    Heggernes, Pinar; van't Hof, Pim; Paulusma, Daniël

    A homomorphism from a graph G to a graph R is locally surjective if its restriction to the neighborhood of each vertex of G is surjective. Such a homomorphism is also called an R-role assignment of G. Role assignments have applications in distributed computing, social network theory, and topological graph theory. The Role Assignment problem has as input a pair of graphs (G,R) and asks whether G has an R-role assignment. This problem is NP-complete already on input pairs (G,R) where R is a path on three vertices. So far, the only known non-trivial tractable case consists of input pairs (G,R) where G is a tree. We present a polynomial time algorithm that solves Role Assignment on all input pairs (G,R) where G is a proper interval graph. Thus we identify the first graph class other than trees on which the problem is tractable. As a complementary result, we show that the problem is Graph Isomorphism-hard on chordal graphs, a superclass of proper interval graphs and trees.

  9. Wavelength calibration of dispersive near-infrared spectrometer using relative k-space distribution with low coherence interferometer

    NASA Astrophysics Data System (ADS)

    Kim, Ji-hyun; Han, Jae-Ho; Jeong, Jichai

    2016-05-01

    The commonly employed calibration methods for laboratory-made spectrometers have several disadvantages, including poor calibration when the number of characteristic spectral peaks is low. Therefore, we present a wavelength calibration method using relative k-space distribution with low coherence interferometer. The proposed method utilizes an interferogram with a perfect sinusoidal pattern in k-space for calibration. Zero-crossing detection extracts the k-space distribution of a spectrometer from the interferogram in the wavelength domain, and a calibration lamp provides information about absolute wavenumbers. To assign wavenumbers, wavelength-to-k-space conversion is required for the characteristic spectrum of the calibration lamp with the extracted k-space distribution. Then, the wavelength calibration is completed by inverse conversion of the k-space into wavelength domain. The calibration performance of the proposed method was demonstrated with two experimental conditions of four and eight characteristic spectral peaks. The proposed method elicited reliable calibration results in both cases, whereas the conventional method of third-order polynomial curve fitting failed to determine wavelengths in the case of four characteristic peaks. Moreover, for optical coherence tomography imaging, the proposed method could improve axial resolution due to higher suppression of sidelobes in point spread function than the conventional method. We believe that our findings can improve not only wavelength calibration accuracy but also resolution for optical coherence tomography.

  10. An Experiment of GMPLS-Based Dispersion Compensation Control over In-Field Fibers

    NASA Astrophysics Data System (ADS)

    Seno, Shoichiro; Horiuchi, Eiichi; Yoshida, Sota; Sugihara, Takashi; Onohara, Kiyoshi; Kamei, Misato; Baba, Yoshimasa; Kubo, Kazuo; Mizuochi, Takashi

    As ROADMs (Reconfigurable Optical Add/Drop Multiplexers) are becoming widely used in metro/core networks, distributed control of wavelength paths by extended GMPLS (Generalized MultiProtocol Label Switching) protocols has attracted much attention. For the automatic establishment of an arbitrary wavelength path satisfying dynamic traffic demands over a ROADM or WXC (Wavelength Cross Connect)-based network, precise determination of chromatic dispersion over the path and optimized assignment of dispersion compensation capabilities at related nodes are essential. This paper reports an experiment over in-field fibers where GMPLS-based control was applied for the automatic discovery of chromatic dispersion, path computation, and wavelength path establishment with dynamic adjustment of variable dispersion compensation. The GMPLS-based control scheme, which the authors called GMPLS-Plus, extended GMPLS's distributed control architecture with attributes for automatic discovery, advertisement, and signaling of chromatic dispersion. In this experiment, wavelength paths with distances of 24km and 360km were successfully established and error-free data transmission was verified. The experiment also confirmed path restoration with dynamic compensation adjustment upon fiber failure.

  11. Multi-granularity Bandwidth Allocation for Large-Scale WDM/TDM PON

    NASA Astrophysics Data System (ADS)

    Gao, Ziyue; Gan, Chaoqin; Ni, Cuiping; Shi, Qiongling

    2017-12-01

    WDM (wavelength-division multiplexing)/TDM (time-division multiplexing) PON (passive optical network) is being viewed as a promising solution for delivering multiple services and applications, such as high-definition video, video conference and data traffic. Considering the real-time transmission, QoS (quality of services) requirements and differentiated services model, a multi-granularity dynamic bandwidth allocation (DBA) in both domains of wavelengths and time for large-scale hybrid WDM/TDM PON is proposed in this paper. The proposed scheme achieves load balance by using the bandwidth prediction. Based on the bandwidth prediction, the wavelength assignment can be realized fairly and effectively to satisfy the different demands of various classes. Specially, the allocation of residual bandwidth further augments the DBA and makes full use of bandwidth resources in the network. To further improve the network performance, two schemes named extending the cycle of one free wavelength (ECoFW) and large bandwidth shrinkage (LBS) are proposed, which can prevent transmission from interruption when the user employs more than one wavelength. The simulation results show the effectiveness of the proposed scheme.

  12. Simultaneous three wavelength imaging with a scanning laser ophthalmoscope.

    PubMed

    Reinholz, F; Ashman, R A; Eikelboom, R H

    1999-11-01

    Various imaging properties of scanning laser ophthalmoscopes (SLO) such as contrast or depth discrimination, are superior to those of the traditional photographic fundus camera. However, most SLO are monochromatic whereas photographic systems produce colour images, which inherently contain information over a broad wavelength range. An SLO system has been modified to allow simultaneous three channel imaging. Laser light sources in the visible and infrared spectrum were concurrently launched into the system. Using different wavelength triads, digital fundus images were acquired at high frame rates. Favourable wavelengths combinations were established and high contrast, true (red, green, blue) or false (red, green, infrared) colour images of the retina were recorded. The monochromatic frames which form the colour image exhibit improved distinctness of different retinal structures such as the nerve fibre layer, the blood vessels, and the choroid. A multi-channel SLO combines the advantageous imaging properties of a tunable, monochrome SLO with the benefits and convenience of colour ophthalmoscopy. The options to modify parameters such as wavelength, intensity, gain, beam profile, aperture sizes, independently for every channel assign a high degree of versatility to the system. Copyright 1999 Wiley-Liss, Inc.

  13. Competitive game theoretic optimal routing in optical networks

    NASA Astrophysics Data System (ADS)

    Yassine, Abdulsalam; Kabranov, Ognian; Makrakis, Dimitrios

    2002-09-01

    Optical transport service providers need control and optimization strategies for wavelength management, network provisioning, restoration and protection, allowing them to define and deploy new services and maintain competitiveness. In this paper, we investigate a game theory based model for wavelength and flow assignment in multi wavelength optical networks, consisting of several backbone long-haul optical network transport service providers (TSPs) who are offering their services -in terms of bandwidth- to Internet service providers (ISPs). The ISPs act as brokers or agents between the TSP and end user. The agent (ISP) buys services (bandwidth) from the TSP. The TSPs compete among themselves to sell their services and maintain profitability. We present a case study, demonstrating the impact of different bandwidth broker demands on the supplier's profit and the price paid by the network broker.

  14. Web-Based Problem-Solving Assignment and Grading System

    NASA Astrophysics Data System (ADS)

    Brereton, Giles; Rosenberg, Ronald

    2014-11-01

    In engineering courses with very specific learning objectives, such as fluid mechanics and thermodynamics, it is conventional to reinforce concepts and principles with problem-solving assignments and to measure success in problem solving as an indicator of student achievement. While the modern-day ease of copying and searching for online solutions can undermine the value of traditional assignments, web-based technologies also provide opportunities to generate individualized well-posed problems with an infinite number of different combinations of initial/final/boundary conditions, so that the probability of any two students being assigned identical problems in a course is vanishingly small. Such problems can be designed and programmed to be: single or multiple-step, self-grading, allow students single or multiple attempts; provide feedback when incorrect; selectable according to difficulty; incorporated within gaming packages; etc. In this talk, we discuss the use of a homework/exam generating program of this kind in a single-semester course, within a web-based client-server system that ensures secure operation.

  15. Dense fog on the highway: Visual range monitoring in cars?

    NASA Technical Reports Server (NTRS)

    Hahn, W.; Krichbaumer, W.; Streicher, J.; Werner, CH.

    1992-01-01

    This paper reports on the development of a new sensor. Laser range-finders are currently installed in cars and trucks to measure the distance to a proceeding car (LEICA). A modification of such a sensor to measure visibility was made. The problems that had to be solved were: (1) choice of wavelength with relation to the human eye for visibility measurements; (2) dependency of the wavelength on atmospheric turbidity; (3) laser eye-safety; and (4) influence of multiple scattering at visibilities smaller than 200 m. The wavelength used for lidar sensors in the near infrared presents no real problems because the object to be sensed is fog appearing white which means that scattering from fog is wavelength independent. There are however differences in backscatter-to-extinction ratio for different fog and weather situations. The two solutions to these problems are polarization and multiple scattering. As known from airport operations of a laser ceilometer, one can use this multiple scattering contribution to determine the visibility.

  16. Design of vein finder with multi tuning wavelength using RGB LED

    NASA Astrophysics Data System (ADS)

    Chandra, Franky; Wahyudianto, Aries; Yasin, M.

    2017-05-01

    Detection of intra vena is very important technique in the medical clinic applications. For intravenous detection, some nurses usually have a mistake which can cause a pain or injured to the patient. When the nurses are headed with this problem, it becomes dangerous for the patient. To solve the problem, in this paper, vein finder with multi-tuning wavelength for intra vena detection is proposed and investigated. Vein finder is tested to various skin colour and body mass. The results show that vein finder was successfully designed with controllable wavelength in the range of 600-696 nm using RGB LED.

  17. Development of a see-through hollow cathode discharge lamp for (Li/Ne) optogalvanic studies

    NASA Astrophysics Data System (ADS)

    Saini, V. K.; Kumar, P.; Sarangpani, K. K.; Dixit, S. K.; Nakhe, S. V.

    2017-09-01

    Development of a demountable and see-through hollow cathode (HC) discharge lamp suitable for optogalvanic (OG) spectroscopy is described. The design of the HC lamp is simple, compact, and inexpensive. Lithium, investigated rarely by the OG method, is selected for cathode material as its isotopes are important for nuclear industry. The HC lamp is characterized electrically and optically for discharge oscillations free OG effect. Strong OG signals of lithium as well as neon (as buffer gas) are produced precisely upon copper vapor laser pumped tunable dye laser irradiation. The HC lamp is capable of generating a clean OG resonance spectrum in the available dye laser wavelength scanning range (627.5-676 nm) obtained with 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran dye. About 28 resonant OG lines are explicitly observed. Majority of them have been identified using j-l coupling scheme and assigned to the well-known neon transitions. One line that corresponds to wavelength near about 670.80 nm is assigned to lithium and resolved for its fine (2S1/2 → 2P1/2, 3/2) transitions. These OG transitions allow 0.33 cm-1 accuracy and can be used to supplement the OG transition data available from other sources to calibrate the wavelength of a scanning dye laser with precision at atomic levels.

  18. Development of a see-through hollow cathode discharge lamp for (Li/Ne) optogalvanic studies.

    PubMed

    Saini, V K; Kumar, P; Sarangpani, K K; Dixit, S K; Nakhe, S V

    2017-09-01

    Development of a demountable and see-through hollow cathode (HC) discharge lamp suitable for optogalvanic (OG) spectroscopy is described. The design of the HC lamp is simple, compact, and inexpensive. Lithium, investigated rarely by the OG method, is selected for cathode material as its isotopes are important for nuclear industry. The HC lamp is characterized electrically and optically for discharge oscillations free OG effect. Strong OG signals of lithium as well as neon (as buffer gas) are produced precisely upon copper vapor laser pumped tunable dye laser irradiation. The HC lamp is capable of generating a clean OG resonance spectrum in the available dye laser wavelength scanning range (627.5-676 nm) obtained with 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran dye. About 28 resonant OG lines are explicitly observed. Majority of them have been identified using j-l coupling scheme and assigned to the well-known neon transitions. One line that corresponds to wavelength near about 670.80 nm is assigned to lithium and resolved for its fine ( 2 S 1/2 → 2 P 1/2, 3/2 ) transitions. These OG transitions allow 0.33 cm -1 accuracy and can be used to supplement the OG transition data available from other sources to calibrate the wavelength of a scanning dye laser with precision at atomic levels.

  19. Single-machine common/slack due window assignment problems with linear decreasing processing times

    NASA Astrophysics Data System (ADS)

    Zhang, Xingong; Lin, Win-Chin; Wu, Wen-Hsiang; Wu, Chin-Chia

    2017-08-01

    This paper studies linear non-increasing processing times and the common/slack due window assignment problems on a single machine, where the actual processing time of a job is a linear non-increasing function of its starting time. The aim is to minimize the sum of the earliness cost, tardiness cost, due window location and due window size. Some optimality results are discussed for the common/slack due window assignment problems and two O(n log n) time algorithms are presented to solve the two problems. Finally, two examples are provided to illustrate the correctness of the corresponding algorithms.

  20. Learning graph matching.

    PubMed

    Caetano, Tibério S; McAuley, Julian J; Cheng, Li; Le, Quoc V; Smola, Alex J

    2009-06-01

    As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a correspondence between the nodes of different graphs. Many formulations of this problem can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node compatibility and a quadratic term encodes edge compatibility. The main research focus in this theme is about designing efficient algorithms for approximately solving the quadratic assignment problem, since it is NP-hard. In this paper we turn our attention to a different question: how to estimate compatibility functions such that the solution of the resulting graph matching problem best matches the expected solution that a human would manually provide. We present a method for learning graph matching: the training examples are pairs of graphs and the 'labels' are matches between them. Our experimental results reveal that learning can substantially improve the performance of standard graph matching algorithms. In particular, we find that simple linear assignment with such a learning scheme outperforms Graduated Assignment with bistochastic normalisation, a state-of-the-art quadratic assignment relaxation algorithm.

  1. More reliable protein NMR peak assignment via improved 2-interval scheduling.

    PubMed

    Chen, Zhi-Zhong; Lin, Guohui; Rizzi, Romeo; Wen, Jianjun; Xu, Dong; Xu, Ying; Jiang, Tao

    2005-03-01

    Protein NMR peak assignment refers to the process of assigning a group of "spin systems" obtained experimentally to a protein sequence of amino acids. The automation of this process is still an unsolved and challenging problem in NMR protein structure determination. Recently, protein NMR peak assignment has been formulated as an interval scheduling problem (ISP), where a protein sequence P of amino acids is viewed as a discrete time interval I (the amino acids on P one-to-one correspond to the time units of I), each subset S of spin systems that are known to originate from consecutive amino acids from P is viewed as a "job" j(s), the preference of assigning S to a subsequence P of consecutive amino acids on P is viewed as the profit of executing job j(s) in the subinterval of I corresponding to P, and the goal is to maximize the total profit of executing the jobs (on a single machine) during I. The interval scheduling problem is max SNP-hard in general; but in the real practice of protein NMR peak assignment, each job j(s) usually requires at most 10 consecutive time units, and typically the jobs that require one or two consecutive time units are the most difficult to assign/schedule. In order to solve these most difficult assignments, we present an efficient 13/7-approximation algorithm for the special case of the interval scheduling problem where each job takes one or two consecutive time units. Combining this algorithm with a greedy filtering strategy for handling long jobs (i.e., jobs that need more than two consecutive time units), we obtain a new efficient heuristic for protein NMR peak assignment. Our experimental study shows that the new heuristic produces the best peak assignment in most of the cases, compared with the NMR peak assignment algorithms in the recent literature. The above algorithm is also the first approximation algorithm for a nontrivial case of the well-known interval scheduling problem that breaks the ratio 2 barrier.

  2. Is Mc Leod's Patent Pending Naturoptic Method for Restoring Healthy Vision Easy and Verifiable?

    NASA Astrophysics Data System (ADS)

    Niemi, Paul; McLeod, David; McLeod, Roger

    2006-10-01

    RDM asserts that he and people he has trained can assign visual tasks from standard vision assessment charts, or better replacements, proceeding through incremental changes and such rapid improvements that healthy vision can be restored. Mc Leod predicts that in visual tasks with pupil diameter changes, wavelengths change proportionally. A longer, quasimonochromatic wavelength interval is coincident with foveal cones, and rods. A shorter, partially overlapping interval separately aligns with extrafoveal cones. Wavelengths follow the Airy disk radius formula. Niemi can evaluate if it is true that visual health merely requires triggering and facilitating the demands of possibly overridden feedback signals. The method and process are designed so that potential Naturopathic and other select graduate students should be able to self-fund their higher- level educations from preferential franchising arrangements of earnings while they are in certain programs.

  3. Single machine scheduling with slack due dates assignment

    NASA Astrophysics Data System (ADS)

    Liu, Weiguo; Hu, Xiangpei; Wang, Xuyin

    2017-04-01

    This paper considers a single machine scheduling problem in which each job is assigned an individual due date based on a common flow allowance (i.e. all jobs have slack due date). The goal is to find a sequence for jobs, together with a due date assignment, that minimizes a non-regular criterion comprising the total weighted absolute lateness value and common flow allowance cost, where the weight is a position-dependent weight. In order to solve this problem, an ? time algorithm is proposed. Some extensions of the problem are also shown.

  4. A Stochastic Employment Problem

    ERIC Educational Resources Information Center

    Wu, Teng

    2013-01-01

    The Stochastic Employment Problem(SEP) is a variation of the Stochastic Assignment Problem which analyzes the scenario that one assigns balls into boxes. Balls arrive sequentially with each one having a binary vector X = (X[subscript 1], X[subscript 2],...,X[subscript n]) attached, with the interpretation being that if X[subscript i] = 1 the ball…

  5. A General Chemistry Assignment Analyzing Environmental Contamination for the Depue, IL, National Superfund Site

    ERIC Educational Resources Information Center

    Saslow Gomez, Sarah A.; Faurie-Wisniewski, Danielle; Parsa, Arlen; Spitz, Jeff; Spitz, Jennifer Amdur; Loeb, Nancy C.; Geiger, Franz M.

    2015-01-01

    The classroom exercise outlined here is a self-directed assignment that connects students to the environmental contamination problem surrounding the DePue Superfund site. By connecting chemistry knowledge gained in the classroom with a real-world problem, students are encouraged to personally connect with the problem while simultaneously…

  6. Multigrid methods for differential equations with highly oscillatory coefficients

    NASA Technical Reports Server (NTRS)

    Engquist, Bjorn; Luo, Erding

    1993-01-01

    New coarse grid multigrid operators for problems with highly oscillatory coefficients are developed. These types of operators are necessary when the characters of the differential equations on coarser grids or longer wavelengths are different from that on the fine grid. Elliptic problems for composite materials and different classes of hyperbolic problems are practical examples. The new coarse grid operators can be constructed directly based on the homogenized differential operators or hierarchically computed from the finest grid. Convergence analysis based on the homogenization theory is given for elliptic problems with periodic coefficients and some hyperbolic problems. These are classes of equations for which there exists a fairly complete theory for the interaction between shorter and longer wavelengths in the problems. Numerical examples are presented.

  7. Pre-service teachers’ challenges in presenting mathematical problems

    NASA Astrophysics Data System (ADS)

    Desfitri, R.

    2018-01-01

    The purpose of this study was to analyzed how pre-service teachers prepare and assigned tasks or assignments in teaching practice situations. This study was also intended to discuss about kind of tasks or assignments they gave to students. Participants of this study were 15 selected pre-service mathematics teachers from mathematics education department who took part on microteaching class as part of teaching preparation program. Based on data obtained, it was occasionally found that there were hidden errors on questions or tasks assigned by pre-service teachers which might lead their students not to be able to reach a logical or correct answer. Although some answers might seem to be true, they were illogical or unfavourable. It is strongly recommended that pre-service teachers be more careful when posing mathematical problems so that students do not misunderstand the problems or the concepts, since both teachers and students were sometimes unaware of errors in problems being worked on.

  8. New optimization model for routing and spectrum assignment with nodes insecurity

    NASA Astrophysics Data System (ADS)

    Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli

    2017-04-01

    By adopting the orthogonal frequency division multiplexing technology, elastic optical networks can provide the flexible and variable bandwidth allocation to each connection request and get higher spectrum utilization. The routing and spectrum assignment problem in elastic optical network is a well-known NP-hard problem. In addition, information security has received worldwide attention. We combine these two problems to investigate the routing and spectrum assignment problem with the guaranteed security in elastic optical network, and establish a new optimization model to minimize the maximum index of the used frequency slots, which is used to determine an optimal routing and spectrum assignment schemes. To solve the model effectively, a hybrid genetic algorithm framework integrating a heuristic algorithm into a genetic algorithm is proposed. The heuristic algorithm is first used to sort the connection requests and then the genetic algorithm is designed to look for an optimal routing and spectrum assignment scheme. In the genetic algorithm, tailor-made crossover, mutation and local search operators are designed. Moreover, simulation experiments are conducted with three heuristic strategies, and the experimental results indicate that the effectiveness of the proposed model and algorithm framework.

  9. Problem-Based Assignments as a Trigger for Developing Ethical and Reflective Competencies

    ERIC Educational Resources Information Center

    Euler, Dieter; Kühner, Patrizia

    2017-01-01

    The following research question serves as the starting point of this research and development project: How, in the context of a didactic design, can problem-based assignments trigger learning activities for the development of ethical and reflective competencies in students in economics courses? This paper focuses on the design of problem-based…

  10. Investigation of the Effect of Assignment Projects on Mathematical Activity of Graduating Junior High School Students.

    ERIC Educational Resources Information Center

    Zehavi, Nurit

    This study explored student mathematical activity in open problem-solving situations, derived from the work of Polya on problem solving and Skemp on intelligent learning and teaching. Assignment projects with problems for ninth-grade students were developed, whether they elicit the desired cognitive and cogno-affective goals was investigated, and…

  11. Ant colony optimization for solving university facility layout problem

    NASA Astrophysics Data System (ADS)

    Mohd Jani, Nurul Hafiza; Mohd Radzi, Nor Haizan; Ngadiman, Mohd Salihin

    2013-04-01

    Quadratic Assignment Problems (QAP) is classified as the NP hard problem. It has been used to model a lot of problem in several areas such as operational research, combinatorial data analysis and also parallel and distributed computing, optimization problem such as graph portioning and Travel Salesman Problem (TSP). In the literature, researcher use exact algorithm, heuristics algorithm and metaheuristic approaches to solve QAP problem. QAP is largely applied in facility layout problem (FLP). In this paper we used QAP to model university facility layout problem. There are 8 facilities that need to be assigned to 8 locations. Hence we have modeled a QAP problem with n ≤ 10 and developed an Ant Colony Optimization (ACO) algorithm to solve the university facility layout problem. The objective is to assign n facilities to n locations such that the minimum product of flows and distances is obtained. Flow is the movement from one to another facility, whereas distance is the distance between one locations of a facility to other facilities locations. The objective of the QAP is to obtain minimum total walking (flow) of lecturers from one destination to another (distance).

  12. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2009-12-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  13. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2010-03-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  14. Comparing Looping Teacher-Assigned and Traditional Teacher-Assigned Student Achievement Scores

    ERIC Educational Resources Information Center

    Lloyd, Melissa C.

    2014-01-01

    A problem in many elementary schools is determining which teacher assignment strategy best promotes the academic progress of students. To find and implement educational practices that address the academic needs of all learners, schools need research-based data focusing on the 2 teacher assignment strategies: looping assignment (LA) and traditional…

  15. Dynamic bandwidth allocation based on multiservice in software-defined wavelength-division multiplexing time-division multiplexing passive optical network

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Liu, Bo; Zhang, Lijia; Jin, Feifei; Zhang, Qi; Tian, Qinghua; Tian, Feng; Rao, Lan; Xin, Xiangjun

    2017-03-01

    The wavelength-division multiplexing passive optical network (WDM-PON) is a potential technology to carry multiple services in an optical access network. However, it has the disadvantages of high cost and an immature technique for users. A software-defined WDM/time-division multiplexing PON was proposed to meet the requirements of high bandwidth, high performance, and multiple services. A reasonable and effective uplink dynamic bandwidth allocation algorithm was proposed. A controller with dynamic wavelength and slot assignment was introduced, and a different optical dynamic bandwidth management strategy was formulated flexibly for services of different priorities according to the network loading. The simulation compares the proposed algorithm with the interleaved polling with adaptive cycle time algorithm. The algorithm shows better performance in average delay, throughput, and bandwidth utilization. The results show that the delay is reduced to 62% and the throughput is improved by 35%.

  16. Fluorescence excitation and excited state intramolecular relaxation dynamics of jet-cooled methyl-2-hydroxy-3-naphthoate

    NASA Astrophysics Data System (ADS)

    McCarthy, Annemarie; Ruth, Albert A.

    2013-11-01

    Two distinct S0 → S1 fluorescence excitation spectra of methyl-2-hydroxy-3-napthoate (MHN23) have been obtained by monitoring fluorescence separately in the short (˜410 nm) and long (˜650 nm) wavelength emission bands. The short wavelength fluorescence is assigned to two MHN23 conformers which do not undergo excited state intramolecular proton transfer (ESIPT). Analysis of the 'long wavelength' fluorescence excitation spectrum, which arises from the proton transfer tautomer of MHN23 indicates an average lifetime of τ ⩾ 18 ± 2 fs for the initially excited states. Invoking the results of Catalan et al. [J. Phys. Chem. A, 1999, 103, 10921], who determined the N tautomer to decay predominantly via a fast non-radiative process, the limit of the rate of intramolecular excited proton transfer in MHN23 is calculated as, kpt ⩽ 1 × 1012 s-1.

  17. Parameterized Complexity Results for General Factors in Bipartite Graphs with an Application to Constraint Programming

    NASA Astrophysics Data System (ADS)

    Gutin, Gregory; Kim, Eun Jung; Soleimanfallah, Arezou; Szeider, Stefan; Yeo, Anders

    The NP-hard general factor problem asks, given a graph and for each vertex a list of integers, whether the graph has a spanning subgraph where each vertex has a degree that belongs to its assigned list. The problem remains NP-hard even if the given graph is bipartite with partition U ⊎ V, and each vertex in U is assigned the list {1}; this subproblem appears in the context of constraint programming as the consistency problem for the extended global cardinality constraint. We show that this subproblem is fixed-parameter tractable when parameterized by the size of the second partite set V. More generally, we show that the general factor problem for bipartite graphs, parameterized by |V |, is fixed-parameter tractable as long as all vertices in U are assigned lists of length 1, but becomes W[1]-hard if vertices in U are assigned lists of length at most 2. We establish fixed-parameter tractability by reducing the problem instance to a bounded number of acyclic instances, each of which can be solved in polynomial time by dynamic programming.

  18. Quicker Q-Learning in Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Agogino, Adrian K.; Tumer, Kagan

    2005-01-01

    Multi-agent learning in Markov Decisions Problems is challenging because of the presence ot two credit assignment problems: 1) How to credit an action taken at time step t for rewards received at t' greater than t; and 2) How to credit an action taken by agent i considering the system reward is a function of the actions of all the agents. The first credit assignment problem is typically addressed with temporal difference methods such as Q-learning OK TD(lambda) The second credit assi,onment problem is typically addressed either by hand-crafting reward functions that assign proper credit to an agent, or by making certain independence assumptions about an agent's state-space and reward function. To address both credit assignment problems simultaneously, we propose the Q Updates with Immediate Counterfactual Rewards-learning (QUICR-learning) designed to improve both the convergence properties and performance of Q-learning in large multi-agent problems. Instead of assuming that an agent s value function can be made independent of other agents, this method suppresses the impact of other agents using counterfactual rewards. Results on multi-agent grid-world problems over multiple topologies show that QUICR-learning can achieve up to thirty fold improvements in performance over both conventional and local Q-learning in the largest tested systems.

  19. Meta-cognitive student reflections

    NASA Astrophysics Data System (ADS)

    Barquist, Britt; Stewart, Jim

    2009-05-01

    We have recently concluded a project testing the effectiveness of a weekly assignment designed to encourage awareness and improvement of meta-cognitive skills. The project is based on the idea that successful problem solvers implement a meta-cognitive process in which they identify the specific concept they are struggling with, and then identify what they understand, what they don't understand, and what they need to know in order to resolve their problem. The assignment required the students to write an email assessing the level of completion of a weekly workbook assignment and to examine in detail their experiences regarding a specific topic they struggled with. The assignment guidelines were designed to coach them through this meta-cognitive process. We responded to most emails with advice for next week's assignment. Our data follow 12 students through a quarter consisting of 11 email assignments which were scored using a rubric based on the assignment guidelines. We found no correlation between rubric scores and final grades. We do have anecdotal evidence that the assignment was beneficial.

  20. Determining the relationship between students' scores using traditional homework assignments to those who used assignments on a non-traditional interactive CD with tutor helps

    NASA Astrophysics Data System (ADS)

    Tinney, Charles Evan

    2007-12-01

    By using the book "Physics for Scientists and Engineers" by Raymond A. Serway as a guide, CD problem sets for teaching a calculus-based physics course were developed, programmed, and evaluated for homework assignments during the 2003-2004 academic year at Utah State University. These CD sets were used to replace the traditionally handwritten and submitted homework sets. They included a research-based format that guided the students through problem-solving techniques using responseactivated helps and suggestions. The CD contents were designed to help the student improve his/her physics problem-solving skills. The analyzed score results showed a direct correlation between the scores obtained on the homework and the students' time spent per problem, as well as the number of helps used per problem.

  1. Multi-bit wavelength coding phase-shift-keying optical steganography based on amplified spontaneous emission noise

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Wang, Hongxiang; Ji, Yuefeng

    2018-01-01

    In this paper, a multi-bit wavelength coding phase-shift-keying (PSK) optical steganography method is proposed based on amplified spontaneous emission noise and wavelength selection switch. In this scheme, the assignment codes and the delay length differences provide a large two-dimensional key space. A 2-bit wavelength coding PSK system is simulated to show the efficiency of our proposed method. The simulated results demonstrate that the stealth signal after encoded and modulated is well-hidden in both time and spectral domains, under the public channel and noise existing in the system. Besides, even the principle of this scheme and the existence of stealth channel are known to the eavesdropper, the probability of recovering the stealth data is less than 0.02 if the key is unknown. Thus it can protect the security of stealth channel more effectively. Furthermore, the stealth channel will results in 0.48 dB power penalty to the public channel at 1 × 10-9 bit error rate, and the public channel will have no influence on the receiving of the stealth channel.

  2. Discovery of New Coronal Lines at 2.843 and 2.853 μm

    NASA Astrophysics Data System (ADS)

    Samra, Jenna E.; Judge, Philip G.; DeLuca, Edward E.; Hannigan, James W.

    2018-04-01

    Two new emission features were observed during the 2017 August 21 total solar eclipse by a novel spectrometer, the Airborne Infrared Spectrometer (AIR-Spec), flown at 14.3 km altitude aboard the NCAR Gulfstream-V aircraft. We derive wavelengths in air of 2.8427 ± 0.00009 μm and 2.8529 ± 0.00008 μm. One of these lines belongs to the 3{{{p}}}53{{d}}{}3{{{F}}}3^\\circ \\to 3{{{p}}}53{{d}}{}3{{{F}}}4^\\circ transition in Ar-like Fe IX. This appears to be the first detection of this transition from any source. Minimization of residual wavelength differences using both measured wavelengths, together with National Institute of Standards and Technology (NIST) extreme ultraviolet wavelengths, does not clearly favor assignment to Fe IX. However, the shorter wavelength line appears more consistent with other observed features formed at similar temperatures to Fe IX. The transition occurs between two levels within the excited 3{{{p}}}53{{d}} configuration, 429,000 cm‑1 above the ground level. The line is therefore absent in photo-ionized coronal-line astrophysical sources such as the Circinus Galaxy. Data from a Fourier transform interferometer (FTIR) deployed from Wyoming show that both lines are significantly attenuated by telluric H2O, even at dry sites. We have been unable to identify the longer wavelength transition.

  3. Ontological Problem-Solving Framework for Assigning Sensor Systems and Algorithms to High-Level Missions

    PubMed Central

    Qualls, Joseph; Russomanno, David J.

    2011-01-01

    The lack of knowledge models to represent sensor systems, algorithms, and missions makes opportunistically discovering a synthesis of systems and algorithms that can satisfy high-level mission specifications impractical. A novel ontological problem-solving framework has been designed that leverages knowledge models describing sensors, algorithms, and high-level missions to facilitate automated inference of assigning systems to subtasks that may satisfy a given mission specification. To demonstrate the efficacy of the ontological problem-solving architecture, a family of persistence surveillance sensor systems and algorithms has been instantiated in a prototype environment to demonstrate the assignment of systems to subtasks of high-level missions. PMID:22164081

  4. Generalised Assignment Matrix Methodology in Linear Programming

    ERIC Educational Resources Information Center

    Jerome, Lawrence

    2012-01-01

    Discrete Mathematics instructors and students have long been struggling with various labelling and scanning algorithms for solving many important problems. This paper shows how to solve a wide variety of Discrete Mathematics and OR problems using assignment matrices and linear programming, specifically using Excel Solvers although the same…

  5. Multi-PON access network using a coarse AWG for smooth migration from TDM to WDM PON

    NASA Astrophysics Data System (ADS)

    Shachaf, Y.; Chang, C.-H.; Kourtessis, P.; Senior, J. M.

    2007-06-01

    An interoperable access network architecture based on a coarse array waveguide grating (AWG) is described, displaying dynamic wavelength assignment to manage the network load across multiple PONs. The multi-PON architecture utilizes coarse Gaussian channels of an AWG to facilitate scalability and smooth migration path between TDM and WDM PONs. Network simulations of a cross-operational protocol platform confirmed successful routing of individual PON clusters through 7 nm-wide passband windows of the AWG. Furthermore, polarization-dependent wavelength shift and phase errors of the device proved not to impose restrain on the routing performance. Optical transmission tests at 2.5 Gbit/s for distances up to 20 km are demonstrated.

  6. The spectroscopic observation of the CH radical in its a4Sigma(-) state

    NASA Technical Reports Server (NTRS)

    Nelis, Thomas; Brown, John M.; Evenson, Kenneth M.

    1988-01-01

    The first spectroscopic observation of CH in the a 4Sigma(0-) state are reported. The molecule was generated in a discharge-flow system in the reaction betweeen fluorine atoms and methane or between oxygen atoms and acetylene at a total pressure of about 1 Torr. Several resonances associated with the N = 1 - 0 transitions of 4Sigma(-) CH were observed at three separate laser wavelengths, while those for the N = 2 - 1 transition were observed at two wavelengths. Each observed Zeeman component consists of a well-split doublet arising from proton hyperfine structure. The reasons for assigning the observations to CH in its a 4Sigma(-) state are discussed.

  7. Topological numbering of features on a mesh

    NASA Technical Reports Server (NTRS)

    Atallah, Mikhail J.; Hambrusch, Susanne E.; Tewinkel, Lynn E.

    1988-01-01

    Assume a nxn binary image is given containing horizontally convex features; i.e., for each feature, each of its row's pixels form an interval on that row. The problem of assigning topological numbers to such features is considered; i.e., assign a number to every feature f so that all features to the left of f have a smaller number assigned to them. This problem arises in solutions to the stereo matching problem. A parallel algorithm to solve the topological numbering problem in O(n) time on an nxn mesh of processors is presented. The key idea of the solution is to create a tree from which the topological numbers can be obtained even though the tree does not uniquely represent the to the left of relationship of the features.

  8. Optimizing a realistic large-scale frequency assignment problem using a new parallel evolutionary approach

    NASA Astrophysics Data System (ADS)

    Chaves-González, José M.; Vega-Rodríguez, Miguel A.; Gómez-Pulido, Juan A.; Sánchez-Pérez, Juan M.

    2011-08-01

    This article analyses the use of a novel parallel evolutionary strategy to solve complex optimization problems. The work developed here has been focused on a relevant real-world problem from the telecommunication domain to verify the effectiveness of the approach. The problem, known as frequency assignment problem (FAP), basically consists of assigning a very small number of frequencies to a very large set of transceivers used in a cellular phone network. Real data FAP instances are very difficult to solve due to the NP-hard nature of the problem, therefore using an efficient parallel approach which makes the most of different evolutionary strategies can be considered as a good way to obtain high-quality solutions in short periods of time. Specifically, a parallel hyper-heuristic based on several meta-heuristics has been developed. After a complete experimental evaluation, results prove that the proposed approach obtains very high-quality solutions for the FAP and beats any other result published.

  9. Task Assignment and Path Planning for Multiple Autonomous Underwater Vehicles Using 3D Dubins Curves †

    PubMed Central

    Zhang, Meiyan; Zheng, Yahong Rosa

    2017-01-01

    This paper investigates the task assignment and path planning problem for multiple AUVs in three dimensional (3D) underwater wireless sensor networks where nonholonomic motion constraints of underwater AUVs in 3D space are considered. The multi-target task assignment and path planning problem is modeled by the Multiple Traveling Sales Person (MTSP) problem and the Genetic Algorithm (GA) is used to solve the MTSP problem with Euclidean distance as the cost function and the Tour Hop Balance (THB) or Tour Length Balance (TLB) constraints as the stop criterion. The resulting tour sequences are mapped to 2D Dubins curves in the X−Y plane, and then interpolated linearly to obtain the Z coordinates. We demonstrate that the linear interpolation fails to achieve G1 continuity in the 3D Dubins path for multiple targets. Therefore, the interpolated 3D Dubins curves are checked against the AUV dynamics constraint and the ones satisfying the constraint are accepted to finalize the 3D Dubins curve selection. Simulation results demonstrate that the integration of the 3D Dubins curve with the MTSP model is successful and effective for solving the 3D target assignment and path planning problem. PMID:28696377

  10. Task Assignment and Path Planning for Multiple Autonomous Underwater Vehicles Using 3D Dubins Curves †.

    PubMed

    Cai, Wenyu; Zhang, Meiyan; Zheng, Yahong Rosa

    2017-07-11

    This paper investigates the task assignment and path planning problem for multiple AUVs in three dimensional (3D) underwater wireless sensor networks where nonholonomic motion constraints of underwater AUVs in 3D space are considered. The multi-target task assignment and path planning problem is modeled by the Multiple Traveling Sales Person (MTSP) problem and the Genetic Algorithm (GA) is used to solve the MTSP problem with Euclidean distance as the cost function and the Tour Hop Balance (THB) or Tour Length Balance (TLB) constraints as the stop criterion. The resulting tour sequences are mapped to 2D Dubins curves in the X - Y plane, and then interpolated linearly to obtain the Z coordinates. We demonstrate that the linear interpolation fails to achieve G 1 continuity in the 3D Dubins path for multiple targets. Therefore, the interpolated 3D Dubins curves are checked against the AUV dynamics constraint and the ones satisfying the constraint are accepted to finalize the 3D Dubins curve selection. Simulation results demonstrate that the integration of the 3D Dubins curve with the MTSP model is successful and effective for solving the 3D target assignment and path planning problem.

  11. Excitation wavelength dependence of the fluorescence kinetics in Photosystem I particles from Synechocystis PCC 6803 and Synechococcus elongatus.

    PubMed

    Gobets, Bas; van Stokkum, Ivo H M; van Mourik, Frank; Dekker, Jan P; van Grondelle, Rienk

    2003-12-01

    The excitation-wavelength dependence of the excited-state dynamics of monomeric and trimeric Photosystem I (PSI) particles from Synechocystis PCC 6803 as well as trimeric PSI particles from Synechococcus elongatus has been studied at room temperature using time-resolved fluorescence spectroscopy. For aselective (400 nm), carotenoid (505 nm), and bulk chlorophyll (approximately 650 nm) excitation in all species, a downhill energy-transfer component is observed, corresponding to a lifetime of 3.4-5.5 ps. For selective red excitation (702-719 nm) in all species, a significantly faster, an approximately 1-ps, uphill transfer component was recorded. In Synechococcus PSI, an additional approximately 10-ps downhill energy-transfer component is found for all wavelengths of excitation, except 719 nm. Each of the species exhibits its own characteristic trap spectrum, the shape of which is independent of the wavelength of excitation. This trap spectrum decays in approximately 23 ps in both monomeric and trimeric Synechocystis PSI and in approximately 35 ps in trimeric Synechococcus PSI. The data were simulated based on the 2.5 A structural model of PSI of Synechococcus elongatus using the Förster equation for energy transfer, and using the 0.6-1-ps charge-separation time and the value of 1.2-1.3 for the index of refraction that were obtained from the dynamics of a hypothetical PSI particle without red chls. The experimentally obtained lifetimes and spectra were reproduced well by assigning three of the chlorophyll-a (chla) dimers observed in the structure to the C708/C702RT pool of red chls present in PSI from both species. Essential for the simulation of the dynamics of Synechococcus PSI is the assignment of the single chla trimer in the structure to the C719/C708RT pool present in this species.

  12. Diffraction-analysis-based characterization of very fine gratings

    NASA Astrophysics Data System (ADS)

    Bischoff, Joerg; Truckenbrodt, Horst; Bauer, Joachim J.

    1997-09-01

    Fine gratings with spatial periods below one micron, either ruled mechanically or patterned holographically, play a key role as encoders in high precision translational or rotational coordinate or measuring machines. Besides, the fast in-line characterization of submicron patterns is a stringent demand in recent microelectronic technology. Thus, a rapid, destruction free and highly accurate measuring technique is required to ensure the quality during manufacturing and for final testing. We propose an optical method which was already successfully introduced in semiconductor industry. Here, the inverse scatter problem inherent in this diffraction based approach is overcome by sophisticated data analysis such as multivariate regression or neural networks. Shortly sketched, the procedure is as follows: certain diffraction efficiencies are measured with an optical angle resolved scatterometer and assigned to a number of profile parameters via data analysis (prediction). Before, the specific measuring model has to be calibrated. If the wavelength-to-period rate is well below unity, it is quite easy to gather enough diffraction orders. However, for gratings with spatial periods being smaller than the probing wavelength, merely the specular reflex will propagate for perpendicular incidence (zero order grating). Consequently, it is virtually impossible to perform a regression analysis. A proper mean to tackle this bottleneck is to record the zero-order reflex as a function of the incident angle. In this paper, the measurement of submicron gratings is discussed with the examples of 0.8, 1.0 and 1.4 micron period resist gratings on silicon, etched silicon oxide on silicon (same periods) and a 512 nm pitch chromium grating on quartz. Using a He-Ne laser with 633 nm wavelength and measuring the direct reflex in both linear polarizations, it is shown that even submicron patterning processes can be monitored and the resulting profiles with linewidths below a half micron can be characterized reliably with 2(theta) - scatterometry.

  13. Show, Don't Tell: Using Photographic "Snapsignments" to Advance and Assess Creative Problem Solving

    ERIC Educational Resources Information Center

    Machin, Jane E.

    2016-01-01

    Traditional assignments that aim to develop and evaluate creative problem solving skills are frequently foregone in large marketing classes due to the daunting grading prospect they present. Here, a new assessment method is introduced: the "snapsignment." Through photography, individual projects can be assigned that promote higher order…

  14. Autonomous Guidance Strategy for Spacecraft Formations and Reconfiguration Maneuvers

    NASA Astrophysics Data System (ADS)

    Wahl, Theodore P.

    A guidance strategy for autonomous spacecraft formation reconfiguration maneuvers is presented. The guidance strategy is presented as an algorithm that solves the linked assignment and delivery problems. The assignment problem is the task of assigning the member spacecraft of the formation to their new positions in the desired formation geometry. The guidance algorithm uses an auction process (also called an "auction algorithm''), presented in the dissertation, to solve the assignment problem. The auction uses the estimated maneuver and time of flight costs between the spacecraft and targets to create assignments which minimize a specific "expense'' function for the formation. The delivery problem is the task of delivering the spacecraft to their assigned positions, and it is addressed through one of two guidance schemes described in this work. The first is a delivery scheme based on artificial potential function (APF) guidance. APF guidance uses the relative distances between the spacecraft, targets, and any obstacles to design maneuvers based on gradients of potential fields. The second delivery scheme is based on model predictive control (MPC); this method uses a model of the system dynamics to plan a series of maneuvers designed to minimize a unique cost function. The guidance algorithm uses an analytic linearized approximation of the relative orbital dynamics, the Yamanaka-Ankersen state transition matrix, in the auction process and in both delivery methods. The proposed guidance strategy is successful, in simulations, in autonomously assigning the members of the formation to new positions and in delivering the spacecraft to these new positions safely using both delivery methods. This guidance algorithm can serve as the basis for future autonomous guidance strategies for spacecraft formation missions.

  15. Excitation wavelength selection for quantitative analysis of carotenoids in tomatoes using Raman spectroscopy.

    PubMed

    Hara, Risa; Ishigaki, Mika; Kitahama, Yasutaka; Ozaki, Yukihiro; Genkawa, Takuma

    2018-08-30

    The difference in Raman spectra for different excitation wavelengths (532 nm, 785 nm, and 1064 nm) was investigated to identify an appropriate wavelength for the quantitative analysis of carotenoids in tomatoes. For the 532 nm-excited Raman spectra, the intensity of the peak assigned to the carotenoid has no correlation with carotenoid concentration, and the peak shift reflects carotenoid composition changing from lycopene to β-carotene and lutein. Thus, 532 nm-excited Raman spectra are useful for the qualitative analysis of carotenoids. For the 785 nm- and 1064 nm-excited Raman spectra, the peak intensity of the carotenoid showed good correlation with carotenoid concentration; thus, regression models for carotenoid concentration were developed using these Raman spectra and partial least squares regression. A regression model designed using the 785 nm-excited Raman spectra showed a better result than the 532 nm- and 1064 nm-excited Raman spectra. Therefore, it can be concluded that 785 nm is the most suitable excitation wavelength for the quantitative analysis of carotenoid concentration in tomatoes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The characterization of the concentration of the single-walled carbon nanotubes in aqueous dispersion by UV-Vis-NIR absorption spectroscopy.

    PubMed

    Yang, Bing; Ren, Lingling; Li, Luming; Tao, Xingfu; Shi, Yunhua; Zheng, Yudong

    2013-11-07

    Current and future applications of single-wall carbon nanotubes (SWCNTs) depend on the dispersion of the SWCNTs in aqueous solution and their quantitation. The concentration of SWCNTs is an important indicator to evaluate the dispersibility of the surfactant-dispersed SWCNTs suspension. Due to the complexity of the SWCNTs suspension, it is necessary to determine both the total concentration of the dispersed SWCNTs and the concentration of individually dispersed SWCNTs in aqueous suspensions, and these were evaluated through the absorbance and the resonance ratios of UV-Vis-NIR absorption spectra, respectively. However, there is no specific and reliable position assigned for either calculation of the absorbance or the resonance ratio of the UV-Vis-NIR absorption spectrum. In this paper, different ranges of wavelengths for these two parameters were studied. From this, we concluded that the wavelength range between 300 nm and 600 nm should be the most suitable for evaluation of the total concentration of dispersed SWCNTs in the suspension; also, wavelengths below 800 nm should be most suitable for evaluation of the concentration of individually dispersed SWCNTs in the suspension. Moreover, these wavelength ranges are verified by accurate dilution experiments.

  17. Wavelength-resolved emission spectroscopy of the alkoxy and alkylthio radicals in a supersonic jet

    NASA Technical Reports Server (NTRS)

    Misra, Prabhakar; Zhu, Xinming; Hsueh, Ching-Yu; Kamal, Mohammed M.

    1993-01-01

    Wavelength-resolved emission spectra of methoxy (CH3O) and methylthio (CH3S) radicals have been obtained in a supersonic jet environment with a resolution of 0.3 nm by dispersing the total laser-induced fluorescence with a 0.6 m monochromator. A detailed analysis of the single vibronic level dispersed fluorescence spectra yields the following vibrational frequencies for CH3O in the X(2)E state; nu(sub 1 double prime) = 2953/cm, nu(sub 2 double prime) = 1375/cm, nu(sub 3 double prime) = 1062/cm, nu(sub 4 double prime) = 2869/cm, nu(sub 5 double prime) = 1528/cm and nu(sub 6 double prime) = 688/cm. A similar analysis of the wavelength-resolved emission spectra of CH3S provides the following ground state vibrational frequencies: nu(sub 2 double prime) = 1329/cm, nu(sub 3 double prime) = 739/cm and nu(sub 6 double prime) = 601/cm. An experimental uncertainty of 20/cm is estimated for the assigned frequencies.

  18. Chlorine measurement in the jet singlet oxygen generator considering the effects of the droplets.

    PubMed

    Goodarzi, Mohamad S; Saghafifar, Hossein

    2016-09-01

    A new method is presented to measure chlorine concentration more accurately than conventional method in exhaust gases of a jet-type singlet oxygen generator. One problem in this measurement is the existence of micrometer-sized droplets. In this article, an empirical method is reported to eliminate the effects of the droplets. Two wavelengths from a fiber coupled LED are adopted and the measurement is made on both selected wavelengths. Chlorine is measured by the two-wavelength more accurately than the one-wavelength method by eliminating the droplet term in the equations. This method is validated without the basic hydrogen peroxide injection in the reactor. In this case, a pressure meter value in the diagnostic cell is compared with the optically calculated pressure, which is obtained by the one-wavelength and the two-wavelength methods. It is found that chlorine measurement by the two-wavelength method and pressure meter is nearly the same, while the one-wavelength method has a significant error due to the droplets.

  19. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    NASA Astrophysics Data System (ADS)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  20. WWC Review of the Report "Effects of Problem Based Economics on High School Economics Instruction"

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2012

    2012-01-01

    The study described in this report included 128 high school economics teachers from 106 schools in Arizona and California, half of whom were randomly assigned to the "Problem Based Economics Instruction" condition and half of whom were randomly assigned to the comparison condition. High levels of teacher attrition occurred after…

  1. Neural Mechanisms of Credit Assignment in a Multicue Environment

    PubMed Central

    Kolling, Nils; Brown, Joshua W.; Rushworth, Matthew

    2016-01-01

    In complex environments, many potential cues can guide a decision or be assigned responsibility for the outcome of the decision. We know little, however, about how humans and animals select relevant information sources that should guide behavior. We show that subjects solve this relevance selection and credit assignment problem by selecting one cue and its association with a particular outcome as the main focus of a hypothesis. To do this, we examined learning while using a task design that allowed us to estimate the focus of each subject's hypotheses on a trial-by-trial basis. When a prediction is confirmed by the outcome, then credit for the outcome is assigned to that cue rather than an alternative. Activity in medial frontal cortex is associated with the assignment of credit to the cue that is the main focus of the hypothesis. However, when the outcome disconfirms a prediction, the focus shifts between cues, and the credit for the outcome is assigned to an alternative cue. This process of reselection for credit assignment to an alternative cue is associated with lateral orbitofrontal cortex. SIGNIFICANCE STATEMENT Learners should infer which features of environments are predictive of significant events, such as rewards. This “credit assignment” problem is particularly challenging when any of several cues might be predictive. We show that human subjects solve the credit assignment problem by implicitly “hypothesizing” which cue is relevant for predicting subsequent outcomes, and then credit is assigned according to this hypothesis. This process is associated with a distinctive pattern of activity in a part of medial frontal cortex. By contrast, when unexpected outcomes occur, hypotheses are redirected toward alternative cues, and this process is associated with activity in lateral orbitofrontal cortex. PMID:26818500

  2. Optimal assignment of workers to supporting services in a hospital

    NASA Astrophysics Data System (ADS)

    Sawik, Bartosz; Mikulik, Jerzy

    2008-01-01

    Supporting services play an important role in health care institutions such as hospitals. This paper presents an application of operations research model for optimal allocation of workers among supporting services in a public hospital. The services include logistics, inventory management, financial management, operations management, medical analysis, etc. The optimality criterion of the problem is to minimize operations costs of supporting services subject to some specific constraints. The constraints represent specific conditions for resource allocation in a hospital. The overall problem is formulated as an integer program in the literature known as the assignment problem, where the decision variables represent the assignment of people to various jobs. The results of some computational experiments modeled on a real data from a selected Polish hospital are reported.

  3. A modified generalized extremal optimization algorithm for the quay crane scheduling problem with interference constraints

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Cheng, Wenming; Wang, Yi

    2014-10-01

    The quay crane scheduling problem (QCSP) determines the handling sequence of tasks at ship bays by a set of cranes assigned to a container vessel such that the vessel's service time is minimized. A number of heuristics or meta-heuristics have been proposed to obtain the near-optimal solutions to overcome the NP-hardness of the problem. In this article, the idea of generalized extremal optimization (GEO) is adapted to solve the QCSP with respect to various interference constraints. The resulting GEO is termed the modified GEO. A randomized searching method for neighbouring task-to-QC assignments to an incumbent task-to-QC assignment is developed in executing the modified GEO. In addition, a unidirectional search decoding scheme is employed to transform a task-to-QC assignment to an active quay crane schedule. The effectiveness of the developed GEO is tested on a suite of benchmark problems introduced by K.H. Kim and Y.M. Park in 2004 (European Journal of Operational Research, Vol. 156, No. 3). Compared with other well-known existing approaches, the experiment results show that the proposed modified GEO is capable of obtaining the optimal or near-optimal solution in a reasonable time, especially for large-sized problems.

  4. Process-based Assignment-Setting Change for Support of Overcoming Bottlenecks in Learning by Problem-Posing in Arithmetic Word Problems

    NASA Astrophysics Data System (ADS)

    Supianto, A. A.; Hayashi, Y.; Hirashima, T.

    2017-02-01

    Problem-posing is well known as an effective activity to learn problem-solving methods. Monsakun is an interactive problem-posing learning environment to facilitate arithmetic word problems learning for one operation of addition and subtraction. The characteristic of Monsakun is problem-posing as sentence-integration that lets learners make a problem of three sentences. Monsakun provides learners with five or six sentences including dummies, which are designed through careful considerations by an expert teacher as a meaningful distraction to the learners in order to learn the structure of arithmetic word problems. The results of the practical use of Monsakun in elementary schools show that many learners have difficulties in arranging the proper answer at the high level of assignments. The analysis of the problem-posing process of such learners found that their misconception of arithmetic word problems causes impasses in their thinking and mislead them to use dummies. This study proposes a method of changing assignments as a support for overcoming bottlenecks of thinking. In Monsakun, the bottlenecks are often detected as a frequently repeated use of a specific dummy. If such dummy can be detected, it is the key factor to support learners to overcome their difficulty. This paper discusses how to detect the bottlenecks and to realize such support in learning by problem-posing.

  5. Fleet Assignment Using Collective Intelligence

    NASA Technical Reports Server (NTRS)

    Antoine, Nicolas E.; Bieniawski, Stefan R.; Kroo, Ilan M.; Wolpert, David H.

    2004-01-01

    Product distribution theory is a new collective intelligence-based framework for analyzing and controlling distributed systems. Its usefulness in distributed stochastic optimization is illustrated here through an airline fleet assignment problem. This problem involves the allocation of aircraft to a set of flights legs in order to meet passenger demand, while satisfying a variety of linear and non-linear constraints. Over the course of the day, the routing of each aircraft is determined in order to minimize the number of required flights for a given fleet. The associated flow continuity and aircraft count constraints have led researchers to focus on obtaining quasi-optimal solutions, especially at larger scales. In this paper, the authors propose the application of this new stochastic optimization algorithm to a non-linear objective cold start fleet assignment problem. Results show that the optimizer can successfully solve such highly-constrained problems (130 variables, 184 constraints).

  6. An analysis of spectral envelope-reduction via quadratic assignment problems

    NASA Technical Reports Server (NTRS)

    George, Alan; Pothen, Alex

    1994-01-01

    A new spectral algorithm for reordering a sparse symmetric matrix to reduce its envelope size was described. The ordering is computed by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. In this paper, we provide an analysis of the spectral envelope reduction algorithm. We described related 1- and 2-sum problems; the former is related to the envelope size, while the latter is related to an upper bound on the work involved in an envelope Cholesky factorization scheme. We formulate the latter two problems as quadratic assignment problems, and then study the 2-sum problem in more detail. We obtain lower bounds on the 2-sum by considering a projected quadratic assignment problem, and then show that finding a permutation matrix closest to an orthogonal matrix attaining one of the lower bounds justifies the spectral envelope reduction algorithm. The lower bound on the 2-sum is seen to be tight for reasonably 'uniform' finite element meshes. We also obtain asymptotically tight lower bounds for the envelope size for certain classes of meshes.

  7. Towards Automated Structure-Based NMR Resonance Assignment

    NASA Astrophysics Data System (ADS)

    Jang, Richard; Gao, Xin; Li, Ming

    We propose a general framework for solving the structure-based NMR backbone resonance assignment problem. The core is a novel 0-1 integer programming model that can start from a complete or partial assignment, generate multiple assignments, and model not only the assignment of spins to residues, but also pairwise dependencies consisting of pairs of spins to pairs of residues. It is still a challenge for automated resonance assignment systems to perform the assignment directly from spectra without any manual intervention. To test the feasibility of this for structure-based assignment, we integrated our system with our automated peak picking and sequence-based resonance assignment system to obtain an assignment for the protein TM1112 with 91% recall and 99% precision without manual intervention. Since using a known structure has the potential to allow one to use only N-labeled NMR data and avoid the added expense of using C-labeled data, we work towards the goal of automated structure-based assignment using only such labeled data. Our system reduced the assignment error of Xiong-Pandurangan-Bailey-Kellogg's contact replacement (CR) method, which to our knowledge is the most error-tolerant method for this problem, by 5 folds on average. By using an iterative algorithm, our system has the added capability of using the NOESY data to correct assignment errors due to errors in predicting the amino acid and secondary structure type of each spin system. On a publicly available data set for Ubiquitin, where the type prediction accuracy is 83%, we achieved 91% assignment accuracy, compared to the 59% accuracy that was obtained without correcting for typing errors.

  8. Developing a feasible neighbourhood search for solving hub location problem in a communication network

    NASA Astrophysics Data System (ADS)

    Rakhmawati, Fibri; Mawengkang, Herman; Buulolo, F.; Mardiningsih

    2018-01-01

    The hub location with single assignment is the problem of locating hubs and assigning the terminal nodes to hubs in order to minimize the cost of hub installation and the cost of routing the traffic in the network. There may also be capacity restrictions on the amount of traffic that can transit by hubs. This paper discusses how to model the polyhedral properties of the problems and develop a feasible neighbourhood search method to solve the model.

  9. An automated framework for NMR resonance assignment through simultaneous slice picking and spin system forming.

    PubMed

    Abbas, Ahmed; Guo, Xianrong; Jing, Bing-Yi; Gao, Xin

    2014-06-01

    Despite significant advances in automated nuclear magnetic resonance-based protein structure determination, the high numbers of false positives and false negatives among the peaks selected by fully automated methods remain a problem. These false positives and negatives impair the performance of resonance assignment methods. One of the main reasons for this problem is that the computational research community often considers peak picking and resonance assignment to be two separate problems, whereas spectroscopists use expert knowledge to pick peaks and assign their resonances at the same time. We propose a novel framework that simultaneously conducts slice picking and spin system forming, an essential step in resonance assignment. Our framework then employs a genetic algorithm, directed by both connectivity information and amino acid typing information from the spin systems, to assign the spin systems to residues. The inputs to our framework can be as few as two commonly used spectra, i.e., CBCA(CO)NH and HNCACB. Different from the existing peak picking and resonance assignment methods that treat peaks as the units, our method is based on 'slices', which are one-dimensional vectors in three-dimensional spectra that correspond to certain ([Formula: see text]) values. Experimental results on both benchmark simulated data sets and four real protein data sets demonstrate that our method significantly outperforms the state-of-the-art methods while using a less number of spectra than those methods. Our method is freely available at http://sfb.kaust.edu.sa/Pages/Software.aspx.

  10. Analysis of labor employment assessment on production machine to minimize time production

    NASA Astrophysics Data System (ADS)

    Hernawati, Tri; Suliawati; Sari Gumay, Vita

    2018-03-01

    Every company both in the field of service and manufacturing always trying to pass efficiency of it’s resource use. One resource that has an important role is labor. Labor has different efficiency levels for different jobs anyway. Problems related to the optimal allocation of labor that has different levels of efficiency for different jobs are called assignment problems, which is a special case of linear programming. In this research, Analysis of Labor Employment Assesment on Production Machine to Minimize Time Production, in PT PDM is done by using Hungarian algorithm. The aim of the research is to get the assignment of optimal labor on production machine to minimize time production. The results showed that the assignment of existing labor is not suitable because the time of completion of the assignment is longer than the assignment by using the Hungarian algorithm. By applying the Hungarian algorithm obtained time savings of 16%.

  11. Analyzing the multiple-target-multiple-agent scenario using optimal assignment algorithms

    NASA Astrophysics Data System (ADS)

    Kwok, Kwan S.; Driessen, Brian J.; Phillips, Cynthia A.; Tovey, Craig A.

    1997-09-01

    This work considers the problem of maximum utilization of a set of mobile robots with limited sensor-range capabilities and limited travel distances. The robots are initially in random positions. A set of robots properly guards or covers a region if every point within the region is within the effective sensor range of at least one vehicle. We wish to move the vehicles into surveillance positions so as to guard or cover a region, while minimizing the maximum distance traveled by any vehicle. This problem can be formulated as an assignment problem, in which we must optimally decide which robot to assign to which slot of a desired matrix of grid points. The cost function is the maximum distance traveled by any robot. Assignment problems can be solved very efficiently. Solution times for one hundred robots took only seconds on a silicon graphics crimson workstation. The initial positions of all the robots can be sampled by a central base station and their newly assigned positions communicated back to the robots. Alternatively, the robots can establish their own coordinate system with the origin fixed at one of the robots and orientation determined by the compass bearing of another robot relative to this robot. This paper presents example solutions to the multiple-target-multiple-agent scenario using a matching algorithm. Two separate cases with one hundred agents in each were analyzed using this method. We have found these mobile robot problems to be a very interesting application of network optimization methods, and we expect this to be a fruitful area for future research.

  12. Protein Side-Chain Resonance Assignment and NOE Assignment Using RDC-Defined Backbones without TOCSY Data3

    PubMed Central

    Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall

    2011-01-01

    One bottleneck in NMR structure determination lies in the laborious and time-consuming process of side-chain resonance and NOE assignments. Compared to the well-studied backbone resonance assignment problem, automated side-chain resonance and NOE assignments are relatively less explored. Most NOE assignment algorithms require nearly complete side-chain resonance assignments from a series of through-bond experiments such as HCCH-TOCSY or HCCCONH. Unfortunately, these TOCSY experiments perform poorly on large proteins. To overcome this deficiency, we present a novel algorithm, called NASCA (NOE Assignment and Side-Chain Assignment), to automate both side-chain resonance and NOE assignments and to perform high-resolution protein structure determination in the absence of any explicit through-bond experiment to facilitate side-chain resonance assignment, such as HCCH-TOCSY. After casting the assignment problem into a Markov Random Field (MRF), NASCA extends and applies combinatorial protein design algorithms to compute optimal assignments that best interpret the NMR data. The MRF captures the contact map information of the protein derived from NOESY spectra, exploits the backbone structural information determined by RDCs, and considers all possible side-chain rotamers. The complexity of the combinatorial search is reduced by using a dead-end elimination (DEE) algorithm, which prunes side-chain resonance assignments that are provably not part of the optimal solution. Then an A* search algorithm is employed to find a set of optimal side-chain resonance assignments that best fit the NMR data. These side-chain resonance assignments are then used to resolve the NOE assignment ambiguity and compute high-resolution protein structures. Tests on five proteins show that NASCA assigns resonances for more than 90% of side-chain protons, and achieves about 80% correct assignments. The final structures computed using the NOE distance restraints assigned by NASCA have backbone RMSD 0.8 – 1.5 Å from the reference structures determined by traditional NMR approaches. PMID:21706248

  13. Optimization of municipal waste collection scheduling and routing using vehicle assignment problem (case study of Surabaya city waste collection)

    NASA Astrophysics Data System (ADS)

    Ramdhani, M. N.; Baihaqi, I.; Siswanto, N.

    2018-04-01

    Waste collection and disposal become a major problem for many metropolitan cities. Growing population, limited vehicles, and increased road traffic make the waste transportation become more complex. Waste collection involves some key considerations, such as vehicle assignment, vehicle routes, and vehicle scheduling. In the scheduling process, each vehicle has a scheduled departure that serve each route. Therefore, vehicle’s assignments should consider the time required to finish one assigment on that route. The objective of this study is to minimize the number of vehicles needed to serve all routes by developing a mathematical model which uses assignment problem approach. The first step is to generated possible routes from the existing routes, followed by vehicle assignments for those certain routes. The result of the model shows fewer vehicles required to perform waste collection asa well as the the number of journeys that the vehicle to collect the waste to the landfill. The comparison of existing conditions with the model result indicates that the latter’s has better condition than the existing condition because each vehicle with certain route has an equal workload, all the result’s model has the maximum of two journeys for each route.

  14. Maternal education preferences moderate the effects of mandatory employment and education programs on child positive and problem behaviors

    PubMed Central

    Gassman-Pines, Anna; Godfrey, Erin B.; Yoshikawa, Hirokazu

    2012-01-01

    Grounded in Person-Environment Fit Theory, this study examined whether low-income mothers' preferences for education moderated the effects of employment- and education-focused welfare programs on children's positive and problem behaviors. The sample included 1,365 families with children between ages 3 and 5 at study entry. Results 5 years after random assignment, when children were ages 8 to 10, indicated that mothers' education preferences did moderate program impacts on teacher-reported child behavior problems and positive behavior. Children whose mothers were assigned to the education program were rated by teachers to have less externalizing behavior and more positive behavior than children whose mothers were assigned to the employment program, but only when mothers had strong preferences for education. PMID:22861169

  15. Supervising Unsuccessful Student Teaching Assignments: Two Terminator's Tales.

    ERIC Educational Resources Information Center

    St. Maurice, Henry

    2001-01-01

    Discusses problems that arise when there is a conflict between a student teacher and the supervising teacher and when a student teacher does not perform satisfactorily. Focuses on how supervisors deal with failed assignments and how beginning teachers improve their teaching and learn from failed assignments. (Contains 21 references.) (JOW)

  16. The Biomes of Homewood: Interactive Map Software

    ERIC Educational Resources Information Center

    Shingles, Richard; Feist, Theron; Brosnan, Rae

    2005-01-01

    To build a learning community, the General Biology faculty at Johns Hopkins University conducted collaborative, problem-based learning assignments outside of class in which students are assigned to specific areas on campus, and gather and report data about their area. To overcome the logistics challenges presented by conducting such assignments in…

  17. Bandwidth Problems ca. 1912: The Need for Federal Regulation

    ERIC Educational Resources Information Center

    Social Education, 2005

    2005-01-01

    In the United States the use of wireless radio initially was unregulated-anyone could operate a radio transmitter anywhere, at any time, on any wavelength. And most utilized the longwave signals that traveled so well across land and sea. Naturally, severe interference occurred with everyone trying to use the same wavelengths. Eventually it was…

  18. Contributions au probleme d'affectation des types d'avion

    NASA Astrophysics Data System (ADS)

    Belanger, Nicolas

    In this thesis, we approach the problem of assigning aircraft types to flights (what is called aircraft fleet assignment) in a strategic planning context. The literature mentions many studies considering this problem on a daily flight schedule basis, but the proposed models do no allow to consider many elements that are either necessary to assure the practical feasibility of the solutions, or relevant to get more beneficial solutions. After describing the practical context of the problem (Chapter 1) and presenting the literature on the subject (Chapter 2), we propose new models and solution approaches to improve the quality of' the solutions obtained. The general scheme of the thesis is presented in Chapter 3. We summarize here the models and solution approaches that we propose; and present the main elements of our conclusions. First, in Chapter 4, we consider the problem of aircraft fleet Assignment over a weekly flight schedule, integrating into the objective an homogeneity factor for driving the choice of the aircraft types for the flights with the same flight number over the week. We present an integer linear model based on a time-space multicommodity network. This model includes, among others, decision variables relative to the aircraft type assigned to each flight and to the dominant aircraft type assigned to each flight number. We present in Chapter 5 the results of a research project made in collaboration with Air Canada within a consulting contract. The project aimed at analyzing the relevance for the planners of using an optimization software to help them to first identify non profitable flight legs in the network, and second to efficiently establish the aircraft fleet assignment. In this chapter, we propose an iterative approach to take into account the fact that the passenger demand is not known on a leg basis, but rather on an origin-destination and departure time basis. Finally, in Chapter 6, we propose a model and a solution approach that aim at solving the fleet assignment problem over a periodic schedule in the case where there is a flexibility on the flight departure times and the fleet size must be minimized. Moreover, the objective of this model includes the impact on the passenger demand for each flight of the variation of the flight departure times and the closing of the departure times of consecutive flights connecting the same pairs of stations. (Abstract shortened by UMI.)

  19. Effective suppression of stray light in rotational coherent anti-stokes Raman spectroscopy using an angle-tuned short-wave-pass filter.

    PubMed

    Bohlin, Alexis; Bengtsson, Per-Erik

    2010-08-01

    Stray light interference is a common problem in spontaneous rotational Raman spectroscopy and rotational coherent anti-Stokes Raman spectropscopy (CARS). The reason is that the detected spectrum appears in the spectral vicinity of the probe beam wavelength, and stray light at this wavelength from optics and surfaces is hard to suppress. In this Note, efficient suppression of stray light is demonstrated for rotational CARS measurements using a commercially available short-wave-pass filter. By angle-tuning this filter with a specified cut-off wavelength at 561 nm, the cut-off wavelength could be tuned to a desired spectral position so that more than 80% transmission is achieved as close as 15 cm(-1) (approximately 0.4 nm) from the probe beam wavelength of 532.0 nm, while the intensity at this wavelength is suppressed by two orders of magnitude.

  20. Geometrical calibration of an AOTF hyper-spectral imaging system

    NASA Astrophysics Data System (ADS)

    Špiclin, Žiga; Katrašnik, Jaka; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2010-02-01

    Optical aberrations present an important problem in optical measurements. Geometrical calibration of an imaging system is therefore of the utmost importance for achieving accurate optical measurements. In hyper-spectral imaging systems, the problem of optical aberrations is even more pronounced because optical aberrations are wavelength dependent. Geometrical calibration must therefore be performed over the entire spectral range of the hyper-spectral imaging system, which is usually far greater than that of the visible light spectrum. This problem is especially adverse in AOTF (Acousto- Optic Tunable Filter) hyper-spectral imaging systems, as the diffraction of light in AOTF filters is dependent on both wavelength and angle of incidence. Geometrical calibration of hyper-spectral imaging system was performed by stable caliber of known dimensions, which was imaged at different wavelengths over the entire spectral range. The acquired images were then automatically registered to the caliber model by both parametric and nonparametric transformation based on B-splines and by minimizing normalized correlation coefficient. The calibration method was tested on an AOTF hyper-spectral imaging system in the near infrared spectral range. The results indicated substantial wavelength dependent optical aberration that is especially pronounced in the spectral range closer to the infrared part of the spectrum. The calibration method was able to accurately characterize the aberrations and produce transformations for efficient sub-pixel geometrical calibration over the entire spectral range, finally yielding better spatial resolution of hyperspectral imaging system.

  1. Binning and filtering: the six-color solution

    NASA Astrophysics Data System (ADS)

    Ashdown, Ian; Robinson, Shane; Salsbury, Marc

    2006-08-01

    The use of LED backlighting for LCD displays requires careful binning of red, green, and blue LEDs by dominant wavelength to maintain the color gamuts as specified by NTSC, SMPTE, and EBU/ITU standards. This problem also occurs to a lesser extent with RGB and RGBA assemblies for solid-state lighting, where color gamut consistency is required for color-changing luminaires. In this paper, we propose a "six-color solution," based on Grassman's laws, that does not require color binning, but nevertheless guarantees a fixed color gamut that subsumes the color gamuts of carefully-binned RGB assemblies. A further advantage of this solution is that it solves the problem of peak wavelength shifts with varying junction temperatures. The color gamut can thus remain fixed over the full range of LED intensities and ambient temperatures. A related problem occurs with integrated circuit (IC) colorimeters used for optical feedback with LED backlighting and RGB(A) solid-state lighting, wherein it can be difficult to distinguish between peak wavelength shifts and changes in LED intensity. We apply our six-color solution to the design of a novel colorimeter for LEDs that independently measures changes in peak wavelength and intensity. The design is compatible with current manufacturing techniques for tristimulus colorimeter ICs. Together, the six-color solution for LEDs and colorimeters enables less expensive LED backlighting and solid-state lighting systems with improved color stability.

  2. The effect of wind and moisture gradients on the arbitrary assignment of cloud motions to a vertical coordinate system in two Sesame cases

    NASA Technical Reports Server (NTRS)

    Peslen, C. A.; Koch, S. E.; Uccellini, L. W.

    1984-01-01

    Satellite-derived cloud motion 'wind' vectors (CMV) are increasingly used in mesoscale and in global analyses, and questions have been raised regarding the uncertainty of the level assignment for the CMV. One of two major problems in selecting a level for the CMV is related to uncertainties in assigning the motion vector to either the cloud top or base. The second problem is related to the inability to transfer the 'wind' derived from the CMV at individually specified heights to a standard coordinated surface. The present investigation has the objective to determine if the arbitrary level assignment represents a serious obstacle to the use of cloud motion wind vectors in the mesoscale analysis of a severe storm environment.

  3. Multi Objective Decision Analysis for Assignment Problems

    DTIC Science & Technology

    2011-03-01

    needed data or try to get data from related databases. 2.3.8 Deterministic Analysis In order to determine an overall score for each...The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Turkish Air...DECISION ANALYSIS FOR ASSIGNMENT PROBLEMS THESIS Presented to the Faculty Department of Operational Sciences Graduate School of

  4. Using the Same Problem with Different Techniques in Programming Assignments: An Empirical Study of Its Effectiveness

    ERIC Educational Resources Information Center

    Newby, Michael; Nguyen, ThuyUyen H.

    2010-01-01

    This paper examines the effectiveness of a technique that first appeared as a Teaching Tip in the Journal of Information Systems Education. In this approach the same problem is used in every programming assignment within a course, but the students are required to use different programming techniques. This approach was used in an intermediate C++…

  5. Emission line spectra of S VII ? S XIV in the 20 ? 75 ? wavelength region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepson, J K; Beiersdorfer, P; Behar, E

    As part of a larger project to complete a comprehensive catalogue of astrophysically relevant emission lines in support of new-generation X-ray observatories using the Lawrence Livermore electron beam ion traps EBIT-I and EBIT-II, the authors present observations of sulfur lines in the soft X-ray and extreme ultraviolet regions. The database includes wavelength measurements with standard errors, relative intensities, and line assignments for 127 transitions of S VII through S XIV between 20 and 75 {angstrom}. The experimental data are complemented with a full set of calculations using the Hebrew University Lawrence Livermore Atomic Code (HULLAC). A comparison of the laboratorymore » data with Chandra measurements of Procyon allows them to identify S VII-S XI lines.« less

  6. Characterization of the Nimbus-7 SBUV radiometer for the long-term monitoring of stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Cebula, Richard P.; Park, H.; Heath, D. F.

    1988-01-01

    Precise knowledge of in-orbit sensitivity change is critical for the successful monitoring of stratospheric ozone by satellite-based remote sensors. This paper evaluates those aspects of the in-flight operation that influence the long-term stability of the upper stratospheric ozone measurements made by the Nimbus-7 SBUV spectroradiometer and chronicles methods used to maintain the long-term albedo calibration of this UV sensor. It is shown that the instrument's calibration for the ozone measurement, the albedo calibration, has been maintained over the first 6 yr of operation to an accuracy of approximately + or - 2 percent. The instrument's wavelength calibration is shown to drift linearly with time. The knowledge of the SBUV wavelength assignment is maintained to a 0.02-nm precision.

  7. Problems in the use of interference filters for spectrophotometric determination of total ozone

    NASA Technical Reports Server (NTRS)

    Basher, R. E.; Matthews, W. A.

    1977-01-01

    An analysis of the use of ultraviolet narrow-band interference filters for total ozone determination is given with reference to the New Zealand filter spectrophotometer under the headings of filter monochromaticity, temperature dependence, orientation dependence, aging, and specification tolerances and nonuniformity. Quantitative details of each problem are given, together with the means used to overcome them in the New Zealand instrument. The tuning of the instrument's filter center wavelengths to a common set of values by tilting the filters is also described, along with a simple calibration method used to adjust and set these center wavelengths.

  8. Two-Wavelength Multi-Gigahertz Frequency Comb-Based Interferometry for Full-Field Profilometry

    NASA Astrophysics Data System (ADS)

    Choi, Samuel; Kashiwagi, Ken; Kojima, Shuto; Kasuya, Yosuke; Kurokawa, Takashi

    2013-10-01

    The multi-gigahertz frequency comb-based interferometer exhibits only the interference amplitude peak without the phase fringes, which can produce a rapid axial scan for full-field profilometry and tomography. Despite huge technical advantages, there remain problems that the interference intensity undulations occurred depending on the interference phase. To avoid such problems, we propose a compensation technique of the interference signals using two frequency combs with slightly varied center wavelengths. The compensated full-field surface profile measurements of cover glass and onion skin were demonstrated experimentally to verify the advantages of the proposed method.

  9. Integrated consensus-based frameworks for unmanned vehicle routing and targeting assignment

    NASA Astrophysics Data System (ADS)

    Barnawi, Waleed T.

    Unmanned aerial vehicles (UAVs) are increasingly deployed in complex and dynamic environments to perform multiple tasks cooperatively with other UAVs that contribute to overarching mission effectiveness. Studies by the Department of Defense (DoD) indicate future operations may include anti-access/area-denial (A2AD) environments which limit human teleoperator decision-making and control. This research addresses the problem of decentralized vehicle re-routing and task reassignments through consensus-based UAV decision-making. An Integrated Consensus-Based Framework (ICF) is formulated as a solution to the combined single task assignment problem and vehicle routing problem. The multiple assignment and vehicle routing problem is solved with the Integrated Consensus-Based Bundle Framework (ICBF). The frameworks are hierarchically decomposed into two levels. The bottom layer utilizes the renowned Dijkstra's Algorithm. The top layer addresses task assignment with two methods. The single assignment approach is called the Caravan Auction Algorithm (CarA) Algorithm. This technique extends the Consensus-Based Auction Algorithm (CBAA) to provide awareness for task completion by agents and adopt abandoned tasks. The multiple assignment approach called the Caravan Auction Bundle Algorithm (CarAB) extends the Consensus-Based Bundle Algorithm (CBBA) by providing awareness for lost resources, prioritizing remaining tasks, and adopting abandoned tasks. Research questions are investigated regarding the novelty and performance of the proposed frameworks. Conclusions regarding the research questions will be provided through hypothesis testing. Monte Carlo simulations will provide evidence to support conclusions regarding the research hypotheses for the proposed frameworks. The approach provided in this research addresses current and future military operations for unmanned aerial vehicles. However, the general framework implied by the proposed research is adaptable to any unmanned vehicle. Civil applications that involve missions where human observability would be limited could benefit from the independent UAV task assignment, such as exploration and fire surveillance are also notable uses for this approach.

  10. On the problem of resonance assignments in solid state NMR of uniformly 15N, 13C-labeled proteins

    NASA Astrophysics Data System (ADS)

    Tycko, Robert

    2015-04-01

    Determination of accurate resonance assignments from multidimensional chemical shift correlation spectra is one of the major problems in biomolecular solid state NMR, particularly for relative large proteins with less-than-ideal NMR linewidths. This article investigates the difficulty of resonance assignment, using a computational Monte Carlo/simulated annealing (MCSA) algorithm to search for assignments from artificial three-dimensional spectra that are constructed from the reported isotropic 15N and 13C chemical shifts of two proteins whose structures have been determined by solution NMR methods. The results demonstrate how assignment simulations can provide new insights into factors that affect the assignment process, which can then help guide the design of experimental strategies. Specifically, simulations are performed for the catalytic domain of SrtC (147 residues, primarily β-sheet secondary structure) and the N-terminal domain of MLKL (166 residues, primarily α-helical secondary structure). Assuming unambiguous residue-type assignments and four ideal three-dimensional data sets (NCACX, NCOCX, CONCA, and CANCA), uncertainties in chemical shifts must be less than 0.4 ppm for assignments for SrtC to be unique, and less than 0.2 ppm for MLKL. Eliminating CANCA data has no significant effect, but additionally eliminating CONCA data leads to more stringent requirements for chemical shift precision. Introducing moderate ambiguities in residue-type assignments does not have a significant effect.

  11. Due-Window Assignment Scheduling with Variable Job Processing Times

    PubMed Central

    Wu, Yu-Bin

    2015-01-01

    We consider a common due-window assignment scheduling problem jobs with variable job processing times on a single machine, where the processing time of a job is a function of its position in a sequence (i.e., learning effect) or its starting time (i.e., deteriorating effect). The problem is to determine the optimal due-windows, and the processing sequence simultaneously to minimize a cost function includes earliness, tardiness, the window location, window size, and weighted number of tardy jobs. We prove that the problem can be solved in polynomial time. PMID:25918745

  12. Multiple emissions of benzil at room temperature and 77 K and their assignments from ab initio quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Bhaswati; Jana, Barnali; Bose, Debosreeta; Chattopadhyay, Nitin

    2011-01-01

    Multiple emissions have been observed from benzil under different conditions in solutions at room temperature as well as in low temperature glass matrices at 77 K. Low temperature emission has been monitored in rigid matrices frozen under different conditions of illumination. Steady state and time-resolved results together with the ab initio quantum chemical calculations provide, for the first time, the assignments of the different fluorescence bands to the different geometries and/or electronic states of the fluorophore molecule. It is revealed that the skew form of benzil emits from the first (S1) as well as the second excited singlet (S2) states depending on the excitation wavelength, while the relaxed transplanar conformer fluoresces only from the S1 state. The yet unexplored emission band peaking at around 360 nm has been assigned to originate from the S2 state. Ab initio calculations using the density functional theory at B3LYP/6-31G** level corroborate well with the experimental observations.

  13. Multiple emissions of benzil at room temperature and 77 K and their assignments from ab initio quantum chemical calculations.

    PubMed

    Bhattacharya, Bhaswati; Jana, Barnali; Bose, Debosreeta; Chattopadhyay, Nitin

    2011-01-28

    Multiple emissions have been observed from benzil under different conditions in solutions at room temperature as well as in low temperature glass matrices at 77 K. Low temperature emission has been monitored in rigid matrices frozen under different conditions of illumination. Steady state and time-resolved results together with the ab initio quantum chemical calculations provide, for the first time, the assignments of the different fluorescence bands to the different geometries and∕or electronic states of the fluorophore molecule. It is revealed that the skew form of benzil emits from the first (S(1)) as well as the second excited singlet (S(2)) states depending on the excitation wavelength, while the relaxed transplanar conformer fluoresces only from the S(1) state. The yet unexplored emission band peaking at around 360 nm has been assigned to originate from the S(2) state. Ab initio calculations using the density functional theory at B3LYP∕6-31G∗∗ level corroborate well with the experimental observations.

  14. Learner-Centered Teaching and Improving Learning by Writing Down the Statement of Problems in an Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Aurora, Tarlok

    2005-04-01

    In a calculus-based introductory physics course, students were assigned to write the statements of word problems (along with the accompanying diagrams if any), analyze these, identify important concepts/equations and try to solve these end-of- chapter homework problems. They were required to bring to class their written assignment until the chapter was completed in lecture. These were quickly checked at the beginning of the class. In addition, re-doing selected solved examples in the textbook were assigned as homework. Where possible, students were asked to look for similarities between the solved-examples and the end-of-the-chapter problems, or occasionally these were brought to the students' attention. It was observed that many students were able to solve several of the solved-examples on the test even though the instructor had not solved these in class. This was seen as an improvement over the previous years. It made the students more responsible for their learning. Another benefit was that it alleviated the problems previously created by many students not bringing the textbooks to class. It allowed more time for problem solving/discussions in class.

  15. Frequency assignments for HFDF receivers in a search and rescue network

    NASA Astrophysics Data System (ADS)

    Johnson, Krista E.

    1990-03-01

    This thesis applies a multiobjective linear programming approach to the problem of assigning frequencies to high frequency direction finding (HFDF) receivers in a search-and-rescue network in order to maximize the expected number of geolocations of vessels in distress. The problem is formulated as a multiobjective integer linear programming problem. The integrality of the solutions is guaranteed by the totally unimodularity of the A-matrix. Two approaches are taken to solve the multiobjective linear programming problem: (1) the multiobjective simplex method as implemented in ADBASE; and (2) an iterative approach. In this approach, the individual objective functions are weighted and combined in a single additive objective function. The resulting single objective problem is expressed as a network programming problem and solved using SAS NETFLOW. The process is then repeated with different weightings for the objective functions. The solutions obtained from the multiobjective linear programs are evaluated using a FORTRAN program to determine which solution provides the greatest expected number of geolocations. This solution is then compared to the sample mean and standard deviation for the expected number of geolocations resulting from 10,000 random frequency assignments for the network.

  16. Probabilistic classification method on multi wavelength chromatographic data for photosynthetic pigments identification

    NASA Astrophysics Data System (ADS)

    Prilianti, K. R.; Setiawan, Y.; Indriatmoko, Adhiwibawa, M. A. S.; Limantara, L.; Brotosudarmo, T. H. P.

    2014-02-01

    Environmental and health problem caused by artificial colorant encourages the increasing usage of natural colorant nowadays. Natural colorant refers to the colorant that is derivate from living organism or minerals. Extensive research topic has been done to exploit these colorant, but recent data shows that only 0.5% of the wide range of plant pigments in the earth has been exhaustively used. Hence development of the pigment characterization technique is an important consideration. High-performance liquid chromatography (HPLC) is a widely used technique to separate pigments in a mixture and identify it. In former HPLC fingerprinting, pigment characterization was based on a single chromatogram from a fixed wavelength (one dimensional) and discard the information contained at other wavelength. Therefore, two dimensional fingerprints have been proposed to use more chromatographic information. Unfortunately this method leads to the data processing problem due to the size of its data matrix. The other common problem in the chromatogram analysis is the subjectivity of the researcher in recognizing the chromatogram pattern. In this research an automated analysis method of the multi wavelength chromatographic data was proposed. Principal component analysis (PCA) was used to compress the data matrix and Maximum Likelihood (ML) classification was applied to identify the chromatogram pattern of the existing pigments in a mixture. Three photosynthetic pigments were selected to show the proposed method. Those pigments are β-carotene, fucoxanthin and zeaxanthin. The result suggests that the method could well inform the existence of the pigments in a particular mixture. A simple computer application was also developed to facilitate real time analysis. Input of the application is multi wavelength chromatographic data matrix and the output is information about the existence of the three pigments.

  17. High-resolution Laboratory Measurements of Coronal Lines near the Fe IX Line at 171 Å

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, Peter; Träbert, Elmar

    2018-02-01

    We present high-resolution laboratory measurements in the spectral region between 165 and 175 Å that focus on the emission from various ions of C, O, F, Ne, S, Ar, Fe, and Ni. This wavelength region is centered on the λ171 Fe IX channel of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory, and we place special emphasis on the weaker emission lines of Fe IX predicted in this region. In general, our measurements show a multitude of weak lines missing in the current databases, where the emission lines of Ni are probably most in need of further identification and reclassification. We also find that the wavelengths of some of the known lines need updating. Using the multi-reference Møller–Plesset method for wavelength predictions and collisional-radiative modeling of the line intensities, we have made tentative assignments of more than a dozen lines to the spectrum of Fe IX, some of which have formerly been identified as Fe VII, Fe XIV, or Fe XVI lines. Several Fe features remain unassigned, although they appear to be either Fe VII or Fe X lines. Further work will be needed to complete and correct the spectral line lists in this wavelength region.

  18. Tunable thin film filters for intelligent WDM networks

    NASA Astrophysics Data System (ADS)

    Cahill, Michael; Bartolini, Glenn; Lourie, Mark; Domash, Lawrence

    2006-08-01

    Optical transmission systems have evolved rapidly in recent years with the emergence of new technologies for gain management, wavelength multiplexing, tunability, and switching. WDM networks are increasingly expected to be agile, flexible, and reconfigurable which in turn has led to a need for monitoring to be more widely distributed within the network. Automation of many actions performed on these networks, such as channel provisioning and power balancing, can only be realized by the addition of optical channel monitors (OCMs). These devices provide information about the optical transmission system including the number of optical channels, channel identification, wavelength, power, and in some cases optical signal-to-noise ratio (OSNR). Until recently OCMs were costly and bulky and thus the number of OCMs used in optical networks was often kept to a minimum. We describe a family of tunable thin film filters which have greatly reduced the cost and physical footprint of channel monitors, making possible 'monitoring everywhere' for intelligent optical networks which can serve long haul, metro and access requirements from a single technology platform. As examples of specific applications we discuss network issues such as auto provisioning, wavelength collision avoidance, power balancing, OSNR balancing, gain equalization, alien wavelength recognition, interoperability, and other requirements assigned to the emerging concept of an Optical Control Plane.

  19. The Case of the Disappearing Magnetic Dipole

    ERIC Educational Resources Information Center

    Gough, W.

    2008-01-01

    The problem of an oscillating magnetic dipole at the centre of a lossless dielectric spherical shell is considered. For simplicity, the free-space wavelength is taken to be much greater than the shell radii, but the relative permittivity [epsilon][subscript r] of the shell is taken as much greater than unity, so the wavelength in the shell could…

  20. Comptonization of X-rays by low-temperature electrons. [photon wavelength redistribution in cosmic sources

    NASA Technical Reports Server (NTRS)

    Illarionov, A.; Kallman, T.; Mccray, R.; Ross, R.

    1979-01-01

    A method is described for calculating the spectrum that results from the Compton scattering of a monochromatic source of X-rays by low-temperature electrons, both for initial-value relaxation problems and for steady-state spatial diffusion problems. The method gives an exact solution of the inital-value problem for evolution of the spectrum in an infinite homogeneous medium if Klein-Nishina corrections to the Thomson cross section are neglected. This, together with approximate solutions for problems in which Klein-Nishina corrections are significant and/or spatial diffusion occurs, shows spectral structure near the original photon wavelength that may be used to infer physical conditions in cosmic X-ray sources. Explicit results, shown for examples of time relaxation in an infinite medium and spatial diffusion through a uniform sphere, are compared with results obtained by Monte Carlo calculations and by solving the appropriate Fokker-Planck equation.

  1. Fleet Assignment Using Collective Intelligence

    NASA Technical Reports Server (NTRS)

    Antoine, Nicolas E.; Bieniawski, Stefan R.; Kroo, Ilan M.; Wolpert, David H.

    2004-01-01

    Airline fleet assignment involves the allocation of aircraft to a set of flights legs in order to meet passenger demand, while satisfying a variety of constraints. Over the course of the day, the routing of each aircraft is determined in order to minimize the number of required flights for a given fleet. The associated flow continuity and aircraft count constraints have led researchers to focus on obtaining quasi-optimal solutions, especially at larger scales. In this paper, the authors propose the application of an agent-based integer optimization algorithm to a "cold start" fleet assignment problem. Results show that the optimizer can successfully solve such highly- constrained problems (129 variables, 184 constraints).

  2. Crosstalk eliminating and low-density parity-check codes for photochromic dual-wavelength storage

    NASA Astrophysics Data System (ADS)

    Wang, Meicong; Xiong, Jianping; Jian, Jiqi; Jia, Huibo

    2005-01-01

    Multi-wavelength storage is an approach to increase the memory density with the problem of crosstalk to be deal with. We apply Low Density Parity Check (LDPC) codes as error-correcting codes in photochromic dual-wavelength optical storage based on the investigation of LDPC codes in optical data storage. A proper method is applied to reduce the crosstalk and simulation results show that this operation is useful to improve Bit Error Rate (BER) performance. At the same time we can conclude that LDPC codes outperform RS codes in crosstalk channel.

  3. Two-wavelength ghost imaging through atmospheric turbulence.

    PubMed

    Shi, Dongfeng; Fan, Chengyu; Zhang, Pengfei; Shen, Hong; Zhang, Jinghui; Qiao, Chunhong; Wang, Yingjian

    2013-01-28

    Recent work has indicated that ghost imaging might find useful application in standoff sensing where atmospheric turbulence is a serious problem. There has been theoretical study of ghost imaging in the presence of turbulence. However, most work has addressed signal-wavelength ghost imaging. Two-wavelength ghost imaging through atmospheric turbulence is theoretically studied in this paper. Based on the extended Huygens-Fresnel integral, the analytical expressions describing atmospheric turbulence effects on the point spread function (PSF) and field of view (FOV) are derived. The computational case is also reported.

  4. Evaluation of Goal Programming for the Optimal Assignment of Inspectors to Construction Projects

    DTIC Science & Technology

    1988-09-01

    Inputs ..... .............. 90 Equation Coefficients . ....... .. 90 Weights, Priorities and the AHP . . 91 Right-Hand Side Values ........ .. 91...the AHP Hierarchy with k Levels . . 36 3. Sample Matrix for Pairwise Comparison ........ .. 37 4. Assignment of I and p for Example Problem...Weights for Example Problem ... 61 3. AHP Weights and Coefficient ci, Values. ........ 63 vii AFIT/GEM/LSM/88S-16 Abstract The purpose of this study was

  5. An Examination of Problems and Solutions Related to the Chronic "Revolving Door" Alcohol Abuser. DHSS Planning Guideline #1, Task Assignment #1.11. Long-Term Support, Chronic Alcoholism and Other Drug Abuse.

    ERIC Educational Resources Information Center

    Vick, John W.; Houden, Dorothy

    This report contains recommendations of a Wisconsin Task Assignment Steering Committee created to explore solutions to some significant problems facing adult chronic "revolving-detox-door" alcohol abusers (CRA's), persons with repeated admissions for detoxification services; and to examine the system that serves and funds them. This…

  6. Robotics and STEM Learning: Students' Achievements in Assignments According to the P3 Task Taxonomy--Practice, Problem Solving, and Projects

    ERIC Educational Resources Information Center

    Barak, Moshe; Assal, Muhammad

    2018-01-01

    This study presents the case of development and evaluation of a STEM-oriented 30-h robotics course for junior high school students (n = 32). Class activities were designed according to the P3 Task Taxonomy, which included: (1) practice-basic closed-ended tasks and exercises; (2) problem solving--small-scale open-ended assignments in which the…

  7. Scheduling Jobs and a Variable Maintenance on a Single Machine with Common Due-Date Assignment

    PubMed Central

    Wan, Long

    2014-01-01

    We investigate a common due-date assignment scheduling problem with a variable maintenance on a single machine. The goal is to minimize the total earliness, tardiness, and due-date cost. We derive some properties on an optimal solution for our problem. For a special case with identical jobs we propose an optimal polynomial time algorithm followed by a numerical example. PMID:25147861

  8. Upstream capacity upgrade in TDM-PON using RSOA based tunable fiber ring laser.

    PubMed

    Yi, Lilin; Li, Zhengxuan; Dong, Yi; Xiao, Shilin; Chen, Jian; Hu, Weisheng

    2012-04-23

    An upstream multi-wavelength shared (UMWS) time division multiplexing passive optical network (TDM-PON) is presented by using a reflective semiconductor amplifier (RSOA) and tunable optical filter (TOF) based directly modulated fiber ring laser as upstream laser source. The stable laser operation is easily achieved no matter what the bandwidth and shape of the TOF is and it can be directly modulated when the RSOA is driven at its saturation region. In this UMWS TDM-PON system, an individual wavelength can be assigned to the user who has a high bandwidth demand by tuning the central wavelength of the TOF in its upgraded optical network unit (ONU), while others maintain their traditional ONU structure and share the bandwidth via time slots, which greatly and dynamically upgrades the upstream capacity. We experimentally demonstrated the bidirectional transmission of downstream data at 10-Gb/s and upstream data at 1.25-Gb/s per wavelength over 25-km single mode fiber (SMF) with almost no power penalty at both ends. A stable performance is observed for the upstream wavelength tuned from 1530 nm to 1595 nm. Moreover, due to the high extinction ratio (ER) of the upstream signal, the burst-mode transmitting is successfully presented and a better time-division multiplexing performance can be obtained by turning off the unused lasers thanks to the rapid formation of the laser in the fiber ring. © 2012 Optical Society of America

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegde, Raghurama P.; Fedorov, Alexander A.; Sauder, J. Michael

    Single-wavelength anomalous dispersion (SAD) utilizing anomalous signal from native S atoms, or other atoms withZ≤ 20, generally requires highly redundant data collected using relatively long-wavelength X-rays. Here, the results from two proteins are presented where the anomalous signal from serendipitously acquired surface-bound Ca atoms with an anomalous data multiplicity of around 10 was utilized to drivede novostructure determination. In both cases, the Ca atoms were acquired from the crystallization solution, and the data-collection strategy was not optimized to exploit the anomalous signal from these scatterers. The X-ray data were collected at 0.98 Å wavelength in one case and at 1.74more » Å in the other (the wavelength was optimized for sulfur, but the anomalous signal from calcium was exploited for structure solution). Similarly, using a test case, it is shown that data collected at ~1.0 Å wavelength, where thef'' value for sulfur is 0.28 e, are sufficient for structure determination using intrinsic S atoms from a strongly diffracting crystal. Interestingly, it was also observed thatSHELXDwas capable of generating a substructure solution from high-exposure data with a completeness of 70% for low-resolution reflections extending to 3.5 Å resolution with relatively low anomalous multiplicity. Considering the fact that many crystallization conditions contain anomalous scatterers such as Cl, Ca, Mnetc., checking for the presence of fortuitous anomalous signal in data from well diffracting crystals could prove useful in either determining the structurede novoor in accurately assigning surface-bound atoms.« less

  10. Knowledge-based design of generate-and-patch problem solvers that solve global resource assignment problems

    NASA Technical Reports Server (NTRS)

    Voigt, Kerstin

    1992-01-01

    We present MENDER, a knowledge based system that implements software design techniques that are specialized to automatically compile generate-and-patch problem solvers that satisfy global resource assignments problems. We provide empirical evidence of the superior performance of generate-and-patch over generate-and-test: even with constrained generation, for a global constraint in the domain of '2D-floorplanning'. For a second constraint in '2D-floorplanning' we show that even when it is possible to incorporate the constraint into a constrained generator, a generate-and-patch problem solver may satisfy the constraint more rapidly. We also briefly summarize how an extended version of our system applies to a constraint in the domain of 'multiprocessor scheduling'.

  11. Static assignment of complex stochastic tasks using stochastic majorization

    NASA Technical Reports Server (NTRS)

    Nicol, David; Simha, Rahul; Towsley, Don

    1992-01-01

    We consider the problem of statically assigning many tasks to a (smaller) system of homogeneous processors, where a task's structure is modeled as a branching process, and all tasks are assumed to have identical behavior. We show how the theory of majorization can be used to obtain a partial order among possible task assignments. Our results show that if the vector of numbers of tasks assigned to each processor under one mapping is majorized by that of another mapping, then the former mapping is better than the latter with respect to a large number of objective functions. In particular, we show how measurements of finishing time, resource utilization, and reliability are all captured by the theory. We also show how the theory may be applied to the problem of partitioning a pool of processors for distribution among parallelizable tasks.

  12. Biological Applications and Effects of Optical Masers.

    DTIC Science & Technology

    1984-06-01

    term ocular effects of optical radiation on aging and macular degeneration is discussed and a final draft of the report of the Working Group assessing...exposure to short wavelength light on aging and degeneration of the retina and lens leading to degenerative maculopathies and senile cataract. Dr. Ham...chaired the Working Group assigned the task of assessing light damage to the RPE and its possible relationship to aging and macular degeneration of the

  13. Ultraviolet Spectral Irradiance Scale Comparison: 210 nm to 300 nm

    PubMed Central

    Thompson, Ambler; Early, Edward A.; O’Brian, Thomas R.

    1998-01-01

    Comparison of the irradiances from a number of ultraviolet spectral irradiance standards, based on different physical principles, showed agreement to within their combined standard uncertainties as assigned to them by NIST. The wavelength region of the spectral irradiance comparison was from 210 nm to 300 nm. The spectral irradiance sources were: an electron storage ring, 1000 W quartz-halogen lamps, deuterium arc lamps, and a windowless argon miniarc. PMID:28009378

  14. Optimization of dual-wavelength intravascular photoacoustic imaging of atherosclerotic plaques using Monte Carlo optical modeling

    NASA Astrophysics Data System (ADS)

    Dana, Nicholas; Sowers, Timothy; Karpiouk, Andrei; Vanderlaan, Donald; Emelianov, Stanislav

    2017-10-01

    Coronary heart disease (the presence of coronary atherosclerotic plaques) is a significant health problem in the industrialized world. A clinical method to accurately visualize and characterize atherosclerotic plaques is needed. Intravascular photoacoustic (IVPA) imaging is being developed to fill this role, but questions remain regarding optimal imaging wavelengths. We utilized a Monte Carlo optical model to simulate IVPA excitation in coronary tissues, identifying optimal wavelengths for plaque characterization. Near-infrared wavelengths (≤1800 nm) were simulated, and single- and dual-wavelength data were analyzed for accuracy of plaque characterization. Results indicate light penetration is best in the range of 1050 to 1370 nm, where 5% residual fluence can be achieved at clinically relevant depths of ≥2 mm in arteries. Across the arterial wall, fluence may vary by over 10-fold, confounding plaque characterization. For single-wavelength results, plaque segmentation accuracy peaked at 1210 and 1720 nm, though correlation was poor (<0.13). Dual-wavelength analysis proved promising, with 1210 nm as the most successful primary wavelength (≈1.0). Results suggest that, without flushing the luminal blood, a primary and secondary wavelength near 1210 and 1350 nm, respectively, may offer the best implementation of dual-wavelength IVPA imaging. These findings could guide the development of a cost-effective clinical system by highlighting optimal wavelengths and improving plaque characterization.

  15. Problems on Divisibility of Binomial Coefficients

    ERIC Educational Resources Information Center

    Osler, Thomas J.; Smoak, James

    2004-01-01

    Twelve unusual problems involving divisibility of the binomial coefficients are represented in this article. The problems are listed in "The Problems" section. All twelve problems have short solutions which are listed in "The Solutions" section. These problems could be assigned to students in any course in which the binomial theorem and Pascal's…

  16. An agglomerative hierarchical clustering approach to visualisation in Bayesian clustering problems

    PubMed Central

    Dawson, Kevin J.; Belkhir, Khalid

    2009-01-01

    Clustering problems (including the clustering of individuals into outcrossing populations, hybrid generations, full-sib families and selfing lines) have recently received much attention in population genetics. In these clustering problems, the parameter of interest is a partition of the set of sampled individuals, - the sample partition. In a fully Bayesian approach to clustering problems of this type, our knowledge about the sample partition is represented by a probability distribution on the space of possible sample partitions. Since the number of possible partitions grows very rapidly with the sample size, we can not visualise this probability distribution in its entirety, unless the sample is very small. As a solution to this visualisation problem, we recommend using an agglomerative hierarchical clustering algorithm, which we call the exact linkage algorithm. This algorithm is a special case of the maximin clustering algorithm that we introduced previously. The exact linkage algorithm is now implemented in our software package Partition View. The exact linkage algorithm takes the posterior co-assignment probabilities as input, and yields as output a rooted binary tree, - or more generally, a forest of such trees. Each node of this forest defines a set of individuals, and the node height is the posterior co-assignment probability of this set. This provides a useful visual representation of the uncertainty associated with the assignment of individuals to categories. It is also a useful starting point for a more detailed exploration of the posterior distribution in terms of the co-assignment probabilities. PMID:19337306

  17. Recovering Long-wavelength Velocity Models using Spectrogram Inversion with Single- and Multi-frequency Components

    NASA Astrophysics Data System (ADS)

    Ha, J.; Chung, W.; Shin, S.

    2015-12-01

    Many waveform inversion algorithms have been proposed in order to construct subsurface velocity structures from seismic data sets. These algorithms have suffered from computational burden, local minima problems, and the lack of low-frequency components. Computational efficiency can be improved by the application of back-propagation techniques and advances in computing hardware. In addition, waveform inversion algorithms, for obtaining long-wavelength velocity models, could avoid both the local minima problem and the effect of the lack of low-frequency components in seismic data. In this study, we proposed spectrogram inversion as a technique for recovering long-wavelength velocity models. In spectrogram inversion, decomposed frequency components from spectrograms of traces, in the observed and calculated data, are utilized to generate traces with reproduced low-frequency components. Moreover, since each decomposed component can reveal the different characteristics of a subsurface structure, several frequency components were utilized to analyze the velocity features in the subsurface. We performed the spectrogram inversion using a modified SEG/SEGE salt A-A' line. Numerical results demonstrate that spectrogram inversion could also recover the long-wavelength velocity features. However, inversion results varied according to the frequency components utilized. Based on the results of inversion using a decomposed single-frequency component, we noticed that robust inversion results are obtained when a dominant frequency component of the spectrogram was utilized. In addition, detailed information on recovered long-wavelength velocity models was obtained using a multi-frequency component combined with single-frequency components. Numerical examples indicate that various detailed analyses of long-wavelength velocity models can be carried out utilizing several frequency components.

  18. Student Difficulties Measuring Distances in Terms of Wavelength: Lack of Basic Skills or Failure to Transfer?

    ERIC Educational Resources Information Center

    Kryjevskaia, Mila; Stetzer, MacKenzie R.; Heron, Paula R. L.

    2013-01-01

    In a previous paper that focused on the transmission of periodic waves at the boundary between two media, we documented difficulties with the basic concepts of wavelength, frequency, and propagation speed, and with the relationship v=f[lambda]. In this paper, we report on student attempts to apply this relationship in problems involving two-source…

  19. Prefrontal Neurons Encode a Solution to the Credit-Assignment Problem

    PubMed Central

    Perge, János A.; Eskandar, Emad N.

    2017-01-01

    To adapt successfully to our environments, we must use the outcomes of our choices to guide future behavior. Critically, we must be able to correctly assign credit for any particular outcome to the causal features which preceded it. In some cases, the causal features may be immediately evident, whereas in others they may be separated in time or intermingled with irrelevant environmental stimuli, creating a potentially nontrivial credit-assignment problem. We examined the neuronal representation of information relevant for credit assignment in the dorsolateral prefrontal cortex (dlPFC) of two male rhesus macaques performing a task that elicited key aspects of this problem. We found that neurons conveyed the information necessary for credit assignment. Specifically, neuronal activity reflected both the relevant cues and outcomes at the time of feedback and did so in a manner that was stable over time, in contrast to prior reports of representational instability in the dlPFC. Furthermore, these representations were most stable early in learning, when credit assignment was most needed. When the same features were not needed for credit assignment, these neuronal representations were much weaker or absent. These results demonstrate that the activity of dlPFC neurons conforms to the basic requirements of a system that performs credit assignment, and that spiking activity can serve as a stable mechanism that links causes and effects. SIGNIFICANCE STATEMENT Credit assignment is the process by which we infer the causes of our successes and failures. We found that neuronal activity in the dorsolateral prefrontal cortex conveyed the necessary information for performing credit assignment. Importantly, while there are various potential mechanisms to retain a “trace” of the causal events over time, we observed that spiking activity was sufficiently stable to act as the link between causes and effects, in contrast to prior reports that suggested spiking representations were unstable over time. In addition, we observed that this stability varied as a function of learning, such that the neural code was more reliable over time during early learning, when it was most needed. PMID:28634307

  20. A spectral profile multiplexed FBG sensor network with application to strain measurement in a Kevlar woven fabric

    NASA Astrophysics Data System (ADS)

    Guo, Guodong; Hackney, Drew; Pankow, Mark; Peters, Kara

    2017-04-01

    A spectral profile division multiplexed fiber Bragg grating (FBG) sensor network is described in this paper. The unique spectral profile of each sensor in the network is identified as a distinct feature to be interrogated. Spectrum overlap is allowed under working conditions. Thus, a specific wavelength window does not need to be allocated to each sensor as in a wavelength division multiplexed (WDM) network. When the sensors are serially connected in the network, the spectrum output is expressed through a truncated series. To track the wavelength shift of each sensor, the identification problem is transformed to a nonlinear optimization problem, which is then solved by a modified dynamic multi-swarm particle swarm optimizer (DMS-PSO). To demonstrate the application of the developed network, a network consisting of four FBGs was integrated into a Kevlar woven fabric, which was under a quasi-static load imposed by an impactor head. Due to the substantial radial strain in the fabric, the spectrums of different FBGs were found to overlap during the loading process. With the developed interrogating method, the overlapped spectrum would be distinguished thus the wavelength shift of each sensor can be monitored.

  1. Distributed resource allocation under communication constraints

    NASA Astrophysics Data System (ADS)

    Dodin, Pierre; Nimier, Vincent

    2001-03-01

    This paper deals with a study of the multi-sensor management problem for multi-target tracking. The collaboration between many sensors observing the same target means that they are able to fuse their data during the information process. Then one must take into account this possibility to compute the optimal association sensors-target at each step of time. In order to solve this problem for real large scale system, one must both consider the information aspect and the control aspect of the problem. To unify these problems, one possibility is to use a decentralized filtering algorithm locally driven by an assignment algorithm. The decentralized filtering algorithm we use in our model is the filtering algorithm of Grime, which relaxes the usual full-connected hypothesis. By full-connected, one means that the information in a full-connected system is totally distributed everywhere at the same moment, which is unacceptable for a real large scale system. We modelize the distributed assignment decision with the help of a greedy algorithm. Each sensor performs a global optimization, in order to estimate other information sets. A consequence of the relaxation of the full- connected hypothesis is that the sensors' information set are not the same at each step of time, producing an information dis- symmetry in the system. The assignment algorithm uses a local knowledge of this dis-symmetry. By testing the reactions and the coherence of the local assignment decisions of our system, against maneuvering targets, we show that it is still possible to manage with decentralized assignment control even though the system is not full-connected.

  2. Multisystemic Therapy and Functional Family Therapy Compared on their Effectiveness Using the Propensity Score Method.

    PubMed

    Eeren, Hester V; Goossens, Lucas M A; Scholte, Ron H J; Busschbach, Jan J V; van der Rijken, Rachel E A

    2018-01-09

    Multisystemic Therapy (MST) and Functional Family Therapy (FFT) have overlapping target populations and treatment goals. In this study, these interventions were compared on their effectiveness using a quasi-experimental design. Between October, 2009 and June, 2014, outcome data were collected from 697 adolescents (mean age 15.3 (SD 1.48), 61.9% male) assigned to either MST or FFT (422 MST; 275 FFT). Data were gathered during Routine Outcome Monitoring. The primary outcome was externalizing problem behavior (Child Behavior Checklist and Youth Self Report). Secondary outcomes were the proportion of adolescents living at home, engaged in school or work, and who lacked police contact during treatment. Because of the non-random assignment, a propensity score method was used to control for observed pre-treatment differences. Because the risk-need-responsivity (RNR) model guided treatment assignment, effectiveness was also estimated in youth with and without a court order as an indicator of their risk level. Looking at the whole sample, no difference in effect was found with regard to externalizing problems. For adolescents without a court order, effects on externalizing problems were larger after MST. Because many more adolescents with a court order were assigned to MST compared to FFT, the propensity score method could not balance the treatment groups in this subsample. In conclusion, few differences between MST and FFT were found. In line with the RNR model, higher risk adolescents were assigned to the more intensive treatment, namely MST. In the group with lower risk adolescents, this more intensive treatment was more effective in reducing externalizing problems.

  3. Maternal education preferences moderate the effects of mandatory employment and education programs on child positive and problem behaviors.

    PubMed

    Gassman-Pines, Anna; Godfrey, Erin B; Yoshikawa, Hirokazu

    2013-01-01

    Grounded in person-environment fit theory, this study examined whether low-income mothers' preferences for education moderated the effects of employment- and education-focused welfare programs on children's positive and problem behaviors. The sample included 1,365 families with children between ages 3 and 5 years at study entry. Results 5 years after random assignment, when children were ages 8-10 years, indicated that mothers' education preferences did moderate program impacts on teacher-reported child behavior problems and positive behavior. Children whose mothers were assigned to the education program were rated by teachers to have less externalizing behavior and more positive behavior than children whose mothers were assigned to the employment program but only when mothers had strong preferences for education. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.

  4. Mining Stable Roles in RBAC

    NASA Astrophysics Data System (ADS)

    Colantonio, Alessandro; di Pietro, Roberto; Ocello, Alberto; Verde, Nino Vincenzo

    In this paper we address the problem of generating a candidate role-set for an RBAC configuration that enjoys the following two key features: it minimizes the administration cost; and, it is a stable candidate role-set. To achieve these goals, we implement a three steps methodology: first, we associate a weight to roles; second, we identify and remove the user-permission assignments that cannot belong to a role that have a weight exceeding a given threshold; third, we restrict the problem of finding a candidate role-set for the given system configuration using only the user-permission assignments that have not been removed in the second step—that is, user-permission assignments that belong to roles with a weight exceeding the given threshold. We formally show—proof of our results are rooted in graph theory—that this methodology achieves the intended goals. Finally, we discuss practical applications of our approach to the role mining problem.

  5. High-resolution continuum observations of the Sun

    NASA Technical Reports Server (NTRS)

    Zirin, Harold

    1987-01-01

    The aim of the PFI or photometric filtergraph instrument is to observe the Sun in the continuum with as high resolution as possible and utilizing the widest range of wavelengths. Because of financial and political problems the CCD was eliminated so that the highest photometric accuracy is only obtainable by comparison with the CFS images. Presently there is a limitation to wavelengths above 2200 A due to the lack of sensitivity of untreated film below 2200 A. Therefore the experiment at present consists of a film camera with 1000 feet of film and 12 filters. The PFI experiments are outlined using only two cameras. Some further problems of the experiment are addressed.

  6. An automated system for reduction of the firm's employees under maximal overall efficiency

    NASA Astrophysics Data System (ADS)

    Yonchev, Yoncho; Nikolov, Simeon; Baeva, Silvia

    2012-11-01

    Achieving maximal overall efficiency is a priority in all companies. This problem is formulated as a knap-sack problem and afterwards as a linear assignment problem. An automated system is created for solving of this problem.

  7. "Ask Ernö": a self-learning tool for assignment and prediction of nuclear magnetic resonance spectra.

    PubMed

    Castillo, Andrés M; Bernal, Andrés; Dieden, Reiner; Patiny, Luc; Wist, Julien

    2016-01-01

    We present "Ask Ernö", a self-learning system for the automatic analysis of NMR spectra, consisting of integrated chemical shift assignment and prediction tools. The output of the automatic assignment component initializes and improves a database of assigned protons that is used by the chemical shift predictor. In turn, the predictions provided by the latter facilitate improvement of the assignment process. Iteration on these steps allows Ask Ernö to improve its ability to assign and predict spectra without any prior knowledge or assistance from human experts. This concept was tested by training such a system with a dataset of 2341 molecules and their (1)H-NMR spectra, and evaluating the accuracy of chemical shift predictions on a test set of 298 partially assigned molecules (2007 assigned protons). After 10 iterations, Ask Ernö was able to decrease its prediction error by 17 %, reaching an average error of 0.265 ppm. Over 60 % of the test chemical shifts were predicted within 0.2 ppm, while only 5 % still presented a prediction error of more than 1 ppm. Ask Ernö introduces an innovative approach to automatic NMR analysis that constantly learns and improves when provided with new data. Furthermore, it completely avoids the need for manually assigned spectra. This system has the potential to be turned into a fully autonomous tool able to compete with the best alternatives currently available.Graphical abstractSelf-learning loop. Any progress in the prediction (forward problem) will improve the assignment ability (reverse problem) and vice versa.

  8. Suppressing the crosstalk between racetrack resonators by grating assisted couplers for WDM sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Xuezhi; Jiang, Junfeng; Liu, Kun; Yu, Zhe; Feng, Ming; Chen, Wenjie; Liu, Tiegen

    2017-12-01

    We proposed a uniform racetrack resonators based sensor for bio-chemical WDM sensing. The sensing channels are assigned by grating assisted contra-directional couplers. Each resonator only occupies one sensing channel. The crosstalk between sensing channels can be suppressed by aligning the center coupling wavelength of one resonator with the weak coupling wavelength of the others. Based on the simulation results obtained from transfer matrix method, the sensing channel gap can be reduced down to 2 FSRs (˜1.5 nm) of the resonator. The total crosstalk can be as low as 2.5 × 10-2 dB in a sensor with 23 channels covering the whole C band. This sensor with high throughput will be very important for analyzing a wide range of analytes, such as organic compounds or biological materials.

  9. The solution of target assignment problem in command and control decision-making behaviour simulation

    NASA Astrophysics Data System (ADS)

    Li, Ni; Huai, Wenqing; Wang, Shaodan

    2017-08-01

    C2 (command and control) has been understood to be a critical military component to meet an increasing demand for rapid information gathering and real-time decision-making in a dynamically changing battlefield environment. In this article, to improve a C2 behaviour model's reusability and interoperability, a behaviour modelling framework was proposed to specify a C2 model's internal modules and a set of interoperability interfaces based on the C-BML (coalition battle management language). WTA (weapon target assignment) is a typical C2 autonomous decision-making behaviour modelling problem. Different from most WTA problem descriptions, here sensors were considered to be available resources of detection and the relationship constraints between weapons and sensors were also taken into account, which brought it much closer to actual application. A modified differential evolution (MDE) algorithm was developed to solve this high-dimension optimisation problem and obtained an optimal assignment plan with high efficiency. In case study, we built a simulation system to validate the proposed C2 modelling framework and interoperability interface specification. Also, a new optimisation solution was used to solve the WTA problem efficiently and successfully.

  10. A method for joint routing, wavelength dimensioning and fault tolerance for any set of simultaneous failures on dynamic WDM optical networks

    NASA Astrophysics Data System (ADS)

    Jara, Nicolás; Vallejos, Reinaldo; Rubino, Gerardo

    2017-11-01

    The design of optical networks decomposes into different tasks, where the engineers must basically organize the way the main system's resources are used, minimizing the design and operation costs and respecting critical performance constraints. More specifically, network operators face the challenge of solving routing and wavelength dimensioning problems while aiming to simultaneously minimize the network cost and to ensure that the network performance meets the level established in the Service Level Agreement (SLA). We call this the Routing and Wavelength Dimensioning (R&WD) problem. Another important problem to be solved is how to deal with failures of links when the network is operating. When at least one link fails, a high rate of data loss may occur. To avoid it, the network must be designed in such a manner that upon one or multiple failures, the affected connections can still communicate using alternative routes, a mechanism known as Fault Tolerance (FT). When the mechanism allows to deal with an arbitrary number of faults, we speak about Multiple Fault Tolerance (MFT). The different tasks before mentioned are usually solved separately, or in some cases by pairs, leading to solutions that are not necessarily close to optimal ones. This paper proposes a novel method to simultaneously solve all of them, that is, the Routing, the Wavelength Dimensioning, and the Multiple Fault Tolerance problems. The method allows to obtain: a) all the primary routes by which each connection normally transmits its information, b) the additional routes, called secondary routes, used to keep each user connected in cases where one or more simultaneous failures occur, and c) the number of wavelengths available at each link of the network, calculated such that the blocking probability of each connection is lower than a pre-determined threshold (which is a network design parameter), despite the occurrence of simultaneous link failures. The solution obtained by the new algorithm is significantly more efficient than current methods, its implementation is notably simple and its on-line operation is very fast. In the paper, different examples illustrate the results provided by the proposed technique.

  11. Matching School Resources and Student Needs: Scheduling and Assignment Problems in High Schools Serving At-Risk Youth. Final Report.

    ERIC Educational Resources Information Center

    Natriello, Gary; And Others

    By studying the process by which disadvantaged and low-achieving high school students are assigned to classes and special programs, how and why disadvantaged students are placed in inappropriate programs can be understood. Reasons exist to question the assumption that students are assigned to programs rationally on the basis of information about…

  12. Game theory and traffic assignment.

    DOT National Transportation Integrated Search

    2013-09-01

    Traffic assignment is used to determine the number of users on roadway links in a network. While this problem has : been widely studied in transportation literature, its use of the concept of equilibrium has attracted considerable interest : in the f...

  13. Task Assignment Heuristics for Parallel and Distributed CFD Applications

    NASA Technical Reports Server (NTRS)

    Lopez-Benitez, Noe; Djomehri, M. Jahed; Biswas, Rupak

    2003-01-01

    This paper proposes a task graph (TG) model to represent a single discrete step of multi-block overset grid computational fluid dynamics (CFD) applications. The TG model is then used to not only balance the computational workload across the overset grids but also to reduce inter-grid communication costs. We have developed a set of task assignment heuristics based on the constraints inherent in this class of CFD problems. Two basic assignments, the smallest task first (STF) and the largest task first (LTF), are first presented. They are then systematically costs. To predict the performance of the proposed task assignment heuristics, extensive performance evaluations are conducted on a synthetic TG with tasks defined in terms of the number of grid points in predetermined overlapping grids. A TG derived from a realistic problem with eight million grid points is also used as a test case.

  14. Interstellar lines in high resolution IUE spectra. Part 1: Groningen data reduction package and technical results

    NASA Astrophysics Data System (ADS)

    Gilra, D. P.; Pwa, T. H.; Arnal, E. M.; de Vries, J.

    1982-06-01

    In order to process and analyze high resolution IUE data on a large number of interstellar lines in a large number of images for a large number of stars, computer programs were developed for 115 lines in the short wavelength range and 40 in the long wavelength range. Programs include extraction, processing, plotting, averaging, and profile fitting. Wavelength calibration in high resolution spectra, fixed pattern noise, instrument profile and resolution, and the background problem in the region where orders are crowding are discussed. All the expected lines are detected in at least one spectrum.

  15. Handbook of Basic Atomic Spectroscopic Data

    National Institute of Standards and Technology Data Gateway

    SRD 108 Handbook of Basic Atomic Spectroscopic Data (Web, free access)   This handbook provides a selection of the most important and frequently used atomic spectroscopic data. The compilation includes data for the neutral and singly-ionized atoms of all elements hydrogen through einsteinium (Z = 1-99). The wavelengths, intensities, and spectrum assignments are given for each element, and the data for the approximately 12,000 lines of all elements are also collected into a single table.

  16. Mapping CTTS dynamics of Na- in tetrahydrofurane with ultrafast multichannel pump-probe spectroscopy.

    PubMed

    Shoshana, O; Pérez Lustres, J L; Ernsting, N P; Ruhman, S

    2006-06-14

    Using multichannel femtosecond spectroscopy we have followed Na- charge transfer to solvent (CTTS) dynamics in THF solution. Absorption of the primary photoproducts in the visible, resolved here for the first time, consists of an asymmetric triplet centered at 595 nm, which we assign to a metastable incompletely solvated neutral atomic sodium species. Decay of this feature within approximately 1 ps to a broad and structureless solvated neutral is accompanied by broadening and loss of spectral detail. Kinetic analysis shows that both the spectral structure and the decay of this band are independent of the excitation photon frequency in the range 400-800 nm. With different pump-probe polarizations the anisotropy in transient transmission has been charted and its variation with excitation wavelength surveyed. The anisotropies are assigned to the reactant bleach, indicating that due to solvent-induced symmetry breaking, the CTTS absorption band of Na- is made up of discreet orthogonally polarized sub bands. None of the anisotropy in transient absorption could be associated with the photoproduct triplet band even at the earliest measurable time delays. Along with the documented differences in the spatial distribution of ejected electrons across the tested excitation wavelength range, these results lead us to conclude that photoejection is extremely rapid, and that loss of correlations between the departing electron and its neutral core is faster than our time resolution of approximately 60 fs.

  17. Frequency Assignments for HFDF Receivers in a Search and Rescue Network

    DTIC Science & Technology

    1990-03-01

    SAR problem where whether or not a signal is detected by RS or HFDF at the various stations is described by probabilities. Daskin assumes the...allows the problem to be formulated with a linear objective function (6:52-53). Daskin also developed a heuristic solution algorithm to solve this...en CM in o CM CM < I Q < - -.~- -^ * . . . ■ . ,■ . :ST.-.r . 5 Frequency Assignments for HFDF Receivers in a Search and

  18. Overcoming an obstacle in expanding a UMLS semantic type extent.

    PubMed

    Chen, Yan; Gu, Huanying; Perl, Yehoshua; Geller, James

    2012-02-01

    This paper strives to overcome a major problem encountered by a previous expansion methodology for discovering concepts highly likely to be missing a specific semantic type assignment in the UMLS. This methodology is the basis for an algorithm that presents the discovered concepts to a human auditor for review and possible correction. We analyzed the problem of the previous expansion methodology and discovered that it was due to an obstacle constituted by one or more concepts assigned the UMLS Semantic Network semantic type Classification. A new methodology was designed that bypasses such an obstacle without a combinatorial explosion in the number of concepts presented to the human auditor for review. The new expansion methodology with obstacle avoidance was tested with the semantic type Experimental Model of Disease and found over 500 concepts missed by the previous methodology that are in need of this semantic type assignment. Furthermore, other semantic types suffering from the same major problem were discovered, indicating that the methodology is of more general applicability. The algorithmic discovery of concepts that are likely missing a semantic type assignment is possible even in the face of obstacles, without an explosion in the number of processed concepts. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Overcoming an Obstacle in Expanding a UMLS Semantic Type Extent

    PubMed Central

    Chen, Yan; Gu, Huanying; Perl, Yehoshua; Geller, James

    2011-01-01

    This paper strives to overcome a major problem encountered by a previous expansion methodology for discovering concepts highly likely to be missing a specific semantic type assignment in the UMLS. This methodology is the basis for an algorithm that presents the discovered concepts to a human auditor for review and possible correction. We analyzed the problem of the previous expansion methodology and discovered that it was due to an obstacle constituted by one or more concepts assigned the UMLS Semantic Network semantic type Classification. A new methodology was designed that bypasses such an obstacle without a combinatorial explosion in the number of concepts presented to the human auditor for review. The new expansion methodology with obstacle avoidance was tested with the semantic type Experimental Model of Disease and found over 500 concepts missed by the previous methodology that are in need of this semantic type assignment. Furthermore, other semantic types suffering from the same major problem were discovered, indicating that the methodology is of more general applicability. The algorithmic discovery of concepts that are likely missing a semantic type assignment is possible even in the face of obstacles, without an explosion in the number of processed concepts. PMID:21925287

  20. An XUV/VUV free-electron laser oscillator

    NASA Astrophysics Data System (ADS)

    Goldstein, J. C.; Newnam, B. E.; Cooper, R. K.; Comly, J. C., Jr.

    Problems regarding the extension of free-electron laser technology from the visible and near infrared region, where such devices are currently operating, to the ultraviolet have recently been extensively discussed. It was found that significant technical problems must be overcome before free-electron lasers (FELs) can be operated in the VUV (100-200 nm) and the XUV (50-100). However, the present lack of other intense and tunable sources of coherent radiation at these wavelengths together with the intrinsic properties of FELs make the development of such devices potentially very rewarding. The properties of FELs include continuous tunability in wavelength and output in the form of a train of picosecond pulses. An investigation is conducted regarding the feasibility of an operation of a FEL in the XUV/VUV regions, taking into account a theoretical model. It is found that modest improvements in electron beam and optical mirror technologies will make the design of a FEL for operation in the 50-200-nm range of optical wavelength possible.

  1. The generalized pole assignment problem. [dynamic output feedback problems

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    Two dynamic output feedback problems for a linear, strictly proper system are considered, along with their interrelationships. The problems are formulated in the frequency domain and investigated in terms of linear equations over rings of polynomials. Necessary and sufficient conditions are expressed using genericity.

  2. Formative feedback and scaffolding for developing complex problem solving and modelling outcomes

    NASA Astrophysics Data System (ADS)

    Frank, Brian; Simper, Natalie; Kaupp, James

    2018-07-01

    This paper discusses the use and impact of formative feedback and scaffolding to develop outcomes for complex problem solving in a required first-year course in engineering design and practice at a medium-sized research-intensive Canadian university. In 2010, the course began to use team-based, complex, open-ended contextualised problems to develop problem solving, communications, teamwork, modelling, and professional skills. Since then, formative feedback has been incorporated into: task and process-level feedback on scaffolded tasks in-class, formative assignments, and post-assignment review. Development in complex problem solving and modelling has been assessed through analysis of responses from student surveys, direct criterion-referenced assessment of course outcomes from 2013 to 2015, and an external longitudinal study. The findings suggest that students are improving in outcomes related to complex problem solving over the duration of the course. Most notably, the addition of new feedback and scaffolding coincided with improved student performance.

  3. Child-Level Predictors of Responsiveness to Evidence-Based Mathematics Intervention.

    PubMed

    Powell, Sarah R; Cirino, Paul T; Malone, Amelia S

    2017-07-01

    We identified child-level predictors of responsiveness to 2 types of mathematics (calculation and word-problem) intervention among 2nd-grade children with mathematics difficulty. Participants were 250 children in 107 classrooms in 23 schools pretested on mathematics and general cognitive measures and posttested on mathematics measures. We assigned classrooms randomly assigned to calculation intervention, word-problem intervention, or business-as-usual control. Intervention lasted 17 weeks. Path analyses indicated that scores on working memory and language comprehension assessments moderated responsiveness to calculation intervention. No moderators were identified for responsiveness to word-problem intervention. Across both intervention groups and the control group, attentive behavior predicted both outcomes. Initial calculation skill predicted the calculation outcome, and initial language comprehension predicted word-problem outcomes. These results indicate that screening for calculation intervention should include a focus on working memory, language comprehension, attentive behavior, and calculations. Screening for word-problem intervention should focus on attentive behavior and word problems.

  4. 29 CFR 785.37 - Home to work on special one-day assignment in another city.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Home to work on special one-day assignment in another city... another city. A problem arises when an employee who regularly works at a fixed location in one city is given a special 1-day work assignment in another city. For example, an employee who works in Washington...

  5. 29 CFR 785.37 - Home to work on special one-day assignment in another city.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Home to work on special one-day assignment in another city... another city. A problem arises when an employee who regularly works at a fixed location in one city is given a special 1-day work assignment in another city. For example, an employee who works in Washington...

  6. Spectrum-to-Spectrum Searching Using a Proteome-wide Spectral Library*

    PubMed Central

    Yen, Chia-Yu; Houel, Stephane; Ahn, Natalie G.; Old, William M.

    2011-01-01

    The unambiguous assignment of tandem mass spectra (MS/MS) to peptide sequences remains a key unsolved problem in proteomics. Spectral library search strategies have emerged as a promising alternative for peptide identification, in which MS/MS spectra are directly compared against a reference library of confidently assigned spectra. Two problems relate to library size. First, reference spectral libraries are limited to rediscovery of previously identified peptides and are not applicable to new peptides, because of their incomplete coverage of the human proteome. Second, problems arise when searching a spectral library the size of the entire human proteome. We observed that traditional dot product scoring methods do not scale well with spectral library size, showing reduction in sensitivity when library size is increased. We show that this problem can be addressed by optimizing scoring metrics for spectrum-to-spectrum searches with large spectral libraries. MS/MS spectra for the 1.3 million predicted tryptic peptides in the human proteome are simulated using a kinetic fragmentation model (MassAnalyzer version2.1) to create a proteome-wide simulated spectral library. Searches of the simulated library increase MS/MS assignments by 24% compared with Mascot, when using probabilistic and rank based scoring methods. The proteome-wide coverage of the simulated library leads to 11% increase in unique peptide assignments, compared with parallel searches of a reference spectral library. Further improvement is attained when reference spectra and simulated spectra are combined into a hybrid spectral library, yielding 52% increased MS/MS assignments compared with Mascot searches. Our study demonstrates the advantages of using probabilistic and rank based scores to improve performance of spectrum-to-spectrum search strategies. PMID:21532008

  7. A group-based tasks allocation algorithm for the optimization of long leave opportunities in academic departments

    NASA Astrophysics Data System (ADS)

    Eyono Obono, S. D.; Basak, Sujit Kumar

    2011-12-01

    The general formulation of the assignment problem consists in the optimal allocation of a given set of tasks to a workforce. This problem is covered by existing literature for different domains such as distributed databases, distributed systems, transportation, packets radio networks, IT outsourcing, and teaching allocation. This paper presents a new version of the assignment problem for the allocation of academic tasks to staff members in departments with long leave opportunities. It presents the description of a workload allocation scheme and its algorithm, for the allocation of an equitable number of tasks in academic departments where long leaves are necessary.

  8. Comparative laser Doppler measurement on tooth pulp blood flow at 632 and 750 nm

    NASA Astrophysics Data System (ADS)

    Oberg, P. Ake; Pettersson, Hans; Rohman, Hakan

    1993-12-01

    Laser-Doppler flowmetry has been used for the assessment of pulp blood flow in health and disease. General purpose laser Doppler instruments working at the Helium-Neon (632,8 nm) as well as IR (750 - 810 nm) wavelengths have been used in this application. Specially designed handheld equipment has also been used to assess blood supply to the tooth. A considerable difference in the measurement results have been noticed when using different wavelengths and probe designs. In this study some of the problems related to the use of various wavelengths and probe designs are studied in human teeth and in a physical model of a tooth. Our results support the early observation that measurements at different wavelengths and with different probe designs cannot be directly compared.

  9. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    ERIC Educational Resources Information Center

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  10. Synthesis, FTIR, FT-Raman, UV-visible, ab initio and DFT studies on benzohydrazide.

    PubMed

    Arjunan, V; Rani, T; Mythili, C V; Mohan, S

    2011-08-01

    A systematic vibrational spectroscopic assignment and analysis of benzohydrazide (BH) has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis were aided by electronic structure calculations--ab initio (RHF) and hybrid density functional methods (B3LYP and B3PW91) performed with 6-31G(d,p) and 6-311++G(d,p) basis sets. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λ(max) were determined by time-dependent DFT (TD-DFT) method. The geometrical, thermodynamical parameters and absorption wavelengths were compared with the experimental data. The interactions of carbonyl and hydrazide groups on the benzene ring skeletal modes were investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Temperature- and Length-Dependent Energetics of Formation for Polyalanine Helices in Water: Assignment of wAla(n,T) and Temperature-Dependent CD Ellipticity Standards

    PubMed Central

    Job, Gabriel E.; Kennedy, Robert J.; Heitmann, Björn; Miller, Justin S.; Walker, Sharon M.; Kemp*, Daniel S.

    2006-01-01

    Length-dependent helical propensities wAla(n,T) at T = 10, 25, and 60 °C are assigned from t/c values and NMR 13C chemical shifts for series 1 peptides TrpLysmInp2tLeu–AlantLeuInp2LysmNH2, n = 15, 19, and 25, m = 5, in water. Van’t Hoff analysis of wAla(n,T) show that α-helix formation is primarily enthalpy-driven. For series 2 peptides Ac–Trp Lys5Inp2tLeu–βAspHel–Alan–beta–tLeuInp2Lys5NH2, n = 12 and 22, which contain exceptionally helical Alan cores, protection factor-derived fractional helicities FH are assigned in the range 10–30 °C in water and used to calibrate temperature-dependent CD ellipticities [θ]λ,H,n,T. These are applied to CD data for series 1 peptides, 12 ≤ n ≤ 45, to confirm the wAla(n,T) assignments at T = 25 and 60 °C. The [θ]λ,H,n,T are temperature dependent within the wavelength region, 222 ± 12 nm, and yield a temperature correction for calculation of FH from experimental values of [θ]222,n,T,Exp. PMID:16787087

  12. Software-defined optical network for metro-scale geographically distributed data centers.

    PubMed

    Samadi, Payman; Wen, Ke; Xu, Junjie; Bergman, Keren

    2016-05-30

    The emergence of cloud computing and big data has rapidly increased the deployment of small and mid-sized data centers. Enterprises and cloud providers require an agile network among these data centers to empower application reliability and flexible scalability. We present a software-defined inter data center network to enable on-demand scale out of data centers on a metro-scale optical network. The architecture consists of a combined space/wavelength switching platform and a Software-Defined Networking (SDN) control plane equipped with a wavelength and routing assignment module. It enables establishing transparent and bandwidth-selective connections from L2/L3 switches, on-demand. The architecture is evaluated in a testbed consisting of 3 data centers, 5-25 km apart. We successfully demonstrated end-to-end bulk data transfer and Virtual Machine (VM) migrations across data centers with less than 100 ms connection setup time and close to full link capacity utilization.

  13. Growth and characterization of a novel nonlinear optical borate crystal - Yttrium calcium borate (YCB)

    NASA Astrophysics Data System (ADS)

    Arun Kumar, R.; Arivanandhan, M.; Dhanasekaran, R.; Hayakawa, Y.

    2013-06-01

    A new nonlinear optical single crystal yttrium calcium borate Y2CaB10O19 (YCB) was grown for the first time from its melt. The starting materials were prepared by the solid-state reaction method. The melting point of the synthesized material was identified to be 967 °C. YCB crystal exhibits monoclinic crystal structure with the space group C2. The crystalline perfection of the grown YCB crystal was found to be good. From the UV-VIS-NIR studies, the lower cutoff wavelength of the crystal occurs below 200 nm. The functional groups of the grown crystal were assigned using the FTIR data. The second harmonic generation (SHG) of the YCB crystal was observed using a Nd:YAG laser with a fundamental wavelength of 1064 nm. The laser damage threshold value of the YCB crystal was found to be very high - 10.5 GW/cm2.

  14. Optical interconnection network for parallel access to multi-rank memory in future computing systems.

    PubMed

    Wang, Kang; Gu, Huaxi; Yang, Yintang; Wang, Kun

    2015-08-10

    With the number of cores increasing, there is an emerging need for a high-bandwidth low-latency interconnection network, serving core-to-memory communication. In this paper, aiming at the goal of simultaneous access to multi-rank memory, we propose an optical interconnection network for core-to-memory communication. In the proposed network, the wavelength usage is delicately arranged so that cores can communicate with different ranks at the same time and broadcast for flow control can be achieved. A distributed memory controller architecture that works in a pipeline mode is also designed for efficient optical communication and transaction address processes. The scaling method and wavelength assignment for the proposed network are investigated. Compared with traditional electronic bus-based core-to-memory communication, the simulation results based on the PARSEC benchmark show that the bandwidth enhancement and latency reduction are apparent.

  15. Photodissociation of the CH3Cl/+/ and N2O/+/ cations.

    NASA Technical Reports Server (NTRS)

    Dunbar, R. C.

    1971-01-01

    Use of the ion cyclotron resonance (icr) technique to observe the photodissociation of the cations CH3Cl(+) and N2O(+) in the gas phase. Ions were trapped in the icr cell for periods of the order of seconds, which permitted the photodissociation process to be observed with wavelength-selected light. A cyclotron resonance ejection technique was employed to show that CH3Cl(+) ions were being dissociated rather than the CH3ClH(+) ions which were also present. The photodissociation cross section for N2O(+) was found to be without strong wavelength dependence between 4000 and 6500 A. The cross section for CH3Cl(+) showed a large peak at 3150 A. Possible assignments of this peak are considered, and it is suggested that a photodissociation occurs through an ion excitation involving a change in occupation of the bonding or antibonding orbitals of the C-Cl bond.

  16. Public health applications of remote sensing

    NASA Technical Reports Server (NTRS)

    Fuller, C. E.

    1972-01-01

    Remote infrared and multispectral photography were used to identify coastal salt water-fresh water interfaces conducive to encephalitis vector mosquito breeding in Florida, and to determine the environmental conditions that caused an explosive outbreak of anthrax in Louisiana. Multiband photographic inventories were obtained by simultaneously processing three photographic negatives of the same view which record different wavelength portions of the same light. The process enhances differentiation of vegetative communities and sharply delineates edge effects by assigning false colors to differentiate subtle density differences.

  17. Preference in Random Assignment: Implications for the Interpretation of Randomized Trials

    PubMed Central

    Gold, Paul B.; Hargreaves, William A.; Aronson, Elliot; Bickman, Leonard; Barreira, Paul J.; Jones, Danson R.; Rodican, Charles F.; Fisher, William H.

    2009-01-01

    Random assignment to a preferred experimental condition can increase service engagement and enhance outcomes, while assignment to a less-preferred condition can discourage service receipt and limit outcome attainment. We examined randomized trials for one prominent psychiatric rehabilitation intervention, supported employment, to gauge how often assignment preference might have complicated the interpretation of findings. Condition descriptions, and greater early attrition from services-as-usual comparison conditions, suggest that many study enrollees favored assignment to new rapid-job-placement supported employment, but no study took this possibility into account. Reviews of trials in other service fields are needed to determine whether this design problem is widespread. PMID:19434489

  18. Assigning Oxidation States to Some Metal Dioxygen Complexes of Biological Interest.

    ERIC Educational Resources Information Center

    Summerville, David A.; And Others

    1979-01-01

    The bonding of dioxygen in metal-dioxygen complexes is discussed, paying particular attention to the problems encountered in assigning conventional oxidation numbers to both the metal center and coordinated dioxygen. Complexes of iron, cobalt, chromium, and manganese are considered. (BB)

  19. Directly data processing algorithm for multi-wavelength pyrometer (MWP).

    PubMed

    Xing, Jian; Peng, Bo; Ma, Zhao; Guo, Xin; Dai, Li; Gu, Weihong; Song, Wenlong

    2017-11-27

    Data processing of multi-wavelength pyrometer (MWP) is a difficult problem because unknown emissivity. So far some solutions developed generally assumed particular mathematical relations for emissivity versus wavelength or emissivity versus temperature. Due to the deviation between the hypothesis and actual situation, the inversion results can be seriously affected. So directly data processing algorithm of MWP that does not need to assume the spectral emissivity model in advance is main aim of the study. Two new data processing algorithms of MWP, Gradient Projection (GP) algorithm and Internal Penalty Function (IPF) algorithm, each of which does not require to fix emissivity model in advance, are proposed. The novelty core idea is that data processing problem of MWP is transformed into constraint optimization problem, then it can be solved by GP or IPF algorithms. By comparison of simulation results for some typical spectral emissivity models, it is found that IPF algorithm is superior to GP algorithm in terms of accuracy and efficiency. Rocket nozzle temperature experiment results show that true temperature inversion results from IPF algorithm agree well with the theoretical design temperature as well. So the proposed combination IPF algorithm with MWP is expected to be a directly data processing algorithm to clear up the unknown emissivity obstacle for MWP.

  20. College Students' Preferences for Psychotherapy across Depression, Anxiety, Relationship, and Academic Problems

    ERIC Educational Resources Information Center

    Joyce, Aaron W.; Ross, Michael J.; Vander Wal, Jillon S.; Austin, Chammie C.

    2009-01-01

    The present study examined differences in college students' preferences for processes of change across four kinds of problems: academic, relationship, depression, and anxiety. Two hundred eighteen undergraduates were randomly assigned to complete either an academic problems, relationship problems, depression, or anxiety Processes of Change…

  1. Interleaved Practice Improves Mathematics Learning

    ERIC Educational Resources Information Center

    Rohrer, Doug; Dedrick, Robert F.; Stershic, Sandra

    2015-01-01

    A typical mathematics assignment consists primarily of practice problems requiring the strategy introduced in the immediately preceding lesson (e.g., a dozen problems that are solved by using the Pythagorean theorem). This means that students know which strategy is needed to solve each problem before they read the problem. In an alternative…

  2. Intensity Conserving Spectral Fitting

    NASA Technical Reports Server (NTRS)

    Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.

    2015-01-01

    The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.

  3. From plasmon-induced luminescence enhancement in gold nanorods to plasmon-induced luminescence turn-off: a way to control reshaping.

    PubMed

    Molinaro, Céline; Marguet, Sylvie; Douillard, Ludovic; Charra, Fabrice; Fiorini-Debuisschert, Céline

    2018-05-07

    Two-photon luminescence (TPL) turn-off in small single gold nanorods (GNRs) exposed to increased resonant femtosecond laser excitation (800 nm wavelength, pulse energy density varying from 125 μJ cm -2 to 2.5 mJ cm -2 ) is investigated. The origin is shown to be a photo-induced decrease of the rod aspect ratio. This aspect ratio reduction could reasonably be assigned to gold atom diffusion away from the rod tips, where hot spots are localized. The two-photon luminescence signal can be recovered after a blue-shift of the incident excitation wavelength. No change in the excitation wavelength results in an out of resonance excitation of the rods and thus a reduced absorption, acting as feedback to stabilize the GNR shape and size. A theoretical analysis is presented evidencing limited thermal effects in the femtosecond regime for small nanoparticles, in good agreement with complementary topographic characterizations using scanning electron microscopy (SEM) and atomic force microscopy (AFM). We show finally that TPL reveals itself as a highly sensitive tool to follow tiny changes resulting from the photo-induced reshaping of GNRs.

  4. [Activities of Harvard College Observatory

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.; Smith, Peter L.; Stark, G.; Yoshino, K.

    2002-01-01

    With support from this grant, we have: 1) Developed techniques for improving wavelengths and f-values for singly and doubly charged ions of the iron group and have improved the accuracy of Fe III wavelengths by an order of magnitude. New Fe II f-values have also resulted from this work. 2) Measured line oscillator strengths and photoabsorption cross sections for UV molecular spectral feature that have been, or could be, used for searches for and detection of molecules in diffuse and translucent interstellar clouds and for determination of molecular column densities there. In addition, we have determined other molecular parameters -- line assignments, wavelengths, and line widths -- that are essential for theoretical descriptions of the abundance, fractionation, and excitation of interstellar molecules and for comparison of predictions with observations. 3) Measured A-values for spin-changing and other weak lines in low-Z ions. When A-values are available, these spectral features are useful for astrophysical plasma density and temperature diagnostics. Such lines are also used in interstellar abundance determinations in cases where the stronger allowed lines are saturated in astronomical spectra. 4) Taken an activist approach to ensuring that, (i), astronomers have ready access to our data, and, (ii), avenues of communication between data users and producers are strengthened.

  5. Aperture Mask for Unambiguous Parity Determination in Long Wavelength Imagers

    NASA Technical Reports Server (NTRS)

    Bos, Brent

    2011-01-01

    A document discusses a new parity pupil mask design that allows users to unambiguously determine the image space coordinate system of all the James Webb Space Telescope (JWST) science instruments by using two out-of-focus images. This is an improvement over existing mask designs that could not completely eliminate the coordinate system parity ambiguity at a wavelength of 5.6 microns. To mitigate the problem of how the presence of diffraction artifacts can obscure the pupil mask detail, this innovation has been created with specifically designed edge features so that the image space coordinate system parity can be determined in the presence of diffraction, even at long wavelengths.

  6. Wavelength-switched phase interrogator for EFPI sensors with polarization self-calibrated

    NASA Astrophysics Data System (ADS)

    Xia, Ji; Wang, Fuyin; Luo, Hong; Xiong, Shuidong

    2017-10-01

    The stability of the demodulation system for extrinsic Fabry-Perot interferometric(EFPI) sensors is significant to dynamic signal recovery. In the wavelength-switched demodulation system, a phase interrogation with a wavelength-switched structure has been presented. Two reflected peaks were in perpendicular polarization direction and switched in the time-domain. However, the operation point of system affected output of the linearly-polarized beams seriously, and the stability of the system decreased and even failed to work. In order to solve this problem, a polarization control unit is added into the system in this paper. The modified demodulation system has been demonstrated to have a higher stability.

  7. Binary Bees Algorithm - bioinspiration from the foraging mechanism of honeybees to optimize a multiobjective multidimensional assignment problem

    NASA Astrophysics Data System (ADS)

    Xu, Shuo; Ji, Ze; Truong Pham, Duc; Yu, Fan

    2011-11-01

    The simultaneous mission assignment and home allocation for hospital service robots studied is a Multidimensional Assignment Problem (MAP) with multiobjectives and multiconstraints. A population-based metaheuristic, the Binary Bees Algorithm (BBA), is proposed to optimize this NP-hard problem. Inspired by the foraging mechanism of honeybees, the BBA's most important feature is an explicit functional partitioning between global search and local search for exploration and exploitation, respectively. Its key parts consist of adaptive global search, three-step elitism selection (constraint handling, non-dominated solutions selection, and diversity preservation), and elites-centred local search within a Hamming neighbourhood. Two comparative experiments were conducted to investigate its single objective optimization, optimization effectiveness (indexed by the S-metric and C-metric) and optimization efficiency (indexed by computational burden and CPU time) in detail. The BBA outperformed its competitors in almost all the quantitative indices. Hence, the above overall scheme, and particularly the searching history-adapted global search strategy was validated.

  8. Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumder, Apratim, E-mail: apratim.majumder@utah.edu; Wan, Xiaowen; Masid, Farhana

    2016-06-15

    Absorbance-Modulation-Optical Lithography (AMOL) has been previously demonstrated to be able to confine light to deep sub-wavelength dimensions and thereby, enable patterning of features beyond the diffraction limit. In AMOL, a thin photochromic layer that converts between two states via light exposure is placed on top of the photoresist layer. The long wavelength photons render the photochromic layer opaque, while the short-wavelength photons render it transparent. By simultaneously illuminating a ring-shaped spot at the long wavelength and a round spot at the short wavelength, the photochromic layer transmits only a highly confined beam at the short wavelength, which then exposes themore » underlying photoresist. Many photochromic molecules suffer from a giant mismatch in quantum yields for the opposing reactions such that the reaction initiated by the absorption of the short-wavelength photon is orders of magnitude more efficient than that initiated by the absorption of the long-wavelength photon. As a result, large intensities in the ring-shaped spot are required for deep sub-wavelength nanopatterning. In this article, we overcome this problem by using the long-wavelength photons to expose the photoresist, and the short-wavelength photons to confine the “exposing” beam. Thereby, we demonstrate the patterning of features as thin as λ/4.7 (137 nm for λ = 647 nm) using extremely low intensities (4-30 W/m{sup 2}, which is 34 times lower than that required in conventional AMOL). We further apply a rigorous model to explain our experiments and discuss the scope of the reverse-AMOL process.« less

  9. GCSE Assessment Notes: Six GCSE Assessment Assignments.

    ERIC Educational Resources Information Center

    Graham, Stephen

    1988-01-01

    Provided are copy masters, instructions for use, and grading criteria for six problems used as part of the practical assessment for a modular science course. Each problem gives a narrative and a list of materials necessary to complete the problem. (CW)

  10. Real life working shift assignment problem

    NASA Astrophysics Data System (ADS)

    Sze, San-Nah; Kwek, Yeek-Ling; Tiong, Wei-King; Chiew, Kang-Leng

    2017-07-01

    This study concerns about the working shift assignment in an outlet of Supermarket X in Eastern Mall, Kuching. The working shift assignment needs to be solved at least once in every month. Current approval process of working shifts is too troublesome and time-consuming. Furthermore, the management staff cannot have an overview of manpower and working shift schedule. Thus, the aim of this study is to develop working shift assignment simulation and propose a working shift assignment solution. The main objective for this study is to fulfill manpower demand at minimum operation cost. Besides, the day off and meal break policy should be fulfilled accordingly. Demand based heuristic is proposed to assign working shift and the quality of the solution is evaluated by using the real data.

  11. Measuring Human Performance on Clustering Problems: Some Potential Objective Criteria and Experimental Research Opportunities

    ERIC Educational Resources Information Center

    Brusco, Michael J.

    2007-01-01

    The study of human performance on discrete optimization problems has a considerable history that spans various disciplines. The two most widely studied problems are the Euclidean traveling salesperson problem and the quadratic assignment problem. The purpose of this paper is to outline a program of study for the measurement of human performance on…

  12. An investigation of the use of temporal decomposition in space mission scheduling

    NASA Technical Reports Server (NTRS)

    Bullington, Stanley E.; Narayanan, Venkat

    1994-01-01

    This research involves an examination of techniques for solving scheduling problems in long-duration space missions. The mission timeline is broken up into several time segments, which are then scheduled incrementally. Three methods are presented for identifying the activities that are to be attempted within these segments. The first method is a mathematical model, which is presented primarily to illustrate the structure of the temporal decomposition problem. Since the mathematical model is bound to be computationally prohibitive for realistic problems, two heuristic assignment procedures are also presented. The first heuristic method is based on dispatching rules for activity selection, and the second heuristic assigns performances of a model evenly over timeline segments. These heuristics are tested using a sample Space Station mission and a Spacelab mission. The results are compared with those obtained by scheduling the missions without any problem decomposition. The applicability of this approach to large-scale mission scheduling problems is also discussed.

  13. Parallel, Asynchronous Executive (PAX): System concepts, facilities, and architecture

    NASA Technical Reports Server (NTRS)

    Jones, W. H.

    1983-01-01

    The Parallel, Asynchronous Executive (PAX) is a software operating system simulation that allows many computers to work on a single problem at the same time. PAX is currently implemented on a UNIVAC 1100/42 computer system. Independent UNIVAC runstreams are used to simulate independent computers. Data are shared among independent UNIVAC runstreams through shared mass-storage files. PAX has achieved the following: (1) applied several computing processes simultaneously to a single, logically unified problem; (2) resolved most parallel processor conflicts by careful work assignment; (3) resolved by means of worker requests to PAX all conflicts not resolved by work assignment; (4) provided fault isolation and recovery mechanisms to meet the problems of an actual parallel, asynchronous processing machine. Additionally, one real-life problem has been constructed for the PAX environment. This is CASPER, a collection of aerodynamic and structural dynamic problem simulation routines. CASPER is not discussed in this report except to provide examples of parallel-processing techniques.

  14. MILP model for integrated balancing and sequencing mixed-model two-sided assembly line with variable launching interval and assignment restrictions

    NASA Astrophysics Data System (ADS)

    Azmi, N. I. L. Mohd; Ahmad, R.; Zainuddin, Z. M.

    2017-09-01

    This research explores the Mixed-Model Two-Sided Assembly Line (MMTSAL). There are two interrelated problems in MMTSAL which are line balancing and model sequencing. In previous studies, many researchers considered these problems separately and only few studied them simultaneously for one-sided line. However in this study, these two problems are solved simultaneously to obtain more efficient solution. The Mixed Integer Linear Programming (MILP) model with objectives of minimizing total utility work and idle time is generated by considering variable launching interval and assignment restriction constraint. The problem is analysed using small-size test cases to validate the integrated model. Throughout this paper, numerical experiment was conducted by using General Algebraic Modelling System (GAMS) with the solver CPLEX. Experimental results indicate that integrating the problems of model sequencing and line balancing help to minimise the proposed objectives function.

  15. NVR-BIP: Nuclear Vector Replacement using Binary Integer Programming for NMR Structure-Based Assignments.

    PubMed

    Apaydin, Mehmet Serkan; Çatay, Bülent; Patrick, Nicholas; Donald, Bruce R

    2011-05-01

    Nuclear magnetic resonance (NMR) spectroscopy is an important experimental technique that allows one to study protein structure and dynamics in solution. An important bottleneck in NMR protein structure determination is the assignment of NMR peaks to the corresponding nuclei. Structure-based assignment (SBA) aims to solve this problem with the help of a template protein which is homologous to the target and has applications in the study of structure-activity relationship, protein-protein and protein-ligand interactions. We formulate SBA as a linear assignment problem with additional nuclear overhauser effect constraints, which can be solved within nuclear vector replacement's (NVR) framework (Langmead, C., Yan, A., Lilien, R., Wang, L. and Donald, B. (2003) A Polynomial-Time Nuclear Vector Replacement Algorithm for Automated NMR Resonance Assignments. Proc. the 7th Annual Int. Conf. Research in Computational Molecular Biology (RECOMB) , Berlin, Germany, April 10-13, pp. 176-187. ACM Press, New York, NY. J. Comp. Bio. , (2004), 11, pp. 277-298; Langmead, C. and Donald, B. (2004) An expectation/maximization nuclear vector replacement algorithm for automated NMR resonance assignments. J. Biomol. NMR , 29, 111-138). Our approach uses NVR's scoring function and data types and also gives the option of using CH and NH residual dipolar coupling (RDCs), instead of NH RDCs which NVR requires. We test our technique on NVR's data set as well as on four new proteins. Our results are comparable to NVR's assignment accuracy on NVR's test set, but higher on novel proteins. Our approach allows partial assignments. It is also complete and can return the optimum as well as near-optimum assignments. Furthermore, it allows us to analyze the information content of each data type and is easily extendable to accept new forms of input data, such as additional RDCs.

  16. The use of writing assignments to help students synthesize content in upper-level undergraduate biology courses.

    PubMed

    Sparks-Thissen, Rebecca L

    2017-02-01

    Biology education is undergoing a transformation toward a more student-centered, inquiry-driven classroom. Many educators have designed engaging assignments that are designed to help undergraduate students gain exposure to the scientific process and data analysis. One of these types of assignments is use of a grant proposal assignment. Many instructors have used these assignments in lecture-based courses to help students process information in the literature and apply that information to a novel problem such as design of an antiviral drug or a vaccine. These assignments have been helpful in engaging students in the scientific process in the absence of an inquiry-driven laboratory. This commentary discusses the application of these grant proposal writing assignments to undergraduate biology courses. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Ecologically-Based Family Therapy Outcome with Substance Abusing Runaway Adolescents

    PubMed Central

    Slesnick, Natasha; Prestopnik, Jillian L.

    2007-01-01

    Runaway youth report a broader range and higher severity of substance-related, mental health and family problems relative to non-runaway youth. Most studies to date have collected self-report data on the family and social history; virtually no research has examined treatment effectiveness with this population. This study is a treatment development project in which 124 runaway youth were randomly assigned to 1) Ecologically-Based Family Therapy (EBFT) or 2) Service as Usual (SAU) through a shelter. Youth completed an intake, posttreatment, 6 and 12 month follow-up assessment. Youth assigned to EBFT reported greater reductions in overall substance abuse compared to youth assigned to SAU while other problem areas improved in both conditions. Findings suggest that EBFT is an efficacious intervention for this relatively severe population of youth. PMID:15878048

  18. Using sound to solve syntactic problems: the role of phonology in grammatical category assignments.

    PubMed

    Kelly, M H

    1992-04-01

    One ubiquitous problem in language processing involves the assignment of words to the correct grammatical category, such as noun or verb. In general, semantic and syntactic cues have been cited as the principal information for grammatical category assignment, to the neglect of possible phonological cues. This neglect is unwarranted, and the following claims are made: (a) Numerous correlations between phonology and grammatical class exist, (b) some of these correlations are large and can pervade the entire lexicon of a language and hence can involve thousands of words, (c) experiments have repeatedly found that adults and children have learned these correlations, and (d) explanations for how these correlations arose can be proposed and evaluated. Implications of these phenomena for language representation and processing are discussed.

  19. Problem Solution Project: Transforming Curriculum and Empowering Urban Students and Teachers

    ERIC Educational Resources Information Center

    Jarrett, Olga S.; Stenhouse, Vera

    2011-01-01

    This article presents findings of 6 years of implementing a Problem Solution Project, an assignment influenced by service learning, problem-based learning, critical theory, and critical pedagogy whereby teachers help children tackle real problems. Projects of 135 teachers in an urban certification/master's program were summarized by cohort year…

  20. Optimal UAS Assignments and Trajectories for Persistent Surveillance and Data Collection from a Wireless Sensor Network

    DTIC Science & Technology

    2015-12-24

    minimizing a weighted sum ofthe time and control effort needed to collect sensor data. This problem formulation is a modified traveling salesman ...29 2.5 The Shortest Path Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.1 Traveling Salesman Problem ...48 3.3.1 Initial Guess by Traveling Salesman Problem Solution

  1. American Viticultural Areas: A Problem in Regional Geography.

    ERIC Educational Resources Information Center

    Macdonald, Gerald M.; Lemaire, Denyse

    1995-01-01

    Maintains that growing grapes for winemaking has increased dramatically in the United States. Describes a college class assignment in which students analyzed climate and soil type to identify appropriate viticulture areas. Reports high student interest in the assignment and includes four figures illustrating the approach. (CFR)

  2. Motion Planning and Task Assignment for Unmanned Aerial Vehicles Cooperating with Unattended Ground Sensors

    DTIC Science & Technology

    2014-10-24

    problem was formalized as the Dubins travelling salesman problem (TSP). In the second phase of the research we have...given constraints on its motion. This problem was formalized as the Dubins travelling salesman problem (TSP). The contributions of the study in the... problem was formalized as the Dubins travelling salesman problem (TSP). The Dubins Travelling Salesperson Problem (DTSP) and its variants [8, 12,

  3. PROBABILISTIC CROSS-IDENTIFICATION IN CROWDED FIELDS AS AN ASSIGNMENT PROBLEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budavári, Tamás; Basu, Amitabh, E-mail: budavari@jhu.edu, E-mail: basu.amitabh@jhu.edu

    2016-10-01

    One of the outstanding challenges of cross-identification is multiplicity: detections in crowded regions of the sky are often linked to more than one candidate associations of similar likelihoods. We map the resulting maximum likelihood partitioning to the fundamental assignment problem of discrete mathematics and efficiently solve the two-way catalog-level matching in the realm of combinatorial optimization using the so-called Hungarian algorithm. We introduce the method, demonstrate its performance in a mock universe where the true associations are known, and discuss the applicability of the new procedure to large surveys.

  4. NASA Astrophysics Data System (ADS)

    2018-05-01

    Eigenvalues and eigenvectors, together, constitute the eigenstructure of the system. The design of vibrating systems aimed at satisfying specifications on eigenvalues and eigenvectors, which is commonly known as eigenstructure assignment, has drawn increasing interest over the recent years. The most natural mathematical framework for such problems is constituted by the inverse eigenproblems, which consist in the determination of the system model that features a desired set of eigenvalues and eigenvectors. Although such a problem is intrinsically challenging, several solutions have been proposed in the literature. The approaches to eigenstructure assignment can be basically divided into passive control and active control.

  5. Probabilistic Cross-identification in Crowded Fields as an Assignment Problem

    NASA Astrophysics Data System (ADS)

    Budavári, Tamás; Basu, Amitabh

    2016-10-01

    One of the outstanding challenges of cross-identification is multiplicity: detections in crowded regions of the sky are often linked to more than one candidate associations of similar likelihoods. We map the resulting maximum likelihood partitioning to the fundamental assignment problem of discrete mathematics and efficiently solve the two-way catalog-level matching in the realm of combinatorial optimization using the so-called Hungarian algorithm. We introduce the method, demonstrate its performance in a mock universe where the true associations are known, and discuss the applicability of the new procedure to large surveys.

  6. Ultraviolet spectral reflectance of carbonaceous materials

    NASA Astrophysics Data System (ADS)

    Applin, Daniel M.; Izawa, Matthew R. M.; Cloutis, Edward A.; Gillis-Davis, Jeffrey J.; Pitman, Karly M.; Roush, Ted L.; Hendrix, Amanda R.; Lucey, Paul G.

    2018-06-01

    A number of planetary spacecraft missions have carried instruments with sensors covering the ultraviolet (UV) wavelength range. However, there exists a general lack of relevant UV reflectance laboratory data to compare against these planetary surface remote sensing observations in order to make confident material identifications. To address this need, we have systematically analyzed reflectance spectra of carbonaceous materials in the 200-500 nm spectral range, and found spectral-compositional-structural relationships that suggest this wavelength region could distinguish between otherwise difficult-to-identify carbon phases. In particular (and by analogy with the infrared spectral region), large changes over short wavelength intervals in the refractive indices associated with the trigonal sp2π-π* transition of carbon can lead to Fresnel peaks and Christiansen-like features in reflectance. Previous studies extending to shorter wavelengths also show that anomalous dispersion caused by the σ-σ* transition associated with both the trigonal sp2 and tetrahedral sp3 sites causes these features below λ = 200 nm. The peak wavelength positions and shapes of π-π* and σ-σ* features contain information on sp3/sp2, structure, crystallinity, and powder grain size. A brief comparison with existing observational data indicates that the carbon fraction of the surface of Mercury is likely amorphous and submicroscopic, as is that on the surface of the martian satellites Phobos and Deimos, and possibly comet 67P/Churyumov-Gerasimenko, while further coordinated observations and laboratory experiments should refine these feature assignments and compositional hypotheses. The new laboratory diffuse reflectance data reported here provide an important new resource for interpreting UV reflectance measurements from planetary surfaces throughout the solar system, and confirm that the UV can be rich in important spectral information.

  7. Complete virilization in congenital adrenal hyperplasia: clinical course, medical management and disease-related complications.

    PubMed

    Woelfle, J; Hoepffner, W; Sippell, W G; Brämswig, J H; Heidemann, P; Deiss, D; Bökenkamp, A; Roth, C; Irle, U; Wollmann, H A; Zachmann, M; Kubini, K; Albers, N

    2002-02-01

    In girls with congenital adrenal hyperplasia (CAH), genital ambiguity usually leads to a rapid neonatal diagnosis. Rarely, CAH causes complete virilization and male sex assignment with a delayed diagnosis. After being confronted with very specific problems in two of such patients, we collected data of patients with CAH and complete virilization in a nationwide study to delineate specific problems of these rare patients in order to improve their management. Through the German Working Group of Paediatric Endocrinology (Arbeitsgemeinschaft Pädiatrische Endokrinologie, APE), questionnaires were sent to all members caring for patients with CAH and complete virilization in their endocrine clinics. Data from 16 patients from 10 paediatric endocrine centres were assessed by questionnaire. The following problems have been encountered. (1) Sex assignment/gender identity: initially all patients had a male sex assignment. Six patients were diagnosed during the first month of life. Five were reassigned to female sex immediately, one at the age of 19 months. Except in one girl demonstrating some tomboyish behaviour, gender role behaviour in these patients did not differ from unaffected girls. Ten patients were diagnosed late at 3.4--7 years of age. In seven patients with a late diagnosis, male sex assignment was maintained; one of them expressed some concerns about living as a male. In three patients late sex reversal was performed, gender identity is very poor in one and new sex assignment is currently under consideration. (2) SURGERY: irrespective of the sex assigned, all patients had between one and three surgical procedures, including clitoris reduction and (repeated) vaginoplasties in patients with female sex assignment. Hysterectomy and ovarectomy were performed in patients with male sex assignment. (3) Short stature: patients with a late diagnosis of CAH had extremely advanced bone ages of +6.3 to +9.5 years, leading to severely reduced final height of 137 to 150 cm in adult patients. Patients tended to follow height percentiles of genetic females. One pubertal patient was suicidal due to short stature. (4) Central precocious puberty (CPP): prolonged exposition to adrenal androgens led to CPP in one patient. He was treated with GnRH analogues until gonadectomy. Patients with CAH and complete virilization have a high risk of being diagnosed late. There are major problems and uncertainties of the patients' families and the treating physicians concerning gender assignment. Gender identity is disturbed in some patients. In addition, multiple surgical procedures are necessary and short stature as well as central precocious puberty might be important to avoid late sequelae. While some surgical interventions are probably unavoidable, most of these issues could be resolved with an early diagnosis. Thus, especially for these patients, a neonatal screening programme for CAH would be of paramount importance.

  8. Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands: a Survey

    NASA Technical Reports Server (NTRS)

    Salama, F.; Galazutdinov, G. A.; Krelowski, J.; Allamandola, L. J.; Musaev, F. A.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We discuss the proposal relating the origin of some of the diffuse interstellar bands (DIBs) to neutral and ionized polycyclic aromatic hydrocarbons (PAHs) present in interstellar clouds. Laboratory spectra of several PAHs, isolated at low temperature in inert gas matrices, are compared with an extensive set of astronomical spectra of reddened, early type stars. From this comparison, it is concluded that PAN ions are good candidates to explain some of the DIBs. Unambiguous assignments are difficult, however, due to the shift in wavelengths and the band broadening induced in the laboratory spectra by the solid matrix. Definitive band assignments and, ultimately, the test of the of the proposal that PAH ions carry some of the DIB must await the availability of gas-phase measurements in the laboratory. The present assessment offers a guideline for future laboratory experiments by allowing the preselection of promising PAH molecules to be studied in jet expansions.

  9. SHORT-WAVELENGTH MAGNETIC BUOYANCY INSTABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizerski, K. A.; Davies, C. R.; Hughes, D. W., E-mail: kamiz@igf.edu.pl, E-mail: tina@maths.leeds.ac.uk, E-mail: d.w.hughes@leeds.ac.uk

    2013-04-01

    Magnetic buoyancy instability plays an important role in the evolution of astrophysical magnetic fields. Here we revisit the problem introduced by Gilman of the short-wavelength linear stability of a plane layer of compressible isothermal fluid permeated by a horizontal magnetic field of strength decreasing with height. Dissipation of momentum and magnetic field is neglected. By the use of a Rayleigh-Schroedinger perturbation analysis, we explain in detail the limit in which the transverse horizontal wavenumber of the perturbation, denoted by k, is large (i.e., short horizontal wavelength) and show that the fastest growing perturbations become localized in the vertical direction asmore » k is increased. The growth rates are determined by a function of the vertical coordinate z since, in the large k limit, the eigenmodes are strongly localized in the vertical direction. We consider in detail the case of two-dimensional perturbations varying in the directions perpendicular to the magnetic field, which, for sufficiently strong field gradients, are the most unstable. The results of our analysis are backed up by comparison with a series of initial value problems. Finally, we extend the analysis to three-dimensional perturbations.« less

  10. SDN architecture for optical packet and circuit integrated networks

    NASA Astrophysics Data System (ADS)

    Furukawa, Hideaki; Miyazawa, Takaya

    2016-02-01

    We have been developing an optical packet and circuit integrated (OPCI) network, which realizes dynamic optical path, high-density packet multiplexing, and flexible wavelength resource allocation. In the OPCI networks, a best-effort service and a QoS-guaranteed service are provided by employing optical packet switching (OPS) and optical circuit switching (OCS) respectively, and users can select these services. Different wavelength resources are assigned for OPS and OCS links, and the amount of their wavelength resources are dynamically changed in accordance with the service usage conditions. To apply OPCI networks into wide-area (core/metro) networks, we have developed an OPCI node with a distributed control mechanism. Moreover, our OPCI node works with a centralized control mechanism as well as a distributed one. It is therefore possible to realize SDN-based OPCI networks, where resource requests and a centralized configuration are carried out. In this paper, we show our SDN architecture for an OPS system that configures mapping tables between IP addresses and optical packet addresses and switching tables according to the requests from multiple users via a web interface. While OpenFlow-based centralized control protocol is coming into widespread use especially for single-administrative, small-area (LAN/data-center) networks. Here, we also show an interworking mechanism between OpenFlow-based networks (OFNs) and the OPCI network for constructing a wide-area network, and a control method of wavelength resource selection to automatically transfer diversified flows from OFNs to the OPCI network.

  11. Do emergency medical services dispatch nature and severity codes agree with paramedic field findings?

    PubMed

    Neely, K W; Eldurkar, J A; Drake, M E

    2000-02-01

    Emergency medical services (EMS) systems increasingly seek to triage patients to alternative EMS resources. Emergency medical services dispatchers may be asked to perform this triage. New protocols may be necessary. Alternatively, existing protocols may be sufficient for this task. For an existing dispatch protocol to be sufficient, it at least must accurately categorize patient condition and severity based on an external standard. To examine the extent to which nature codes (NCs), or patient condition codes, and severity codes (SCs) currently assigned in one urban 911 center agree with paramedic field findings. The null hypothesis was that there is no routine agreement (75%) between dispatcher-assigned NC or SC and paramedic-assigned NC or SC for the same patient using the same protocol. Emergency medical services dispatch nature and severity code data and matching out-of-hospital data were prospectively gathered over six months. Dispatch data included the NC: caller-identified problem, and the SC: dispatcher-assessed severity. Each NC is modified by one of three SCs (1, 3, or 9): 1 is emergent, 3 is urgent, and 9 is neither. Paramedics verified and/or corrected dispatcher-assigned NCs and SCs using the same dispatch protocol. One thousand forty usable cases fell into 33 unique NC/SC combinations. The designation of SC 1 was assigned 275 times, SC 3 was assigned 736 times, and SC 9 was assigned 24 times. The SC was missing five times. The overall NC agreement was 0.70 (95% CI = 0.697 to 0.703). The overall SC agreement was 0.65 (95% CI = 0.645 to 0.655). The NC agreement exceeded 75% for ten (59%) NC/SC combinations. The SC agreement exceeded 75% for five (29%) NC/SC combinations. There was both NC and SC agreement for four (24%) combinations: urgent breathing problems, urgent diabetic problems, urgent falls, and urgent overdoses. The greatest NC/SC disagreement occurred within emergent and urgent traffic crashes. Paramedics adjusted SC toward lower severity 29% of the time and toward higher severity 5.4% of the time. There was no upward SC adjustment for eight (47%) combinations. Certain dispatcher-assigned NC and SC codes and NC/SC combinations achieved the study threshold. Overall agreement failed to achieve the threshold. The lowest SC level was rarely assigned, preventing a meaningful analysis of all severity levels.

  12. Methods of Attenuation Correction for Dual-Wavelength and Dual-Polarization Weather Radar Data

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Liao, L.

    2007-01-01

    In writing the integral equations for the median mass diameter and number concentration, or comparable parameters of the raindrop size distribution, it is apparent that the forms of the equations for dual-polarization and dual-wavelength radar data are identical when attenuation effects are included. The differential backscattering and extinction coefficients appear in both sets of equations: for the dual-polarization equations, the differences are taken with respect to polarization at a fixed frequency while for the dual-wavelength equations, the differences are taken with respect to frequency at a fixed polarization. An alternative to the integral equation formulation is that based on the k-Z (attenuation coefficient-radar reflectivity factor) parameterization. This-technique was originally developed for attenuating single-wavelength radars, a variation of which has been applied to the TRMM Precipitation Radar data (PR). Extensions of this method have also been applied to dual-polarization data. In fact, it is not difficult to show that nearly identical equations are applicable as well to dualwavelength radar data. In this case, the equations for median mass diameter and number concentration take the form of coupled, but non-integral equations. Differences between this and the integral equation formulation are a consequence of the different ways in which attenuation correction is performed under the two formulations. For both techniques, the equations can be solved either forward from the radar outward or backward from the final range gate toward the radar. Although the forward-going solutions tend to be unstable as the attenuation out to the range of interest becomes large in some sense, an independent estimate of path attenuation is not required. This is analogous to the case of an attenuating single-wavelength radar where the forward solution to the Hitschfeld-Bordan equation becomes unstable as the attenuation increases. To circumvent this problem, the equations can be expressed in the form of a final-value problem so that the recursion begins at the far range gate and proceeds inward towards the radar. Solving the problem in this way traditionally requires estimates of path attenuation to the final gate: in the case of orthogonal linear polarizations, the attenuations at horizontal and vertical polarizations (same frequency) are required while in the dual-wavelength case, attenuations at the two frequencies (same polarization) are required.

  13. Three geographic decomposition approaches in transportation network analysis

    DOT National Transportation Integrated Search

    1980-03-01

    This document describes the results of research into the application of geographic decomposition techniques to practical transportation network problems. Three approaches are described for the solution of the traffic assignment problem. One approach ...

  14. Application of Decomposition to Transportation Network Analysis

    DOT National Transportation Integrated Search

    1976-10-01

    This document reports preliminary results of five potential applications of the decomposition techniques from mathematical programming to transportation network problems. The five application areas are (1) the traffic assignment problem with fixed de...

  15. Accelerated Math®. Primary Mathematics. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2017

    2017-01-01

    "Accelerated Math®," published by Renaissance Learning, is a software tool that provides practice problems for students in grades K-12 and provides teachers with reports to monitor student progress. "Accelerated Math®" creates individualized student assignments, scores the assignments, and generates reports on student progress.…

  16. (Explain It) x 3

    ERIC Educational Resources Information Center

    McGuire, Linda

    2014-01-01

    This article will describe a writing assignment designed for use in a liberal arts college whose mission stresses effective written communication both within and across disciplines. In this assignment, students write three separate solutions to the same mathematics problem: one for a mathematical peer, a second for a contemporary that does not…

  17. Using Portfolio Assignments to Assess Students' Mathematical Thinking

    ERIC Educational Resources Information Center

    Fukawa-Connelly, Timothy; Buck, Stephen

    2010-01-01

    Writing in mathematics can improve procedural knowledge and communication skills and may also help students better understand and then remember problems. The majority of mathematics teachers know that they ought to include some writing assignments in their instructional plans, but the challenge of covering the curriculum and the time required to…

  18. Student's Lab Assignments in PDE Course with MAPLE.

    ERIC Educational Resources Information Center

    Ponidi, B. Alhadi

    Computer-aided software has been used intensively in many mathematics courses, especially in computational subjects, to solve initial value and boundary value problems in Partial Differential Equations (PDE). Many software packages were used in student lab assignments such as FORTRAN, PASCAL, MATLAB, MATHEMATICA, and MAPLE in order to accelerate…

  19. Listener Reliability in Assigning Utterance Boundaries in Children's Spontaneous Speech

    ERIC Educational Resources Information Center

    Stockman, Ida J.

    2010-01-01

    Research and clinical practices often rely on an utterance unit for spoken language analysis. This paper calls attention to the problems encountered when identifying utterance boundaries in young children's spontaneous conversational speech. The results of a reliability study of utterance boundary assignment are described for 20 females with…

  20. Distributed Collaborative Homework Activities in a Problem-Based Usability Engineering Course

    ERIC Educational Resources Information Center

    Carroll, John M.; Jiang, Hao; Borge, Marcela

    2015-01-01

    Teams of students in an upper-division undergraduate Usability Engineering course used a collaborative environment to carry out a series of three distributed collaborative homework assignments. Assignments were case-based analyses structured using a jigsaw design; students were provided a collaborative software environment and introduced to a…

  1. Increasing Student-Learning Team Effectiveness with Team Charters

    ERIC Educational Resources Information Center

    Hunsaker, Phillip; Pavett, Cynthia; Hunsaker, Johanna

    2011-01-01

    Because teams are a ubiquitous part of most organizations today, it is common for business educators to use team assignments to help students experientially learn about course concepts and team process. Unfortunately, students frequently experience a number of problems during team assignments. The authors describe the results of their research and…

  2. Teaching Case: A Systems Analysis Role-Play Exercise and Assignment

    ERIC Educational Resources Information Center

    Mitri, Michel; Cole, Carey; Atkins, Laura

    2017-01-01

    This paper presents a role-play exercise and assignment that provides an active learning experience related to the system investigation phase of an SDLC. Whether using waterfall or agile approaches, the first SDLC step usually involves system investigation activities, including problem identification, feasibility study, cost-benefit analysis, and…

  3. Wavelength calibration of arc spectra using intensity modelling

    NASA Astrophysics Data System (ADS)

    Balona, L. A.

    2010-12-01

    Wavelength calibration for astronomical spectra usually involves the use of different arc lamps for different resolving powers to reduce the problem of line blending. We present a technique which eliminates the necessity of different lamps. A lamp producing a very rich spectrum, normally used only at high resolving powers, can be used at the lowest resolving power as well. This is accomplished by modelling the observed arc spectrum and solving for the wavelength calibration as part of the modelling procedure. Line blending is automatically incorporated as part of the model. The method has been implemented and successfully tested on spectra taken with the Robert Stobie spectrograph of the Southern African Large Telescope.

  4. 38 CFR 21.198 - “Discontinued” status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... personal or other problems; or (ii) Inability of the veteran to benefit from rehabilitation services... of entitlement. (4) Medical and related problems. A veteran's case will be discontinued and assigned... program because of a serious physical or emotional problem for an extended period; and (ii) VA medical...

  5. 38 CFR 21.198 - “Discontinued” status.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... personal or other problems; or (ii) Inability of the veteran to benefit from rehabilitation services... of entitlement. (4) Medical and related problems. A veteran's case will be discontinued and assigned... program because of a serious physical or emotional problem for an extended period; and (ii) VA medical...

  6. Separation anxiety among birth-assigned male children in a specialty gender identity service.

    PubMed

    VanderLaan, Doug P; Santarossa, Alanna; Nabbijohn, A Natisha; Wood, Hayley; Owen-Anderson, Allison; Zucker, Kenneth J

    2018-01-01

    Previous research suggested that separation anxiety disorder (SAD) is overrepresented among birth-assigned male children clinic-referred for gender dysphoria (GD). The present study examined maternally reported separation anxiety of birth-assigned male children assessed in a specialty gender identity service (N = 360). SAD was determined in relation to DSM-III and DSM-IV criteria, respectively. A dimensional metric of separation anxiety was examined in relation to several additional factors: age, ethnicity, parental marital status and social class, IQ, gender nonconformity, behavioral and emotional problems, and poor peer relations. When defined in a liberal fashion, 55.8% were classified as having SAD. When using a more conservative criterion, 5.3% were classified as having SAD, which was significantly greater than the estimated general population prevalence for boys, but not for girls. Dimensionally, separation anxiety was associated with having parents who were not married or cohabitating as well as with elevations in gender nonconformity; however, the association with gender nonconformity was no longer significant when statistically controlling for internalizing problems. Thus, SAD appears to be common among birth-assigned males clinic-referred for GD when defined in a liberal fashion, and more common than in boys, but not girls, from the general population even when more stringent criteria were applied. Also, the degree of separation anxiety appears to be linked to generic risk factors (i.e., parental marital status, internalizing problems). As such, although separation anxiety is common among birth-assigned male children clinic-referred for GD, it seems unlikely to hold unique significance for this population based on the current data.

  7. E-O Sensor Signal Recognition Simulation: Computer Code SPOT I.

    DTIC Science & Technology

    1978-10-01

    scattering phase function PDCO , defined at the specified wavelength, given for each of the scattering angles defined. Currently, a maximum of sixty-four...PHASE MATRIX DATA IS DEFINED PDCO AVERAGE PROBABILITY FOR PHASE MATRIX DEFINITION NPROB PROBLEM NUMBER 54 Fig. 12. FLOWCHART for the SPOT Computer Code...El0.1 WLAM(N) Wavelength at which the aerosol single-scattering phase function set is defined (microns) 3 8El0.1 PDCO (N,I) Average probability for

  8. A microanalysis approach to investigate problems encountered in mycology.

    PubMed Central

    Thibaut, M.; Ansel, M.; de Azevedo Carneiro, J.

    1978-01-01

    X-ray microanalysis has been applied to the study of pathogenic fungi for the acquisition of chemical information. The technique of combined scanning electron microscopy and wavelength dispersive spectrometry is described. The chemical analysis depends on the characteristic x-ray spectrum excited by the electrons passing through the sample. This spectrum is analyzed by x-ray wavelength dispersion using crystal spectrometers. All the elements of the periodic system above beryllium can be detected with good sensitivity. PMID:619693

  9. Multi-topic assignment for exploratory navigation of consumer health information in NetWellness using formal concept analysis.

    PubMed

    Cui, Licong; Xu, Rong; Luo, Zhihui; Wentz, Susan; Scarberry, Kyle; Zhang, Guo-Qiang

    2014-08-03

    Finding quality consumer health information online can effectively bring important public health benefits to the general population. It can empower people with timely and current knowledge for managing their health and promoting wellbeing. Despite a popular belief that search engines such as Google can solve all information access problems, recent studies show that using search engines and simple search terms is not sufficient. Our objective is to provide an approach to organizing consumer health information for navigational exploration, complementing keyword-based direct search. Multi-topic assignment to health information, such as online questions, is a fundamental step for navigational exploration. We introduce a new multi-topic assignment method combining semantic annotation using UMLS concepts (CUIs) and Formal Concept Analysis (FCA). Each question was tagged with CUIs identified by MetaMap. The CUIs were filtered with term-frequency and a new term-strength index to construct a CUI-question context. The CUI-question context and a topic-subject context were used for multi-topic assignment, resulting in a topic-question context. The topic-question context was then directly used for constructing a prototype navigational exploration interface. Experimental evaluation was performed on the task of automatic multi-topic assignment of 99 predefined topics for about 60,000 consumer health questions from NetWellness. Using example-based metrics, suitable for multi-topic assignment problems, our method achieved a precision of 0.849, recall of 0.774, and F₁ measure of 0.782, using a reference standard of 278 questions with manually assigned topics. Compared to NetWellness' original topic assignment, a 36.5% increase in recall is achieved with virtually no sacrifice in precision. Enhancing the recall of multi-topic assignment without sacrificing precision is a prerequisite for achieving the benefits of navigational exploration. Our new multi-topic assignment method, combining term-strength, FCA, and information retrieval techniques, significantly improved recall and performed well according to example-based metrics.

  10. Multi-topic assignment for exploratory navigation of consumer health information in NetWellness using formal concept analysis

    PubMed Central

    2014-01-01

    Background Finding quality consumer health information online can effectively bring important public health benefits to the general population. It can empower people with timely and current knowledge for managing their health and promoting wellbeing. Despite a popular belief that search engines such as Google can solve all information access problems, recent studies show that using search engines and simple search terms is not sufficient. Our objective is to provide an approach to organizing consumer health information for navigational exploration, complementing keyword-based direct search. Multi-topic assignment to health information, such as online questions, is a fundamental step for navigational exploration. Methods We introduce a new multi-topic assignment method combining semantic annotation using UMLS concepts (CUIs) and Formal Concept Analysis (FCA). Each question was tagged with CUIs identified by MetaMap. The CUIs were filtered with term-frequency and a new term-strength index to construct a CUI-question context. The CUI-question context and a topic-subject context were used for multi-topic assignment, resulting in a topic-question context. The topic-question context was then directly used for constructing a prototype navigational exploration interface. Results Experimental evaluation was performed on the task of automatic multi-topic assignment of 99 predefined topics for about 60,000 consumer health questions from NetWellness. Using example-based metrics, suitable for multi-topic assignment problems, our method achieved a precision of 0.849, recall of 0.774, and F1 measure of 0.782, using a reference standard of 278 questions with manually assigned topics. Compared to NetWellness’ original topic assignment, a 36.5% increase in recall is achieved with virtually no sacrifice in precision. Conclusion Enhancing the recall of multi-topic assignment without sacrificing precision is a prerequisite for achieving the benefits of navigational exploration. Our new multi-topic assignment method, combining term-strength, FCA, and information retrieval techniques, significantly improved recall and performed well according to example-based metrics. PMID:25086916

  11. Simultaneous identification of optical constants and PSD of spherical particles by multi-wavelength scattering-transmittance measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-You; Qi, Hong; Ren, Ya-Tao; Ruan, Li-Ming

    2018-04-01

    An accurate and stable identification technique is developed to retrieve the optical constants and particle size distributions (PSDs) of particle system simultaneously from the multi-wavelength scattering-transmittance signals by using the improved quantum particle swarm optimization algorithm. The Mie theory are selected to calculate the directional laser intensity scattered by particles and the spectral collimated transmittance. The sensitivity and objective function distribution analysis were conducted to evaluate the mathematical properties (i.e. ill-posedness and multimodality) of the inverse problems under three different optical signals combinations (i.e. the single-wavelength multi-angle light scattering signal, the single-wavelength multi-angle light scattering and spectral transmittance signal, and the multi-angle light scattering and spectral transmittance signal). It was found the best global convergence performance can be obtained by using the multi-wavelength scattering-transmittance signals. Meanwhile, the present technique have been tested under different Gaussian measurement noise to prove its feasibility in a large solution space. All the results show that the inverse technique by using multi-wavelength scattering-transmittance signals is effective and suitable for retrieving the optical complex refractive indices and PSD of particle system simultaneously.

  12. Three-frequency Nd:YAG laser for dental treatment

    NASA Astrophysics Data System (ADS)

    Kadlecová, Martina; Dostálová, Tat'jana; Jelínková, Helena; Němec, Michal; Å ulc, Jan; Fibrich, Martin; Bradna, Pavel; Nejezchleb, Karel; Kapitch, Nickalai; Å koda, Václav

    2018-02-01

    In the last decade, lasers found a number of indications in dentistry. However, there is still one problem: the narrow spectrum of usefulness for individual radiation wavelengths. The aim of our study is to demonstrate the use of a compact three-frequency pulsed Nd-YAG laser for more than one treatment, namely disinfection, coagulation, selective ablation, and soft tissue removal. The laser wavelengths and the maximal energies achieved were the following: 1.06 um, 1.32 um, 1.44 um and 830 mJ, 425 mJ, and 200 mJ, respectively. It has been found that all of the investigated wavelengths exhibit disinfection properties. Moreover, radiation of 1.06 um wavelength removes soft tissue and exhibits also coagulation properties. Radiation of 1.44 um is most useful for selective ablation of initial caries and disinfection, and 1.32 um radiation can be used for precise ablation when higher energy is applied.

  13. Examining the Preparatory Effects of Problem Generation and Solution Generation on Learning from Instruction

    ERIC Educational Resources Information Center

    Kapur, Manu

    2018-01-01

    The goal of this paper is to isolate the preparatory effects of problem-generation from solution generation in problem-posing contexts, and their underlying mechanisms on learning from instruction. Using a randomized-controlled design, students were assigned to one of two conditions: (a) problem-posing with solution generation, where they…

  14. Introduction of a Population Balance Based Design Problem in a Particle Science and Technology Course for Chemical Engineers

    ERIC Educational Resources Information Center

    Ehrman, Sheryl H.; Castellanos, Patricia; Dwivedi, Vivek; Diemer, R. Bertrum

    2007-01-01

    A particle technology design problem incorporating population balance modeling was developed and assigned to senior and first-year graduate students in a Particle Science and Technology course. The problem focused on particle collection, with a pipeline agglomerator, Cyclone, and baghouse comprising the collection system. The problem was developed…

  15. Investigating the Effect of Complexity Factors in Stoichiometry Problems Using Logistic Regression and Eye Tracking

    ERIC Educational Resources Information Center

    Tang, Hui; Kirk, John; Pienta, Norbert J.

    2014-01-01

    This paper includes two experiments, one investigating complexity factors in stoichiometry word problems, and the other identifying students' problem-solving protocols by using eye-tracking technology. The word problems used in this study had five different complexity factors, which were randomly assigned by a Web-based tool that we developed. The…

  16. Exploiting Elementary Landscapes for TSP, Vehicle Routing and Scheduling

    DTIC Science & Technology

    2015-09-03

    Traveling Salesman Problem (TSP) and Graph Coloring are elementary. Problems such as MAX-kSAT are a superposition of k elementary landscapes. This...search space. Problems such as the Traveling Salesman Problem (TSP), Graph Coloring, the Frequency Assignment Problem , as well as Min-Cut and Max-Cut...echoing our earlier esults on the Traveling Salesman Problem . Using two locally optimal solutions as “parent” solutions, we have developed a

  17. Capacity-constrained traffic assignment in networks with residual queues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, W.H.K.; Zhang, Y.

    2000-04-01

    This paper proposes a capacity-constrained traffic assignment model for strategic transport planning in which the steady-state user equilibrium principle is extended for road networks with residual queues. Therefore, the road-exit capacity and the queuing effects can be incorporated into the strategic transport model for traffic forecasting. The proposed model is applicable to the congested network particularly when the traffic demands exceeds the capacity of the network during the peak period. An efficient solution method is proposed for solving the steady-state traffic assignment problem with residual queues. Then a simple numerical example is employed to demonstrate the application of the proposedmore » model and solution method, while an example of a medium-sized arterial highway network in Sioux Falls, South Dakota, is used to test the applicability of the proposed solution to real problems.« less

  18. A Markov Random Field Framework for Protein Side-Chain Resonance Assignment

    NASA Astrophysics Data System (ADS)

    Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall

    Nuclear magnetic resonance (NMR) spectroscopy plays a critical role in structural genomics, and serves as a primary tool for determining protein structures, dynamics and interactions in physiologically-relevant solution conditions. The current speed of protein structure determination via NMR is limited by the lengthy time required in resonance assignment, which maps spectral peaks to specific atoms and residues in the primary sequence. Although numerous algorithms have been developed to address the backbone resonance assignment problem [68,2,10,37,14,64,1,31,60], little work has been done to automate side-chain resonance assignment [43, 48, 5]. Most previous attempts in assigning side-chain resonances depend on a set of NMR experiments that record through-bond interactions with side-chain protons for each residue. Unfortunately, these NMR experiments have low sensitivity and limited performance on large proteins, which makes it difficult to obtain enough side-chain resonance assignments. On the other hand, it is essential to obtain almost all of the side-chain resonance assignments as a prerequisite for high-resolution structure determination. To overcome this deficiency, we present a novel side-chain resonance assignment algorithm based on alternative NMR experiments measuring through-space interactions between protons in the protein, which also provide crucial distance restraints and are normally required in high-resolution structure determination. We cast the side-chain resonance assignment problem into a Markov Random Field (MRF) framework, and extend and apply combinatorial protein design algorithms to compute the optimal solution that best interprets the NMR data. Our MRF framework captures the contact map information of the protein derived from NMR spectra, and exploits the structural information available from the backbone conformations determined by orientational restraints and a set of discretized side-chain conformations (i.e., rotamers). A Hausdorff-based computation is employed in the scoring function to evaluate the probability of side-chain resonance assignments to generate the observed NMR spectra. The complexity of the assignment problem is first reduced by using a dead-end elimination (DEE) algorithm, which prunes side-chain resonance assignments that are provably not part of the optimal solution. Then an A* search algorithm is used to find a set of optimal side-chain resonance assignments that best fit the NMR data. We have tested our algorithm on NMR data for five proteins, including the FF Domain 2 of human transcription elongation factor CA150 (FF2), the B1 domain of Protein G (GB1), human ubiquitin, the ubiquitin-binding zinc finger domain of the human Y-family DNA polymerase Eta (pol η UBZ), and the human Set2-Rpb1 interacting domain (hSRI). Our algorithm assigns resonances for more than 90% of the protons in the proteins, and achieves about 80% correct side-chain resonance assignments. The final structures computed using distance restraints resulting from the set of assigned side-chain resonances have backbone RMSD 0.5 - 1.4 Å and all-heavy-atom RMSD 1.0 - 2.2 Å from the reference structures that were determined by X-ray crystallography or traditional NMR approaches. These results demonstrate that our algorithm can be successfully applied to automate side-chain resonance assignment and high-quality protein structure determination. Since our algorithm does not require any specific NMR experiments for measuring the through-bond interactions with side-chain protons, it can save a significant amount of both experimental cost and spectrometer time, and hence accelerate the NMR structure determination process.

  19. How did you guess? Or, what do multiple-choice questions measure?

    PubMed

    Cox, K R

    1976-06-05

    Multiple-choice questions classified as requiring problem-solving skills have been interpreted as measuring problem-solving skills within students, with the implicit hypothesis that questions needing an increasingly complex intellectual process should present increasing difficulty to the student. This hypothesis was tested in a 150-question paper taken by 721 students in seven Australian medical schools. No correlation was observed between difficulty and assigned process. Consequently, the question-answering process was explored with a group of final-year students. Anecdotal recall by students gave heavy weight to knowledge rather than problem solving in answering these questions. Assignment of the 150 questions to the classification by three teachers and six students showed their congruence to be a little above random probability.

  20. Integrated optimization of location assignment and sequencing in multi-shuttle automated storage and retrieval systems under modified 2n-command cycle pattern

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Peng, Yongfei; Ye, Bin; Miao, Lixin

    2017-09-01

    This article explores the integrated optimization problem of location assignment and sequencing in multi-shuttle automated storage/retrieval systems under the modified 2n-command cycle pattern. The decision of storage and retrieval (S/R) location assignment and S/R request sequencing are jointly considered. An integer quadratic programming model is formulated to describe this integrated optimization problem. The optimal travel cycles for multi-shuttle S/R machines can be obtained to process S/R requests in the storage and retrieval request order lists by solving the model. The small-sized instances are optimally solved using CPLEX. For large-sized problems, two tabu search algorithms are proposed, in which the first come, first served and nearest neighbour are used to generate initial solutions. Various numerical experiments are conducted to examine the heuristics' performance and the sensitivity of algorithm parameters. Furthermore, the experimental results are analysed from the viewpoint of practical application, and a parameter list for applying the proposed heuristics is recommended under different real-life scenarios.

  1. Structure and luminescence properties of 10-BN sheets

    NASA Astrophysics Data System (ADS)

    Han, Wei-Qiang; Liu, Lijia; Sham, T. K.; Liu, Zhenxian

    2012-10-01

    Isotopic 10BN sheets were first prepared using graphene sheets as templates to react with 10B2O3. The edge-areas of BN sheets have much higher oxygen-doping ratios compared to other areas. The emission peak of X-ray excited optical luminescence spectra of the 10BN-sheets is broader and red-shifted because of the isotopic effect. A broad violet-blue emission at a wavelength centered at ~400 nm is assigned to the defect emission due to oxygen-doping and defects in the BN network.

  2. A novel wavelength availability advertisement based ASON routing protocol implementation

    NASA Astrophysics Data System (ADS)

    Li, Jian; Liu, Juan; Zhang, Jie; Gu, Wanyi

    2005-11-01

    A novel wavelength availability advertisement based ASON routing protocol implementation is proposed in this paper which is derived from Open Shortest Path First protocol (OSPF) version 2. It can be applied to ASON network with a single control domain and can be easily extended to support routing in the multi-domain scenarios. Two new types of link state advertisement (LSA) are suggested for disseminating wavelength availability and network topology information. The OSPF mechanisms are inherited to ensure that the routing messages are delivered more reliably and converged more quickly while with fewer overheads. The topology auto discovery is realized through LSA flooding interacting with auto neighbor discovery using Link Management Protocol. The new LSA formats are given and how the link state database (LSD) is comprised is described. The new data structures proposed include topology resource list, adjacency list and route table. Then we analyze the differences of ASON in link state exchange, routing information flooding procedure, flushing procedure and new resources participating, i.e. new links or nodes join in an existing ASON. The link or node failure and recovery effect and how to deal with them are settled as well. In order to adopt different Routing and Wavelength Assignment (RWA) algorithms, a standard and efficient interface is designed. After extensive simulation we give the numerical analysis and come to the following conclusions: wavelength availability information flooding Convergence Time is about 30 milliseconds and it is not affected by RWA algorithms and the call traffic load; routing Protocol Average Overhead rises linearly with the increase of traffic load; Average Connection Setup Time decreases with the increase of traffic load because of the decrease of Average Routing Distance of the successfully lightpaths; Wavelength availability advertisement can greatly promote the blocking performance of ASON in relatively low traffic load; ASON operator can make a good trade off between the wavelength availability advertisement Protocol Average Overhead and Blocking Probability by adopting and adjusting the routing update triggers; and the last is that wavelength availability advertisement throughout the optical network is applicable and our ASON routing protocol implementation could be applied in ASON when its scale is not too large and if the calls do not arrive and leave the network in a too frequent pace.

  3. Maximization of Learning Speed Due to Neuronal Redundancy in Reinforcement Learning

    NASA Astrophysics Data System (ADS)

    Takiyama, Ken

    2016-11-01

    Adaptable neural activity contributes to the flexibility of human behavior, which is optimized in situations such as motor learning and decision making. Although learning signals in motor learning and decision making are low-dimensional, neural activity, which is very high dimensional, must be modified to achieve optimal performance based on the low-dimensional signal, resulting in a severe credit-assignment problem. Despite this problem, the human brain contains a vast number of neurons, leaving an open question: what is the functional significance of the huge number of neurons? Here, I address this question by analyzing a redundant neural network with a reinforcement-learning algorithm in which the numbers of neurons and output units are N and M, respectively. Because many combinations of neural activity can generate the same output under the condition of N ≫ M, I refer to the index N - M as neuronal redundancy. Although greater neuronal redundancy makes the credit-assignment problem more severe, I demonstrate that a greater degree of neuronal redundancy facilitates learning speed. Thus, in an apparent contradiction of the credit-assignment problem, I propose the hypothesis that a functional role of a huge number of neurons or a huge degree of neuronal redundancy is to facilitate learning speed.

  4. From Rags to Riches

    ERIC Educational Resources Information Center

    Sweet, Colleen

    2008-01-01

    In this article, the author presents the "Rags to Riches" design project she introduced to her students. She assigned each of her students one item from an array to thrift store goods which included old scarves, sweaters, jackets, and even evening gowns. The design problem was to imagine what a clothing tag might look like if the assigned item…

  5. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. D-C MAGNETIC MOTOR CONTROL, UNIT 7, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING DIRECT CURRENT MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 15 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES, AND PROBLEMS. SOME OF THE LESSONS…

  6. Lights, Camera, Action! Learning about Management with Student-Produced Video Assignments

    ERIC Educational Resources Information Center

    Schultz, Patrick L.; Quinn, Andrew S.

    2014-01-01

    In this article, we present a proposal for fostering learning in the management classroom through the use of student-produced video assignments. We describe the potential for video technology to create active learning environments focused on problem solving, authentic and direct experiences, and interaction and collaboration to promote student…

  7. Turnaround Time and Market Capacity in Contract Cheating

    ERIC Educational Resources Information Center

    Wallace, Melisa J.; Newton, Philip M.

    2014-01-01

    Contract cheating is the process whereby students auction off the opportunity for others to complete assignments for them. It is an apparently widespread yet under-researched problem. One suggested strategy to prevent contract cheating is to shorten the turnaround time between the release of assignment details and the submission date, thus making…

  8. "Yes, a T-Shirt!": Assessing Visual Composition in the "Writing" Class

    ERIC Educational Resources Information Center

    Odell, Lee; Katz, Susan M.

    2009-01-01

    Computer technology is expanding our profession's conception of composing, allowing visual information to play a substantial role in an increasing variety of composition assignments. This expansion, however, creates a major problem: How does one assess student work on these assignments? Current work in assessment provides only partial answers to…

  9. Solving multiconstraint assignment problems using learning automata.

    PubMed

    Horn, Geir; Oommen, B John

    2010-02-01

    This paper considers the NP-hard problem of object assignment with respect to multiple constraints: assigning a set of elements (or objects) into mutually exclusive classes (or groups), where the elements which are "similar" to each other are hopefully located in the same class. The literature reports solutions in which the similarity constraint consists of a single index that is inappropriate for the type of multiconstraint problems considered here and where the constraints could simultaneously be contradictory. This feature, where we permit possibly contradictory constraints, distinguishes this paper from the state of the art. Indeed, we are aware of no learning automata (or other heuristic) solutions which solve this problem in its most general setting. Such a scenario is illustrated with the static mapping problem, which consists of distributing the processes of a parallel application onto a set of computing nodes. This is a classical and yet very important problem within the areas of parallel computing, grid computing, and cloud computing. We have developed four learning-automata (LA)-based algorithms to solve this problem: First, a fixed-structure stochastic automata algorithm is presented, where the processes try to form pairs to go onto the same node. This algorithm solves the problem, although it requires some centralized coordination. As it is desirable to avoid centralized control, we subsequently present three different variable-structure stochastic automata (VSSA) algorithms, which have superior partitioning properties in certain settings, although they forfeit some of the scalability features of the fixed-structure algorithm. All three VSSA algorithms model the processes as automata having first the hosting nodes as possible actions; second, the processes as possible actions; and, third, attempting to estimate the process communication digraph prior to probabilistically mapping the processes. This paper, which, we believe, comprehensively reports the pioneering LA solutions to this problem, unequivocally demonstrates that LA can play an important role in solving complex combinatorial and integer optimization problems.

  10. Radiation absorption in different kinds of tissue analysis: ex vivo study with supercontinuum laser source

    NASA Astrophysics Data System (ADS)

    Fornaini, Carlo; Merigo, Elisabetta; Selleri, Stefano; Cucinotta, Annamaria

    2016-03-01

    With the introduction of more and more new wavelengths, one of the main problems of medical laser users was centered on the study of laser-tissue interactions with the aim of determining the ideal wavelength for their treatments. The aim of this ex vivo study was to determine, by means of the utilization of a supercontinuum source, the amount of transmitted energy of different wavelengths in different organ samples obtained by Sprague Dawley rats. Supercontinuum light is generated by exploiting high optical non-linearity in a material and it combines the broadband attributes of a lamp with the spatial coherence and high brightness of laser. Even if the single transmission measurement does not allow us to separate out the respective contribution of scattering and absorption, it gives us an evaluation of the wavelengths not interacting with the tissue. In this way, being possible to determine what of the laser wavelengths are not useful or active in the different kinds of tissue, physicians may choose the proper device for his clinical treatments.

  11. Optimal Assignment Problem Applications of Finite Mathematics to Business and Economics. [and] Difference Equations with Applications. Applications of Difference Equations to Economics and Social Sciences. [and] Selected Applications of Mathematics to Finance and Investment. Applications of Elementary Algebra to Finance. [and] Force of Interest. Applications of Calculus to Finance. UMAP Units 317, 322, 381, 382.

    ERIC Educational Resources Information Center

    Gale, David; And Others

    Four units make up the contents of this document. The first examines applications of finite mathematics to business and economies. The user is expected to learn the method of optimization in optimal assignment problems. The second module presents applications of difference equations to economics and social sciences, and shows how to: 1) interpret…

  12. Study of silicon strip waveguides with diffraction gratings and photonic crystals tuned to a wavelength of 1.5 µm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barabanenkov, M. Yu., E-mail: barab@iptm.ru; Vyatkin, A. F.; Volkov, V. T.

    2015-12-15

    Single-mode submicrometer-thick strip waveguides on silicon-on-insulator substrates, fabricated by silicon-planar-technology methods are considered. To solve the problem of 1.5-µm wavelength radiation input-output and its frequency filtering, strip diffraction gratings and two-dimensional photonic crystals are integrated into waveguides. The reflection and transmission spectra of gratings and photonic crystals are calculated. The waveguide-mode-attenuation coefficient for a polycrystalline silicon waveguide is experimentally estimated.

  13. Transient thermography testing of unpainted thermal barrier coating surfaces

    NASA Astrophysics Data System (ADS)

    Ptaszek, Grzegorz; Cawley, Peter; Almond, Darryl; Pickering, Simon

    2013-01-01

    This paper has investigated the effects of uneven surface discolouration of a thermal barrier coating (TBC) and of its IR translucency on the thermal responses observed by using mid and long wavelength IR cameras. It has been shown that unpainted blades can be tested satisfactorily by using a more powerful flash heating system and a long wavelength IR camera. The problem of uneven surface emissivity can be overcome by applying 2nd derivative processing of the log-log surface cooling curves.

  14. An Effective Evolutionary Approach for Bicriteria Shortest Path Routing Problems

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Gen, Mitsuo

    Routing problem is one of the important research issues in communication network fields. In this paper, we consider a bicriteria shortest path routing (bSPR) model dedicated to calculating nondominated paths for (1) the minimum total cost and (2) the minimum transmission delay. To solve this bSPR problem, we propose a new multiobjective genetic algorithm (moGA): (1) an efficient chromosome representation using the priority-based encoding method; (2) a new operator of GA parameters auto-tuning, which is adaptively regulation of exploration and exploitation based on the change of the average fitness of parents and offspring which is occurred at each generation; and (3) an interactive adaptive-weight fitness assignment mechanism is implemented that assigns weights to each objective and combines the weighted objectives into a single objective function. Numerical experiments with various scales of network design problems show the effectiveness and the efficiency of our approach by comparing with the recent researches.

  15. The unassigned distance geometry problem

    DOE PAGES

    Duxbury, P. M.; Granlund, L.; Gujarathi, S. R.; ...

    2015-11-19

    Studies of distance geometry problems (DGP) have focused on cases where the vertices at the ends of all or most of the given distances are known or assigned, which we call assigned distance geometry problems (aDGPs). In this contribution we consider the unassigned distance geometry problem (uDGP) where the vertices associated with a given distance are unknown, so the graph structure has to be discovered. uDGPs arises when attempting to find the atomic structure of molecules and nanoparticles using X-ray or neutron diffraction data from non-crystalline materials. Rigidity theory provides a useful foundation for both aDGPs and uDGPs, though itmore » is restricted to generic realizations of graphs, and key results are summarized. Conditions for unique realization are discussed for aDGP and uDGP cases, build-up algorithms for both cases are described and experimental results for uDGP are presented.« less

  16. Characterizing the Fundamental Intellectual Steps Required in the Solution of Conceptual Problems

    NASA Astrophysics Data System (ADS)

    Stewart, John

    2010-02-01

    At some level, the performance of a science class must depend on what is taught, the information content of the materials and assignments of the course. The introductory calculus-based electricity and magnetism class at the University of Arkansas is examined using a catalog of the basic reasoning steps involved in the solution of problems assigned in the class. This catalog was developed by sampling popular physics textbooks for conceptual problems. The solution to each conceptual problem was decomposed into its fundamental reasoning steps. These fundamental steps are, then, used to quantify the distribution of conceptual content within the course. Using this characterization technique, an exceptionally detailed picture of the information flow and structure of the class can be produced. The intellectual structure of published conceptual inventories is compared with the information presented in the class and the dependence of conceptual performance on the details of coverage extracted. )

  17. ASSIGNMENT OF 5069 A DIFFUSE INTERSTELLAR BAND TO HC{sub 4}H{sup +}: DISAGREEMENT WITH LABORATORY ABSORPTION BAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, J. P.; Chakrabarty, S.; Mazzotti, F. J.

    2011-03-10

    Krelowski et al. have reported a weak, diffuse interstellar band (DIB) at 5069 A which appears to match in both mid-wavelength and width the A {sup 2}{Pi}{sub u}-X {sup 2}{Pi}{sub g} gas-phase origin absorption band of HC{sub 4}H{sup +}. Here, we present laboratory rotational profiles at low temperatures which are then compared with the 5069 A DIB using {approx}0.1 and 0.3 A line widths based on a realistic line-of-sight interstellar velocity dispersion. Neither the band shape nor the wavelength of the maximum absorption match, which makes the association of the 5069 A DIB with HC{sub 4}H{sup +} unlikely. The magneticmore » dipole transition X {sup 2}{Pi}{sub g} {Omega} = 1/2{yields}X {sup 2}{Pi}{sub g} {Omega} = 3/2 within the ground electronic state which competes with collisional excitation is also considered. In addition, we present the laboratory gas-phase spectrum of the A {sup 2}{Pi}{sub u}-X {sup 2}{Pi}{sub g} transition of HC{sub 4}H{sup +} measured at 25 K in an ion trap and identify further absorption bands at shorter wavelengths for comparison with future DIB data.« less

  18. A heterogeneous fleet vehicle routing model for solving the LPG distribution problem: A case study

    NASA Astrophysics Data System (ADS)

    Onut, S.; Kamber, M. R.; Altay, G.

    2014-03-01

    Vehicle Routing Problem (VRP) is an important management problem in the field of distribution and logistics. In VRPs, routes from a distribution point to geographically distributed points are designed with minimum cost and considering customer demands. All points should be visited only once and by one vehicle in one route. Total demand in one route should not exceed the capacity of the vehicle that assigned to that route. VRPs are varied due to real life constraints related to vehicle types, number of depots, transportation conditions and time periods, etc. Heterogeneous fleet vehicle routing problem is a kind of VRP that vehicles have different capacity and costs. There are two types of vehicles in our problem. In this study, it is used the real world data and obtained from a company that operates in LPG sector in Turkey. An optimization model is established for planning daily routes and assigned vehicles. The model is solved by GAMS and optimal solution is found in a reasonable time.

  19. Interlocked Problem Posing and Children's Problem Posing Performance in Free Structured Situations

    ERIC Educational Resources Information Center

    Cankoy, Osman

    2014-01-01

    The aim of this study is to explore the mathematical problem posing performance of students in free structured situations. Two classes of fifth grade students (N = 30) were randomly assigned to experimental and control groups. The categories of the problems posed in free structured situations by the 2 groups of students were studied through…

  20. The Benefit of Interleaved Mathematics Practice Is Not Limited to Superficially Similar Kinds of Problems

    ERIC Educational Resources Information Center

    Rohrer, Doug; Dedrick, Robert F.; Burgess, Kaleena

    2014-01-01

    Most mathematics assignments consist of a group of problems requiring the same strategy. For example, a lesson on the quadratic formula is typically followed by a block of problems requiring students to use the quadratic formula, which means that students know the appropriate strategy before they read each problem. In an alternative approach,…

  1. Perfect X-ray focusing via fitting corrective glasses to aberrated optics.

    PubMed

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G

    2017-03-01

    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.

  2. Design and fabrication of a high-precision cylinder beam expander

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-hong; Yan, Hong; Xie, Bing; Li, Jian-ming; Luo, Zhong-xiang

    2018-03-01

    In order to compress the beam divergence angle and reduce the energy density, beam expansion system is widely used to expand the beam in laser system. Cylinder beam expander belongs to one-dimension expander, which expands the laser beam in only one direction (X direction or Y direction), a refraction cylinder expander whose beam diameter is 180mm×120mm and magnitude ratio is 12 is designed in this paper, the working wavelength is 1058nm. To solve the problem of inequality of the working wavelength and the testing wavelength, compensation method of using parallel plate to test the system aberration is proposed. By rough grinding (precision grinding) polish and the system grinding, the final system aberration is 0.24λ(peak-valley value)

  3. Single-shot thermal ghost imaging using wavelength-division multiplexing

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Suo, Jinli; Wang, Yuwang; Zhang, Zhili; Dai, Qionghai

    2018-01-01

    Ghost imaging (GI) is an emerging technique that reconstructs the target scene from its correlated measurements with a sequence of patterns. Restricted by the multi-shot principle, GI usually requires long acquisition time and is limited in observation of dynamic scenes. To handle this problem, this paper proposes a single-shot thermal ghost imaging scheme via a wavelength-division multiplexing technique. Specifically, we generate thousands of correlated patterns simultaneously by modulating a broadband light source with a wavelength dependent diffuser. These patterns carry the scene's spatial information and then the correlated photons are coupled into a spectrometer for the final reconstruction. This technique increases the speed of ghost imaging and promotes the applications in dynamic ghost imaging with high scalability and compatibility.

  4. Wavelength selection in injection-driven Hele-Shaw flows: A maximum amplitude criterion

    NASA Astrophysics Data System (ADS)

    Dias, Eduardo; Miranda, Jose

    2013-11-01

    As in most interfacial flow problems, the standard theoretical procedure to establish wavelength selection in the viscous fingering instability is to maximize the linear growth rate. However, there are important discrepancies between previous theoretical predictions and existing experimental data. In this work we perform a linear stability analysis of the radial Hele-Shaw flow system that takes into account the combined action of viscous normal stresses and wetting effects. Most importantly, we introduce an alternative selection criterion for which the selected wavelength is determined by the maximum of the interfacial perturbation amplitude. The effectiveness of such a criterion is substantiated by the significantly improved agreement between theory and experiments. We thank CNPq (Brazilian Sponsor) for financial support.

  5. Self-Administered Vidoetape Therapy for Families With Conduct-Problem Children: Comparison With Two Cost-Effective Treatments and a Control Group.

    ERIC Educational Resources Information Center

    Webster-Stratton, Carolyn; And Others

    1988-01-01

    Assigned parents of 114 conduct-problem young children to either individually administered videotape modeling treatment, group discussion videotape modeling treatment, group discussion treatment, or waiting-list control. Compared with controls, all three treatment groups of mothers reported significantly fewer child behavior problems, more…

  6. Interpersonal Problem-Solving Skills Training in the Treatment of Self-Poisoning Patients.

    ERIC Educational Resources Information Center

    McLeavey, B. C.; And Others

    1994-01-01

    Evaluated the effectiveness of interpersonal problem-solving skills training (IPSST) for the treatment of self-poisoning patients. Subjects were assigned randomly either to IPSST or to a control treatment. Although both treatments reduced the number of presenting problems, the IPSST was more effective as determined by other outcome measures. (RJM)

  7. The Effect of Contextual and Conceptual Rewording on Mathematical Problem-Solving Performance

    ERIC Educational Resources Information Center

    Haghverdi, Majid; Wiest, Lynda R.

    2016-01-01

    This study shows how separate and combined contextual and conceptual problem rewording can positively influence student performance in solving mathematical word problems. Participants included 80 seventh-grade Iranian students randomly assigned in groups of 20 to three experimental groups involving three types of rewording and a control group. All…

  8. Student-Created Homework Problems Based on YouTube Videos

    ERIC Educational Resources Information Center

    Liberatore, Matthew W.; Marr, David W. M.; Herring, Andrew M.; Way, J. Douglas

    2013-01-01

    Inspired by YouTube videos, students created homework problems as part of a class project. The project has been successful at different parts of the semester and demonstrated learning of course concepts. These new problems were implemented both in class and as part of homework assignments without significant changes. Examples from a material and…

  9. A New Algorithm to Create Balanced Teams Promoting More Diversity

    ERIC Educational Resources Information Center

    Dias, Teresa Galvão; Borges, José

    2017-01-01

    The problem of assigning students to teams can be described as maximising their profiles diversity within teams while minimising the differences among teams. This problem is commonly known as the maximally diverse grouping problem and it is usually formulated as maximising the sum of the pairwise distances among students within teams. We propose…

  10. Effect of a "Look-Ahead" Problem on Undergraduate Engineering Students' Concept Comprehension

    ERIC Educational Resources Information Center

    Goodman, Kevin; Davis, Julian; McDonald, Thomas

    2016-01-01

    In an effort to motivate undergraduate engineering students to prepare for class by reviewing material before lectures, a "Look-Ahead" problem was utilized. Students from two undergraduate engineering courses; Statics and Electronic Circuits, were assigned problems from course material that had not yet been covered in class. These…

  11. Improving the efficiency of branch-and-bound complete-search NMR assignment using the symmetry of molecules and spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernal, Andrés; Patiny, Luc; Castillo, Andrés M.

    2015-02-21

    Nuclear magnetic resonance (NMR) assignment of small molecules is presented as a typical example of a combinatorial optimization problem in chemical physics. Three strategies that help improve the efficiency of solution search by the branch and bound method are presented: 1. reduction of the size of the solution space by resort to a condensed structure formula, wherein symmetric nuclei are grouped together; 2. partitioning of the solution space based on symmetry, that becomes the basis for an efficient branching procedure; and 3. a criterion of selection of input restrictions that leads to increased gaps between branches and thus faster pruningmore » of non-viable solutions. Although the examples chosen to illustrate this work focus on small-molecule NMR assignment, the results are generic and might help solving other combinatorial optimization problems.« less

  12. Global crop production forecasting: An analysis of the data system problems and their solutions

    NASA Technical Reports Server (NTRS)

    Neiers, J.; Graf, H.

    1978-01-01

    Data related problems in the acquisition and use of satellite data necessary for operational forecasting of global crop production are considered for the purpose of establishing a measurable baseline. For data acquisition the world was divided into 37 crop regions in 22 countries. These regions represent approximately 95 percent of the total world production of the selected crops of interest, i.e., wheat, corn, soybeans, and rice. Targets were assigned to each region. Limited time periods during which data could be taken (windows) were assigned to each target. Each target was assigned to a cloud region. The DSDS was used to measure the success of obtaining data for each target during the specified windows for the regional cloud conditions and the specific alternatives being analyzed. The results of this study suggest several approaches for an operational system that will perform satisfactorily with two LANDSAT type satellites.

  13. Storage assignment optimization in a multi-tier shuttle warehousing system

    NASA Astrophysics Data System (ADS)

    Wang, Yanyan; Mou, Shandong; Wu, Yaohua

    2016-03-01

    The current mathematical models for the storage assignment problem are generally established based on the traveling salesman problem(TSP), which has been widely applied in the conventional automated storage and retrieval system(AS/RS). However, the previous mathematical models in conventional AS/RS do not match multi-tier shuttle warehousing systems(MSWS) because the characteristics of parallel retrieval in multiple tiers and progressive vertical movement destroy the foundation of TSP. In this study, a two-stage open queuing network model in which shuttles and a lift are regarded as servers at different stages is proposed to analyze system performance in the terms of shuttle waiting period (SWP) and lift idle period (LIP) during transaction cycle time. A mean arrival time difference matrix for pairwise stock keeping units(SKUs) is presented to determine the mean waiting time and queue length to optimize the storage assignment problem on the basis of SKU correlation. The decomposition method is applied to analyze the interactions among outbound task time, SWP, and LIP. The ant colony clustering algorithm is designed to determine storage partitions using clustering items. In addition, goods are assigned for storage according to the rearranging permutation and the combination of storage partitions in a 2D plane. This combination is derived based on the analysis results of the queuing network model and on three basic principles. The storage assignment method and its entire optimization algorithm method as applied in a MSWS are verified through a practical engineering project conducted in the tobacco industry. The applying results show that the total SWP and LIP can be reduced effectively to improve the utilization rates of all devices and to increase the throughput of the distribution center.

  14. Application of infrared techniques to the study of atmospheric ozone

    NASA Astrophysics Data System (ADS)

    Secroun, C.; Barbe, A.; Marche, P.; Jouve, P.

    The present investigation is concerned with the utilization of the infrared wavelength region for the study of the ozone in the atmosphere, taking into account three atmospheric windows including the wavelength ranges near 10, 5, and 3 micrometers. More than 3200 spectral lines could be assigned to different bands of the ozone spectrum. Laboratory studies formed one part of the investigation. Spectral frequencies, absorption line intensities, and linewidths were determined for ozone. Some of the obtained results were employed in connection with data provided by the radiometric probe LIMS on board the Nimbus-7 satellite. The second part of the investigation involved a study of the atmosphere. The same spectrometer as in the laboratory study was utilized, and the sun was employed as radiation source. The obtained results were compared with data provided by a Dobson spectrophotometer. Attention is also given to vertical concentration profiles. It is concluded that infrared absorption spectroscopy represents a suitable technique for studies of atmospheric ozone.

  15. Tenderfooting: Tackling the Problems of Freshman Writers.

    ERIC Educational Resources Information Center

    Hobbs, Valerie; Rex-Kerish, Lesley

    1986-01-01

    University of California writing instructors must teach poorly prepared freshmen how to survive English classes and how to adapt the skills they learn to the rest of their university writing assignments. Reading, thinking, organizing, and stylistic problems are discussed. (MLW)

  16. Propagation of Disturbances in Traffic Flow

    DOT National Transportation Integrated Search

    1977-09-01

    The system-optimized static traffic-assignment problem in a freeway corridor network is the problem of choosing a distribution of vehicles in the network to minimize average travel time. It is of interest to know how sensitive the optimal steady-stat...

  17. Pedagogy of the logic model: teaching undergraduates to work together to change their communities.

    PubMed

    Zimmerman, Lindsey; Kamal, Zohra; Kim, Hannah

    2013-01-01

    Undergraduate community psychology courses can empower students to address challenging problems in their local communities. Creating a logic model is an experiential way to learn course concepts by "doing." Throughout the semester, students work with peers to define a problem, develop an intervention, and plan an evaluation focused on an issue of concern to them. This report provides an overview of how to organize a community psychology course around the creation of a logic model in order for students to develop this applied skill. Two undergraduate student authors report on their experience with the logic model assignment, describing the community problem they chose to address, what they learned from the assignment, what they found challenging, and what they are doing now in their communities based on what they learned.

  18. Text Summarization Model based on Facility Location Problem

    NASA Astrophysics Data System (ADS)

    Takamura, Hiroya; Okumura, Manabu

    e propose a novel multi-document generic summarization model based on the budgeted median problem, which is a facility location problem. The summarization method based on our model is an extractive method, which selects sentences from the given document cluster and generates a summary. Each sentence in the document cluster will be assigned to one of the selected sentences, where the former sentece is supposed to be represented by the latter. Our method selects sentences to generate a summary that yields a good sentence assignment and hence covers the whole content of the document cluster. An advantage of this method is that it can incorporate asymmetric relations between sentences such as textual entailment. Through experiments, we showed that the proposed method yields good summaries on the dataset of DUC'04.

  19. Navigating complex decision spaces: Problems and paradigms in sequential choice

    PubMed Central

    Walsh, Matthew M.; Anderson, John R.

    2015-01-01

    To behave adaptively, we must learn from the consequences of our actions. Doing so is difficult when the consequences of an action follow a delay. This introduces the problem of temporal credit assignment. When feedback follows a sequence of decisions, how should the individual assign credit to the intermediate actions that comprise the sequence? Research in reinforcement learning provides two general solutions to this problem: model-free reinforcement learning and model-based reinforcement learning. In this review, we examine connections between stimulus-response and cognitive learning theories, habitual and goal-directed control, and model-free and model-based reinforcement learning. We then consider a range of problems related to temporal credit assignment. These include second-order conditioning and secondary reinforcers, latent learning and detour behavior, partially observable Markov decision processes, actions with distributed outcomes, and hierarchical learning. We ask whether humans and animals, when faced with these problems, behave in a manner consistent with reinforcement learning techniques. Throughout, we seek to identify neural substrates of model-free and model-based reinforcement learning. The former class of techniques is understood in terms of the neurotransmitter dopamine and its effects in the basal ganglia. The latter is understood in terms of a distributed network of regions including the prefrontal cortex, medial temporal lobes cerebellum, and basal ganglia. Not only do reinforcement learning techniques have a natural interpretation in terms of human and animal behavior, but they also provide a useful framework for understanding neural reward valuation and action selection. PMID:23834192

  20. Error Checking and Graphical Representation of Multiple–Complete–Digest (MCD) Restriction-Fragment Maps

    PubMed Central

    Thayer, Edward C.; Olson, Maynard V.; Karp, Richard M.

    1999-01-01

    Genetic and physical maps display the relative positions of objects or markers occurring within a target DNA molecule. In constructing maps, the primary objective is to determine the ordering of these objects. A further objective is to assign a coordinate to each object, indicating its distance from a reference end of the target molecule. This paper describes a computational method and a body of software for assigning coordinates to map objects, given a solution or partial solution to the ordering problem. We describe our method in the context of multiple–complete–digest (MCD) mapping, but it should be applicable to a variety of other mapping problems. Because of errors in the data or insufficient clone coverage to uniquely identify the true ordering of the map objects, a partial ordering is typically the best one can hope for. Once a partial ordering has been established, one often seeks to overlay a metric along the map to assess the distances between the map objects. This problem often proves intractable because of data errors such as erroneous local length measurements (e.g., large clone lengths on low-resolution physical maps). We present a solution to the coordinate assignment problem for MCD restriction-fragment mapping, in which a coordinated set of single-enzyme restriction maps are simultaneously constructed. We show that the coordinate assignment problem can be expressed as the solution of a system of linear constraints. If the linear system is free of inconsistencies, it can be solved using the standard Bellman–Ford algorithm. In the more typical case where the system is inconsistent, our program perturbs it to find a new consistent system of linear constraints, close to those of the given inconsistent system, using a modified Bellman–Ford algorithm. Examples are provided of simple map inconsistencies and the methods by which our program detects candidate data errors and directs the user to potential suspect regions of the map. PMID:9927487

  1. Minimizing distortion and internal forces in truss structures by simulated annealing

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    1989-01-01

    Inaccuracies in the length of members and the diameters of joints of large truss reflector backup structures may produce unacceptable levels of surface distortion and member forces. However, if the member lengths and joint diameters can be measured accurately it is possible to configure the members and joints so that root-mean-square (rms) surface error and/or rms member forces is minimized. Following Greene and Haftka (1989) it is assumed that the force vector f is linearly proportional to the member length errors e(sub M) of dimension NMEMB (the number of members) and joint errors e(sub J) of dimension NJOINT (the number of joints), and that the best-fit displacement vector d is a linear function of f. Let NNODES denote the number of positions on the surface of the truss where error influences are measured. The solution of the problem is discussed. To classify, this problem was compared to a similar combinatorial optimization problem. In particular, when only the member length errors are considered, minimizing d(sup 2)(sub rms) is equivalent to the quadratic assignment problem. The quadratic assignment problem is a well known NP-complete problem in operations research literature. Hence minimizing d(sup 2)(sub rms) is is also an NP-complete problem. The focus of the research is the development of a simulated annealing algorithm to reduce d(sup 2)(sub rms). The plausibility of this technique is its recent success on a variety of NP-complete combinatorial optimization problems including the quadratic assignment problem. A physical analogy for simulated annealing is the way liquids freeze and crystallize. All computational experiments were done on a MicroVAX. The two interchange heuristic is very fast but produces widely varying results. The two and three interchange heuristic provides less variability in the final objective function values but runs much more slowly. Simulated annealing produced the best objective function values for every starting configuration and was faster than the two and three interchange heuristic.

  2. Secrets to Writing Great Papers. The Study Smart Series.

    ERIC Educational Resources Information Center

    Kesselman-Turkel, Judi; Peterson, Franklynn

    This book explains how to work with ideas to hone them into words, providing techniques and exercises for brainstorming, choosing the right approach, working with an unknown or boring assigned topic, and selecting the best point of view. It presents 10 steps, noting related problems: (1) "Decide on Size" (no specific length is assigned);…

  3. Integrating Global Learning into a Psychology Course Using an Online Platform

    ERIC Educational Resources Information Center

    Forden, Carie L.; Carrillo, Amy M.

    2014-01-01

    There is a demand for the integration of global learning/diversity across the curriculum. A series of cross-cultural assignments was created to facilitate global learning in two social psychology classes, one in Egypt, and one in the USA. In these assignments, students collected data and applied course concepts to real-life problems, then…

  4. Persistence in Expatriate Academic Assignments in the United Arab Emirates: A Case Study

    ERIC Educational Resources Information Center

    Ryan, Gerard D.

    2012-01-01

    This study explored factors that influenced persistence in expatriate academic assignments in the United Arab Emirates (UAE). Specifically, the problem that was addressed was an investigation of the reasons why some expatriate academics declared their intent to leave an academic position within one year of arrival while others choose to extend…

  5. Commander, U.S. Pacific Fleet

    Science.gov Websites

    Us SAN DIEGO (May 22, 2018) Sailors assigned to Coastal Riverine Squadron (CRS) 3 operate a Mark VI patrol boat during a final evaluation problem conducted by Coastal Riverine Group (CRG) 1's training and ./Released) Sailors assigned to Coastal Riverine Squadron 3 operate a Mark VI patrol boat in waters off San

  6. Gamification for Non-Majors Mathematics: An Innovative Assignment Model

    ERIC Educational Resources Information Center

    Leong, Siow Hoo; Tang, Howe Eng

    2017-01-01

    The most important ingredient of the pedagogy for teaching non-majors is getting their engagement. This paper proposes to use gamification to engage non-majors. An innovative game termed as Cover the Hungarian's Zeros is designed to tackle the common weakness of non-majors mathematics in solving the assignment problem using the Hungarian Method.…

  7. Weblogs in Teacher Education Internships: Promoting Reflection and Self-Efficacy While Reducing Stress?

    ERIC Educational Resources Information Center

    Petko, Dominik; Egger, Nives; Cantieni, Andrea

    2017-01-01

    The study examines the use of weblogs in teacher education internships and its impact on student stress levels, self-efficacy, and reflective abilities. One hundred and seventy-six student teachers were randomly assigned to five groups. Four groups used weblogs (a) with emotion-focused or with problem-focused writing assignments in combination (b)…

  8. Personal Reflection: Reflections on a Family Health History Assignment for Undergraduate Public Health and Nursing Students

    ERIC Educational Resources Information Center

    Rooks, Ronica N.; Ford, Cassandra

    2013-01-01

    This personal reflection describes our experiences with incorporating the scholarship of teaching and learning and problem-based techniques to facilitate undergraduate student learning and their professional development in the health sciences. We created a family health history assignment to discuss key concepts in our courses, such as health…

  9. Selections from the ABC 2014 Annual Convention, Philadelphia, Pennsylvania A Well-Stitched Banner of Favorite Assignments: Leadership and Other-Focused Communication and Projects

    ERIC Educational Resources Information Center

    Whalen, D. Joel

    2015-01-01

    This article, the second of a two-part series, features 11 teaching innovations presented at the 2014 Association for Business Communication annual conference. These 11 assignments included leadership and other-focused communication--detecting communication style, adaptive communication, personality type, delivering feedback, problem solving, and…

  10. Principals' Approaches to Cultivating Teacher Effectiveness: Constraints and Opportunities in Hiring, Assigning, Evaluating, and Developing Teachers

    ERIC Educational Resources Information Center

    Donaldson, Morgaen L.

    2013-01-01

    Purpose: How principals hire, assign, evaluate, and provide growth opportunities to teachers likely have major ramifications for teacher effectiveness and student learning. This article reports on the barriers principals encountered when carrying out these functions and variations in the degree to which they identified obstacles and problem-solved…

  11. The spectroscopy of Venus

    NASA Technical Reports Server (NTRS)

    Beer, R.

    1982-01-01

    Problems in the spectroscopy of the planet are discussed. Two major problems are focused on: the almost total domination of the spectrum by CO2 (including almost every conceivable isotropic combination) makes the search for other species difficult; and the knowledge that no wavelengths short of the the microwave penetrate through the Venus cloud decks, which means that UV, visible, and IR remote sensing can investigate only the middle and upper atmosphere. The problem of intense multiple scattering is also considered.

  12. A novel fast phase correlation algorithm for peak wavelength detection of Fiber Bragg Grating sensors.

    PubMed

    Lamberti, A; Vanlanduit, S; De Pauw, B; Berghmans, F

    2014-03-24

    Fiber Bragg Gratings (FBGs) can be used as sensors for strain, temperature and pressure measurements. For this purpose, the ability to determine the Bragg peak wavelength with adequate wavelength resolution and accuracy is essential. However, conventional peak detection techniques, such as the maximum detection algorithm, can yield inaccurate and imprecise results, especially when the Signal to Noise Ratio (SNR) and the wavelength resolution are poor. Other techniques, such as the cross-correlation demodulation algorithm are more precise and accurate but require a considerable higher computational effort. To overcome these problems, we developed a novel fast phase correlation (FPC) peak detection algorithm, which computes the wavelength shift in the reflected spectrum of a FBG sensor. This paper analyzes the performance of the FPC algorithm for different values of the SNR and wavelength resolution. Using simulations and experiments, we compared the FPC with the maximum detection and cross-correlation algorithms. The FPC method demonstrated a detection precision and accuracy comparable with those of cross-correlation demodulation and considerably higher than those obtained with the maximum detection technique. Additionally, FPC showed to be about 50 times faster than the cross-correlation. It is therefore a promising tool for future implementation in real-time systems or in embedded hardware intended for FBG sensor interrogation.

  13. Goertler vortices in growing boundary layers: The leading edge receptivity problem, linear growth and the nonlinear breakdown stage

    NASA Technical Reports Server (NTRS)

    Hall, Philip

    1989-01-01

    Goertler vortices are thought to be the cause of transition in many fluid flows of practical importance. A review of the different stages of vortex growth is given. In the linear regime, nonparallel effects completely govern this growth, and parallel flow theories do not capture the essential features of the development of the vortices. A detailed comparison between the parallel and nonparallel theories is given and it is shown that at small vortex wavelengths, the parallel flow theories have some validity; otherwise nonparallel effects are dominant. New results for the receptivity problem for Goertler vortices are given; in particular vortices induced by free stream perturbations impinging on the leading edge of the walls are considered. It is found that the most dangerous mode of this type can be isolated and it's neutral curve is determined. This curve agrees very closely with the available experimental data. A discussion of the different regimes of growth of nonlinear vortices is also given. Again it is shown that, unless the vortex wavelength is small, nonparallel effects are dominant. Some new results for nonlinear vortices of 0(1) wavelengths are given and compared to experimental observations.

  14. Connected Component Model for Multi-Object Tracking.

    PubMed

    He, Zhenyu; Li, Xin; You, Xinge; Tao, Dacheng; Tang, Yuan Yan

    2016-08-01

    In multi-object tracking, it is critical to explore the data associations by exploiting the temporal information from a sequence of frames rather than the information from the adjacent two frames. Since straightforwardly obtaining data associations from multi-frames is an NP-hard multi-dimensional assignment (MDA) problem, most existing methods solve this MDA problem by either developing complicated approximate algorithms, or simplifying MDA as a 2D assignment problem based upon the information extracted only from adjacent frames. In this paper, we show that the relation between associations of two observations is the equivalence relation in the data association problem, based on the spatial-temporal constraint that the trajectories of different objects must be disjoint. Therefore, the MDA problem can be equivalently divided into independent subproblems by equivalence partitioning. In contrast to existing works for solving the MDA problem, we develop a connected component model (CCM) by exploiting the constraints of the data association and the equivalence relation on the constraints. Based upon CCM, we can efficiently obtain the global solution of the MDA problem for multi-object tracking by optimizing a sequence of independent data association subproblems. Experiments on challenging public data sets demonstrate that our algorithm outperforms the state-of-the-art approaches.

  15. Novel approaches for road congestion mitigation.

    DOT National Transportation Integrated Search

    2012-07-02

    Transportation planning is usually aiming to solve two problems: the traffic assignment and the toll pricing problems. The latter one utilizes information from the first one, in order to find the optimal set of tolls that is the set of tolls that lea...

  16. Novel approaches for road congestion minimization.

    DOT National Transportation Integrated Search

    2012-07-01

    Transportation planning is usually aiming to solve two problems: the traffic assignment and the toll pricing problems. The latter one utilizes information from the first one, in order to find the optimal set of tolls that is the set of tolls that lea...

  17. Global Studies of Molecular Clouds in the Galaxy, The Magellanic Clouds, and M31

    NASA Technical Reports Server (NTRS)

    Thaddeus, Patrick

    1999-01-01

    Over the course of this grant we used various spacecraft surveys of the Galaxy and M31 in conjunction with our extensive CO spectral line surveys to address central problems in galactic structure and the astrophysics of molecular clouds. These problems included the nature of the molecular ring and its relation to the spiral arms and central bar, the cosmic ray distribution, the origin of the diffuse X-ray background, the distribution and properties of x-ray sources and supernova remnants, and the Galactic stellar mass distribution. For many of these problems, the nearby spiral M31 provided an important complementary perspective. Our CO surveys of GMCs (Galactic Molecular Clouds) were crucial for interpreting Galactic continuum surveys from satellites such as GRO (Gamma Ray Observatory), ROSAT (Roentgen Satellite), IRAS (Infrared Astronomy Satellite), and COBE (Cosmic Background Explorer Satellite) because they provided the missing dimension of velocity or kinematic distance. GMCs are a well-defined and widespread population of objects whose velocities we could readily measure throughout the Galaxy. Through various emission and absorption mechanisms involving their gas, dust, or associated Population I objects, GMCs modulate the galactic emission in virtually every major wavelength band. Furthermore, the visibility. of GMCs at so many wavelengths provided various methods of resolving the kinematic distance ambiguity for these objects in the inner Galaxy. Summaries of our accomplishments in each of the major wavelength bands discussed in our original proposal are given

  18. Radiometric Measurement Comparisons Using Transfer Radiometers in Support of the Calibration of NASA's Earth Observing System (EOS) Sensors

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Johnson, B. Carol; Brown, Steven W.; Yoon, Howard W.; Barnes, Robert A.; Markham, Brian L.; Biggar, Stuart F.; Zalewski, Edward F.; Spyak, Paul R.; Cooper, John W.; hide

    1999-01-01

    EOS satellite instruments operating in the visible through the shortwave infrared wavelength regions (from 0.4 micrometers to 2.5 micrometers) are calibrated prior to flight for radiance response using integrating spheres at a number of instrument builder facilities. The traceability of the radiance produced by these spheres with respect to international standards is the responsibility of the instrument builder, and different calibration techniques are employed by those builders. The National Aeronautics and Space Administration's (NASA's) Earth Observing System (EOS) Project Science Office, realizing the importance of preflight calibration and cross-calibration, has sponsored a number of radiometric measurement comparisons, the main purpose of which is to validate the radiometric scale assigned to the integrating spheres by the instrument builders. This paper describes the radiometric measurement comparisons, the use of stable transfer radiometers to perform the measurements, and the measurement approaches and protocols used to validate integrating sphere radiances. Stable transfer radiometers from the National Institute of Standards and Technology, the University of Arizona Optical Sciences Center Remote Sensing Group, NASA's Goddard Space Flight Center, and the National Research Laboratory of Metrology in Japan, have participated in these comparisons. The approaches used in the comparisons include the measurement of multiple integrating sphere lamp levels, repeat measurements of select lamp levels, the use of the stable radiometers as external sphere monitors, and the rapid reporting of measurement results. Results from several comparisons are presented. The absolute radiometric calibration standard uncertainties required by the EOS satellite instruments are typically in the +/- 3% to +/- 5% range. Preliminary results reported during eleven radiometric measurement comparisons held between February 1995 and May 1998 have shown the radiance of integrating spheres agreed to within +/- 2.5% from the average at blue wavelengths and to within +/- 1.7% from the average at red and near infrared wavelengths. This level of agreement lends confidence in the use of the transfer radiometers in validating the radiance scales assigned by EOS instrument calibration facilities to their integrating sphere sources.

  19. Manycast routing, modulation level and spectrum assignment over elastic optical networks

    NASA Astrophysics Data System (ADS)

    Luo, Xiao; Zhao, Yang; Chen, Xue; Wang, Lei; Zhang, Min; Zhang, Jie; Ji, Yuefeng; Wang, Huitao; Wang, Taili

    2017-07-01

    Manycast is a point to multi-point transmission framework that requires a subset of destination nodes successfully reached. It is particularly applicable for dealing with large amounts of data simultaneously in bandwidth-hungry, dynamic and cloud-based applications. As rapid increasing of traffics in these applications, the elastic optical networks (EONs) may be relied on to achieve high throughput manycast. In terms of finer spectrum granularity, the EONs could reach flexible accessing to network spectrum and efficient providing exact spectrum resource to demands. In this paper, we focus on the manycast routing, modulation level and spectrum assignment (MA-RMLSA) problem in EONs. Both EONs planning with static manycast traffic and EONs provisioning with dynamic manycast traffic are investigated. An integer linear programming (ILP) model is formulated to derive MA-RMLSA problem in static manycast scenario. Then corresponding heuristic algorithm called manycast routing, modulation level and spectrum assignment genetic algorithm (MA-RMLSA-GA) is proposed to adapt for both static and dynamic manycast scenarios. The MA-RMLSA-GA optimizes MA-RMLSA problem in destination nodes selection, routing light-tree constitution, modulation level allocation and spectrum resource assignment jointly, to achieve an effective improvement in network performance. Simulation results reveal that MA-RMLSA strategies offered by MA-RMLSA-GA have slightly disparity from the optimal solutions provided by ILP model in static scenario. Moreover, the results demonstrate that MA-RMLSA-GA realizes a highly efficient MA-RMLSA strategy with the lowest blocking probability in dynamic scenario compared with benchmark algorithms.

  20. Pre-Service Teacher Scientific Behavior: Comparative Study of Paired Science Project Assignments

    ERIC Educational Resources Information Center

    Bulunuz, Mizrap; Tapan Broutin, Menekse Seden; Bulunuz, Nermin

    2016-01-01

    Problem Statement: University students usually lack the skills to rigorously define a multi-dimensional real-life problem and its limitations in an explicit, clear and testable way, which prevents them from forming a reliable method, obtaining relevant results and making balanced judgments to solve a problem. Purpose of the Study: The study…

  1. A Randomized Trial of Brief Interventions for Problem and Pathological Gamblers

    ERIC Educational Resources Information Center

    Petry, Nancy M.; Weinstock, Jeremiah; Ledgerwood, David M.; Morasco, Benjamin

    2008-01-01

    Limited research exists regarding methods for reducing problem gambling. Problem gamblers (N = 180) were randomly assigned to assessment only control, 10 min of brief advice, 1 session of motivational enhancement therapy (MET), or 1 session of MET plus 3 sessions of cognitive-behavioral therapy. Gambling was assessed at baseline, at 6 weeks, and…

  2. Can Short Duration Visual Cues Influence Students' Reasoning and Eye Movements in Physics Problems?

    ERIC Educational Resources Information Center

    Madsen, Adrian; Rouinfar, Amy; Larson, Adam M.; Loschky, Lester C.; Rebello, N. Sanjay

    2013-01-01

    We investigate the effects of visual cueing on students' eye movements and reasoning on introductory physics problems with diagrams. Participants in our study were randomly assigned to either the cued or noncued conditions, which differed by whether the participants saw conceptual physics problems overlaid with dynamic visual cues. Students in the…

  3. Writing for Business: A Graduate-Level Course in Problem-Solving

    ERIC Educational Resources Information Center

    Seifert, Christine

    2009-01-01

    This paper details an assignment sequence that requires graduate students in an applied communication program to identify problems that clients may not be aware of. Good writing and good problem-solving are "inextricably linked to [a student's] ability to frame an issue, gather, and analyze information, and to structure a helpful response" (Musso,…

  4. Some insights on hard quadratic assignment problem instances

    NASA Astrophysics Data System (ADS)

    Hussin, Mohamed Saifullah

    2017-11-01

    Since the formal introduction of metaheuristics, a huge number Quadratic Assignment Problem (QAP) instances have been introduced. Those instances however are loosely-structured, and therefore made it difficult to perform any systematic analysis. The QAPLIB for example, is a library that contains a huge number of QAP benchmark instances that consists of instances with different size and structure, but with a very limited availability for every instance type. This prevents researchers from performing organized study on those instances, such as parameter tuning and testing. In this paper, we will discuss several hard instances that have been introduced over the years, and algorithms that have been used for solving them.

  5. Optical characterization limits of nanoparticle aggregates at different wavelengths using approximate Bayesian computation

    NASA Astrophysics Data System (ADS)

    Eriçok, Ozan Burak; Ertürk, Hakan

    2018-07-01

    Optical characterization of nanoparticle aggregates is a complex inverse problem that can be solved by deterministic or statistical methods. Previous studies showed that there exists a different lower size limit of reliable characterization, corresponding to the wavelength of light source used. In this study, these characterization limits are determined considering a light source wavelength range changing from ultraviolet to near infrared (266-1064 nm) relying on numerical light scattering experiments. Two different measurement ensembles are considered. Collection of well separated aggregates made up of same sized particles and that of having particle size distribution. Filippov's cluster-cluster algorithm is used to generate the aggregates and the light scattering behavior is calculated by discrete dipole approximation. A likelihood-free Approximate Bayesian Computation, relying on Adaptive Population Monte Carlo method, is used for characterization. It is found that when the wavelength range of 266-1064 nm is used, successful characterization limit changes from 21-62 nm effective radius for monodisperse and polydisperse soot aggregates.

  6. New preemptive scheduling for OBS networks considering cascaded wavelength conversion

    NASA Astrophysics Data System (ADS)

    Gao, Xingbo; Bassiouni, Mostafa A.; Li, Guifang

    2009-05-01

    In this paper we introduce a new preemptive scheduling technique for next generation optical burst-switched networks considering the impact of cascaded wavelength conversions. It has been shown that when optical bursts are transmitted all optically from source to destination, each wavelength conversion performed along the lightpath may cause certain signal-to-noise deterioration. If the distortion of the signal quality becomes significant enough, the receiver would not be able to recover the original data. Accordingly, subject to this practical impediment, we improve a recently proposed fair channel scheduling algorithm to deal with the fairness problem and aim at burst loss reduction simultaneously in optical burst switching. In our scheme, the dynamic priority associated with each burst is based on a constraint threshold and the number of already conducted wavelength conversions among other factors for this burst. When contention occurs, a new arriving superior burst may preempt another scheduled one according to their priorities. Extensive simulation results have shown that the proposed scheme further improves fairness and achieves burst loss reduction as well.

  7. Perfect X-ray focusing via fitting corrective glasses to aberrated optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria

    2017-03-01

    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today’s technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. As a result, this scheme can be applied tomore » any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.« less

  8. Perfect X-ray focusing via fitting corrective glasses to aberrated optics

    PubMed Central

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C.; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G.

    2017-01-01

    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers. PMID:28248317

  9. The Impact of Color-Coding Freshmen Integrated-Science Assignments on Student Achievement

    NASA Astrophysics Data System (ADS)

    Sturdivant Allen, Anita Kay

    Students in Grade 9 exhibit high rates of grade retention and absenteeism. Educators have used different strategies that will increase the achievement of those students. The purpose of this study was to determine whether a relationship existed between student achievement and the strategy to use colored paper for Grade 9 science assignments and tests. Itten's color theory provided the theoretical framework. Itten was one of the first researchers to explore the notion that the human eye can detect wavelengths as colors and that those colors can engage and create order in the human brain. A sample of students assigned to 4 classroom teachers at one high school who volunteered to take part in the study for 18 weeks were used in this quantitative study. Teachers administered student assessments on blue, green, yellow, and white paper. Each class was assigned 1 of the 4 colors for 4.5 weeks. The classes were then assigned a different color for the same length of time until each class had exposure to all 4 colors. Physical science exams given to students in the same grade or subject were used as the dependent variable. An ANOVA indicated that the groups using blue paper scored the highest on the physical science exams; students who used white paper earned the lowest scores. When comparing all 3 groups using colored paper (all three colored paper groups combined into one group) to the white paper groups, t-test results indicated that students using any colored paper scored higher than students using white paper. Further research on the impact of colored paper on student academic performance is necessary. Implications for positive social change indicate that new knowledge about instructional tools that impact student achievement deserves more attention.

  10. Solving the Credit Assignment Problem With the Prefrontal Cortex

    PubMed Central

    Stolyarova, Alexandra

    2018-01-01

    In naturalistic multi-cue and multi-step learning tasks, where outcomes of behavior are delayed in time, discovering which choices are responsible for rewards can present a challenge, known as the credit assignment problem. In this review, I summarize recent work that highlighted a critical role for the prefrontal cortex (PFC) in assigning credit where it is due in tasks where only a few of the multitude of cues or choices are relevant to the final outcome of behavior. Collectively, these investigations have provided compelling support for specialized roles of the orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal (dlPFC) cortices in contingent learning. However, recent work has similarly revealed shared contributions and emphasized rich and heterogeneous response properties of neurons in these brain regions. Such functional overlap is not surprising given the complexity of reciprocal projections spanning the PFC. In the concluding section, I overview the evidence suggesting that the OFC, ACC and dlPFC communicate extensively, sharing the information about presented options, executed decisions and received rewards, which enables them to assign credit for outcomes to choices on which they are contingent. This account suggests that lesion or inactivation/inhibition experiments targeting a localized PFC subregion will be insufficient to gain a fine-grained understanding of credit assignment during learning and instead poses refined questions for future research, shifting the focus from focal manipulations to experimental techniques targeting cortico-cortical projections. PMID:29636659

  11. Investigations of medium wavelength magnetic anomalies in the eastern Pacific using MAGSAT data

    NASA Technical Reports Server (NTRS)

    Harrison, C. G. A. (Principal Investigator)

    1981-01-01

    The suitability of using magnetic field measurements obtained by MAGSAT is discussed with regard to resolving the medium wavelength anomaly problem. A procedure for removing the external field component from the measured field is outlined. Various methods of determining crustal magnetizations are examined in light of satellite orbital parameters resulting in the selection of the equivalent source technique for evaluating scalar measurements. A matrix inversion of the vector components is suggested as a method for arriving at a scalar potential representation of the field.

  12. Using Public Speaking and Critical Thinking To Increase Self-Esteem in the Multi-Cultural College Prep Composition Classroom.

    ERIC Educational Resources Information Center

    Weissberg, Michael W.

    In an effort to improve the writing performance of non-native English-speaking students in a college preparatory composition course, a project was undertaken to reduce problems of self-esteem caused by communication apprehension through a speech assignment involving critical thinking and peer reviews. To evaluate the effect of the assignment, the…

  13. Assignment Problem for the U.S. Marine Corps: Regional, Culture, and Language Familiarization Program

    DTIC Science & Technology

    2013-12-01

    patients. The top trading cycle is popular in market design because it can be Pareto efficient and strategy proof when making assignments such as...29 1. Results for Group 1: Platoons 1 and 2 .............................................29 2...Results for Group 2: Platoons 3 and 4 .............................................31 3. Results for Group 3: Platoons 5 and 6

  14. An Alternative Optimization Model and Robust Experimental Design for the Assignment Scheduling Capability for Unmanned Aerial Vehicles (ASC-U) Simulation

    DTIC Science & Technology

    2007-06-01

    introduces ASC-U’s approach for solving the dynamic UAV allocation problem. 26 Christopher J...18 Figure 6. Assignments Dynamics Example (after) .........................................................20 Figure 7. ASC-U Dynamic Cueing...decisions in order to respond to the dynamic environment they face. Thus, to succeed, the Army’s transformation cannot rely

  15. Model of load distribution for earth observation satellite

    NASA Astrophysics Data System (ADS)

    Tu, Shumin; Du, Min; Li, Wei

    2017-03-01

    For the system of multiple types of EOS (Earth Observing Satellites), it is a vital issue to assure that each type of payloads carried by the group of EOS can be used efficiently and reasonably for in astronautics fields. Currently, most of researches on configuration of satellite and payloads focus on the scheduling for launched satellites. However, the assignments of payloads for un-launched satellites are bit researched, which are the same crucial as the scheduling of tasks. Moreover, the current models of satellite resources scheduling lack of more general characteristics. Referring the idea about roles-based access control (RBAC) of information system, this paper brings forward a model based on role-mining of RBAC to improve the generality and foresight of the method of assignments of satellite-payload. By this way, the assignment of satellite-payload can be mapped onto the problem of role-mining. A novel method will be introduced, based on the idea of biclique-combination in graph theory and evolutionary algorithm in intelligence computing, to address the role-mining problem of satellite-payload assignments. The simulation experiments are performed to verify the novel method. Finally, the work of this paper is concluded.

  16. Psychological functioning in adolescents referred to specialist gender identity clinics across Europe: a clinical comparison study between four clinics.

    PubMed

    de Graaf, Nastasja M; Cohen-Kettenis, Peggy T; Carmichael, Polly; de Vries, Annelou L C; Dhondt, Karlien; Laridaen, Jolien; Pauli, Dagmar; Ball, Juliane; Steensma, Thomas D

    2018-07-01

    Adolescents seeking professional help with their gender identity development often present with psychological difficulties. Existing literature on psychological functioning of gender diverse young people is limited and mostly bound to national chart reviews. This study examined the prevalence of psychological functioning and peer relationship problems in adolescents across four European specialist gender services (The Netherlands, Belgium, the UK, and Switzerland), using the Child Behavioural Checklist (CBCL) and the Youth Self-Report (YSR). Differences in psychological functioning and peer relationships were found in gender diverse adolescents across Europe. Overall, emotional and behavioural problems and peer relationship problems were most prevalent in adolescents from the UK, followed by Switzerland and Belgium. The least behavioural and emotional problems and peer relationship problems were reported by adolescents from The Netherlands. Across the four clinics, a similar pattern of gender differences was found. Birth-assigned girls showed more behavioural problems and externalising problems in the clinical range, as reported by their parents. According to self-report, internalising problems in the clinical range were more prevalent in adolescent birth-assigned boys. More research is needed to gain a better understanding of the difference in clinical presentations in gender diverse adolescents and to investigate what contextual factors that may contribute to this.

  17. Multi-Objectivising Combinatorial Optimisation Problems by Means of Elementary Landscape Decompositions.

    PubMed

    Ceberio, Josu; Calvo, Borja; Mendiburu, Alexander; Lozano, Jose A

    2018-02-15

    In the last decade, many works in combinatorial optimisation have shown that, due to the advances in multi-objective optimisation, the algorithms from this field could be used for solving single-objective problems as well. In this sense, a number of papers have proposed multi-objectivising single-objective problems in order to use multi-objective algorithms in their optimisation. In this article, we follow up this idea by presenting a methodology for multi-objectivising combinatorial optimisation problems based on elementary landscape decompositions of their objective function. Under this framework, each of the elementary landscapes obtained from the decomposition is considered as an independent objective function to optimise. In order to illustrate this general methodology, we consider four problems from different domains: the quadratic assignment problem and the linear ordering problem (permutation domain), the 0-1 unconstrained quadratic optimisation problem (binary domain), and the frequency assignment problem (integer domain). We implemented two widely known multi-objective algorithms, NSGA-II and SPEA2, and compared their performance with that of a single-objective GA. The experiments conducted on a large benchmark of instances of the four problems show that the multi-objective algorithms clearly outperform the single-objective approaches. Furthermore, a discussion on the results suggests that the multi-objective space generated by this decomposition enhances the exploration ability, thus permitting NSGA-II and SPEA2 to obtain better results in the majority of the tested instances.

  18. The thermochromic behavior of aromatic amine-SO2 charge transfer complexes

    NASA Astrophysics Data System (ADS)

    Monezi, Natália M.; Borin, Antonio C.; Santos, Paulo S.; Ando, Rômulo A.

    2017-02-01

    The distinct thermochromism observed in solutions containing N,N-dimethylaniline (DMA) and N,N-diethylaniline (DEA) and SO2 was investigated by resonance Raman spectroscopy in a wide range of temperatures. The results indicate in addition to the charge transfer (CT) complexes DMA-SO2 and DEA-SO2, the presence of collision complexes involving the CT complexes and excess DMA and DEA molecules. The latter in fact is the chromophore responsible for the long wavelength absorption originating the color. The Raman signature of the collision complex was attributed to the distinct enhancement of a band at 1140 cm- 1 assigned to νs(SO2), in contrast to the same mode in the 1:1 complex at 1115 cm- 1. The intensity of such band, assigned to the collision complex is favored at high temperatures and depends on the steric hindrance associated to amines, as well as the SO2 molar fraction. Quantum chemical calculations based on time-dependent density functional theory (TDDFT) support the proposed interpretation.

  19. M dwarf spectra from 0.6 to 1.5 micron - A spectral sequence, model atmosphere fitting, and the temperature scale

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. D.; Kelly, Douglas M.; Rieke, George H.; Liebert, James; Allard, France; Wehrse, Rainer

    1993-01-01

    Red/infrared (0.6-1.5 micron) spectra are presented for a sequence of well-studied M dwarfs ranging from M2 through M9. A variety of temperature-sensitive features useful for spectral classification are identified. Using these features, the spectral data are compared to recent theoretical models, from which a temperature scale is assigned. The red portion of the model spectra provide reasonably good fits for dwarfs earlier than M6. For layer types, the infrared region provides a more reliable fit to the observations. In each case, the wavelength region used includes the broad peak of the energy distribution. For a given spectral type, the derived temperature sequence assigns higher temperatures than have earlier studies - the difference becoming more pronounced at lower luminosities. The positions of M dwarfs on the H-R diagram are, as a result, in closer agreement with theoretical tracks of the lower main sequence.

  20. The nature of multiphoton fluorescence from red blood cells

    NASA Astrophysics Data System (ADS)

    Saytashev, Ilyas; Murphy, Michael; Osseiran, Sam; Spence, Dana M.; Evans, Conor L.; Dantus, Marcos

    2016-03-01

    We report on the nature of multiphoton excited fluorescence observed from human erythrocytes (red blood cells RBC's) and their "ghosts" following 800nm sub-15 fs excitation. The detected optical signal is assigned as two-photon excited fluorescence from hemoglobin. Our findings are supported by wavelength-resolved fluorescence lifetime decay measurements using time-correlated single photon counting system from RBC's, their ghosts as well as in vitro samples of various fluorophores including riboflavin, NADH, NAD(P)H, hemoglobin. We find that low-energy and short-duration pulses allow two-photon imaging of RBC's, but longer more intense pulses lead to their destruction.

  1. A test of geographic assignment using isotope tracers in feathers of known origin

    USGS Publications Warehouse

    Wunder, Michael B.; Kester, C.L.; Knopf, F.L.; Rye, R.O.

    2005-01-01

    We used feathers of known origin collected from across the breeding range of a migratory shorebird to test the use of isotope tracers for assigning breeding origins. We analyzed δD, δ13C, and δ15N in feathers from 75 mountain plover (Charadrius montanus) chicks sampled in 2001 and from 119 chicks sampled in 2002. We estimated parameters for continuous-response inverse regression models and for discrete-response Bayesian probability models from data for each year independently. We evaluated model predictions with both the training data and by using the alternate year as an independent test dataset. Our results provide weak support for modeling latitude and isotope values as monotonic functions of one another, especially when data are pooled over known sources of variation such as sample year or location. We were unable to make even qualitative statements, such as north versus south, about the likely origin of birds using both δD and δ13C in inverse regression models; results were no better than random assignment. Probability models provided better results and a more natural framework for the problem. Correct assignment rates were highest when considering all three isotopes in the probability framework, but the use of even a single isotope was better than random assignment. The method appears relatively robust to temporal effects and is most sensitive to the isotope discrimination gradients over which samples are taken. We offer that the problem of using isotope tracers to infer geographic origin is best framed as one of assignment, rather than prediction.

  2. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Reilly, C. H.; Levis, C. A.; Mount-Campbell, C.; Gonsalvez, D. J.; Wang, C. W.; Yamamura, Y.

    1985-01-01

    Computer-based techniques for optimizing communications-satellite orbit and frequency assignments are discussed. A gradient-search code was tested against a BSS scenario derived from the RARC-83 data. Improvement was obtained, but each iteration requires about 50 minutes of IBM-3081 CPU time. Gradient-search experiments on a small FSS test problem, consisting of a single service area served by 8 satellites, showed quickest convergence when the satellites were all initially placed near the center of the available orbital arc with moderate spacing. A transformation technique is proposed for investigating the surface topography of the objective function used in the gradient-search method. A new synthesis approach is based on transforming single-entry interference constraints into corresponding constraints on satellite spacings. These constraints are used with linear objective functions to formulate the co-channel orbital assignment task as a linear-programming (LP) problem or mixed integer programming (MIP) problem. Globally optimal solutions are always found with the MIP problems, but not necessarily with the LP problems. The MIP solutions can be used to evaluate the quality of the LP solutions. The initial results are very encouraging.

  3. About approximation of integer factorization problem by the combination fixed-point iteration method and Bayesian rounding for quantum cryptography

    NASA Astrophysics Data System (ADS)

    Ogorodnikov, Yuri; Khachay, Michael; Pljonkin, Anton

    2018-04-01

    We describe the possibility of employing the special case of the 3-SAT problem stemming from the well known integer factorization problem for the quantum cryptography. It is known, that for every instance of our 3-SAT setting the given 3-CNF is satisfiable by a unique truth assignment, and the goal is to find this assignment. Since the complexity status of the factorization problem is still undefined, development of approximation algorithms and heuristics adopts interest of numerous researchers. One of promising approaches to construction of approximation techniques is based on real-valued relaxation of the given 3-CNF followed by minimizing of the appropriate differentiable loss function, and subsequent rounding of the fractional minimizer obtained. Actually, algorithms developed this way differ by the rounding scheme applied on their final stage. We propose a new rounding scheme based on Bayesian learning. The article shows that the proposed method can be used to determine the security in quantum key distribution systems. In the quantum distribution the Shannon rules is applied and the factorization problem is paramount when decrypting secret keys.

  4. PRF Ambiguity Detrmination for Radarsat ScanSAR System

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1998-01-01

    PRF ambiguity is a potential problem for a spaceborne SAR operated at high frequencies. For a strip mode SAR, there were several approaches to solve this problem. This paper, however, addresses PRF ambiguity determination algorithms suitable for a burst mode SAR system such as the Radarsat ScanSAR. The candidate algorithms include the wavelength diversity algorithm, range look cross correlation algorithm, and multi-PRF algorithm.

  5. Reduction of Marine Magnetic Data for Modeling the Main Field of the Earth

    NASA Technical Reports Server (NTRS)

    Baldwin, R. T.; Ridgway, J. R.; Davis, W. M.

    1992-01-01

    The marine data set archived at the National Geophysical Data Center (NGDC) consists of shipborne surveys conducted by various institutes worldwide. This data set spans four decades (1953, 1958, 1960-1987), and contains almost 13 million total intensity observations. These are often less than 1 km apart. These typically measure seafloor spreading anomalies with amplitudes of several hundred nanotesla (nT) which, since they originate in the crust, interfere with main field modeling. The source for these short wavelength features are confined within the magnetic crust (i.e., sources above the Curie isotherm). The main field, on the other hand, is of much longer wavelengths and originates within the earth's core. It is desirable to extract the long wavelength information from the marine data set for use in modeling the main field. This can be accomplished by averaging the data along the track. In addition, those data which are measured during periods of magnetic disturbance can be identified and eliminated. Thus, it should be possible to create a data set which has worldwide data distribution, spans several decades, is not contaminated with short wavelengths of the crustal field or with magnetic storm noise, and which is limited enough in size to be manageable for the main field modeling. The along track filtering described above has proved to be an effective means of condensing large numbers of shipborne magnetic data into a manageable and meaningful data set for main field modeling. Its simplicity and ability to adequately handle varying spatial and sampling constraints has outweighed consideration of more sophisticated approaches. This filtering technique also provides the benefits of smoothing out short wavelength crustal anomalies, discarding data recorded during magnetically noisy periods, and assigning reasonable error estimates to be used in the least square modeling. A useful data set now exists which spans 1953-1987.

  6. Decision support for hospital bed management using adaptable individual length of stay estimations and shared resources

    PubMed Central

    2013-01-01

    Background Elective patient admission and assignment planning is an important task of the strategic and operational management of a hospital and early on became a central topic of clinical operations research. The management of hospital beds is an important subtask. Various approaches have been proposed, involving the computation of efficient assignments with regard to the patients’ condition, the necessity of the treatment, and the patients’ preferences. However, these approaches are mostly based on static, unadaptable estimates of the length of stay and, thus, do not take into account the uncertainty of the patient’s recovery. Furthermore, the effect of aggregated bed capacities have not been investigated in this context. Computer supported bed management, combining an adaptable length of stay estimation with the treatment of shared resources (aggregated bed capacities) has not yet been sufficiently investigated. The aim of our work is: 1) to define a cost function for patient admission taking into account adaptable length of stay estimations and aggregated resources, 2) to define a mathematical program formally modeling the assignment problem and an architecture for decision support, 3) to investigate four algorithmic methodologies addressing the assignment problem and one base-line approach, and 4) to evaluate these methodologies w.r.t. cost outcome, performance, and dismissal ratio. Methods The expected free ward capacity is calculated based on individual length of stay estimates, introducing Bernoulli distributed random variables for the ward occupation states and approximating the probability densities. The assignment problem is represented as a binary integer program. Four strategies for solving the problem are applied and compared: an exact approach, using the mixed integer programming solver SCIP; and three heuristic strategies, namely the longest expected processing time, the shortest expected processing time, and random choice. A baseline approach serves to compare these optimization strategies with a simple model of the status quo. All the approaches are evaluated by a realistic discrete event simulation: the outcomes are the ratio of successful assignments and dismissals, the computation time, and the model’s cost factors. Results A discrete event simulation of 226,000 cases shows a reduction of the dismissal rate compared to the baseline by more than 30 percentage points (from a mean dismissal ratio of 74.7% to 40.06% comparing the status quo with the optimization strategies). Each of the optimization strategies leads to an improved assignment. The exact approach has only a marginal advantage over the heuristic strategies in the model’s cost factors (≤3%). Moreover,this marginal advantage was only achieved at the price of a computational time fifty times that of the heuristic models (an average computing time of 141 s using the exact method, vs. 2.6 s for the heuristic strategy). Conclusions In terms of its performance and the quality of its solution, the heuristic strategy RAND is the preferred method for bed assignment in the case of shared resources. Future research is needed to investigate whether an equally marked improvement can be achieved in a large scale clinical application study, ideally one comprising all the departments involved in admission and assignment planning. PMID:23289448

  7. Decision support for hospital bed management using adaptable individual length of stay estimations and shared resources.

    PubMed

    Schmidt, Robert; Geisler, Sandra; Spreckelsen, Cord

    2013-01-07

    Elective patient admission and assignment planning is an important task of the strategic and operational management of a hospital and early on became a central topic of clinical operations research. The management of hospital beds is an important subtask. Various approaches have been proposed, involving the computation of efficient assignments with regard to the patients' condition, the necessity of the treatment, and the patients' preferences. However, these approaches are mostly based on static, unadaptable estimates of the length of stay and, thus, do not take into account the uncertainty of the patient's recovery. Furthermore, the effect of aggregated bed capacities have not been investigated in this context. Computer supported bed management, combining an adaptable length of stay estimation with the treatment of shared resources (aggregated bed capacities) has not yet been sufficiently investigated. The aim of our work is: 1) to define a cost function for patient admission taking into account adaptable length of stay estimations and aggregated resources, 2) to define a mathematical program formally modeling the assignment problem and an architecture for decision support, 3) to investigate four algorithmic methodologies addressing the assignment problem and one base-line approach, and 4) to evaluate these methodologies w.r.t. cost outcome, performance, and dismissal ratio. The expected free ward capacity is calculated based on individual length of stay estimates, introducing Bernoulli distributed random variables for the ward occupation states and approximating the probability densities. The assignment problem is represented as a binary integer program. Four strategies for solving the problem are applied and compared: an exact approach, using the mixed integer programming solver SCIP; and three heuristic strategies, namely the longest expected processing time, the shortest expected processing time, and random choice. A baseline approach serves to compare these optimization strategies with a simple model of the status quo. All the approaches are evaluated by a realistic discrete event simulation: the outcomes are the ratio of successful assignments and dismissals, the computation time, and the model's cost factors. A discrete event simulation of 226,000 cases shows a reduction of the dismissal rate compared to the baseline by more than 30 percentage points (from a mean dismissal ratio of 74.7% to 40.06% comparing the status quo with the optimization strategies). Each of the optimization strategies leads to an improved assignment. The exact approach has only a marginal advantage over the heuristic strategies in the model's cost factors (≤3%). Moreover,this marginal advantage was only achieved at the price of a computational time fifty times that of the heuristic models (an average computing time of 141 s using the exact method, vs. 2.6 s for the heuristic strategy). In terms of its performance and the quality of its solution, the heuristic strategy RAND is the preferred method for bed assignment in the case of shared resources. Future research is needed to investigate whether an equally marked improvement can be achieved in a large scale clinical application study, ideally one comprising all the departments involved in admission and assignment planning.

  8. The Importance of Long Wavelength Processes in Generating Landscapes

    NASA Astrophysics Data System (ADS)

    Roberts, Gareth G.; White, Nicky

    2017-04-01

    The processes responsible for generating landscapes observed on Earth and elsewhere are poorly understood. For example, the relative importance of long (>10 km) and short wavelength erosional processes in determining the evolution of topography is debated. Much work has focused on developing an observational and theoretical framework for evolution of longitudinal river profiles (i.e. elevation as a function of streamwise distance), which probably sets the pace of erosion in low-mid latitude continents. A large number of geomorphic studies emphasis the importance of short wavelength processes in sculpting topography (e.g. waterfall migration, interaction of biota and the solid Earth, hill slope evolution). However, it is not clear if these processes scale to generate topography observed at longer (>10 km) wavelengths. At wavelengths of tens to thousands of kilometers topography is generated by modification of the lithosphere (e.g. shortening, extension, flexure) and by sub-plate processes (e.g. dynamic support). Inversion of drainage patterns suggests that uplift rate histories can be reliably recovered at these long wavelengths using simple erosional models (e.g. stream power). Calculated uplift and erosion rate histories are insensitive to short wavelength (<10 km) or rapid (<100 ka) environmental changes (e.g. biota, precipitation, lithology). One way to examine the relative importance of short and long wavelength processes in generating topography is to transform river profiles into distance-frequency space. We calculate the wavelet power spectrum of a suite of river profiles and examine their spectral content. Big rivers in North America (e.g. Colorado, Rio Grande) and Africa (e.g. Niger, Orange) have a red noise spectrum (i.e. power inversely proportional to wavenumber-squared) at wavelengths > 100 km. More than 90% of river profile elevations in our inventory are determined at these wavelengths. At shorter wavelengths spectra more closely resemble pink noise (power inversely proportional to wavenumber). These observations suggest that short wavelength processes do not simply scale to generate the long wavelength changes in elevation. Instead we suggest that long wavelength processes (e.g. regional uplift, knickzone migration) determine the shape and evolution of nearly all topography. These results suggest that the erosional complexity observed in local geomorphic studies and the relative simplicity of erosional models required to fit continental-scale drainage patterns are not mutually exclusive. Rather that the problem of fluvial erosion is being tackled at different and probably unrelated scales.

  9. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem

    PubMed Central

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them. PMID:26819585

  10. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem.

    PubMed

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.

  11. The Transitory Phase to the Attainment of Self-Regulatory Skill in Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Lazakidou, G.; Paraskeva, F.; Retalis, S.

    2007-01-01

    Three phases of development of self-regulatory skill in the domain of mathematical problem solving were designed to examine students' behaviour and the effects on their problem solving ability. Forty-eight Grade 4 students (10 year olds) participated in this pilot study. The students were randomly assigned to one of three groups, each representing…

  12. Effect of Computer-Presented Organizational/Memory Aids on Problem Solving Behavior.

    ERIC Educational Resources Information Center

    Steinberg, Esther R.; And Others

    This research studied the effects of computer-presented organizational/memory aids on problem solving behavior. The aids were either matrix or verbal charts shown on the display screen next to the problem. The 104 college student subjects were randomly assigned to one of the four conditions: type of chart (matrix or verbal chart) and use of charts…

  13. The Roles of Women in the Army and Their Impact on Military Operations and Organizations.

    ERIC Educational Resources Information Center

    Batts, John H.; And Others

    Problems inherent in the expanded utilization of female soldiers in the U.S. Army are numerous. Attitudes of a wide sample of Army personnel, men and women, enlisted and officer, were surveyed pertaining to those problems. Some problems such as uniforms, billeting, assignments, and training are obvious and with proper planning can and will be…

  14. Effects of Cognitive Strategy Interventions and Cognitive Moderators on Word Problem Solving in Children at Risk for Problem Solving Difficulties

    ERIC Educational Resources Information Center

    Swanson, H. Lee; Lussier, Cathy; Orosco, Michael

    2013-01-01

    This study investigated the role of strategy instruction and cognitive abilities on word problem solving accuracy in children with math difficulties (MD). Elementary school children (N = 120) with and without MD were randomly assigned to 1 of 4 conditions: general-heuristic (e.g., underline question sentence), visual-schematic presentation…

  15. Using Educational Data Mining Methods to Assess Field-Dependent and Field-Independent Learners' Complex Problem Solving

    ERIC Educational Resources Information Center

    Angeli, Charoula; Valanides, Nicos

    2013-01-01

    The present study investigated the problem-solving performance of 101 university students and their interactions with a computer modeling tool in order to solve a complex problem. Based on their performance on the hidden figures test, students were assigned to three groups of field-dependent (FD), field-mixed (FM), and field-independent (FI)…

  16. Work, Productivity, and Human Performance: Practical Case Studies in Ergonomics, Human Factors and Human Engineering.

    ERIC Educational Resources Information Center

    Fraser, T. M.; Pityn, P. J.

    This book contains 12 case histories, each based on a real-life problem, that show how a manager can use common sense, knowledge, and interpersonal skills to solve problems in human performance at work. Each case study describes a worker's problem and provides background information and an assignment; solutions are suggested. The following cases…

  17. A two-stage approach to the depot shunting driver assignment problem with workload balance considerations.

    PubMed

    Wang, Jiaxi; Gronalt, Manfred; Sun, Yan

    2017-01-01

    Due to its environmentally sustainable and energy-saving characteristics, railway transportation nowadays plays a fundamental role in delivering passengers and goods. Emerged in the area of transportation planning, the crew (workforce) sizing problem and the crew scheduling problem have been attached great importance by the railway industry and the scientific community. In this paper, we aim to solve the two problems by proposing a novel two-stage optimization approach in the context of the electric multiple units (EMU) depot shunting driver assignment problem. Given a predefined depot shunting schedule, the first stage of the approach focuses on determining an optimal size of shunting drivers. While the second stage is formulated as a bi-objective optimization model, in which we comprehensively consider the objectives of minimizing the total walking distance and maximizing the workload balance. Then we combine the normalized normal constraint method with a modified Pareto filter algorithm to obtain Pareto solutions for the bi-objective optimization problem. Furthermore, we conduct a series of numerical experiments to demonstrate the proposed approach. Based on the computational results, the regression analysis yield a driver size predictor and the sensitivity analysis give some interesting insights that are useful for decision makers.

  18. A two-stage approach to the depot shunting driver assignment problem with workload balance considerations

    PubMed Central

    Gronalt, Manfred; Sun, Yan

    2017-01-01

    Due to its environmentally sustainable and energy-saving characteristics, railway transportation nowadays plays a fundamental role in delivering passengers and goods. Emerged in the area of transportation planning, the crew (workforce) sizing problem and the crew scheduling problem have been attached great importance by the railway industry and the scientific community. In this paper, we aim to solve the two problems by proposing a novel two-stage optimization approach in the context of the electric multiple units (EMU) depot shunting driver assignment problem. Given a predefined depot shunting schedule, the first stage of the approach focuses on determining an optimal size of shunting drivers. While the second stage is formulated as a bi-objective optimization model, in which we comprehensively consider the objectives of minimizing the total walking distance and maximizing the workload balance. Then we combine the normalized normal constraint method with a modified Pareto filter algorithm to obtain Pareto solutions for the bi-objective optimization problem. Furthermore, we conduct a series of numerical experiments to demonstrate the proposed approach. Based on the computational results, the regression analysis yield a driver size predictor and the sensitivity analysis give some interesting insights that are useful for decision makers. PMID:28704489

  19. Efficient flattop ultra-wideband wavelength converters based on double-pass cascaded sum and difference frequency generation using engineered chirped gratings.

    PubMed

    Tehranchi, Amirhossein; Morandotti, Roberto; Kashyap, Raman

    2011-11-07

    High-efficiency ultra-broadband wavelength converters based on double-pass quasi-phase-matched cascaded sum and difference frequency generation including engineered chirped gratings in lossy lithium niobate waveguides are numerically investigated and compared to the single-pass counterparts, assuming a large twin-pump wavelength difference of 75 nm. Instead of uniform gratings, few-section chirped gratings with the same length, but with a small constant period change among sections with uniform gratings, are proposed to flatten the response and increase the mean efficiency by finding the common critical period shift and minimum number of sections for both single-pass and double-pass schemes whilst for the latter the efficiency is remarkably higher in a low-loss waveguide. It is also verified that for the same waveguide length and power, the efficiency enhancement expected due to the use of the double-pass scheme instead of the single-pass one, is finally lost if the waveguide loss increases above a certain value. For the double-pass scheme, the criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, bandwidth and ripple are presented for the optimum 3-section chirped-gratings-based devices. Efficient conversions with flattop bandwidths > 84 nm for lengths < 3 cm can be obtained.

  20. Ultraviolet Spectrometer and Polarimeter (UVSP) software development and hardware tests for the solar maximum mission

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An analysis of UVSP wavelength drive hardware, problems, and recovery procedures; radiative power loss from solar plasmas; and correlations between observed UV brightness and inferred photospheric currents are given.

  1. New laser sources for clinical treatment and diagnostics of neonatal jaundice

    NASA Astrophysics Data System (ADS)

    Hamza, Mostafa; El-Ahl, Mohammad H. S.; Hamza, Ahmad M.

    2001-06-01

    An elevated serum bilirubin concentration in the newborn infant presents a therapeutic as well as a diagnostic problem to the physician. It has long been recognized that high levels of bilirubin cause irreversible brain damage and even death. The authors introduce the use of semiconductor diode lasers and diode-pumped solid-state lasers that can be used for solving such diagnostic and therapeutic problems. These new laser sources can improve the ergonomics of using laser, enhance performance capabilities and reduce the cost of employing laser energy to pump bilirubin out of an infant's body. The choice of laser wavelengths follows the principles of bilirubinometry and phototherapy of neonatal jaundice. The wide spread use of these new laser sources for clinical monitoring and treatment of neonatal hyperbilirubinemia will be made possible as each incremental or quantum jump cost reduction is achieved. Our leading clinical experience as well as the selection rules of laser wavelengths will be presented.

  2. Review and Analysis of Peak Tracking Techniques for Fiber Bragg Grating Sensors

    PubMed Central

    2017-01-01

    Fiber Bragg Grating (FBG) sensors are among the most popular elements for fiber optic sensor networks used for the direct measurement of temperature and strain. Modern FBG interrogation setups measure the FBG spectrum in real-time, and determine the shift of the Bragg wavelength of the FBG in order to estimate the physical parameters. The problem of determining the peak wavelength of the FBG from a spectral measurement limited in resolution and noise, is referred as the peak-tracking problem. In this work, the several peak-tracking approaches are reviewed and classified, outlining their algorithmic implementations: the methods based on direct estimation, interpolation, correlation, resampling, transforms, and optimization are discussed in all their proposed implementations. Then, a simulation based on coupled-mode theory compares the performance of the main peak-tracking methods, in terms of accuracy and signal to noise ratio resilience. PMID:29039804

  3. A complex multi-notch astronomical filter to suppress the bright infrared sky.

    PubMed

    Bland-Hawthorn, J; Ellis, S C; Leon-Saval, S G; Haynes, R; Roth, M M; Löhmannsröben, H-G; Horton, A J; Cuby, J-G; Birks, T A; Lawrence, J S; Gillingham, P; Ryder, S D; Trinh, C

    2011-12-06

    A long-standing and profound problem in astronomy is the difficulty in obtaining deep near-infrared observations due to the extreme brightness and variability of the night sky at these wavelengths. A solution to this problem is crucial if we are to obtain the deepest possible observations of the early Universe, as redshifted starlight from distant galaxies appears at these wavelengths. The atmospheric emission between 1,000 and 1,800 nm arises almost entirely from a forest of extremely bright, very narrow hydroxyl emission lines that varies on timescales of minutes. The astronomical community has long envisaged the prospect of selectively removing these lines, while retaining high throughput between them. Here we demonstrate such a filter for the first time, presenting results from the first on-sky tests. Its use on current 8 m telescopes and future 30 m telescopes will open up many new research avenues in the years to come.

  4. Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem

    NASA Astrophysics Data System (ADS)

    Ramaprabhu, P.; Dimonte, Guy; Young, Yuan-Nan; Calder, A. C.; Fryxell, B.

    2006-12-01

    We report on the behavior of a single-wavelength Rayleigh-Taylor flow at late times. The calculations were performed in a long square duct (λ×λ×8λ) , using four different numerical simulations. In contradiction with potential flow theories that predict a constant terminal velocity, the single-wavelength Rayleigh-Taylor problem exhibits late-time acceleration. The onset of acceleration occurs as the bubble penetration depth exceeds the diameter of bubbles, and is observed for low and moderate density differences. Based on our simulations, we provide a phenomenological description of the observed acceleration, and ascribe this behavior to the formation of Kelvin-Helmholtz vortices on the bubble-spike interface that diminish the friction drag, while the associated induced flow propels the bubbles forward. For large density ratios, the formation of secondary instabilities is suppressed, and the bubbles remain terminal consistent with potential flow models.

  5. 1 × 4 MMI visible light wavelength demultiplexer based on a GaN slot-waveguide structure

    NASA Astrophysics Data System (ADS)

    Shoresh, Tamir; Katanov, Nadav; Malka, Dror

    2018-07-01

    High transmission losses are the key problem that limits the performance of visible light communication systems, which work on wavelength division multiplexing (WDM) technology. To overcome this problem, we propose a novel design for a 1 × 4 optical demultiplexer based on the multimode interference in a slot-waveguide structure that operates at 547 nm, 559 nm, 566 nm, and 584 nm. Gallium nitride and silicon oxide were found to be excellent materials for the slot-waveguide structure. Simulation results showed that the proposed device can transmit four channels that work in the visible light range with a low transmission loss of 0.983-1.423 dB, crosstalk of 13.8-18.3 dB, and bandwidth of 1.8-3.2 nm. Thus, this device can be very useful in visible light networking systems, which work on the WDM technology.

  6. A tunable laser system for precision wavelength calibration of spectra

    NASA Astrophysics Data System (ADS)

    Cramer, Claire

    2010-02-01

    We present a novel laser-based wavelength calibration technique that improves the precision of astronomical spectroscopy, and solves a calibration problem inherent to multi-object spectroscopy. We have tested a prototype with the Hectochelle spectrograph at the MMT 6.5 m telescope. The Hectochelle is a high-dispersion, fiber-fed, multi-object spectrograph capable of recording up to 240 spectra simultaneously with a resolving power of 40000. The standard wavelength calibration method uses of spectra from ThAr hollow-cathode lamps shining directly onto the fibers. The difference in light path between calibration and science light as well as the uneven distribution of spectral lines are believed to introduce errors of up to several hundred m/s in the wavelength scale. Our tunable laser wavelength calibrator is bright enough for use with a dome screen, allowing the calibration light path to better match the science light path. Further, the laser is tuned in regular steps across a spectral order, creating a comb of evenly-spaced lines on the detector. Using the solar spectrum reflected from the atmosphere to record the same spectrum in every fiber, we show that laser wavelength calibration brings radial velocity uncertainties down below 100 m/s. We also present results from studies of globular clusters, and explain how the calibration technique can aid in stellar age determinations, studies of young stars, and searches for dark matter clumping in the galactic halo. )

  7. Dual-wavelengths photoacoustic temperature measurement

    NASA Astrophysics Data System (ADS)

    Liao, Yu; Jian, Xiaohua; Dong, Fenglin; Cui, Yaoyao

    2017-02-01

    Thermal therapy is an approach applied in cancer treatment by heating local tissue to kill the tumor cells, which requires a high sensitivity of temperature monitoring during therapy. Current clinical methods like fMRI near infrared or ultrasound for temperature measurement still have limitations on penetration depth or sensitivity. Photoacoustic temperature sensing is a newly developed temperature sensing method that has a potential to be applied in thermal therapy, which usually employs a single wavelength laser for signal generating and temperature detecting. Because of the system disturbances including laser intensity, ambient temperature and complexity of target, the accidental errors of measurement is unavoidable. For solving these problems, we proposed a new method of photoacoustic temperature sensing by using two wavelengths to reduce random error and increase the measurement accuracy in this paper. Firstly a brief theoretical analysis was deduced. Then in the experiment, a temperature measurement resolution of about 1° in the range of 23-48° in ex vivo pig blood was achieved, and an obvious decrease of absolute error was observed with averagely 1.7° in single wavelength pattern while nearly 1° in dual-wavelengths pattern. The obtained results indicates that dual-wavelengths photoacoustic sensing of temperature is able to reduce random error and improve accuracy of measuring, which could be a more efficient method for photoacoustic temperature sensing in thermal therapy of tumor.

  8. Design of multivariable feedback control systems via spectral assignment using reduced-order models and reduced-order observers

    NASA Technical Reports Server (NTRS)

    Mielke, R. R.; Tung, L. J.; Carraway, P. I., III

    1984-01-01

    The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The full state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system rmain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.

  9. Design of multivariable feedback control systems via spectral assignment using reduced-order models and reduced-order observers

    NASA Technical Reports Server (NTRS)

    Mielke, R. R.; Tung, L. J.; Carraway, P. I., III

    1985-01-01

    The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The fulll state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system remain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.

  10. Optimizing spectral resolutions for the classification of C3 and C4 grass species, using wavelengths of known absorption features

    NASA Astrophysics Data System (ADS)

    Adjorlolo, Clement; Cho, Moses A.; Mutanga, Onisimo; Ismail, Riyad

    2012-01-01

    Hyperspectral remote-sensing approaches are suitable for detection of the differences in 3-carbon (C3) and four carbon (C4) grass species phenology and composition. However, the application of hyperspectral sensors to vegetation has been hampered by high-dimensionality, spectral redundancy, and multicollinearity problems. In this experiment, resampling of hyperspectral data to wider wavelength intervals, around a few band-centers, sensitive to the biophysical and biochemical properties of C3 or C4 grass species is proposed. The approach accounts for an inherent property of vegetation spectral response: the asymmetrical nature of the inter-band correlations between a waveband and its shorter- and longer-wavelength neighbors. It involves constructing a curve of weighting threshold of correlation (Pearson's r) between a chosen band-center and its neighbors, as a function of wavelength. In addition, data were resampled to some multispectral sensors-ASTER, GeoEye-1, IKONOS, QuickBird, RapidEye, SPOT 5, and WorldView-2 satellites-for comparative purposes, with the proposed method. The resulting datasets were analyzed, using the random forest algorithm. The proposed resampling method achieved improved classification accuracy (κ=0.82), compared to the resampled multispectral datasets (κ=0.78, 0.65, 0.62, 0.59, 0.65, 0.62, 0.76, respectively). Overall, results from this study demonstrated that spectral resolutions for C3 and C4 grasses can be optimized and controlled for high dimensionality and multicollinearity problems, yet yielding high classification accuracies. The findings also provide a sound basis for programming wavebands for future sensors.

  11. The evolving market structures of gambling: case studies modelling the socioeconomic assignment of gaming machines in Melbourne and Sydney, Australia.

    PubMed

    Marshall, David C; Baker, Robert G V

    2002-01-01

    The expansion of gambling industries worldwide is intertwined with the growing government dependence on gambling revenue for fiscal assignments. In Australia, electronic gaming machines (EGMs) have dominated recent gambling industry growth. As EGMs have proliferated, growing recognition has emerged that EGM distribution closely reflects levels of socioeconomic disadvantage. More machines are located in less advantaged regions. This paper analyses time-series socioeconomic distributions of EGMs in Melbourne, Australia, an immature EGM market, and then compares the findings with the mature market in Sydney. Similar findings in both cities suggest that market assignment of EGMs transcends differences in historical and legislative environments. This indicates that similar underlying structures are evident in both markets. Modelling the spatial structures of gambling markets provides an opportunity to identify regions most at risk of gambling related problems. Subsequently, policies can be formulated which ensure fiscal revenue from gambling can be better targeted towards regions likely to be most afflicted by excessive gambling-related problems.

  12. On the stabilizability of multivariable systems by minimum order compensation

    NASA Technical Reports Server (NTRS)

    Byrnes, C. I.; Anderson, B. D. O.

    1983-01-01

    In this paper, a derivation is provided of the necessary condition, mp equal to or greater than n, for stabilizability by constant gain feedback of the generic degree n, p x m system. This follows from another of the main results, which asserts that generic stabilizability is equivalent to generic solvability of a deadbeat control problem, provided mp equal to or less than n. Taken together, these conclusions make it possible to make some sharp statements concerning minimum order stabilization. The techniques are primarily drawn from decision algebra and classical algebraic geometry and have additional consequences for problems of stabilizability and pole-assignability. Among these are the decidability (by a Sturm test) of the equivalence of generic pole-assignability and generic stabilizability, the semi-algebraic nature of the minimum order, q, of a stabilizing compensator, and the nonexistence of formulae involving rational operations and extraction of square roots for pole-assigning gains when they exist, answering in the negative a question raised by Anderson, Bose, and Jury (1975).

  13. Design of a Software Configuration for Real-Time Multimedia Group Communication; HNUMTP

    NASA Astrophysics Data System (ADS)

    Park, Gil-Cheol

    This paper designs transport protocol of multi-session/channel method for real time multimedia group telecommunication and realizes it. The special features of the designed and realized protocol are first, that it solved the sync problem which is the specific character of multimedia telecommunication by using multi-channel method protocol. Usual multimedia telecommunication is assigned one channel by each media data. This paper shortened the phenomenon that waits data for sync of receiving part by assigning more than one channel for the channel that has a lot of data per hour as video data. The problem of intermedia synchronization that happens then could be solved by sending temporal/spacial related data among data assigning extra control channel. Second, that it does integrated management for sessions. Each session is one group telecommunication unit which supports mutual working environment that is independent. Each session communicates the participants in the group independently, the session manager manages all the communication among groups and lets media sources connected with all network be operated efficiently.

  14. Support of NASA quality requirements by defense contract administration services regions

    NASA Technical Reports Server (NTRS)

    Farrar, Hiram D.

    1966-01-01

    Defense Contract Administration Services Regions (DCASR) quality assurance personnel performing under NASA Letters of Delegation must work closely with the assigned technical representative of the NASA centers. It is realized that technical personnel from the NASA Centers cannot make on-site visits as frequently as they would like to. However, DCASR quality assurance personnel would know the assigned NASA technical representative and should contact him when problems arise. The technical representative is the expert on the hardware and should be consulted on any problem area. It is important that the DCASR quality assurance personnel recommend to the delegating NASA Center any new or improved methods of which they may be aware which would assist in achieving the desired quality and reliability in NASA hardware. NASA expects assignment of competent personnel in the Quality Assurance functional area and is not only buying the individual's technical skill, but also his experience. Suggestions by field personnel can many times up-grade the quality or the hardware.

  15. Analysis of an Air Conditioning Coolant Solution for Metal Contamination Using Atomic Absorption Spectroscopy: An Undergraduate Instrumental Analysis Exercise Simulating an Industrial Assignment

    ERIC Educational Resources Information Center

    Baird, Michael J.

    2004-01-01

    A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.

  16. Assignment Scheduling Capability for Unmanned Aerial Vehicles - A Discrete Event Simulation with Optimization in the Loop Approach to Solving a Scheduling Problem

    DTIC Science & Technology

    2006-12-01

    APPROACH As mentioned previously, ASCU does not use simulation in the traditional manner. Instead, it uses simulation to transition and capture the state...0 otherwise (by a heuristic discussed below). • Let cja = The reward for a UAV with sensor pack- age j being assigned to mission area a from the

  17. Using Problem-Based Learning with Large Groups.

    ERIC Educational Resources Information Center

    Buzzelli, Andrew R.

    1994-01-01

    At the Pennsylvania College of Optometry, a core course in pediatric optometry was revised to use a problem-centered approach and implemented with a class of 147 students. Students were assigned specific roles to distribute work evenly. A survey found students responded positively to this approach. (MSE)

  18. Method for protein structure alignment

    DOEpatents

    Blankenbecler, Richard; Ohlsson, Mattias; Peterson, Carsten; Ringner, Markus

    2005-02-22

    This invention provides a method for protein structure alignment. More particularly, the present invention provides a method for identification, classification and prediction of protein structures. The present invention involves two key ingredients. First, an energy or cost function formulation of the problem simultaneously in terms of binary (Potts) assignment variables and real-valued atomic coordinates. Second, a minimization of the energy or cost function by an iterative method, where in each iteration (1) a mean field method is employed for the assignment variables and (2) exact rotation and/or translation of atomic coordinates is performed, weighted with the corresponding assignment variables.

  19. Distributed Method to Optimal Profile Descent

    NASA Astrophysics Data System (ADS)

    Kim, Geun I.

    Current ground automation tools for Optimal Profile Descent (OPD) procedures utilize path stretching and speed profile change to maintain proper merging and spacing requirements at high traffic terminal area. However, low predictability of aircraft's vertical profile and path deviation during decent add uncertainty to computing estimated time of arrival, a key information that enables the ground control center to manage airspace traffic effectively. This paper uses an OPD procedure that is based on a constant flight path angle to increase the predictability of the vertical profile and defines an OPD optimization problem that uses both path stretching and speed profile change while largely maintaining the original OPD procedure. This problem minimizes the cumulative cost of performing OPD procedures for a group of aircraft by assigning a time cost function to each aircraft and a separation cost function to a pair of aircraft. The OPD optimization problem is then solved in a decentralized manner using dual decomposition techniques under inter-aircraft ADS-B mechanism. This method divides the optimization problem into more manageable sub-problems which are then distributed to the group of aircraft. Each aircraft solves its assigned sub-problem and communicate the solutions to other aircraft in an iterative process until an optimal solution is achieved thus decentralizing the computation of the optimization problem.

  20. Convex central configurations for the n-body problem

    NASA Astrophysics Data System (ADS)

    Xia, Zhihong

    We give a simple proof of a classical result of MacMillan and Bartky (Trans. Amer. Math. Soc. 34 (1932) 838) which states that, for any four positive masses and any assigned order, there is a convex planar central configuration. Moreover, we show that the central configurations we find correspond to local minima of the potential function with fixed moment of inertia. This allows us to show that there are at least six local minimum central configurations for the planar four-body problem. We also show that for any assigned order of five masses, there is at least one convex spatial central configuration of local minimum type. Our method also applies to some other cases.

  1. Planning Nurses in Maternity Care: a Stochastic Assignment Problem

    NASA Astrophysics Data System (ADS)

    Phillipson, Frank

    2015-05-01

    With 23 percent of all births taking place at home, The Netherlands have the highest rate of home births in the world. Also if the birth did not take place at home, it is not unusual for the mother and child to be out of hospital in a few hours after the baby was born. The explanation for both is the very well organised maternity care system. However, getting the right maternity care nurse available on time introduces a complex planning issue that can be recognized as a Stochastic Assignment Problem. In this paper an expert rule based approach is combined with scenario analysis to support the planner of the maternity care agency in his work.

  2. PLA realizations for VLSI state machines

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.; Whitaker, S.; Maki, G.; Liu, K.

    1990-01-01

    A major problem associated with state assignment procedures for VLSI controllers is obtaining an assignment that produces minimal or near minimal logic. The key item in Programmable Logic Array (PLA) area minimization is the number of unique product terms required by the design equations. This paper presents a state assignment algorithm for minimizing the number of product terms required to implement a finite state machine using a PLA. Partition algebra with predecessor state information is used to derive a near optimal state assignment. A maximum bound on the number of product terms required can be obtained by inspecting the predecessor state information. The state assignment algorithm presented is much simpler than existing procedures and leads to the same number of product terms or less. An area-efficient PLA structure implemented in a 1.0 micron CMOS process is presented along with a summary of the performance for a controller implemented using this design procedure.

  3. Global Optimization of Emergency Evacuation Assignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Lee; Yuan, Fang; Chin, Shih-Miao

    2006-01-01

    Conventional emergency evacuation plans often assign evacuees to fixed routes or destinations based mainly on geographic proximity. Such approaches can be inefficient if the roads are congested, blocked, or otherwise dangerous because of the emergency. By not constraining evacuees to prespecified destinations, a one-destination evacuation approach provides flexibility in the optimization process. We present a framework for the simultaneous optimization of evacuation-traffic distribution and assignment. Based on the one-destination evacuation concept, we can obtain the optimal destination and route assignment by solving a one-destination traffic-assignment problem on a modified network representation. In a county-wide, large-scale evacuation case study, the one-destinationmore » model yields substantial improvement over the conventional approach, with the overall evacuation time reduced by more than 60 percent. More importantly, emergency planners can easily implement this framework by instructing evacuees to go to destinations that the one-destination optimization process selects.« less

  4. Fair Package Assignment

    NASA Astrophysics Data System (ADS)

    Lahaie, Sébastien; Parkes, David C.

    We consider the problem of fair allocation in the package assignment model, where a set of indivisible items, held by single seller, must be efficiently allocated to agents with quasi-linear utilities. A fair assignment is one that is efficient and envy-free. We consider a model where bidders have superadditive valuations, meaning that items are pure complements. Our central result is that core outcomes are fair and even coalition-fair over this domain, while fair distributions may not even exist for general valuations. Of relevance to auction design, we also establish that the core is equivalent to the set of anonymous-price competitive equilibria, and that superadditive valuations are a maximal domain that guarantees the existence of anonymous-price competitive equilibrium. Our results are analogs of core equivalence results for linear prices in the standard assignment model, and for nonlinear, non-anonymous prices in the package assignment model with general valuations.

  5. Treatment of nonconvergence of Fourier modal method arising from irregular field singularities at lossless metal-dielectric right-angle edges.

    PubMed

    Mei, Yanpeng; Liu, Haitao; Zhong, Ying

    2014-04-01

    In a recent work [J. Opt. Soc. Am. A28, 738 (2011)], Lifeng Li and Gerard Granet investigate nonconvergence cases of the Fourier modal method (FMM). They demonstrate that the nonconvergence is due to the irregular field singularities at lossless metal-dielectric right-angle edges. Here we make further investigations on the problem and find that the FMM surprisingly converges for deep sub-wavelength gratings (grating period being much smaller than the illumination wavelength). To overcome the nonconvergence for gratings that are not deep sub-wavelength, we approximately replace the lossless metal-dielectric right-angle edges by a medium with a gradually varied refraction index, so as to remove the irregular field singularities. With such treatment, convergence is observed as the region of the approximate medium approaches vanishing.

  6. Symbolically Modeling Concurrent MCAPI Executions

    NASA Technical Reports Server (NTRS)

    Fischer, Topher; Mercer, Eric; Rungta, Neha

    2011-01-01

    Improper use of Inter-Process Communication (IPC) within concurrent systems often creates data races which can lead to bugs that are challenging to discover. Techniques that use Satisfiability Modulo Theories (SMT) problems to symbolically model possible executions of concurrent software have recently been proposed for use in the formal verification of software. In this work we describe a new technique for modeling executions of concurrent software that use a message passing API called MCAPI. Our technique uses an execution trace to create an SMT problem that symbolically models all possible concurrent executions and follows the same sequence of conditional branch outcomes as the provided execution trace. We check if there exists a satisfying assignment to the SMT problem with respect to specific safety properties. If such an assignment exists, it provides the conditions that lead to the violation of the property. We show how our method models behaviors of MCAPI applications that are ignored in previously published techniques.

  7. Electronic and nuclear contributions to time-resolved optical and X-ray absorption spectra of hematite and insights into photoelectrochemical performance

    DOE PAGES

    Hayes, Dugan; Hadt, Ryan G.; Emery, Jonathan D.; ...

    2016-11-02

    Ultrafast time-resolved studies of photocatalytic thin films can provide a wealth of information crucial for understanding and thereby improving the performance of these materials by directly probing electronic structure, reaction intermediates, and charge carrier dynamics. The interpretation of transient spectra, however, can be complicated by thermally induced structural distortions, which appear within the first few picoseconds following excitation due to carrier–phonon scattering. Here we present a comparison of ex situ steady-state thermal difference spectra and transient absorption spectra spanning from NIR to hard X-ray energies of hematite thin films grown by atomic layer deposition. We find that beyond the firstmore » 100 picoseconds, the transient spectra measured for all excitation wavelengths and probe energies are almost entirely due to thermal effects as the lattice expands in response to the ultrafast temperature jump and then cools to room temperature on the microsecond timescale. At earlier times, a broad excited state absorption band that is assigned to free carriers appears at 675 nm, and the lifetime and shape of this feature also appear to be mostly independent of excitation wavelength. The combined spectroscopic data, which are modeled with density functional theory and full multiple scattering calculations, support an assignment of the optical absorption spectrum of hematite that involves two LMCT bands that nearly span the visible spectrum. Lastly, our results also suggest a framework for shifting the ligand-to-metal charge transfer absorption bands of ferric oxide films from the near-UV further into the visible part of the solar spectrum to improve solar conversion efficiency.« less

  8. A Fuzzy Goal Programming for a Multi-Depot Distribution Problem

    NASA Astrophysics Data System (ADS)

    Nunkaew, Wuttinan; Phruksaphanrat, Busaba

    2010-10-01

    A fuzzy goal programming model for solving a Multi-Depot Distribution Problem (MDDP) is proposed in this research. This effective proposed model is applied for solving in the first step of Assignment First-Routing Second (AFRS) approach. Practically, a basic transportation model is firstly chosen to solve this kind of problem in the assignment step. After that the Vehicle Routing Problem (VRP) model is used to compute the delivery cost in the routing step. However, in the basic transportation model, only depot to customer relationship is concerned. In addition, the consideration of customer to customer relationship should also be considered since this relationship exists in the routing step. Both considerations of relationships are solved using Preemptive Fuzzy Goal Programming (P-FGP). The first fuzzy goal is set by a total transportation cost and the second fuzzy goal is set by a satisfactory level of the overall independence value. A case study is used for describing the effectiveness of the proposed model. Results from the proposed model are compared with the basic transportation model that has previously been used in this company. The proposed model can reduce the actual delivery cost in the routing step owing to the better result in the assignment step. Defining fuzzy goals by membership functions are more realistic than crisps. Furthermore, flexibility to adjust goals and an acceptable satisfactory level for decision maker can also be increased and the optimal solution can be obtained.

  9. Nurturing Students' Problem-Solving Skills and Engagement in Computer-Mediated Communications (CMC)

    ERIC Educational Resources Information Center

    Chen, Ching-Huei

    2014-01-01

    The present study sought to investigate how to enhance students' well- and ill-structured problem-solving skills and increase productive engagement in computer-mediated communication with the assistance of external prompts, namely procedural and reflection. Thirty-three graduate students were randomly assigned to two conditions: procedural and…

  10. Flight Director works out problem during STS-61 simulations

    NASA Image and Video Library

    1993-09-01

    Flight Director Robert E. Castle Jr. works out a problem during joint integrated simulations for the STS-61 mission. Astronauts assigned to extravehicular activity (EVA) tasks with the Hubble Space Telescope (HST) were simultaneously rehearsing in a neutral buoyancy tank at the Marshall Space Flight Center (MSFC) in Alabama.

  11. Problems and Solutions in Evaluating Child Outcomes of Large-Scale Educational Programs.

    ERIC Educational Resources Information Center

    Abrams, Allan S.; And Others

    1979-01-01

    Evaluation of large-scale programs is problematical because of inherent bias in assignment of treatment and control groups, resulting in serious regression artifacts even with the use of analysis of covariance designs. Nonuniformity of program implementation across sites and classrooms is also a problem. (Author/GSK)

  12. Effects of a Multifocused Prevention Program on Preschool Children's Competencies and Behavior Problems

    ERIC Educational Resources Information Center

    Stefan, Catrinel A.; Miclea, Mircea

    2013-01-01

    This study was designed to assess the effectiveness of a multifocused (child-, teacher- and parent-focused) prevention program for Romanian preschoolers, targeting social--emotional competence development, as well as reduction of behavior problems. Fourteen classrooms were randomly assigned to the intervention and control conditions. Subsequent…

  13. Can Group Discussions and Individualized Assignments Help More Students Succeed in Developmental Mathematics?

    ERIC Educational Resources Information Center

    Jaafar, Reem

    2015-01-01

    Students taking developmental mathematics courses resist attempting word problems when they are presented to them. Although word problems can help students contextualize learning, develop better understanding of the concepts and apply world knowledge, they constitute an impediment to students' progress in developmental mathematics courses. A…

  14. Mesh and Time-Step Independent Computational Fluid Dynamics (CFD) Solutions

    ERIC Educational Resources Information Center

    Nijdam, Justin J.

    2013-01-01

    A homework assignment is outlined in which students learn Computational Fluid Dynamics (CFD) concepts of discretization, numerical stability and accuracy, and verification in a hands-on manner by solving physically realistic problems of practical interest to engineers. The students solve a transient-diffusion problem numerically using the common…

  15. Education's Role in National Development Plans: Ten Country Cases.

    ERIC Educational Resources Information Center

    Thomas, R. Murray, Ed.

    The place education has been assigned in the national development programs of 10 nations is discussed, the problems that these countries have encountered in managing education are examined, and the measures adopted to solve educational problems are assessed. Included are the following papers: (1) "The Nature of National Development…

  16. Writing Children's Books in Sociology Class: An Innovative Approach to Teaching Social Problems to Undergraduate Students

    ERIC Educational Resources Information Center

    Maples, James N.; Taylor, William V.

    2013-01-01

    In this instructional article, we describe a non-traditional course assignment in which we ask students in our social problems courses to write, illustrate, and present a children's book about a social problem as part of the process of learning. Over the course of the semester, students utilize guided handouts to create a children's book exploring…

  17. The Big6: Not Just for Kids! Introduction to the Big6: Information Problem-Solving for Upper High School, College-Age, and Adult Students.

    ERIC Educational Resources Information Center

    Eisenberg, Mike; Spitzer, Kathy

    1998-01-01

    Explains the Big6 approach to information problem-solving based on exercises that were developed for college or upper high school students that can be completed during class sessions. Two of the exercises relate to personal information problems, and one relates Big6 skill areas to course assignments. (LRW)

  18. Nonlinear Multidimensional Assignment Problems Efficient Conic Optimization Methods and Applications

    DTIC Science & Technology

    2015-06-24

    WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Arizona State University School of Mathematical & Statistical Sciences 901 S...SUPPLEMENTARY NOTES 14. ABSTRACT The major goals of this project were completed: the exact solution of previously unsolved challenging combinatorial optimization... combinatorial optimization problem, the Directional Sensor Problem, was solved in two ways. First, heuristically in an engineering fashion and second, exactly

  19. Phase demodulation of Fabry-Perot interferometer-based acoustic sensor utilizing tunable filter with two quadrature wavelengths

    NASA Astrophysics Data System (ADS)

    Liao, Hao; Lu, Ping; Liu, Li; Liu, Deming; Zhang, Jiangshan

    2017-02-01

    A phase demodulation method for short-cavity extrinsic Fabry-Perot interferometer (EFPI) based on two orthogonal wavelengths via a tunable optical filter is proposed in this paper. A broadband light is launched into the EFPI sensor and two monochromatic beams with 3dB bandwidth of 0.2nm are selected out from the reflected light of the EFPI sensor. A phase bias is induced between the two interferential signals due to the wavelength difference of the two beams. The wavelength difference will have an affect on the sensitivity of demodulated signal, which has been theoretically and experimentally demonstrated. The maximum sensitivity can be obtained when the phase bias is 0.5π corresponding to the wavelength difference of 1/4 FSR of the EFPI spectrum. The acoustic wave induced phase variation can be interrogated through an optimized differential cross multiplication (DCM) method. A normalization process is induced into the traditional DCM method to eliminate the influence of ambient temperature and pressure fluctuation induced spectrum shift on output signal. This means that, once the wavelength difference is fixed, the wavelength variation of each individual beam will have little influence on the amplitude of demodulated signal. The EFPI sensing head is formed by a 3μm-thick aluminum diaphragm, which has a SNR of more than 53dB. Through the proposed demodulation scheme, a large dynamic range and good linearity is acquired and Q-point drift problem of traditional EFPI sensor can be solved. The demodulation scheme can be applied to other kinds of short-cavity EFPI based acoustic sensors.

  20. Next-Generation WDM Network Design and Routing

    NASA Astrophysics Data System (ADS)

    Tsang, Danny H. K.; Bensaou, Brahim

    2003-08-01

    Call for Papers The Editors of JON are soliciting papers on WDM Network Design and Routing. The aim in this focus issue is to publish original research on topics including - but not limited to - the following: - WDM network architectures and protocols - GMPLS network architectures - Wavelength converter placement in WDM networks - Routing and wavelength assignment (RWA) in WDM networks - Protection and restoration strategies and algorithms in WDM networks - Traffic grooming in WDM networks - Dynamic routing strategies and algorithms - Optical Burst Switching - Support of Multicast - Protection and restoration in WDM networks - Performance analysis and optimization in WDM networks Manuscript Submission To submit to this special issue, follow the normal procedure for submission to JON, indicating "WDM Network Design" in the "Comments" field of the online submission form. For all other questions relating to this focus issue, please send an e-mail to jon@osa.org, subject line "WDM Network Design." Additional information can be found on the JON website: http://www.osa-jon.org/submission/. Schedule Paper Submission Deadline: November 1, 2003 Notification to Authors: January 15, 2004 Final Manuscripts to Publisher: February 15, 2004 Publication of Focus Issue: February/March 2004

  1. Next-Generation WDM Network Design and Routing

    NASA Astrophysics Data System (ADS)

    Tsang, Danny H. K.; Bensaou, Brahim

    2003-10-01

    Call for Papers The Editors of JON are soliciting papers on WDM Network Design and Routing. The aim in this focus issue is to publish original research on topics including - but not limited to - the following: - WDM network architectures and protocols - GMPLS network architectures - Wavelength converter placement in WDM networks - Routing and wavelength assignment (RWA) in WDM networks - Protection and restoration strategies and algorithms in WDM networks - Traffic grooming in WDM networks - Dynamic routing strategies and algorithms - Optical burst switching - Support of multicast - Protection and restoration in WDM networks - Performance analysis and optimization in WDM networks Manuscript Submission To submit to this special issue, follow the normal procedure for submission to JON, indicating "WDM Network Design" in the "Comments" field of the online submission form. For all other questions relating to this focus issue, please send an e-mail to jon@osa.org, subject line "WDM Network Design." Additional information can be found on the JON website: http://www.osa-jon.org/submission/. Schedule - Paper Submission Deadline: November 1, 2003 - Notification to Authors: January 15, 2004 - Final Manuscripts to Publisher: February 15, 2004 - Publication of Focus Issue: February/March 2004

  2. Next-Generation WDM Network Design and Routing

    NASA Astrophysics Data System (ADS)

    Tsang, Danny H. K.; Bensaou, Brahim

    2003-09-01

    Call for Papers The Editors of JON are soliciting papers on WDM Network Design and Routing. The aim in this focus issue is to publish original research on topics including - but not limited to - the following: - WDM network architectures and protocols - GMPLS network architectures - Wavelength converter placement in WDM networks - Routing and wavelength assignment (RWA) in WDM networks - Protection and restoration strategies and algorithms in WDM networks - Traffic grooming in WDM networks - Dynamic routing strategies and algorithms - Optical burst switching - Support of multicast - Protection and restoration in WDM networks - Performance analysis and optimization in WDM networks Manuscript Submission To submit to this special issue, follow the normal procedure for submission to JON, indicating "WDM Network Design" in the "Comments" field of the online submission form. For all other questions relating to this focus issue, please send an e-mail to jon@osa.org, subject line "WDM Network Design." Additional information can be found on the JON website: http://www.osa-jon.org/submission/. Schedule - Paper Submission Deadline: November 1, 2003 - Notification to Authors: January 15, 2004 - Final Manuscripts to Publisher: February 15, 2004 - Publication of Focus Issue: February/March 2004

  3. Improved fiberoptic spectrophotometer

    DOEpatents

    Tans, P.P.; Lashof, D.A.

    1985-04-02

    The present invention allows for accurate spectrophotmetric comparison of the Raman scattering from a sample gas with the Raman scattering from a known gas via a novel fiber optic network. The need for complicated electronic of optical circuit balancing, control, or error compensation circuitry is eliminated. The laser cavity is split into two regions, one of which houses the plasma discharge and produces laser power, and the other of which is adapted to house tubes containing the gas samples. Light from the laser source is beamed simultaneously through samples of the reference gas and the unknown gas, and Raman-scattered light is emitted. The Raman-scattered light from the known and unknown mixtures is then alternately passed through a fiber optic network where the various wavelengths are spatially mixed. The mixed light is then passed into a system of light detectors, each of which are adapted to measure one of the wavelengths of light representing a constituent element of the gases. When the test is complete, each gas sample can be assigned a Raman-scattered profile from the data consisting of the ratios each of the constituent elements bear to each other. (LEW)

  4. Line identification studies using traditional techniques and wavelength coincidence statistics

    NASA Technical Reports Server (NTRS)

    Cowley, Charles R.; Adelman, Saul J.

    1990-01-01

    Traditional line identification techniques result in the assignment of individual lines to an atomic or ionic species. These methods may be supplemented by wavelength coincidence statistics (WCS). The strength and weakness of these methods are discussed using spectra of a number of normal and peculiar B and A stars that have been studied independently by both methods. The present results support the overall findings of some earlier studies. WCS would be most useful in a first survey, before traditional methods have been applied. WCS can quickly make a global search for all species and in this way may enable identifications of an unexpected spectrum that could easily be omitted entirely from a traditional study. This is illustrated by O I. WCS is a subject to well known weakness of any statistical technique, for example, a predictable number of spurious results are to be expected. The danger of small number statistics are illustrated. WCS is at its best relative to traditional methods in finding a line-rich atomic species that is only weakly present in a complicated stellar spectrum.

  5. CR-39 (PADC) Reflection and Transmission of Light in the Ultraviolet-Near-Infrared (UV-NIR) Range.

    PubMed

    Traynor, Nathan B J; McLauchlin, Christopher; Dodge, Kenneth; McGarrah, James E; Padalino, Stephen J; McCluskey, Michelle; Sangster, T C; McLean, James G

    2018-04-01

    The spectral reflection (specular and diffuse) and transmission of Columbia Resin 39 (CR-39) were measured for incoherent light with wavelengths in the range of 200-2500 nm. These results will be of use for the optical characterization of CR-39, as well as in investigations of the chemical modifications of the polymer caused by ultraviolet (UV) exposure. A Varian Cary 5000 was used to perform spectroscopy on several different thicknesses of CR-39. With proper analysis for the interdependence of reflectance and transmittance, results are consistent across all samples. The reflectivity from each CR-39-air boundary reveals an increase in the index of refraction in the near-UV. Absorption observations are consistent with the Beer-Lambert law. Strong absorption of UV light of wavelength shorter than 350 nm suggests an optical band gap of 3.5 eV, although the standard analysis is not conclusive. Absorption features observed in the near infrared are assigned to molecular vibrations, including some that are new to the literature.

  6. UV photography of the earth and the moon

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The fundamental aim of this experiment was the acquisition of ultraviolet photographs of the earth and the moon that could be used to interpret similar imagery of Mars and Venus. Venus shows no markings whatever when viewed in visible light, a phenomenon that is in keeping with its immensely thick atmosphere and perpetual cloud cover, but in the near ultraviolet, the planet exhibits low contrast markings which vary in position and appearance with time. Mars posed just the opposite problem from Venus at wavelengths below 4500 A, Mars shows very little detail, sometimes none at all, whereas at longer wavelengths, the surface is clearly visible. Occasionally observers have reported that this obscuration has lifted and the ground has become visible at the shorter wavelengths as well. Such events have been labeled blue clearings and led to the suggestion that the ultraviolet obscuration was caused by an atmospheric haze. Mariner 6 and 7 observations of Mars failed to find such a haze and lent support to the alternative view that ascribed the absence of detail on UV photographs to a simple lack of contrast between Martian surface features at these wavelengths.

  7. Application of the LSQR algorithm in non-parametric estimation of aerosol size distribution

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Lew, Zhongyuan; Ruan, Liming; Tan, Heping; Luo, Kun

    2016-05-01

    Based on the Least Squares QR decomposition (LSQR) algorithm, the aerosol size distribution (ASD) is retrieved in non-parametric approach. The direct problem is solved by the Anomalous Diffraction Approximation (ADA) and the Lambert-Beer Law. An optimal wavelength selection method is developed to improve the retrieval accuracy of the ASD. The proposed optimal wavelength set is selected by the method which can make the measurement signals sensitive to wavelength and decrease the degree of the ill-condition of coefficient matrix of linear systems effectively to enhance the anti-interference ability of retrieval results. Two common kinds of monomodal and bimodal ASDs, log-normal (L-N) and Gamma distributions, are estimated, respectively. Numerical tests show that the LSQR algorithm can be successfully applied to retrieve the ASD with high stability in the presence of random noise and low susceptibility to the shape of distributions. Finally, the experimental measurement ASD over Harbin in China is recovered reasonably. All the results confirm that the LSQR algorithm combined with the optimal wavelength selection method is an effective and reliable technique in non-parametric estimation of ASD.

  8. Effective preemptive scheduling scheme for optical burst-switched networks with cascaded wavelength conversion consideration

    NASA Astrophysics Data System (ADS)

    Gao, Xingbo

    2010-03-01

    We introduce a new preemptive scheduling technique for next-generation optical burst switching (OBS) networks considering the impact of cascaded wavelength conversions. It has been shown that when optical bursts are transmitted all optically from source to destination, each wavelength conversion performed along the lightpath may cause certain signal-to-noise deterioration. If the distortion of the signal quality becomes significant enough, the receiver would not be able to recover the original data. Accordingly, subject to this practical impediment, we improve a recently proposed fair channel scheduling algorithm to deal with the fairness problem and aim at burst loss reduction simultaneously in OBS environments. In our scheme, the dynamic priority associated with each burst is based on a constraint threshold and the number of already conducted wavelength conversions among other factors for this burst. When contention occurs, a new arriving superior burst may preempt another scheduled one according to their priorities. Extensive simulation results have shown that the proposed scheme further improves fairness and achieves burst loss reduction as well.

  9. All Seem to Need Immediate Attention--What Should I Do First? A Successful Principal in a New School Assignment at Secundaria Revolucion

    ERIC Educational Resources Information Center

    Torres-Arcadia, Celina; Flores-Kastanis, Eduardo

    2012-01-01

    This case provides emerging school administrators the opportunity to learn about the school system in Mexico. The case relates to a successful principal in her new school assignment. Martha Miramontes is an experienced and successful principal who quickly identified a number of challenges in her new campus. Even though each problem can be solved…

  10. Modulation Index Adjustment for Recovery of Pure Wavelength Modulation Spectroscopy Second Harmonic Signal Waveforms.

    PubMed

    Wei, Wei; Chang, Jun; Wang, Qiang; Qin, Zengguang

    2017-01-15

    A new technique of modulation index adjustment for pure wavelength modulation spectroscopy second harmonic signal waveforms recovery is presented. As the modulation index is a key parameter in determining the exact form of the signals generated by the technique of wavelength modulation spectroscopy, the method of modulation index adjustment is applied to recover the second harmonic signal with wavelength modulation spectroscopy. By comparing the measured profile with the theoretical profile by calculation, the relationship between the modulation index and average quantities of the scanning wavelength can be obtained. Furthermore, when the relationship is applied in the experimental setup by point-by-point modulation index modification for gas detection, the results show good agreement with the theoretical profile and signal waveform distortion (such as the amplitude modulation effect caused by diode laser) can be suppressed. Besides, the method of modulation index adjustment can be used in many other aspects which involve profile improvement. In practical applications, when the amplitude modulation effect can be neglected and the stability of the detection system is limited by the sampling rate of analog-to-digital, modulation index adjustment can be used to improve detection into softer inflection points and solve the insufficient sampling problem. As a result, measurement stability is improved by 40%.

  11. Modulation Index Adjustment for Recovery of Pure Wavelength Modulation Spectroscopy Second Harmonic Signal Waveforms

    PubMed Central

    Wei, Wei; Chang, Jun; Wang, Qiang; Qin, Zengguang

    2017-01-01

    A new technique of modulation index adjustment for pure wavelength modulation spectroscopy second harmonic signal waveforms recovery is presented. As the modulation index is a key parameter in determining the exact form of the signals generated by the technique of wavelength modulation spectroscopy, the method of modulation index adjustment is applied to recover the second harmonic signal with wavelength modulation spectroscopy. By comparing the measured profile with the theoretical profile by calculation, the relationship between the modulation index and average quantities of the scanning wavelength can be obtained. Furthermore, when the relationship is applied in the experimental setup by point-by-point modulation index modification for gas detection, the results show good agreement with the theoretical profile and signal waveform distortion (such as the amplitude modulation effect caused by diode laser) can be suppressed. Besides, the method of modulation index adjustment can be used in many other aspects which involve profile improvement. In practical applications, when the amplitude modulation effect can be neglected and the stability of the detection system is limited by the sampling rate of analog-to-digital, modulation index adjustment can be used to improve detection into softer inflection points and solve the insufficient sampling problem. As a result, measurement stability is improved by 40%. PMID:28098842

  12. Longitudinal Evaluation of the Importance of Homework Assignment Completion for the Academic Performance of Middle School Students with ADHD

    PubMed Central

    Langberg, Joshua M.; Dvorsky, Melissa R.; Molitor, Stephen J.; Bourchtein, Elizaveta; Eddy, Laura D.; Smith, Zoe; Schultz, Brandon K.; Evans, Steven W.

    2016-01-01

    The primary goal of this study was to longitudinally evaluate the homework assignment completion patterns of middle school age adolescents with ADHD, their associations with academic performance, and malleable predictors of homework assignment completion. Analyses were conducted on a sample of 104 middle school students comprehensively diagnosed with ADHD and followed for 18 months. Multiple teachers for each student provided information about the percentage of homework assignments turned in at five separate timepoints and school grades were collected quarterly. Results showed that agreement between teachers with respect to students’ assignment completion was high, with an intraclass correlation of .879 at baseline. Students with ADHD were turning in an average of 12% fewer assignments each academic quarter in comparison to teacher-reported classroom averages. Regression analyses revealed a robust association between the percentage of assignments turned in at baseline and school grades 18 months later, even after controlling for baseline grades, achievement (reading and math), intelligence, family income, and race. Cross-lag analyses demonstrated that the association between assignment completion and grades was reciprocal, with assignment completion negatively impacting grades and low grades in turn being associated with decreased future homework completion. Parent ratings of homework materials management abilities at baseline significantly predicted the percentage of assignments turned in as reported by teachers 18 months later. These findings demonstrate that homework assignment completion problems are persistent across time and an important intervention target for adolescents with ADHD. PMID:26931065

  13. Physics Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Describes computer measurement of capacitor charge decay, change of fringe width with color, computer simulation of color mixing, Doppler effect/carrier waves, gravitational waves, microwave apparatus, computer simulation of Brownian motion, search coils and problems with the teaching of the relationships of velocity, frequency, and wavelength in…

  14. Effects of Small-Group Tutoring with and without Validated Classroom Instruction on At-Risk Students' Math Problem Solving: Are Two Tiers of Prevention Better Than One?

    PubMed

    Fuchs, Lynn S; Fuchs, Douglas; Craddock, Caitlin; Hollenbeck, Kurstin N; Hamlett, Carol L; Schatschneider, Christopher

    2008-01-01

    The purpose of this study was to assess the effects of small-group tutoring with and without validated classroom instruction on at-risk (AR) students' math problem solving. Stratifying within schools, 119 3(rd)-grade classes were randomly assigned to conventional or validated problem-solving instruction (Hot Math [schema-broadening instruction]). Students identified as AR (n = 243) were randomly assigned, within classroom conditions, to receive Hot Math tutoring or not. Students were tested on problem-solving and math applications measures before and after 16 weeks of intervention. Analyses of variance, which accounted for the nested structure of the data, revealed the tutored students who received validated classroom instruction achieved better than tutored students who received conventional classroom instruction (ES = 1.34). However, the advantage for tutoring over no tutoring was similar whether or not students received validated or conventional classroom instruction (ESs = 1.18 and 1.13). Tutoring, not validated classroom instruction reduced the prevalence of math difficulty. Implications for responsiveness-to-intervention prevention models and for enhancing math problem-solving instruction are discussed.

  15. Efficient Credit Assignment through Evaluation Function Decomposition

    NASA Technical Reports Server (NTRS)

    Agogino, Adrian; Turner, Kagan; Mikkulainen, Risto

    2005-01-01

    Evolutionary methods are powerful tools in discovering solutions for difficult continuous tasks. When such a solution is encoded over multiple genes, a genetic algorithm faces the difficult credit assignment problem of evaluating how a single gene in a chromosome contributes to the full solution. Typically a single evaluation function is used for the entire chromosome, implicitly giving each gene in the chromosome the same evaluation. This method is inefficient because a gene will get credit for the contribution of all the other genes as well. Accurately measuring the fitness of individual genes in such a large search space requires many trials. This paper instead proposes turning this single complex search problem into a multi-agent search problem, where each agent has the simpler task of discovering a suitable gene. Gene-specific evaluation functions can then be created that have better theoretical properties than a single evaluation function over all genes. This method is tested in the difficult double-pole balancing problem, showing that agents using gene-specific evaluation functions can create a successful control policy in 20 percent fewer trials than the best existing genetic algorithms. The method is extended to more distributed problems, achieving 95 percent performance gains over tradition methods in the multi-rover domain.

  16. Run-time scheduling and execution of loops on message passing machines

    NASA Technical Reports Server (NTRS)

    Crowley, Kay; Saltz, Joel; Mirchandaney, Ravi; Berryman, Harry

    1989-01-01

    Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.

  17. Run-time scheduling and execution of loops on message passing machines

    NASA Technical Reports Server (NTRS)

    Saltz, Joel; Crowley, Kathleen; Mirchandaney, Ravi; Berryman, Harry

    1990-01-01

    Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.

  18. On designing for quality

    NASA Technical Reports Server (NTRS)

    Vajingortin, L. D.; Roisman, W. P.

    1991-01-01

    The problem of ensuring the required quality of products and/or technological processes often becomes more difficult due to the fact that there is not general theory of determining the optimal sets of value of the primary factors, i.e., of the output parameters of the parts and units comprising an object and ensuring the correspondence of the object's parameters to the quality requirements. This is the main reason for the amount of time taken to finish complex vital article. To create this theory, one has to overcome a number of difficulties and to solve the following tasks: the creation of reliable and stable mathematical models showing the influence of the primary factors on the output parameters; finding a new technique of assigning tolerances for primary factors with regard to economical, technological, and other criteria, the technique being based on the solution of the main problem; well reasoned assignment of nominal values for primary factors which serve as the basis for creating tolerances. Each of the above listed tasks is of independent importance. An attempt is made to give solutions for this problem. The above problem dealing with quality ensuring an mathematically formalized aspect is called the multiple inverse problem.

  19. Effects of Small-Group Tutoring with and without Validated Classroom Instruction on At-Risk Students' Math Problem Solving: Are Two Tiers of Prevention Better Than One?

    PubMed Central

    Fuchs, Lynn S.; Fuchs, Douglas; Craddock, Caitlin; Hollenbeck, Kurstin N.; Hamlett, Carol L.; Schatschneider, Christopher

    2008-01-01

    The purpose of this study was to assess the effects of small-group tutoring with and without validated classroom instruction on at-risk (AR) students' math problem solving. Stratifying within schools, 119 3rd-grade classes were randomly assigned to conventional or validated problem-solving instruction (Hot Math [schema-broadening instruction]). Students identified as AR (n = 243) were randomly assigned, within classroom conditions, to receive Hot Math tutoring or not. Students were tested on problem-solving and math applications measures before and after 16 weeks of intervention. Analyses of variance, which accounted for the nested structure of the data, revealed the tutored students who received validated classroom instruction achieved better than tutored students who received conventional classroom instruction (ES = 1.34). However, the advantage for tutoring over no tutoring was similar whether or not students received validated or conventional classroom instruction (ESs = 1.18 and 1.13). Tutoring, not validated classroom instruction reduced the prevalence of math difficulty. Implications for responsiveness-to-intervention prevention models and for enhancing math problem-solving instruction are discussed. PMID:19122881

  20. A Genetic Algorithm Approach for the TV Self-Promotion Assignment Problem

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo A.; Fontes, Fernando A. C. C.; Fontes, Dalila B. M. M.

    2009-09-01

    We report on the development of a Genetic Algorithm (GA), which has been integrated into a Decision Support System to plan the best assignment of the weekly self-promotion space for a TV station. The problem addressed consists on deciding which shows to advertise and when such that the number of viewers, of an intended group or target, is maximized. The GA proposed incorporates a greedy heuristic to find good initial solutions. These solutions, as well as the solutions later obtained through the use of the GA, go then through a repair procedure. This is used with two objectives, which are addressed in turn. Firstly, it checks the solution feasibility and if unfeasible it is fixed by removing some shows. Secondly, it tries to improve the solution by adding some extra shows. Since the problem faced by the commercial TV station is too big and has too many features it cannot be solved exactly. Therefore, in order to test the quality of the solutions provided by the proposed GA we have randomly generated some smaller problem instances. For these problems we have obtained solutions on average within 1% of the optimal solution value.

  1. Mid-Infrared Fiber Lasers (Les fibres laser infrarouge moyen)

    DTIC Science & Technology

    2010-09-01

    Marcel Poulain, Université de Rennes / Le Verre Fluoré, France Fluoride Fiber Sources: Problems and Prospects Prof. Marcel Poulain from Rennes...University and Le Verre Fluoré, France, presented the problems and prospects of fluoride glass fiber sources. After some comments on pioneering...wavelength, etc. can be adjusted. Le Verre Fluoré has developed a commercialized supercontinuum source emitting from ∼0.7 µm to ∼4 µm Issues concerning

  2. Neural Meta-Memes Framework for Combinatorial Optimization

    NASA Astrophysics Data System (ADS)

    Song, Li Qin; Lim, Meng Hiot; Ong, Yew Soon

    In this paper, we present a Neural Meta-Memes Framework (NMMF) for combinatorial optimization. NMMF is a framework which models basic optimization algorithms as memes and manages them dynamically when solving combinatorial problems. NMMF encompasses neural networks which serve as the overall planner/coordinator to balance the workload between memes. We show the efficacy of the proposed NMMF through empirical study on a class of combinatorial problem, the quadratic assignment problem (QAP).

  3. Principles for problem aggregation and assignment in medium scale multiprocessors

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Saltz, Joel H.

    1987-01-01

    One of the most important issues in parallel processing is the mapping of workload to processors. This paper considers a large class of problems having a high degree of potential fine grained parallelism, and execution requirements that are either not predictable, or are too costly to predict. The main issues in mapping such a problem onto medium scale multiprocessors are those of aggregation and assignment. We study a method of parameterized aggregation that makes few assumptions about the workload. The mapping of aggregate units of work onto processors is uniform, and exploits locality of workload intensity to balance the unknown workload. In general, a finer aggregate granularity leads to a better balance at the price of increased communication/synchronization costs; the aggregation parameters can be adjusted to find a reasonable granularity. The effectiveness of this scheme is demonstrated on three model problems: an adaptive one-dimensional fluid dynamics problem with message passing, a sparse triangular linear system solver on both a shared memory and a message-passing machine, and a two-dimensional time-driven battlefield simulation employing message passing. Using the model problems, the tradeoffs are studied between balanced workload and the communication/synchronization costs. Finally, an analytical model is used to explain why the method balances workload and minimizes the variance in system behavior.

  4. Wigner functions for nonparaxial, arbitrarily polarized electromagnetic wave fields in free space.

    PubMed

    Alonso, Miguel A

    2004-11-01

    New representations are defined for describing electromagnetic wave fields in free space exactly in terms of rays for any wavelength, level of coherence or polarization, and numerical aperture, as long as there are no evanescent components. These representations correspond to tensors assigned to each ray such that the electric and magnetic energy densities, the Poynting vector, and the polarization properties of the field correspond to simple integrals involving these tensors for the rays that go through the specified point. For partially coherent fields, the ray-based approach provided by the new representations can reduce dramatically the computation times for the physical properties mentioned earlier.

  5. The NBS scale of radiance temperature

    NASA Technical Reports Server (NTRS)

    Waters, William R.; Walker, James H.; Hattenburg, Albert T.

    1988-01-01

    The measurement methods and instrumentation used in the realization and transfer of the International Practical Temperature Scale (IPTS-68) above the temperature of freezing gold are described. The determination of the ratios of spectral radiance of tungsten-strip lamps to a gold-point blackbody at a wavelength of 654.6 nm is detailed. The response linearity, spectral responsivity, scattering error, and polarization properties of the instrumentation are described. The analysis of the sources of error and estimates of uncertainty are presented. The assigned uncertainties (three standard deviations) in radiance temperature range from + or - 2 K at 2573 K to + or - 0.5 K at 1073 K.

  6. Spectroscopy by joint spectral and time domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Szkulmowski, Maciej; Tamborski, Szymon; Wojtkowski, Maciej

    2015-03-01

    We present the methodology for spectroscopic examination of absorbing media being the combination of Spectral Optical Coherence Tomography and Fourier Transform Spectroscopy. The method bases on the joint Spectral and Time OCT computational scheme and simplifies data analysis procedure as compared to the mostly used windowing-based Spectroscopic OCT methods. The proposed experimental setup is self-calibrating in terms of wavelength-pixel assignment. The performance of the method in measuring absorption spectrum was checked with the use of the reflecting phantom filled with the absorbing agent (indocyanine green). The results show quantitative accordance with the controlled exact results provided by the reference method.

  7. Submillimeter, millimeter, and microwave spectral line catalogue

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Pickett, H. M.

    1980-01-01

    A computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between O and 3000 GHz (such as; wavelengths longer than 100 m) is discussed. The catalogue was used as a planning guide and as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue was constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances.

  8. Lidar stratospheric ozone measurements at the observatoire de Haute Provence (France)

    NASA Technical Reports Server (NTRS)

    Godin, S.; Pelon, J.; Megie, G.

    1986-01-01

    Strastospheric ozone monitoring is of particular importance to confirm present day theories predicting a maximal ozone depletion, due to chlorofluorocarbon emission, in the 35 to 45 km altitude range. Measurements presently rely on both ground based and satellite-borne passive experiments. Such systems have been recently shown to have intrinsic limitations mainly due to atmospheric aerosol presence and calibration problems. During the last few years, active lidar profiling of the ozone vertical distribution by the Differential Absorption Laser technique (DIAL) in the UV wavelength range has been developed using two different laser sources: a Nd-YAG pumped dye laser which enables a large tuning range of the UV emitted wavelengths; and exciplex laser sources using xenon chloride as an active medium and emitting at 308 nm, the off wavelength being usually generated by Raman shifting techniques. Advantages and limitations of using both of these systems are briefly discussed.

  9. New Views of the Solar Corona from STEREO and SDO

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.

    2012-01-01

    In the last few years, we have been treated to an unusual visual feast of solar observations of the corona in EUV wavelengths. The observations from the two vantage points of STEREO/SECCHI are now capturing the entire solar atmosphere simultaneously in four wavelengths. The SDO/AIA images provide us with arcsecond resolution images of the full visible disk in ten wavelengths. All these data are captured with cadences of a few seconds to a few minutes. In this talk, I review some intriguing results from our first attempts to deal with these observations which touch upon the problems of coronal mass ejection initiation and solar wind generation. I will also discuss data processing techniques that may help us recover even more information from the images. The talk will contain a generous portion of beautiful EUV images and movies of the solar corona.

  10. Atmospheric Backscatter Model Development for CO Sub 2 Wavelengths

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Kent, G.; Yue, G. K.

    1982-01-01

    The results of investigations into the problems of modeling atmospheric backscatter from aerosols, in the lowest 20 km of the atmosphere, at CO2 wavelengths are presented, along with a summary of the relevant aerosol characteristics and their variability, and a discussion of the measurement techniques and errors involved. The different methods of calculating the aerosol backscattering function, both from measured aerosol characteristics and from optical measurements made at other wavelengths, are discussed in detail, and limits are placed on the accuracy of these methods. The effects of changing atmospheric humidity and temperature on the backscatter are analyzed and related to the actual atmosphere. Finally, the results of modeling CO2 backscatter in the atmosphere are presented and the variation with height and geographic location discussed, and limits placed on the magnitude of the backscattering function. Conclusions regarding modeling techniques and modeled atmospheric backscatter values are presented in tabular form.

  11. Nine-channel wavelength tunable single mode laser array based on slots.

    PubMed

    Guo, Wei-Hua; Lu, Qiaoyin; Nawrocka, Marta; Abdullaev, Azat; O'Callaghan, James; Donegan, John F

    2013-04-22

    A 9-channel wavelength tunable single-mode laser array based on slots is presented. The fabricated laser array demonstrated a threshold current in a range of 19~21 mA with the SOA unbiased at 20°C under continuous wave condition. Stable single mode performances have been observed with side-mode suppression-ratio (SMSR) > 50 dB. The output power higher than 37 mW was obtained at the SOA injected current of 70 mA for all the 9 channels within the laser array. A wavelength quasi-continuous tuning range of about 27 nm has been achieved for the laser array with the temperature variations from 10°C to 45°C. This array platform is of a single growth and monolithically integrable. It can be easily fabricated by standard photolithography. In addition, it potentially removes the yield problem due to the uncertainty of the facet cleaving.

  12. Development of online NIR urine analyzing system based on AOTF

    NASA Astrophysics Data System (ADS)

    Wan, Feng; Sun, Zhendong; Li, Xiaoxia

    2006-09-01

    In this paper, some key techniques on development of on-line MR urine analyzing system based on AOTF (Acousto - Optics Tunable Filter) are introduced. Problems about designing the optical system including collimation of incident light and working distance (the shortest distance for separating incident light and diffracted light) are analyzed and researched. DDS (Direct Digital Synthesizer) controlled by microprocessor is used to realize the wavelength scan. The experiment results show that this MR urine analyzing system based on. AOTF has 10000 - 4000cm -1 wavelength range and O.3ms wavelength transfer rate. Compare with the conventional Fourier Transform NIP. spectrophotometer for analyzing multi-components in urine, this system features low cost, small volume and on-line measurement function. Unscrambler software (multivariate statistical software by CAMO Inc. Norway) is selected as the software for processing the data. This system can realize on line quantitative analysis of protein, urea and creatinine in urine.

  13. The adaptive approach for storage assignment by mining data of warehouse management system for distribution centres

    NASA Astrophysics Data System (ADS)

    Ming-Huang Chiang, David; Lin, Chia-Ping; Chen, Mu-Chen

    2011-05-01

    Among distribution centre operations, order picking has been reported to be the most labour-intensive activity. Sophisticated storage assignment policies adopted to reduce the travel distance of order picking have been explored in the literature. Unfortunately, previous research has been devoted to locating entire products from scratch. Instead, this study intends to propose an adaptive approach, a Data Mining-based Storage Assignment approach (DMSA), to find the optimal storage assignment for newly delivered products that need to be put away when there is vacant shelf space in a distribution centre. In the DMSA, a new association index (AIX) is developed to evaluate the fitness between the put away products and the unassigned storage locations by applying association rule mining. With AIX, the storage location assignment problem (SLAP) can be formulated and solved as a binary integer programming. To evaluate the performance of DMSA, a real-world order database of a distribution centre is obtained and used to compare the results from DMSA with a random assignment approach. It turns out that DMSA outperforms random assignment as the number of put away products and the proportion of put away products with high turnover rates increase.

  14. 78 FR 6804 - Codex Alimentarius Commission: Meeting of the Codex Committee on Food Labeling

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ...; (c) Studying specific labeling problems assigned to it by Codex; and (d) Studying problems associated... the Production, Processing, Labeling and Marketing of Organically Produced Foods. (a) Use of ethylene... Washington, DC on January 24, 2013. Mary Frances Lowe, U.S. Manager for Codex Alimentarius. [FR Doc. 2013...

  15. Recalling Prerequisite Material in a Calculus II Course to Improve Student Success

    ERIC Educational Resources Information Center

    Mokry, Jeanette

    2016-01-01

    This article discusses preparation assignments used in a Calculus II course that cover material from prerequisite courses. Prior to learning new material, students work on problems outside of class involving concepts from algebra, trigonometry, and Calculus I. These problems are directly built upon in order to answer Calculus II questions,…

  16. Concordancers and Dictionaries as Problem-Solving Tools for ESL Academic Writing

    ERIC Educational Resources Information Center

    Yoon, Choongil

    2016-01-01

    The present study investigated how 6 Korean ESL graduate students in Canada used a suite of freely available reference resources, consisting of Web-based corpus tools, Google search engines, and dictionaries, for solving linguistic problems while completing an authentic academic writing assignment in English. Using a mixed methods design, the…

  17. Meanings Given to Algebraic Symbolism in Problem-Posing

    ERIC Educational Resources Information Center

    Cañadas, María C.; Molina, Marta; del Río, Aurora

    2018-01-01

    Some errors in the learning of algebra suggest that students might have difficulties giving meaning to algebraic symbolism. In this paper, we use problem posing to analyze the students' capacity to assign meaning to algebraic symbolism and the difficulties that students encounter in this process, depending on the characteristics of the algebraic…

  18. Comparison of Family Therapy Outcome with Alcohol-Abusing, Runaway Adolescents

    ERIC Educational Resources Information Center

    Slesnick, Natasha; Prestopnik, Jillian L

    2009-01-01

    Treatment evaluation for alcohol problem, runaway adolescents and their families is rare. This study recruited primary alcohol problem adolescents (N = 119) and their primary caretakers from two runaway shelters and assigned them to (a) home-based ecologically based family therapy (EBFT), (b) office-based functional family therapy (FFT), or (c)…

  19. Effectiveness of Word Solving: Integrating Morphological Problem-Solving within Comprehension Instruction for Middle School Students

    ERIC Educational Resources Information Center

    Goodwin, Amanda P.

    2016-01-01

    This study explores the effectiveness of integrating morphological instruction within comprehension strategy instruction. Participants were 203 students (N = 117 fifth-grade; 86 sixth-grade) from four urban schools who were randomly assigned to the intervention (N = 110; morphological problem-solving within comprehension strategy instruction) or…

  20. Effect of Worked Examples on Mental Model Progression in a Computer-Based Simulation Learning Environment

    ERIC Educational Resources Information Center

    Darabi, Aubteen; Nelson, David W.; Meeker, Richard; Liang, Xinya; Boulware, Wilma

    2010-01-01

    In a diagnostic problem solving operation of a computer-simulated chemical plant, chemical engineering students were randomly assigned to two groups: one studying product-oriented worked examples, the other practicing conventional problem solving. Effects of these instructional strategies on the progression of learners' mental models were examined…

  1. Turning Teaching Upside Down

    ERIC Educational Resources Information Center

    Seeley, Cathy L.

    2017-01-01

    The traditional method of teaching math--showing students how to do a procedure, then assigning problems that require them to use that exact procedure--leads to adults who don't know how to approach problems that don't look like those in their math book. Seeley describes an alternative teaching method (upside-down teaching) in which teachers give…

  2. Results and Implications of a Problem-Solving Treatment Program for Obesity.

    ERIC Educational Resources Information Center

    Mahoney, B. K.; And Others

    Data are from a large scale experimental study which was designed to evaluate a multimethod problem solving approach to obesity. Obese adult volunteers (N=90) were randomly assigned to three groups: maximal treatment, minimal treatment, and no treatment control. In the two treatment groups, subjects were exposed to bibliographic material and…

  3. Evolution of Protein Lipograms: A Bioinformatics Problem

    ERIC Educational Resources Information Center

    White, Harold B., III; Dhurjati, Prasad

    2006-01-01

    A protein lacking one of the 20 common amino acids is a protein lipogram. This open-ended problem-based learning assignment deals with the evolution of proteins with biased amino acid composition. It has students query protein and metabolic databases to test the hypothesis that natural selection has reduced the frequency of each amino acid…

  4. Congestion patterns of electric vehicles with limited battery capacity.

    PubMed

    Jing, Wentao; Ramezani, Mohsen; An, Kun; Kim, Inhi

    2018-01-01

    The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm.

  5. Parent training plus contingency management for substance abusing families: A Complier Average Causal Effects (CACE) analysis*

    PubMed Central

    Stanger, Catherine; Ryan, Stacy R.; Fu, Hongyun; Budney, Alan J.

    2011-01-01

    Background Children of substance abusers are at risk for behavioral/emotional problems. To improve outcomes for these children, we developed and tested an intervention that integrated a novel contingency management (CM) program designed to enhance compliance with an empirically-validated parent training curriculum. CM provided incentives for daily monitoring of parenting and child behavior, completion of home practice assignments, and session attendance. Methods Forty-seven mothers with substance abuse or dependence were randomly assigned to parent training + incentives (PTI) or parent training without incentives (PT). Children were 55% male, ages 2-7 years. Results Homework completion and session attendance did not differ between PTI and PT mothers, but PTI mothers had higher rates of daily monitoring. PTI children had larger reductions in child externalizing problems in all models. Complier Average Causal Effects (CACE) analyses showed additional significant effects of PTI on child internalizing problems, parent problems and parenting. These effects were not significant in standard Intent-to-Treat analyses. Conclusion Results suggest our incentive program may offer a method for boosting outcomes. PMID:21466925

  6. Congestion patterns of electric vehicles with limited battery capacity

    PubMed Central

    2018-01-01

    The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm. PMID:29543875

  7. IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning

    PubMed Central

    2018-01-01

    Human body motion analysis based on wearable inertial measurement units (IMUs) receives a lot of attention from both the research community and the and industrial community. This is due to the significant role in, for instance, mobile health systems, sports and human computer interaction. In sensor based activity recognition, one of the major issues for obtaining reliable results is the sensor placement/assignment on the body. For inertial motion capture (joint kinematics estimation) and analysis, the IMU-to-segment (I2S) assignment and alignment are central issues to obtain biomechanical joint angles. Existing approaches for I2S assignment usually rely on hand crafted features and shallow classification approaches (e.g., support vector machines), with no agreement regarding the most suitable features for the assignment task. Moreover, estimating the complete orientation alignment of an IMU relative to the segment it is attached to using a machine learning approach has not been shown in literature so far. This is likely due to the high amount of training data that have to be recorded to suitably represent possible IMU alignment variations. In this work, we propose online approaches for solving the assignment and alignment tasks for an arbitrary amount of IMUs with respect to a biomechanical lower body model using a deep learning architecture and windows of 128 gyroscope and accelerometer data samples. For this, we combine convolutional neural networks (CNNs) for local filter learning with long-short-term memory (LSTM) recurrent networks as well as generalized recurrent units (GRUs) for learning time dynamic features. The assignment task is casted as a classification problem, while the alignment task is casted as a regression problem. In this framework, we demonstrate the feasibility of augmenting a limited amount of real IMU training data with simulated alignment variations and IMU data for improving the recognition/estimation accuracies. With the proposed approaches and final models we achieved 98.57% average accuracy over all segments for the I2S assignment task (100% when excluding left/right switches) and an average median angle error over all segments and axes of 2.91° for the I2S alignment task. PMID:29351262

  8. Emissivity measurements of shocked tin using a multi-wavelength integrating sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seifter, A; Holtkamp, D B; Iverson, A J

    Pyrometric measurements of radiance to determine temperature have been performed on shock physics experiments for decades. However, multi-wavelength pyrometry schemes sometimes fail to provide credible temperatures in experiments, which incur unknown changes in sample emissivity, because an emissivity change also affects the spectral radiance. Hence, for shock physics experiments using pyrometry to measure temperatures, it is essential to determine the dynamic sample emissivity. The most robust way to determine the normal spectral emissivity is to measure the spectral normal-hemispherical reflectance using an integrating sphere. In this paper we describe a multi-wavelength (1.6–5.0 μm) integrating sphere system that utilizes a “reversed”more » scheme, which we use for shock physics experiments. The sample to be shocked is illuminated uniformly by scattering broadband light from inside a sphere onto the sample. A portion of the light reflected from the sample is detected at a point 12° from normal to the sample surface. For this experiment, we used the system to measure emissivity of shocked tin at four wavelengths for shock stress values between 17 and 33 GPa. The results indicate a large increase in effective emissivity upon shock release from tin when the shock is above 24–25 GPa, a shock stress that partially melts the sample. We also recorded an IR image of one of the shocked samples through the integrating sphere, and the emissivity inferred from the image agreed well with the integrating-sphere, pyrometer-detector data. Here, we discuss experimental data, uncertainties, and a data analysis process. We also describe unique emissivity-measurement problems arising from shock experiments and methods to overcome such problems.« less

  9. Near-infrared spectra of the Martian surface: Reading between the lines

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Bell, J. F., III

    1993-01-01

    Moderate-resolution near-infrared (NIR) spectra of Mars have been widely used in studies of the Martian surface because many candidate surface materials have distinctive absorption features at these wavelengths. Recent advances in NIR detector technology and instrumentation have also encouraged studies in this spectral region. The use of moderate spectral resolution has often been justified for NIR surface observations because the spectral features produced by most surface materials are relatively broad, and easily discriminated at this resolution. In spite of this, NIR spectra of Mars are usually very difficult to interpret quantitatively. One problem is that NIR surface absorption features are often only a few percent deep, requiring observations with great signal-to-noise ratios. A more significant problem is that gases in the Martian atmosphere contribute numerous absorption features at these wavelengths. Ground-based observers must also contend with variable absorption by several gases in the Earth's atmosphere (H2O, CO2, O3, N2O, CH4, O2). The strong CO2 bands near 1.4, 1.6, 2.0, 2.7, 4.3, and 4.8 micrometers largely preclude the analysis of surface spectral features at these wavelengths. Martian atmospheric water vapor also contributes significant absorption near 1.33, 1.88, and 2.7 micrometers, but water vapor in the Earth's atmosphere poses a much larger problem to ground-based studies of these spectral regions. The third most important NIR absorber in the Martian atmosphere is CO. This gas absorbs most strongly in the relatively-transparent spectral windows near 4.6 and 2.3 micrometers. It also produces 1-10 percent absorption in the solar spectrum at these NIR wavelengths. This solar CO absorption cannot be adequately removed by dividing the Martian spectrum by that of a star, as is commonly done to calibrate ground-based spectroscopic observations, because most stars do not have identical amounts of CO absorption in their spectra. Here, we describe tow effective methods for eliminating contamination of Martian surface spectra by absorption in the solar, terrestrial, and Martian atmospheres. Both methods involve the use of very-high-resolution spectra that completely resolve the narrow atmospheric absorption lines.

  10. Causal correlation of foliar biochemical concentrations with AVIRIS spectra using forced entry linear regression

    NASA Technical Reports Server (NTRS)

    Dawson, Terence P.; Curran, Paul J.; Kupiec, John A.

    1995-01-01

    A major goal of airborne imaging spectrometry is to estimate the biochemical composition of vegetation canopies from reflectance spectra. Remotely-sensed estimates of foliar biochemical concentrations of forests would provide valuable indicators of ecosystem function at regional and eventually global scales. Empirical research has shown a relationship exists between the amount of radiation reflected from absorption features and the concentration of given biochemicals in leaves and canopies (Matson et al., 1994, Johnson et al., 1994). A technique commonly used to determine which wavelengths have the strongest correlation with the biochemical of interest is unguided (stepwise) multiple regression. Wavelengths are entered into a multivariate regression equation, in their order of importance, each contributing to the reduction of the variance in the measured biochemical concentration. A significant problem with the use of stepwise regression for determining the correlation between biochemical concentration and spectra is that of 'overfitting' as there are significantly more wavebands than biochemical measurements. This could result in the selection of wavebands which may be more accurately attributable to noise or canopy effects. In addition, there is a real problem of collinearity in that the individual biochemical concentrations may covary. A strong correlation between the reflectance at a given wavelength and the concentration of a biochemical of interest, therefore, may be due to the effect of another biochemical which is closely related. Furthermore, it is not always possible to account for potentially suitable waveband omissions in the stepwise selection procedure. This concern about the suitability of stepwise regression has been identified and acknowledged in a number of recent studies (Wessman et al., 1988, Curran, 1989, Curran et al., 1992, Peterson and Hubbard, 1992, Martine and Aber, 1994, Kupiec, 1994). These studies have pointed to the lack of a physical link between wavelengths chosen by stepwise regression and the biochemical of interest, and this in turn has cast doubts on the use of imaging spectrometry for the estimation of foliar biochemical concentrations at sites distant from the training sites. To investigate this problem, an analysis was conducted on the variation in canopy biochemical concentrations and reflectance spectra using forced entry linear regression.

  11. Simulation of light propagation in the thin-film waveguide lens

    NASA Astrophysics Data System (ADS)

    Malykh, M. D.; Divakov, D. V.; Sevastianov, L. A.; Sevastianov, A. L.

    2018-04-01

    In this paper we investigate the solution of the problem of modeling the propagation of electromagnetic radiation in three-dimensional integrated optical structures, such as waveguide lenses. When propagating through three-dimensional waveguide structures the waveguide modes can be hybridized, so the mathematical model of their propagation must take into account the connection of TE- and TM-mode components. Therefore, an adequate consideration of hybridization of the waveguide modes is possible only in vector formulation of the problem. An example of three-dimensional structure that hybridizes waveguide modes is the Luneburg waveguide lens, which also has focusing properties. If the waveguide lens has a radius of the order of several tens of wavelengths, its variable thickness at distances of the order of several wavelengths is almost constant. Assuming in this case that the electromagnetic field also varies slowly in the direction perpendicular to the direction of propagation, one can introduce a small parameter characterizing this slow varying and decompose the solution in powers of the small parameter. In this approach, in the zeroth approximation, scalar diffraction problems are obtained, the solution of which is less resource-consuming than the solution of vector problems. The calculated first-order corrections of smallness describe the connection of TE- and TM-modes, so the solutions obtained are weakly-hybridized modes. The formulation of problems and methods for their numerical solution in this paper are based on the authors' research on waveguide diffraction on a lens in a scalar formulation.

  12. Estimation of sex-specific survival from capture-recapture data when sex is not always known

    USGS Publications Warehouse

    Nichols, J.D.; Kendall, W.L.; Hines, J.E.; Spendelow, J.A.

    2004-01-01

    Many animals lack obvious sexual dimorphism, making assignment of sex difficult even for observed or captured animals. For many such species it is possible to assign sex with certainty only at some occasions; for example, when they exhibit certain types of behavior. A common approach to handling this situation in capture-recapture studies has been to group capture histories into those of animals eventually identified as male and female and those for which sex was never known. Because group membership is dependent on the number of occasions at which an animal was caught or observed (known sex animals, on average, will have been observed at more occasions than unknown-sex animals), survival estimates for known-sex animals will be positively biased, and those for unknown animals will be negatively biased. In this paper, we develop capture-recapture models that incorporate sex ratio and sex assignment parameters that permit unbiased estimation in the face of this sampling problem. We demonstrate the magnitude of bias in the traditional capture-recapture approach to this sampling problem, and we explore properties of estimators from other ad hoc approaches. The model is then applied to capture-recapture data for adult Roseate Terns (Sterna dougallii) at Falkner Island, Connecticut, 1993-2002. Sex ratio among adults in this population favors females, and we tested the hypothesis that this population showed sex-specific differences in adult survival. Evidence was provided for higher survival of adult females than males, as predicted. We recommend use of this modeling approach for future capture-recapture studies in which sex cannot always be assigned to captured or observed animals. We also place this problem in the more general context of uncertainty in state classification in multistate capture-recapture models.

  13. Assessment of a novel group-centered testing schema in an upper-level undergraduate molecular biotechnology course.

    PubMed

    Srougi, Melissa C; Miller, Heather B; Witherow, D Scott; Carson, Susan

    2013-01-01

    Providing students with assignments that focus on critical thinking is an important part of their scientific and intellectual development. However, as class sizes increase, so does the grading burden, prohibiting many faculty from incorporating critical thinking assignments in the classroom. In an effort to continue to provide our students with meaningful critical thinking exercises, we implemented a novel group-centered, problem-based testing scheme. We wanted to assess how performing critical thinking problem sets as group work compares to performing the sets as individual work, in terms of student attitudes and learning outcomes. During two semesters of our recombinant DNA course, students had the same lecture material and similar assessments. In the Fall semester, student learning was assessed by two collaborative take-home exams, followed immediately by individual, closed-book in-class exams on the same content, as well as a final cumulative exam. Student teams on the take-home exams were instructor-assigned, and each team turned in one collaborative exam. In the Spring semester, the control group of students were required to turn in their own individual take-home exams, followed by the in-class exams and final cumulative exam. For the majority of students, learning outcomes were met, regardless of whether they worked in teams. In addition, collaborative learning was favorably received by students and grading was reduced for instructors. These data suggest that group-centered, problem-based learning is a useful model for achievement of student learning outcomes in courses where it would be infeasible to provide feedback on individual critical thinking assignments due to grading volume. Copyright © 2013 Wiley Periodicals, Inc.

  14. Faster than classical quantum algorithm for dense formulas of exact satisfiability and occupation problems

    NASA Astrophysics Data System (ADS)

    Mandrà, Salvatore; Giacomo Guerreschi, Gian; Aspuru-Guzik, Alán

    2016-07-01

    We present an exact quantum algorithm for solving the Exact Satisfiability problem, which belongs to the important NP-complete complexity class. The algorithm is based on an intuitive approach that can be divided into two parts: the first step consists in the identification and efficient characterization of a restricted subspace that contains all the valid assignments of the Exact Satisfiability; while the second part performs a quantum search in such restricted subspace. The quantum algorithm can be used either to find a valid assignment (or to certify that no solution exists) or to count the total number of valid assignments. The query complexities for the worst-case are respectively bounded by O(\\sqrt{{2}n-{M\\prime }}) and O({2}n-{M\\prime }), where n is the number of variables and {M}\\prime the number of linearly independent clauses. Remarkably, the proposed quantum algorithm results to be faster than any known exact classical algorithm to solve dense formulas of Exact Satisfiability. As a concrete application, we provide the worst-case complexity for the Hamiltonian cycle problem obtained after mapping it to a suitable Occupation problem. Specifically, we show that the time complexity for the proposed quantum algorithm is bounded by O({2}n/4) for 3-regular undirected graphs, where n is the number of nodes. The same worst-case complexity holds for (3,3)-regular bipartite graphs. As a reference, the current best classical algorithm has a (worst-case) running time bounded by O({2}31n/96). Finally, when compared to heuristic techniques for Exact Satisfiability problems, the proposed quantum algorithm is faster than the classical WalkSAT and Adiabatic Quantum Optimization for random instances with a density of constraints close to the satisfiability threshold, the regime in which instances are typically the hardest to solve. The proposed quantum algorithm can be straightforwardly extended to the generalized version of the Exact Satisfiability known as Occupation problem. The general version of the algorithm is presented and analyzed.

  15. The Effect of Weak Resistivity and Weak Thermal Diffusion on Short-wavelength Magnetic Buoyancy Instability

    NASA Astrophysics Data System (ADS)

    Gradzki, Marek J.; Mizerski, Krzysztof A.

    2018-03-01

    Magnetic buoyancy instability in weakly resistive and thermally conductive plasma is an important mechanism of magnetic field expulsion in astrophysical systems. It is often invoked, e.g., in the context of the solar interior. Here, we revisit a problem introduc`ed by Gilman: the short-wavelength linear stability of a plane layer of compressible isothermal and weakly diffusive fluid permeated by a horizontal magnetic field of strength decreasing with height. In this physical setting, we investigate the effect of weak resistivity and weak thermal conductivity on the short-wavelength perturbations, localized in the vertical direction, and show that the presence of diffusion allows to establish the wavelength of the most unstable mode, undetermined in an ideal fluid. When diffusive effects are neglected, the perturbations are amplified at a rate that monotonically increases as the wavelength tends to zero. We demonstrate that, when the resistivity and thermal conduction are introduced, the wavelength of the most unstable perturbation is established and its scaling law with the diffusion parameters depends on gradients of the mean magnetic field, temperature, and density. Three main dynamical regimes are identified, with the wavelength of the most unstable mode scaling as either λ /d∼ {{ \\mathcal U }}κ 3/5 or λ /d∼ {{ \\mathcal U }}κ 3/4 or λ /d∼ {{ \\mathcal U }}κ 1/3, where d is the layer thickness and {{ \\mathcal U }}κ is the ratio of the characteristic thermal diffusion velocity scale to the free-fall velocity. Our analytic results are backed up by a series of numerical solutions. The two-dimensional interchange modes are shown to dominate over three-dimensional ones when the magnetic field and/or temperature gradients are strong enough.

  16. Studies of Radiation-Induced Defects in Li2SiO3:Sm Phosphor Material

    NASA Astrophysics Data System (ADS)

    Singh, N.; Singh, Vijay; Watanabe, S.; Gundu Rao, T. K.; Chubaci, J. F. D.; Cano, N. F.; Pathak, M. S.; Singh, Pramod K.; Dhoble, S. J.

    2017-01-01

    Li2SiO3:Sm was synthesized by the solution combustion method. Powder x-ray diffraction technique was used to find the phase formation. Li2SiO3:Sm exhibits thermoluminescence (TL) peaks at approximately 140°C, 155°C, 190°C, 250°C, and 405°C. Three defect centers contribute to the observed electron spin resonance spectrum from the gamma irradiated phosphor. Center I with principal g-values g || = 2.0206 and g ⊥ = 2.0028 is identified as an O2 - ion while center II, with an isotropic g-factor 2.0039, is assigned to an F +-type center. Center III is assigned to a Ti3+ center. The Ti3+ center is related to the 250°C TL peak while the O2 - ion also correlates with the main TL peak at 250°C. An additional defect center is observed during thermal annealing experiments, and the center (assigned to F + center) seems to originate from an F center. The F center appears to be associated with the high temperature TL peak in a Li2SiO3:Sm phosphor. The luminescence spectrum reveals the dominant emission peaks at 605 (4G5/2 → 6H7/2) nm under the excitation wavelength of 402 nm.

  17. Nanostructured crystals of fluorite phases Sr1 - x R x F2 + x ( R are rare-earth elements) and their ordering: IV. Study of the optical transmission spectra in the 2-17-μm wavelength range

    NASA Astrophysics Data System (ADS)

    Fedorov, V. A.; Karimov, D. N.; Komar'kova, O. N.; Krivandina, E. A.; Zhmurova, Z. I.; Sobolev, B. P.

    2010-01-01

    Transmission spectra of two-component crystals of Sr1- x R x F2+ x ( R = Y, La-Lu; 0 ≤ x ≤ 0.5) in the 1-17-μm wavelength range were studied. The spectral characteristics of these crystals and of single-component crystals of MF2 ( M = Ca, Sr, or Ba) and RF3 ( R = La-Nd) were compared. The transmission cutoff of Sr1- x R x F2+ x crystals is shifted to shorter wavelengths with increasing x. The same tendency is observed with the increasing atomic number R of rare-earth elements for two isoconcentration series of Sr1- x R x F2+ x ( x ˜ 0.10 and 0.28). This tendency is pronounced at large x. The transmission cutoff of Sr1- x R x F2+ x crystals can be varied in the range of from 10.7 to 12.2 μm by changing their qualitative ( R) and quantitative ( x) composition. Hence, these crystals can be assigned to multicomponent fluoride optical materials with controlled optical characteristics. The Sr1- x R x F2+ x crystals, where R = Ce-Sm, were shown to be promising materials for the design of selective optical filters in the 2-10-μm spectral range.

  18. A multi-period capacitated school location problem with modular equipment and closest assignment considerations

    NASA Astrophysics Data System (ADS)

    Delmelle, Eric M.; Thill, Jean-Claude; Peeters, Dominique; Thomas, Isabelle

    2014-07-01

    In rapidly growing urban areas, it is deemed vital to expand (or contract) an existing network of public facilities to meet anticipated changes in the level of demand. We present a multi-period capacitated median model for school network facility location planning that minimizes transportation costs, while functional costs are subject to a budget constraint. The proposed Vintage Flexible Capacitated Location Problem (ViFCLP) has the flexibility to account for a minimum school-age closing requirement, while the maximum capacity of each school can be adjusted by the addition of modular units. Non-closest assignments are controlled by the introduction of a parameter penalizing excess travel. The applicability of the ViFCLP is illustrated on a large US school system (Charlotte-Mecklenburg, North Carolina) where high school demand is expected to grow faster with distance to the city center. Higher school capacities and greater penalty on travel impedance parameter reduce the number of non-closest assignments. The proposed model is beneficial to policy makers seeking to improve the provision and efficiency of public services over a multi-period planning horizon.

  19. Cell transmission model of dynamic assignment for urban rail transit networks.

    PubMed

    Xu, Guangming; Zhao, Shuo; Shi, Feng; Zhang, Feilian

    2017-01-01

    For urban rail transit network, the space-time flow distribution can play an important role in evaluating and optimizing the space-time resource allocation. For obtaining the space-time flow distribution without the restriction of schedules, a dynamic assignment problem is proposed based on the concept of continuous transmission. To solve the dynamic assignment problem, the cell transmission model is built for urban rail transit networks. The priority principle, queuing process, capacity constraints and congestion effects are considered in the cell transmission mechanism. Then an efficient method is designed to solve the shortest path for an urban rail network, which decreases the computing cost for solving the cell transmission model. The instantaneous dynamic user optimal state can be reached with the method of successive average. Many evaluation indexes of passenger flow can be generated, to provide effective support for the optimization of train schedules and the capacity evaluation for urban rail transit network. Finally, the model and its potential application are demonstrated via two numerical experiments using a small-scale network and the Beijing Metro network.

  20. Being "SMART" About Adolescent Conduct Problems Prevention: Executing a SMART Pilot Study in a Juvenile Diversion Agency.

    PubMed

    August, Gerald J; Piehler, Timothy F; Bloomquist, Michael L

    2016-01-01

    The development of adaptive treatment strategies (ATS) represents the next step in innovating conduct problems prevention programs within a juvenile diversion context. Toward this goal, we present the theoretical rationale, associated methods, and anticipated challenges for a feasibility pilot study in preparation for implementing a full-scale SMART (i.e., sequential, multiple assignment, randomized trial) for conduct problems prevention. The role of a SMART design in constructing ATS is presented. The SMART feasibility pilot study includes a sample of 100 youth (13-17 years of age) identified by law enforcement as early stage offenders and referred for precourt juvenile diversion programming. Prior data on the sample population detail a high level of ethnic diversity and approximately equal representations of both genders. Within the SMART, youth and their families are first randomly assigned to one of two different brief-type evidence-based prevention programs, featuring parent-focused behavioral management or youth-focused strengths-building components. Youth who do not respond sufficiently to brief first-stage programming will be randomly assigned a second time to either an extended parent- or youth-focused second-stage programming. Measures of proximal intervention response and measures of potential candidate tailoring variables for developing ATS within this sample are detailed. Results of the described pilot study will include information regarding feasibility and acceptability of the SMART design. This information will be used to refine a subsequent full-scale SMART. The use of a SMART to develop ATS for prevention will increase the efficiency and effectiveness of prevention programing for youth with developing conduct problems.

  1. Client Contacts Improve Quality of Copywriting.

    ERIC Educational Resources Information Center

    McCann, Guy

    1988-01-01

    Discusses the advantages of using real-life clients for class assignments in copywriting courses. Presents suggestions for client sources and identifies possible problems which may be encountered. (MM)

  2. Fragment assignment in the cloud with eXpress-D

    PubMed Central

    2013-01-01

    Background Probabilistic assignment of ambiguously mapped fragments produced by high-throughput sequencing experiments has been demonstrated to greatly improve accuracy in the analysis of RNA-Seq and ChIP-Seq, and is an essential step in many other sequence census experiments. A maximum likelihood method using the expectation-maximization (EM) algorithm for optimization is commonly used to solve this problem. However, batch EM-based approaches do not scale well with the size of sequencing datasets, which have been increasing dramatically over the past few years. Thus, current approaches to fragment assignment rely on heuristics or approximations for tractability. Results We present an implementation of a distributed EM solution to the fragment assignment problem using Spark, a data analytics framework that can scale by leveraging compute clusters within datacenters–“the cloud”. We demonstrate that our implementation easily scales to billions of sequenced fragments, while providing the exact maximum likelihood assignment of ambiguous fragments. The accuracy of the method is shown to be an improvement over the most widely used tools available and can be run in a constant amount of time when cluster resources are scaled linearly with the amount of input data. Conclusions The cloud offers one solution for the difficulties faced in the analysis of massive high-thoughput sequencing data, which continue to grow rapidly. Researchers in bioinformatics must follow developments in distributed systems–such as new frameworks like Spark–for ways to port existing methods to the cloud and help them scale to the datasets of the future. Our software, eXpress-D, is freely available at: http://github.com/adarob/express-d. PMID:24314033

  3. A modeling of dynamic storage assignment for order picking in beverage warehousing with Drive-in Rack system

    NASA Astrophysics Data System (ADS)

    Hadi, M. Z.; Djatna, T.; Sugiarto

    2018-04-01

    This paper develops a dynamic storage assignment model to solve storage assignment problem (SAP) for beverages order picking in a drive-in rack warehousing system to determine the appropriate storage location and space for each beverage products dynamically so that the performance of the system can be improved. This study constructs a graph model to represent drive-in rack storage position then combine association rules mining, class-based storage policies and an arrangement rule algorithm to determine an appropriate storage location and arrangement of the product according to dynamic orders from customers. The performance of the proposed model is measured as rule adjacency accuracy, travel distance (for picking process) and probability a product become expiry using Last Come First Serve (LCFS) queue approach. Finally, the proposed model is implemented through computer simulation and compare the performance for different storage assignment methods as well. The result indicates that the proposed model outperforms other storage assignment methods.

  4. Protein assignments without peak lists using higher-order spectra.

    PubMed

    Benison, Gregory; Berkholz, Donald S; Barbar, Elisar

    2007-12-01

    Despite advances in automating the generation and manipulation of peak lists for assigning biomolecules, there are well-known advantages to working directly with spectra: the eye is still superior to computer algorithms when it comes to picking out peak relationships from contour plots in the presence of confounding factors such as noise, overlap, and spectral artifacts. Here, we present constructs called higher-order spectra for identifying, through direct visual examination, many of the same relationships typically identified by searching peak lists, making them another addition to the set of tools (alongside peak picking and automated assignment) that can be used to solve the assignment problem. The technique is useful for searching for correlated peaks in any spectrum type. Application of this technique to novel, complete sequential assignment of two proteins (AhpFn and IC74(84-143)) is demonstrated. The program "burrow-owl" for the generation and display of higher-order spectra is available at (http://sourceforge.net/projects/burrow-owl) or from the authors.

  5. Mixed pyruvate labeling enables backbone resonance assignment of large proteins using a single experiment.

    PubMed

    Robson, Scott A; Takeuchi, Koh; Boeszoermenyi, Andras; Coote, Paul W; Dubey, Abhinav; Hyberts, Sven; Wagner, Gerhard; Arthanari, Haribabu

    2018-01-24

    Backbone resonance assignment is a critical first step in the investigation of proteins by NMR. This is traditionally achieved with a standard set of experiments, most of which are not optimal for large proteins. Of these, HNCA is the most sensitive experiment that provides sequential correlations. However, this experiment suffers from chemical shift degeneracy problems during the assignment procedure. We present a strategy that increases the effective resolution of HNCA and enables near-complete resonance assignment using this single HNCA experiment. We utilize a combination of 2- 13 C and 3- 13 C pyruvate as the carbon source for isotope labeling, which suppresses the one bond ( 1 J αβ ) coupling providing enhanced resolution for the Cα resonance and amino acid-specific peak shapes that arise from the residual coupling. Using this approach, we can obtain near-complete (>85%) backbone resonance assignment of a 42 kDa protein using a single HNCA experiment.

  6. A novel technology for measuring the eruption temperature of silicate lavas with remote sensing: Application to Io and other planets

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard; Gunapala, Sarath; Soibel, Alexander; Ting, David; Rafol, Sir; Blackwell, Megan; Hayne, Paul O.; Kelly, Michael

    2017-09-01

    The highly variable and unpredictable magnitude of thermal emission from evolving volcanic eruptions creates saturation problems for remote sensing instruments observing eruptions on Earth and on Io, the highly volcanic moon of Jupiter. For Io, it is desirable to determine the temperature of the erupting lavas as this measurement constrains lava composition. One method of determining lava eruption temperature is by measuring radiant flux at two or more wavelengths and fitting a blackbody thermal emission function. Only certain styles of volcanic activity are suitable, those where detectable thermal emission is from a restricted range of surface temperatures close to the eruption temperature. Volcanic processes where this occurs include large lava fountains; smaller lava fountains common in active lava lakes; and lava tube skylights. Problems that must be overcome to obtain usable data are: (1) the rapid cooling of the lava between data acquisitions at different wavelengths, (2) the unknown magnitude of thermal emission, which has often led to detector saturation, and (3) thermal emission changing on a shorter timescale than the observation integration time. We can overcome these problems by using the HOT-BIRD detector and a novel, advanced digital readout circuit (D-ROIC) to achieve a wide dynamic range sufficient to image lava on Io without saturating. We have created an instrument model that allows various instrument parameters (including mirror diameter, number of signal splits, exposure duration, filter band pass, and optics transmissivity) to be tested to determine the detectability of thermal sources on Io's surface. We find that a short-wavelength infrared instrument on an Io flyby mission can achieve simultaneity of observations by splitting the incoming signal for all relevant eruption processes and still obtain data fast enough to remove uncertainties in accurate determination of the highest lava surface temperatures. Observations at 1 and 1.5 μm are sufficient for this purpose. Even with a ten-way beam split, instrument throughput generates acceptable signal-to-noise values. Accurate constraints on lava eruption temperature are also possible with a visible wavelength detector so long as data at different wavelengths are obtained simultaneously and integration time is very short. Fast integration times are important for examining the thermal emission from lava tube skylights due to rapidly changing viewing geometry during close flybys. The technology described here is applicable to instruments observing terrestrial volcanism and for investigating proposed volcanic activity on Venus, where lava composition is not known.

  7. Longitudinal evaluation of the importance of homework assignment completion for the academic performance of middle school students with ADHD.

    PubMed

    Langberg, Joshua M; Dvorsky, Melissa R; Molitor, Stephen J; Bourchtein, Elizaveta; Eddy, Laura D; Smith, Zoe; Schultz, Brandon K; Evans, Steven W

    2016-04-01

    The primary goal of this study was to longitudinally evaluate the homework assignment completion patterns of middle school age adolescents with ADHD, their associations with academic performance, and malleable predictors of homework assignment completion. Analyses were conducted on a sample of 104 middle school students comprehensively diagnosed with ADHD and followed for 18 months. Multiple teachers for each student provided information about the percentage of homework assignments turned in at five separate time points and school grades were collected quarterly. Results showed that agreement between teachers with respect to students assignment completion was high, with an intraclass correlation of .879 at baseline. Students with ADHD were turning in an average of 12% fewer assignments each academic quarter in comparison to teacher-reported classroom averages. Regression analyses revealed a robust association between the percentage of assignments turned in at baseline and school grades 18 months later, even after controlling for baseline grades, achievement (reading and math), intelligence, family income, and race. Cross-lag analyses demonstrated that the association between assignment completion and grades was reciprocal, with assignment completion negatively impacting grades and low grades in turn being associated with decreased future homework completion. Parent ratings of homework materials management abilities at baseline significantly predicted the percentage of assignments turned in as reported by teachers 18 months later. These findings demonstrate that homework assignment completion problems are persistent across time and an important intervention target for adolescents with ADHD. Copyright © 2015 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  8. A wavenumber approach to analysing the active control of plane waves with arrays of secondary sources

    NASA Astrophysics Data System (ADS)

    Elliott, Stephen J.; Cheer, Jordan; Bhan, Lam; Shi, Chuang; Gan, Woon-Seng

    2018-04-01

    The active control of an incident sound field with an array of secondary sources is a fundamental problem in active control. In this paper the optimal performance of an infinite array of secondary sources in controlling a plane incident sound wave is first considered in free space. An analytic solution for normal incidence plane waves is presented, indicating a clear cut-off frequency for good performance, when the separation distance between the uniformly-spaced sources is equal to a wavelength. The extent of the near field pressure close to the source array is also quantified, since this determines the positions of the error microphones in a practical arrangement. The theory is also extended to oblique incident waves. This result is then compared with numerical simulations of controlling the sound power radiated through an open aperture in a rigid wall, subject to an incident plane wave, using an array of secondary sources in the aperture. In this case the diffraction through the aperture becomes important when its size is compatible with the acoustic wavelength, in which case only a few sources are necessary for good control. When the size of the aperture is large compared to the wavelength, and diffraction is less important but more secondary sources need to be used for good control, the results then become similar to those for the free field problem with an infinite source array.

  9. Baroclinic instability with variable gravity: A perturbation analysis

    NASA Technical Reports Server (NTRS)

    Giere, A. C.; Fowliss, W. W.; Arias, S.

    1980-01-01

    Solutions for a quasigeostrophic baroclinic stability problem in which gravity is a function of height were obtained. Curvature and horizontal shear of the basic state flow were omitted and the vertical and horizontal temperature gradients of the basic state were taken as constant. The effect of a variable dielectric body force, analogous to gravity, on baroclinic instability for the design of a spherical, baroclinic model for Spacelab was determined. Such modeling could not be performed in a laboratory on the Earth's surface because the body force could not be made strong enough to dominate terrestrial gravity. A consequence of the body force variation and the preceding assumptions was that the potential vorticity gradient of the basic state vanished. The problem was solved using a perturbation method. The solution gives results which are qualitatively similar to Eady's results for constant gravity; a short wavelength cutoff and a wavelength of maximum growth rate were observed. The averaged values of the basic state indicate that both the wavelength range of the instability and the growth rate at maximum instability are increased. Results indicate that the presence of the variable body force will not significantly alter the dynamics of the Spacelab experiment. The solutions are also relevant to other geophysical fluid flows where gravity is constant but the static stability or Brunt-Vaisala frequency is a function of height.

  10. Imaging Radar Applications in the Death Valley Region

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.

    1996-01-01

    Death Valley has had a long history as a testbed for remote sensing techniques (Gillespie, this conference). Along with visible-near infrared and thermal IR sensors, imaging radars have flown and orbited over the valley since the 1970's, yielding new insights into the geologic applications of that technology. More recently, radar interferometry has been used to derive digital topographic maps of the area, supplementing the USGS 7.5' digital quadrangles currently available for nearly the entire area. As for their shorter-wavelength brethren, imaging radars were tested early in their civilian history in Death Valley because it has a variety of surface types in a small area without the confounding effects of vegetation. In one of the classic references of these early radar studies, in a semi-quantitative way the response of an imaging radar to surface roughness near the radar wavelength, which typically ranges from about 1 cm to 1 m was explained. This laid the groundwork for applications of airborne and spaceborne radars to geologic problems in and regions. Radar's main advantages over other sensors stems from its active nature- supplying its own illumination makes it independent of solar illumination and it can also control the imaging geometry more accurately. Finally, its long wavelength allows it to peer through clouds, eliminating some of the problems of optical sensors, especially in perennially cloudy and polar areas.

  11. New approach of a traditional analysis for predicting near-exit jet liquid instabilities

    NASA Astrophysics Data System (ADS)

    Jaramillo, Guillermo; Collicott, Steven

    2015-11-01

    Traditional linear instability theory for round liquid jets requires an exit-plane velocity profile be assumed so as to derive the characteristic growth rates and wavelengths of instabilities. This requires solving an eigenvalue problem for the Rayleigh Equation. In this new approach, a hyperbolic tangent velocity profile is assumed at the exit-plane of a round jet and a comparison is made with a hyperbolic secant profile. Temporal and Spatial Stability Analysis (TSA and SSA respectively) are the employed analytical tools to compare results of predicted most-unstable wavelengths from the given analytical velocity profiles and from previous experimental work. The local relevance of the velocity profile in the near-exit region of a liquid jet and the validity of an inviscid formulation through the Rayleigh equation are discussed as well. A comparison of numerical accuracy is made between two different mathematical approaches for the hyperbolic tangent profile with and without the Ricatti transformation. Reynolds number based on the momentum thickness of the boundary layer at the exit plane non-dimensionalizes the problem and, the Re range, based on measurements by Portillo in 2011, is 185 to 600. Wavelength measurements are taken from Portillo's experiment. School of Mechanical Engineering at Universidad del Valle, supported by a grant from Fulbright and Colciencias. Ph.D. student at the School of Aeronautics and Astronautics Purdue University.

  12. A Geographic Optimization Approach to Coast Guard Ship Basing

    DTIC Science & Technology

    2015-06-01

    information found an optimal result for partition- ing. Carlsson applies the travelling salesman problem (tries to find the shortest path to visit a list of...maximum 200 words) This thesis studies the problem of finding efficient ship base locations, area of operations (AO) among bases, and ship assignments...for a coast guard (CG) organization. This problem is faced by many CGs around the world and is motivated by the need to optimize operational outcomes

  13. Flippin' Fluid Mechanics - Using Online Technology to Enhance the In-Class Learning Experience

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; Majerich, D. M.

    2013-11-01

    This study provides an empirical analysis of using online technologies and team problem solving sessions to shift an undergraduate fluid mechanics course from a traditional lecture format to a collaborative learning environment. Students were from two consecutive semesters of the same course taught by the same professor. One group used online technologies and solved problems in class and the other did not. Out of class, the treatment group watched 72 short (11 minutes, average) video lectures covering course topics and example problems being solved. Three times a week students worked in teams of two to solve problems on desktop whiteboard tablets while the instructor and graduate assistants provided ``just-in-time'' tutoring. The number of team problems assigned during the semester exceeded 100. Weekly online homework was assigned to reinforce topics. The WileyPlus online system generated unique problem parameters for each student. The control group received three-50 minute weekly lectures. Data include three midterms and a final exam. Regression results indicate that controlling for all of the entered variables, for every one more problem solving session the student attended, the final grade was raised by 0.327 points. Thus, if a student participated in all 25 of the team problem solving sessions, the final grade would have been 8.2 points higher, a difference of nearly a grade. Using online technologies and teamwork appeared to result in improved achievement, but more research is needed to support these findings.

  14. A simple resonance enhanced laser ionization scheme for CO via the A1Π state

    NASA Astrophysics Data System (ADS)

    Sun, Z. F.; von Zastrow, A. D.; Parker, D. H.

    2017-07-01

    We investigate the laser ionization process taking place when the CO molecule is exposed to vacuum ultraviolet (VUV) radiation resonant with the CO A1Π (v = 0) ← X1Σ+ (v = 0) transition around 154 nm, along with the ultraviolet (UV) and visible (Red) radiation used to generate VUV by four-wave difference-frequency mixing. By measuring the CO+ ion recoil and a room temperature gas spectrum, it is possible to assign the ionization process as 1 + 1' + 1'' REMPI where the one-photon steps refer to the VUV, UV, and Red radiation, respectively. Resonance enhanced ionization of rotational states around J = 12 arise due to the overlap of the fixed wavelength UV (˜250 nm) with the R band-head of a transition assigned to CO E1Π (v = 6) ← A1Π (v = 0) with a term value of 104 787.5 cm-1. The REMPI process is efficient and polarization sensitive and should be useful in a wide range of studies involving nascent CO.

  15. Spectroscopic analysis of cinnamic acid using quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Vinod, K. S.; Periandy, S.; Govindarajan, M.

    2015-02-01

    In this present study, FT-IR, FT-Raman, 13C NMR and 1H NMR spectra for cinnamic acid have been recorded for the vibrational and spectroscopic analysis. The observed fundamental frequencies (IR and Raman) were assigned according to their distinctiveness region. The computed frequencies and optimized parameters have been calculated by using HF and DFT (B3LYP) methods and the corresponding results are tabulated. On the basis of the comparison between computed and experimental results assignments of the fundamental vibrational modes are examined. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by HF and DFT methods. The alternation of the vibration pattern of the pedestal molecule related to the substitutions was analyzed. The 13C and 1H NMR spectra have been recorded and the chemical shifts have been calculated using the gauge independent atomic orbital (GIAO) method. The Mulliken charges, UV spectral analysis and HOMO-LUMO analysis of have been calculated and reported. The molecular electrostatic potential (MEP) was constructed.

  16. Design of bent waveguide semiconductor lasers using nonlinear equivalent chirp

    NASA Astrophysics Data System (ADS)

    Li, Lianyan; Shi, Yuechun; Zhang, Yunshan; Chen, Xiangfei

    2018-01-01

    Reconstruction equivalent chirp (REC) technique is widely used in the design and fabrication of semiconductor laser arrays and tunable lasers with low cost and high wavelength accuracy. Bent waveguide is a promising method to suppress the zeroth order resonance, which is an intrinsic problem in REC technique. However, it may introduce basic grating chirp and deteriorate the single longitudinal mode (SLM) property of the laser. A nonlinear equivalent chirp pattern is proposed in this paper to compensate the grating chirp and improve the SLM property. It will benefit the realization of low-cost Distributed feedback (DFB) semiconductor laser arrays with accurate lasing wavelength.

  17. The cosmic-ray shock structure problem for relativistic shocks

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  18. Wavelength modulated surface enhanced (resonance) Raman scattering for background-free detection.

    PubMed

    Praveen, Bavishna B; Steuwe, Christian; Mazilu, Michael; Dholakia, Kishan; Mahajan, Sumeet

    2013-05-21

    Spectra in surface-enhanced Raman scattering (SERS) are always accompanied by a continuum emission called the 'background' which complicates analysis and is especially problematic for quantification and automation. Here, we implement a wavelength modulation technique to eliminate the background in SERS and its resonant version, surface-enhanced resonance Raman scattering (SERRS). This is demonstrated on various nanostructured substrates used for SER(R)S. An enhancement in the signal to noise ratio for the Raman bands of the probe molecules is also observed. This technique helps to improve the analytical ability of SERS by alleviating the problem due to the accompanying background and thus making observations substrate independent.

  19. Desire or Disease? Framing Obesity to Influence Attributions of Responsibility and Policy Support.

    PubMed

    McGlynn, Joseph; McGlone, Matthew S

    2018-02-01

    The way we describe health threats affects perceptions of severity and preferred solutions to reduce risk. Most people agree obesity is a problem, but differ in how they attribute responsibility for development and decline of the disease. We explored effects of message framing on attributions of responsibility and support for public obesity policies using a 3 × 2 factorial design. Participants read one of six versions of a health message describing the negative effects of obesity. Message frames influenced respondent attributions and their support for policies to reduce obesity. Those who read a message that assigned agency to the disease (e.g., Obesity causes health problems) endorsed genetics as the cause to a greater degree than those who read a semantically equivalent message that instead assigned agency to people (e.g., Obese people develop health problems). In contrast, assigning agency to people rather than to the disease prompted higher attributions of individual responsibility and support for public policies. Explicit message frames that directly connected responsibility for obesity to either individual or societal factors had no effect on respondent perceptions. Findings suggest explicit arguments may be less effective in shifting perceptions of health threats than arguments embedded in agentic message frames. The results demonstrate specific message features that influence how people attribute responsibility for the onset and solution of obesity.

  20. Future aircraft networks and schedules

    NASA Astrophysics Data System (ADS)

    Shu, Yan

    2011-07-01

    Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents computational results of these large-scale instances. To validate the models and solution algorithms developed, this thesis also compares the daily flight schedules that it designs with the schedules of the existing airlines. Furthermore, it creates instances that represent different economic and fuel-prices conditions and derives schedules under these different conditions. In addition, it discusses the implication of using new aircraft in the future flight schedules. Finally, future research in three areas---model, computational method, and simulation for validation---is proposed.

Top