Sample records for wavelength modulation method

  1. Modulation Index Adjustment for Recovery of Pure Wavelength Modulation Spectroscopy Second Harmonic Signal Waveforms.

    PubMed

    Wei, Wei; Chang, Jun; Wang, Qiang; Qin, Zengguang

    2017-01-15

    A new technique of modulation index adjustment for pure wavelength modulation spectroscopy second harmonic signal waveforms recovery is presented. As the modulation index is a key parameter in determining the exact form of the signals generated by the technique of wavelength modulation spectroscopy, the method of modulation index adjustment is applied to recover the second harmonic signal with wavelength modulation spectroscopy. By comparing the measured profile with the theoretical profile by calculation, the relationship between the modulation index and average quantities of the scanning wavelength can be obtained. Furthermore, when the relationship is applied in the experimental setup by point-by-point modulation index modification for gas detection, the results show good agreement with the theoretical profile and signal waveform distortion (such as the amplitude modulation effect caused by diode laser) can be suppressed. Besides, the method of modulation index adjustment can be used in many other aspects which involve profile improvement. In practical applications, when the amplitude modulation effect can be neglected and the stability of the detection system is limited by the sampling rate of analog-to-digital, modulation index adjustment can be used to improve detection into softer inflection points and solve the insufficient sampling problem. As a result, measurement stability is improved by 40%.

  2. Modulation Index Adjustment for Recovery of Pure Wavelength Modulation Spectroscopy Second Harmonic Signal Waveforms

    PubMed Central

    Wei, Wei; Chang, Jun; Wang, Qiang; Qin, Zengguang

    2017-01-01

    A new technique of modulation index adjustment for pure wavelength modulation spectroscopy second harmonic signal waveforms recovery is presented. As the modulation index is a key parameter in determining the exact form of the signals generated by the technique of wavelength modulation spectroscopy, the method of modulation index adjustment is applied to recover the second harmonic signal with wavelength modulation spectroscopy. By comparing the measured profile with the theoretical profile by calculation, the relationship between the modulation index and average quantities of the scanning wavelength can be obtained. Furthermore, when the relationship is applied in the experimental setup by point-by-point modulation index modification for gas detection, the results show good agreement with the theoretical profile and signal waveform distortion (such as the amplitude modulation effect caused by diode laser) can be suppressed. Besides, the method of modulation index adjustment can be used in many other aspects which involve profile improvement. In practical applications, when the amplitude modulation effect can be neglected and the stability of the detection system is limited by the sampling rate of analog-to-digital, modulation index adjustment can be used to improve detection into softer inflection points and solve the insufficient sampling problem. As a result, measurement stability is improved by 40%. PMID:28098842

  3. Optical domain analog to digital conversion methods and apparatus

    DOEpatents

    Vawter, Gregory A

    2014-05-13

    Methods and apparatus for optical analog to digital conversion are disclosed. An optical signal is converted by mapping the optical analog signal onto a wavelength modulated optical beam, passing the mapped beam through interferometers to generate analog bit representation signals, and converting the analog bit representation signals into an optical digital signal. A photodiode receives an optical analog signal, a wavelength modulated laser coupled to the photodiode maps the optical analog signal to a wavelength modulated optical beam, interferometers produce an analog bit representation signal from the mapped wavelength modulated optical beam, and sample and threshold circuits corresponding to the interferometers produce a digital bit signal from the analog bit representation signal.

  4. Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers

    NASA Astrophysics Data System (ADS)

    Sun, K.; Chao, X.; Sur, R.; Goldenstein, C. S.; Jeffries, J. B.; Hanson, R. K.

    2013-12-01

    A novel strategy has been developed for analysis of wavelength-scanned, wavelength modulation spectroscopy (WMS) with tunable diode lasers (TDLs). The method simulates WMS signals to compare with measurements to determine gas properties (e.g., temperature, pressure and concentration of the absorbing species). Injection-current-tuned TDLs have simultaneous wavelength and intensity variation, which severely complicates the Fourier expansion of the simulated WMS signal into harmonics of the modulation frequency (fm). The new method differs from previous WMS analysis strategies in two significant ways: (1) the measured laser intensity is used to simulate the transmitted laser intensity and (2) digital lock-in and low-pass filter software is used to expand both simulated and measured transmitted laser intensities into harmonics of the modulation frequency, WMS-nfm (n = 1, 2, 3,…), avoiding the need for an analytic model of intensity modulation or Fourier expansion of the simulated WMS harmonics. This analysis scheme is valid at any optical depth, modulation index, and at all values of scanned-laser wavelength. The method is demonstrated and validated with WMS of H2O dilute in air (1 atm, 296 K, near 1392 nm). WMS-nfm harmonics for n = 1 to 6 are extracted and the simulation and measurements are found in good agreement for the entire WMS lineshape. The use of 1f-normalization strategies to realize calibration-free wavelength-scanned WMS is also discussed.

  5. Dual modulation laser line-locking technique for wavelength modulation spectroscopy

    DOEpatents

    Bomse, David S.; Hovde, D. Christian; Silver, Joel A.

    2002-01-01

    Disclosed are a method and apparatus for dual modulation of an optical spectroscopy laser. Demodulation is accomplished in a manner resulting in measurement of absorbance of a gas species, as well as stabilization of laser wavelength and baseline noise reduction.

  6. Wavelength-modulated photocapacitance spectroscopy

    NASA Technical Reports Server (NTRS)

    Kamieniecki, E.; Lagowski, J.; Gatos, H. C.

    1980-01-01

    Derivative deep-level spectroscopy was achieved with wavelength-modulated photocapacitance employing MOS structures and Schottky barriers. The energy position and photoionization characteristics of deep levels of melt-grown GaAs and the Cr level in high-resistivity GaAs were determined. The advantages of this method over existing methods for deep-level spectroscopy are discussed.

  7. Calibration-free wavelength-modulation spectroscopy based on a swiftly determined wavelength-modulation frequency response function of a DFB laser.

    PubMed

    Zhao, Gang; Tan, Wei; Hou, Jiajia; Qiu, Xiaodong; Ma, Weiguang; Li, Zhixin; Dong, Lei; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Axner, Ove; Jia, Suotang

    2016-01-25

    A methodology for calibration-free wavelength modulation spectroscopy (CF-WMS) that is based upon an extensive empirical description of the wavelength-modulation frequency response (WMFR) of DFB laser is presented. An assessment of the WMFR of a DFB laser by the use of an etalon confirms that it consists of two parts: a 1st harmonic component with an amplitude that is linear with the sweep and a nonlinear 2nd harmonic component with a constant amplitude. Simulations show that, among the various factors that affect the line shape of a background-subtracted peak-normalized 2f signal, such as concentration, phase shifts between intensity modulation and frequency modulation, and WMFR, only the last factor has a decisive impact. Based on this and to avoid the impractical use of an etalon, a novel method to pre-determine the parameters of the WMFR by fitting to a background-subtracted peak-normalized 2f signal has been developed. The accuracy of the new scheme to determine the WMFR is demonstrated and compared with that of conventional methods in CF-WMS by detection of trace acetylene. The results show that the new method provides a four times smaller fitting error than the conventional methods and retrieves concentration more accurately.

  8. Wavelength locking of CW and Q-switched Er(3+) microchip lasers to acetylene absorption lines using pump-power modulation.

    PubMed

    Brunel, Marc; Vallet, Marc

    2007-02-19

    We show that modulating the diode-pump power of a microchip solid-state laser enables to lock its wavelength to a reference molecular line. The method is applied to two different types of Er,Yb:glass monolithic microchip lasers operating at 1.53 microm. First, wavelength locking of a continuous-wave dual-polarization microchip laser to acetylene absorption lines is demonstrated, without using any additional modulator, internal or external. We then show that, remarkably, this simple method is also suitable for stabilizing a passively Q-switched microchip laser. A pulsed wavelength stability of 10(-8) over 1 hour is readily observed. Applications to lidars and to microwave photonics are discussed.

  9. Single shot multi-wavelength phase retrieval with coherent modulation imaging.

    PubMed

    Dong, Xue; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang

    2018-04-15

    A single shot multi-wavelength phase retrieval method is proposed by combining common coherent modulation imaging (CMI) and a low rank mixed-state algorithm together. A radiation beam consisting of multi-wavelength is illuminated on the sample to be observed, and the exiting field is incident on a random phase plate to form speckle patterns, which is the incoherent superposition of diffraction patterns of each wavelength. The exiting complex amplitude of the sample including both the modulus and phase of each wavelength can be reconstructed simultaneously from the recorded diffraction intensity using a low rank mixed-state algorithm. The feasibility of this proposed method was verified with visible light experimentally. This proposed method not only makes CMI realizable with partially coherent illumination but also can extend its application to various traditionally unrelated fields, where several wavelengths should be considered simultaneously.

  10. Method for calibration-free scanned-wavelength modulation spectroscopy for gas sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Ronald K.; Jeffries, Jay B.; Sun, Kai

    A method of calibration-free scanned-wavelength modulation spectroscopy (WMS) absorption sensing is provided by obtaining absorption lineshape measurements of a gas sample on a sensor using 1f-normalized WMS-2f where an injection current to an injection current-tunable diode laser (TDL) is modulated at a frequency f, where a wavelength modulation and an intensity modulation of the TDL are simultaneously generated, extracting using a numerical lock-in program and a low-pass filter appropriate band-width WMS-nf (n=1, 2, . . . ) signals, where the WMS-nf signals are harmonics of the f, determining a physical property of the gas sample according to ratios of themore » WMS-nf signals, determining the zero-absorption background using scanned-wavelength WMS, and determining non-absorption losses using at least two of the harmonics, where a need for a non-absorption baseline measurement is removed from measurements in environments where collision broadening has blended transition linewidths, where calibration free WMS measurements without knowledge of the transition linewidth is enabled.« less

  11. All silicon approach to modulation and detection at λ = 2 μm

    NASA Astrophysics Data System (ADS)

    Littlejohns, Callum G.; Nedeljkovic, Milos; Cao, Wei; Soler Penades, Jordi; Hagan, David; Ackert, Jason J.; Rouifed, Mohamed Saïd.; Wang, Wanjun; Zhang, Zecen; Qiu, Haodong; Guo Xin, Tina; Knights, Andrew P.; Reed, Graham T.; Mashanovich, Goran Z.; Wang, Hong; Thomson, David J.

    2018-02-01

    Silicon photonics has traditionally focused on near infrared wavelengths, with tremendous progress seen over the past decade. However, more recently, research has extended into mid infrared wavelengths of 2 μm and beyond. Optical modulators are a key component for silicon photonics interconnects at both the conventional communication wavelengths of 1.3 μm and 1.55 μm, and the emerging mid-infrared wavelengths. The mid-infrared wavelength range is particularly interesting for a number of applications, including sensing, healthcare and communications. The absorption band of conventional germanium photodetectors only extends to approximately 1.55 μm, so alternative methods of photodetection are required for the mid-infrared wavelengths. One possible CMOS compatible solution is a silicon defect detector. Here, we present our recent results in these areas. Modulation at the wavelength of 2 μm has been theoretically investigated, and photodetection above 25 Gb/s has been practically demonstrated.

  12. Wavelength-addressed intra-board optical interconnection by plug-in alignment with a micro hole array

    NASA Astrophysics Data System (ADS)

    Nakama, Kenichi; Tokiwa, Yuu; Mikami, Osamu

    2010-09-01

    Intra-board interconnection between optical waveguide channels is suitable for assembling high-speed optoelectronic printed wiring boards (OE-PWB). Here, we propose a novel optical interconnection method combining techniques for both wavelength-based optical waveguide addressing and plug-in optical waveguide alignment with a micro-hole array (MHA). This array was fabricated by the mask transfer method. For waveguide addressing, we used a micro passive wavelength selector (MPWS) module, which is a type of Littrow mount monochromator consisting of an optical diffraction grating, a focusing lens, and the MHA. From the experimental results, we found that the wavelength addressing operation of the MPWS module was effective for intra-board optical interconnection.

  13. Fluid Properties Measurements Using Wavelength Modulation Spectroscopy with First Harmonic Detection

    NASA Technical Reports Server (NTRS)

    Silver, Joel A. (Inventor); Chen, Shin-Juh (Inventor)

    2014-01-01

    An apparatus and method for monitoring gas velocity, temperature, and pressure in combustion systems and flow devices, in particular at inlets and isolators of scramjet engines. The invention employs wavelength modulation spectroscopy with first harmonic detection and without the need to scan the full absorption spectra.

  14. Apparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes

    DOEpatents

    Buican, T.N.

    1993-05-04

    Apparatus and method is described for measuring intensities at a plurality of wavelengths and lifetimes. A source of multiple-wavelength electromagnetic radiation is passed through a first interferometer modulated at a first frequency, the output thereof being directed into a sample to be investigated. The light emitted from the sample as a result of the interaction thereof with the excitation radiation is directed into a second interferometer modulated at a second frequency, and the output detected and analyzed. In this manner excitation, emission, and lifetime information may be obtained for a multiplicity of fluorochromes in the sample.

  15. Measuring of nonlinear properties of spatial light modulator with different wavelengths

    NASA Astrophysics Data System (ADS)

    Khalid, Farah G.; Younis Al-Dabagh, Samar; Ahmed, Sudad S.; Mahmood, Aseel I.; Al-Naimee, Kais

    2018-05-01

    The non-linear optical properties of Spatial Light Modulator(SLM) represented by Nonlinear Refractive Index (NLR) and nonlinear Absorption coefficient has been measured in this work using highly sensitive method known as Z-scan technique for different wavelengths (red and green). The capability to do instant measurements of different nonlinear optical parameters lead to consider these techniques as a one of the most desired and effective methods that could apply for different materials. The results showed that the NLR were in the same power for the different wavelengths while the nonlinear absorption is higher in case of green laser.

  16. Novel two wavelength spectrophotometric methods for simultaneous determination of binary mixtures with severely overlapping spectra

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Saleh, Sarah S.; Hassan, Nagiba Y.; Salem, Hesham

    2015-02-01

    This work presents the application of different spectrophotometric techniques based on two wavelengths for the determination of severely overlapped spectral components in a binary mixture without prior separation. Four novel spectrophotometric methods were developed namely: induced dual wavelength method (IDW), dual wavelength resolution technique (DWRT), advanced amplitude modulation method (AAM) and induced amplitude modulation method (IAM). The results of the novel methods were compared to that of three well-established methods which were: dual wavelength method (DW), Vierordt's method (VD) and bivariate method (BV). The developed methods were applied for the analysis of the binary mixture of hydrocortisone acetate (HCA) and fusidic acid (FSA) formulated as topical cream accompanied by the determination of methyl paraben and propyl paraben present as preservatives. The specificity of the novel methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories.

  17. Scannerless loss modulated flash color range imaging

    DOEpatents

    Sandusky, John V [Albuquerque, NM; Pitts, Todd Alan [Rio Rancho, NM

    2008-09-02

    Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

  18. Scannerless loss modulated flash color range imaging

    DOEpatents

    Sandusky, John V [Albuquerque, NM; Pitts, Todd Alan [Rio Rancho, NM

    2009-02-24

    Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

  19. Multi-wavelength time-coincident optical communications system and methods thereof

    NASA Technical Reports Server (NTRS)

    Lekki, John (Inventor); Nguyen, Quang-Viet (Inventor)

    2009-01-01

    An optical communications transmitter includes a oscillator source, producing a clock signal, a data source, producing a data signal, a modulating circuit for modulating the clock signal using the data signal to produce modulating signals, optical drivers, receiving the modulating signals and producing optical driving signals based on the modulating signals and optical emitters, producing small numbers of photons based on the optical driving signals. The small numbers of photons are time-correlated between at least two separate optical transmission wavelengths and quantum states and the small number of photons can be detected by a receiver to reform the data signal.

  20. Characterization of an intraluminal differential frequency-domain photoacoustics system

    NASA Astrophysics Data System (ADS)

    Lashkari, Bahman; Son, Jungik; Liang, Simon; Castelino, Robin; Foster, F. Stuart; Courtney, Brian; Mandelis, Andreas

    2016-03-01

    Cardiovascular related diseases are ranked as the second highest cause of death in Canada. Among the most important cardiovascular diseases is atherosclerosis. Current methods of diagnosis of atherosclerosis consist of angiography, intravascular ultrasound (IVUS) and optical coherence tomography (OCT). None of these methods possesses adequate sensitivity, as the ideal technique should be capable of both depth profiling, as well as functional imaging. An alternative technique is photoacoustics (PA) which can perform deep imaging and spectroscopy. The presented study explores the application of wavelength-modulated differential photoacoustic radar (WM-DPAR) for characterizing arterial vessels. The wavelength-modulated differential photoacoustic technique was shown to be able to substantially increase the dynamic range and sensitivity of hemoglobin oxygenation level detection. In this work the differential PA technique was used with a very high frequency modulation range. To perform spectroscopic PA imaging, at least two wavelengths are required. The selected wavelengths for this work are 1210 nm and 980 nm. 1210 nm corresponds to the maximum optical absorption coefficient of cholesterol and cholesteryl esters which are the main constituents of plaques. Since water, elastin and collagen also have high absorption coefficients at 1210 nm, this wavelength alone cannot provide very high sensitivity and specificity. The additional wavelength, 980 nm corresponds to high absorption coefficient of those constituents of healthy artery tissue. The simultaneous application of the abovementioned wavelengths can provide higher sensitivity and improved specificity in detecting lipids in the arterial vessels.

  1. Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer

    PubMed Central

    Lee, Hwi Don; Jung, Eun Joo; Jeong, Myung Yung; Chen, Zhongping; Kim, Chang-Seok

    2014-01-01

    A novel linearized interrogation method is presented for a Fourier domain mode-locked (FDML) fiber Bragg grating (FBG) sensor system. In a high speed regime over several tens of kHz modulations, a sinusoidal wave is available to scan the center wavelength of an FDML wavelength-swept laser, instead of a conventional triangular wave. However, sinusoidal wave modulation suffers from an exaggerated non-uniform wavelength-spacing response in demodulating the time-encoded parameter to the absolute wavelength. In this work, the calibration signal from a polarization-maintaining fiber Sagnac interferometer shares the FDML wavelength-swept laser for FBG sensors to convert the time-encoded FBG signal to the wavelength-encoded uniform-spacing signal. PMID:24489440

  2. Demodulation of micro fiber-optic Fabry-Perot interferometer using subcarrier and dual-wavelength method

    NASA Astrophysics Data System (ADS)

    Lu, En; Ran, Zengling; Peng, Fei; Liu, Zhiwei; Xu, Fuguo

    2012-03-01

    Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic Fabry-Perot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.

  3. Demodulation of micro fiber-optic Fabry-Perot interferometer using subcarrier and dual-wavelength method

    NASA Astrophysics Data System (ADS)

    Ran, Zengling; Rao, Yunjiang; Liu, Zhiwei; Xu, Fuguo

    2011-05-01

    Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic fabry-periot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.

  4. Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis.

    PubMed

    Mei, Liang; Svanberg, Sune

    2015-03-20

    This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.

  5. Generic three-dimensional wavelength routers based on cross connects of multilayer diffractive elements

    NASA Astrophysics Data System (ADS)

    Deng, Xuegong; Chen, Ray T.

    2001-05-01

    We report a generic method to construct 3D wavelength routers by adapting a novel design for multi-optical wavelength interconnects (MOWI's). Optical wavelength- selective (WS) interconnections are realized by resorting to layered diffractive phase elements. Besides, we simultaneously carry out several other integrated operations on the incident beams according to their wavelengths. We demonstrate an 4 X 4 inline 3D WS optical crossconnect and a 1D 1 X 8 WS perfect shuffler. The devices are well feasible for mass production by using current standard microelectronics technologies. It is plausible that the proposed WS MOWI scenario will find critical applications in module-to-module and board-to-board optical interconnect systems, as well as in other devices for short-link multi- wavelength networks that would benefit from function integration.

  6. Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation

    NASA Astrophysics Data System (ADS)

    Fanrong, KONG; Qiuyue, NIE; Shu, LIN; Zhibin, WANG; Bowen, LI; Shulei, ZHENG; Binhao, JIANG

    2018-01-01

    The technology of radio frequency (RF) radiation intensification for radio compact antennas based on modulation and enhancement effects of sub-wavelength plasma structures represents an innovative developing strategy. It exhibits important scientific significance and promising potential of broad applications in various areas of national strategic demands, such as electrical information network and microwave communication, detection and control technology. In this paper, laboratory experiments and corresponding analyses have been carried out to investigate the modulation and enhancement technology of sub-wavelength plasma structure on the RF electromagnetic radiation. An application focused sub-wavelength plasma-added intensification up to ∼7 dB higher than the free-space radiation is observed experimentally in giga-hertz (GHz) RF band. The effective radiation enhancement bandwidth covers from 0.85 to 1.17 GHz, while the enhanced electromagnetic signals transmitted by sub-wavelength plasma structures maintain good communication quality. Particularly, differing from the traditional RF electromagnetic radiation enhancement method characterized by focusing the radiation field of antenna in a specific direction, the sub-wavelength plasma-added intensification of the antenna radiation presents an omnidirectional enhancement, which is reported experimentally for the first time. Corresponding performance characteristics and enhancement mechanism analyses are also conducted in this paper. The results have demonstrated the feasibility and promising potential of sub-wavelength plasma modulation in application focused RF communication, and provided the scientific basis for further research and development of sub-wavelength plasma enhanced compact antennas with wide-range requests and good quality for communication.

  7. Wavelength-modulation-spectroscopy for real-time, in situ NO detection in combustion gases with a 5.2 μm quantum-cascade laser

    NASA Astrophysics Data System (ADS)

    Chao, X.; Jeffries, J. B.; Hanson, R. K.

    2012-03-01

    A mid-infrared absorption strategy with calibration-free wavelength-modulation-spectroscopy (WMS) has been developed and demonstrated for real-time, in situ detection of nitric oxide in particulate-laden combustion-exhaust gases up to temperatures of 700 K. An external-cavity quantum-cascade laser (ECQCL) near 5.2 μm accessed the fundamental absorption band of NO, and a wavelength-scanned, 1 f-normalized WMS with second-harmonic detection (WMS-2 f/1 f) strategy was developed. Due to the external-cavity laser architecture, large nonlinear intensity modulation (IM) was observed when the wavelength was modulated by injection-current modulation, and the IM indices were also found to be strongly wavelength-dependent as the center wavelength was scanned with piezoelectric tuning of the cavity. A quantitative model of the 1 f-normalized WMS-2 f signal was developed and validated under laboratory conditions. A sensor was subsequently designed, built and demonstrated for real-time, in situ measurements of NO across a 3 m path in the particulate-laden exhaust of a pulverized-coal-fired power plant boiler. The 1 f-normalized WMS-2 f method proved to have better noise immunity for non-absorption transmission, than wavelength-scanned direct absorption. A 0.3 ppm-m detection limit was estimated using the R15.5 transition near 1927 cm-1 with 1 s averaging. Mid-infrared QCL-based NO absorption with 1 f-normalized WMS-2 f detection shows excellent promise for practical sensing in the combustion exhaust.

  8. Acousto-optical modulation of light at a doubled sound frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotov, V M; Averin, S V; Shkerdin, G N

    2016-02-28

    A method of acousto-optical (AO) Bragg diffraction is proposed that provides the amplitude modulation of optical radiation at a doubled acoustic frequency. The method is based on the double transmission of the light through the AO modulator made of a gyrotropic crystal and is experimentally tested by the example of the modulation of light with a wavelength of 0.63 μm, controlled by the paratellurite AO cell. (acoustooptics)

  9. Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy.

    PubMed

    Patimisco, Pietro; Sampaolo, Angelo; Bidaux, Yves; Bismuto, Alfredo; Scott, Marshall; Jiang, James; Muller, Antoine; Faist, Jerome; Tittel, Frank K; Spagnolo, Vincenzo

    2016-11-14

    We report here on a quartz-enhanced photoacoustic (QEPAS) sensor employing a quantum cascade laser (QCL) structure capable of operating in a pure amplitude or wavelength modulation configuration. The QCL structure is composed of three electrically independent sections: Gain, Phase (PS) and Master Oscillator (MO). Selective current pumping of these three sections allows obtaining laser wavelength tuning without changes in the optical power, and power modulation without emission wavelength shifts. A pure QEPAS amplitude modulation condition is obtained by modulating the PS current, while pure wavelength modulation is achieved by modulating simultaneously the MO and PS QCL sections and slowly scanning the DC current level injected in the PS section.

  10. A square-wave wavelength modulation system for automatic background correction in carbon furnace atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Bezur, L.; Marshall, J.; Ottaway, J. M.

    A square-wave wavelength modulation system, based on a rotating quartz chopper with four quadrants of different thicknesses, has been developed and evaluated as a method for automatic background correction in carbon furnace atomic emission spectrometry. Accurate background correction is achieved for the residual black body radiation (Rayleigh scatter) from the tube wall and Mie scatter from particles generated by a sample matrix and formed by condensation of atoms in the optical path. Intensity modulation caused by overlap at the edges of the quartz plates and by the divergence of the optical beam at the position of the modulation chopper has been investigated and is likely to be small.

  11. Bidirectional optical subassembly-shaped 20-Gbit/s compact single-mode four-channel wavelength-division multiplexing optical modules for optical multimedia interfaces

    NASA Astrophysics Data System (ADS)

    Lim, Kwon-Seob; Yu, Hong-Yeon; Park, Hyoung-Jun; Kang, Hyun Seo; Jang, Jae-Hyung

    2016-06-01

    Low-cost single-mode four-channel optical transmitter and receiver modules using the wavelength-division multiplexing (WDM) method have been developed for long-reach fiber optic applications. The single-mode four-channel WDM optical transmitter and receiver modules consist of two dual-wavelength optical transmitter and receiver submodules, respectively. The integration of two channels in a glass-sealed transistor outline-can package is an effective way to reduce cost and size and to extend the number of channels. The clear eye diagrams with more than about 6 dB of the extinction ratio and the minimum receiver sensitivity of lower than -16 dBm at a bit error rate of 10-12 have been obtained for the transmitter and receiver modules, respectively, at 5 Gbps/channel. The 4K ultrahigh definition contents have been transmitted over a 1-km-long single-mode fiber using a pair of proposed four-channel transmitter optical subassembly and receiver optical subassembly.

  12. Research on radiation characteristics of dipole antenna modulation by sub-wavelength inhomogeneous plasma layer

    NASA Astrophysics Data System (ADS)

    Kong, Fanrong; Chen, Peiqi; Nie, Qiuyue; Zhang, Xiaoning; Zhang, Zhen; Jiang, Binhao

    2018-02-01

    The modulation and enhancement effect of sub-wavelength plasma structures on compact antennas exhibits obvious technological advantage and considerable progress. In order to extend the availability of this technology under complex and actual environment with inhomogeneous plasma structure, a numerical simulation analysis based on finite element method has been conducted in this paper. The modulation function of the antenna radiation with sub-wavelength plasma layer located at different positions was investigated, and the inhomogeneous plasma layer with multiple electron density distribution profiles were employed to explore the effect of plasma density distribution on the antenna radiation. It has been revealed that the optical near-field modulated distance and reduced plasma distribution are more beneficial to enhance the radiation. On the basis above, an application-focused research about communication through the plasma sheath surrounding a hypersonic vehicle has been carried out aiming at exploring an effective communication window. The relevant results devote guiding significance in the field of antenna radiation modulation and enhancement, as well as the development of communication technology in hypersonic flight.

  13. Generation of a widely spaced optical frequency comb using an amplitude modulator pair

    NASA Astrophysics Data System (ADS)

    Gunning, Fatima C. G.; Ellis, Andrew D.

    2005-06-01

    Multi-wavelength sources are required for wavelength division multiplexed (WDM) optical communication systems, and typically a bank of DFB lasers is used. However, large costs are involved to provide wavelength selected sources and high precision wavelength lockers. Optical comb generation is attractive solution, minimizing the component count and improving wavelength stability. In addition, comb generation offers the potential for new WDM architectures, such as coherent WDM, as it preserves the phase relation between the generated channels. Complex comb generation systems have been introduced in the past, using fibre ring lasers [1] or non-linear effects within long fibres [2]. More recently, simpler set-ups were proposed, including hybrid amplitude-phase modulation schemes [3-5]. However, the narrow line spacing of these systems, typically 17 GHz, restricts their use to bit rates up to 10 Gbit/s. In this paper, we propose and demonstrate a simple method of comb generation that is suitable for bit rates up to 42.667 Gbit/s. The comb generator was composed of two Mach-Zehnder modulators (MZM) in series, each being driven with a sinusoidal wave at 42.667 GHz with a well-defined phase relationship. As a result, 7 comb lines separated by 42.667 GHz were generated from a single source, when amplitude up to 2.2 Vp was applied to the modulators, giving flatness better than 1 dB. By passively multiplexing 8 source lasers with the comb generator and minimising inter-modulator dispersion, it was possible to achieve a multi-wavelength transmitter with 56 channels, with flatness better than 1.2 dB across 20 nm (2.4 THz).

  14. Wavelength-modulated differential photothermal radiometry: Theory and experimental applications to glucose detection in water

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas; Guo, Xinxin

    2011-10-01

    A differential photothermal radiometry method, wavelength-modulated differential photothermal radiometry (WM-DPTR), has been developed theoretically and experimentally for noninvasive, noncontact biological analyte detection, such as blood glucose monitoring. WM-DPTR features analyte specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the base line of a prominent and isolated mid-IR analyte absorption band (here the carbon-oxygen-carbon bond in the pyran ring of the glucose molecule). A theoretical photothermal model of WM-DPTR signal generation and detection has been developed. Simulation results on water-glucose phantoms with the human blood range (0-300 mg/dl) glucose concentration demonstrated high sensitivity and resolution to meet wide clinical detection requirements. The model has also been validated by experimental data of the glucose-water system obtained using WM-DPTR.

  15. Fundamental concepts of integrated and fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.

    1995-01-01

    This chapter discusses fiber optic and integrated optic sensor concepts. Unfortunately, there is no standard method to categorize these sensor concepts. Here, fiber optic and integrated optic sensor concepts will be categorized by the primary modulation technique. These modulation techniques have been classified as: intensity, phase, wavelength, polarization, and time/frequency modulation. All modulate the output light with respect to changes in the physical or chemical property to be measured. Each primary modulation technique is then divided into fiber optic and integrated optic sections which are treated independently. For each sensor concept, possible sensor applications are discussed. The sensors and references discussed are not exhaustive, but sufficient to give the reader an overview of sensor concepts developed to date. Sensor multiplexing techniques such as wavelength division, time division, and frequency division will not be discussed as they are beyond the scope of this report.

  16. Feedback module for evaluating optical-power stabilization methods

    NASA Astrophysics Data System (ADS)

    Downing, John

    2016-03-01

    A feedback module for evaluating the efficacy of optical-power stabilization without thermoelectric coolers (TECs) is described. The module comprises a pickoff optic for sampling a light beam, a photodiode for converting the sample power to electrical current, and a temperature sensor. The components are mounted on an optical bench that makes accurate (0.05°) beam alignment practical as well as providing high thermal-conductivity among the components. The module can be mounted on existing light sources or the components can be incorporated in new designs. Evaluations of optical and electronic stabilization methods are also reported. The optical method combines a novel, weakly reflective, weakly polarizing coating on the pickoff optic with a photodiode and an automatic-power-control (APC) circuit in a closed loop. The shift of emitter wavelength with temperature, coupled with the wavelength-dependent reflectance of the pickoff optic, enable the APC circuit to compensate for temperature errors. In the electronic method, a mixed-signal processor in a quasiclosed loop generates a control signal from temperature and photocurrent inputs and feeds it back to an APC circuit to compensate for temperature errors. These methods result in temperature coefficients less than 20 ppm/°C and relative rms power equal to 05% for the optical method and 0.02% for the electronic method. The later value represents an order of magnitude improvement over rms specifications for cooled, laser-diode modules and a five-fold improvement in wall-plug efficiency is achieved by eliminating TECs.

  17. Laser-controlled optical transconductance varistor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hoang T.; Stuart, Brent C.

    2017-07-11

    An optical transconductance varistor system having a modulated radiation source configured to provide modulated stimulus, a wavelength converter operably connected to the modulated radiation source to produce a modulated stimulus having a predetermined wavelength, and a wide bandgap semiconductor photoconductive material in contact between two electrodes. The photoconductive material is operably coupled, such as by a beam transport module, to receive the modulated stimulus having the predetermined wavelength to control a current flowing through the photoconductive material when a voltage potential is present across the electrodes.

  18. Wavelength locking of single emitters and multi-emitter modules: simulation and experiments

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Rappaport, Noam; Peleg, Ophir; Berk, Yuri; Dahan, Nir; Klumel, Genady; Baskin, Ilya; Levy, Moshe

    2016-03-01

    Wavelength-stabilized high-brightness single emitters are commonly used in fiber-coupled laser diode modules for pumping Yb-doped lasers at 976 nm, and Nd-doped ones at 808 nm. We investigate the spectral behavior of single emitters under wavelength-selective feedback from a volume Bragg (or hologram) grating (VBG) in a multi-emitter module. By integrating a full VBG model as a multi-layer thin film structure with commercial raytracing software, we simulated wavelength locking conditions as a function of beam divergence and angular alignment tolerances. Good correlation between the simulated VBG feedback strength and experimentally measured locking ranges, in both VBG misalignment angle and laser temperature, is demonstrated. The challenges of assembling multi-emitter modules based on beam-stacked optical architectures are specifically addressed, where the wavelength locking conditions must be achieved simultaneously with high fiber coupling efficiency for each emitter in the module. It is shown that angular misorientation between fast and slow-axis collimating optics can have a dramatic effect on the spectral and power performance of the module. We report the development of our NEON-S wavelength-stabilized fiber laser pump module, which uses a VBG to provide wavelength-selective optical feedback in the collimated portion of the beam. Powered by our purpose-developed high-brightness single emitters, the module delivers 47 W output at 11 A from an 0.15 NA fiber and a 0.3 nm linewidth at 976 nm. Preliminary wavelength-locking results at 808 nm are also presented.

  19. Electronic band-gap modified passive silicon optical modulator at telecommunications wavelengths.

    PubMed

    Zhang, Rui; Yu, Haohai; Zhang, Huaijin; Liu, Xiangdong; Lu, Qingming; Wang, Jiyang

    2015-11-13

    The silicon optical modulator is considered to be the workhorse of a revolution in communications. In recent years, the capabilities of externally driven active silicon optical modulators have dramatically improved. Self-driven passive modulators, especially passive silicon modulators, possess advantages in compactness, integration, low-cost, etc. Constrained by a large indirect band-gap and sensitivity-related loss, the passive silicon optical modulator is scarce and has been not advancing, especially at telecommunications wavelengths. Here, a passive silicon optical modulator is fabricated by introducing an impurity band in the electronic band-gap, and its nonlinear optics and applications in the telecommunications-wavelength lasers are investigated. The saturable absorption properties at the wavelength of 1.55 μm was measured and indicates that the sample is quite sensitive to light intensity and has negligible absorption loss. With a passive silicon modulator, pulsed lasers were constructed at wavelengths at 1.34 and 1.42 μm. It is concluded that the sensitive self-driven passive silicon optical modulator is a viable candidate for photonics applications out to 2.5 μm.

  20. Mode switching in a multi-wavelength distributed feedback quantum cascade laser using an external micro-cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidler, Meinrad; Institute for Quantum Electronics, ETH Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich; Rauter, Patrick

    2014-02-03

    We demonstrate a multi-wavelength distributed feedback (DFB) quantum cascade laser (QCL) operating in a lensless external micro-cavity and achieve switchable single-mode emission at three distinct wavelengths selected by the DFB grating, each with a side-mode suppression ratio larger than 30 dB. Discrete wavelength tuning is achieved by modulating the feedback experienced by each mode of the multi-wavelength DFB QCL, resulting from a variation of the external cavity length. This method also provides a post-fabrication control of the lasing modes to correct for fabrication inhomogeneities, in particular, related to the cleaved facets position.

  1. Using a fast dual-wavelength imaging ellipsometric system to measure the flow thickness profile of an oil thin film

    NASA Astrophysics Data System (ADS)

    Kuo, Chih-Wei; Han, Chien-Yuan; Jhou, Jhe-Yi; Peng, Zeng-Yi

    2017-11-01

    Dual-wavelength light sources with stroboscopic illumination technique were applied in a process of photoelastic modulated ellipsometry to retrieve two-dimensional ellipsometric parameters of thin films on a silicon substrate. Two laser diodes were alternately switched on and modulated by a programmable pulse generator to generate four short pulses at specific temporal phase angles in a modulation cycle, and short pulses were used to freeze the intensity variation of the PEM modulated signal that allows ellipsometric images to be captured by a charge-coupled device. Although the phase retardation of a photoelastic modulator is related to the light wavelength, we employed an equivalent phase retardation technique to avoid any setting from the photoelastic modulator. As a result, the ellipsometric parameters of different wavelengths may be rapidly obtained using this dual-wavelength ellipsometric system every 4 s. Both static and dynamic experiments are demonstrated in this work.

  2. Integrated all-optical infrared switchable plasmonic quantum cascade laser.

    PubMed

    Kohoutek, John; Bonakdar, Alireza; Gelfand, Ryan; Dey, Dibyendu; Nia, Iman Hassani; Fathipour, Vala; Memis, Omer Gokalp; Mohseni, Hooman

    2012-05-09

    We report a type of infrared switchable plasmonic quantum cascade laser, in which far field light in the midwave infrared (MWIR, 6.1 μm) is modulated by a near field interaction of light in the telecommunications wavelength (1.55 μm). To achieve this all-optical switch, we used cross-polarized bowtie antennas and a centrally located germanium nanoslab. The bowtie antenna squeezes the short wavelength light into the gap region, where the germanium is placed. The perturbation of refractive index of the germanium due to the free carrier absorption produced by short wavelength light changes the optical response of the antenna and the entire laser intensity at 6.1 μm significantly. This device shows a viable method to modulate the far field of a laser through a near field interaction.

  3. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation

    DOE PAGES

    Zhang, Peng; Lee, Seungah; Yu, Hyunung; ...

    2015-06-15

    Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the corresponding localization precisions, super-resolution images were reconstructed. Depending onmore » the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions was resolved and provided more elaborate localization information. This novel fluorescence-free super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable subdiffraction limit images.« less

  4. Long-reach transmission experiment of a wavelength division multiplexed-passive optical networks transmitter based on reflective semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Jeon, Sie-Wook; Kim, Youngbok; Park, Chang-Soo

    2012-01-01

    We propose and demonstrate a long-reach wavelength division multiplexed-passive optical networks (WDM-PON) based on reflective semiconductor optical amplifiers (RSOAs) with easy maintenance of the optical source. Unlike previous studies the proposed WDM-PON uses two RSOAs: one for wavelength-selected light generation to provide a constant seed light to the second RSOA, the other for active external modulation. This method is free from intensity-fluctuated power penalties inherent to directly modulated single-RSOA sources, making long-reach transmission possible. Also, the wavelength of the modulated signal can easily be changed for the same RSOA by replacing the external feedback reflector, such as a fiber Bragg grating, or via thermal tuning. The seed light has a high-side-mode suppression ratio (SMSR) of 45 dB, and the bit error rate (BER) curve reveals that the upstream 1.25-Gb/s nonreturn-to-zero (NRZ) signal with a pseudo-random binary sequence (PRBS) of length of 215-1 has power penalties of 0.22 and 0.69 dB at BERs of 10-9 after 55-km and 110-km transmission due to fiber dispersion, respectively.

  5. Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation

    DOEpatents

    Buican, Tudor N.; Martin, John C.

    1990-01-01

    An apparatus and method simultaneously measures a plurality of spectral wavelengths present in electromagnetic radiation. A modulatable birefringent optical element is employed to divide a polarized light beam into two components, thereby producing a phase difference in two resulting light beams such that the two beams can be made to interfere with one another when recombined, the interference pattern providing the wavelength information required for the analysis of the incident light. The interferometer thus created performs in a similar manner to a Michelson interferometer, but with no moving parts, and with a resolution dependent on the degree of phase shift introduced by the modulator.

  6. Probabilistic model of nonlinear penalties due to collision-induced timing jitter for calculation of the bit error ratio in wavelength-division-multiplexed return-to-zero systems

    NASA Astrophysics Data System (ADS)

    Sinkin, Oleg V.; Grigoryan, Vladimir S.; Menyuk, Curtis R.

    2006-12-01

    We introduce a fully deterministic, computationally efficient method for characterizing the effect of nonlinearity in optical fiber transmission systems that utilize wavelength-division multiplexing and return-to-zero modulation. The method accurately accounts for bit-pattern-dependent nonlinear distortion due to collision-induced timing jitter and for amplifier noise. We apply this method to calculate the error probability as a function of channel spacing in a prototypical multichannel return-to-zero undersea system.

  7. Improvement in QEPAS system utilizing a second harmonic based wavelength calibration technique

    NASA Astrophysics Data System (ADS)

    Zhang, Qinduan; Chang, Jun; Wang, Fupeng; Wang, Zongliang; Xie, Yulei; Gong, Weihua

    2018-05-01

    A simple laser wavelength calibration technique, based on second harmonic signal, is demonstrated in this paper to improve the performance of quartz enhanced photoacoustic spectroscopy (QEPAS) gas sensing system, e.g. improving the signal to noise ratio (SNR), detection limit and long-term stability. Constant current, corresponding to the gas absorption line, combining f/2 frequency sinusoidal signal are used to drive the laser (constant driving mode), a software based real-time wavelength calibration technique is developed to eliminate the wavelength drift due to ambient fluctuations. Compared to conventional wavelength modulation spectroscopy (WMS), this method allows lower filtering bandwidth and averaging algorithm applied to QEPAS system, improving SNR and detection limit. In addition, the real-time wavelength calibration technique guarantees the laser output is modulated steadily at gas absorption line. Water vapor is chosen as an objective gas to evaluate its performance compared to constant driving mode and conventional WMS system. The water vapor sensor was designed insensitive to the incoherent external acoustic noise by the numerical averaging technique. As a result, the SNR increases 12.87 times in wavelength calibration technique based system compared to conventional WMS system. The new system achieved a better linear response (R2 = 0 . 9995) in concentration range from 300 to 2000 ppmv, and achieved a minimum detection limit (MDL) of 630 ppbv.

  8. Investigation of a GaAlAs Mach-Zehnder electro-optic modulator. M.S. Thesis. Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Materna, David M.

    1987-01-01

    A GaAs modulator operating at 0.78 to 0.88 micron wavelength has the potential to be integrated with a GaAs/GaAlAs laser diode for an integrated fiber-optic transmitter. A travelling-wave Mach-Zehnder modulator using the electro-optic effect of GaAs and operating at a wavelength of 0.82 microns has been investigated for the first time. A four layer Strip-loaded ridge optical waveguide has been analyzed using the effective index method and single mode waveguides have been designed. The electro-optic effect of GaAs has also been analyzed and a modulator using the geometry producing the maximum phase shift has been designed. A coplanar transmission line structure is used in an effort to tap the potentially higher bandwidth of travelling-wave electrodes. The modulator bandwidth has been calculated at 11.95 GHz with a required drive power of 2.335 Watts for full intensity modulation. Finally, some preliminary experiments were performed to characterize a fabrication process for the modulator.

  9. Optical modulation of quantum cascade laser with optimized excitation wavelength.

    PubMed

    Yang, Tao; Chen, Gang; Tian, Chao; Martini, Rainer

    2013-04-15

    The excitation wavelength for all-optical modulation of a 10.6 μm mid-infrared (MIR) quantum cascade laser (QCL) was varied in order to obtain maximum modulation depth. Both amplitude and wavelength modulation experiments were conducted at 820 nm and 1550 nm excitation respectively, whereby the latter matches the interband transition in the QCL active region. Experimental results show that for continuous-wave mode-operated QCL, the efficiency of free carrier generation is doubled under 1550 nm excitation compared with 820 nm excitation, resulting in an increase of the amplitude modulation index from 19% to 36%. At the same time, the maximum wavelength shift is more than doubled from 1.05 nm to 2.80 nm. Furthermore, for the first time to our knowledge, we demonstrated the optical switching of a QCL operated in pulse mode by simple variation of the excitation wavelength.

  10. A tunable single-polarization photonic crystal fiber filter based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Shuhuan; Li, Jianshe; Li, Shuguang; Liu, Qiang; Liu, Yingchao; Zhang, Zhen; Wang, Yujun

    2018-06-01

    A tunable single polarizing filter is proposed by selectively coating gold film on the air holes of photonic crystal fiber (PCF). The polarization properties of the PCF filter are evaluated by the finite-element method. Simulation results show that the loss of y-polarized core mode at 1250 and 1550 nm is 136.23 and 839.73 dB/cm, respectively. Furthermore, we innovatively combine stable modulation with flexible modulation. To be specific, the resonance wavelengths are slowly controlled in a small wavelength range by altering the diameter of the air-hole-coated gold film, while the resonance wavelengths are flexibly controlled in a wide wavelength range by altering the thickness of the gold film or the diameter of the small air holes. When the length of the PCF is 500 µm, the bandwidth of extinction ratio greater than - 20 dB is only 60 nm at the communication window of 1550 nm. It is beneficial to fabricate a narrow-band polarization filter.

  11. Demonstration of spatial-light-modulation-based four-wave mixing in cold atoms

    NASA Astrophysics Data System (ADS)

    Juo, Jz-Yuan; Lin, Jia-Kang; Cheng, Chin-Yao; Liu, Zi-Yu; Yu, Ite A.; Chen, Yong-Fan

    2018-05-01

    Long-distance quantum optical communications usually require efficient wave-mixing processes to convert the wavelengths of single photons. Many quantum applications based on electromagnetically induced transparency (EIT) have been proposed and demonstrated at the single-photon level, such as quantum memories, all-optical transistors, and cross-phase modulations. However, EIT-based four-wave mixing (FWM) in a resonant double-Λ configuration has a maximum conversion efficiency (CE) of 25% because of absorptive loss due to spontaneous emission. An improved scheme using spatially modulated intensities of two control fields has been theoretically proposed to overcome this conversion limit. In this study, we first demonstrate wavelength conversion from 780 to 795 nm with a 43% CE by using this scheme at an optical density (OD) of 19 in cold 87Rb atoms. According to the theoretical model, the CE in the proposed scheme can further increase to 96% at an OD of 240 under ideal conditions, thereby attaining an identical CE to that of the previous nonresonant double-Λ scheme at half the OD. This spatial-light-modulation-based FWM scheme can achieve a near-unity CE, thus providing an easy method of implementing an efficient quantum wavelength converter for all-optical quantum information processing.

  12. Scalable InP integrated wavelength selector based on binary search.

    PubMed

    Calabretta, Nicola; Stabile, Ripalta; Albores-Mejia, Aaron; Williams, Kevin A; Dorren, Harm J S

    2011-10-01

    We present an InP monolithically integrated wavelength selector that implements a binary search for selecting one from N modulated wavelengths. The InP chip requires only log(2)N optical filters and log(2)N optical switches. Experimental results show nanosecond reconfiguration and error-free wavelength selection of four modulated wavelengths with 2 dB of power penalty. © 2011 Optical Society of America

  13. A Near-Infrared Spectrometer Based on Novel Grating Light Modulators

    PubMed Central

    Wei, Wei; Huang, Shanglian; Wang, Ning; Jin, Zhu; Zhang, Jie; Chen, Weimin

    2009-01-01

    A near-infrared spectrometer based on novel MOEMS grating light modulators is proposed. The spectrum detection method that combines a grating light modulator array with a single near-infrared detector has been applied. Firstly, optics theory has been used to analyze the essential principles of the proposed spectroscopic sensor. Secondly, the grating light modulators have been designed and fabricated by micro-machining technology. Finally, the principles of this spectroscopic sensor have been validated and its key parameters have been tested by experiments. The result shows that the spectral resolution is better than 10 nm, the wavelength deviation is less than 1 nm, the deviation of the intensity of peak wavelength is no more than 0.5%, the driving voltage of grating light modulators array device is below 25 V and the response frequency of it is about 5 kHz. With low cost, satisfactory precision, portability and other advantages, the spectrometer should find potential applications in food safety and quality monitoring, pharmaceutical identification and agriculture product quality classification. PMID:22574065

  14. A near-infrared spectrometer based on novel grating light modulators.

    PubMed

    Wei, Wei; Huang, Shanglian; Wang, Ning; Jin, Zhu; Zhang, Jie; Chen, Weimin

    2009-01-01

    A near-infrared spectrometer based on novel MOEMS grating light modulators is proposed. The spectrum detection method that combines a grating light modulator array with a single near-infrared detector has been applied. Firstly, optics theory has been used to analyze the essential principles of the proposed spectroscopic sensor. Secondly, the grating light modulators have been designed and fabricated by micro-machining technology. Finally, the principles of this spectroscopic sensor have been validated and its key parameters have been tested by experiments. The result shows that the spectral resolution is better than 10 nm, the wavelength deviation is less than 1 nm, the deviation of the intensity of peak wavelength is no more than 0.5%, the driving voltage of grating light modulators array device is below 25 V and the response frequency of it is about 5 kHz. With low cost, satisfactory precision, portability and other advantages, the spectrometer should find potential applications in food safety and quality monitoring, pharmaceutical identification and agriculture product quality classification.

  15. Using a fiber loop and fiber bragg grating as a fiber optic sensor to simultaneously measure temperature and displacement.

    PubMed

    Chang, Yao-Tang; Yen, Chih-Ta; Wu, Yue-Shiun; Cheng, Hsu-Chih

    2013-05-16

    This study integrated a fiber loop manufactured by using commercial fiber (SMF-28, Corning) and a fiber Bragg grating (FBG) to form a fiber optic sensor that could simultaneously measure displacement and temperature. The fiber loop was placed in a thermoelectric cooling module with FBG affixed to the module, and, consequently, the center wavelength displacement of FBG was limited by only the effects of temperature change. Displacement and temperature were determined by measuring changes in the transmission of optical power and shifts in Bragg wavelength. This study provides a simple and economical method to measure displacement and temperature simultaneously.

  16. Transceivers and receivers for quantum key distribution and methods pertaining thereto

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRose, Christopher; Sarovar, Mohan; Soh, Daniel B.S.

    Various technologies for performing continuous-variable (CV) and discrete-variable (DV) quantum key distribution (QKD) with integrated electro-optical circuits are described herein. An integrated DV-QKD system uses Mach-Zehnder modulators to modulate a polarization of photons at a transmitter and select a photon polarization measurement basis at a receiver. An integrated CV-QKD system uses wavelength division multiplexing to send and receive amplitude-modulated and phase-modulated optical signals with a local oscillator signal while maintaining phase coherence between the modulated signals and the local oscillator signal.

  17. Solar rotational modulations of spectral irradiance and correlations with the variability of total solar irradiance

    NASA Astrophysics Data System (ADS)

    Lee, Jae N.; Cahalan, Robert F.; Wu, Dong L.

    2016-09-01

    Aims: We characterize the solar rotational modulations of spectral solar irradiance (SSI) and compare them with the corresponding changes of total solar irradiance (TSI). Solar rotational modulations of TSI and SSI at wavelengths between 120 and 1600 nm are identified over one hundred Carrington rotational cycles during 2003-2013. Methods: The SORCE (Solar Radiation and Climate Experiment) and TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics)/SEE (Solar EUV Experiment) measured and SATIRE-S modeled solar irradiances are analyzed using the EEMD (Ensemble Empirical Mode Decomposition) method to determine the phase and amplitude of 27-day solar rotational variation in TSI and SSI. Results: The mode decomposition clearly identifies 27-day solar rotational variations in SSI between 120 and 1600 nm, and there is a robust wavelength dependence in the phase of the rotational mode relative to that of TSI. The rotational modes of visible (VIS) and near infrared (NIR) are in phase with the mode of TSI, but the phase of the rotational mode of ultraviolet (UV) exhibits differences from that of TSI. While it is questionable that the VIS to NIR portion of the solar spectrum has yet been observed with sufficient accuracy and precision to determine the 11-year solar cycle variations, the temporal variations over one hundred cycles of 27-day solar rotation, independent of the two solar cycles in which they are embedded, show distinct solar rotational modulations at each wavelength.

  18. Solar Rotational Modulations of Spectral Irradiance and Correlations with the Variability of Total Solar Irradiance

    NASA Technical Reports Server (NTRS)

    Lee, Jae N.; Cahalan, Robert F.; Wu, Dong L.

    2016-01-01

    Aims: We characterize the solar rotational modulations of spectral solar irradiance (SSI) and compare them with the corresponding changes of total solar irradiance (TSI). Solar rotational modulations of TSI and SSI at wavelengths between 120 and 1600 nm are identified over one hundred Carrington rotational cycles during 2003-2013. Methods: The SORCE (Solar Radiation and Climate Experiment) and TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics)/SEE (Solar EUV Experiment) measured and SATIRE-S modeled solar irradiances are analyzed using the EEMD (Ensemble Empirical Mode Decomposition) method to determine the phase and amplitude of 27-day solar rotational variation in TSI and SSI. Results: The mode decomposition clearly identifies 27-day solar rotational variations in SSI between 120 and 1600 nm, and there is a robust wavelength dependence in the phase of the rotational mode relative to that of TSI. The rotational modes of visible (VIS) and near infrared (NIR) are in phase with the mode of TSI, but the phase of the rotational mode of ultraviolet (UV) exhibits differences from that of TSI. While it is questionable that the VIS to NIR portion of the solar spectrum has yet been observed with sufficient accuracy and precision to determine the 11-year solar cycle variations, the temporal variations over one hundred cycles of 27-day solar rotation, independent of the two solar cycles in which they are embedded, show distinct solar rotational modulations at each wavelength.

  19. Progress in Y-00 physical cipher for Giga bit/sec optical data communications (intensity modulation method)

    NASA Astrophysics Data System (ADS)

    Hirota, Osamu; Futami, Fumio

    2014-10-01

    To guarantee a security of Cloud Computing System is urgent problem. Although there are several threats in a security problem, the most serious problem is cyber attack against an optical fiber transmission among data centers. In such a network, an encryption scheme on Layer 1(physical layer) with an ultimately strong security, a small delay, and a very high speed should be employed, because a basic optical link is operated at 10 Gbit/sec/wavelength. We have developed a quantum noise randomied stream cipher so called Yuen- 2000 encryption scheme (Y-00) during a decade. This type of cipher is a completely new type random cipher in which ciphertext for a legitimate receiver and eavesdropper are different. This is a condition to break the Shannon limit in theory of cryptography. In addition, this scheme has a good balance on a security, a speed and a cost performance. To realize such an encryption, several modulation methods are candidates such as phase-modulation, intensity-modulation, quadrature amplitude modulation, and so on. Northwestern university group demonstrated a phase modulation system (α=η) in 2003. In 2005, we reported a demonstration of 1 Gbit/sec system based on intensity modulation scheme(ISK-Y00), and gave a design method for quadratic amplitude modulation (QAM-Y00) in 2005 and 2010. An intensity modulation scheme promises a real application to a secure fiber communication of current data centers. This paper presents a progress in quantum noise randomized stream cipher based on ISK-Y00, integrating our theoretical and experimental achievements in the past and recent 100 Gbit/sec(10Gbit/sec × 10 wavelengths) experiment.

  20. Mechanical Amplifier for a Piezoelectric Transducer

    NASA Technical Reports Server (NTRS)

    Moore, James; Swain, Mark; Lawson, Peter; Calvet, Robert

    2003-01-01

    A mechanical amplifier has been devised to multiply the stroke of a piezoelectric transducer (PZT) intended for use at liquid helium temperatures. Interferometry holds the key to high angular resolution imaging and astrometry in space. Future space missions that will detect planets around other solar systems and perform detailed studies of the evolution of stars and galaxies will use new interferometers that observe at mid- and far-infrared wavelengths. Phase-measurement interferometry is key to many aspects of astronomical interferometry, and PZTs are ideal modulators for most methods of phase measurement, but primarily at visible wavelengths. At far infrared wavelengths of 150 to 300 m, background noise is a severe problem and all optics must be cooled to about 4 K. Under these conditions, piezos are ill-suited as modulators, because their throw is reduced by as much as a factor of 2, and even a wavelength or two of modulation is beyond their capability. The largest commercially available piezo stacks are about 5 in. (12.7 cm) long and have a throw of about 180 m at room temperature and only 90 m at 4 K. It would seem difficult or impossible to use PZTs for phase measurements in the far infrared were it not for the new mechanical amplifier that was designed and built.

  1. Phase Conjugated and Transparent Wavelength Conversions of Nyquist 16-QAM Signals Employing a Single-Layer Graphene Coated Fiber Device

    PubMed Central

    Hu, Xiao; Zeng, Mengqi; Long, Yun; Liu, Jun; Zhu, Yixiao; Zou, Kaiheng; Zhang, Fan; Fu, Lei; Wang, Jian

    2016-01-01

    We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. Using the fabricated graphene-assisted nonlinear optical device and employing Nyquist 16-ary quadrature amplitude modulation (16-QAM) signal, we experimentally demonstrate phase conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in graphene. We study the conversion efficiency as functions of the pump power and pump wavelength and evaluate the bit-error rate (BER) performance. We also compare the time-varying symbol sequence for graphene-assisted phase conjugated and transparent wavelength conversions of Nyquist 16-QAM signal. PMID:26932470

  2. Extending the wavelength range in the Oclaro high-brightness broad area modules

    NASA Astrophysics Data System (ADS)

    Pawlik, Susanne; Guarino, Andrea; Sverdlov, Boris; Müller, Jürgen; Button, Christopher; Arlt, Sebastian; Jaeggi, Dominik; Lichtenstein, Norbert

    2010-02-01

    The demand for high power laser diode modules in the wavelength range between 793 nm and 1060 nm has been growing continuously over the last several years. Progress in eye-safe fiber lasers requires reliable pump power at 793 nm, modules at 808 nm are used for small size DPSSL applications and fiber-coupled laser sources at 830 nm are used in printing industry. However, power levels achieved in this wavelength range have remained lower than for the 9xx nm range. Here we report on approaches to increasing the reliable power in our latest generations of high power pump modules in the wavelength range between 793 nm and 1060 nm.

  3. Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Jian; Hu, Weida, E-mail: wdhu@mail.sitp.ac.cn; Ye, Zhenhua

    2014-05-14

    An HgCdTe long-wavelength infrared focal plane array photodetector is proposed by modulating light distributions based on the photonic crystal. It is shown that a promising prospect of improving performance is better light harvest and dark current limitation. To optimize the photon field distributions of the HgCdTe-based photonic crystal structure, a numerical method is built by combining the finite-element modeling and the finite-difference time-domain simulation. The optical and electrical characteristics of designed HgCdTe mid-wavelength and long-wavelength photon-trapping infrared detector focal plane arrays are obtained numerically. The results indicate that the photon crystal structure, which is entirely compatible with the large infraredmore » focal plane arrays, can significantly reduce the dark current without degrading the quantum efficiency compared to the regular mesa or planar structure.« less

  4. Calibration of photoelastic modulator based dichrometers: maintaining constant phase across the spectrum

    DOE PAGES

    Sutherland, J. C.

    2016-07-20

    Photoelastic modulators can alter the polarization state of a beam of ultraviolet, visible or infrared photons by means of periodic stress-induced differences in the refractive index of a transparent material that forms the optical element of the device and is isotropic in the absence of stress. Furthermore, they have found widespread application in instruments that characterize or alter the polarization state of a beam in fields as diverse as astronomy, structural biology, materials science and ultraviolet lithography for the manufacture of nano-scale integrated circuits. Measurement of circular dichroism, the differential absorption of left- and right circularly polarized light, and ofmore » strain-induced birefringence of optical components are major applications. Instruments using synchrotron radiation and photoelastic modulators with CaF 2 optical elements have extended circular dichroism measurements down to wavelengths of about 130 nm in the vacuum ultraviolet. Maintaining a constant phase shift between two orthogonal polarization states across a spectrum requires that the amplitude of the modulated stress be changed as a function of wavelength. For commercially available photoelastic modulators, the voltage that controls the amplitude of modulation required to produce a specified phase shift, which is a surrogate for the stress modulation amplitude, has been shown to be an approximately linear function of wavelength in the spectral region where the optical element is transparent. But, extrapolations of such straight lines cross zero voltage at a non-zero wavelength, not at zero-wavelength. For modulators with calcium fluoride and fused silica optical elements, the zero-crossing wavelength is always in the spectral region where the optical element of the modulator strongly absorbs the incident radiation, and at a wavelength less than the longest-wavelength apparent resonance deduced from experimental values of the refractive index fit to the Sellmeier equation. Using a model that relates the refractive indices of a stressed optical element to the refractive index of its unstressed state, an expression for the modulator control voltage was derived that closely fits the experimental data. Our result provides a theoretical rational for the apparently linear constant-phase programming voltage, and thus provides theoretical backing for the calibration procedure frequently used for these modulators. Lastly there are other factors that can influence the calibration of a photoelastic modulator, including temperature and atmospheric pressure, are discussed briefly.« less

  5. Calibration of photoelastic modulator based dichrometers: maintaining constant phase across the spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, J. C.

    Photoelastic modulators can alter the polarization state of a beam of ultraviolet, visible or infrared photons by means of periodic stress-induced differences in the refractive index of a transparent material that forms the optical element of the device and is isotropic in the absence of stress. Furthermore, they have found widespread application in instruments that characterize or alter the polarization state of a beam in fields as diverse as astronomy, structural biology, materials science and ultraviolet lithography for the manufacture of nano-scale integrated circuits. Measurement of circular dichroism, the differential absorption of left- and right circularly polarized light, and ofmore » strain-induced birefringence of optical components are major applications. Instruments using synchrotron radiation and photoelastic modulators with CaF 2 optical elements have extended circular dichroism measurements down to wavelengths of about 130 nm in the vacuum ultraviolet. Maintaining a constant phase shift between two orthogonal polarization states across a spectrum requires that the amplitude of the modulated stress be changed as a function of wavelength. For commercially available photoelastic modulators, the voltage that controls the amplitude of modulation required to produce a specified phase shift, which is a surrogate for the stress modulation amplitude, has been shown to be an approximately linear function of wavelength in the spectral region where the optical element is transparent. But, extrapolations of such straight lines cross zero voltage at a non-zero wavelength, not at zero-wavelength. For modulators with calcium fluoride and fused silica optical elements, the zero-crossing wavelength is always in the spectral region where the optical element of the modulator strongly absorbs the incident radiation, and at a wavelength less than the longest-wavelength apparent resonance deduced from experimental values of the refractive index fit to the Sellmeier equation. Using a model that relates the refractive indices of a stressed optical element to the refractive index of its unstressed state, an expression for the modulator control voltage was derived that closely fits the experimental data. Our result provides a theoretical rational for the apparently linear constant-phase programming voltage, and thus provides theoretical backing for the calibration procedure frequently used for these modulators. Lastly there are other factors that can influence the calibration of a photoelastic modulator, including temperature and atmospheric pressure, are discussed briefly.« less

  6. Cloud Atlas: Rotational Modulations in the L/T Transition Brown Dwarf Companion HN Peg B

    NASA Technical Reports Server (NTRS)

    Zhou, Yifan; Apai, Daniel; Metchev, Stanimir; Lew, Ben W. P.; Schneider, Glenn; Marley, Mark S.; Karalidi, Theodora; Manjavacas, Elena; Bedin, Luigi R.; Cowan, Nicolas B.; hide

    2018-01-01

    Time-resolved observations of brown dwarfs' rotational modulations provide powerful insights into the properties of condensate clouds in ultra-cool atmospheres. Multi-wavelength light curves reveal cloud vertical structures, condensate particle sizes, and cloud morphology, which directly constrain condensate cloud and atmospheric circulation models. We report results from Hubble Space Telescope/Wide Field Camera 3 (WFC3) near-infrared G141 taken in six consecutive orbits observations of HNPeg B, an L/T transition brown dwarf companion to a G0V type star. The best-fit sine wave to the 1.1 to 1.7 micron broadband light curve has the amplitude of and period of hour. The modulation amplitude has no detectable wavelength dependence except in the 1.4 micron water absorption band, indicating that the characteristic condensate particle sizes are large (greater than 1 micron). We detect significantly (4.4 sigma) lower modulation amplitude in the 1.4 micron water absorption band, and find that HN Peg B's spectral modulation resembles those of early T type brown dwarfs. We also describe a new empirical interpolation method to remove spectral contamination from the bright host star. This method may be applied in other high-contrast time-resolved observations with WFC3.

  7. Cloud Atlas: Rotational Modulations in the L/T Transition Brown Dwarf Companion HN Peg B

    NASA Astrophysics Data System (ADS)

    Zhou, Yifan; Apai, Dániel; Metchev, Stanimir; Lew, Ben W. P.; Schneider, Glenn; Marley, Mark S.; Karalidi, Theodora; Manjavacas, Elena; Bedin, Luigi R.; Cowan, Nicolas B.; Miles-Páez, Paulo A.; Lowrance, Patrick J.; Radigan, Jacqueline; Burgasser, Adam J.

    2018-03-01

    Time-resolved observations of brown dwarfs’ rotational modulations provide powerful insights into the properties of condensate clouds in ultra-cool atmospheres. Multi-wavelength light curves reveal cloud vertical structures, condensate particle sizes, and cloud morphology, which directly constrain condensate cloud and atmospheric circulation models. We report results from Hubble Space Telescope/Wide Field Camera 3 near-infrared G141 taken in six consecutive orbits observations of HN Peg B, an L/T transition brown dwarf companion to a G0V type star. The best-fit sine wave to the 1.1–1.7 μm broadband light curve has an amplitude of 1.206% ± 0.025% and period of 15.4 ± 0.5 hr. The modulation amplitude has no detectable wavelength dependence except in the 1.4 μm water absorption band, indicating that the characteristic condensate particle sizes are large (>1 μm). We detect significantly (4.4σ) lower modulation amplitude in the 1.4 μm water absorption band and find that HN Peg B’s spectral modulation resembles those of early T type brown dwarfs. We also describe a new empirical interpolation method to remove spectral contamination from the bright host star. This method may be applied in other high-contrast time-resolved observations with WFC3.

  8. Quantitative phase-filtered wavelength-modulated differential photoacoustic radar tumor hypoxia imaging toward early cancer detection.

    PubMed

    Dovlo, Edem; Lashkari, Bahman; Soo Sean Choi, Sung; Mandelis, Andreas; Shi, Wei; Liu, Fei-Fei

    2017-09-01

    Overcoming the limitations of conventional linear spectroscopy used in multispectral photoacoustic imaging, wherein a linear relationship is assumed between the absorbed optical energy and the absorption spectra of the chromophore at a specific location, is crucial for obtaining accurate spatially-resolved quantitative functional information by exploiting known chromophore-specific spectral characteristics. This study introduces a non-invasive phase-filtered differential photoacoustic technique, wavelength-modulated differential photoacoustic radar (WM-DPAR) imaging that addresses this issue by eliminating the effect of the unknown wavelength-dependent fluence. It employs two laser wavelengths modulated out-of-phase to significantly suppress background absorption while amplifying the difference between the two photoacoustic signals. This facilitates pre-malignant tumor identification and hypoxia monitoring, as minute changes in total hemoglobin concentration and hemoglobin oxygenation are detectable. The system can be tuned for specific applications such as cancer screening and SO 2 quantification by regulating the amplitude ratio and phase shift of the signal. The WM-DPAR imaging of a head and neck carcinoma tumor grown in the thigh of a nude rat demonstrates the functional PA imaging of small animals in vivo. The PA appearance of the tumor in relation to tumor vascularity is investigated by immunohistochemistry. Phase-filtered WM-DPAR imaging is also illustrated, maximizing quantitative SO 2 imaging fidelity of tissues. Oxygenation levels within a tumor grown in the thigh of a nude rat using the two-wavelength phase-filtered differential PAR method. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Wavelength-independent constant period spin-echo modulated small angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sales, Morten, E-mail: lsp260@alumni.ku.dk; Plomp, Jeroen; Bouwman, Wim

    2016-06-15

    Spin-Echo Modulated Small Angle Neutron Scattering (SEMSANS) in Time-of-Flight (ToF) mode has been shown to be a promising technique for measuring (very) small angle neutron scattering (SANS) signals and performing quantitative Dark-Field Imaging (DFI), i.e., SANS with 2D spatial resolution. However, the wavelength dependence of the modulation period in the ToF spin-echo mode has so far limited the useful modulation periods to those resolvable with the limited spatial resolution of the detectors available. Here we present our results of an approach to keep the period of the induced modulation constant for the wavelengths utilised in ToF. This is achieved bymore » ramping the magnetic fields in the coils responsible for creating the spatially modulated beam in synchronisation with the neutron pulse, thus keeping the modulation period constant for all wavelengths. Such a setup enables the decoupling of the spatial detector resolution from the resolution of the modulation period by the use of slits or gratings in analogy to the approach in grating-based neutron DFI.« less

  10. Systems and methods for free space optical communication

    DOEpatents

    Harper, Warren W [Benton City, WA; Aker, Pamela M [Richland, WA; Pratt, Richard M [Richland, WA

    2011-05-10

    Free space optical communication methods and systems, according to various aspects are described. The methods and systems are characterized by transmission of data through free space with a digitized optical signal acquired using wavelength modulation, and by discrimination between bit states in the digitized optical signal using a spectroscopic absorption feature of a chemical substance.

  11. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    NASA Astrophysics Data System (ADS)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  12. Numerical Modeling of Sub-Wavelength Anti-Reflective Structures for Solar Module Applications

    PubMed Central

    Han, Katherine; Chang, Chih-Hung

    2014-01-01

    This paper reviews the current progress in mathematical modeling of anti-reflective subwavelength structures. Methods covered include effective medium theory (EMT), finite-difference time-domain (FDTD), transfer matrix method (TMM), the Fourier modal method (FMM)/rigorous coupled-wave analysis (RCWA) and the finite element method (FEM). Time-based solutions to Maxwell’s equations, such as FDTD, have the benefits of calculating reflectance for multiple wavelengths of light per simulation, but are computationally intensive. Space-discretized methods such as FDTD and FEM output field strength results over the whole geometry and are capable of modeling arbitrary shapes. Frequency-based solutions such as RCWA/FMM and FEM model one wavelength per simulation and are thus able to handle dispersion for regular geometries. Analytical approaches such as TMM are appropriate for very simple thin films. Initial disadvantages such as neglect of dispersion (FDTD), inaccuracy in TM polarization (RCWA), inability to model aperiodic gratings (RCWA), and inaccuracy with metallic materials (FDTD) have been overcome by most modern software. All rigorous numerical methods have accurately predicted the broadband reflection of ideal, graded-index anti-reflective subwavelength structures; ideal structures are tapered nanostructures with periods smaller than the wavelengths of light of interest and lengths that are at least a large portion of the wavelengths considered. PMID:28348287

  13. Diode-laser-pump module with integrated signal ports for pumping amplifying fibers and method

    DOEpatents

    Savage-Leuchs,; Matthias, P [Woodinville, WA

    2009-05-26

    Apparatus and method for collimating pump light of a first wavelength from laser diode(s) into a collimated beam within an enclosure having first and second optical ports, directing pump light from the collimated beam to the first port; and directing signal light inside the enclosure between the first and second port. The signal and pump wavelengths are different. The enclosure provides a pump block having a first port that emits pump light to a gain fiber outside the enclosure and that also passes signal light either into or out of the enclosure, and another port that passes signal light either out of or into the enclosure. Some embodiments use a dichroic mirror to direct pump light to the first port and direct signal light between the first and second ports. Some embodiments include a wavelength-conversion device to change the wavelength of at least some of the signal light.

  14. Actively mode-locked erbium fiber ring laser using a Fabry-Perot semiconductor modulator as mode locker and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Shenping; Chan, K. T.

    1999-05-01

    A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a Fabry-Perot semiconductor modulator. The modulator played the simultaneous roles of an intensity mode locker and a tunable optical filter. Stable single- or dual-wavelength nearly transform-limited picosecond pulses at gigabit repetition rates were generated. Continuous wavelength tuning was achieved by simply controlling the temperature of the modulator. Pulse train with a repetition rate up to 19.93 GHz (eight times the driving frequency) was obtained by using rational harmonic mode-locking technique.

  15. A Comparison between Two Heterodyne Light Sources Using Different Electro-Optic Modulators for Optical Temperature Measurements at Visible Wavelengths

    PubMed Central

    Twu, Ruey-Ching; Lee, Yi-Huan; Hou, Hong-Yao

    2010-01-01

    In this paper we have successfully demonstrated a z-propagating Zn-indiffused lithium niobate electro-optic modulator used for optical heterodyne interferometry. Compared to a commercial buck-type electro-optic modulator, the proposed waveguide-type modulator has a lower driving voltage and smaller phase variation while measuring visible wavelengths of 532 nm and 632.8 nm. We also demonstrate an optical temperature measurement system using a homemade modulator. The results show that the measurement sensitivities are almost the same values of 25 deg/°C for both the homemade and the buck-type modulators for a sensing light with a wavelength of 632.8 nm. Because photorefractive impacts are essential in the buck-type modulator at a wavelength of 532 nm, it is difficult to obtain reliable phase measurements, whereas the stable phase operation of the homemade one allows the measurement sensitivity to be improved up to 30 deg/°C with the best measurement resolution at about 0.07 °C for 532 nm. PMID:22163429

  16. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases

    NASA Astrophysics Data System (ADS)

    Li, Hejie; Rieker, Gregory B.; Liu, Xiang; Jeffries, Jay B.; Hanson, Ronald K.

    2006-02-01

    Tunable diode laser absorption measurements at high pressures by use of wavelength-modulation spectroscopy (WMS) require large modulation depths for optimum detection of molecular absorption spectra blended by collisional broadening or dense spacing of the rovibrational transitions. Diode lasers have a large and nonlinear intensity modulation when the wavelength is modulated over a large range by injection-current tuning. In addition to this intensity modulation, other laser performance parameters are measured, including the phase shift between the frequency modulation and the intensity modulation. Following published theory, these parameters are incorporated into an improved model of the WMS signal. The influence of these nonideal laser effects is investigated by means of wavelength-scanned WMS measurements as a function of bath gas pressure on rovibrational transitions of water vapor near 1388 nm. Lock-in detection of the magnitude of the 2f signal is performed to remove the dependence on detection phase. We find good agreement between measurements and the improved model developed for the 2f component of the WMS signal. The effects of the nonideal performance parameters of commercial diode lasers are especially important away from the line center of discrete spectra, and these contributions become more pronounced for 2f signals with the large modulation depths needed for WMS at elevated pressures.

  17. Acousto-Optic Q-Switched Fiber Laser-Based Intra-Cavity Photoacoustic Spectroscopy for Trace Gas Detection

    PubMed Central

    Zhang, Qinduan; Chang, Jun; Wang, Zongliang; Wang, Fupeng; Qin, Zengguang

    2017-01-01

    We proposed a new method for gas detection in photoacoustic spectroscopy based on acousto-optic Q-switched fiber laser by merging a transmission PAS cell (resonant frequency f0 = 5.3 kHz) inside the fiber laser cavity. The Q-switching was achieved by an acousto-optic modulator, achieving a peak pulse power of ~679 mW in the case of the acousto-optic modulation signal with an optimized duty ratio of 10%. We used a custom-made fiber Bragg grating with a central wavelength of 1530.37 nm (the absorption peak of C2H2) to select the laser wavelength. The system achieved a linear response (R2 = 0.9941) in a concentration range from 400 to 7000 ppmv, and the minimum detection limit compared to that of a conventional intensity modulation system was enhanced by 94.2 times. PMID:29295599

  18. Acousto-Optic Q-Switched Fiber Laser-Based Intra-Cavity Photoacoustic Spectroscopy for Trace Gas Detection.

    PubMed

    Zhang, Qinduan; Chang, Jun; Wang, Qiang; Wang, Zongliang; Wang, Fupeng; Qin, Zengguang

    2017-12-25

    We proposed a new method for gas detection in photoacoustic spectroscopy based on acousto-optic Q-switched fiber laser by merging a transmission PAS cell (resonant frequency f ₀ = 5.3 kHz) inside the fiber laser cavity. The Q-switching was achieved by an acousto-optic modulator, achieving a peak pulse power of ~679 mW in the case of the acousto-optic modulation signal with an optimized duty ratio of 10%. We used a custom-made fiber Bragg grating with a central wavelength of 1530.37 nm (the absorption peak of C₂H₂) to select the laser wavelength. The system achieved a linear response (R² = 0.9941) in a concentration range from 400 to 7000 ppmv, and the minimum detection limit compared to that of a conventional intensity modulation system was enhanced by 94.2 times.

  19. Feasibility study of microwave modulation DIAL system for global CO II monitoring

    NASA Astrophysics Data System (ADS)

    Hirano, Yoshihito; Kameyama, Shumpei; Ueno, Shinichi; Sugimoto, Nobuo; Kimura, Toshiyoshi

    2006-12-01

    A new concept of DIAL (DIfferential Absorption Lidar) system for global CO II monitoring using microwave modulation is introduced. This system uses quasi-CW lights which are intensity modulated in microwave region and receives a backscattered light from the ground. In this system, ON/OFF wavelength laser lights are modulated with microwave frequencies, and received lights of two wavelengths are able to be discriminated by modulation frequencies in electrical signal domain. Higher sensitivity optical detection can be realized compared with the conventional microwave modulation lidar by using direct down conversion of modulation frequency. The system also has the function of ranging by using pseudo-random coding in modulation. Fiber-based optical circuit using wavelength region of 1.6 micron is a candidate for the system configuration. After the explanation of this configuration, feasibility study of this system on the application to global CO II monitoring is introduced.

  20. Mid-infrared wavelength- and frequency-modulation spectroscopy with a pump-modulated singly-resonant optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Lindsay, I. D.; Groß, P.; Lee, C. J.; Adhimoolam, B.; Boller, K.-J.

    2006-12-01

    We describe the implementation of the wavelength- and frequency-modulation spectroscopy techniques using a singly-resonant optical parametric oscillator (OPO) pumped by a fiber-amplified diode laser. Frequency modulation of the diode laser was transferred to the OPO’s mid-infrared idler output, avoiding the need for external modulation devices. This approach thus provides a means of implementing these important techniques with powerful, widely tunable, mid-infrared sources while retaining the simple, flexible modulation properties of diode lasers.

  1. Two-wavelength laser-diode heterodyne interferometry with one phasemeter

    NASA Astrophysics Data System (ADS)

    Onodera, Ribun; Ishii, Yukihiro

    1995-12-01

    A two-wavelength laser-diode interferometer that is based on heterodyne detection with one phasemeter has been constructed. Two laser diodes are frequency modulated by mutually inverted sawtooth currents on an unbalanced interferometer. One can measure the tested phase at a synthetic wavelength from the sum of the interference beat signals by synchronizing them with the modulation frequency. The experimental result presented shows a phase-measurement range with a 4.7- mu m synthetic wavelength.

  2. Electro-optic polymeric reflection modulator based on plasmonic metamaterial

    NASA Astrophysics Data System (ADS)

    Abbas, A.; Swillam, M.

    2018-02-01

    A novel low power design for polymeric Electro-Optic reflection modulator is proposed based on the Extraordinary Reflection of light from multilayer structure consisting of a plasmonic metasurface with a periodic structure of sub wavelength circular apertures in a gold film above a thin layer of EO polymer and above another thin gold layer. The interference of the different reflected beams from different layer construct the modulated beam, The applied input driving voltage change the polymer refractive index which in turn determine whether the interference is constructive or destructive, so both phase and intensity modulation could be achieved. The resonant wavelength is tuned to the standard telecommunication wavelength 1.55μm, at this wavelength the reflection is minimum, while the absorption is maximum due to plasmonic resonance (PR) and the coupling between the incident light and the plasmonic metasurface.

  3. Three-wavelength multiplexer/demultiplexer based on photonic crystal ring resonator and cavities

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Xu, Xu-Ming; He, Ling-Juan

    2011-12-01

    We proposed a three-wavelength multiplexer/demultiplexer based on the characteristics of resonant coupling between photonic crystal ring resonator (PCRR) and cavity. The structure composed of one PCRR and three cavities. The numerical results obtained by the finite-different time-domain (FTDT) method show that it can realize the demultiplexing of three wavelengths, i.e. 1430nm, 1490nm and 1550nm only by modulating the radius of the cavities. The designed device not only has a compact size with 12μm×11μm but also a high efficiency, may have potential applications in the integrated optics fields.

  4. Application of quantum-dot multi-wavelength lasers and silicon photonic ring resonators to data-center optical interconnects

    NASA Astrophysics Data System (ADS)

    Beckett, Douglas J. S.; Hickey, Ryan; Logan, Dylan F.; Knights, Andrew P.; Chen, Rong; Cao, Bin; Wheeldon, Jeffery F.

    2018-02-01

    Quantum dot comb sources integrated with silicon photonic ring-resonator filters and modulators enable the realization of optical sub-components and modules for both inter- and intra-data-center applications. Low-noise, multi-wavelength, single-chip, laser sources, PAM4 modulation and direct detection allow a practical, scalable, architecture for applications beyond 400 Gb/s. Multi-wavelength, single-chip light sources are essential for reducing power dissipation, space and cost, while silicon photonic ring resonators offer high-performance with space and power efficiency.

  5. Cross-phase modulation bandwidth in ultrafast fiber wavelength converters

    NASA Astrophysics Data System (ADS)

    Luís, Ruben S.; Monteiro, Paulo; Teixeira, António

    2006-12-01

    We propose a novel analytical model for the characterization of fiber cross-phase modulation (XPM) in ultrafast all-optical fiber wavelength converters, operating at modulation frequencies higher than 1THz. The model is used to compare the XPM frequency limitations of a conventional and a highly nonlinear dispersion shifted fiber (HN-DSF) and a bismuth oxide-based fiber, introducing the XPM bandwidth as a design parameter. It is shown that the HN-DSF presents the highest XPM bandwidth, above 1THz, making it the most appropriate for ultrafast wavelength conversion.

  6. The possibility of applying spectral redundancy in DWDM systems on existing long-distance FOCLs for increasing the data transmission rate and decreasing nonlinear effects and double Rayleigh scattering without changes in the communication channel

    NASA Astrophysics Data System (ADS)

    Nekuchaev, A. O.; Shuteev, S. A.

    2014-04-01

    A new method of data transmission in DWDM systems along existing long-distance fiber-optic communication lines is proposed. The existing method, e.g., uses 32 wavelengths in the NRZ code with an average power of 16 conventional units (16 units and 16 zeros on the average) and transmission of 32 bits/cycle. In the new method, one of 124 wavelengths with a duration of one cycle each (at any time instant, no more than 16 obligatory different wavelengths) and capacity of 4 bits with an average power of 15 conventional units and rate of 64 bits/cycle is transmitted at every instant of a 1/16 cycle. The cross modulation and double Rayleigh scattering are significantly decreased owing to uniform distribution of power over time at different wavelengths. The time redundancy (forward error correction (FEC)) is about 7% and allows one to achieve a coding enhancement of about 6 dB by detecting and removing deletions and errors simultaneously.

  7. Discrete monotron oscillator having one-half wavelength coaxial resonator with one-quarter wavelength gap spacing

    DOEpatents

    Carlsten, B.E.; Haynes, W.B.

    1998-02-03

    A discrete monotron oscillator for use in a high power microwave device is formed with a microwave oscillator having a half-wavelength resonant coaxial microwave cavity operating in fundamental TEM mode for microwave oscillation with an inner conductor defining a drift tube for propagating an electron beam and an outer conductor coaxial with the inner conductor. The inner conductor defines a modulating gap and an extraction gap downstream of the modulating gap. The modulating gap and the extraction gap connect the coaxial microwave cavity with the drift tube so that energy for the microwave oscillation is extracted from the electron beam at the extraction gap and modulates the electron beam at the modulating gap. For high power operation, an annular electron beam is used. 8 figs.

  8. Discrete monotron oscillator having one-half wavelength coaxial resonator with one-quarter wavelength gap spacing

    DOEpatents

    Carlsten, Bruce E.; Haynes, William B.

    1998-01-01

    A discrete monotron oscillator for use in a high power microwave device is formed with a microwave oscillator having a half-wavelength resonant coaxial microwave cavity operating in fundamental TEM mode for microwave oscillation with an inner conductor defining a drift tube for propagating an electron beam and an outer conductor coaxial with the inner conductor. The inner conductor defines a modulating gap and an extraction gap downstream of the modulating gap. The modulating gap and the extraction gap connect the coaxial microwave cavity with the drift tube so that energy for the microwave oscillation is extracted from the electron beam at the extraction gap and modulates the electron beam at the modulating gap. For high power operation, an annular electron beam is used.

  9. How to use a phase-only spatial light modulator as a color display.

    PubMed

    Harm, Walter; Jesacher, Alexander; Thalhammer, Gregor; Bernet, Stefan; Ritsch-Marte, Monika

    2015-02-15

    We demonstrate that a parallel aligned liquid crystal on silicon (PA-LCOS) spatial light modulator (SLM) without any attached color mask can be used as a full color display with white light illumination. The method is based on the wavelength dependence of the (voltage controlled) birefringence of the liquid crystal pixels. Modern SLMs offer a wide range over which the birefringence can be modulated, leading (in combination with a linear polarizer) to several intensity modulation periods of a reflected light wave as a function of the applied voltage. Because of dispersion, the oscillation period strongly depends on the wavelength. Thus each voltage applied to an SLM pixel corresponds to another reflected color spectrum. For SLMs with a sufficiently broad tuning range, one obtains a color palette (i.e., a "color lookup-table"), which allows one to display color images. An advantage over standard liquid crystal displays (LCDs), which use color masks in front of the individual pixels, is that the light efficiency and the display resolution are increased by a factor of three.

  10. Electro-Optical Modulator Bias Control Using Bipolar Pulses

    NASA Technical Reports Server (NTRS)

    Farr, William; Kovalik, Joseph

    2007-01-01

    An improved method has been devised for controlling the DC bias applied to an electro-optical crystal that is part of a Mach-Zehnder modulator that generates low-duty-cycle optical pulses for a pulse-position modulation (PPM) optical data-communication system. In such a system, it is desirable to minimize the transmission of light during the intervals between pulses, and for this purpose, it is necessary to maximize the extinction ratio of the modulator (the ratio between the power transmitted during an "on" period and the power transmitted during an "off" period). The present method is related to prior dither error feedback methods, but unlike in those methods, there is no need for an auxiliary modulation subsystem to generate a dithering signal. Instead, as described below, dither is effected through alternation of the polarity of the modulation signal. The upper part of Figure 1 schematically depicts a Mach-Zehnder modulator. The signal applied to the electro-optical crystal consists of a radio-frequency modulating pulse signal, VRF, superimposed on a DC bias Vbias. Maximum extinction occurs during the off (VRF = 0) period if Vbias is set at a value that makes the two optical paths differ by an odd integer multiple of a half wavelength so that the beams traveling along the two paths interfere destructively at the output beam splitter. Assuming that the modulating pulse signal VRF has a rectangular waveform, maximum transmission occurs during the "on" period if the amplitude of VRF is set to a value, V , that shifts the length of the affected optical path by a half wavelength so that now the two beams interfere constructively at the output beam splitter. The modulating pulse signal is AC-coupled from an amplifier to the electro-optical crystal. Sometimes, two successive pulses occur so close in time that the operating point of the amplifier drifts, one result being that there is not enough time for the signal level to return to ground between pulses. Also, the difference between the optical-path lengths can drift with changes in temperature and other spurious effects. The effects of both types of drift are suppressed in the present method, in which one takes advantage of the fact that when Vbias is set at the value for maximum extinction, equal-magnitude positive and negative pulses applied to the electro-optical crystal produce equal output light pulses.

  11. Coherent THz Repetitive Pulse Generation in a GaSe Crystal by Dual-wavelength Nd:YLF Laser

    NASA Astrophysics Data System (ADS)

    Bezotosnyi, V. V.; Cheshev, E. A.; Gorbunkov, M. V.; Koromyslov, A. L.; Krokhin, O. N.; Mityagin, Yu. A.; Popov, Yu. M.; Savinov, S. A.; Tunkin, V. G.

    We present modification of difference frequency generator of coherent THz radiation in a nonlinear GaSe crystal using dual-wavelength diode-pumped solid-state Nd:YLF laser. Generation at the two wavelengths (1.047 and 1.053 μm) was carried out by equalization of the gains at these wavelengths near the frequency degeneracy of the transverse modes in resonator cavity, Q-switched by acousto-optical modulator. The main parameters of the device were measured: angular synchronism (width 0.6 degrees), polarization ratio (1:100), conversion efficiency (10-7), pulse power (0.8 mW), frequency and width (53,8 сm-1, 0,6 сm-1), pulse width and repetition rate (10 ns,7 kHz). The method is promising for practical purposes.

  12. Method to generate a pulse train of few-cycle coherent radiation

    DOE PAGES

    Garcia, Bryant; Hemsing, Erik; Raubenheimer, Tor; ...

    2016-09-06

    We develop a method to generate a long pulse train of few-cycle coherent radiation by modulating an electron beam with a high power laser. The large energy modulation disperses the beam in a radiating undulator and leads to the production of phase-locked few-cycle coherent radiation pulses. These pulses are produced at a high harmonic of the modulating laser, and are longitudinally separated by the modulating laser wavelength. Here, we discuss an analytical model for this scheme and investigate the temporal and spectral properties of this radiation. This model is compared with numerical simulation results using the unaveraged code Puffin. Wemore » examine various harmful effects and how they might be avoided, as well as a possible experimental realization of this scheme.« less

  13. Two-wavelength quadrature multipoint detection of partial discharge in power transformers using fiber Fabry-Perot acoustic sensors

    NASA Astrophysics Data System (ADS)

    Dong, Bo; Han, Ming; Wang, Anbo

    2012-06-01

    A reliable and low-cost two-wavelength quadrature interrogating method has been developed to demodulate optical signals from diaphragm-based Fabry-Perot interferometric fiber optic sensors for multipoint partial discharge detection in power transformers. Commercial available fused-silica parts (a wafer, a fiber ferrule, and a mating sleeve) and a cleaved optical single mode fiber were bonded together to form an extrinsic Fabry-Perot acoustic sensor. Two lasers with center wavelengths separated by a quarter of the period of sensor interference fringes were used to probe acousticwave- induced diaphragm vibration. A coarse wavelength-division multiplexing (CWDM) add/drop multiplexer was used to separate the reflected two wavelengths before two photo detectors. Optical couplers were used to distribute mixed laser light to each sensor-detector module for multiplexing purpose. Sensor structure, detection system design and experiment results are presented.

  14. A novel optical gating method for laser gated imaging

    NASA Astrophysics Data System (ADS)

    Ginat, Ran; Schneider, Ron; Zohar, Eyal; Nesher, Ofer

    2013-06-01

    For the past 15 years, Elbit Systems is developing time-resolved active laser-gated imaging (LGI) systems for various applications. Traditional LGI systems are based on high sensitive gated sensors, synchronized to pulsed laser sources. Elbit propriety multi-pulse per frame method, which is being implemented in LGI systems, improves significantly the imaging quality. A significant characteristic of the LGI is its ability to penetrate a disturbing media, such as rain, haze and some fog types. Current LGI systems are based on image intensifier (II) sensors, limiting the system in spectral response, image quality, reliability and cost. A novel propriety optical gating module was developed in Elbit, untying the dependency of LGI system on II. The optical gating module is not bounded to the radiance wavelength and positioned between the system optics and the sensor. This optical gating method supports the use of conventional solid state sensors. By selecting the appropriate solid state sensor, the new LGI systems can operate at any desired wavelength. In this paper we present the new gating method characteristics, performance and its advantages over the II gating method. The use of the gated imaging systems is described in a variety of applications, including results from latest field experiments.

  15. Camera System MTF: combining optic with detector

    NASA Astrophysics Data System (ADS)

    Andersen, Torben B.; Granger, Zachary A.

    2017-08-01

    MTF is one of the most common metrics used to quantify the resolving power of an optical component. Extensive literature is dedicated to describing methods to calculate the Modulation Transfer Function (MTF) for stand-alone optical components such as a camera lens or telescope, and some literature addresses approaches to determine an MTF for combination of an optic with a detector. The formulations pertaining to a combined electro-optical system MTF are mostly based on theory, and assumptions that detector MTF is described only by the pixel pitch which does not account for wavelength dependencies. When working with real hardware, detectors are often characterized by testing MTF at discrete wavelengths. This paper presents a method to simplify the calculation of a polychromatic system MTF when it is permissible to consider the detector MTF to be independent of wavelength.

  16. Multi-wavelengths digital holography: reconstruction, synthesis and display of holograms using adaptive transformation.

    PubMed

    Memmolo, P; Finizio, A; Paturzo, M; Ferraro, P; Javidi, B

    2012-05-01

    A method based on spatial transformations of multiwavelength digital holograms and the correlation matching of their numerical reconstructions is proposed, with the aim to improve superimposition of different color reconstructed images. This method is based on an adaptive affine transform of the hologram that permits management of the physical parameters of numerical reconstruction. In addition, we present a procedure to synthesize a single digital hologram in which three different colors are multiplexed. The optical reconstruction of the synthetic hologram by a spatial light modulator at one wavelength allows us to display all color features of the object, avoiding loss of details.

  17. Particle separation by phase modulated surface acoustic waves.

    PubMed

    Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L

    2017-09-01

    High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.

  18. Modulation sensing of fluorophores in tissue: a new approach to drug compliance monitoring

    NASA Astrophysics Data System (ADS)

    Abugo, Omoefe O.; Gryczynski, Zygmunt; Lakowicz, Joseph R.

    1999-10-01

    We describe a method to detect the presence of fluorophores in scattering media, including intralipid suspensions and chicken muscle covered with skin. The fluorophores were rhodamine 800 (Rb800) and indocyanine green (IcG), both of which can be excited at long wavelengths where there is minimal absorption by tissues. These fluorophores were dissolved in intralipid or in chicken muscle under skin. A method to approximate the fluorophore concentration in such samples was developed using a long lifetime reference fluorophores in a polymer film placed immediately on the illuminated surface of the sample. Because of the long lifetime of the reference film, the modulation of its emission at low frequencies near 2 MHz is near zero. Since the lifetime of Rh800 and IcG are below 2 ns the modulation of the combined emission is a measure of the intensity of the fluorophore (Rh800 or IcG) relative to the long lifetime reference. Using this method we were able to measure the concentration-dependent intensities of Rh800 and IcG in an intralipid suspension. Additionally, micromolar concentrations of these probes could be detected in chicken muscles, even when the muscle was covered with a layer of chicken skin. The presence of an India ink absorber in the intralipid had only a moderate effect on the modulation values. We suggest the use of this transdermal detection of long-wavelength fluorophores as a noninvasive method to monitor patient compliance when taking medicines used for treatment of chronic diseases such as AIDS or tuberculosis.

  19. Externally-Modulated Electro-Optically Coupled Detector Architecture for Nuclear Physics Instrumentation

    NASA Astrophysics Data System (ADS)

    Xi, Wenze; McKisson, J. E.; Weisenberger, Andrew G.; Zhang, Shukui; Zorn, Carl

    2014-06-01

    A new laser-based externally-modulated electro-optically coupled detector (EOCD) architecture is being developed to enable high-density readout for radiation detectors with accurate analog radiation pulse shape and timing preservation. Unlike digital conversion before electro-optical modulation, the EOCD implements complete analog optical signal modulation and multiplexing in its detector front-end. The result is a compact, high performance detector readout that can be both radiation tolerant and immune to magnetic fields. In this work, the feasibility of EOCD was explored by constructing a two-wavelength laser-based externally-modulated EOCD, and testing analog pulse shape preservation and wavelength-division multiplexing (WDM) crosstalk. Comparisons were first made between the corresponding initial pulses and the electro-optically coupled analog pulses. This confirmed an excellent analog pulse preservation over 29% of the modulator's switching voltage range. Optical spectrum analysis revealed less than -14 dB crosstalk with 1.2 nm WDM wavelength bandgap, and provided insight on experimental conditions that could lead to increased inter-wavelength crosstalk. Further discussions and previous research on the radiation tolerance and magnetic field immunity of the candidate materials were also given, and quantitative device testing is proposed in the future.

  20. Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths.

    PubMed

    Kaya, S; Weeber, J-C; Zacharatos, F; Hassan, K; Bernardin, T; Cluzel, B; Fatome, J; Finot, C

    2013-09-23

    We report on photo-thermal modulation of thin film surface plasmon polaritons (SPP) excited at telecom wavelengths and traveling at a gold/air interface. By operating a modulated continuous-wave or a Q-switched nanosecond pump laser, we investigate the photo-thermally induced modulation of SPP propagation mediated by the temperature-dependent ohmic losses in the gold film. We use a fiber-to-fiber characterization set-up to measure accurately the modulation depth of the SPP signal under photo-thermal excitation. On the basis of these measurements, we extract the thermo-plasmonic coefficient of the SPP mode defined as the temperature derivative of the SPP damping constant. Next, we introduce a figure of merit which is relevant to characterize the impact of temperature onto the properties of bounded or weakly leaky SPP modes supported by a given metal at a given wavelength. By combining our measurements with tabulated values of the temperature-dependent imaginary part of gold dielectric function, we compute the thermo-optical coefficients (TOC) of gold at telecom wavelengths. Finally, we investigate a pulsed photo-thermal excitation of the SPP in the nanosecond regime. The experimental SPP depth of modulation obtained in this situation are found to be in fair agreement with the modulation depths computed by using our values of gold TOC.

  1. Continuous-wave modulation of a femtosecond oscillator using coherent molecules.

    PubMed

    Gold, D C; Karpel, J T; Mueller, E A; Yavuz, D D

    2018-03-01

    We describe a new method to broaden the frequency spectrum of a femtosecond oscillator in the continuous-wave (CW) domain. The method relies on modulating the femtosecond laser using four-wave mixing inside a Raman-based optical modulator. We prepare the modulator by placing deuterium molecules inside a high-finesse cavity and driving their fundamental vibrational transition using intense pump and Stokes lasers that are locked to the cavity modes. With the molecules prepared, any laser within the optical region of the spectrum can pass through the system and be modulated in a single pass. This constitutes a CW optical modulator at a frequency of 90 THz with a steady-state single-pass efficiency of ∼10 -6 and transient (10 μs-time-scale) single-pass efficiency of ∼10 -4 . Using our modulator, we broaden the initial Ti:sapphire spectrum centered at 800 nm and produce upshifted and downshifted sidebands centered at wavelengths of 650 nm and 1.04 μm, respectively.

  2. Submillisecond-response polymer network liquid crystal phase modulators at 1.06-μm wavelength

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Xianyu, Haiqing; Chen, Yuan; Wu, Shin-Tson

    2011-07-01

    A fast-response and scattering-free polymer network liquid crystal (PNLC) light modulator is demonstrated at λ = 1.06 μm wavelength. A decay time of 117 μs for 2π phase modulation is obtained at 70 °C, which is ˜ 650 × faster than that of the host nematic LCs. The major tradeoff is the increased operating voltage. Potential applications include spatial light modulators and adaptive optics.

  3. Optical modulator based on silicon nanowires racetrack resonator

    NASA Astrophysics Data System (ADS)

    Sherif, S. M.; Shahada, L.; Swillam, M.

    2018-02-01

    An optical modulator based on the racetrack resonator configuration is introduced. The structure of the resonator modulator is built from silicon nanowires on silica. The cladding and voids between the silicon nanowires are filled with an electro-optic polymer. The proposed modulator is fully CMOS compatible. When the resonance is tuned to the 1.55μm wavelength, it experiences a wavelength shift upon voltage application, which is measured at the output as a change in the power level.

  4. Simultaneous wavelength conversion of ASK and DPSK signals based on four-wave-mixing in dispersion engineered silicon waveguides.

    PubMed

    Xu, Lin; Ophir, Noam; Menard, Michael; Lau, Ryan Kin Wah; Turner-Foster, Amy C; Foster, Mark A; Lipson, Michal; Gaeta, Alexander L; Bergman, Keren

    2011-06-20

    We experimentally demonstrate four-wave-mixing (FWM)-based continuous wavelength conversion of optical differential-phase-shift-keyed (DPSK) signals with large wavelength conversion ranges as well as simultaneous wavelength conversion of dual-wavelength channels with mixed modulation formats in 1.1-cm-long dispersion-engineered silicon waveguides. We first validate up to 100-nm wavelength conversion range for 10-Gb/s DPSK signals, showcasing the capability to perform phase-preserving operations at high bit rates in chip-scale devices over wide conversion ranges. We further validate the wavelength conversion of dual-wavelength channels modulated with 10-Gb/s packetized phase-shift-keyed (PSK) and amplitude-shift-keyed (ASK) signals; demonstrate simultaneous operation on multiple channels with mixed formats in chip-scale devices. For both configurations, we measure the spectral and temporal responses and evaluate the performances using bit-error-rate (BER) measurements.

  5. Integrated optic vector-matrix multiplier

    DOEpatents

    Watts, Michael R [Albuquerque, NM

    2011-09-27

    A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.

  6. A comprehensive simulation model of the performance of photochromic films in absorbance-modulation-optical-lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumder, Apratim; Helms, Phillip L.; Menon, Rajesh, E-mail: rmenon@eng.utah.edu

    2016-03-15

    Optical lithography is the most prevalent method of fabricating micro-and nano-scale structures in the semiconductor industry due to the fact that patterning using photons is fast, accurate and provides high throughput. However, the resolution of this technique is inherently limited by the physical phenomenon of diffraction. Absorbance-Modulation-Optical Lithography (AMOL), a recently developed technique has been successfully demonstrated to be able to circumvent this diffraction limit. AMOL employs a dual-wavelength exposure system in conjunction with spectrally selective reversible photo-transitions in thin films of photochromic molecules to achieve patterning of features with sizes beyond the far-field diffraction limit. We have developed amore » finite-element-method based full-electromagnetic-wave solution model that simulates the photo-chemical processes that occur within the thin film of the photochromic molecules under illumination by the exposure and confining wavelengths in AMOL. This model allows us to understand how the material characteristics influence the confinement to sub-diffraction dimensions, of the transmitted point spread function (PSF) of the exposure wavelength inside the recording medium. The model reported here provides the most comprehensive analysis of the AMOL process to-date, and the results show that the most important factors that govern the process, are the polarization of the two beams, the ratio of the intensities of the two wavelengths, the relative absorption coefficients and the concentration of the photochromic species, the thickness of the photochromic layer and the quantum yields of the photoreactions at the two wavelengths. The aim of this work is to elucidate the requirements of AMOL in successfully circumventing the far-field diffraction limit.« less

  7. [Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].

    PubMed

    Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo

    2011-04-01

    In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.

  8. A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control.

    PubMed

    Zheng, Xuezhe; Chang, Eric; Amberg, Philip; Shubin, Ivan; Lexau, Jon; Liu, Frankie; Thacker, Hiren; Djordjevic, Stevan S; Lin, Shiyun; Luo, Ying; Yao, Jin; Lee, Jin-Hyoung; Raj, Kannan; Ho, Ron; Cunningham, John E; Krishnamoorthy, Ashok V

    2014-05-19

    We report the first complete 10G silicon photonic ring modulator with integrated ultra-efficient CMOS driver and closed-loop wavelength control. A selective substrate removal technique was used to improve the ring tuning efficiency. Limited by the thermal tuner driver output power, a maximum open-loop tuning range of about 4.5nm was measured with about 14mW of total tuning power including the heater driver circuit power consumption. Stable wavelength locking was achieved with a low-power mixed-signal closed-loop wavelength controller. An active wavelength tracking range of > 500GHz was demonstrated with controller energy cost of only 20fJ/bit.

  9. Selectivity enhancement in photoacoustic gas analysis via phase-sensitive detection at high modulation frequency

    NASA Technical Reports Server (NTRS)

    Kosterev, Anatoliy (Inventor)

    2010-01-01

    A method for detecting a target fluid in a fluid sample comprising a first fluid and the target fluid using photoacoustic spectroscopy (PAS), comprises a) providing a light source configured to introduce an optical signal having at least one wavelength into the fluid sample; b) modulating the optical signal at a desired modulation frequency such that the optical signal generates an acoustic signal in the fluid sample; c) measuring the acoustic signal in a resonant acoustic detector; and d) using the phase of the acoustic signal to detect the presence of the target fluid.

  10. Analysis of physical layer performance of data center with optical wavelength switches based on advanced modulation formats

    NASA Astrophysics Data System (ADS)

    Ahmad, Iftikhar; Chughtai, Mohsan Niaz

    2018-05-01

    In this paper the IRIS (Integrated Router Interconnected spectrally), an optical domain architecture for datacenter network is analyzed. The IRIS integrated with advanced modulation formats (M-QAM) and coherent optical receiver is analyzed. The channel impairments are compensated using the DSP algorithms following the coherent receiver. The proposed scheme allows N2 multiplexed wavelengths for N×N size. The performance of the N×N-IRIS switch with and without wavelength conversion is analyzed for different Baud rates over M-QAM modulation formats. The performance of the system is analyzed in terms of bit error rate (BER) vs OSNR curves.

  11. Retro-modulators and fast beam steering for free-space optical communications

    NASA Astrophysics Data System (ADS)

    Chan, Trevor Keith

    Free-space optical (FSO) communications is a means of secure, high bandwidth communication through the use of a modulated laser beam in free-space as the information medium. The chaotic nature of the atmosphere and the motion of the communication nodes make laser alignment a crucial concern. The employment of retro-reflecting modulators makes the bidirectional quality of a communication link into a one sided alignment problem. While there are existing retro-reflecting modulators, their trade-offs create a lack of abilities (such as aperture size, angular range, high modulation speeds, economic viability) which do not fulfill the requirements for certain applications. Also, the beam must be directed towards the intended receiver. Form mobile or scintillated communication links, beam direction must be adaptable in real time. Once again, this area suffers from trade-offs where beamsteering speed is often limited. Research used to mitigate the trade-offs and adapt the devices into viable options for a wider range of applications is explored in this dissertation. Two forms of retro-modulators were explored; a MEMS deformable mirror retro-modulator and a solid silicon retro-modulator that modulated the light by frustrated total internal reflection (FTIR). The MEMS version offered a high speed, scalable, wavelength/angle insensitive retro-modulator which can be massed produced at low cost, while the solid retro-modulator offered a large field of view with low cost as well. Both modulator's design, simulated performances, fabrication and experimental characterization are described in this dissertation. An ultra-fast beamscanner was also designed using 2-dimensional dispersion. By using wavelength switching for directional control, a beamscanner was developed that could switch light faster than pre-existing beamscanners while the beams characteristics (most importantly its aperture) could be freely adjusted by the independent optics. This beamscanner was preceded by our work on a large channel wavelength demultiplexer which combined two orthogonally oriented wavelength demultiplexers. This created a 2-dimensional array of spots in free-space. The light was directed be a collimating lens into a specific direction based on its wavelength. The performance of this beamscanner was simulated by modeling the dispersive properties of the components.

  12. Active optimal control strategies for increasing the efficiency of photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Aljoaba, Sharif Zidan Ahmad

    Energy consumption has increased drastically during the last century. Currently, the worldwide energy consumption is about 17.4 TW and is predicted to reach 25 TW by 2035. Solar energy has emerged as one of the potential renewable energy sources. Since its first physical recognition in 1887 by Adams and Day till nowadays, research in solar energy is continuously developing. This has lead to many achievements and milestones that introduced it as one of the most reliable and sustainable energy sources. Recently, the International Energy Agency declared that solar energy is predicted to be one of the major electricity production energy sources by 2035. Enhancing the efficiency and lifecycle of photovoltaic (PV) modules leads to significant cost reduction. Reducing the temperature of the PV module improves its efficiency and enhances its lifecycle. To better understand the PV module performance, it is important to study the interaction between the output power and the temperature. A model that is capable of predicting the PV module temperature and its effects on the output power considering the individual contribution of the solar spectrum wavelengths significantly advances the PV module edsigns toward higher efficiency. In this work, a thermoelectrical model is developed to predict the effects of the solar spectrum wavelengths on the PV module performance. The model is characterized and validated under real meteorological conditions where experimental temperature and output power of the PV module measurements are shown to agree with the predicted results. The model is used to validate the concept of active optical filtering. Since this model is wavelength-based, it is used to design an active optical filter for PV applications. Applying this filter to the PV module is expected to increase the output power of the module by filtering the spectrum wavelengths. The active filter performance is optimized, where different cutoff wavelengths are used to maximize the module output power. It is predicted that if the optimized active optical filter is applied to the PV module, the module efficiency is predicted to increase by about 1%. Different technologies are considered for physical implementation of the active optical filter.

  13. High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing

    PubMed Central

    Hu, Chenyuan; Bai, Wei

    2018-01-01

    A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing. PMID:29495263

  14. High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing.

    PubMed

    Hu, Chenyuan; Bai, Wei

    2018-02-24

    A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing.

  15. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  16. Fully interferometric controllable anomalous refraction efficiency using cross modulation with plasmonic metasurfaces.

    PubMed

    Liu, Zhaocheng; Chen, Shuqi; Li, Jianxiong; Cheng, Hua; Li, Zhancheng; Liu, Wenwei; Yu, Ping; Xia, Ji; Tian, Jianguo

    2014-12-01

    We present a method of fully interferometric, controllable anomalous refraction efficiency by introducing cross-modulated incident light based on plasmonic metasurfaces. Theoretical analyses and numerical simulations indicate that the anomalous and ordinary refracted beams generated from two opposite-helicity incident beams and following the generalized Snell's law will have a superposition for certain incident angles, and the anomalous refraction efficiency can be dynamically controlled by changing the relative phase of the incident sources. As the incident wavelength nears the resonant wavelength of the plasmonic metasurfaces, two equal-amplitude incident beams with opposite helicity can be used to control the anomalous refraction efficiency. Otherwise, two unequal-amplitude incident beams with opposite helicity can be used to fully control the anomalous refraction efficiency. This Letter may offer a further step in the development of controllable anomalous refraction.

  17. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.

    PubMed

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  18. Dual-Modulation, Dual-Wavelength, Optical Polarimetry System for Glucose Monitoring

    DTIC Science & Technology

    2016-08-26

    dual-wavelength, optical polarimetry system for glucose monitoring 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) 5d...JBO.21.8.087001] 14. ABSTRACT A dual modulation optical polarimetry system utilizing both laser intensity and polarization modulation was designed...varying birefringence, which is one of the major limitations to the realization of polarimetry for glucose monitoring in the eye. The high-speed less

  19. Characterization of submillisecond response optical addressing phase modulator based on low light scattering polymer network liquid crystal

    NASA Astrophysics Data System (ADS)

    Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Dayong, Zhang; Yongquan, Luo

    2015-01-01

    Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulation effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.

  20. [Spectral analysis of fiber bragg grating modulated by double long period grating and its application in smart structure monitoring].

    PubMed

    Lu, Ji-Yun; Liang, Da-Kai; Zhang, Xiao-Li; Zhu, Zhu

    2009-12-01

    Spectrum of fiber bragg grating (FBG) sensor modulated by double long period grating (LPFG) is proposed in the paper. Double LPFG consists of two LPFGS whose center wavelengths are the same and reflection spectrum of FBG sensor is located in linear range of double LPFG transmission spectrum. Based on spectral analysis of FBG and double LPFG, reflection spectrum of FBG modulated by double LPFG is obtained and studied by use of band-hider filter characteristics for double LPFG. An FBG sensor is attached on the surface of thin steel beam, which is strained by bending, and the center wavelength of FBG sensor will shift. The spectral peak of FBG sensor modulated by double LPFG is changed correspondingly, and the spectral change will lead to variation in exit light intensity from double LPFG. Experiment demonstrates that the relation of filtering light intensity from double LPFG monitored by optical power meter to center wavelength change of FBG sensor is linear and the minimum strain of material (steel beam) detected by the modulation and demodulation system is 1.05 microepsilon. This solution is used in impact monitoring of optical fibre smart structure, and FBG sensor is applied for impulse response signal monitoring induced by low-velocity impact, when impact pendulum is loaded to carbon fiber-reinforced plastics (CFP). The acquired impact response signal and fast Fourier transform of the signal detected by FBG sensor agree with the measurement results of eddy current displacement meter attached to the FBG sensor. From the results, the present method using FBG sensor is found to be effective for monitoring the impact. The research provides a practical reference in dynamic monitoring of optical fiber smart structure field.

  1. Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching

    NASA Astrophysics Data System (ADS)

    Peng, Kaung-Jay; Wu, Chun-Lung; Lin, Yung-Hsiang; Wang, Hwai-Yung; Cheng, Chih-Hsien; Chi, Yu-Chieh; Lin, Gong-Ru

    2018-01-01

    Using the evanescent-wave saturation effect of hydrogen-free low-temperature synthesized few-layer graphene covered on the cladding region of a side-polished single-mode fiber, a blue pump/infrared probe-based all-optical switch is demonstrated with specific wavelength-dependent probe modulation efficiency. Under the illumination of a blue laser diode at 405 nm, the few-layer graphene exhibits cross-gain modulation at different wavelengths covering the C- and L-bands. At a probe power of 0.5 mW, the L-band switching throughput power variant of 16 μW results in a probe modulation depth of 3.2%. Blue shifting the probe wavelength from 1580 to 1520 nm further enlarges the switching throughput power variant to 24 mW and enhances the probe modulation depth to 5%. Enlarging the probe power from 0.5 to 1 mW further enlarges the switching throughput power variant from 25 to 58 μW to promote its probe modulation depth of up to 5.8% at 1520 nm. In contrast, the probe modulation depth degrades from 5.1% to 1.2% as the pumping power reduces from 85 to 24 mW, which is attributed to the saturable absorption of the few-layer graphene-based evanescent-wave absorber. The modulation depth at wavelength of 1550 nm under a probe power of 1 mW increases from 1.2% to 5.1%, as more carriers can be excited when increasing the blue laser power from 24 to 85 mW, whereas it decreases from 5.1% to 3.3% by increasing the input probe power from 1 to 2 mW to show an easier saturated condition at longer wavelength.

  2. Apparatus and method for increasing the bandwidth of a laser beam

    DOEpatents

    Wilcox, Russell B.

    1992-01-01

    A method and apparatus using sinusoidal cross-phase modulation, provides a laser pulse having a very broad bandwidth while substantially retaining the input laser's temporal shape. The modulator may be used in a master oscillator system for a laser having a master oscillator-power amplifier (MOPA) configration. The modulator utilizes a first laser providing an output wavelength .lambda. and a second laser providing an output wavelength shifted by a small amount to .lambda.+.DELTA..lambda.. Each beam has a single, linear polarization. Each beam is coupled into a length of polarization-preserving optical fiber. The first laser beam is coupled into the optical fiber with the beam's polarization aligned with the fiber's main axis, and the second beam is coupled into the fiber with its polarization rotated from the main axis by a predetermined angle. Within the fiber, the main axis' polarization defines an interference beam and the orthogonal axis' polarization defines a signal beam. In the interference beam, the first laser beam and the parallel polarized vector component of the other beam interfere to create areas of high and low intensity, which modulates the signal beam by cross phase modulation. Upon exit from the optical fiber, the beams are coupled out and the modulated signal beam is separated out by a polarization selector. The signal beam can be applied to coherence reducing systems to provide an output that is temporally and spatially incoherent. The U.S. Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the U.S. Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.

  3. Four-fold increase in users of time-wavelength division multiplexing (TWDM) passive optical network (PON) by delayed optical amplitude modulation (AM) upstream

    NASA Astrophysics Data System (ADS)

    Kachhatiya, Vivek; Prince, Shanthi

    2016-12-01

    In this paper, we have proposed and simulated optical time division multiplexed passive optical network (TDM-PON) using delayed optical amplitude modulation (AM). Eight upstream wavelengths are demonstrated to show optical time wavelength division multiplexed (TWDM) by combining optical network units (ONU) users data at the remote node (RN). Each ONU generates 2.5 Gb/s user data, and it is modulated using novel return to zero (RZ) delayed AM. Optical TDM aggregates 10 Gb/s data per wavelength from four 2.5 Gb/s upstream user data, which facilitates four different ONU data on the same wavelength as 10 Gb/s per upstream wavelength and, simplify the laser requirements (2.5 Gb/s) at each optical network unit (ONU) transmitter. Upstream optical TWDM-PON is investigated for eight wavelengths with wavelength spacing of 100 GHz. Novel optical TDM for upstream increased the number of the simultaneous user to fourfold from conventional TWDM-PON using delayed AM with a high-quality-factor of received signal. Despite performance degradation due to different fiber reach and dispersion compensation technique, Optical TWDM link shows significant improvement regarding receiver sensitivity when compared with common TWDM link. Hence, it offers optimistic thinking to show optical TDM at this phase as one of the future direction, where complex digital signal processing (DSP) and coherent optical communication are frequently demonstrated to serve the access network. Downstream side conventional TWDM eight wavelengths are multiplexed at the OLT and sent downstream to serve distributed tunable ONU receivers through an optical distribution network (ODN). Each downstream wavelengths are modulated at the peak rate of 10 Gb/s using non-return to zero external modulation (NRZ-EM). The proposed architecture is cost efficient and supports high data rates as well as ;pay as you grow; network for both service providers and the users perspectives. Users are classified into two categories viz home-user and business-user, with an option for easy up-gradation. Proposed architecture operates on next generation passive optical network stage 2 (NG-PON2) wavelength plan, with symmetrical data rate. Downstream performance is investigated by comparing, high power laser source with a conventional laser source and the L-band Erbium-doped fiber amplifier (EDFA) of gain 10 dB and 20 dB. Downstream eight wavelengths perform error-free up to 40 Km fiber reach and 1024 splitting points. Power budget of the proposed architecture incorporates the N1, N2, E1 and E2 optical path loss class.

  4. Multi-bit wavelength coding phase-shift-keying optical steganography based on amplified spontaneous emission noise

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Wang, Hongxiang; Ji, Yuefeng

    2018-01-01

    In this paper, a multi-bit wavelength coding phase-shift-keying (PSK) optical steganography method is proposed based on amplified spontaneous emission noise and wavelength selection switch. In this scheme, the assignment codes and the delay length differences provide a large two-dimensional key space. A 2-bit wavelength coding PSK system is simulated to show the efficiency of our proposed method. The simulated results demonstrate that the stealth signal after encoded and modulated is well-hidden in both time and spectral domains, under the public channel and noise existing in the system. Besides, even the principle of this scheme and the existence of stealth channel are known to the eavesdropper, the probability of recovering the stealth data is less than 0.02 if the key is unknown. Thus it can protect the security of stealth channel more effectively. Furthermore, the stealth channel will results in 0.48 dB power penalty to the public channel at 1 × 10-9 bit error rate, and the public channel will have no influence on the receiving of the stealth channel.

  5. Independent and collective roles of surface structures at different length scales on pool boiling heat transfer

    PubMed Central

    Li, Calvin H.; Rioux, Russell P.

    2016-01-01

    Spherical Cu nanocavity surfaces are synthesized to examine the individual role of contact angles in connecting lateral Rayleigh-Taylor wavelength to vertical Kevin-Helmholtz wavelength on hydrodynamic instability for the onset of pool boiling Critical Heat Flux (CHF). Solid and porous Cu pillar surfaces are sintered to investigate the individual role of pillar structure pitch at millimeter scale, named as module wavelength, on hydrodynamic instability at CHF. Last, spherical Cu nanocavities are coated on the porous Cu pillars to create a multiscale Cu structure, which is studied to examine the collective role and relative significance of contact angles and module wavelength on hydrodynamic instability at CHF, and the results indicate that module wavelength plays the dominant role on hydrodynamic instability at CHF when the height of surface structures is equal or above ¼ Kelvin-Helmholtz wavelength. Pool boiling Heat Transfer Coefficient (HTC) enhancements on spherical Cu nanocavity surfaces, solid and porous Cu pillar surfaces, and the integrated multiscale structure have been investigated, too. The experimental results reveal that the nanostructures and porous pillar structures can be combined together to achieve even higher enhancement of HTC than that of individual structures. PMID:27841322

  6. Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line.

    PubMed

    Chakraborty, Arup Lal; Ruxton, Keith; Johnstone, Walter; Lengden, Michael; Duffin, Kevin

    2009-06-08

    A new fiber-optic technique to eliminate residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy is presented. The modulated laser output is split to pass in parallel through the gas measurement cell and an optical fiber delay line, with the modulation frequency / delay chosen to introduce a relative phase shift of pi between them. The two signals are balanced using a variable attenuator and recombined through a fiber coupler. In the absence of gas, the direct laser intensity modulation cancels, thereby eliminating the high background. The presence of gas induces a concentration-dependent imbalance at the coupler's output from which the absolute absorption profile is directly recovered with high accuracy using 1f detection.

  7. High-Speed Operation of Interband Cascade Lasers

    NASA Technical Reports Server (NTRS)

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.

    2010-01-01

    Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links

  8. Calibration-free wavelength modulation spectroscopy for gas concentration measurements using a quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Wei, Min; Kan, RuiFeng; Chen, Bing; Xu, ZhenYu; Yang, ChenGuang; Chen, Xiang; Xia, HuiHui; Hu, Mai; He, Yabai; Liu, JianGuo; Fan, XueLi; Wang, Wei

    2017-05-01

    We report the development of an accurate calibration-free wavelength-scanned wavelength modulation spectroscopy system based on the temporal wavelength response of a current-modulated quantum cascade laser (QCL) for gas concentration detections. Accurate measurements and determination of the QCL output intensity and wavelength response to current modulation enabled calculations of 1f-normalized 2f signal to obtain spectroscopic information with and without gas absorption in the beam path. The gas concentration was retrieved by fitting a simulation spectrum based on spectral line parameters to the background-subtracted 1f-normalized 2f signal based on measurements. In this paper, we demonstrate the performance of the developed system for the CH4 detection by applying an infrared QCL (at 7.84 µm or 1275 cm-1) to probe its two infrared transition lines at 1275.042 cm-1 and 1275.387 cm-1. The experimental results indicated very good agreements between measurements and modeling, for integrated absorbance ranging from 0.0057 cm-1 to 0.11 cm-1 (or absorbance ranging from 0.029 to 0.57). The extracted integrated absorbance was highly linear ( R = 0.99996) to the gas sample concentration. Deviations between the nominal sample gas concentrations and the extracted gas concentrations calculated based on HITRAN spectroscopic parameters were within 3.5%.

  9. Quantum Cascade Lasers Modulation and Applications

    NASA Astrophysics Data System (ADS)

    Luzhansky, Edward

    The mid-wave IR (MWIR) spectral band, extending from 3 to 5 microns, is considered to be a low loss atmospheric window. There are several spectral sub-bands with relatively low atmospheric attenuation in this region making it popular for various commercial and military applications. Relatively low thermal and solar background emissions, effective penetration through the natural and anthropogenic obscurants and eye safety add to the long list of advantages of MWIR wavelengths. Quantum Cascade Lasers are compact semiconductor devices capable of operating in MWIR spectrum. They are based on inter-subband transitions in a multiple-quantum-well (QW) hetero-structure, designed by means of band-structure engineering. The inter-subband nature of the optical transition has several key advantages. First, the emission wavelength is primarily a function of the QW thickness. This characteristic allows choosing well-understood and reliable semiconductors for the generation of light in a wavelength range of interest. Second, a cascade process in which tens of photons are generated per injected electron. This cascading process is behind the intrinsic high-power capabilities of QCLs. This dissertation is focused on modulation properties of Quantum Cascade Lasers. Both amplitude and phase/frequency modulations were studied including modulation bandwidth, modulation efficiency and chirp linearity. Research was consisted of the two major parts. In the first part we describe the theory of frequency modulation (FM) response of Distributed Feedback Quantum Cascade Lasers (DFB QCL). It includes cascading effect on the QCL's maximum modulation frequency. The "gain levering" effect for the maximum FM response of the two section QCLs was studied as well. In the second part of research we concentrated on the Pulse Position Amplitude Modulation of a single section QCL. The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept is introduced. The concept was realized and tested in the laboratory environment. The resilience to atmospheric impairments are analyzed with simulated turbulence. The performance compared to typical telecom based Short Wavelength Infra-Red transceiver.

  10. Control of integrated micro-resonator wavelength via balanced homodyne locking.

    PubMed

    Cox, Jonathan A; Lentine, Anthony L; Trotter, Douglas C; Starbuck, Andrew L

    2014-05-05

    We describe and experimentally demonstrate a method for active control of resonant modulators and filters in an integrated photonics platform. Variations in resonance frequency due to manufacturing processes and thermal fluctuations are corrected by way of balanced homodyne locking. The method is compact, insensitive to intensity fluctuations, minimally disturbs the micro-resonator, and does not require an arbitrary reference to lock. We demonstrate long-term stable locking of an integrated filter to a laser swept over 1.25 THz. In addition, we show locking of a modulator with low bit error rate while the chip temperature is varied from 5 to 60° C.

  11. Laser System for Precise, Unambiguous Range Measurements

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, Oliver

    2005-01-01

    The Modulation Sideband Technology for Absolute Range (MSTAR) architecture is the basis of design of a proposed laser-based heterodyne interferometer that could measure a range (distance) as great as 100 km with a precision and resolution of the order of 1 nm. Simple optical interferometers can measure changes in range with nanometer resolution, but cannot measure range itself because interference is subject to the well-known integer-multiple-of-2 -radians phase ambiguity, which amounts to a range ambiguity of the order of 1 m at typical laser wavelengths. Existing rangefinders have a resolution of the order of 10 m and are therefore unable to resolve the ambiguity. The proposed MSTAR architecture bridges the gap, enabling nanometer resolution with an ambiguity range that can be extended to arbitrarily large distances. The MSTAR architecture combines the principle of the heterodyne interferometer with the principle of extending the ambiguity range of an interferometer by using light of two wavelengths. The use of two wavelengths for this purpose is well established in optical metrology, radar, and sonar. However, unlike in traditional two-color laser interferometry, light of two wavelengths would not be generated by two lasers. Instead, multiple wavelengths would be generated as sidebands of phase modulation of the light from a single frequency- stabilized laser. The phase modulation would be effected by applying sinusoidal signals of suitable frequencies (typically tens of gigahertz) to high-speed electro-optical phase modulators. Intensity modulation can also be used

  12. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yi Jun; Mandelis, Andreas, E-mail: mandelis@mie.utoronto.ca; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that couldmore » be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.« less

  13. Optical Measurement of Mass Flow of a Two-Phase Fluid

    NASA Technical Reports Server (NTRS)

    Wiley, John; Pedersen, Kevin; Koman, Valentin; Gregory, Don

    2008-01-01

    An optoelectronic system utilizes wavelength-dependent scattering of light for measuring the density and mass flow of a two-phase fluid in a pipe. The apparatus was invented for original use in measuring the mass flow of a two-phase cryogenic fluid (e.g., liquid hydrogen containing bubbles of hydrogen gas), but underlying principles of operation can readily be adapted to non-cryogenic two-phase fluids. The system (see figure) includes a laser module, which contains two or more laser diodes, each operating at a different wavelength. The laser module also contains beam splitters that combine the beams at the various wavelengths so as to produce two output beams, each containing all of the wavelengths. One of the multiwavelength output beams is sent, via a multimode fiberoptic cable, to a transmitting optical coupler. The other multiwavelength output beam is sent, via another multimode fiber-optic cable, to a reference detector module, wherein fiber-optic splitters split the light into several multiwavelength beams, each going to a photodiode having a spectral response that is known and that differs from the spectral responses of the other photodiodes. The outputs of these photodiodes are digitized and fed to a processor, which executes an algorithm that utilizes the known spectral responses to convert the photodiode outputs to obtain reference laser-power levels for the various wavelengths. The transmitting optical coupler is mounted in (and sealed to) a hole in the pipe and is oriented at a slant with respect to the axis of the pipe. The transmitting optical coupler contains a collimating lens and a cylindrical lens that form the light emerging from the end of the fiber-optic cable into a fan-shaped beam in a meridional plane of the pipe. Receiving optical couplers similar to the transmitting optical couplers are mounted in the same meridional plane at various longitudinal positions on the opposite side of the pipe, approximately facing the transmitting optical coupler along the same slant. Light collected by each receiving optical coupler is sent, via a multimode fiber-optic cable, to a detector module similar to the reference detector module. The outputs of the photodiodes in each detector module are digitized and processed, similarly to those of the reference detector module, to obtain indications of the amounts of light of each wavelength scattered to the corresponding receiving position. The value for each wavelength at each position is also normalized to the reference laser-power level for that wavelength. From these normalized values, the density and the mass flow rate of the fluid are estimated.

  14. Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats.

    PubMed

    Li, Borui; Feng, Zhenhua; Tang, Ming; Xu, Zhilin; Fu, Songnian; Wu, Qiong; Deng, Lei; Tong, Weijun; Liu, Shuang; Shum, Perry Ping

    2015-05-04

    Towards the next generation optical access network supporting large capacity data transmission to enormous number of users covering a wider area, we proposed a hybrid wavelength-space division multiplexing (WSDM) optical access network architecture utilizing multicore fibers with advanced modulation formats. As a proof of concept, we experimentally demonstrated a WSDM optical access network with duplex transmission using our developed and fabricated multicore (7-core) fibers with 58.7km distance. As a cost-effective modulation scheme for access network, the optical OFDM-QPSK signal has been intensity modulated on the downstream transmission in the optical line terminal (OLT) and it was directly detected in the optical network unit (ONU) after MCF transmission. 10 wavelengths with 25GHz channel spacing from an optical comb generator are employed and each wavelength is loaded with 5Gb/s OFDM-QPSK signal. After amplification, power splitting, and fan-in multiplexer, 10-wavelength downstream signal was injected into six outer layer cores simultaneously and the aggregation downstream capacity reaches 300 Gb/s. -16 dBm sensitivity has been achieved for 3.8 × 10-3 bit error ratio (BER) with 7% Forward Error Correction (FEC) limit for all wavelengths in every core. Upstream signal from ONU side has also been generated and the bidirectional transmission in the same core causes negligible performance degradation to the downstream signal. As a universal platform for wired/wireless data access, our proposed architecture provides additional dimension for high speed mobile signal transmission and we hence demonstrated an upstream delivery of 20Gb/s per wavelength with QPSK modulation formats using the inner core of MCF emulating a mobile backhaul service. The IQ modulated data was coherently detected in the OLT side. -19 dBm sensitivity has been achieved under the FEC limit and more than 18 dB power budget is guaranteed.

  15. Fast ultrasonic wavelength tuning in X-ray experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blagov, A. E., E-mail: blagov-ae@mail.ru; Pisarevskii, Yu. V.; Koval’chuk, M. V.

    2016-03-15

    A method of tuning (scanning) X-ray beam wavelength based on modulation of the lattice parameter of X-ray optical crystal by an ultrasonic standing wave excited in it has been proposed and experimentally implemented. The double-crystal antiparallel scheme of X-ray diffraction, in which an ultrasonic wave is excited in the second crystal, is used in the experiment. The profile of characteristic line k{sub α1} of an X-ray tube with a molybdenum anode is recorded using both the proposed tuning scheme and conventional mechanical rotation of crystal. The results obtained by both techniques are in good agreement.

  16. Gas sensing using wavelength modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Viveiros, D.; Ribeiro, J.; Flores, D.; Ferreira, J.; Frazao, O.; Santos, J. L.; Baptista, J. M.

    2014-08-01

    An experimental setup has been developed for different gas species sensing based on the Wavelength Modulation Spectroscopy (WMS) principle. The target is the measurement of ammonia, carbon dioxide and methane concentrations. The WMS is a rather sensitive technique for detecting atomic/molecular species presenting the advantage that it can be used in the near-infrared region using optical telecommunications technology. In this technique, the laser wavelength and intensity are modulated applying a sine wave signal through the injection current, which allows the shift of the detection bandwidth to higher frequencies where laser intensity noise is reduced. The wavelength modulated laser light is tuned to the absorption line of the target gas and the absorption information can be retrieved by means of synchronous detection using a lock-in amplifier, where the amplitude of the second harmonic of the laser modulation frequency is proportional to the gas concentration. The amplitude of the second harmonic is normalised by the average laser intensity and detector gain through a LabVIEW® application, where the main advantage of normalising is that the effects of laser output power fluctuations and any variations in laser transmission, or optical-electrical detector gain are eliminated. Two types of sensing heads based on free space light propagation with different optical path length were used, permitting redundancy operation and technology validation.

  17. Advances in 7xx-nm fiber-coupled modules with application to Tm fiber laser pumping and DPAL (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Patterson, Steven G.; Guiney, Tina; Stapleton, Dean; Braker, Joseph; Alegria, Kim; Irwin, David A.; Ebert, Christopher

    2017-02-01

    DILAS has leveraged its industry-leading work in manufacturing low SWaP fiber-coupled modules extending the wavelength range to 793nm for Tm fiber laser pumping. Ideal for medical, industrial and military applications, modules spanning from single emitter-based 9W to TBar-based 200W of 793nm pump power will be discussed. The highlight is a lightweight module capable of <200W of 793nm pump power out of a package weighing < 400 grams. In addition, other modules spanning from single emitter-based 9W to TBar-based 200W of 793nm pump power will be presented. In addition, advances in DPAL modules, emitting at the technologically important wavelengths near 766nm and 780nm, will be detailed. Highlights include a fully microprocessor controlled fiber-coupled module that produces greater than 400W from a 600 micron core fiber and a line width of only 56.3pm. The micro-processor permits the automated center wavelength and line width tuning of the output over a range of output powers while retaining excellent line center and line width stability over time.

  18. Influence of skin type and wavelength on light wave reflectance.

    PubMed

    Fallow, Bennett A; Tarumi, Takashi; Tanaka, Hirofumi

    2013-06-01

    A new application of photoplethysmography (PPG) has emerged recently to provide the possibility of heart rate monitoring without a telemetric chest strap. The aim of this study was to determine if a new device could detect pulsation over a broad range of skin types, and what light wavelength would be most suitable for detecting the signals. A light emitting diode-based PPG system was used to detect changes in pulsatile blood flow on 23 apparently healthy individuals (11 male and 12 female, 20-59 years old) of varying skin types classified according to a questionnaire in combination with digital photographs with a skin type chart. Four different light wavelengths (470, 520, 630, and 880 nm) were tested. Normalized modulation level is calculated as the AC/DC component ratio and represents the change in flow over the underlying constant state of flow or perfusion. In the resting condition, green light wavelength (520 nm) displayed greater modulation (p < 0.001) than all the other wavelengths analyzed regardless of skin types. Type V (dark brown) skin type was significantly lower in modulation than all other skin types. In the exercise condition, both blue (470 nm) and green (520 nm) light wavelengths displayed greater signal-to-noise ratios than red (630 nm) or infrared (880 nm) light wavelengths (p < 0.001). We concluded that a PPG-based device can detect pulsation across all skin types and that a greater resolution was obtained using a green light wavelength at rest and a green or blue light wavelength during exercise.

  19. A WDM-PON with DPSK modulated downstream and OOK modulated upstream signals based on symmetric 10 Gbit/s wavelength reused bidirectional reflective SOA

    NASA Astrophysics Data System (ADS)

    El-Nahal, Fady I.

    2017-01-01

    We investigate a wavelength-division-multiplexing passive optical network (WDM-PON) with centralized lightwave and direct detection. The system is demonstrated for symmetric 10 Gbit/s differential phase-shift keying (DPSK) downstream signals and on-off keying (OOK) upstream signals, respectively. A wavelength reused scheme is employed to carry the upstream data by using a reflective semiconductor optical amplifier (RSOA) as an intensity modulator at the optical network unit (ONU). The constant-intensity property of the DPSK modulation format can keep high extinction ratio ( ER) of downstream signal and reduce the crosstalk to the upstream signal. The bit error rate ( BER) performance of our scheme shows that the proposed 10 Gbit/s symmetric WDM-PON can achieve error free transmission over 25-km-long fiber transmission with low power penalty.

  20. Normal incidence infrared modulator based on single quantum well intersubband transitions

    NASA Astrophysics Data System (ADS)

    Vandermeiren, W.; Stiens, J.; Shkerdin, G.; De Tandt, C.; Vounckx, R.

    2014-01-01

    An infrared modulator of which the working principle is based on evanescent wave generation and intersubband transitions in a single AlGaAs/GaAs quantum well is presented here. CO2 laser light at normal incidence is coupled to an evanescent wave by means of a sub-wavelength diffraction grating. Modulation of the zeroth order reflective mode is achieved by applying an electric field across the quantum well. The model for deriving the complex refractive index of the quantum well region is presented and used for numerical diffraction efficiency simulations as a function of the groove height and period. Two specimens with different groove heights were fabricated. Experiments are conducted at a wavelength of 10.6 µm. At this wavelength a relatively strong absolute modulation depth of about 20% could be observed. The experimental results are in good agreement with our model and diffraction efficiency calculations.

  1. Optical Tunable-Based Transmitter for Multiple Radio Frequency Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung (Inventor); Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor); Freeman, Jon C. (Inventor)

    2016-01-01

    An optical tunable transmitter is used to transmit multiple radio frequency bands on a single beam. More specifically, a tunable laser is configured to generate a plurality of optical wavelengths, and an optical tunable transmitter is configured to modulate each of the plurality of optical wavelengths with a corresponding radio frequency band. The optical tunable transmitter is also configured to encode each of the plurality of modulated optical wavelengths onto a single laser beam for transmission of a plurality of radio frequency bands using the single laser beam.

  2. Hybrid plasmonic electro-optical absorption modulator based on epsilon-near-zero characteristics of ITO

    NASA Astrophysics Data System (ADS)

    Abdelatty, M. Y.; Badr, M. M.; Swillam, M. A.

    2018-03-01

    Using transparent conducting oxides (TCOs), like indium-tin-oxide (ITO), for optical modulation attracted research interest because of their epsilon-near-zero (ENZ) characteristics at telecom wavelengths. Utilizing indium-tin-oxide (ITO) in multilayer structure modulators, optical absorption of the active ITO layer can be electrically modulated over a large spectrum range. Although they show advances over common silicon electro-optical modulators (EOMs), they suffer from high insertion losses. To reduce insertion losses and device footprints without sacrificing bandwidth and modulation strength, slot waveguides are promising options because of their high optical confinement. In this paper, we present the study and the design of an electro-optical absorption modulator based on electrically tuning ITO carrier density inside a MOS structure. The device structure is based on dielectric slot waveguide with an ITO plasmonic waveguide modulation section. By changing the dimensions, the effective refractive indices for the slot mode and the off-sate mode of the plasmonic section can be matched. When applying electric field to the plasmonic section (on-state), carriers are generated at the ITO-dielectric interface that result in changing the layer where the electric field is confined from a transparent layer into a lossy layer. A finite difference time domain method with perfect matching layer (PML) absorbing boundary conditions is taken up to simulate and analyze this design. An extinction ratio of 2.3 dB is achieved for a 1-μm-short modulation section, at the telecommunications wavelength (1.55 μm). This EOM has advantages of simple design, easy fabrication, compact size, compatibility with existing silicon photonics platforms, as well as broadband performance.

  3. Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Lee, Hwi Don; Lee, Ju Han; Yung Jeong, Myung; Kim, Chang-Seok

    2011-07-01

    The static and dynamic characteristics of a wavelength-swept active mode locking (AML) fiber laser are presented in both the time-region and wavelength-region. This paper shows experimentally that the linewidth of a laser spectrum and the bandwidth of the sweeping wavelength are dependent directly on the length and dispersion of the fiber cavity as well as the modulation frequency and sweeping rate under the mode-locking condition. To achieve a narrower linewidth, a longer length and higher dispersion of the fiber cavity as well as a higher order mode locking condition are required simultaneously. For a broader bandwidth, a lower order of the mode locking condition is required using a lower modulation frequency. The dynamic sweeping performance is also analyzed experimentally to determine its applicability to optical coherence tomography imaging. It is shown that the maximum sweeping rate can be improved by the increased free spectral range from the shorter length of the fiber cavity. A reflective semiconductor optical amplifier (RSOA) was used to enhance the modulation and dispersion efficiency. Overall a triangular electrical signal can be used instead of the sinusoidal signal to sweep the lasing wavelength at a high sweeping rate due to the lack of mechanical restrictions in the wavelength sweeping mechanism.

  4. A molecular-sized optical logic circuit for digital modulation of a fluorescence signal

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahiro; Tsuchida, Karin; Ogura, Yusuke; Tanida, Jun

    2018-03-01

    Fluorescence measurement allows simultaneous detection of multiple molecular species by using spectrally distinct fluorescence probes. However, due to the broad spectra of fluorescence emission, the multiplicity of fluorescence measurement is generally limited. To overcome this limitation, we propose a method to digitally modulate fluorescence output signals with a molecular-sized optical logic circuit by using optical control of fluorescence resonance energy transfer (FRET). The circuit receives a set of optical inputs represented with different light wavelengths, and then it switches high and low fluorescence intensity from a reporting molecule according to the result of the logic operation. By using combinational optical inputs in readout of fluorescence signals, the number of biomolecular species that can be identified is increased. To implement the FRET-based circuits, we designed two types of basic elements, YES and NOT switches. An YES switch produces a high-level output intensity when receiving a designated light wavelength input and a low-level intensity without the light irradiation. A NOT switch operates inversely to the YES switch. In experiments, we investigated the operation of the YES and NOT switches that receive a 532-nm light input and modulate the fluorescence intensity of Alexa Fluor 488. The experimental result demonstrates that the switches can modulate fluorescence signals according to the optical input.

  5. [Absorption spectrum of Quasi-continuous laser modulation demodulation method].

    PubMed

    Shao, Xin; Liu, Fu-Gui; Du, Zhen-Hui; Wang, Wei

    2014-05-01

    A software phase-locked amplifier demodulation method is proposed in order to demodulate the second harmonic (2f) signal of quasi-continuous laser wavelength modulation spectroscopy (WMS) properly, based on the analysis of its signal characteristics. By judging the effectiveness of the measurement data, filter, phase-sensitive detection, digital filtering and other processing, the method can achieve the sensitive detection of quasi-continuous signal The method was verified by using carbon dioxide detection experiments. The WMS-2f signal obtained by the software phase-locked amplifier and the high-performance phase-locked amplifier (SR844) were compared simultaneously. The results show that the Allan variance of WMS-2f signal demodulated by the software phase-locked amplifier is one order of magnitude smaller than that demodulated by SR844, corresponding two order of magnitude lower of detection limit. And it is able to solve the unlocked problem caused by the small duty cycle of quasi-continuous modulation signal, with a small signal waveform distortion.

  6. Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs.

    PubMed

    Han, Liangshun; Liang, Song; Wang, Huitao; Qiao, Lijun; Xu, Junjie; Zhao, Lingjuan; Zhu, Hongliang; Wang, Baojun; Wang, Wei

    2014-12-01

    We present an InP based distributed Bragg reflector (DBR) laser transmitter which has a wide wavelength tuning range and a high chip output power for wavelength division multiplexing passive optical network (WDM-PON) applications. By butt-jointing InGaAsP with 1.45 µm emission wavelength as the material of the grating section, the laser wavelength can be tuned for over 13 nm by the DBR current. Accompanied by varying the chip temperature, the tuning range can be further enlarged to 16 nm. With the help of the integrated semiconductor optical amplifier (SOA), the largest chip output power is over 30 mW. The electroabsorption modulator (EAM) is integrated into the device by the selective-area growth (SAG) technique. The 3 dB small signal modulation bandwidth of the EAM is over 13 GHz. The device has both a simple tuning scheme and a simple fabrication procedure, making it suitable for low cost massive production which is desirable for WDM-PON uses.

  7. Non-invasive Glucose Measurements Using Wavelength Modulated Differential Photothermal Radiometry (WM-DPTR)

    NASA Astrophysics Data System (ADS)

    Guo, X.; Mandelis, A.; Zinman, B.

    2012-11-01

    Wavelength-modulated differential laser photothermal radiometry (WM-DPTR) is introduced for potential development of clinically viable non-invasive glucose biosensors. WM-DPTR features unprecedented glucose-specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the baseline of a prominent and isolated mid-IR glucose absorption band. Measurements on water-glucose phantoms (0 to 300 mg/dl glucose concentration) demonstrate high sensitivity to meet wide clinical detection requirements ranging from hypoglycemia to hyperglycemia. The measurement results have been validated by simulations based on fully developed WM-DPTR theory. For sensitive and accurate glucose measurements, the key is the selection and tight control of the intensity ratio and the phase shift of the two laser beams.

  8. Simulation of novel intensity modulated cascaded coated LPFG sensor based on PMTP

    NASA Astrophysics Data System (ADS)

    Feng, Wenbin; Gu, Zhengtian; Lin, Qiang; Sang, Jiangang

    2017-12-01

    This paper presents a novel intensity modulated cascaded long-period fiber grating (CLPFG) sensor which is cascaded by two same coated long-period fiber gratings (LPFGs) operating at the phase-matching turning point (PMTP). The sensor combines the high sensitivity of LPFG operating at PMTP and the narrow bandwidth of interference attenuation band of CLPFG, so a higher response to small change of the surrounding refractive index (SRI) can be obtained by intensity modulation. Based on the coupled-mode theory, the grating parameters of the PMTP of a middle odd order cladding mode of a single LPFG are calculated. Then this two same LPFGs are cascaded into a CLPFG, and the optical transmission spectrum of the CLPFG is calculated by transfer matrix method. A resonant wavelength of a special interference attenuation band whose intensity has the highest response to SRI, is selected form CLPFG’s spectrum, and setting the resonant wavelength as the operating wavelength of the sensor. Furthermore, the simulation results show that the resolution of SRI of this CLPFG is available to 1.97 × 10-9 by optimizing the film optical parameters, which is about three orders of magnitude higher than coated dual-peak LPFG and cascaded LPFG sensors. It is noteworthy that the sensor is also sensitive to the refractive index of coat, so that the sensor is expected to be applied to detections of gas, PH value, humidity and so on, in the future.

  9. Photonic ultra-wideband pulse generation, hybrid modulation and dispersion-compensation-free transmission in multi-access communication systems.

    PubMed

    Tan, Kang; Shao, Jing; Sun, Junqiang; Wang, Jian

    2012-01-16

    We propose and demonstrate a scheme for optical ultrawideband (UWB) pulse generation by exploiting a half-carrier-suppressed Mach-Zehnder modulator (MZM) and a delay-interferometer- and wavelength-division-multiplexer-based, reconfigurable and multi-channel differentiator (DWRMD). Multi-wavelength, polarity- and shape-switchable UWB pulses of monocycle, doublet, triplet, and quadruplet are experimentally generated simply by tuning two bias voltages to modify the carrier-suppression ratio of MZM and the differential order of DWRMD respectively. The pulse position modulation, pulse shape modulation, pulse amplitude modulation and binary phase-shift keying modulation of UWB pulses can also be conveniently realized with the same scheme structure, which indicates that the hybrid modulation of those four formats can be achieved. Consequently, the proposed approach has potential applications in multi-shape, multi-modulation and multi-access UWB-over-fiber communication systems.

  10. Photo-induced spatial modulation of THz waves: opportunities and limitations.

    PubMed

    Kannegulla, Akash; Shams, Md Itrat Bin; Liu, Lei; Cheng, Li-Jing

    2015-12-14

    Programmable conductive patterns created by photoexcitation of semiconductor substrates using digital light processing (DLP) provides a versatile approach for spatial and temporal modulation of THz waves. The reconfigurable nature of the technology has great potential in implementing several promising THz applications, such as THz beam steering, THz imaging or THz remote sensing, in a simple, cost-effective manner. In this paper, we provide physical insight about how the semiconducting materials, substrate dimension, optical illumination wavelength and illumination size impact the performance of THz modulation, including modulation depth, modulation speed and spatial resolution. The analysis establishes design guidelines for the development of photo-induced THz modulation technology. Evolved from the theoretical analysis, a new mesa array technology composed by a matrix of sub-THz wavelength structures is introduced to maximize both spatial resolution and modulation depth for THz modulation with low-power photoexcitation by prohibiting the lateral diffusion of photogenerated carriers.

  11. A 1.3-μm four-channel directly modulated laser array fabricated by SAG-Upper-SCH technology

    NASA Astrophysics Data System (ADS)

    Guo, Fei; Lu, Dan; Zhang, Ruikang; Liu, Songtao; Sun, Mengdie; Kan, Qiang; Ji, Chen

    2017-01-01

    A monolithically integrated four-channel directly modulated laser (DML) array working at the 1.3-μm band is demonstrated. The laser was manufactured by using the techniques of selective area growth (SAG) of the upper separate confinement heterostructure (Upper-SCH) and modified butt-joint method. The fabricated device showed stable single mode operation with the side mode suppression ratio (SMSR) >35 dB, and high wavelength accuracy with the deviations from the linear fitted values <±0.03 nm for all channels. Furthermore, small signal modulation bandwidth >7 GHz was obtained, which may be suitable for 40 GbE applications in the 1.3-μm band.

  12. Enhanced 10 Gb/s operations of directly modulated reflective semiconductor optical amplifiers without electronic equalization.

    PubMed

    Presi, M; Chiuchiarelli, A; Corsini, R; Choudury, P; Bottoni, F; Giorgi, L; Ciaramella, E

    2012-12-10

    We report enhanced 10 Gb/s operation of directly modulated bandwidth-limited reflective semiconductor optical amplifiers. By using a single suitable arrayed waveguide grating we achieve simultaneously WDM demultiplexing and optical equalization. Compared to previous approaches, the proposed system results significantly more tolerant to seeding wavelength drifts. This removes the need for wavelength lockers, additional electronic equalization or complex digital signal processing. Uniform C-band operations are obtained experimentally with < 2 dB power penalty within a wavelength drift of 10 GHz (which doubles the ITU-T standard recommendations).

  13. Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator.

    PubMed

    Thackray, Benjamin D; Thomas, Philip A; Auton, Gregory H; Rodriguez, Francisco J; Marshall, Owen P; Kravets, Vasyl G; Grigorenko, Alexander N

    2015-05-13

    We present extremely narrow collective plasmon resonances observed in gold nanostripe arrays fabricated on a thin gold film, with the spectral line full width at half-maximum (fwhm) as low as 5 nm and quality factors Q reaching 300, at important fiber-optic telecommunication wavelengths around 1.5 μm. Using these resonances, we demonstrate a hybrid graphene-plasmonic modulator with the modulation depth of 20% in reflection operated by gating of a single layer graphene, the largest measured so far.

  14. Fluorescence detection of dental calculus

    NASA Astrophysics Data System (ADS)

    Gonchukov, S.; Biryukova, T.; Sukhinina, A.; Vdovin, Yu

    2010-11-01

    This work is devoted to the optimization of fluorescence dental calculus diagnostics in optical spectrum. The optimal wavelengths for fluorescence excitation and registration are determined. Two spectral ranges 620 - 645 nm and 340 - 370 nm are the most convenient for supra- and subgingival calculus determination. The simple implementation of differential method free from the necessity of spectrometer using was investigated. Calculus detection reliability in the case of simple implementation is higher than in the case of spectra analysis at optimal wavelengths. The use of modulated excitation light and narrowband detection of informative signal allows us to decrease essentially its diagnostic intensity even in comparison with intensity of the low level laser dental therapy.

  15. High-resolution interferometic microscope for traceable dimensional nanometrology in Brazil

    NASA Astrophysics Data System (ADS)

    Malinovski, I.; França, R. S.; Lima, M. S.; Bessa, M. S.; Silva, C. R.; Couceiro, I. B.

    2016-07-01

    The double color interferometric microscope is developed for step height standards nanometrology traceable to meter definition via primary wavelength laser standards. The setup is based on two stabilized lasers to provide traceable measurements of highest possible resolution down to the physical limits of the optical instruments in sub-nanometer to micrometer range of the heights. The wavelength reference is He-Ne 633 nm stabilized laser, the secondary source is Blue-Green 488 nm grating laser diode. Accurate fringe portion is measured by modulated phase-shift technique combined with imaging interferometry and Fourier processing. Self calibrating methods are developed to correct systematic interferometric errors.

  16. Dynamic Self-Locking of an OEO Containing a VCSEL

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Yu, Nan; Savchenkov, Anatoliy; Maleki, Lute

    2009-01-01

    A method of dynamic self-locking has been demonstrated to be effective as a means of stabilizing the wavelength of light emitted by a vertical-cavity surface-emitting laser (VCSEL) that is an active element in the frequency-control loop of an optoelectronic oscillator (OEO) designed to implement an atomic clock based on an electromagnetically- induced-transparency (EIT) resonance. This scheme can be considered an alternative to the one described in Optical Injection Locking of a VCSEL in an OEO (NPO-43454), NASA Tech Briefs, Vol. 33, No. 7 (July 2009), page 33. Both schemes are expected to enable the development of small, low-power, high-stability atomic clocks that would be suitable for use in applications involving precise navigation and/or communication. To recapitulate from the cited prior article: In one essential aspect of operation of an OEO of the type described above, a microwave modulation signal is coupled into the VCSEL. Heretofore, it has been well known that the wavelength of light emitted by a VCSEL depends on its temperature and drive current, necessitating thorough stabilization of these operational parameters. Recently, it was discovered that the wavelength also depends on the microwave power coupled into the VCSEL. This concludes the background information. From the perspective that led to the conception of the optical injection-locking scheme described in the cited prior article, the variation of the VCSEL wavelength with the microwave power circulating in the frequency-control loop is regarded as a disadvantage and optical injection locking is a solution of the problem of stabilizing the wavelength in the presence of uncontrolled fluctuations in the microwave power. The present scheme for dynamic self-locking emerges from a different perspective, in which the dependence of VCSEL wavelength on microwave power is regarded as an advantageous phenomenon that can be exploited as a means of controlling the wavelength. The figure schematically depicts an atomic-clock OEO of the type in question, wherein (1) the light from the VCSEL is used to excite an EIT resonance in selected atoms in a gas cell (e.g., 87Rb atoms in a low-pressure mixture of Ar and Ne) and (2) the power supplied to the VCSEL is modulated by a microwave signal that includes components at beat frequencies among the VCSEL wavelength and modulation sidebands. As the VCSEL wavelength changes, it moves closer to or farther from a nearby absorption spectral line, and the optical power transmitted through the cell (and thus the loop gain) changes accordingly. A change in the loop gain causes a change in the microwave power and, thus, in the VCSEL wavelength. It is possible to choose a set of design and operational parameters (most importantly, the electronic part of the loop gain) such that the OEO stabilizes itself in the sense that an increase in circulating microwave power causes the VCSEL wavelength to change in a direction that results in an increase in optical absorption and thus a decrease in circulating microwave power. Typically, such an appropriate choice of operational parameters involves setting the nominal VCSEL wavelength to a point on the shorter-wavelength wing of an absorption spectral line.

  17. Short optical pulse generation at 40 GHz with a bulk electro-absorption modulator packaged device

    NASA Astrophysics Data System (ADS)

    Langlois, Patrick; Moore, Ronald; Prosyk, Kelvin; O'Keefe, Sean; Oosterom, Jill A.; Betty, Ian; Foster, Robert; Greenspan, Jonathan; Singh, Priti

    2003-12-01

    Short optical pulse generation at 40GHz and 1540nm wavelength is achieved using fully packaged bulk quaternary electro-absorption modulator modules. Experimental results obtained with broadband and narrowband optimized packaged modules are presented and compared against empirical model predictions. Pulse duty cycle, extinction ratio and chirp are studied as a function of sinusoidal drive voltage and detuning between operating wavelength and modulator absorption band edge. Design rules and performance trade-offs are discussed. Low-chirp pulses with a FWHM of ~12ps and sub-4ps at a rate of 40GHz are demonstrated. Optical time-domain demultiplexing of a 40GHz to a 10GHz pulse train is also demonstrated with better than 20dB extinction ratio.

  18. Reflective coherent spatial light modulator

    DOEpatents

    Simpson, John T.; Richards, Roger K.; Hutchinson, Donald P.; Simpson, Marcus L.

    2003-04-22

    A reflective coherent spatial light modulator (RCSLM) includes a subwavelength resonant grating structure (SWS), the SWS including at least one subwavelength resonant grating layer (SWL) have a plurality of areas defining a plurality of pixels. Each pixel represents an area capable of individual control of its reflective response. A structure for modulating the resonant reflective response of at least one pixel is provided. The structure for modulating can include at least one electro-optic layer in optical contact with the SWS. The RCSLM is scalable in both pixel size and wavelength. A method for forming a RCSLM includes the steps of selecting a waveguide material and forming a SWS in the waveguide material, the SWS formed from at least one SWL, the SWL having a plurality of areas defining a plurality of pixels.

  19. Waveguide electro-optic modulators based on intrinsically polar self-assembled superlattices (SASs)

    NASA Astrophysics Data System (ADS)

    Liu, Zhifu; Ho, Seng Tiong; Chang, Seongsik; Zhao, Yiguang; Marks, Tobin J.; Kang, Hu; van der Boom, Milko E.; Zhu, Peiwang

    2002-12-01

    In this paper we describe methods of fabricating and characterizing organic electro-optic modulators based on intrinsically polar self-assembled superlattices. These structures are intrinsically acentric, and exhibit large second harmonic generation and electro-optic responses without the requirement of poling by an external electric field. A novel wet chemical protection-deprotection approach for the growth of self-assembled superlattices have been developed, and the refractive indices of self-assembled organic electro-optic superlattices may be tuned during the self-assembly process. Prototype electro-optic modulators based on chromophoric self-assembled superlattices have been designed and fabricated. The effective electro-optic coefficient of the self-assembled superlattice film in a phase modulator is estimated as about 20 pm/V at a wavelength of 1064 nm.

  20. Comparative study of novel versus conventional two-wavelength spectrophotometric methods for analysis of spectrally overlapping binary mixture.

    PubMed

    Lotfy, Hayam M; Hegazy, Maha A; Rezk, Mamdouh R; Omran, Yasmin Rostom

    2015-09-05

    Smart spectrophotometric methods have been applied and validated for the simultaneous determination of a binary mixture of chloramphenicol (CPL) and prednisolone acetate (PA) without preliminary separation. Two novel methods have been developed; the first method depends upon advanced absorbance subtraction (AAS), while the other method relies on advanced amplitude modulation (AAM); in addition to the well established dual wavelength (DW), ratio difference (RD) and constant center coupled with spectrum subtraction (CC-SS) methods. Accuracy, precision and linearity ranges of these methods were determined. Moreover, selectivity was assessed by analyzing synthetic mixtures of both drugs. The proposed methods were successfully applied to the assay of drugs in their pharmaceutical formulations. No interference was observed from common additives and the validity of the methods was tested. The obtained results have been statistically compared to that of official spectrophotometric methods to give a conclusion that there is no significant difference between the proposed methods and the official ones with respect to accuracy and precision. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Wavelength-Agile External-Cavity Diode Laser for DWDM

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Bomse, David S.

    2006-01-01

    A prototype external-cavity diode laser (ECDL) has been developed for communication systems utilizing dense wavelength- division multiplexing (DWDM). This ECDL is an updated version of the ECDL reported in Wavelength-Agile External- Cavity Diode Laser (LEW-17090), NASA Tech Briefs, Vol. 25, No. 11 (November 2001), page 14a. To recapitulate: The wavelength-agile ECDL combines the stability of an external-cavity laser with the wavelength agility of a diode laser. Wavelength is modulated by modulating the injection current of the diode-laser gain element. The external cavity is a Littman-Metcalf resonator, in which the zeroth-order output from a diffraction grating is used as the laser output and the first-order-diffracted light is retro-reflected by a cavity feedback mirror, which establishes one end of the resonator. The other end of the resonator is the output surface of a Fabry-Perot resonator that constitutes the diode-laser gain element. Wavelength is selected by choosing the angle of the diffracted return beam, as determined by position of the feedback mirror. The present wavelength-agile ECDL is distinguished by design details that enable coverage of all 60 channels, separated by 100-GHz frequency intervals, that are specified in DWDM standards.

  2. Multispectral photoacoustic method for the early detection and diagnosis of osteoporosis

    NASA Astrophysics Data System (ADS)

    Steinberg, Idan; Eyal, Avishay; Gannot, Israel

    2013-03-01

    Osteoporosis is a major health problem worldwide, with healthcare costs of billions of dollars annually. The risk of fracture depends on the bone mineral density (measured in clinical practice) as well as on the bone microstructure and functional status. Since pure ultrasonic methods can measure bone strength and spectroscopic optical methods can provide valuable functional information, a hybrid multispectral photoacoustic technique can be of great value. We have developed such a system based on a tunable Ti:Sapph laser at 750 - 950 nm, followed by an acousto-optic modulator to generate photoacoustic signals with frequencies of 0.5 - 2.5 MHz. Another system was based on two directly modulated 830nm laser diodes. The systems were used to photoacoustically excite the proximal end of a rat tibia. Spectrum analyzer with tracking generator was used for measuring both the amplitude and the phase at the distal end. Scanning along both the optical wavelength as well as the acoustic frequency enables full mapping of the bone transfer function. Analyzing this function along the wavelength axis allows deducing the gross biochemical composition related to the bone functional and pathological state. Analyzing the amplitude and phase along the acoustic frequency axis yields the speed of sound dispersion and the broadband ultrasonic attenuation - both have shown clinical relevance.

  3. Improved Phase-Mask Fabrication of Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Wang, Ying; Sharma, Anup

    2004-01-01

    An improved method of fabrication of Bragg gratings in optical fibers combines the best features of two prior methods: one that involves the use of a phase mask and one that involves interference between the two coherent laser beams. The improved method affords flexibility for tailoring Bragg wavelengths and bandwidths over wide ranges. A Bragg grating in an optical fiber is a periodic longitudinal variation in the index of refraction of the fiber core. The spatial period (Bragg wavelength) is chosen to obtain enhanced reflection of light of a given wavelength that would otherwise propagate relatively unimpeded along the core. Optionally, the spatial period of the index modulation can be made to vary gradually along the grating (such a grating is said to be chirped ) in order to obtain enhanced reflection across a wavelength band, the width of which is determined by the difference between the maximum and minimum Bragg wavelengths. In the present method as in both prior methods, a Bragg grating is formed by exposing an optical fiber to an ultraviolet-light interference field. The Bragg grating coincides with the pattern of exposure of the fiber core to ultraviolet light; in other words, the Bragg grating coincides with the interference fringes. Hence, the problem of tailoring the Bragg wavelength and bandwidth is largely one of tailoring the interference pattern and the placement of the fiber in the interference pattern. In the prior two-beam interferometric method, a single laser beam is split into two beams, which are subsequently recombined to produce an interference pattern at the location of an optical fiber. In the prior phase-mask method, a phase mask is used to diffract a laser beam mainly into two first orders, the interference between which creates the pattern to which an optical fiber is exposed. The prior two-beam interferometric method offers the advantage that the period of the interference pattern can be adjusted to produce gratings over a wide range of Bragg wavelengths, but offers the disadvantage that success depends on precise alignment and high mechanical stability. The prior phase-mask method affords the advantages of compactness of equipment and relative insensitivity to both misalignment and vibration, but does not afford adjustability of the Bragg wavelength. The present method affords both the flexibility of the prior two-beam interferometric method and the compactness and stability of the prior phase-mask method. In this method (see figure), a laser beam propagating along the x axis is normally incident on a phase mask that lies in the (y,z) plane. The phase of light propagating through the mask is modulated with a spatial periodicity, p, along the y axis chosen to diffract the laser light primarily to first order at the angle . (The zero-order laser light propagating along the x axis can be used for alignment and thereafter suppressed during exposure of the fiber.) The diffracted light passes through a concave cylindrical lens, which converts the flat diffracted wave fronts to cylindrical ones, as though the light emanated from a line source. Then two parallel flat mirrors recombine the diffracted beams to form an interference field equivalent to that of two coherent line sources at positions A and B (virtual sources). The interference pattern is a known function of the parameters of the apparatus and of position (x,y) in the interference field. Hence, the tilt, wavelength, and chirp of the Bragg grating can be chosen through suitable adjustments of the apparatus and/or of the position and orientation of the optical fiber. In particular, the Bragg wavelength can be adjusted by moving the fiber along the x axis, and the bandwidth can be modified over a wide range by changing the fiber tilt angle or by moving the phase mask and/or the fiber. Alignment is easy because the zero-order beam defines the x axis. The interference is relatively stable and insensitive to the mechanical vibration because of the gh symmetry and compactness of the apparatus, the fixed positions of the mirrors and lens, and the consequent fixed positions of the two virtual line sources, which are independent of the translations of the phase mask and the laser relative to the lens.

  4. Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band.

    PubMed

    Varshney, Shailendra; Fujisawa, Takeshi; Saitoh, Kunimasa; Koshiba, Masanori

    2005-11-14

    In this paper, we report, for the first time, an inherently gain-flattened discrete highly nonlinear photonic crystal fiber (HNPCF) Raman amplifier (HNPCF-RA) design which shows 13.7 dB of net gain (with +/-0.85-dB gain ripple) over 28-nm bandwidth. The wavelength dependent leakage loss property of HNPCF is used to flatten the Raman gain of the amplifier module. The PCF structural design is based on W-shaped refractive index profile where the fiber parameters are well optimized by homely developed genetic algorithm optimization tool integrated with an efficient vectorial finite element method (V-FEM). The proposed fiber design has a high Raman gain efficiency of 4.88 W(-1) . km(-1) at a frequency shift of 13.1 THz, which is precisely evaluated through V-FEM. Additionally, the designed module, which shows ultra-wide single mode operation, has a slowly varying negative dispersion coefficient (-107.5 ps/nm/km at 1550 nm) over the operating range of wavelengths. Therefore, our proposed HNPCF-RA module acts as a composite amplifier with dispersion compensator functionality in a single component using a single pump.

  5. 120W, NA_0.15 fiber coupled LD module with 125-μm clad/NA 0.22 fiber by spatial coupling method

    NASA Astrophysics Data System (ADS)

    Ishige, Yuta; Kaji, Eisaku; Katayama, Etsuji; Ohki, Yutaka; Gajdátsy, Gábor; Cserteg, András.

    2018-02-01

    We have fabricated a fiber coupled semiconductor laser diode module by means of spatial beam combining of single emitter broad area semiconductor laser diode chips in the 9xx nm band. In the spatial beam multiplexing method, the numerical aperture of the output light from the optical fiber increases by increasing the number of laser diodes coupled into the fiber. To reduce it, we have tried the approach to improving assembly process technology. As a result, we could fabricate laser diode modules having a light output power of 120W or more and 95% power within NA of 0.15 or less from a single optical fiber with 125-μm cladding diameter. Furthermore, we have obtained that the laser diode module maintaining high coupling efficiency can be realized even around the fill factor of 0.95. This has been achieved by improving the optical alignment method regarding the fast axis stack pitch of the laser diodes in the laser diode module. Therefore, without using techniques such as polarization combining and wavelength combining, high output power was realized while keeping small numerical aperture. This contributes to a reduction in unit price per light output power of the pumping laser diode module.

  6. Quadruple multi-wavelength conversion for access network scalability based on cross-phase modulation in an SOA-MZI

    NASA Astrophysics Data System (ADS)

    Ab-Rahman, Mohammad Syuhaimi; Swedan, Abdulhameed Almabrok

    2017-12-01

    The emergence of new services and data exchange applications has increased the demand for bandwidth among individuals and commercial business users at the access area. Thus, vendors of optical access networks should achieve a high-capacity system. This study demonstrates the performance of an integrated configuration of one to four multi-wavelength conversions at 10 Gb/s based on cross-phase modulation using semiconductor optical amplifier integrated with Mach-Zehnder interferometer. The Opti System simulation tool is used to simulate and demonstrate one to four wavelength conversions using one modulated wavelength and four probes of continuous wave sources. The wavelength converter processes are confirmed through investigation of the input and output characteristics, optical signal-to-noise ratio, conversion efficiency, and extinction ratio of new modulated channels after separation by demultiplexing. The outcomes of the proposed system using single channel indicate that the capacity can increase from 10 Gb/s to 50 Gb/s with a maximum number of access points increasing from 64 to 320 (each point with 156.25 Mb/s bandwidth). The splitting ratio of 1:16 provides each client with 625 Mb/s for the total number of 80 users. The Q-factor and bit error rate curves are investigated to confirm and validate the modified scheme and prove the system performance of the full topology of 25 km with 1/64 splitter. The outcomes are within the acceptable range to provide the system scalability.

  7. Development of a fast temperature sensor for combustion gases using a single tunable diode laser

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Jeffries, J. B.; Hanson, R. K.

    2005-09-01

    The 12 best NIR water transition line pairs for temperature measurements with a single DFB laser in flames are determined by systematic analysis of the HITRAN simulation of the water spectra in the 1-2 μm spectral region. A specific line pair near 1.4 μm was targeted for non-intrusive measurements of gas temperature in combustion systems using a scanned-wavelength technique with wavelength modulation and 2f detection. This sensor uses a single diode laser (distributed-feedback), operating near 1.4 μm and is wavelength scanned over a pair of H2O absorption transitions (7154.354 cm-1 & 7153.748 cm-1) at a 2 kHz repetition rate. The wavelength is modulated (f=500 kHz) with modulation amplitude a=0.056 cm-1. Gas temperature is inferred from the ratio of the second harmonic signals of the two selected H2O transitions. The fiber-coupled-single-laser design makes the system compact, rugged, low cost and simple to assemble. As part of the sensor development effort, design rules were applied to optimize the line selection, and fundamental spectroscopic parameters of the selected transitions were determined via laboratory measurements including the temperature-dependent line strength, self-broadening coefficients, and air-broadening coefficients. The new sensor design includes considerations of hardware and software to enable fast data acquisition and analysis; a temperature readout rate of 2 kHz was demonstrated for measurements in a laboratory flame at atmospheric pressure. The combination of scanned-wavelength and wavelength-modulation minimizes interference from emission and beam steering, resulting in a robust temperature sensor that is promising for combustion control applications.

  8. The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure

    NASA Astrophysics Data System (ADS)

    Sun, Feiying; Xia, Liangping; Nie, Changbin; Shen, Jun; Zou, Yixuan; Cheng, Guiyu; Wu, Hao; Zhang, Yong; Wei, Dongshan; Yin, Shaoyun; Du, Chunlei

    2018-04-01

    All-optical modulators based on graphene show great promise for on-chip optical interconnects. However, the modulation performance of all-optical modulators is usually based on the interaction between graphene and the fiber, limiting their potential in high integration. Based on this point, an all-optical modulator in a dielectric-loaded waveguide (DLW) with a graphene-silicon heterojunction structure (GSH) is proposed. The DLW raises the waveguide mode, which provides a strong light-graphene interaction. Sufficient tuning of the graphene Fermi energy beyond the Pauli blocking effect is obtained with the presented GSH structure. Under the modulation light with a wavelength of 532 nm and a power of 60 mW, a modulation efficiency of 0.0275 dB µm-1 is achieved for light with a communication wavelength of 1.55 µm in the experiment. This modulator has the advantage of having a compact footprint, which may make it a candidate for achieving a highly integrated all-optical modulator.

  9. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, Eric A.; Fisher, Walter G.

    1998-01-01

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time.

  10. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, E.A.; Fisher, W.G.

    1998-04-28

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time. 12 figs.

  11. Self-mixing laser diode included in scanning microwave microscope to the control of probe nanodisplacement

    NASA Astrophysics Data System (ADS)

    Usanov, D. A.; Skripal, A. V.; Astakhov, E. I.; Dobdin, S. Y.

    2018-04-01

    The possibilities of self-mixing interferometry for measuring nanodisplacement of a probe included in a near-field scanning microwave microscope have been considered. The features of the formation of a laser interference signal at current modulation of the wavelength of laser radiation have been investigated. Experimental responses of a semiconductor laser system included in scanning microwave microscope to control nanodisplacement of the probe have been demonstrated.To register the nanodisplacement of the probe, it is proposed to use the method of determining the stationary phase of a laser interference signal by low-frequency spectrum of a semiconductor laser. The change of the amplitudes of the spectral components in the spectrum of the interference signal due to creation of the standing wave in the external resonator of the laser self-mixing system has been shown. The form of the interference signal at current modulation of the radiation wavelength was experimentally obtained when the probe moves with a step of 80 nm. The results of measuring nanodisplacements of an electromagnetic translator STANDA 8MVT40-13 have been demonstrated. Deviation of the nanodisplacement of the proposed method does not exceed 15%.

  12. Technology of focus detection for 193nm projection lithographic tool

    NASA Astrophysics Data System (ADS)

    Di, Chengliang; Yan, Wei; Hu, Song; Xu, Feng; Li, Jinglong

    2012-10-01

    With the shortening printing wavelength and increasing numerical aperture of lithographic tool, the depth of focus(DOF) sees a rapidly drop down trend, reach a scale of several hundred nanometers while the repeatable accuracy of focusing and leveling must be one-tenth of DOF, approximately several dozen nanometers. For this feature, this article first introduces several focusing technology, Obtained the advantages and disadvantages of various methods by comparing. Then get the accuracy of dual-grating focusing method through theoretical calculation. And the dual-grating focusing method based on photoelastic modulation is divided into coarse focusing and precise focusing method to analyze, establishing image processing model of coarse focusing and photoelastic modulation model of accurate focusing. Finally, focusing algorithm is simulated with MATLAB. In conclusion dual-grating focusing method shows high precision, high efficiency and non-contact measurement of the focal plane, meeting the demands of focusing in 193nm projection lithography.

  13. Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode

    NASA Astrophysics Data System (ADS)

    Rerucha, Simon; Yacoot, Andrew; Pham, Tuan M.; Cizek, Martin; Hucl, Vaclav; Lazar, Josef; Cip, Ondrej

    2017-04-01

    We demonstrated that an iodine stabilized distributed Bragg reflector (DBR) diode based laser system lasing at a wavelength in close proximity to λ =633 nm could be used as an alternative laser source to the helium-neon lasers in both scientific and industrial metrology. This yields additional advantages besides the optical frequency stability and coherence: inherent traceability, wider optical frequency tuning range, higher output power and high frequency modulation capability. We experimentally investigated the characteristics of the laser source in two major steps: first using a wavelength meter referenced to a frequency comb controlled with a hydrogen maser and then on an interferometric optical bench testbed where we compared the performance of the laser system with that of a traditional frequency stabilized He-Ne laser. The results indicate that DBR diode laser system provides a good laser source for applications in dimensional (nano)metrology, especially in conjunction with novel interferometric detection methods exploiting high frequency modulation or multiaxis measurement systems.

  14. Spectral analysis techniques for characterizing cadmium zinc telluride polarization modulators

    NASA Astrophysics Data System (ADS)

    FitzGerald, William R.; Taherion, Saeid; Kumar, F. Joseph; Giles, David; Hore, Dennis K.

    2018-04-01

    The low frequency electro-optic characteristics of cadmium zinc telluride are demonstrated in the mid-infrared, in the spectral range 2.5-11 μm. Conventional methods for characterizing the dynamic response by monitoring the amplitude of the time-varying light intensity do not account for spatial variation in material properties. In such cases, a more revealing method involves monitoring two distinct frequency components in order to characterize the dynamic and static contributions to the optical retardation. We demonstrate that, while this method works well for a ZnSe photo-elastic modulator, it does not fully capture the response of a cadmium zinc telluride electro-optic modulator. Ultimately, we show that acquiring the full waveform of the optical response enables a model to be created that accounts for inhomogeneity in the material that results in an asymmetric response with respect to the polarity of the driving voltage. This technique is applicable to broadband and fixed-wavelength applications in a variety of spectral ranges.

  15. A holographic technique for recording a hypervelocity projectile with front surface resolution.

    PubMed

    Kurtz, R L; Loh, H Y

    1970-05-01

    Any motion of the scene during the exposure of a hologram results in a spatial modulation of the recorded fringe contrast. On reconstruction, this produces a spatial amplitude modulation of the reconstructed wavefront, which results in a blurring of the image, not unlike that of a conventional photograph. For motion of the scene sufficient to change the path length of the signal arm by a half wavelength, this blurring is generally prohibitive. This paper describes a proposed holographic technique which offers promise for front light resolution of targets moving at high speeds, heretofore unobtainable by conventional methods.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osterwald, C. R.; Anderberg, A.; Rummel, S.

    We present an analysis of the results of a solar weathering program that found a linear relationship between maximum power degradation and the total UV exposure dose for four different types of commercial crystalline Si modules. The average degradation rate for the four modules types was 0.71% per year. The analysis showed that losses of short-circuit current were responsible for the maximum power degradation. Judging by the appearance of the undegraded control modules, it is very doubtful that the short-circuit current losses were caused by encapsulation browning or obscuration. When we compared the quantum efficiency of a single cell inmore » a degraded module to one from an unexposed control module, it appears that most of the degradation has occurred in the 800 - 1100 nm wave-length region, and not the short wavelength region.« less

  17. Femtosecond measurements of near-infrared pulse induced mid-infrared transmission modulation of quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Hong; Liu, Sheng; Center for Advanced Studied in Photonics Research

    2014-05-26

    We temporally resolved the ultrafast mid-infrared transmission modulation of quantum cascade lasers (QCLs) using a near-infrared pump/mid-infrared probe technique at room temperature. Two different femtosecond wavelength pumps were used with photon energy above and below the quantum well (QW) bandgap. The shorter wavelength pump modulates the mid-infrared probe transmission through interband transition assisted mechanisms, resulting in a high transmission modulation depth and several nanoseconds recovery lifetime. In contrast, pumping with a photon energy below the QW bandgap induces a smaller transmission modulation depth but much faster (several picoseconds) recovery lifetime, attributed to intersubband transition assisted mechanisms. The latter ultrafast modulationmore » (>60 GHz) could provide a potential way to realize fast QCL based free space optical communication.« less

  18. Wavelength stabilized multi-kW diode laser systems

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  19. Transit time of optical pulses propagating through a finite length medium.

    PubMed

    Bloemer, Mark; Myneni, Krishna; Centini, Marco; Scalora, Michael; D'Aguanno, Giuseppe

    2002-05-01

    We present experimental and theoretical results on the transit time of optical pulses propagating through bulk media of finite length, specifically GaAs and silica. The transit time of the peak of the pulse varies with the central wavelength due to the étalon effects caused by the reflectivity at the air/medium boundaries. For transform limited optical pulses, the transit time as a function of wavelength follows the transmittance spectrum, that is, the longest transit time occurs at the transmittance maxima where the cavity dwell time is the longest and the shortest transit time occurs at the transmittance minima. The results are dramatically different for chirped pulses obtained by modulating the injection current of a diode laser. The range in the transit times for chirped pulses is a factor of four times larger compared with transform limited pulses. In addition, the transit time for chirped pulses propagating through the GaAs sample is negative at certain wavelengths. Also, the transmitted pulse is not distorted. Although modulating the injection current of a diode laser is the most common method for generating optical pulses, to our knowledge this is the first reported observation of the transit time of these chirped optical pulses propagating through a simple étalon structure.

  20. In situ targeting TEM8 via immune response and polypeptide recognition by wavelength-modulated surface plasmon resonance biosensor

    PubMed Central

    Wang, Yimin; Luo, Zewei; Liu, Kunping; Wang, Jie; Duan, Yixiang

    2016-01-01

    There is an increasing interest in real-time and in situ monitoring of living cell activities in life science and medicine. This paper reports a whole cell sensing protocol over the interface of Au film coupled in a wavelength-modulated surface plasmon resonance (WMSPR) biosensor. With dual parabolic mirrors integrated in the sensor, the compact and miniaturized instrument shows satisfactory refractive index sensitivity (2220 nm/RIU) and a high resolution of resonance wavelength shift of 0.3 nm to liquid samples. The affinity interactions between the biomarker of human tumor endothelial marker 8 (TEM8) and antibody (Ab) or specific polypeptide (PEP) were firstly introduced to WMSPR biosensor analysis. Both the interaction events of Ab-cell and PEP-cell over the Au film interface can be recognized by the sensor and the balance time of interactions is about 20 min. The concentration range of Ab for quantitative monitoring of the TEM8 expression on human colon carcinoma SW620 cells was investigated. The present low-cost and time-saving method provides a time resolution of binding specificity between Ab/PEP and TEM8 for real-time analysis of antigen on living tumor cell surface. PMID:26822761

  1. High-power diode laser modules from 410 nm to 2200 nm

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Kissel, Heiko; Flament, Marco; Wolf, Paul; Brand, Thomas; Biesenbach, Jens

    2010-02-01

    In this work we report on high-power diode laser modules covering a wide spectral range from 410 nm to 2200 nm. Driven by improvements in the technology of diode laser bars with non-standard wavelengths, such systems are finding a growing number of applications. Fields of application that benefit from these developments are direct medical applications, printing industry, defense technology, polymer welding and pumping of solid-sate lasers. Diode laser bars with standard wavelengths from 800 - 1000 nm are based on InGaAlAs, InGaAlP, GaAsP or InGaAs semiconductor material with an optical power of more than 100 W per bar. For shorter wavelengths from 630 - 690 nm InGaAlP semiconductor material is used with an optical power of about 5 W per bar. Extending the wavelength range beyond 1100 nm is realized by using InGaAs on InP substrates or with InAs quantum dots embedded in GaAs for wavelengths up to 1320 nm and (AlGaIn)(AsSb) for wavelengths up to 2200 nm. In these wavelength ranges the output power per bar is about 6 - 20 W. In this paper we present a detailed characterization of these diode laser bars, including measurements of power, spectral data and life time data. In addition, we will show different fiber coupled modules, ranging from 638 nm with 13 W output power (400 μm fiber, NA 0.22) up to 1940 nm with more than 50 W output power (600 μm fiber NA 0.22).

  2. Enhanced noise tolerance for 10 Gb/s Bi-directional cross-wavelength reuse colorless WDM-PON by using spectrally shaped OFDM signals

    NASA Astrophysics Data System (ADS)

    Choudhury, Pallab K.

    2018-05-01

    Spectrally shaped orthogonal frequency division multiplexing (OFDM) signal for symmetric 10 Gb/s cross-wavelength reuse reflective semiconductor optical amplifier (RSOA) based colorless wavelength division multiplexed passive optical network (WDM-PON) is proposed and further analyzed to support broadband services of next generation high speed optical access networks. The generated OFDM signal has subcarriers in separate frequency ranges for downstream and upstream, such that the re-modulation noise can be effectively minimized in upstream data receiver. Moreover, the cross wavelength reuse approach improves the tolerance against Rayleigh backscattering noise due to the propagation of different wavelengths in the same feeder fiber. The proposed WDM-PON is successfully demonstrated for 25 km fiber with 16-QAM (quadrature amplitude modulation) OFDM signal having bandwidth of 2.5 GHz for 10 Gb/s operation and subcarrier frequencies in 3-5.5 GHz and DC-2.5 GHz for downstream (DS) and upstream (US) transmission respectively. The result shows that the proposed scheme maintains a good bit error rate (BER) performance below the forward error correction (FEC) limit of 3.8 × 10-3 at acceptable receiver sensitivity and provides a high resilience against re-modulation and Rayleigh backscattering noises as well as chromatic dispersion.

  3. Characterization of submillisecond response optical addressing phase modulator based on low light scattering polymer network liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiangjie, Zhao, E-mail: zxjdouble@163.com, E-mail: zxjdouble@gmail.com; Cangli, Liu; Jiazhu, Duan

    Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulationmore » effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.« less

  4. Secured Optical Communications Using Quantum Entangled Two-Photon Transparency Modulation

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor); Lekki, John (Inventor)

    2015-01-01

    A system and method is disclosed wherein optical signals are coded in a transmitter by tuning or modulating the interbeam delay time (which modulates the fourth-order coherence) between pairs of entangled photons. The photon pairs are either absorbed or not absorbed (transparent) by an atomic or molecular fluorescer in a receiver, depending on the inter-beam delay that is introduced in the entangled photon pairs. Upon the absorption, corresponding fluorescent optical emissions follow at a certain wavelength, which are then detected by a photon detector. The advantage of the disclosed system is that it eliminates a need of a coincidence counter to realize the entanglement-based secure optical communications because the absorber acts as a coincidence counter for entangled photon pairs.

  5. Displacement sensor based on intra-cavity tuning of dual-frequency gas laser

    NASA Astrophysics Data System (ADS)

    Niu, Haisha; Niu, Yanxiong; Liu, Ning; Li, Jiyang

    2018-01-01

    A nanometer-resolution displacement measurement instrument based on tunable cavity frequency-splitting method is presented. One beam is split into two orthogonally polarized beams when anisotropic element inserted in the cavity. The two beams with fixed frequency difference are modulated by the movement of the reflection mirror. The changing law of the power tuning curves between the total output and the two orthogonally polarized beams is researched, and a method splitting one tuning cycle to four equal parts is proposed based on the changing law, each part corresponds to one-eighth wavelength of displacement. A laser feedback interferometer (LFI) and piezoelectric ceramic are series connected to the sensor head to calibrate the displacement that less than one-eighth wavelength. The displacement sensor achieves to afford measurement range of 20mm with resolution of 6.93nm.

  6. Scanning Tunneling Optical Resonance Microscopy

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave

    2003-01-01

    Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically < 10 Hz) that the feedback circuit could respond, then the voltage applied to the piezoelectric tip-height actuator could be measured by use of a lock-in amplifier locked to the modulation (chopping) signal. However, at a high modulation frequency (typically in the kilohertz range or higher), the feedback circuit would be unable to respond. In this case, the photoenhanced portion of the tunneling current could be measured directly. For this purpose, the tunneling current would be passed through a precise resistor and the voltage drop would be measured by use of the lock-in amplifier.

  7. Multichannel homodyne receiver

    DOEpatents

    Landt, Jeremy A.

    1982-01-01

    A homodyne radar transmitter/receiver device which produces a single combined output which contains modulated backscatter information for all phase conditions of both modulated and unmodulated backscatter signals. The device utilizes taps along coaxial transmission lines, strip transmission line, and waveguides which are spaced by 1/8 wavelength or 1/6 wavelength, etc. This greatly reduces costs by eliminating separate transmission and reception antennas and an expensive arrangement of power splitters and mixers utilized in the prior art.

  8. Multichannel homodyne receiver

    DOEpatents

    Landt, J.A.

    1981-01-19

    A homodyne radar transmitter/receiver device which produces a single combined output which contains modulated backscatter information for all phase conditions of both modulated and unmodulated backscatter signals is described. The device utilizes taps along coaxial transmission lines, strip transmission line, and waveguides which are spaced by 1/8 wavelength or 1/6 wavelength, etc. This greatly reduces costs by eliminating separate transmission and reception antennas and an expensive arrangement of power splitters and mixers utilized in the prior art.

  9. Pulse patterning effect in optical pulse division multiplexing for flexible single wavelength multiple access optical network

    NASA Astrophysics Data System (ADS)

    Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook

    2018-05-01

    A demand for high spectral efficiency requires multiple access within a single wavelength, but the uplink signals are significantly degraded because of optical beat interference (OBI) in intensity modulation/direct detection system. An optical pulse division multiplexing (OPDM) technique was proposed that could effectively reduce the OBI via a simple method as long as near-orthogonality is satisfied, but the condition was strict, and thus, the number of multiplexing units was very limited. We propose pulse pattern enhanced OPDM (e-OPDM) to reduce the OBI and improve the flexibility in multiple access within a single wavelength. The performance of the e-OPDM and patterning effect are experimentally verified after 23-km single mode fiber transmission. By employing pulse patterning in OPDM, the tight requirement was relaxed by extending the optical delay dynamic range. This could support more number of access with reduced OBI, which could eventually enhance a multiple access function.

  10. Improved Measurement of Dispersion in an Optical Fiber

    NASA Technical Reports Server (NTRS)

    Huang, Shouhua; Le, Thanh; Maleki, Lute

    2004-01-01

    An improved method of measuring chromatic dispersion in an optical fiber or other device affords a lower (relative to prior such methods) limit of measurable dispersion. This method is a modified version of the amplitude-modulation (AM) method, which is one of the prior methods. In comparison with the other prior methods, the AM method is less complex. However, the AM method is limited to dispersion levels . 160 ps/nm and cannot be used to measure the symbol of the dispersion. In contrast, the present modified version of the AM method can be used to measure the symbol of the symbol of the dispersion and affords a measurement range from about 2 ps/nm to several thousand ps/nm with a resolution of 0.27 ps/nm or finer. The figure schematically depicts the measurement apparatus. The source of light for the measurement is a laser, the wavelength of which is monitored by an optical spectrum analyzer. A light-component analyzer amplitude-modulates the light with a scanning radio-frequency signal. The modulated light is passed through a buffer (described below) and through the device under test (e.g., an optical fiber, the dispersion of which one seeks to measure), then back to the light-component analyzer for spectrum analysis. Dispersion in the device under test gives rise to phase shifts among the carrier and the upper and lower sideband components of the modulated signal. These phase shifts affect the modulation-frequency component of the output of a photodetector exposed to the signal that emerges from the device under test. One of the effects is that this component goes to zero periodically as the modulation frequency is varied.

  11. Path length and spectrum of single-cycle mid-IR light bullets in transparent dielectrics

    NASA Astrophysics Data System (ADS)

    Chekalin, S. V.; Kompanets, V. O.; Dormidonov, A. E.; Kandidov, V. P.

    2018-04-01

    Filamentation of femtosecond laser radiation with a wavelength of 800 – 3900 nm and a power slightly exceeding the critical self-focusing power is studied using the spectral method and the method of laser coloration in LiF crystal. It is found that the length of a filament formed in the single-pulse regime increases with increasing excitation wavelength from a few tens of micrometres at 80 nm to hundreds of micrometres at 3900 nm. In the spectral region of anomalous group velocity dispersion, starting from 2600 nm, the initially smooth luminescence profile of the long-lived induced colour centres acquires a periodic structure, demonstrating the formation of a light bullet with a duration of about one cycle of the light field oscillation and a diameter smaller than 10 μm. The path length of such bullets does not exceed 0.5 mm in the single-pulse regime and 2.7 mm in the waveguide regime. A consequence of periodic modulation of the bullet light field in the process of propagation, observed experimentally and confirmed by calculations, is the appearance of sidebands near the excitation wavelength, as well as the appearance of visible spectral components in the supercontinuum radiation, whose angular divergence increases with increasing wavelength.

  12. Monitoring blood glucose changes in cutaneous tissue by temperature-modulated localized reflectance measurements.

    PubMed

    Yeh, Shu-Jen; Hanna, Charles F; Khalil, Omar S

    2003-06-01

    Most proposed noninvasive methods for glucose measurements do not consider the physiologic response of the body to changes in glucose concentration. Rather than consider the body as an inert matrix for the purpose of glucose measurement, we exploited the possibility that noninvasive measurements of glucose can be approached by investigating their effects on the skin's thermo-optical response. Glucose concentrations in humans were correlated with temperature-modulated localized reflectance signals at wavelengths between 590 and 935 nm, which do not correspond to any near-infrared glucose absorption wavelengths. Optical signal was collected while skin temperature was modulated between 22 and 38 degrees C over 2 h to generate a periodic set of cutaneous vasoconstricting and vasodilating events, as well as a periodic change in skin light scattering. The method was tested in a series of modified meal tolerance tests involving carbohydrate-rich meals and no-meal or high-protein/no-carbohydrate meals. The optical data correlated with glucose values. Changes in glucose concentrations resulting from a carbohydrate-rich meal were predicted with a model based on a carbohydrate-meal calibration run. For diabetic individuals, glucose concentrations were predicted with a standard error of prediction <1.5 mmol/L and a prediction correlation coefficient 0.73 in 80% of the cases. There were run-to-run differences in predicted glucose concentrations. Non-carbohydrate meals showed a high degree of scatter when predicted by a carbohydrate meal calibration model. Blood glucose concentrations alter thermally modulated optical signals, presumably through physiologic and physical effects. Temperature changes drive cutaneous vascular and refractive index responses in a way that mimics the effect of changes in glucose concentration. Run-to-run differences are attributable to site-to-site structural differences.

  13. T/R Multi-Chip MMIC Modules for 150 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Pukala, David M.; Soria, Mary M.; Sadowy, Gregory A.

    2009-01-01

    Modules containing multiple monolithic microwave integrated-circuit (MMIC) chips have been built as prototypes of transmitting/receiving (T/R) modules for millimeter-wavelength radar systems, including phased-array radar systems to be used for diverse purposes that could include guidance and avoidance of hazards for landing spacecraft, imaging systems for detecting hidden weapons, and hazard-avoidance systems for automobiles. Whereas prior landing radar systems have operated at frequencies around 35 GHz, the integrated circuits in this module operate in a frequency band centered at about 150 GHz. The higher frequency (and, hence, shorter wavelength), is expected to make it possible to obtain finer spatial resolution while also using smaller antennas and thereby reducing the sizes and masses of the affected systems.

  14. Raman spectra of single cells with autofluorescence suppression by modulated wavelength excitation

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Dochow, Sebastian; Bergner, Norbert; Clement, Joachim H.; Praveen, Bavishna B.; Mazilu, Michael; Marchington, Rob; Dholakia, Kishan; Popp, Jürgen

    2012-01-01

    Raman spectroscopy is a non-invasive technique offering great potential in the biomedical field for label-free discrimination between normal and tumor cells based on their biochemical composition. First, this contribution describes Raman spectra of lymphocytes after drying, in laser tweezers, and trapped in a microfluidic environment. Second, spectral differences between lymphocytes and acute myeloid leukemia cells (OCI-AML3) are compared for these three experimental conditions. Significant similarities of difference spectra are consistent with the biological relevance of the spectral features. Third, modulated wavelength Raman spectroscopy has been applied to this model system to demonstrate background suppression. Here, the laser excitation wavelength of 785 nm was modulated with a frequency of 40 mHz by 0.6 nm. 40 spectra were accumulated with an exposure time of 5 seconds each. These data were subjected to principal component analysis to calculate modulated Raman signatures. The loading of the principal component shows characteristics of first derivatives with derivative like band shapes. The derivative of this loading corresponds to a pseudo-second derivative spectrum and enables to determine band positions.

  15. Properties of a Variable-Delay Polarization Modulator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Henry, Ross; Hui, Howard; Juarez, Aaron J.; Krenjy, Megan; Moseley, Harvey; Novak, Giles

    2011-01-01

    We investigate the polarization modulation properties of a variable-delay polarization modulator (VPM). The VPM modulates polarization via a variable separation between a polarizing grid and a parallel mirror. We find that in the limit where the wavelength is much larger than the diameter of the metal wires that comprise the grid, the phase delay derived from the geometric separation between the mirror and the grid is sufficient to characterize the device. However, outside of this range, additional parameters describing the polarizing grid geometry must be included to fully characterize the modulator response. In this paper, we report test results of a VPM at wavelengths of 350 micron and 3 mm. Electromagnetic simulations of wire grid polarizers were performed and are summarized using a simple circuit model that incorporates the loss and polarization properties of the device.

  16. Investigation and optimal design of Photonic Crystal Fiber Bragg Grating using the Bat Algorithm and Binary Morse-Thue fractal Sequence, for eye-safe Tunable Fiber and Solid-State Lasers

    NASA Astrophysics Data System (ADS)

    Al-Muraeb, Ahmed Mohammed Maim

    This dissertation presents new approaches to design photonic crystal fiber Bragg grating, which is a main component in wavelength-tunable fiber and solid-state laser (SSL) systems operating in eye-safe wavelength region (1.4 - 2 mum). Although they have their own name, fiber lasers can be categorized as SSL as they are being used in making Ion-doped SSL. Today however, fiber lasers compete with and threaten to replace most of high-power, bulk SSLs and even some gas lasers. Hence, an eye-safe dual-wavelength Tunable Fiber Ring Laser (TFRL) system is considered in this work. This work addresses: 1. Eye-safe region laser areas of applications, TFRL system description, and wavelength tuning mechanisms with focus on (1.8 - 2 mum) range. 2. Optimal design method for Fiber Bragg Grating (FBG) using the Bat Algorithm, with the novel Adaptive Position Update (APU-BA) (our work [1]). The latter enhances the search performance and accuracy of BA for FBG design. Also, APU-BA shows better search performance and higher accuracy against previously reported methods and algorithms. 3. Investigation and design of novel High-Birefringence Photonic Crystal Fiber (JIBPCF) structures based on the Binary Morse-Thue fractal Sequence (BMTS) [2]. The latter offers desirably higher birefringence and lower confinement loss with dispersion-free single-mode operation in the eye-safe region of interest (1.8 - 2 microm). 4. Combining the above results, for final design of the photonic crystal fiber Bragg grating device (serving as wavelength-selective reflector in TFRL). Fiber Bragg grating design and analysis were carried out using MATLAG RTM. Resulting in refractive index modulation over the designed FBG length for a given target FBG reflectance spectrum. Hexagonal standard Silica Glass solid-core 5-ring HB-PCF with circular air holes, is designed based on BMTS. COMSOL MultiphysicsRTM - Wave Optics Module is used in modeling and analysis for the design. Four BMTS formations were proposed, and compared in terms of PCF design parameters (mainly: birefringence). Fabrication in agreement with commercially available PCFs, are concerned in structure geometrical design.

  17. Quantum-behaved particle swarm optimization for the synthesis of fibre Bragg gratings filter

    NASA Astrophysics Data System (ADS)

    Yu, Xuelian; Sun, Yunxu; Yao, Yong; Tian, Jiajun; Cong, Shan

    2011-12-01

    A method based on the quantum-behaved particle swarm optimization algorithm is presented to design a bandpass filter of the fibre Bragg gratings. In contrast to the other optimization algorithms such as the genetic algorithm and particle swarm optimization algorithm, this method is simpler and easier to implement. To demonstrate the effectiveness of the QPSO algorithm, we consider a bandpass filter. With the parameters the half the bandwidth of the filter 0.05 nm, the Bragg wavelength 1550 nm, the grating length with 2cm is divided into 40 uniform sections and its index modulation is what should be optimized and whole feasible solution space is searched for the index modulation. After the index modulation profile is known for all the sections, the transfer matrix method is used to verify the final optimal index modulation by calculating the refection spectrum. The results show the group delay is less than 12ps in band and the calculated dispersion is relatively flat inside the passband. It is further found that the reflective spectrum has sidelobes around -30dB and the worst in-band dispersion value is less than 200ps/nm . In addition, for this design, it takes approximately several minutes to find the acceptable index modulation values with a notebook computer.

  18. High brightness diode laser module development at nLIGHT Photonics

    NASA Astrophysics Data System (ADS)

    Price, Kirk; Karlsen, Scott; Brown, Aaron; Reynolds, Mitch; Mehl, Ron; Leisher, Paul; Patterson, Steve; Bell, Jake; Martinsen, Rob

    2009-05-01

    We report on the development of ultra-high brightness laser diode modules at nLIGHT Photonics. This paper demonstrates a laser diode module capable of coupling over 100W at 976 nm into a 105 μm, 0.15 NA fiber with fiber coupling efficiency greater than 85%. The high brightness module has an optical excitation under 0.13 NA, is virtually free of cladding modes, and has been wavelength stabilized with the use of volume holographic gratings for narrow-band operation. Utilizing nLIGHT's Pearl product architecture, these modules are based on hard soldered single emitters packaged into a compact and passively-cooled package. These modules are designed to be compatible with high power 7:1 fused fiber combiners, enabling over 500W power coupled into a 220 μm, 0.22 NA fiber. These modules address the need in the market for high brightness and wavelength stabilized diode lasers for pumping fiber lasers and solid-state laser systems.

  19. Hybrid chip-on-board LED module with patterned encapsulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soer, Wouter Anthon; Helbing, Rene; Huang, Guan

    Different wavelength conversion materials, or different concentrations of a wavelength conversion material are used to encapsulate the light emitting elements of different colors of a hybrid light emitting module. In an embodiment of this invention, second light emitting elements (170) of a particular color are encapsulated with a transparent second encapsulant (120;420;520), while first light emitting elements (160) of a different color are encapsulated with a wavelength conversion first encapsulant (110;410;510). In another embodiment of this invention, a particular second set of second and third light emitting elements (170,580) of different colors is encapsulated with a different encapsulant than anothermore » first set of first light emitting elements (160).« less

  20. Multichannel photonic Hilbert transformers based on complex modulated integrated Bragg gratings.

    PubMed

    Cheng, Rui; Chrostowski, Lukas

    2018-03-01

    Multichannel photonic Hilbert transformers (MPHTs) are reported. The devices are based on single compact spiral integrated Bragg gratings on silicon with coupling coefficients precisely modulated by the phase of each grating period. MPHTs with up to nine wavelength channels and a single-channel bandwidth of up to ∼625  GHz are achieved. The potential of the devices for multichannel single-sideband signal generation is suggested. The work offers a new possibility of utilizing wavelength as an extra degree of freedom in designing radio-frequency photonic signal processors. Such multichannel processors are expected to possess improved capacities and a potential to greatly benefit current widespread wavelength division multiplexed systems.

  1. Pseudo color ghost coding imaging with pseudo thermal light

    NASA Astrophysics Data System (ADS)

    Duan, De-yang; Xia, Yun-jie

    2018-04-01

    We present a new pseudo color imaging scheme named pseudo color ghost coding imaging based on ghost imaging but with multiwavelength source modulated by a spatial light modulator. Compared with conventional pseudo color imaging where there is no nondegenerate wavelength spatial correlations resulting in extra monochromatic images, the degenerate wavelength and nondegenerate wavelength spatial correlations between the idle beam and signal beam can be obtained simultaneously. This scheme can obtain more colorful image with higher quality than that in conventional pseudo color coding techniques. More importantly, a significant advantage of the scheme compared to the conventional pseudo color coding imaging techniques is the image with different colors can be obtained without changing the light source and spatial filter.

  2. Compact multiwavelength transmitter module for multimode fiber optic ribbon cable

    DOEpatents

    Deri, Robert J.; Pocha, Michael D.; Larson, Michael C.; Garrett, Henry E.

    2002-01-01

    A compact multiwavelength transmitter module for multimode fiber optic ribbon cable, which couples light from an M.times.N array of emitters onto N fibers, where the M wavelength may be distributed across two or more vertical-cavity surface-emitting laser (VCSEL) chips, and combining emitters and multiplexer into a compact package that is compatible with placement on a printed circuit board. A key feature is bringing together two emitter arrays fabricated on different substrates--each array designed for a different wavelength--into close physical proximity. Another key feature is to compactly and efficiently combine the light from two or more clusters of optical emitters, each in a different wavelength band, into a fiber ribbon.

  3. Demonstration of 4×100 Gbps discrete multitone transmission using electric absorption modulated laser at 1550-nm for dense wavelength division multiplexing intradata center connect

    NASA Astrophysics Data System (ADS)

    Xu, Yuming; Yu, Jianjun; Li, Xinying

    2017-03-01

    We experimentally demonstrate 4 lanes up to 400 Gbps discrete multitone transmission using an electric absorption modulated laser (EML) at 1550-nm for dense wavelength division multiplexing (DWDM) intradata center connects. This is the first demonstration of 4×100 Gb/s transmission using EML at 1550-nm, and it is compatible with the DWDM system at C-band.

  4. A Novel Dynamic Physical Layer Impairment-Aware Routing and Wavelength Assignment (PLI-RWA) Algorithm for Mixed Line Rate (MLR) Wavelength Division Multiplexed (WDM) Optical Networks

    NASA Astrophysics Data System (ADS)

    Iyer, Sridhar

    2016-12-01

    The ever-increasing global Internet traffic will inevitably lead to a serious upgrade of the current optical networks' capacity. The legacy infrastructure can be enhanced not only by increasing the capacity but also by adopting advance modulation formats, having increased spectral efficiency at higher data rate. In a transparent mixed-line-rate (MLR) optical network, different line rates, on different wavelengths, can coexist on the same fiber. Migration to data rates higher than 10 Gbps requires the implementation of phase modulation schemes. However, the co-existing on-off keying (OOK) channels cause critical physical layer impairments (PLIs) to the phase modulated channels, mainly due to cross-phase modulation (XPM), which in turn limits the network's performance. In order to mitigate this effect, a more sophisticated PLI-Routing and Wavelength Assignment (PLI-RWA) scheme needs to be adopted. In this paper, we investigate the critical impairment for each data rate and the way it affects the quality of transmission (QoT). In view of the aforementioned, we present a novel dynamic PLI-RWA algorithm for MLR optical networks. The proposed algorithm is compared through simulations with the shortest path and minimum hop routing schemes. The simulation results show that performance of the proposed algorithm is better than the existing schemes.

  5. High-power and brightness laser diode modules using new DBR chips

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Riva, Martina; Rossi, Giammarco; Braglia, Andrea; Perrone, Guido

    2018-02-01

    The paper reports on the design, manufacturing and preliminary characterization of a new family of compact and high beam quality multi-emitter laser diode modules capable of delivering up to over 400W in a 135/0.15 fiber. The layout exploits a proprietary architecture and is based on innovative narrow linewidth high-power DBR chips, properly combined through spatial, polarization and wavelength multiplexing. The intrinsic wavelength-stabilization of these DBR chips allows the use of the developed modules not only for direct-diode material processing but also in pump sources for ytterbium-doped fiber lasers without the need of external stabilization devices.

  6. Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumder, Apratim, E-mail: apratim.majumder@utah.edu; Wan, Xiaowen; Masid, Farhana

    2016-06-15

    Absorbance-Modulation-Optical Lithography (AMOL) has been previously demonstrated to be able to confine light to deep sub-wavelength dimensions and thereby, enable patterning of features beyond the diffraction limit. In AMOL, a thin photochromic layer that converts between two states via light exposure is placed on top of the photoresist layer. The long wavelength photons render the photochromic layer opaque, while the short-wavelength photons render it transparent. By simultaneously illuminating a ring-shaped spot at the long wavelength and a round spot at the short wavelength, the photochromic layer transmits only a highly confined beam at the short wavelength, which then exposes themore » underlying photoresist. Many photochromic molecules suffer from a giant mismatch in quantum yields for the opposing reactions such that the reaction initiated by the absorption of the short-wavelength photon is orders of magnitude more efficient than that initiated by the absorption of the long-wavelength photon. As a result, large intensities in the ring-shaped spot are required for deep sub-wavelength nanopatterning. In this article, we overcome this problem by using the long-wavelength photons to expose the photoresist, and the short-wavelength photons to confine the “exposing” beam. Thereby, we demonstrate the patterning of features as thin as λ/4.7 (137 nm for λ = 647 nm) using extremely low intensities (4-30 W/m{sup 2}, which is 34 times lower than that required in conventional AMOL). We further apply a rigorous model to explain our experiments and discuss the scope of the reverse-AMOL process.« less

  7. Influence of Stationary Crossflow Modulation on Secondary Instability

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Li, Fei; Paredes, Pedro

    2016-01-01

    A likely scenario for swept wing transition on subsonic aircraft with natural laminar flow involves the breakdown of stationary crossflow vortices via high frequency secondary instability. A majority of the prior research on this secondary instability has focused on crossflow vortices with a single dominant spanwise wavelength. This paper investigates the effects of the spanwise modulation of stationary crossflow vortices at a specified wavelength by a subharmonic stationary mode. Secondary instability of the modulated crossflow pattern is studied using planar, partial-differential-equation based eigenvalue analysis. Computations reveal that weak modulation by the first subharmonic of the input stationary mode leads to mode splitting that is particularly obvious for Y-type secondary modes that are driven by the wall-normal shear of the basic state. Thus, for each Y mode corresponding to the fundamental wavelength of results in unmodulated train of crossflow vortices, the modulated flow supports a pair of secondary modes with somewhat different amplification rates. The mode splitting phenomenon suggests that a more complex stationary modulation such as that induced by natural surface roughness would yield a considerably richer spectrum of secondary instability modes. Even modest levels of subharmonic modulation are shown to have a strong effect on the overall amplification of secondary disturbances, particularly the Z-modes driven by the spanwise shear of the basic state. Preliminary computations related to the nonlinear breakdown of these secondary disturbances provide interesting insights into the process of crossflow transition in the presence of the first subharmonic of the dominant stationary vortex.

  8. CNT-based saturable absorbers with scalable modulation depth for Thulium-doped fiber lasers operating at 1.9 μm

    PubMed Central

    Sobon, Grzegorz; Duzynska, Anna; Świniarski, Michał; Judek, Jarosław; Sotor, Jarosław; Zdrojek, Mariusz

    2017-01-01

    In this work, we demonstrate a comprehensive study on the nonlinear parameters of carbon nanotube (CNT) saturable absorbers (SA) as a function of the nanotube film thickness. We have fabricated a set of four saturable absorbers with different CNT thickness, ranging from 50 to 200 nm. The CNTs were fabricated via a vacuum filtration technique and deposited on fiber connector end facets. Each SA was characterized in terms of nonlinear transmittance (i.e. optical modulation depth) and tested in a Thulium-doped fiber laser. We show, that increasing the thickness of the CNT layer significantly increases the modulation depth (up to 17.3% with 200 nm thick layer), which strongly influences the central wavelength of the laser, but moderately affects the pulse duration. It means, that choosing the SA with defined CNT thickness might be an efficient method for wavelength-tuning of the laser, without degrading the pulse duration. In our setup, the best performance in terms of bandwidth and pulse duration (8.5 nm and 501 fs, respectively) were obtained with 100 nm thick CNT layer. This is also, to our knowledge, the first demonstration of a fully polarization-maintaining mode-locked Tm-doped laser based on CNT saturable absorber. PMID:28368014

  9. Study of light-absorbing crystal birefringence and electrical modulation mechanisms for coupled thermal-optical effects.

    PubMed

    Zhou, Ji; He, Zhihong; Ma, Yu; Dong, Shikui

    2014-09-20

    This paper discusses Gaussian laser transmission in double-refraction crystal whose incident light wavelength is within its absorption wave band. Two scenarios for coupled radiation and heat conduction are considered: one is provided with an applied external electric field, the other is not. A circular heat source with a Gaussian energy distribution is introduced to present the crystal's light-absorption process. The electromagnetic field frequency domain analysis equation and energy equation are solved to simulate the phenomenon by using the finite element method. It focuses on the influence of different values such as wavelength, incident light intensity, heat transfer coefficient, ambient temperature, crystal thickness, and applied electric field strength. The results show that the refraction index of polarized light increases with the increase of crystal temperature. It decreases as the strength of the applied electric field increases if it is positive. The mechanism of electrical modulation for the thermo-optical effect is used to keep the polarized light's index of refraction constant in our simulation. The quantitative relation between thermal boundary condition and strength of applied electric field during electrical modulation is determined. Numerical results indicate a possible approach to removing adverse thermal effects such as depolarization and wavefront distortion, which are caused by thermal deposition during linear laser absorption.

  10. A MHz speed wavelength sweeping for ultra-high speed FBG interrogation

    NASA Astrophysics Data System (ADS)

    Kim, Gyeong Hun; Lee, Hwi Don; Eom, Tae Joong; Jeong, Myung Yung; Kim, Chang-Seok

    2015-09-01

    We demonstrated a MHz speed wavelength-swept fiber laser based on the active mode locking (AML) technique and applied to interrogation system of an array of fiber Bragg grating (FBG) sensors. MHz speed wavelength sweeping of wavelength-swept fiber laser can be obtained by programmable frequency modulation of the semiconductor optical amplifier (SOA) without any wavelength tunable filter. Both static and dynamic strain measurement of FBG sensors were successfully characterized with high linearity of an R-square value of 0.9999 at sweeping speed of 50 kHz.

  11. Sideband pump-probe technique resolves nonlinear modulation response of PbS/CdS quantum dots on a silicon nitride waveguide

    NASA Astrophysics Data System (ADS)

    Kolarczik, Mirco; Ulbrich, Christian; Geiregat, Pieter; Zhu, Yunpeng; Sagar, Laxmi Kishore; Singh, Akshay; Herzog, Bastian; Achtstein, Alexander W.; Li, Xiaoqin; van Thourhout, Dries; Hens, Zeger; Owschimikow, Nina; Woggon, Ulrike

    2018-01-01

    For possible applications of colloidal nanocrystals in optoelectronics and nanophotonics, it is of high interest to study their response at low excitation intensity with high repetition rates, as switching energies in the pJ/bit to sub-pJ/bit range are targeted. We develop a sensitive pump-probe method to study the carrier dynamics in colloidal PbS/CdS quantum dots deposited on a silicon nitride waveguide after excitation by laser pulses with an average energy of few pJ/pulse. We combine an amplitude modulation of the pump pulse with phase-sensitive heterodyne detection. This approach permits to use co-linearly propagating co-polarized pulses. The method allows resolving transmission changes of the order of 10-5 and phase changes of arcseconds. We find a modulation on a sub-nanosecond time scale caused by Auger processes and biexciton decay in the quantum dots. With ground state lifetimes exceeding 1 μs, these processes become important for possible realizations of opto-electronic switching and modulation based on colloidal quantum dots emitting in the telecommunication wavelength regime.

  12. Photothermal imaging of melanin

    NASA Astrophysics Data System (ADS)

    Kerimo, Josef; DiMarzio, Charles A.

    2013-02-01

    We present photothermal images of melanin using modulation with two laser beams. Strong melanin absorption followed by efficient nonradiative relaxation caused heating and an increase in temperature. This temperature effect was used as an imaging contrast to detect melanin. Melanin from several samples including Sepia officinalis, black human hair, and live zebra fish, were imaged with a high signal-to-noise ratio. For the imaging, we focused two near infrared laser beams (pump and probe) collinearly with different wavelengths and the pump was modulated in amplitude. The thermally induced variations in the refractive index, at the modulation frequency, were detected by the scattering of the probe beam. The Photothermal method brings several imaging benefits including the lack of background interference and the possibility of imaging for an extended period of time without photodamage to the melanin. The dependence of the photothermal signal on the laser power, modulation frequency, and spatial offset of the probe is discussed. The new photothermal imaging method is promising and provides background-free and label-free imaging of melanin and can be implemented with low-cost CW lasers.

  13. Phase-Sensitive Surface Plasmon Resonance Sensors: Recent Progress and Future Prospects

    PubMed Central

    Deng, Shijie; Wang, Peng; Yu, Xinglong

    2017-01-01

    Surface plasmon resonance (SPR) is an optical sensing technique that is capable of performing real-time, label-free and high-sensitivity monitoring of molecular interactions. SPR biosensors can be divided according to their operating principles into angle-, wavelength-, intensity- and phase-interrogated devices. With their complex optical configurations, phase-interrogated SPR sensors generally provide higher sensitivity and throughput, and have thus recently emerged as prominent biosensing devices. To date, several methods have been developed for SPR phase interrogation, including heterodyne detection, polarimetry, shear interferometry, spatial phase modulation interferometry and temporal phase modulation interferometry. This paper summarizes the fundamentals of phase-sensitive SPR sensing, reviews the available methods for phase interrogation of these sensors, and discusses the future prospects for and trends in the development of this technology. PMID:29206182

  14. Spectra analysis of nonuniform FBG-based acousto-optic modulator by using Fourier mode coupling theory.

    PubMed

    Liu, Chao; Pei, Li; Li, Zhuoxuan; Ning, Tigang; Yu, Shaowei; Kang, Zexin

    2013-05-10

    Fourier mode coupling theory was first employed in the spectral analysis of several nonuniform fiber Bragg grating (FBG)-based acousto-optic modulators (NU-FBG-AOMs) with the effects of Gaussian-apodization (GA), phase shift (PS), and linear chirp (LC). Because of the accuracy and simplicity of the algorithm applied in this model, the modulation performances of these modulators can be acquired effectively and efficiently. Based on the model, the reflected spectra of these modulators were simulated under various acoustic frequencies and acoustically induced strains. The simulation results of the GA-FBG-AOM and PS-FBG-AOM showed that the wavelength spacing between the primary reflection peak and the secondary reflection peak is proportional to the acoustic frequency, and the reflectivity of reflection peaks depends on the acoustically induced strains. But for the LC-FBG-AOM, the wavelength spacing between the neighboring reflection peaks increased linearly and inversely with the acoustic frequency, and the extinction ratio of each peak relates to the acoustically induced strain. These numerical analysis results, which were effectively used in the designs and fabrications of these NU-FBG-AOMs, can broaden the AOM-based application scope and shed light on the performance optimization of optical wavelength-division multiplex system.

  15. An Experimental Study of a Micro-Projection Enabled Optical Terminal for Short-Range Bidirectional Multi-Wavelength Visible Light Communications

    PubMed Central

    Tsai, Cheng-Yu; Jiang, Jhih-Shan

    2018-01-01

    A micro-projection enabled short-range communication (SRC) approach using red-, green- and blue-based light-emitting diodes (RGB-LEDs) has experimentally demonstrated recently that micro-projection and high-speed data transmission can be performed simultaneously. In this research, a reconfigurable design of a polarization modulated image system based on the use of a Liquid Crystal on Silicon based Spatial Light Modulator (LCoS-based SLM) serving as a portable optical terminal capable of micro-projection and bidirectional multi-wavelength communications is proposed and experimentally demonstrated. For the proof of concept, the system performance was evaluated through a bidirectional communication link at a transmission distance over 0.65 m. In order to make the proposed communication system architecture compatible with the data modulation format of future possible wireless communication system, baseband modulation scheme, i.e., Non-Return-to-Zero On-Off-Keying (NRZ_OOK), M-ary Phase Shift Keying (M-PSK) and M-ary Quadrature Amplitude Modulation (M-QAM) were used to investigate the system transmission performance. The experimental results shown that an acceptable BER (satisfying the limitation of Forward Error Correction, FEC standard) and crosstalk can all be achieved in the bidirectional multi-wavelength communication scenario. PMID:29587457

  16. Modulation of frequency doubled DFB-tapered diode lasers for medical treatment

    NASA Astrophysics Data System (ADS)

    Christensen, Mathias; Hansen, Anders K.; Noordegraaf, Danny; Jensen, Ole B.; Skovgaard, Peter M. W.

    2017-02-01

    The use of visible lasers for medical treatments is on the rise, and together with this comes higher expectations for the laser systems. For many medical treatments, such as ophthalmology, doctors require pulse on demand operation together with a complete extinction of the light between pulses. We have demonstrated power modulation from 0.1 Hz to 10 kHz at 532 nm with a modulation depth above 97% by wavelength detuning of the laser diode. The laser diode is a 1064 nm monolithic device with a distributed feedback (DFB) laser as the master oscillator (MO), and a tapered power amplifier (PA). The MO and PA have separate electrical contacts and the modulation is achieved with wavelength tuning by adjusting the current through the MO 40 mA.

  17. Design and Analysis of an Optical Interface Message Processor

    DTIC Science & Technology

    1993-03-01

    Device 16 2.2.15 Microchannel Spatial Light Modulator (MSLM) 16 2.2.16 Si/PLST Modulator 16 2.2.17 Deformable Mirror Device ( DMD ) 17 2.2.18 Charged...wavelength of UV light, ’n this process, is the minimum image which can be developed. X-Ray lithography wil’ reduce the image size to the 1000 Angstrom...resonance of laser wavelength. This is due to a change in the index of refraction which results in an optical path allowing constructive interference

  18. Characterization of Infrared Properties of Layered Semiconductors.

    DTIC Science & Technology

    1987-02-20

    candidate -10- V. PUBLICATIONS INCLUDED WITH REPORT 1) R. Braunstein, R. K . Kim, D. Matthews, and M. Braunstein: "Derivative Absorption Spectroscopy of...34Wavelength Modulation Spectra of a-Ag0.7Zn0 .3 Near the Optical Absorption Edge," Phys. Stat. Sol.(b) 131, 659 (1983). 5) R. K . Kim and R. Braunstein...34Infrared Wavelength Modulation Spectroscopy of Some Optical Material," Appl. Optics 23(8), 1166 (1984). 6) C.E. Jones, K . James, J. Merz, R. Braunstein, M

  19. Method for Balancing Detector Output to a Desired Level of Balance at a Frequency

    NASA Technical Reports Server (NTRS)

    Sachse, Glenn W. (Inventor)

    2003-01-01

    A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination elements, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.

  20. Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, A. F. H.

    The modulation of the angle-dependent Fresnel absorptivity across wavy molten steel surfaces during laser materials processing, like drilling, cutting, or welding, has been calculated. The absorptivity is strongly altered by the grazing angle of incidence of the laser beam on the processing front. Owing to its specific Brewster-peak characteristics, the 10.64 {mu}m wavelength CO{sub 2}-laser shows an opposite trend with respect to roughness and angle-of-incidence compared to lasers in the wavelength range of 532-1070 nm. Plateaus or rings of Brewster-peak absorptivity can lead to hot spots on a wavy surface, often in close proximity to cold spots caused by shadowmore » domains.« less

  1. Multiple p-n junction subwavelength gratings for transmission-mode electro-optic modulators

    PubMed Central

    Lee, Ki Young; Yoon, Jae Woong; Song, Seok Ho; Magnusson, Robert

    2017-01-01

    We propose a free-space electro-optic transmission modulator based on multiple p-n-junction semiconductor subwavelength gratings. The proposed device operates with a high-Q guided-mode resonance undergoing electro-optic resonance shift due to direct electrical control. Using rigorous electrical and optical modeling methods, we theoretically demonstrate a modulation depth of 84%, on-state efficiency 85%, and on-off extinction ratio of 19 dB at 1,550 nm wavelength under electrical control signals within a favorably low bias voltage range from −4 V to +1 V. This functionality operates in the transmission mode and sustainable in the high-speed operation regime up to a 10-GHz-scale modulation bandwidth in principle. The theoretical performance prediction is remarkably advantageous over plasmonic tunable metasurfaces in the power-efficiency and absolute modulation-depth aspects. Therefore, further experimental study is of great interest for creating practical-level metasurface components in various application areas. PMID:28417962

  2. Controlled generation of high-intensity optical rogue waves by induced modulation instability

    PubMed Central

    Zhao, Saili; Yang, Hua; Chen, Nengsong; Zhao, Chujun

    2017-01-01

    Optical rogue waves are featured as the generation of high amplitude events at low probability in optical systems. Moreover, the formation of optical rogue waves is unpredictable and transient in photonic crystal fibers. In this paper, we put forward a method to generate high-intensity optical rogue waves in a more controlled way based on induced modulation instability, which can suppress the noise effect and hence play a leading role in the process of pulse evolution. Our numerical simulations indicate that the generation of rogue wave can be controlled when seeding at the optimal modulation frequency and the intensity of rogue wave can be enhanced with appropriate modulation depth. Further, high-intensity rogue wave can also be ejected in the fiber with a shorter propagation length by regulating the modulation depth. These results all provide a better understanding of optical rogue wave, which can contribute to the generation of tunable long-wavelength spectral components and selective excitation of mid-infrared supercontinuum. PMID:28051149

  3. Controlled generation of high-intensity optical rogue waves by induced modulation instability.

    PubMed

    Zhao, Saili; Yang, Hua; Chen, Nengsong; Zhao, Chujun

    2017-01-04

    Optical rogue waves are featured as the generation of high amplitude events at low probability in optical systems. Moreover, the formation of optical rogue waves is unpredictable and transient in photonic crystal fibers. In this paper, we put forward a method to generate high-intensity optical rogue waves in a more controlled way based on induced modulation instability, which can suppress the noise effect and hence play a leading role in the process of pulse evolution. Our numerical simulations indicate that the generation of rogue wave can be controlled when seeding at the optimal modulation frequency and the intensity of rogue wave can be enhanced with appropriate modulation depth. Further, high-intensity rogue wave can also be ejected in the fiber with a shorter propagation length by regulating the modulation depth. These results all provide a better understanding of optical rogue wave, which can contribute to the generation of tunable long-wavelength spectral components and selective excitation of mid-infrared supercontinuum.

  4. Wavelength modulation spectroscopy coupled with an external-cavity quantum cascade laser operating between 7.5 and 8 µm

    NASA Astrophysics Data System (ADS)

    Maity, Abhijit; Pal, Mithun; Maithani, Sanchi; Dutta Banik, Gourab; Pradhan, Manik

    2018-04-01

    We demonstrate a mid-infrared detection strategy with 1f-normalized 2f-wavelength modulation spectroscopy (WMS-2f/1f) using a continuous wave (CW) external-cavity quantum cascade laser (EC-QCL) operating between 7.5 and 8 µm. The detailed performance of the WMS-2f/1f detection method was evaluated by making rotationally resolved measurements in the (ν 4  +  ν 5) combination band of acetylene (C2H2) at 1311.7600 cm-1. A noise-limited detection limit of three parts per billion (ppb) with an integration time of 110 s was achieved for C2H2 detection. The present high-resolution CW-EC-QCL system coupled with the WMS-2f/1f strategy was further validated with an extended range of C2H2 concentration of 0.1-1000 ppm, which shows excellent promise for real-life practical sensing applications. Finally, we utilized the WMS-2f/1f technique to measure the C2H2 concentration in the exhaled breath of smokers.

  5. Design considerations and validation of the MSTAR absolute metrology system

    NASA Astrophysics Data System (ADS)

    Peters, Robert D.; Lay, Oliver P.; Dubovitsky, Serge; Burger, Johan; Jeganathan, Muthu

    2004-08-01

    Absolute metrology measures the actual distance between two optical fiducials. A number of methods have been employed, including pulsed time-of-flight, intensity-modulated optical beam, and two-color interferometry. The rms accuracy is currently limited to ~5 microns. Resolving the integer number of wavelengths requires a 1-sigma range accuracy of ~0.1 microns. Closing this gap has a large pay-off: the range (length measurement) accuracy can be increased substantially using the unambiguous optical phase. The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. In this paper, we present recent experiments that use dispersed white light interferometry to independently validate the zero-point of the system. We also describe progress towards reducing the size of optics, and stabilizing the laser wavelength for operation over larger target ranges. MSTAR is a general-purpose tool for conveniently measuring length with much greater accuracy than was previously possible, and has a wide range of possible applications.

  6. Near-infrared transillumination of teeth: measurement of a system performance

    NASA Astrophysics Data System (ADS)

    Karlsson, Lena; Maia, Ana M. A.; Kyotoku, Bernardo B. C.; Tranæus, Sofia; Gomes, Anderson S. L.; Margulis, Walter

    2010-05-01

    Transillumination (TI) of dental enamel with near-infrared light is a promising nonionizing imaging method for detection of early caries lesion. Increased mineral loss (caries lesion) leads to increased scattering and absorption. Caries thus appear as dark regions because less light reaches the detector. The aim of this work was to characterize the performance of a TI system from the resolution of acquired images using the modulation transfer function at two wavelengths, 1.28 and 1.4 μm. Test charts with various values of spatial periods, mimicking a perfect caries lesion, were attached to tooth sections, followed by capture of the transmitted image, using both wavelengths. The sections were then consecutively reduced in thickness, and a sequence of all sizes of the test charts were used for repeatedly imaging procedures. The results show that the TI system can detect feature size of 250 μm with 30% modulation. From the information about how the image degrades as it propagates through enamel, we also examined the possibility of estimating the position of a simulated approximal caries lesion by comparing images obtained from the two sides of a tooth section.

  7. Near-infrared transillumination of teeth: measurement of a system performance.

    PubMed

    Karlsson, Lena; Maia, Ana M A; Kyotoku, Bernardo B C; Tranaeus, Sofia; Gomes, Anderson S L; Margulis, Walter

    2010-01-01

    Transillumination (TI) of dental enamel with near-infrared light is a promising nonionizing imaging method for detection of early caries lesion. Increased mineral loss (caries lesion) leads to increased scattering and absorption. Caries thus appear as dark regions because less light reaches the detector. The aim of this work was to characterize the performance of a TI system from the resolution of acquired images using the modulation transfer function at two wavelengths, 1.28 and 1.4 mum. Test charts with various values of spatial periods, mimicking a perfect caries lesion, were attached to tooth sections, followed by capture of the transmitted image, using both wavelengths. The sections were then consecutively reduced in thickness, and a sequence of all sizes of the test charts were used for repeatedly imaging procedures. The results show that the TI system can detect feature size of 250 mum with 30% modulation. From the information about how the image degrades as it propagates through enamel, we also examined the possibility of estimating the position of a simulated approximal caries lesion by comparing images obtained from the two sides of a tooth section.

  8. High-power, fixed, and tunable wavelength, grating-free cascaded Raman fiber lasers

    NASA Astrophysics Data System (ADS)

    Balaswamy, V.; Arun, S.; Aparanji, Santosh; Choudhury, Vishal; Supradeepa, V. R.

    2018-04-01

    Cascaded Raman lasers enable high powers at various wavelength bands inaccessible with conventional rare-earth doped lasers. The input and output wavelengths of conventional implementations are fixed by the constituent fiber gratings necessary for cascaded Raman conversion. We demonstrate here, a simple architecture for high power, fixed and wavelength tunable, grating-free, cascaded Raman conversion between different wavelength bands. The architecture is based on the recently proposed distributed feedback Raman lasers. Here, we implement a module which converts the Ytterbium band to the eye-safe 1.5micron region. We demonstrate pump-limited output powers of over 30W in fixed and continuously wavelength tunable configurations.

  9. Wavelength modulation absorption spectroscopy with 2 f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows

    NASA Astrophysics Data System (ADS)

    Liu, J. T. C.; Jeffries, J. B.; Hanson, R. K.

    Multiplexed fiber-coupled diode lasers are used to probe second-harmonic line shapes of two near-infrared water absorption features, at 1343 nm and 1392 nm, in order to infer temperatures in gases containing water vapor, such as combustion flows. Wavelength modulation is performed at 170 kHz, and is superimposed on 1-kHz wavelength scans in order to recover full second-harmonic line shapes. Digital waveform generation and lock-in detection are performed using a data-acquisition card installed in a PC. An optimal selection of the modulation indices is shown to greatly simplify data interpretation over extended temperature ranges and to minimize the need for calibration when performing 2 f ratio thermometry. A theoretical discussion of this optimized strategy for 2 f ratio thermometry, as well as results from experimental validations in a heated cell, at pressures up to atmospheric, are presented in order to illustrate the utility of this technique for rapid temperature measurements in gaseous flow fields.

  10. Energy efficient flexible hybrid wavelength division multiplexing-time division multiplexing passive optical network with pay as you grow deployment

    NASA Astrophysics Data System (ADS)

    Garg, Amit Kumar; Madavi, Amresh Ashok; Janyani, Vijay

    2017-02-01

    A flexible hybrid wavelength division multiplexing-time division multiplexing passive optical network architecture that allows dual rate signals to be sent at 1 and 10 Gbps to each optical networking unit depending upon the traffic load is proposed. The proposed design allows dynamic wavelength allocation with pay-as-you-grow deployment capability. This architecture is capable of providing up to 40 Gbps of equal data rates to all optical distribution networks (ODNs) and up to 70 Gbps of a asymmetrical data rate to the specific ODN. The proposed design handles broadcasting capability with simultaneous point-to-point transmission, which further reduces energy consumption. In this architecture, each module sends a wavelength to each ODN, thus making the architecture fully flexible; this flexibility allows network providers to use only required OLT components and switch off others. The design is also reliable to any module or TRx failure and provides services without any service disruption. Dynamic wavelength allocation and pay-as-you-grow deployment support network extensibility and bandwidth scalability to handle future generation access networks.

  11. THz radiation from two electron-beams interaction within a bi-grating and a sub-wavelength holes array composite sandwich structure.

    PubMed

    Zhang, Yaxin; Zhou, Y; Dong, L

    2013-09-23

    Two electron-beams' interaction in a sandwich structure composed of a bi-grating and a sub-wavelength holes array is suggested to generate THz radiation in this paper. It shows that this system takes advantage of both bi-grating and sub-wavelength holes array structures. The results demonstrate that surface waves on a bi-grating can couple with mimicking surface plasmons of a sub-wavelength holes array so that the wave-coupling is strong and the field intensity is high in this structure. Moreover, compared with the interaction in the bi-grating structure and sub-wavelength holes array structure, respectively, it shows that in this composite system the two electron-beams' interaction is more efficient and the modulation depth and radiation intensity have been enhanced significantly. The modulation depth and efficiency can reach 22% and 4%, respectively, and the starting current density is only 12 A/cm². This radiation system may provide good opportunities for development of multi-electron beam-driven THz radiation sources.

  12. Architectural design of deep metallic sub-wavelength grating for practical holography display

    NASA Astrophysics Data System (ADS)

    Zhu, WenLiang; Shen, Chuan; Zhang, MingHua; Wei, Sui; Wang, XiangXiang; Wang, Ye

    2017-10-01

    Spatial light modulator (SLM) is the core device of holographic display, which requires a large space-bandwidth product (SBP), especially needing a wide viewing angle. According to the grating theory, the scale of the holographic display unit should be close to the wavelength of light. The transmission resonances of deep metallic sub-wavelength grating structure, which is produced by the surface plasmon and Fabry-Perot (FP) resonance based on metal grating phenomenon of Wood's anomaly, especially the metal-insulator-metal (MIM) structure provides a theoretical and effective technique for enhancing the reflection resonances and can be used for implementing the holographic display unit technology. In this paper, we replace the top electrode layer of the LCOS with a metallic deep sub-wavelength grating structure and change the grating period, slit width and spacer thickness. The simulation results by aid of CST software are given, which demonstrate that the improved device with dielectric medium parameter within liquid crystal refractive rate range (1.4 1.7) can reach 0 to 2π phase modulation in the visible wavelength range. Moreover, it also decrease the difficulty of device processing.

  13. Development of modulated optical transmission system to determinate the cloud and freezing points in biofuels.

    PubMed

    Jaramillo-Ochoa, Liliana; Ramirez-Gutierrez, Cristian F; Sánchez-Moguel, Alonso; Acosta-Osorio, Andrés; Rodriguez-Garcia, Mario E

    2015-01-01

    This work is focused in the development of a modulated optical transmission system with temperature control to determine the thermal properties of biodiesels such as the cloud and freezing points. This system is able to determine these properties in real time without relying on the operator skills as indicated in the American Society for Testing Materials (ASTM) norms. Thanks to the modulation of the incident laser, the noise of the signal is reduced and two information channels are generated: amplitude and phase. Lasers with different wavelengths can be used in this system but the sample under study must have optical absorption at the wavelength of the laser.

  14. The research of data acquisition system for Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Guo, Pan; Zhang, Yinchao; Chen, Siying; Chen, He; Chen, Wenbo

    2011-11-01

    Raman spectrometer has been widely used as an identification tool for analyzing material structure and composition in many fields. However, Raman scattering echo signal is very weak, about dozens of photons at most in one laser plus signal. Therefore, it is a great challenge to design a Raman spectrum data acquisition system which could accurately receive the weak echo signal. The system designed in this paper receives optical signals with the principle of photon counter and could detect single photon. The whole system consists of a photoelectric conversion module H7421-40 and a photo counting card including a field programmable gate array (FPGA) chip and a PCI9054 chip. The module H7421-40 including a PMT, an amplifier and a discriminator has high sensitivity on wavelength from 300nm to 720nm. The Center Wavelength is 580nm which is close to the excitation wavelength (532nm), QE 40% at peak wavelength, Count Sensitivity is 7.8*105(S-1PW-1) and Count Linearity is 1.5MHZ. In FPGA chip, the functions are divided into three parts: parameter setting module, controlling module, data collection and storage module. All the commands, parameters and data are transmitted between FPGA and computer by PCI9054 chip through the PCI interface. The result of experiment shows that the Raman spectrum data acquisition system is reasonable and efficient. There are three primary advantages of the data acquisition system: the first one is the high sensitivity with single photon detection capability; the second one is the high integrated level which means all the operation could be done by the photo counting card; and the last one is the high expansion ability because of the smart reconfigurability of FPGA chip.

  15. On compensation of four wave mixing effect in dispersion managed hybrid WDM-OTDM multicast overlay system with optical phase conjugation modules

    NASA Astrophysics Data System (ADS)

    Singh, Sukhbir; Singh, Surinder

    2017-11-01

    This paper investigated the effect of FWM and its suppression using optical phase conjugation modules in dispersion managed hybrid WDM-OTDM multicast overlay system. Interaction between propagating wavelength signals at higher power level causes new FWM component generation that can significant limit the system performance. OPC module consists of the pump signal and 0.6 km HNLF implemented in midway of optical link to generate destructive phase FWM components. Investigation revealed that by use of even OPC module in optical link reduces the FWM power and mitigate the interaction between wavelength signals at variable signal input power, dispersion parameter (β2) and transmission distance. System performance comparison is also made between without DM-OPC module, with DM and with DM-OPC module in scenario of FWM tolerance. The BER performance of hybrid WDM-OTDM multicast system using OPC module is improved by multiplication factor of 2 as comparable to dispersion managed and coverage distance is increased by factor of 2 as in Singh and Singh (2016).

  16. Design of a compact high-speed optical modulator based on a hybrid plasmonic nanobeam cavity

    NASA Astrophysics Data System (ADS)

    Javid, Mohammad Reza; Miri, Mehdi; Zarifkar, Abbas

    2018-03-01

    A hybrid plasmonic electro-optic modulator based on a polymer-filled one dimensional photonic crystal nanobeam (1D PhCNB) cavity is proposed here. In the proposed structure the optical intensity modulation is realized by shifting the resonant wavelength of the cavity through electrically tuning the refractive index of the electro-optic polymer in the hybrid plasmonic waveguide. As a result of the subwavelength light confinement in the hybrid plasmonic waveguide and the compact footprint of the 1D PhCNB cavity, the designed modulator has the small overall footprint of 3 . 6 μm2 and the required wavelength shift can be achieved by applying very small actuating power. Three dimensional finite-difference time-domain (3D-FDTD) simulations show that the modulation depth of 10.9 dB, and insertion loss of 1.14 dB, along with very high modulation speed of 224 GHz can be achieved in the proposed modulator with very low modulation energy of 0.75 fJ/bit. A comparison between the performance parameters of the proposed modulator and those of previously reported PhCNB based modulators reveals the superior performance of the proposed structure in terms of modulation speed, energy consumption and overall footprint.

  17. [Integration design and diffraction characteristics analysis of prism-grating-prism].

    PubMed

    He, Tian-Bo; Bayanheshig; Li, Wen-Hao; Kong, Peng; Tang, Yu-Guo

    2014-01-01

    Prism-grating-prism (PGP) module is the important dispersing component in the hyper spectral imager. In order to effectively predict the distribution of diffraction efficiency of the whole PGP component and its diffraction characteristics before fabrication, a method of the PGP integration design is proposed. From the point of view of the volume phase holographic grating (VPHG) design, combined with the restrictive correlation between the various parameters of prisms and grating, we compiled the analysis software for calculating the whole PGP's diffraction efficiency. Furthermore, the effects of the structure parameters of prisms and grating on the PGP's diffraction characteristics were researched in detail. In particular we discussed the Bragg wavelength shift behaviour of the grating and a broadband PGP spectral component with high diffraction efficiency was designed for the imaging spectrometers. The result of simulation indicated that the spectral bandwidth of the PGP becomes narrower with the dispersion coefficient of prism 1 material decreasing; Bragg wavelength shift characteristics broaden the bandwidth of VPHG both spectrally and angularly, higher angular selectivity is desirable for selection requirements of the prism 1 material, and it can be easily tuned to achieve spectral bandwidth suitable for imaging PGP spectrograph; the vertex angle of prism 1, the film thickness and relative permittivity modulation of the grating have a significant impact on the distribution of PGP's diffraction efficiency, so precision control is necessary when fabrication. The diffraction efficiency of the whole PGP component designed by this method is no less than 50% in the wavelength range from 400 to 1000 nm, the specific design parameters have been given in this paper that have a certain reference value for PGP fabrication.

  18. 1.25-3.125 Gb/s per user PON with RSOA as phase modulator for statistical wavelength ONU

    NASA Astrophysics Data System (ADS)

    Chu, Guang Yong; Polo, Victor; Lerín, Adolfo; Tabares, Jeison; Cano, Iván N.; Prat, Josep

    2015-12-01

    We report a new scheme to support, cost efficiently, ultra-dense wavelength division multiplexing (UDWDM) for optical access networks. As validating experiment, we apply phase modulation of a reflective semiconductor optical amplifier (RSOA) at the ONU with a single DFB, and simplified coherent receiver at OLT for upstream. We extend the limited 3-dB modulation bandwidth of available uncooled To-can packaged RSOA (~400 MHz) and operate it at 3.125 Gb/s with the optimal performance for phase modulation using small and large signal measurement characteristics. The optimal condition is selected at input power of 0 dBm, with 70 mA bias condition. The sensitivities at 3.125 Gb/s (at BER=10-3) for heterodyne and intradyne detection reach -34.3 dBm and -38.8 dBm, respectively.

  19. Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter.

    PubMed

    Zhang, Z X; Xu, Z W; Zhang, L

    2012-11-19

    We report the generation of tunable single- and dual-wavelength dissipative solitons in an all-normal-dispersion mode-locked Yb-doped fiber laser, to the best of our knowledge, for the first time. Besides single-wavelength mode-locking, dual-wavelength mode-locking was achieved using an in-line birefringence fiber filter with periodic multiple passbands, which not only allows multiple wavelengths to oscillate simultaneously but also performs spectrum modulation on highly chirped dissipative pulse. Furthermore, taking advantage of the tunability of the birefringence fiber filter, wavelength tuning for both single- and dual-wavelength dissipative soliton mode-locking was realized. The dual-wavelength operation is also switchable. The all-fiber dissipative laser with flexible outputs can meet diverse application needs.

  20. Designs and numerical calculations for echo-enabled harmonic generation at very high harmonics

    NASA Astrophysics Data System (ADS)

    Penn, G.; Reinsch, M.

    2011-09-01

    The echo-enabled harmonic generation (EEHG) scheme for driving an FEL using two seeded energy modulations at much longer wavelengths than the output wavelength is a promising concept for future seeded FELs. There are many competing requirements in the design of an EEHG beamline which need careful optimization. Furthermore, revised simulation tools and methods are necessary because of both the high harmonic numbers simulated and the complicated nature of the phase space manipulations which are intrinsic to the scheme. This paper explores the constraints on performance and the required tolerances for reaching wavelengths well below 1/100th of that of the seed lasers, and describes some of the methodology for designing such a beamline. Numerical tools, developed both for the GENESIS and GINGER FEL codes, are presented and used here for more accurate study of the scheme beyond a time-averaged model. In particular, the impact of the local structure in peak current and bunching, which is an inherent part of the EEHG scheme, is evaluated.

  1. Application of Hoffman modulation contrast microscopy coupled with three-wavelength two-beam interferometry to the in situ direct observation of the growth process of a crystal in microgravity

    NASA Technical Reports Server (NTRS)

    Tsukamoto, Katsuo

    1988-01-01

    Direct visualization of three dimensional transfer process of both heat and mass around a growing crystal and mono-molecular growth layers on the surface is possible in situ by means of high resolution Hoffman modulation contrast microscopy coupled with three wavelength two beam Mach-Zehnder interferometry. This in situ observation is very suitable for the verification of the growth mechanism of a crystal in a solution or a melt in microgravity.

  2. Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy

    PubMed Central

    Klein, Alexander; Witzel, Oliver; Ebert, Volker

    2014-01-01

    We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 μm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer. PMID:25405508

  3. Development of wavelength locking circuit for 1.53 micron water vapor monitoring coherent differential absorption LIDAR

    NASA Astrophysics Data System (ADS)

    Imaki, Masaharu; Kojima, Ryota; Kameyama, Shumpei

    2018-04-01

    We have studied a ground based coherent differential absorption LIDAR (DIAL) for vertical profiling of water vapor density using a 1.5μm laser wavelength. A coherent LIDAR has an advantage in daytime measurement compared with incoherent LIDAR because the influence of background light is greatly suppressed. In addition, the LIDAR can simultaneously measure wind speed and water vapor density. We had developed a wavelength locking circuit using the phase modulation technique and offset locking technique, and wavelength stabilities of 0.123 pm which corresponds to 16 MHz are realized. In this paper, we report the wavelength locking circuits for the 1.5 um wavelength.

  4. Temperature and current coefficients of lasing wavelength in tunable diode laser spectroscopy.

    PubMed

    Fukuda, M; Mishima, T; Nakayama, N; Masuda, T

    2010-08-01

    The factors determining temperature and current coefficients of lasing wavelength are investigated and discussed under monitoring CO(2)-gas absorption spectra. The diffusion rate of Joule heating at the active layer to the surrounding region is observed by monitoring the change in the junction voltage, which is a function of temperature and the wavelength (frequency) deviation under sinusoidal current modulation. Based on the experimental results, the time interval of monitoring the wavelength after changing the ambient temperature or injected current (scanning rate) has to be constant at least to eliminate the monitoring error induced by the deviation of lasing wavelength, though the temperature and current coefficients of lasing wavelength differ with the rate.

  5. High-power, fixed, and tunable wavelength, grating-free cascaded Raman fiber lasers.

    PubMed

    Balaswamy, V; Arun, S; Aparanji, Santosh; Choudhury, Vishal; Supradeepa, V R

    2018-04-01

    Cascaded Raman lasers enable high powers at various wavelength bands inaccessible with conventional rare-earth-doped lasers. The input and output wavelengths of conventional implementations are fixed by the constituent fiber gratings necessary for cascaded Raman conversion. We demonstrate here a simple architecture for high-power, fixed, and wavelength tunable, grating-free, cascaded Raman conversion between different wavelength bands. The architecture is based on the recently proposed distributed feedback Raman lasers. Here, we implement a module which converts the ytterbium band to the eye-safe 1.5 μm region. We demonstrate pump-limited output powers of over 30 W in fixed and continuously wavelength tunable configurations.

  6. Assessment of spatial information for hyperspectral imaging of lesion

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Li, Gang; Lin, Ling

    2016-10-01

    Multiple diseases such as breast tumor poses a great threat to women's health and life, while the traditional detection method is complex, costly and unsuitable for frequently self-examination, therefore, an inexpensive, convenient and efficient method for tumor self-inspection is needed urgently, and lesion localization is an important step. This paper proposes an self-examination method for positioning of a lesion. The method adopts transillumination to acquire the hyperspectral images and to assess the spatial information of lesion. Firstly, multi-wavelength sources are modulated with frequency division, which is advantageous to separate images of different wavelength, meanwhile, the source serves as fill light to each other to improve the sensitivity in the low-lightlevel imaging. Secondly, the signal-to-noise ratio of transmitted images after demodulation are improved by frame accumulation technology. Next, gray distributions of transmitted images are analyzed. The gray-level differences is constituted by the actual transmitted images and fitting transmitted images of tissue without lesion, which is to rule out individual differences. Due to scattering effect, there will be transition zones between tissue and lesion, and the zone changes with wavelength change, which will help to identify the structure details of lesion. Finally, image segmentation is adopted to extract the lesion and the transition zones, and the spatial features of lesion are confirmed according to the transition zones and the differences of transmitted light intensity distributions. Experiment using flat-shaped tissue as an example shows that the proposed method can extract the space information of lesion.

  7. Graphene optical modulator

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Yin, Xiaobo; Wang, Feng; Zhang, Xiang

    2011-10-01

    Data communications have been growing at a speed even faster than Moore's Law, with a 44-fold increase expected within the next 10 years. Data Transfer on such scale would have to recruit optical communication technology and inspire new designs of light sources, modulators, and photodetectors. An ideal optical modulator will require high modulation speed, small device footprint and large operating bandwidth. Silicon modulators based on free carrier plasma dispersion effect and compound semiconductors utilizing direct bandgap transition have seen rapid improvement over the past decade. One of the key limitations for using silicon as modulator material is its weak refractive index change, which limits the footprint of silicon Mach-Zehnder interferometer modulators to millimeters. Other approaches such as silicon microring modulators reduce the operation wavelength range to around 100 pm and are highly sensitive to typical fabrication tolerances and temperature fluctuations. Growing large, high quality wafers of compound semiconductors, and integrating them on silicon or other substrates is expensive, which also restricts their commercialization. In this work, we demonstrate that graphene can be used as the active media for electroabsorption modulators. By tuning the Fermi energy level of the graphene layer, we induced changes in the absorption coefficient of graphene at communication wavelength and achieve a modulation depth above 3 dB. This integrated device also has the potential of working at high speed.

  8. Systems and methods for enhancing optical information

    DOEpatents

    DeVore, Peter Thomas Setsuda; Chou, Jason T.

    2018-01-02

    An Optical Information Transfer Enhancer System includes a first system for producing an information bearing first optical wave that is impressed with a first information having a first information strength wherein the first optical wave has a first shape. A second system produces a second optical wave. An information strength enhancer module receives the first and said second optical waves and impresses the first optical wave upon the second optical wave via cross-phase modulation (XPM) to produce an information-strength-enhanced second optical wave having a second information strength that is greater than the first information strength of the first optical wave. Following a center-wavelength changer by an Optical Information Transfer Enhancer System improves its performance.

  9. Orthoscopic real-image display of digital holograms.

    PubMed

    Makowski, P L; Kozacki, T; Zaperty, W

    2017-10-01

    We present a practical solution for the long-standing problem of depth inversion in real-image holographic display of digital holograms. It relies on a field lens inserted in front of the spatial light modulator device addressed by a properly processed hologram. The processing algorithm accounts for pixel size and wavelength mismatch between capture and display devices in a way that prevents image deformation. Complete images of large dimensions are observable from one position with a naked eye. We demonstrate the method experimentally on a 10-cm-long 3D object using a single full-HD spatial light modulator, but it can supplement most holographic displays designed to form a real image, including circular wide angle configurations.

  10. Spectral analysis of the UFBG-based acousto—optical modulator in V-I transmission matrix formalism

    NASA Astrophysics Data System (ADS)

    Wu, Liang-Ying; Pei, Li; Liu, Chao; Wang, Yi-Qun; Weng, Si-Jun; Wang, Jian-Shuai

    2014-11-01

    In this study, the V-I transmission matrix formalism (V-I method) is proposed to analyze the spectrum characteristics of the uniform fiber Bragg grating (FBG)-based acousto—optic modulators (UFBG-AOM). The simulation results demonstrate that both the amplitude of the acoustically induced strain and the frequency of the acoustic wave (AW) have an effect on the spectrum. Additionally, the wavelength spacing between the primary reflectivity peak and the secondary reflectivity peak is proportional to the acoustic frequency with the ratio 0.1425 nm/MHz. Meanwhile, we compare the amount of calculation. For the FBG whose period is M, the calculation of the V-I method is 4 × (2M-1) in addition/subtraction, 8 × (2M - 1) in multiply/division and 2M in exponent arithmetic, which is almost a quarter of the multi-film method and transfer matrix (TM) method. The detailed analysis indicates that, compared with the conventional multi-film method and transfer matrix (TM) method, the V-I method is faster and less complex.

  11. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    NASA Astrophysics Data System (ADS)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  12. Even-order harmonic cancellation for off-quadrature biased Mach-Zehnder modulator with improved RF metrics using dual wavelength inputs and dual outputs.

    PubMed

    Devgan, Preetpaul S; Diehl, John F; Urick, Vincent J; Sunderman, Christopher E; Williams, Keith J

    2009-05-25

    We present a technique using a dual-output Mach-Zehnder modulator (MZM) with two wavelength inputs, one operating at low-bias and the other operating at high-bias, in order to cancel unwanted even-order harmonics in analog optical links. By using a dual-output MZM, this technique allows for two suppressed optical carriers to be transmitted to the receiver. Combined with optical amplification and balanced differential detection, the RF power of the fundamental is increased by 2 dB while the even-order harmonic is reduced by 47 dB, simultaneously. The RF noise figure and third-order spurious-free dynamic range (SFDR(3)) are improved by 5.4 dB and 3.6 dB, respectively. Using a wavelength sensitive, low V(pi) MZM allows the two wavelengths to be within 5.5 nm of each other for a frequency band from 10 MHz to 100 MHz and 10 nm for 1 GHz.

  13. Modulation Transfer Function of Infrared Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Rafol, S. B.; Ting, D. Z.; Soibel, A.; Hill, C. J.; Khoshakhlagh, A.; Liu, J. K.; Mumolo, J. M.; Hoglund, L.; Luong, E. M.

    2015-01-01

    Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this presentation we will discuss the detail MTF measurements of 1024x1024 pixels mid -wavelength and long- wavelength quantum well infrared photodetector, and 320x256 pixels long- wavelength InAs/GaSb superlattice infrared focal plane arrays (FPAs). Long wavelength Complementary Barrier Infrared Detector (CBIRD) based on InAs/GaSb superlattice material is hybridized to recently designed and fabricated 320x256 pixel format ROIC. The n-type CBIRD was characterized in terms of performance and thermal stability. The experimentally measured NE delta T of the 8.8 micron cutoff n-CBIRD FPA was 18.6 mK with 300 K background and f/2 cold stop at 78K FPA operating temperature. The horizontal and vertical MTFs of this pixel fully delineated CBIRD FPA at Nyquist frequency are 49% and 52%, respectively.

  14. Ultrashort high-brightness pulses from storage rings

    NASA Astrophysics Data System (ADS)

    Khan, Shaukat

    2017-09-01

    The brightness of short-wavelength radiation from accelerator-based sources can be increased by coherent emission in which the radiation intensity scales with the number of contributing electrons squared. This requires a microbunched longitudinal electron distribution, which is the case in free-electron lasers. The brightness of light sources based on electron storage rings was steadily improved, but could profit further from coherent emission. The modulation of the electron energy by a continuous-wave laser field may provide steady-state microbunching in the infrared regime. For shorter wavelengths, the energy modulation can be converted into a temporary density modulation by a dispersive chicane. One particular goal is coherent emission from a very short "slice" within an electron bunch in order to produce ultrashort radiation pulses with high brightness.

  15. Anisotropic electro-optic effect on InGaAs quantum dot chain modulators.

    PubMed

    Liu, Wei; Liang, Baolai; Huffaker, Diana; Fetterman, Harold

    2013-10-15

    We investigated the anisotropic electro-optic (EO) effect on InGaAs quantum dot (QD) chain modulators. The linear EO coefficients were determined as 24.3 pm/V (33.8 pm/V) along the [011] direction and 30.6 pm/V (40.3 pm/V) along the [011¯] direction at 1.55 μm (1.32 μm) operational wavelength. The corresponding half-wave voltages (Vπs) were measured to be 5.35 V (4.35 V) and 4.65 V (3.86 V) at 1.55 μm (1.32 μm) wavelength. This is the first report on the anisotropic EO effect on QD chain structures. These modulators have 3 dB bandwidths larger than 10 GHz.

  16. Exciplex ensemble modulated by excitation mode in intramolecular charge-transfer dyad: effects of temperature, solvent polarity, and wavelength on photochemistry and photophysics of tethered naphthalene-dicyanoethene system.

    PubMed

    Aoki, Yoshiaki; Matsuki, Nobuo; Mori, Tadashi; Ikeda, Hiroshi; Inoue, Yoshihisa

    2014-09-19

    Solvent, temperature, and excitation wavelength significantly affected the photochemical outcomes of a naphthalene-dicyanoethene system tethered by different number (n) of methylene groups (1-3). The effect of irradiation wavelength was almost negligible for 2a but pronounced for 3a. The temperature dependence and theoretical calculations indicated the diversity of exciplex conformations, an ensemble of which can be effectively altered by changing excitation wavelength to eventually switch the regioselectivity of photoreactions.

  17. Biological particle identification apparatus

    DOEpatents

    Salzman, Gary C.; Gregg, Charles T.; Grace, W. Kevin; Hiebert, Richard D.

    1989-01-01

    An apparatus and method for making multiparameter light scattering measurements from suspensions of biological particles is described. Fourteen of the sixteen Mueller matrix elements describing the particles under investigation can be substantially individually determined as a function of scattering angle and probing radiations wavelength, eight elements simultaneously for each of two apparatus configurations using an apparatus which incluees, in its simplest form, two polarization modulators each operating at a chosen frequency, one polarizer, a source of monochromatic electromagnetic radiation, a detector sensitive to the wavelength of radiation employed, eight phase-sensitive detectors, and appropriate electronics. A database of known biological particle suspensions can be assembled, and unknown samples can be quickly identified once measurements are performed on it according to the teachings of the subject invention, and a comparison is made with the database.

  18. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators.

    PubMed

    Yao, Yu; Shankar, Raji; Kats, Mikhail A; Song, Yi; Kong, Jing; Loncar, Marko; Capasso, Federico

    2014-11-12

    Dynamically reconfigurable metasurfaces open up unprecedented opportunities in applications such as high capacity communications, dynamic beam shaping, hyperspectral imaging, and adaptive optics. The realization of high performance metasurface-based devices remains a great challenge due to very limited tuning ranges and modulation depths. Here we show that a widely tunable metasurface composed of optical antennas on graphene can be incorporated into a subwavelength-thick optical cavity to create an electrically tunable perfect absorber. By switching the absorber in and out of the critical coupling condition via the gate voltage applied on graphene, a modulation depth of up to 100% can be achieved. In particular, we demonstrated ultrathin (thickness < λ0/10) high speed (up to 20 GHz) optical modulators over a broad wavelength range (5-7 μm). The operating wavelength can be scaled from the near-infrared to the terahertz by simply tailoring the metasurface and cavity dimensions.

  19. Novel RF Interrogation of a Fiber Bragg Grating Sensor Using Bidirectional Modulation of a Mach-Zehnder Electro-Optical Modulator

    PubMed Central

    Choi, Sang-Jin; Mao, Wankai; Pan, Jae-Kyung

    2013-01-01

    We propose and experimentally demonstrate the novel radio-frequency (RF) interrogation of a fiber Bragg grating (FBG) sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). Based on the microwave photonic technique and active detection, the transfer function of the proposed system was obtained, and the time delay was calculated from the change in the free spectral range (FSR) at different wavelengths over the optimal measuring range. The results show that the time delay and the wavelength variation have a good linear relationship, with a gradient of 9.31 ps/nm. An actual measurement taken with a sensing FBG for temperature variation shows the relationship with a gradient of 0.93 ps/10 °C. The developed system could be used for FBG temperature or strain sensing and other multiplexed sensor applications. PMID:23820744

  20. High-speed directly modulated widely tunable two-section InGaAlAs DBR lasers.

    PubMed

    Zhou, Daibing; Liang, Song; Zhao, Lingjuan; Zhu, Hongliang; Wang, Wei

    2017-02-06

    We report widely tunable two-section distributed Bragg reflector (DBR) lasers, which have InGaAlAs multiple quantum wells (MQWs) as the gain material. By butt-jointing InGaAsP, which has a photoluminescence wavelength of 1.4 μm as the material of the DBR section, a wavelength tuning range of 12 nm can be obtained by current injection into the DBR section. The direct modulation bandwidth of the lasers is greater than 10 GHz over the entire wavelength tuning range up to 40°C. Compared with InGaAsP DBR lasers having the same structure, the InGaAlAs lasers have smaller variations in both the threshold current and slope efficiency with the temperature because of the better electron confinement in the InGaAlAs MQWs. Moreover, the DBR-current-induced decreases in the modulation bandwidth and side mode suppression ratio (SMSR) of the optical spectra are notably smaller for the InGaAlAs lasers than for the InGaAsP lasers.

  1. Optimisation of wavelength modulated Raman spectroscopy: towards high throughput cell screening.

    PubMed

    Praveen, Bavishna B; Mazilu, Michael; Marchington, Robert F; Herrington, C Simon; Riches, Andrew; Dholakia, Kishan

    2013-01-01

    In the field of biomedicine, Raman spectroscopy is a powerful technique to discriminate between normal and cancerous cells. However the strong background signal from the sample and the instrumentation affects the efficiency of this discrimination technique. Wavelength Modulated Raman spectroscopy (WMRS) may suppress the background from the Raman spectra. In this study we demonstrate a systematic approach for optimizing the various parameters of WMRS to achieve a reduction in the acquisition time for potential applications such as higher throughput cell screening. The Signal to Noise Ratio (SNR) of the Raman bands depends on the modulation amplitude, time constant and total acquisition time. It was observed that the sampling rate does not influence the signal to noise ratio of the Raman bands if three or more wavelengths are sampled. With these optimised WMRS parameters, we increased the throughput in the binary classification of normal human urothelial cells and bladder cancer cells by reducing the total acquisition time to 6 s which is significantly lower in comparison to previous acquisition times required for the discrimination between similar cell types.

  2. A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Shi, Nuannuan; Hao, Tengfei; Li, Wei; Zhu, Ninghua; Li, Ming

    2018-01-01

    We propose a photonic scheme to realize a reconfigurable microwave photonic filter (MPF) with flexible tunability using a multi-wavelength laser (MWL) and a multi-channel phase-shifted fiber Bragg grating (PS-FBG). The proposed MPF is capable of performing reconfigurability including single bandpass filter, two independently bandpass filter and a flat-top bandpass filter. The performance such as the central frequency and the bandwidth of passband is tuned by controlling the wavelengths of the MWL. In the MPF, The light waves from a MWL are sent to a phase modulator (PM) to generate the phase-modulated optical signals. By applying a multi-channel PS-FBG, which has a series of narrow notches in the reflection spectrum with the free spectral range (FSR) of 0.8 nm, the +1st sidebands are removed in the notches and the phased-modulated signals are converted to the intensity-modulated signals without beating signals generation between each two optical carriers. The proposed MPF is also experimentally verified. The 3-dB bandwidth of the MPF is broadened from 35 MHz to 135 MHz and the magnitude deviation of the top from the MPF is less than 0.2 dB within the frequency tunable range from 1 GHz to 5 GHz.

  3. Compactly packaged monolithic four-wavelength VCSEL array with 100-GHz wavelength spacing for future-proof mobile fronthaul transport.

    PubMed

    Lee, Eun-Gu; Mun, Sil-Gu; Lee, Sang Soo; Lee, Jyung Chan; Lee, Jong Hyun

    2015-01-12

    We report a cost-effective transmitter optical sub-assembly using a monolithic four-wavelength vertical-cavity surface-emitting laser (VCSEL) array with 100-GHz wavelength spacing for future-proof mobile fronthaul transport using the data rate of common public radio interface option 6. The wavelength spacing is achieved using selectively etched cavity control layers and fine current adjustment. The differences in operating current and output power for maintaining the wavelength spacing of four VCSELs are <1.4 mA and <1 dB, respectively. Stable operation performance without mode hopping is observed, and error-free transmission under direct modulation is demonstrated over a 20-km single-mode fiber without any dispersion-compensation techniques.

  4. All-optical modulation in Mid-Wavelength Infrared using porous Si membranes

    PubMed Central

    Park, Sung Jin; Zakar, Ammar; Zerova, Vera L.; Chekulaev, Dimitri; Canham, Leigh T.; Kaplan, Andre

    2016-01-01

    We demonstrate for the first time the possibility of all-optical modulation of self-standing porous Silicon (pSi) membrane in the Mid-Wavelength Infrared (MWIR) range using femtosecond pump-probe techniques. To study optical modulation, we used pulses of an 800 nm, 60 femtosecond for pump and a MWIR tunable probe in the spectral range between 3.5 and 4.4 μm. We show that pSi possesses a natural transparency window centred around 4 μm. Yet, about 55% of modulation contrast can be achieved by means of optical excitation at the pump power of 60 mW (4.8 mJ/cm2). Our analysis shows that the main mechanism of the modulation is interaction of the MWIR signal with the free charge carrier excited by the pump. The time-resolved measurements showed a sub-picosecond rise time and a recovery time of about 66 ps, which suggests a modulation speed performance of ~15 GHz. This optical modulation of pSi membrane in MWIR can be applied to a variety of applications such as thermal imaging and free space communications. PMID:27440224

  5. Method of laser beam coding for control systems

    NASA Astrophysics Data System (ADS)

    Pałys, Tomasz; Arciuch, Artur; Walczak, Andrzej; Murawski, Krzysztof

    2017-08-01

    The article presents the method of encoding a laser beam for control systems. The experiments were performed using a red laser emitting source with a wavelength of λ = 650 nm and a power of P ≍ 3 mW. The aim of the study was to develop methods of modulation and demodulation of the laser beam. Results of research, in which we determined the effect of selected camera parameters, such as image resolution, number of frames per second on the result of demodulation of optical signal, is also shown in the paper. The experiments showed that the adopted coding method provides sufficient information encoded in a single laser beam (36 codes with the effectiveness of decoding at 99.9%).

  6. Model-Based, Closed-Loop Control of PZT Creep for Cavity Ring-Down Spectroscopy

    PubMed Central

    McCartt, A D; Ognibene, T J; Bench, G; Turteltaub, K W

    2014-01-01

    Cavity ring-down spectrometers typically employ a PZT stack to modulate the cavity transmission spectrum. While PZTs ease instrument complexity and aid measurement sensitivity, PZT hysteresis hinders the implementation of cavity-length-stabilized, data-acquisition routines. Once the cavity length is stabilized, the cavity’s free spectral range imparts extreme linearity and precision to the measured spectrum’s wavelength axis. Methods such as frequency-stabilized cavity ring-down spectroscopy have successfully mitigated PZT hysteresis, but their complexity limits commercial applications. Described herein is a single-laser, model-based, closed-loop method for cavity length control. PMID:25395738

  7. Model-Based, Closed-Loop Control of PZT Creep for Cavity Ring-Down Spectroscopy.

    PubMed

    McCartt, A D; Ognibene, T J; Bench, G; Turteltaub, K W

    2014-09-01

    Cavity ring-down spectrometers typically employ a PZT stack to modulate the cavity transmission spectrum. While PZTs ease instrument complexity and aid measurement sensitivity, PZT hysteresis hinders the implementation of cavity-length-stabilized, data-acquisition routines. Once the cavity length is stabilized, the cavity's free spectral range imparts extreme linearity and precision to the measured spectrum's wavelength axis. Methods such as frequency-stabilized cavity ring-down spectroscopy have successfully mitigated PZT hysteresis, but their complexity limits commercial applications. Described herein is a single-laser, model-based, closed-loop method for cavity length control.

  8. Fast-response and scattering-free polymer network liquid crystals for infrared light modulators

    NASA Astrophysics Data System (ADS)

    Fan, Yun-Hsing; Lin, Yi-Hsin; Ren, Hongwen; Gauza, Sebastian; Wu, Shin-Tson

    2004-02-01

    A fast-response and scattering-free homogeneously aligned polymer network liquid crystal (PNLC) light modulator is demonstrated at λ=1.55 μm wavelength. Light scattering in the near-infrared region is suppressed by optimizing the polymer concentration such that the network domain sizes are smaller than the wavelength. The strong polymer network anchoring assists LC to relax back quickly as the electric field is removed. As a result, the PNLC response time is ˜250× faster than that of the E44 LC mixture except that the threshold voltage is increased by ˜25×.

  9. Effect of cross-phase-modulation-induced polarization scattering on optical polarization mode dispersion compensation in wavelength-division-multiplexed systems

    NASA Astrophysics Data System (ADS)

    Xie, Chongjin; Möller, Lothar; Kilper, Daniel C.; Mollenauer, Linn F.

    2003-12-01

    Interchannel cross-phase-modulation-induced polarization scattering (XPMIPS) and its effect on the performance of optical polarization mode dispersion (PMD) compensation in wavelength-division-multiplexed (WDM) systems are studied. The level of XPMIPS in long-haul WDM transmission systems is theoretically quantified, and its effect on optical PMD compensation is evaluated with numerical simulations. We show that in 10-Gbit/s ultra-long-haul dense WDM systems XPMIPS could reduce the PMD compensation efficiency by 50%, whereas for 40-Gbit/s systems the effect of XPMIPS is smaller.

  10. Multiwavelength Optical Switch Based on Controlling the Fermi Energy of Graphene

    NASA Astrophysics Data System (ADS)

    Jiang, Xiangqian; Bao, Jinlin; Sun, Xiudong

    2018-04-01

    We propose a graphene-dielectric-graphene corrugated structure to achieve a multiwavelength optical switch. The transmission and reflection properties of the structure are discussed, and multiultranarrow resonant peaks in the transmission and reflection spectra are found. By adjusting the Fermi energy of graphene, the resonant peaks will shift obviously. Based on this shifting property we present an active multiwavelength optical switch and achieve the on-off of four different wavelengths simultaneously. We also discuss the modulation depths of transmission and reflection. For the transmission of all four wavelengths we can get a very high modulation depth close to 100%.

  11. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Moore, Arnold R.

    1984-01-01

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV for each wavelength. A drop of a transparent electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 volts couples the SPV to a measurement system. The drop of redox couple solution functions to create a liquid Schottky barrier at the surface of the material. Illumination light is passed through a transparent rod supported over the surface and through the drop of transparent electrolyte. The drop is held in the gap between the rod and the surface. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.

  12. Measuring the spatial resolution of an optical system in an undergraduate optics laboratory

    NASA Astrophysics Data System (ADS)

    Leung, Calvin; Donnelly, T. D.

    2017-06-01

    Two methods of quantifying the spatial resolution of a camera are described, performed, and compared, with the objective of designing an imaging-system experiment for students in an undergraduate optics laboratory. With the goal of characterizing the resolution of a typical digital single-lens reflex (DSLR) camera, we motivate, introduce, and show agreement between traditional test-target contrast measurements and the technique of using Fourier analysis to obtain the modulation transfer function (MTF). The advantages and drawbacks of each method are compared. Finally, we explore the rich optical physics at work in the camera system by calculating the MTF as a function of wavelength and f-number. For example, we find that the Canon 40D demonstrates better spatial resolution at short wavelengths, in accordance with scalar diffraction theory, but is not diffraction-limited, being significantly affected by spherical aberration. The experiment and data analysis routines described here can be built and written in an undergraduate optics lab setting.

  13. Improvements of VIIRS and MODIS Solar Diffuser and Lunar Calibration

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Butler, James J.; Lei, Ning; Sun, Junqiang; Fulbright, Jon; Wang, Zhipeng; McIntire, Jeff; Angal, Amit Avinash

    2013-01-01

    Both VIIRS and MODIS instruments use solar diffuser (SD) and lunar observations to calibrate their reflective solar bands (RSB). A solar diffuser stability monitor (SDSM) is used to track the SD on-orbit degradation. On-orbit observations have shown similar wavelength-dependent SD degradation (larger at shorter VIS wavelengths) and SDSM detector response degradation (larger at longer NIR wavelengths) for both VIIRS and MODIS instruments. In general, the MODIS scan mirror has experienced more degradation in the VIS spectral region whereas the VIIRS rotating telescope assembly (RTA) mirrors have seen more degradation in the NIR and SWIR spectral region. Because of this wavelength dependent mirror degradation, the sensor's relative spectral response (RSR) needs to be modulated. Due to differences between the solar and lunar spectral irradiance, the modulated RSR could have different effects on the SD and lunar calibration. In this paper, we identify various factors that should be considered for the improvements of VIIRS and MODIS solar and lunar calibration and examine their potential impact. Specifically, we will characterize and assess the calibration impact due to SD and SDSM attenuation screen transmission (uncertainty), SD BRF uncertainty and onorbit degradation, SDSM detector response degradation, and modulated RSR resulting from the sensor's optics degradation. Also illustrated and discussed in this paper are the calibration strategies implemented in the VIIRS and MODIS SD and lunar calibrations and efforts that could be made for future improvements.

  14. Passive Tracking System and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Chen, Henry A. (Inventor); Phan, Chau T. (Inventor); Bourgeois, Brian A. (Inventor); Dusl, Jon (Inventor); Hill, Brent W. (Inventor)

    2003-01-01

    Systems and methods are disclosed for passively determining the location of a moveable transmitter utilizing a pair of phase shifts at a receiver for extracting a direction vector from a receiver to the transmitter. In a preferred embodiment, a phase difference between the transmitter and receiver is extracted utilizing a noncoherent demodulator in the receiver. The receiver includes an antenna array with three antenna elements, which preferably are patch antenna elements spaced apart by one-half wavelength. Three receiver channels are preferably utilized for simultaneously processing the received signal from each of the three antenna elements. Multipath transmission paths for each of the three receiver channels are indexed so that comparisons of the same multipath component are made for each of the three receiver channels. The phase difference for each received signal is determined by comparing only the magnitudes of received and stored modulation signals to determine a winning modulation symbol.

  15. Apparatus, system, and method for laser-induced breakdown spectroscopy

    DOEpatents

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  16. Micro-scale patterning of indium tin oxide film by spatially modulated pulsed Nd:YAG laser beam

    NASA Astrophysics Data System (ADS)

    Lee, Jinsoo; Kim, Seongsu; Lee, Myeongkyu

    2012-09-01

    Here we demonstrate that indium tin oxide (ITO) films deposited on glass can be directly patterned by a spatially -modulated pulsed Nd-YAG laser beam (wavelength = 1064 nm, pulse width = 6 ns) incident onto the film. This method utilizes a pulsed laser-induced thermo-elastic force exerting on the film which plays a role to detach it from the substrate. Sharp-edged clean patterns with feature size as small as 4 μm could be obtained. The threshold pulse energy density for patterning was estimated to be ˜0.8 J/cm2 for 150 nm-thick ITO film, making it possible to pattern over one square centimeter by a single pulse with energy of 850 mJ. Not only being free from photoresist and chemical etching steps, the presented method can also provide much higher throughput than the tradition photoablation process utilizing a tightly focused beam.

  17. Passive Tracking System and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Chen, Henry A. (Inventor); Phan, Chau T. (Inventor); Bourgeois, Brian A. (Inventor); Dusl, John (Inventor); Hill, Brent W. (Inventor)

    2005-01-01

    System and methods are disclosed for passively determining the location of a moveable transmitter utilizing a pair of phase shifts at a receiver for extracting a direction vector from a receiver to the transmitter. In a preferred embodiment, a phase difference between the transmitter and receiver is extracted utilizing a noncoherent demodulator in the receiver. The receiver includes antenna array with three antenna elements, which preferably are patch antenna elements placed apart by one-half wavelength. Three receiver channels are preferably utilized for simultaneously processing the received signal from each of the three antenna elements. Multipath transmission paths for each of the three receiver channels are indexed so that comparisons of the same multipath component are made for each of the three receiver channels. The phase difference for each received signal is determined by comparing only the magnitudes of received and stored modulation signals to determine a winning modulation symbol.

  18. Investigations of Q-switching and mode locking in diode-pumped Nd:YVO4 laser with passive saturable absorbers

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Jacek; Jabczynski, Jan K.; Zendzian, Waldemar

    2005-03-01

    The saturable absorbers (Cr4+:YAG, GaAs and LiF crystals for 1064-nm wavelength, V3+:YAG crystals for 1340-nm respectively) were examined as passive Mode Lockers and Q-switches in diode pumped Nd:YVO4 lasers in the Z-type resonators. In each case, partially modulated long trains of QML pulses were observed. As a rule, envelopes with about 1 μs duration and more than 50% depth of modulation were observed. For stabilization of the mode locking trains nonlinear crystals (KTP or LBO) as negative feedback elements were inserted. The fully modulated QML trains for intracavity II harmonic conversion at 670-nm wavelength in V3+:YAG Q-switched Nd:YVO4 laser with LBO crystal were demonstrated.

  19. Two-harmonic complex spectral-domain optical coherence tomography using achromatic sinusoidal phase modulation

    NASA Astrophysics Data System (ADS)

    Lu, Sheng-Hua; Huang, Siang-Ru; Chou, Che-Chung

    2018-03-01

    We resolve the complex conjugate ambiguity in spectral-domain optical coherence tomography (SD-OCT) by using achromatic two-harmonic method. Unlike previous researches, the optical phase of the fiber interferometer is modulated by an achromatic phase shifter based on an optical delay line. The achromatic phase modulation leads to a wavelength-independent scaling coefficient for the two harmonics. Dividing the mean absolute value of the first harmonic by that of the second harmonic in a B-scan interferogram directly gives the scaling coefficient. It greatly simplifies the determination of the magnitude ratio between the two harmonics without the need of third harmonic and cumbersome iterative calculations. The inverse fast Fourier transform of the complex-valued interferogram constructed with the scaling coefficient, first and second harmonics yields a full-range OCT image. Experimental results confirm the effectiveness of the proposed achromatic two-harmonic technique for suppressing the mirror artifacts in SD-OCT images.

  20. High-Speed Stark Wavelength Tuning of MidIR Interband Cascade Lasers

    DTIC Science & Technology

    2007-03-15

    STARK WAVELENGTH TUNING OF MidIR ICLs 361 Fig. 2. Lasing spectra of the tunable ICL at different bias currents. injection region at before tunneling ...the energy separation between and (and hence the emission wavelength) undergoes a linear Stark shift that depends on the bias current which controls...response Fig. 3. Lasing spectra of the tunable ICL at different bias modulation frequen- cies. Fig. 4. Dependence of the intensity of the Line 2 on bias

  1. High-Efficiency Visible Transmitting Polarizations Devices Based on the GaN Metasurface.

    PubMed

    Guo, Zhongyi; Xu, Haisheng; Guo, Kai; Shen, Fei; Zhou, Hongping; Zhou, Qingfeng; Gao, Jun; Yin, Zhiping

    2018-05-15

    Metasurfaces are capable of tailoring the amplitude, phase, and polarization of incident light to design various polarization devices. Here, we propose a metasurface based on the novel dielectric material gallium nitride (GaN) to realize high-efficiency modulation for both of the orthogonal linear polarizations simultaneously in the visible range. Both modulated transmitted phases of the orthogonal linear polarizations can almost span the whole 2π range by tailoring geometric sizes of the GaN nanobricks, while maintaining high values of transmission (almost all over 90%). At the wavelength of 530 nm, we designed and realized the beam splitter and the focusing lenses successfully. To further prove that our proposed method is suitable for arbitrary orthogonal linear polarization, we also designed a three-dimensional (3D) metalens that can simultaneously focus the X -, Y -, 45°, and 135° linear polarizations on spatially symmetric positions, which can be applied to the linear polarization measurement. Our work provides a possible method to achieve high-efficiency multifunctional optical devices in visible light by extending the modulating dimensions.

  2. Method and apparatus for differential spectroscopic atomic-imaging using scanning tunneling microscopy

    DOEpatents

    Kazmerski, Lawrence L.

    1990-01-01

    A Method and apparatus for differential spectroscopic atomic-imaging is disclosed for spatial resolution and imaging for display not only individual atoms on a sample surface, but also bonding and the specific atomic species in such bond. The apparatus includes a scanning tunneling microscope (STM) that is modified to include photon biasing, preferably a tuneable laser, modulating electronic surface biasing for the sample, and temperature biasing, preferably a vibration-free refrigerated sample mounting stage. Computer control and data processing and visual display components are also included. The method includes modulating the electronic bias voltage with and without selected photon wavelengths and frequency biasing under a stabilizing (usually cold) bias temperature to detect bonding and specific atomic species in the bonds as the STM rasters the sample. This data is processed along with atomic spatial topography data obtained from the STM raster scan to create a real-time visual image of the atoms on the sample surface.

  3. Different applications of isosbestic points, normalized spectra and dual wavelength as powerful tools for resolution of multicomponent mixtures with severely overlapping spectra.

    PubMed

    Mohamed, Ekram H; Lotfy, Hayam M; Hegazy, Maha A; Mowaka, Shereen

    2017-05-25

    Analysis of complex mixture containing three or more components represented a challenge for analysts. New smart spectrophotometric methods have been recently evolved with no limitation. A study of different novel and smart spectrophotometric techniques for resolution of severely overlapping spectra were presented in this work utilizing isosbestic points present in different absorption spectra, normalized spectra as a divisor and dual wavelengths. A quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PCT) and para-aminophenol (PAP) was taken as an example for application of the proposed techniques without any separation steps. The adopted techniques adopted of successive and progressive steps manipulating zero /or ratio /or derivative spectra. The proposed techniques includes eight novel and simple methods namely direct spectrophotometry after applying derivative transformation (DT) via multiplying by a decoding spectrum, spectrum subtraction (SS), advanced absorbance subtraction (AAS), advanced amplitude modulation (AAM), simultaneous derivative ratio (S 1 DD), advanced ratio difference (ARD), induced ratio difference (IRD) and finally double divisor-ratio difference-dual wavelength (DD-RD-DW) methods. The proposed methods were assessed by analyzing synthetic mixtures of the studied drugs. They were also successfully applied to commercial pharmaceutical formulations without interference from other dosage form additives. The methods were validated according to the ICH guidelines, accuracy, precision, repeatability, were found to be within the acceptable limits. The proposed procedures are accurate, simple and reproducible and yet economic. They are also sensitive and selective and could be used for routine analysis of complex most of the binary, ternary and quaternary mixtures and even more complex mixtures.

  4. Separating and combining single-mode and multimode optical beams

    DOEpatents

    Ruggiero, Anthony J; Masquelier, Donald A; Cooke, Jeffery B; Kallman, Jeffery S

    2013-11-12

    Techniques for combining initially separate single mode and multimode optical beams into a single "Dual Mode" fiber optic have been developed. Bi-directional propagation of two beams that are differentiated only by their mode profiles (i.e., wavefront conditions) is provided. The beams can be different wavelengths and or contain different modulation information but still share a common aperture. This method allows the use of conventional micro optics and hybrid photonic packaging techniques to produce small rugged packages suitable for use in industrial or military environments.

  5. Special topics in infrared interferometry. [Michelson interferometer development

    NASA Technical Reports Server (NTRS)

    Hanel, R. A.

    1985-01-01

    Topics in IR interferometry related to the development of a Michelson interferometer are treated. The selection and reading of the signal from the detector to the analog to digital converter is explained. The requirements for the Michelson interferometer advance speed are deduced. The effects of intensity modulation on the interferogram are discussed. Wavelength and intensity calibration of the interferometer are explained. Noise sources (Nyquist or Johnson noise, phonon noise), definitions of measuring methods of noise, and noise measurements are presented.

  6. Three Dimensional Reconstruction Algorithm for Imaging Pathophysiological Signals Within Breast Tissue Using Near Infrared Light

    DTIC Science & Technology

    2006-07-01

    of water, gelatin (G2625, Sigma Inc.), India ink (for absorption), and titanium dioxide powder (for scatter) (TiO2, Sigma Inc.) is poured into a mold...R. C., Ference, R. J, Refractive index of some mammalian tissue using a fiber optic cladding method. Applied Optics, 1989. 28(12): p. 2297-2303. 3...scans. The NIR system utilizes six optical wavelengths from 660 to 850 nm using intensity modulated diode lasers nominally working at 100 MHz

  7. Gold nanorods saturable absorber for Q-switched Nd:GAGG lasers at 1 μm

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Liu, Mingyi; Li, Yanbin; Gao, Xuejian; Kang, Zhe; Qin, Guanshi; Jia, Zhitai; Tao, Xutang; Song, Teng; Dun, Yangyang; Bai, Fen; Li, Ping; Wang, Qingpu; Fang, Jiaxiong

    2017-03-01

    A gold nanorod saturable absorber has been synthesized by the seed-mediated growth method characterized in detail. The absorption peak wavelength was 1080 nm, and the modulation depth was measured to be 9%. The performance of its Q-switched Nd:GAGG lasers at 1061 and 1106 nm has been systematically investigated, respectively. The corresponding shortest pulsewidths were 250 and 480 ns. Our experiment results proved that the GNR-SA is a promising saturable absorber for nanosecond bulk lasers.

  8. A Cascadable, Monolithic Laser/Modulator/Amplifier Transmitter.

    DTIC Science & Technology

    1997-03-01

    for Use at 1.55um Wavelength", M. Fetterman , C-P Chao and S. R. Forrest, IEEE Photonics Technology Lett., 8, 69 (1995). 7. "Modelling of a...waveguide device using the Helmholtz beam propagation method", M. R. Fetterman and S. R. Forrest, Top. Mtg. on Integrated Photonics Research, Paper ThD4...Systems", OP. Chao, G. J. Shiau, M. Fetterman and S. R. Forrest, PSAA-V, Monterey CA (Jan., 1995). 13. "Photoluminescence Study of Excess Carrier

  9. Tune-out wavelengths and landscape-modulated polarizabilities of alkali-metal Rydberg atoms in infrared optical lattices

    NASA Astrophysics Data System (ADS)

    Topcu, Turker; Derevianko, Andrei

    2013-11-01

    Intensity-modulated optical lattice potentials can change sign for an alkali-metal Rydberg atom, and the atoms are not always attracted to intensity minima in optical lattices with wavelengths near the CO2 laser band. Here we demonstrate that such IR lattices can be tuned so that the trapping potential experienced by the Rydberg atom can be made to vanish for atoms in “targeted” Rydberg states. Such state-selective trapping of Rydberg atoms can be useful in controlled cold Rydberg collisions, cooling Rydberg states, and species-selective trapping and transport of Rydberg atoms in optical lattices. We tabulate wavelengths at which the trapping potential vanishes for the ns, np, and nd Rydberg states of Na and Rb atoms and discuss advantages of using such optical lattices for state-selective trapping of Rydberg atoms. We also develop exact analytical expressions for the lattice-induced polarizability for the mz=0 Rydberg states and derive an accurate formula predicting tune-out wavelengths at which the optical trapping potential becomes invisible to Rydberg atoms in targeted l=0 states.

  10. Empirical Relationships Between Optical Properties and Equivalent Diameters of Fractal Soot Aggregates at 550 Nm Wavelength.

    NASA Technical Reports Server (NTRS)

    Pandey, Apoorva; Chakrabarty, Rajan K.; Liu, Li; Mishchenko, Michael I.

    2015-01-01

    Soot aggregates (SAs)-fractal clusters of small, spherical carbonaceous monomers-modulate the incoming visible solar radiation and contribute significantly to climate forcing. Experimentalists and climate modelers typically assume a spherical morphology for SAs when computing their optical properties, causing significant errors. Here, we calculate the optical properties of freshly-generated (fractal dimension Df = 1.8) and aged (Df = 2.6) SAs at 550 nm wavelength using the numericallyexact superposition T-Matrix method. These properties were expressed as functions of equivalent aerosol diameters as measured by contemporary aerosol instruments. This work improves upon previous efforts wherein SA optical properties were computed as a function of monomer number, rendering them unusable in practical applications. Future research will address the sensitivity of variation in refractive index, fractal prefactor, and monomer overlap of SAs on the reported empirical relationships.

  11. Parametric presentation of dielectric function of laser pumped wide-zone semiconductor material: Does this function satisfy the Kramers-Kronig relations?

    NASA Astrophysics Data System (ADS)

    Zimnyakov, D. A.; Yuvchenko, S. A.; Volchkov, S. S.; Samorodina, T. V.

    2018-04-01

    Dielectric function of wide-zone semiconductor nanoparticles (titanium dioxide) was studied under the condition of laser pumping at various wavelengths. A closed-aperture z-scan method with simultaneous measurements of the right-anglescattered intensity was used to retrieve the real and imaginary parts of dielectric function in the dependence on the pump intensity. It was found that the efficiency of dielectric function modulation by pumping light strongly depends on detuning of the wavelength of pumping light with respect to the fundamental absorption band of nanoparticles. The ColeCole diagrammatic technique was applied for interpretation of the pump-induced changes of the dielectric function in the optical range. Applicability of the Kramers-Kronig relations for description of the observed behavior of the dielectric function is discussed.

  12. Long-wavelength photonic integrated circuits and avalanche photodetectors

    NASA Astrophysics Data System (ADS)

    Tsou, Yi-Jen D.; Zaytsev, Sergey; Pauchard, Alexandre; Hummel, Steve; Lo, Yu-Hwa

    2001-10-01

    Fast-growing internet traffic volume require high data communication bandwidth over longer distances. Access network bottlenecks put pressure on short-range (SR) telecommunication systems. To effectively address these datacom and telecom market needs, low-cost, high-speed laser modules at 1310 to 1550 nm wavelengths and avalanche photodetectors are required. The great success of GaAs 850nm VCSEls for Gb/s Ethernet has motivated efforts to extend VCSEL technology to longer wavelengths in the 1310 and 1550 nm regimes. However, the technological challenges associated with materials for long wavelength VCSELs are tremendous. Even with recent advances in this area, it is believed that significant additional development is necessary before long wavelength VCSELs that meet commercial specifications will be widely available. In addition, the more stringent OC192 and OC768 specifications for single-mode fiber (SMF) datacom may require more than just a long wavelength laser diode, VCSEL or not, to address numerous cost and performance issues. We believe that photonic integrated circuits (PICs), which compactly integrate surface-emitting lasers with additional active and passive optical components with extended functionality, will provide the best solutions to today's problems. Photonic integrated circuits have been investigated for more than a decade. However, they have produced limited commercial impact to date primarily because the highly complicated fabrication processes produce significant yield and device performance issues. In this presentation, we will discuss a new technology platform of InP-based PICs compatible with surface-emitting laser technology, as well as a high data rate externally modulated laser module. Avalanche photodetectors (APDs) are the key component in the receiver to achieve high data rate over long transmission distance because of their high sensitivity and large gain- bandwidth product. We have used wafer fusion technology to achieve InGaAs/Si APDs with much greater potential than the traditional InGaAs/InP APDs. Preliminary results on their performance will be presented.

  13. Conditions for optimal efficiency of PCBM-based terahertz modulators

    NASA Astrophysics Data System (ADS)

    Yoo, Hyung Keun; Lee, Hanju; Lee, Kiejin; Kang, Chul; Kee, Chul-Sik; Hwang, In-Wook; Lee, Joong Wook

    2017-10-01

    We demonstrate the conditions for optimal modulation efficiency of active terahertz modulators based on phenyl-C61-butyric acid methyl ester (PCBM)-silicon hybrid structures. Highly efficient active control of the terahertz wave modulation was realized by controlling organic film thickness, annealing temperature, and laser excitation wavelength. Under the optimal conditions, the modulation efficiency reached nearly 100%. Charge distributions measured with a near-field scanning microwave microscanning technique corroborated the fact that the increase of photo-excited carriers due to the PCBM-silicon hybrid structure enables the enhancement of active modulation efficiency.

  14. Compensation for the phase-type spatial periodic modulation of the near-field beam at 1053 nm

    NASA Astrophysics Data System (ADS)

    Gao, Yaru; Liu, Dean; Yang, Aihua; Tang, Ruyu; Zhu, Jianqiang

    2017-10-01

    A phase-only spatial light modulator is used to provide and compensate for the spatial periodic modulation (SPM) of the near-field beam at the near infrared at 1053nm wavelength with an improved iterative weight-based method. The transmission characteristics of the incident beam has been changed by a spatial light modulator (SLM) to shape the spatial intensity of the output beam. The propagation and reverse propagation of the light in free space are two important processes in the iterative process. The based theory is the beam angular spectrum transmit formula (ASTF) and the principle of the iterative weight-based method. We have made two improvements to the originally proposed iterative weight-based method. We select the appropriate parameter by choosing the minimum value of the output beam contrast degree and use the MATLAB built-in angle function to acquire the corresponding phase of the light wave function. The required phase that compensates for the intensity distribution of the incident SPM beam is iterated by this algorithm, which can decrease the magnitude of the SPM of the intensity on the observation plane. The experimental results show that the phase-type SPM of the near-field beam is subject to a certain restriction. We have also analyzed some factors that make the results imperfect. The experiment results verifies the possible applicability of this iterative weight-based method to compensate for the SPM of the near-field beam.

  15. All-optical NRZ wavelength conversion based on a single hybrid III-V/Si SOA and optical filtering.

    PubMed

    Wu, Yingchen; Huang, Qiangsheng; Keyvaninia, Shahram; Katumba, Andrew; Zhang, Jing; Xie, Weiqiang; Morthier, Geert; He, Jian-Jun; Roelkens, Gunther

    2016-09-05

    We demonstrate all-optical wavelength conversion (AOWC) of non-return-to-zero (NRZ) signal based on cross-gain modulation in a single heterogeneously integrated III-V-on-silicon semiconductor optical amplifier (SOA) with an optical bandpass filter. The SOA is 500 μm long and consumes less than 250 mW electrical power. We experimentally demonstrate 12.5 Gb/s and 40 Gb/s AOWC for both wavelength up and down conversion.

  16. Blueprint for a microwave trapped ion quantum computer.

    PubMed

    Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G; Mølmer, Klaus; Devitt, Simon J; Wunderlich, Christof; Hensinger, Winfried K

    2017-02-01

    The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion-based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation-based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error-threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.

  17. Absorption sensor for CO in combustion gases using 2.3 µm tunable diode lasers

    NASA Astrophysics Data System (ADS)

    Chao, X.; Jeffries, J. B.; Hanson, R. K.

    2009-11-01

    Tunable diode laser absorption spectroscopy of CO was studied in the controlled laboratory environments of a heated cell and a combustion exhaust rig. Two absorption lines, R(10) and R(11) in the first overtone band of CO near 2.3 µm, were selected from a HITRAN simulation to minimize interference from water vapor at a representative combustion exhaust temperature (~1200 K). The linestrengths and collision broadening coefficients for these lines were measured in a heated static cell. This database was then used in a comparative study of direct absorption and wavelength-modulation absorption. CO concentration measurements using scanned-wavelength direct absorption (DA) and wavelength modulation with the second-harmonic signal normalized by the first-harmonic signal (WMS-2f/1f) all agreed with those measured by a conventional gas sampling analyzer over the range from <10 ppm to 2.3%. As expected, water vapor was found to be the dominant source of background interference for CO detection in combustion flows at high temperatures. Water absorption was measured to a high spectral resolution within the wavelength region 4295-4301 cm-1 at 1100 K, and shown to produce <10 ppm level interference for CO detection in combustion exhausts at temperatures up to 1200 K. We found that the WMS-2f/1f strategy avoids the need for WMS calibration measurements but requires characterization of the wavelength and injection-current intensity modulation of the specific diode laser. We conclude that WMS-2f/1f using the selected R(10) or R(11) transitions in the CO overtone band holds good promise for sensitive in situ detection of ppm-level CO in combustion flows, with high resistance to interference absorption from H2O.

  18. W-band radio-over-fiber propagation of two optically encoded wavelength channels

    NASA Astrophysics Data System (ADS)

    Eghbal, Morad Khosravi; Shadaram, Mehdi

    2018-01-01

    We propose a W-band wavelength-division multiplexing (WDM)-over-optical code-division multiple access radio-over-fiber system. This system offers capacity expansion by increasing the working frequency to millimeter wave region and by introducing optical encoding and multiwavelength multiplexing. The system's functionality is investigated by software modeling, and the results are presented. The generated signals are data modulated at 10 Gb/s and optically encoded for two wavelength channels and transmitted with a 20-km length of fiber. The received signals are optically decoded and detected. Also, encoding has improved the bit error rate (BER) versus the received optical power margin for the WDM setting by about 4 dB. In addition, the eye-diagram shows that the difference between received optical power levels at the BER of 10-12 to 10-3 is about 1.3% between two encoded channels. This method of capacity improvement is significantly important for the next generation of mobile communication, where millimeter wave signals will be widely used to deliver data to small cells.

  19. Optical arbitrary waveform generation based on multi-wavelength semiconductor fiber ring laser

    NASA Astrophysics Data System (ADS)

    Li, Peili; Ma, Xiaolu; Shi, Weihua; Xu, Enming

    2017-09-01

    A new scheme of generating optical arbitrary waveforms based on multi-wavelength semiconductor fiber ring laser (SFRL) is proposed. In this novel scheme, a wide and flat optical frequency comb (OFC) is provided directly by multi-wavelength SFRL, whose central frequency and comb spacing are tunable. OFC generation, de-multiplexing, amplitude and phase modulation, and multiplexing are implementing in an intensity and phase tunable comb filter, as induces the merits of high spectral coherence, satisfactory waveform control and low system loss. By using the mode couple theory and the transfer matrix method, the theoretical model of the scheme is established. The impacts of amplitude control, phase control, number of spectral line, and injection current of semiconductor optical amplifier (SOA) on the waveform similarity are studied using the theoretical model. The results show that, amplitude control and phase control error should be smaller than 1% and 0.64% respectively to achieve high similarity. The similarity of the waveform is improved with the increase of the number of spectral line. When the injection current of SOA is in a certain range, the optical arbitrary waveform reaches a high similarity.

  20. Harnessing rogue wave for supercontinuum generation in cascaded photonic crystal fiber.

    PubMed

    Zhao, Saili; Yang, Hua; Zhao, Chujun; Xiao, Yuzhe

    2017-04-03

    Based on induced modulation instability, we present a numerical study on harnessing rogue wave for supercontinuum generation in cascaded photonic crystal fibers. By selecting optimum modulation frequency, we achieve supercontinuum with a great improvement on spectrum stability when long-pulse is used as the pump. In this case, rogue wave can be obtained in the first segmented photonic crystal fiber with one zero dispersion wavelength in a controllable manner. Numerical simulations show that spectral range and flatness can be regulated in an extensive range by cascading a photonic crystal fiber with two zero dispersion wavelengths. Some novel phenomena are observed in the second segmented photonic crystal fiber. When the second zero dispersion wavelength is close to the first one, rogue wave is directly translated into dispersion waves, which is conducive to the generation of smoother supercontinuum. When the second zero dispersion wavelength is far away from the first one, rogue wave is translated into the form of fundamental soliton steadily propagating in the vicinity of the second zero dispersion wavelength. Meanwhile, the corresponding red-shifted dispersion wave is generated when the phase matching condition is met, which is beneficial to the generation of wider supercontinuum. The results presented in this work provide a better application of optical rogue wave to generate flat and broadband supercontinuum in cascaded photonic crystal fibers.

  1. Optical oxygen concentration monitor

    DOEpatents

    Kebabian, P.

    1997-07-22

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

  2. Optical oxygen concentration monitor

    DOEpatents

    Kebabian, Paul

    1997-01-01

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

  3. Imaging of gaseous oxygen through DFB laser illumination

    NASA Astrophysics Data System (ADS)

    Cocola, L.; Fedel, M.; Tondello, G.; Poletto, L.

    2016-05-01

    A Tunable Diode Laser Absorption Spectroscopy setup with Wavelength Modulation has been used together with a synchronous sampling imaging sensor to obtain two-dimensional transmission-mode images of oxygen content. Modulated laser light from a 760nm DFB source has been used to illuminate a scene from the back while image frames were acquired with a high dynamic range camera. Thanks to synchronous timing between the imaging device and laser light modulation, the traditional lock-in approach used in Wavelength Modulation Spectroscopy was replaced by image processing techniques, and many scanning periods were averaged together to allow resolution of small intensity variation over the already weak absorption signals from oxygen absorption band. After proper binning and filtering, the time-domain waveform obtained from each pixel in a set of frames representing the wavelength scan was used as the single detector signal in a traditional TDLAS-WMS setup, and so processed through a software defined digital lock-in demodulation and a second harmonic signal fitting routine. In this way the WMS artifacts of a gas absorption feature were obtained from each pixel together with intensity normalization parameter, allowing a reconstruction of oxygen distribution in a two-dimensional scene regardless from broadband transmitted intensity. As a first demonstration of the effectiveness of this setup, oxygen absorption images of similar containers filled with either oxygen or nitrogen were acquired and processed.

  4. A programmable optical few wavelength source for flexgrid optical networks

    NASA Astrophysics Data System (ADS)

    Imran, M.; Fresi, F.; Meloni, G.; Bhowmik, B. B.; Sambo, N.; Potì, L.

    2016-07-01

    Multi-wavelength (MW) sources will probably replace discrete lasers or laser arrays in next generation multi-carrier transponders (e.g., 1 Tb/s), currently called multi-flow transponders or sliceable bandwidth variable transponders (SBVTs). We present design and experimental demonstration of a few wavelength (FW) source suitable for SBVTs in a flexgrid scenario. We refer to FW instead of MW since for an SBVT just few subcarriers are required (e.g., eight). The proposed FW source does not require optical filtering for subcarrier modulation. The design exploits frequency shifting in IQ modulators by using single side band suppressed carrier modulation. A reasonable number of lines can be provided depending on the chosen architecture, tunable in the whole C-band. The scheme is also capable of providing symmetric (equally spaced) and asymmetric subcarrier spacing arbitrarily tunable from 6.25 GHz to 37.5 GHz. The control on the number of subcarriers (increase/decrease depending on line rate) provides flexibility to the SBVT, being the spacing dependent on transmission parameters such as line rate or modulation format. Transmission performance has been tested and compared with an array of standard lasers considering a 480 Gb/s transmission for different carrier spacing. Additionally, an integrable solution based on complementary frequency shifter is also presented to improve scalability and costs. The impact on transceiver techno-economics and network performance is also discussed.

  5. Macro-channel cooled high power fiber coupled diode lasers exceeding 1.2kW of output power

    NASA Astrophysics Data System (ADS)

    Koenning, Tobias; Alegria, Kim; Wang, Zuolan; Segref, Armin; Stapleton, Dean; Faßbender, Wilhelm; Flament, Marco; Rotter, Karsten; Noeske, Axel; Biesenbach, Jens

    2011-03-01

    We report on a new series of fiber coupled diode laser modules exceeding 1.2kW of single wavelength optical power from a 400um / 0.2NA fiber. The units are constructed from passively cooled laser bars as opposed to other comparably powered, commercially available modules that use micro-channel heat-sinks. Micro-channel heat sinks require cooling water to meet demanding specifications and are therefore prone to failures due to contamination and increase the overall cost to operate and maintain the laser. Dilas' new series of high power fiber coupled diode lasers are designed to eliminate micro channel coolers and their associated failure mechanisms. Low-smile soldering processes were developed to maximize the brightness available from each diode laser bar. The diode laser brightness is optimally conserved using Dilas' recently developed propriety laser bar stacking geometry and optics. A total of 24 bars are coupled into a single fiber core using a polarization multiplexing scheme. The modular design permits further power scaling through wavelength multiplexing. Other customer critical features such as industrial grade fibers, pilot beams, fiber interlocks and power monitoring are standard features on these modules. The optical design and the beam parameter calculations will be presented to explain the inherit design trade offs. Results for single and dual wavelengths modules will be presented.

  6. Resonance-modulated wavelength scaling of high-order-harmonic generation from H2+

    NASA Astrophysics Data System (ADS)

    Wang, Baoning; He, Lixin; Wang, Feng; Yuan, Hua; Zhu, Xiaosong; Lan, Pengfei; Lu, Peixiang

    2018-01-01

    Wavelength scaling of high-order harmonic generation (HHG) in a non-Born-Oppenheimer treatment of H2+ is investigated by numerical simulations of the time-dependent Schrödinger equation. The results show that the decrease in the wavelength-dependent HHG yield is reduced compared to that in the fixed-nucleus approximation. This slower wavelength scaling is related to the charge-resonance-enhanced ionization effect, which considerably increases the ionization rate at longer driving laser wavelengths due to the relatively larger nuclear separation. In addition, we find an oscillation structure in the wavelength scaling of HHG from H2+. Upon decreasing the laser intensity or increasing the nuclear mass, the oscillation structure will shift towards a longer wavelength of the laser pulse. These results permit the generation of an efficient harmonic spectrum in the midinfrared regime by manipulating the nuclear dynamics of molecules.

  7. Dual-wavelength single-frequency laser emission in asymmetric coupled microdisks

    PubMed Central

    Wang, Haotian; Liu, Sheng; Chen, Lin; Shen, Deyuan; Wu, Xiang

    2016-01-01

    The gain and loss in a microcavity laser play an important role for the modulation of laser spectrum. We show that dual-wavelength single mode lasing can be achieved in an asymmetric coupled system consisted of two size-mismatched microdisks. The amount of eigenmodes in this coupled-microdisk system is reduced relying on the Vernier effect. Then a single mode is selected to lase by controlling the gain branching in the supermodes. The supermodes are formed by the coupling between different transverse whispering-gallery modes (WGMs). When the gain/loss status between the two mirodisks is changed through selectively pumping process, the modulated gain branching for various supermodes leads to the switchable single-frequency laser emission. The results obtained in this work will provide the further understand for the spectral modulation mechanism in the coupled microcavity laser system. PMID:27905506

  8. Spoof four-wave mixing for all-optical wavelength conversion.

    PubMed

    Gong, Yongkang; Huang, Jungang; Li, Kang; Copner, Nigel; Martinez, J J; Wang, Leirang; Duan, Tao; Zhang, Wenfu; Loh, W H

    2012-10-08

    We present for the first time an all-optical wavelength conversion (AOWC) scheme supporting modulation format independency without requiring phase matching. The new scheme is named "spoof" four wave mixing (SFWM) and in contrast to the well-known FWM theory, where the induced dynamic refractive index grating modulates photons to create a wave at a new frequency, the SFWM is different in that the dynamic refractive index grating is generated in a nonlinear Bragg Grating (BG) to excite additional reflective peaks at either side of the original BG bandgap in reflection spectrum. This fundamental difference enable the SFWM to avoid the intrinsic shortcoming of stringent phase matching required in the conventional FWM, and allows AOWC with modulation format transparency and ultrabroad conversion range, which may have great potential applications for next generation of all-optical networks.

  9. Mach-Zehnder modulator modulated radio-over-fiber transmission system using dual wavelength linearization

    NASA Astrophysics Data System (ADS)

    Zhu, Ran; Hui, Ming; Shen, Dongya; Zhang, Xiupu

    2017-02-01

    In this paper, dual wavelength linearization (DWL) technique is studied to suppress odd and even order nonlinearities simultaneously in a Mach-Zehnder modulator (MZM) modulated radio-over-fiber (RoF) transmission system. A theoretical model is given to analyze the DWL employed for MZM. In a single-tone test, the suppressions of the second order harmonic distortion (HD2) and third order harmonic distortion (HD3) at the same time are experimentally verified at different bias voltages of the MZM. The measured spurious-free dynamic ranges (SFDRs) with respect to the HD2 and HD3 are improved simultaneously compared to using a single laser. The output P1 dB is also improved by the DWL technique. Moreover, a WiFi signal is transmitted in the RoF system to test the linearization for broadband signal. The result shows that more than 1 dB improvement of the error vector magnitude (EVM) is obtained by the DWL technique.

  10. 80-Channel Multiplexer-Demultiplexer Module for DWDM Communications using Hybrid AWG -- Interleaver Technology

    NASA Astrophysics Data System (ADS)

    Rablau, Corneliu; Bredthauer, Lance

    2007-10-01

    Aside from the more traditional data, voice and e-mail communications, new bandwidth intensive applications in the larger consumer markets, such as music, digital pictures and movies, have led to an explosive increase in the demand for transmission capacity for optical communications networks. This has resulted in a widespread deployment of Dense Wavelength Division Multiplexing (DWDM) as a means of increasing the communications capacity by multiplexing and transmitting signals of different wavelengths (establishing multiple communication channels) through a single strand of fiber. We report on the design, assembly and characterization of a 50-GHz, 80-channel Mux-Demux module for DWDM systems. The module has been assembled from two commercially available 100 GHz, 40-channel Array Waveguide Grating (AWG) modules and a 50-GHz to 100-GHz interleaver. Relevant performance parameters such as insertion loss, channel uniformity, next-channel isolation (crosstalk) and integrated cross-talk are presented and discussed in contrast with the performance of other competing technologies such as Thin-Film-Filter-based Mux-Demux devices.

  11. Testing FSO WDM communication system in simulation software optiwave OptiSystem in different atmospheric environments

    NASA Astrophysics Data System (ADS)

    Vanderka, Ales; Hajek, Lukas; Bednarek, Lukas; Latal, Jan; Vitasek, Jan; Hejduk, Stanislav; Vasinek, Vladimir

    2016-09-01

    In this article the author's team deals with using Wavelength Division Multiplexing (WDM) for Free Space Optical (FSO) Communications. In FSO communication occurs due to the influence of atmospheric effect (attenuation, and fluctuation of the received power signal, influence turbulence) and the WDM channel suffers from interchannel crosstalk. There is considered only the one direction. The behavior FSO link was tested for one or eight channels. Here we will be dealing with modulation schemes OOK (On-Off keying), QAM (Quadrature Amplitude Modulation) and Subcarrier Intensity Modulation (SIM) based on a BPSK (Binary Phase Shift Keying). Simulation software OptiSystem 14 was used for tasting. For simulation some parameters were set according to real FSO link such as the datarate 1.25 Gbps, link range 1.4 km. Simulated FSO link used wavelength of 1550 nm with 0.8 nm spacing. There is obtained the influence of crosstalk and modulation format for the BER, depending on the amount of turbulence in the propagation medium.

  12. Biological effects and medical applications of infrared radiation

    PubMed Central

    Tsai, Shang-Ru; Hamblin, Michael R

    2017-01-01

    Infrared (IR) radiation is electromagnetic radiation with wavelengths between 760 nm and 100,000 nm. Low-level light therapy (LLLT) or photobiomodulation (PBM) therapy generally employs light at red and near-infrared wavelengths (600–100 nm) to modulate biological activity. Many factors, conditions, and parameters influence the therapeutic effects of IR, including fluence, irradiance, treatment timing and repetition, pulsing, and wavelength. Increasing evidence suggests that IR can carry out photostimulation and photobiomodulation effects particularly benefiting neural stimulation, wound healing, and cancer treatment. Nerve cells respond particularly well to IR, which has been proposed for a range of neurostimulation and neuromodulation applications, and recent progress in neural stimulation and regeneration are discussed in this review. The applications of IR therapy have moved on rapidly in recent years. For example, IR therapy has been developed that does not actually require an external power source, such as IR-emitting materials, and garments that can be powered by body heat alone. Another area of interest is the possible involvement of solar IR radiation in photoaging or photorejuvenation as opposites sides of the coin, and whether sunscreens should protect against solar IR? A better understanding of new developments and biological implications of IR could help us to improve therapeutic effectiveness or develop new methods of PBM using IR wavelengths. PMID:28441605

  13. Biological effects and medical applications of infrared radiation.

    PubMed

    Tsai, Shang-Ru; Hamblin, Michael R

    2017-05-01

    Infrared (IR) radiation is electromagnetic radiation with wavelengths between 760nm and 100,000nm. Low-level light therapy (LLLT) or photobiomodulation (PBM) therapy generally employs light at red and near-infrared wavelengths (600-100nm) to modulate biological activity. Many factors, conditions, and parameters influence the therapeutic effects of IR, including fluence, irradiance, treatment timing and repetition, pulsing, and wavelength. Increasing evidence suggests that IR can carry out photostimulation and photobiomodulation effects particularly benefiting neural stimulation, wound healing, and cancer treatment. Nerve cells respond particularly well to IR, which has been proposed for a range of neurostimulation and neuromodulation applications, and recent progress in neural stimulation and regeneration are discussed in this review. The applications of IR therapy have moved on rapidly in recent years. For example, IR therapy has been developed that does not actually require an external power source, such as IR-emitting materials, and garments that can be powered by body heat alone. Another area of interest is the possible involvement of solar IR radiation in photoaging or photorejuvenation as opposites sides of the coin, and whether sunscreens should protect against solar IR? A better understanding of new developments and biological implications of IR could help us to improve therapeutic effectiveness or develop new methods of PBM using IR wavelengths. Copyright © 2016. Published by Elsevier B.V.

  14. A modulation technique for the measurement of the DC longitudinal Faraday effect

    NASA Astrophysics Data System (ADS)

    Hunte, Carlos

    2018-03-01

    A modulation of light technique, using a lock-in amplifier, is described and tested to investigate the longitudinal Faraday effect in isotropic media. The Faraday rotation is measured directly from the lock-in amplifier. The Verdet constant and dispersion of lead-silica SF-59 Schott glass, at room temperature of 25 °C, were determined for varying wavelengths and expressions for their wavelength dependence were determined. The Verdet constant of water is also investigated. The results compare extremely well with other studies. The technique is suited to measure very small Verdet constants and can be easily conducted in an upper-level undergraduate laboratory.

  15. kW-class direct diode laser for sheet metal cutting based on commercial pump modules

    NASA Astrophysics Data System (ADS)

    Witte, U.; Schneider, F.; Holly, C.; Di Meo, A.; Rubel, D.; Boergmann, F.; Traub, M.; Hoffmann, D.; Drovs, S.; Brand, T.; Unger, A.

    2017-02-01

    We present a direct diode laser with an optical output power of more than 800 W ex 100 μm with an NA of 0.17. The system is based on 6 commercial pump modules that are wavelength stabilized by use of VBGs. Dielectric filters are used for coarse and dense wavelength multiplexing. Metal sheet cutting tests were performed in order to prove system performance and reliability. Based on a detailed analysis of loss mechanisms, we show that the design can be easily scaled to output powers in the range of 2 kW and to an optical efficiency of 80%.

  16. High power, high efficiency, continuous-wave supercontinuum generation using standard telecom fibers

    NASA Astrophysics Data System (ADS)

    Arun, S.; Choudhury, Vishal; Balaswamy, V.; Prakash, Roopa; Supradeepa, V. R.

    2018-04-01

    We demonstrate a simple module for octave spanning continuous-wave supercontinuum generation using standard telecom fiber. This module can accept any high power Ytterbium-doped fiber laser as input. The input light is transferred into the anomalous dispersion region of the telecom fiber through a cascade of Raman shifts. A recently proposed Raman laser architecture with distributed feedback efficiently performs these Raman conversions. A spectrum spanning over 1000nm(>1 octave) from 880-1900nm is demonstrated. The average power from the supercontinuum is ~34W with a high conversion efficiency of 44%. Input wavelength agility is demonstrated with similar supercontinua over a wide input wavelength range.

  17. Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Weiwei; Kaminski, Clemens F., E-mail: cfk23@cam.ac.uk

    2014-04-14

    We propose a multiplexed absorption tomography technique, which uses calibration-free wavelength modulation spectroscopy with tunable semiconductor lasers for the simultaneous imaging of temperature and species concentration in harsh combustion environments. Compared with the commonly used direct absorption spectroscopy (DAS) counterpart, the present variant enjoys better signal-to-noise ratios and requires no baseline fitting, a particularly desirable feature for high-pressure applications, where adjacent absorption features overlap and interfere severely. We present proof-of-concept numerical demonstrations of the technique using realistic phantom models of harsh combustion environments and prove that the proposed techniques outperform currently available tomography techniques based on DAS.

  18. Wavelength modulated surface enhanced (resonance) Raman scattering for background-free detection.

    PubMed

    Praveen, Bavishna B; Steuwe, Christian; Mazilu, Michael; Dholakia, Kishan; Mahajan, Sumeet

    2013-05-21

    Spectra in surface-enhanced Raman scattering (SERS) are always accompanied by a continuum emission called the 'background' which complicates analysis and is especially problematic for quantification and automation. Here, we implement a wavelength modulation technique to eliminate the background in SERS and its resonant version, surface-enhanced resonance Raman scattering (SERRS). This is demonstrated on various nanostructured substrates used for SER(R)S. An enhancement in the signal to noise ratio for the Raman bands of the probe molecules is also observed. This technique helps to improve the analytical ability of SERS by alleviating the problem due to the accompanying background and thus making observations substrate independent.

  19. Reliability study of high-brightness multiple single emitter diode lasers

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Yang, Thomas; Zhang, Cuipeng; Lang, Chao; Jiang, Xiaochen; Liu, Rui; Gao, Yanyan; Guo, Weirong; Jiang, Yuhua; Liu, Yang; Zhang, Luyan; Chen, Louisa

    2015-03-01

    In this study the chip bonding processes for various chips from various chip suppliers around the world have been optimized to achieve reliable chip on sub-mount for high performance. These chip on sub-mounts, for examples, includes three types of bonding, 8xx nm-1.2W/10.0W Indium bonded lasers, 9xx nm 10W-20W AuSn bonded lasers and 1470 nm 6W Indium bonded lasers will be reported below. The MTTF@25 of 9xx nm chip on sub-mount (COS) is calculated to be more than 203,896 hours. These chips from various chip suppliers are packaged into many multiple single emitter laser modules, using similar packaging techniques from 2 emitters per module to up to 7 emitters per module. A reliability study including aging test is performed on those multiple single emitter laser modules. With research team's 12 years' experienced packaging design and techniques, precise optical and fiber alignment processes and superior chip bonding capability, we have achieved a total MTTF exceeding 177,710 hours of life time with 60% confidence level for those multiple single emitter laser modules. Furthermore, a separated reliability study on wavelength stabilized laser modules have shown this wavelength stabilized module packaging process is reliable as well.

  20. The study of laser beam riding guided system based on 980nm diode laser

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Xu, Haifeng; Sui, Xin; Yang, Kun

    2015-10-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  1. Laser beam riding guided system principle and design research

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Jin, Yi; Xu, Zhou; Xing, Hao

    2016-01-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  2. Pulse Shepherding in Nonlinear Fiber Optics

    NASA Technical Reports Server (NTRS)

    Yeh, C.; Bergman, L.

    1996-01-01

    In a wavelength division multiplexed fiber system, where pulses on different wavelength beams may co-propagate in a single mode fiber, the cross-phase-modulation (CPM) effects caused by the nonlinearity of the optical fiber are unavoidable. In other words, pulses on different wavelength beams can interact with and affect each other through the intensity dependence of the refractive index of the fiber. Although CPM will not cause energy to be exchanged among the beams, the pulse shapes and locations on these beams can be altered significantly. This phenomenon makes possible the manipulation and control of pulses co-propagating on different wavelength beams through the introduction of a shepherd pulse at a separate wavelength. How this can be accomplished is demonstrated in this paper.

  3. Wavelength-tunable Q-switched Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Ye, Jun; Xu, Jiangming; Zhang, Hanwei; Wu, Jian; Zhou, Pu

    2018-03-01

    In this presentation, a wavelength-tunable Q-switched Raman fiber laser is presented for the first time, which has a backward pumped configuration, including a section of 3 km passive fiber, a homemade tunable pump source and a highly reflective fiber loop mirror. The output wavelength of the Raman fiber laser can be tuned continuously with ~44 nm range via adjusting the pump wavelength. By inserting an acoustic-optical modulator, the Q-value of the cavity can be switched between high and low level. As a result, pulsed output with a repetition rate of 500 kHz and duration time of 60-80 ns is achieved.

  4. Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture

    NASA Astrophysics Data System (ADS)

    Missaggia, Leo; Wang, Christine; Connors, Michael; Saar, Brian; Sanchez-Rubio, Antonio; Creedon, Kevin; Turner, George; Herzog, William

    2016-03-01

    There are a number of military and commercial applications for high-power laser systems in the mid-to-long-infrared wavelength range. By virtue of their demonstrated watt-level performance and wavelength diversity, quantum cascade laser (QCL) and amplifier devices are an excellent choice of emitter for those applications. To realize the power levels of interest, beam combining of arrays of these emitters is required and as a result, array technology must be developed. With this in mind, packaging and thermal management strategies were developed to facilitate the demonstration of a monolithic QCL array operating under CW conditions. Thermal models were constructed and simulations performed to determine the effect of parameters such as array-element ridge width and pitch on gain region temperature rise. The results of the simulations were considered in determining an appropriate QCL array configuration. State-of-the-art micro-impingement cooling along with an electrical distribution scheme comprised of AlN multi-layer technology were integrated into the design. The design of the module allows for individual electrical addressability of the array elements, a method of phase control demonstrated previously for coherent beam combining of diode arrays, along with access to both front and rear facets. Hence, both laser and single-pass amplifier arrays can be accommodated. A module was realized containing a 5 mm cavity length monolithic QCL array comprised of 7 elements on 450 m pitch. An output power of 3.16 W was demonstrated under CW conditions at an emission wavelength of 9μm.

  5. Simulation of the Chang'E-5 mission contribution in lunar long wavelength gravity field improvement

    NASA Astrophysics Data System (ADS)

    Yan, Jianguo; Yang, Xuan; Ping, Jinsong; Ye, Mao; Liu, Shanhong; Jin, Weitong; Li, Fei; Barriot, Jean-Pierre

    2018-06-01

    The precision of lunar gravity field estimation has improved by means of three to five orders of magnitude since the successful GRAIL lunar mission. There are still discrepancies however, in the low degree coefficients and long wavelength components of the solutions developed by two space research centers (JPL and GSFC). These discrepancies hint at the possibilities for improving the accuracy in the long wavelength part of the lunar gravity field. In the near future, China will launch the Chang'E-5 lunar mission. In this sample-return mission, there will be a chance to do KBRR measurements between an ascending module and an orbiting module. These two modules will fly around lunar at an inclination of ˜49 degrees, with an orbital height of 100 km and an inter-satellite distance of 200 km. In our research, we simulated the contribution of the KBRR tracking mode for different GRAIL orbital geometries. This analysis indicated possible deficiencies in the low degree coefficient solutions for the polar satellite-to-satellite tracking mode at various orbital heights. We also investigated the potential contributions of the KBRR to the Chang'E-5 mission goal of lunar gravity field recovery, especially in the long wavelength component. Potential improvements were assessed using various power spectrums of the lunar gravity field models. In addition, we also investigated possible improvements in solving lunar tidal Love number K2. These results may assist the implementation of the Chang'E-5 mission.

  6. Label-free haemogram using wavelength modulated Raman spectroscopy for identifying immune-cell subset

    NASA Astrophysics Data System (ADS)

    Ashok, Praveen C.; Praveen, Bavishna B.; Campbell, Elaine C.; Dholakia, Kishan; Powis, Simon J.

    2014-03-01

    Leucocytes in the blood of mammals form a powerful protective system against a wide range of dangerous pathogens. There are several types of immune cells that has specific role in the whole immune system. The number and type of immune cells alter in the disease state and identifying the type of immune cell provides information about a person's state of health. There are several immune cell subsets that are essentially morphologically identical and require external labeling to enable discrimination. Here we demonstrate the feasibility of using Wavelength Modulated Raman Spectroscopy (WMRS) with suitable machine learning algorithms as a label-free method to distinguish between different closely lying immune cell subset. Principal Component Analysis (PCA) was performed on WMRS data from single cells, obtained using confocal Raman microscopy for feature reduction, followed by Support Vector Machine (SVM) for binary discrimination of various cell subset, which yielded an accuracy >85%. The method was successful in discriminating between untouched and unfixed purified populations of CD4+CD3+ and CD8+CD3+ T lymphocyte subsets, and CD56+CD3- natural killer cells with a high degree of specificity. It was also proved sensitive enough to identify unique Raman signatures that allow clear discrimination between dendritic cell subsets, comprising CD303+CD45+ plasmacytoid and CD1c+CD141+ myeloid dendritic cells. The results of this study clearly show that WMRS is highly sensitive and can distinguish between cell types that are morphologically identical.

  7. Diode lasers for direct application by utilizing a trepanning optic for remote oscillation welding of aluminum and copper

    NASA Astrophysics Data System (ADS)

    Fritsche, Haro; Müller, Norbert; Ferrario, Fabio; Fetissow, Sebastian; Grohe, Andreas; Hagen, Thomas; Steger, Ronny; Katzemaikat, Tristan; Ashkenasi, David; Gries, Wolfgang

    2017-02-01

    We report the first direct diode laser module integrated with a trepanning optic for remote oscillation welding. The trepanning optic is assembled with a collimated DirectProcess 900 laser engine. This modular laser is based on single emitters and beam combiners to achieve fiber coupled modules with a beam parameter product or BPP < 8 mm mrad at all power levels up to 1 kW, as well as free space collimated outputs with even lower BPP. The initial design consists in vertically stacking several diodes in the fast axis which leads to a rectangular output of about 100 W with BPP of <3.5 mm*mrad in the fast axis and <5 mm*mrad in the slow axis. Next, further power scaling is accomplished by polarization combining and wavelength multiplexing yielding high optical efficiencies of more than 80% and resulting in a building block module with over 500 W launched into a 100 μm fiber with 0.15 NA. The beam profile of the free space module remains rectangular, with a nearly flat top and conserves the beam parameter product of the original vertical stack without the power loss of fiber coupling. The 500 W building blocks feature a highly flexible emitting wavelength bandwidth. New wavelengths can be configured by simply exchanging parts and without modifying the production process. This design principle provides the option to adapt the wavelength configuration to match a broad set of applications, from the UV to the visible and to the far IR depending on the commercial availability of laser diodes. This opens numerous additional applications like laser pumping, scientific and medical applications, as well as materials processing applications such as cutting and welding of copper aluminum or steel. Furthermore, the module's short lead lengths enable very short pulses. Integrated with electronics, the module's pulse width can be adjusted from micro-seconds to cw mode operation by simple software commands. An optical setup can be directly attached instead of a fiber to the laser module thanks to its modular design. This paper's experimental results are based on a trepanning optic attached to the laser module. Alltogether the setup approximately fits in a shoe box and weighs less than 20 kg which allows for direct mounting onto a 3D-gantry system. The oscillating weld performance of the 500 W direct diode laser utilizing a novel trepanning optic is discussed for its application to aluminum/aluminum and aluminum/copper joints.

  8. Optimized lighting method of applying shaped-function signal for increasing the dynamic range of LED-multispectral imaging system

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Hu, Yajia; Li, Gang; Lin, Ling

    2018-02-01

    This paper proposes an optimized lighting method of applying a shaped-function signal for increasing the dynamic range of light emitting diode (LED)-multispectral imaging system. The optimized lighting method is based on the linear response zone of the analog-to-digital conversion (ADC) and the spectral response of the camera. The auxiliary light at a higher sensitivity-camera area is introduced to increase the A/D quantization levels that are within the linear response zone of ADC and improve the signal-to-noise ratio. The active light is modulated by the shaped-function signal to improve the gray-scale resolution of the image. And the auxiliary light is modulated by the constant intensity signal, which is easy to acquire the images under the active light irradiation. The least square method is employed to precisely extract the desired images. One wavelength in multispectral imaging based on LED illumination was taken as an example. It has been proven by experiments that the gray-scale resolution and the accuracy of information of the images acquired by the proposed method were both significantly improved. The optimum method opens up avenues for the hyperspectral imaging of biological tissue.

  9. Optimized lighting method of applying shaped-function signal for increasing the dynamic range of LED-multispectral imaging system.

    PubMed

    Yang, Xue; Hu, Yajia; Li, Gang; Lin, Ling

    2018-02-01

    This paper proposes an optimized lighting method of applying a shaped-function signal for increasing the dynamic range of light emitting diode (LED)-multispectral imaging system. The optimized lighting method is based on the linear response zone of the analog-to-digital conversion (ADC) and the spectral response of the camera. The auxiliary light at a higher sensitivity-camera area is introduced to increase the A/D quantization levels that are within the linear response zone of ADC and improve the signal-to-noise ratio. The active light is modulated by the shaped-function signal to improve the gray-scale resolution of the image. And the auxiliary light is modulated by the constant intensity signal, which is easy to acquire the images under the active light irradiation. The least square method is employed to precisely extract the desired images. One wavelength in multispectral imaging based on LED illumination was taken as an example. It has been proven by experiments that the gray-scale resolution and the accuracy of information of the images acquired by the proposed method were both significantly improved. The optimum method opens up avenues for the hyperspectral imaging of biological tissue.

  10. Investigation on the applications of fiber grating lasers in industrial sensing and pollution monitoring

    NASA Astrophysics Data System (ADS)

    Xu, Yuanzhong

    The main objective of the project was to develop ``eye-safe'' fiber-grating lasers for pollution measurement and monitoring. Fiber grating lasers have a number of advantages such as narrow linewidth and precise wavelength control over the semiconductor counterparts. Three types of Erbium doped fiber grating lasers emitting in 1.5 μm band were developed and characterized in this work. We first used an entirely original approach to develop tunable dual-wavelength switchable fiber grating laser for differential absorption spectroscopy. The lam can switch between two wavelengths with each wavelength being independently tunable. It's characterized by >6-mW output power, <2% intensity fluctuation, 100s Hz switching speed and 1:100,000 wavelength extinction ratio. The outstanding advantage of this approach is the simplicity in laser configuration as well as in detection system for dual wavelength laser, because it uses only an overlapped gain medium and one detector for both wavelengths. Main drawbacks of the prototype laser are slow switching speed (100s Hz) and multimode operation, which could be overcome by cavity dampening and modification in laser configuration. Short cavity erbium-doped fiber grating lasers using high Erbium concentration were also studied. A 6-cm long fiber-grating laser pumped by a 980-nm laser diode was constructed. The linewidth of the laser is very narrow (~100s kHz) but its output slope efficiency is relatively low (~1%). Furthermore, the ion clustering effect arising from high Er concentration tends to cause self-pulsation and thus instability to the laser. By replacing the Erbium doped fiber with Er/Yb codoped one, the fiber grating laser was made more stable and efficient. The ion clustering effect disappears in the laser output due to the low Erbium concentration in Er/Yb codoped fiber, while the Er/Yb codoped fiber's two orders higher pump absorption at 980 nm results in as large as 10 ~ 30% output slope efficiency in about 2 cm long laser. On the other hand, strong pump absorption in Er/Yb fiber was found to cause significant thermal effects in Er/Yb fiber grating lasers, which can be eliminated by ensuring proper thermal dissipation. Because of fiber laser's long lifetime at the upper laser level, its wavelength cannot be directly modulated at high speed. The widely used wavelength modulation spectroscopy (WMS) method is thus not suitable when using fiber laser sources in gas detection. The wavelength sweep scheme was thus employed as an alternative. Laser wavelength/frequency requirement and noise cancellation in this scheme are discussed. For a demonstration of fiber grating laser's application to pollutant monitoring and industrial sensing, laser spectroscopy of C2H 2 gas was undertaken with the Er/Yb codoped fiber-grating laser. A 10 -4 detection sensitivity was achieved. This is the first time, to our knowledge, that a single frequency fiber-grating laser was used in rapid laser spectroscopy. The investigation has shown that the fiber grating lasers are high performance as well as low cost, rugged and portable laser sources, very suitable for industrial sensing and pollution monitoring. A number of important pollutants, such as CO, CO2, H2S and C2H2 have absorption peaks around 1.55-μm wavelength and thus can be sensed with these lasers. Although the fiber lasers investigated here operate in the 1.5-μm window, the results are also very useful for fiber lasers that use the same operation principle in other wavelength regions.

  11. Deflecting light into resonant cavities for spectroscopy

    DOEpatents

    Zare, R.N.; Martin, J.; Paldus, B.A.

    1998-09-29

    Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available. 5 figs.

  12. Deflecting light into resonant cavities for spectroscopy

    DOEpatents

    Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.

    1998-01-01

    Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available.

  13. Nanosecond laser scribing of CIGS thin film solar cell based on ITO bottom contact

    NASA Astrophysics Data System (ADS)

    Kuk, Seungkuk; Wang, Zhen; Fu, Shi; Zhang, Tao; Yu, Yi Yin; Choi, JaeMyung; Jeong, Jeung-hyun; Hwang, David J.

    2018-03-01

    Cu(In,Ga)Se2 (CIGS) thin films, a promising photovoltaic architecture, have mainly relied on Molybdenum for the bottom contact. However, the opaque nature of Molybdenum (Mo) poses limitations in module level fabrication by laser scribing as a preferred method for interconnect. We examined the P1, P2, and P3 laser scribing processes on CIGS photovoltaic architecture on the indium tin oxide (ITO) bottom contact with a cost-effective nanosecond pulsed laser of 532 nm wavelength. Laser illuminated from the substrate side, enabled by the transparent bottom contact, facilitated selective laser energy deposition onto relevant interfaces towards high-quality scribing. Parametric tuning procedures are described in conjunction with experimental and numerical investigation of relevant mechanisms, and preliminary mini-module fabrication results are also presented.

  14. Modulation bandwidth enhancement for coupled twin-square microcavity lasers.

    PubMed

    Xiao, Zhi-Xiong; Huang, Yong-Zhen; Yang, Yue-De; Tang, Min; Xiao, Jin-Long

    2017-08-15

    Modulation bandwidth enhancements are investigated for coupled twin-square microcavity lasers due to photon-photon resonance effect. For a coupled twin-square microcavity laser with the square side length of 20 μm, we demonstrate the increase of 3-dB modulation bandwidth from 9.6 GHz to 19.5 GHz, by adjusting the resonance mode wavelength interval between two square microcavities. The enhanced modulation bandwidth is explained by rate equation analysis, and numerical simulations are conducted for large signal modulation with improved eye-diagrams at 40 Gbit/s.

  15. Optical back propagation for fiber optic networks with hybrid EDFA Raman amplification.

    PubMed

    Liang, Xiaojun; Kumar, Shiva

    2017-03-06

    We have investigated an optical back propagation (OBP) method to compensate for propagation impairments in fiber optic networks with lumped Erbium doped fiber amplifier (EDFA) and/or distributed Raman amplification. An OBP module consists of an optical phase conjugator (OPC), optical amplifiers and dispersion varying fibers (DVFs). We derived a semi-analytical expression that calculates the dispersion profile of DVF. The OBP module acts as a nonlinear filter that fully compensates for the nonlinear distortions due to signal propagation in a transmission fiber, and is applicable for fiber optic networks with reconfigurable optical add-drop multiplexers (ROADMs). We studied a wavelength division multiplexing (WDM) network with 3000 km transmission distance and 64-quadrature amplitude modulation (QAM) modulation. OBP brings 5.8 dB, 5.9 dB and 6.1 dB Q-factor gains over linear compensation for systems with full EDFA amplification, hybrid EDFA/Raman amplification, and full Raman amplification, respectively. In contrast, digital back propagation (DBP) or OPC-only systems provide only 0.8 ~ 1.5 dB Q-factor gains.

  16. PAWS locker: a passively aligned internal wavelength locker for telecommunications lasers

    NASA Astrophysics Data System (ADS)

    Boye, Robert R.; Te Kolste, Robert; Kathman, Alan D.; Cruz-Cabrera, Alvaro; Knight, Douglas; Hammond, J. Barney

    2003-11-01

    This paper presents the passively aligned Wavesetter (PAWS) locker: a micro-optic subassembly for use as an internal wavelength locker. As the wavelength spacing in dense wavelength division multiplexing (WDM) decreases, the performance demands placed upon source lasers increase. The required wavelength stability has led to the use of external wavelength lockers utilizing air-spaced, thermally stabilized etalons. However, package constraints are forcing the integration of the wavelength locker directly into the laser module. These etalons require active tuning be done during installation of the wavelength locker as well as active temperature control (air-spaced etalons are typically too large for laser packages). A unique locking technique will be introduced that does not require an active alignment or active temperature compensation. Using the principles of phase shifting interferometry, a locking signal is derived without the inherent inflection points present in the signal of an etalon. The theoretical background of PAWS locker will be discussed as well as practical considerations for its implementation. Empirical results will be presented including wavelength accuracy, alignment sensitivity and thermal performance.

  17. Focus modulation of cylindrical vector beams by using 1D photonic crystal lens with negative refraction effect.

    PubMed

    Xu, Ji; Zhong, Yi; Wang, Shengming; Lu, Yunqing; Wan, Hongdan; Jiang, Jian; Wang, Jin

    2015-10-19

    Sub-wavelength focusing of cylindrical vector beams (CVBs) has attracted great attention due to the specific physical effects and the applications in many areas. More powerful, flexible and effective ways to modulate the focus transversally and also longitudinally are always being pursued. In this paper, cylindrically symmetric lens composed of negative-index one-dimensional photonic crystal is proposed to make a breakthrough. By revealing the relationship between focal length and the exit surface shape of the lens, a quite simple and effective principle of designing the lens structure is presented to realize specific focus modulation. Plano-concave lenses are parameterized to modulate the focal length and the number of focuses. An axicon constructed by one-dimensional photonic crystal is proposed for the first time to obtain a large depth of focus and an optical needle focal field with almost a theoretical minimum FWHM of 0.362λ is achieved under radially polarized incident light. Because of the almost identical negative refractive index for TE and TM polarization states, all the modulation methods can be applied for any arbitrary polarized CVBs. This work offers a promising methodology for designing negative-index lenses in related application areas.

  18. Novel WRM-based architecture of hybrid PON featuring online access and full-fiber-fault protection for smart grid

    NASA Astrophysics Data System (ADS)

    Li, Xingfeng; Gan, Chaoqin; Liu, Zongkang; Yan, Yuqi; Qiao, HuBao

    2018-01-01

    In this paper, a novel architecture of hybrid PON for smart grid is proposed by introducing a wavelength-routing module (WRM). By using conventional optical passive components, a WRM with M ports is designed. The symmetry and passivity of the WRM makes it be easily integrated and very cheap in practice. Via the WRM, two types of network based on different ONU-interconnected manner can realize online access. Depending on optical switches and interconnecting fibers, full-fiber-fault protection and dynamic bandwidth allocation are realized in these networks. With the help of amplitude modulation, DPSK modulation and RSOA technology, wavelength triple-reuse is achieved. By means of injecting signals into left and right branches in access ring simultaneously, the transmission delay is decreased. Finally, the performance analysis and simulation of the network verifies the feasibility of the proposed architecture.

  19. Dual quantum cascade laser-based sensor for simultaneous NO and NO2 detection using a wavelength modulation-division multiplexing technique

    NASA Astrophysics Data System (ADS)

    Yu, Yajun; Sanchez, Nancy P.; Yi, Fan; Zheng, Chuantao; Ye, Weilin; Wu, Hongpeng; Griffin, Robert J.; Tittel, Frank K.

    2017-05-01

    A sensor system capable of simultaneous measurements of NO and NO2 was developed using a wavelength modulation-division multiplexing (WMDM) scheme and multi-pass absorption spectroscopy. A continuous wave (CW), distributed-feedback (DFB) quantum cascade laser (QCL) and a CW external-cavity (EC) QCL were employed for targeting a NO absorption doublet at 1900.075 cm-1 and a NO2 absorption line at 1630.33 cm-1, respectively. Simultaneous detection was realized by modulating both QCLs independently at different frequencies and demodulating the detector signals with LabView-programmed lock-in amplifiers. The sensor operated at a reduced pressure of 40 Torr and a data sampling rate of 1 Hz. An Allan-Werle deviation analysis indicated that the minimum detection limits of NO and NO2 can reach sub-ppbv concentration levels with averaging times of 100 and 200 s, respectively.

  20. A spectrally tunable all-graphene-based flexible field-effect light-emitting device

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomu; Tian, He; Mohammad, Mohammad Ali; Li, Cheng; Wu, Can; Yang, Yi; Ren, Tian-Ling

    2015-07-01

    The continuous tuning of the emission spectrum of a single light-emitting diode (LED) by an external electrical bias is of great technological significance as a crucial property in high-quality displays, yet this capability has not been demonstrated in existing LEDs. Graphene, a tunable optical platform, is a promising medium to achieve this goal. Here we demonstrate a bright spectrally tunable electroluminescence from blue (~450 nm) to red (~750 nm) at the graphene oxide/reduced-graphene oxide interface. We explain the electroluminescence results from the recombination of Poole-Frenkel emission ionized electrons at the localized energy levels arising from semi-reduced graphene oxide, and holes from the top of the π band. Tuning of the emission wavelength is achieved by gate modulation of the participating localized energy levels. Our demonstration of current-driven tunable LEDs not only represents a method for emission wavelength tuning but also may find applications in high-quality displays.

  1. Packaging of wavelength stabilized 976nm 100W 105µm 0.15 NA fiber coupled diode lasers

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaochen; Liu, Rui; Gao, Yanyan; Zhang, Tujia; He, Xiaoguang; Zhu, Jing; Zhang, Qiang; Yang, Thomas; Zhang, Cuipeng

    2016-03-01

    Fiber coupled diode lasers are widely used in many fields now especially as pumps in fiber laser systems. In many fiber laser applications, high brightness pumps are essential to achieve high brightness fiber lasers. Furthermore, 976nm wavelength absorption band is narrow with Yb3+ doped fiber lasers which is more challenging for controlling wavelength stabilized in diode laser modules. This study designed and implemented commercial available high brightness and narrow wavelength width lasers to be able to use in previous mentioned applications. Base on multiple single emitters using spatial and polarization beam combining as well as fiber coupling techniques, we report a wavelength stabilized, 105μm NA 0.15 fiber coupled diode laser package with 100W of optical output power at 976 nm, which are 14 emitters inside each multiple single emitter module. The emitting aperture of the combined lasers output are designed and optimized for coupling light into a 105μm core NA 0.15 fiber. Volume Bragg grating technology has been used to improve spectral characteristics of high-power diode lasers. Mechanical modular design and thermal simulation are carried out to optimize the package. The spectral width is roughly 0.5 nm (FWHM) and the wavelength shift per °C < 0.02nm. The output spectrum is narrowed and wavelength is stabilized using Volume Bragg gratings (VBGs). The high brightness package has an electrical to optical efficiency better than 45% and power enclosure more than 90% within NA 0.12. Qualification tests have been included on this kind of package. Mechanical shock, vibration and accelerated aging tests show that the package is reliability and the MTTF is calculated to be more than 100k hours at 25°C.

  2. Design of broadband dispersion flattened fiber for DWDM system: Performance analysis using various modulation formats

    NASA Astrophysics Data System (ADS)

    Goel, Aditya; Pandey, Gaurav

    2018-05-01

    In this paper, unique design of an optimal broadband optical dispersion flattened fiber (DFF) is proposed, which is capable of supporting the data rate of the order of Tb/s. The analysis of the single mode fiber for the design of the proposed DFF has been carried out by employing the quadratic Finite Element Method (FEM) with generalized refractive index (R. I.) profile. The minimization of the dispersion with respect to various profile parameters within the specified wavelength band is the essential optimization criteria. Computations show that a DFF can be designed where the overall dispersion can be restricted within ± 1 ps/km-nm over the entire spectral span ranging from 1290 to 1540 nm (250 nm) exhibiting a very small maximum value of dispersion slope (± 0.02 ps / (nm2-km)) in particular. The detailed performance analysis of the proposed DFF with different modulation techniques has been carried out in order to critically evaluate the performance of the DFF with respect to various significant parameters. The results suggest an excellent design of broadband optical waveguide capable of supporting high-speed data rate (40 Tb/s) through the single DFF, ideally suitable for the long haul dense wavelength division multiplexing (DWDM) optical transmission systems.

  3. Wavelength modulation spectroscopy near 5 μm for carbon monoxide sensing in a high-pressure kerosene-fueled liquid rocket combustor

    NASA Astrophysics Data System (ADS)

    Lee, Daniel D.; Bendana, Fabio A.; Schumaker, S. Alexander; Spearrin, R. Mitchell

    2018-05-01

    A laser absorption sensor was developed for carbon monoxide (CO) sensing in high-pressure, fuel-rich combustion gases associated with the internal conditions of hydrocarbon-fueled liquid bipropellant rockets. An absorption feature near 4.98 μm, comprised primarily of two rovibrational lines from the P-branch of the fundamental band, was selected to minimize temperature sensitivity and spectral interference with other combustion gas species at the extreme temperatures (> 3000 K) and pressures (> 50 atm) in the combustion chamber environment. A scanned wavelength modulation spectroscopy technique (1 f-normalized 2 f detection) is utilized to infer species concentration from CO absorption, and mitigate the influence of non-absorption transmission losses and noise associated with the harsh sooting combustor environment. To implement the sensing strategy, a continuous-wave distributed-feedback (DFB) quantum cascade laser (QCL) was coupled to a hollow-core optical fiber for remote mid-infrared light delivery to the test article, with high-bandwidth light detection by a direct-mounted photovoltaic detector. The method was demonstrated to measure time-resolved CO mole fraction over a range of oxidizer-to-fuel ratios and pressures (20-70 atm) in a single-element-injector RP-2-GOx rocket combustor.

  4. All-optical short pulse translation through cross-phase modulation in a VO₂ thin film.

    PubMed

    Fardad, Shima; Das, Susobhan; Salandrino, Alessandro; Breckenfeld, Eric; Kim, Heungsoo; Wu, Judy; Hui, Rongqing

    2016-01-15

    VO2 is a promising material for reconfigurable photonic devices due to the ultrafast changes in electronic and optical properties associated with its dielectric-to-metal phase transition. Based on a fiber-optic, pump-probe setup at 1550 nm wavelength window, and by varying the pump-pulse duration, we show that the material phase transition is primarily caused by the pump-pulse energy. For the first time, we demonstrate that the instantaneous optical phase modulation of probe during pump leading edge can be utilized to create short optical pulses at probe wavelength, through optical frequency discrimination. This circumvents the impact of long recovery time well known for the phase transition of VO2.

  5. High power, high efficiency, continuous-wave supercontinuum generation using standard telecom fibers.

    PubMed

    Arun, S; Choudhury, Vishal; Balaswamy, V; Prakash, Roopa; Supradeepa, V R

    2018-04-02

    We demonstrate a simple module for octave spanning continuous-wave supercontinuum generation using standard telecom fiber. This module can accept any high power ytterbium-doped fiber laser as input. The input light is transferred into the anomalous dispersion region of the telecom fiber through a cascade of Raman shifts. A recently proposed Raman laser architecture with distributed feedback efficiently performs these Raman conversions. A spectrum spanning over 1000nm (>1 octave) from 880 to 1900nm is demonstrated. The average power from the supercontinuum is ~34W with a high conversion efficiency of 44%. Input wavelength agility is demonstrated with similar supercontinua over a wide input wavelength range.

  6. 40  Gb/s DWDM Structure with Optical Phase Configuration for Long-Haul Transmission System

    NASA Astrophysics Data System (ADS)

    Lin, Hsiu-Sheng; Lai, Po-Chou

    2017-06-01

    We propose the experimental transport of 48 channels with 40 Gbit/s dense wavelength-division multiplexing (DWDM) system that uses single-mode fiber (SMF) in combination with dispersion compensation fiber (DCF) which is a dispersion compensation device, in C and L band wavelength range to solve the dispersion program. The DWDM system scheme employing single Mach-Zehnder modulation (MZM) return-to-zero differential phase-shift keying (RZ-DPSK) modulation format with hybrid Raman/EDFA (Erbium-doped fiber amplifier) configuration to improve transmission signal, and employing an optical phase conjugation (OPC) configuration in the middle line. That can compensate for dispersion impairment and improve nonlinear effects to investigate transmission distance performances.

  7. Designs for optimizing depth of focus and spot size for UV laser ablation

    NASA Astrophysics Data System (ADS)

    Wei, An-Chi; Sze, Jyh-Rou; Chern, Jyh-Long

    2010-11-01

    The proposed optical systems are designed for extending the depths of foci (DOF) of UV lasers, which can be exploited in the laser-ablation technologies, such as laser machining and lithography. The designed systems are commonly constructed by an optical module that has at least one aspherical surface. Two configurations of optical module, lens-only and lens-reflector, are presented with the designs of 2-lens and 1-lens-1-reflector demonstrated by commercially optical software. Compared with conventional DOF-enhanced systems, which required the chromatic aberration lenses and the light sources with multiple wavelengths, the proposed designs are adapted to the single-wavelength systems, leading to more economical and efficient systems.

  8. Spatial Light Modulators with Arbitrary Quantum Wells Profiles

    DTIC Science & Technology

    1993-09-27

    phase change in the 1.152Pm wave propagating through the waveguide and appears as an optically bistable intensity signal normal to the control beam ...electrical bistability of a SEED was integrated with a phase modulator to produce optical bistability in an all- optical switch. A control wavelength of...received attention for its use in electrically-addressable spatial light intensity modulator arrays due to its potentially high contrast ratio, large

  9. Swept optical SSB-SC modulation technique for high-resolution large-dynamic-range static strain measurement using FBG-FP sensors.

    PubMed

    Huang, Wenzhu; Zhang, Wentao; Li, Fang

    2015-04-01

    This Letter presents a static strain demodulation technique for FBG-FP sensors using a suppressed carrier LiNbO(3) (LN) optical single sideband (SSB-SC) modulator. A narrow-linewidth tunable laser source is generated by driving the modulator using a linear chirp signal. Then this tunable single-frequency laser is used to interrogate the FBG-FP sensors with the Pound-Drever-Hall (PDH) technique, which is beneficial to eliminate the influence of light intensity fluctuation of the modulator at different tuning frequencies. The static strain is demodulated by calculating the wavelength difference of the PDH signals between the sensing FBG-FP sensor and the reference FBG-FP sensor. As an experimental result using the modulator, the linearity (R2) of the time-frequency response increases from 0.989 to 0.997, and the frequency-swept range (dynamic range) increases from hundreds of MHz to several GHz compared with commercial PZT-tunable lasers. The high-linearity time-wavelength relationship of the modulator is beneficial for improving the strain measurement resolution, as it can solve the problem of the frequency-swept nonlinearity effectively. In the laboratory test, a 0.67 nanostrain static strain resolution, with a 6 GHz dynamic range, is demonstrated.

  10. Blueprint for a microwave trapped ion quantum computer

    PubMed Central

    Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G.; Mølmer, Klaus; Devitt, Simon J.; Wunderlich, Christof; Hensinger, Winfried K.

    2017-01-01

    The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion–based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation–based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error–threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects. PMID:28164154

  11. Optical frequency upconversion technique for transmission of wireless MIMO-type signals over optical fiber.

    PubMed

    Shaddad, R Q; Mohammad, A B; Al-Gailani, S A; Al-Hetar, A M

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.

  12. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs

    PubMed Central

    Posada-Roman, Julio E.; Garcia-Souto, Jose A.; Poiana, Dragos A.; Acedo, Pablo

    2016-01-01

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal. PMID:27898043

  13. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.

    PubMed

    Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo

    2016-11-26

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  14. Ultracompact vibrometry measurement with nanometric accuracy using optical feedback

    NASA Astrophysics Data System (ADS)

    Jha, Ajit; Azcona, Francisco; Royo, Santiago

    2015-05-01

    The nonlinear dynamics of a semiconductor laser with optical feedback (OF) combined with direct current modulation of the laser is demonstrated to suffice for the measurement of subwavelength changes in the position of a vibrating object. So far, classical Optical Feedback Interferometry (OFI) has been used to measure the vibration of an object given its amplitude is greater than half the wavelength of emission, and the resolution of the measurement limited to some tenths of the wavelength after processing. We present here a methodology which takes advantage of the combination of two different phenomena: continuous wave frequency modulation (CWFM), induced by direct modulation of the laser, and non-linear dynamics inside of the laser cavity subject to optical self-injection (OSI). The methodology we propose shows how to detect vibration amplitudes smaller than half the emission wavelength with resolutions way beyond λ/2, extending the typical performance of OFI setups to very small amplitudes. A detailed mathematical model and simulation results are presented to support the proposed methodology, showing its ability to perform such displacement measurements of frequencies in the MHz range, depending upon the modulation frequency. Such approach makes the technique a suitable candidate, among other applications, to economic laser-based ultrasound measurements, with applications in nondestructive testing of materials (thickness, flaws, density, stresses), among others. The results of simulations of the proposed approach confirm the merit of the figures as detection of amplitudes of vibration below λ/2) with resolutions in the nanometer range.

  15. Controllable optical modulation of blue/green up-conversion fluorescence from Tm3+ (Er3+) single-doped glass ceramics upon two-step excitation of two-wavelengths

    PubMed Central

    Chen, Zhi; Kang, Shiliang; Zhang, Hang; Wang, Ting; Lv, Shichao; Chen, Qiuqun; Dong, Guoping; Qiu, Jianrong

    2017-01-01

    Optical modulation is a crucial operation in photonics for network data processing with the aim to overcome information bottleneck in terms of speed, energy consumption, dispersion and cross-talking from conventional electronic interconnection approach. However, due to the weak interactions between photons, a facile physical approach is required to efficiently manipulate photon-photon interactions. Herein, we demonstrate that transparent glass ceramics containing LaF3: Tm3+ (Er3+) nanocrystals can enable fast-slow optical modulation of blue/green up-conversion fluorescence upon two-step excitation of two-wavelengths at telecom windows (0.8–1.8 μm). We show an optical modulation of more than 1500% (800%) of the green (blue) up-conversion fluorescence intensity, and fast response of 280 μs (367 μs) as well as slow response of 5.82 ms (618 μs) in the green (blue) up-conversion fluorescence signal, respectively. The success of manipulating laser at telecom windows for fast-slow optical modulation from rear-earth single-doped glass ceramics may find application in all-optical fiber telecommunication areas. PMID:28368041

  16. Comprehensive Study of Z-Cut Highly Integrated LiNbO3 Optical Modulator with Adjustable Chirp Parameters

    NASA Astrophysics Data System (ADS)

    Palodiya, Vikram; Raghuwanshi, Sanjeev Kumar

    2017-12-01

    In this paper, the domain inversion is used in a simple fashion to improve the performance of a Z-cut highly integrated LiNbO3 optical modulator (LNOM). The Z-cut modulator having ≤ 3 V switching voltage and bandwidth of 15 GHz for an external modulator in which traveling-wave electrode length L_{m} imposed the modulating voltage, the product of V_π and L_{m} is fixed for a given electro-optic material (EOM). An investigation to achieve a low V_π by both magnitude of the electro-optic coefficient (EOC) for a wide variety of EOMs has been reported. The Sellmeier equation (SE) for the extraordinary index of congruent LiNbO3 is derived. The predictions related to phase matching are accurate between room temperature and 250 °C and wavelength ranging from 0.4 to 5 μm. The SE predicts more accurate refractive indices (RI) at long wavelengths. The different overlaps between the waveguides for the Z-cut structure are shown to yield a chirp parameter that can able to adjust 0-0.7. Theoretical results are perfectly verified by simulated results.

  17. Investigation of evanescent coupling between tapered fiber and a multimode slab waveguide.

    PubMed

    Dong, Shaofei; Ding, Hui; Liu, Yiying; Qi, Xiaofeng

    2012-04-01

    A tapered fiber-slab waveguide coupler (TFSC) is proposed in this paper. Both the numerical analysis based on the beam propagation method and experiments are used for investigating the dependencies of TFSC transmission features on their geometric parameters. From the simulations and experimental results, the rules for fabricating a TFSC with low transmission loss and sharp resonant spectra by optimizing the configuration parameters are presented. The conclusions derived from our work may provide helpful references for optimally designing and fabricating TFSC-based devices, such as sensors, wavelength filters, and intensity modulators.

  18. Primary Radiometry for the mise-en-pratique: The Laser-Based Radiance Method Applied to a Pyrometer

    NASA Astrophysics Data System (ADS)

    Briaudeau, S.; Sadli, M.; Bourson, F.; Rougi, B.; Rihan, A.; Zondy, J.-J.

    2011-12-01

    A new setup has been implemented at LCM-LNE-CNAM for the determination "of the spectral responsivity of radiation thermometers for the determination" of the thermodynamic temperature of high-temperature blackbodies at the temperature of a metal-carbon eutectic phase transition. In this new setup, an innovative acoustic-optic modulator feedback loop is used to stabilize the radiance of a wavelength tunable laser. The effect of residual optical interferences on the calibration of a test pyrometer is analyzed. The full uncertainty budget is presented.

  19. Anti-stiction coating for mechanically tunable photonic crystal devices.

    PubMed

    Petruzzella, M; Zobenica, Ž; Cotrufo, M; Zardetto, V; Mameli, A; Pagliano, F; Koelling, S; van Otten, F W M; Roozeboom, F; Kessels, W M M; van der Heijden, R W; Fiore, A

    2018-02-19

    A method to avoid the stiction failure in nano-electro-opto-mechanical systems has been demonstrated by coating the system with an anti-stiction layer of Al 2 O 3 grown by atomic layer deposition techniques. The device based on a double-membrane photonic crystal cavity can be reversibly operated from the pull-in back to its release status. This enables to electrically switch the wavelength of a mode over ~50 nm with a potential modulation frequency above 2 MHz. These results pave the way to reliable nano-mechanical sensors and optical switches.

  20. Acoustical Direction Finding with Time-Modulated Arrays

    PubMed Central

    Clark, Ben; Flint, James A.

    2016-01-01

    Time-Modulated Linear Arrays (TMLAs) offer useful efficiency savings over conventional phased arrays when applied in parameter estimation applications. The present paper considers the application of TMLAs to acoustic systems and proposes an algorithm for efficiently deriving the arrival angle of a signal. The proposed technique is applied in the frequency domain, where the signal and harmonic content is captured. Using a weighted average method on harmonic amplitudes and their respective main beam angles, it is possible to determine an estimate for the signal’s direction of arrival. The method is demonstrated and evaluated using results from both numerical and practical implementations and performance data is provided. The use of Micro-Electromechanical Systems (MEMS) sensors allows time-modulation techniques to be applied at ultrasonic frequencies. Theoretical predictions for an array of five isotropic elements with half-wavelength spacing and 1000 data samples suggest an accuracy of ±1∘ within an angular range of approximately ±50∘. In experiments of a 40 kHz five-element microphone array, a Direction of Arrival (DoA) estimation within ±2.5∘ of the target signal is readily achieved inside a ±45∘ range using a single switched input stage and a simple hardware setup. PMID:27973432

  1. Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators.

    PubMed

    Wei, J L; Hugues-Salas, E; Giddings, R P; Jin, X Q; Zheng, X; Mansoor, S; Tang, J M

    2010-05-10

    Detailed numerical investigations are undertaken of wavelength reused bidirectional transmission of adaptively modulated optical OFDM (AMOOFDM) signals over a single SMF in a colorless WDM-PON incorporating a semiconductor optical amplifier (SOA) intensity modulator and a reflective SOA (RSOA) intensity modulator in the optical line termination and optical network unit, respectively. A comprehensive theoretical model describing the performance of such network scenarios is, for the first time, developed, taking into account dynamic optical characteristics of SOA and RSOA intensity modulators as well as the effects of Rayleigh backscattering (RB) and residual downstream signal-induced crosstalk. The developed model is rigorously verified experimentally in RSOA-based real-time end-to-end OOFDM systems at 7.5 Gb/s. It is shown that the RB noise and crosstalk effects are dominant factors limiting the maximum achievable downstream and upstream transmission performance. Under optimum SOA and RSOA operating conditions as well as practical downstream and upstream optical launch powers, 10 Gb/s downstream and 6 Gb/s upstream over 40 km SMF transmissions of conventional double sideband AMOOFDM signals are feasible without utilizing in-line optical amplification and chromatic dispersion compensation. In particular, the aforementioned transmission performance can be improved to 23 Gb/s downstream and 8 Gb/s upstream over 40 km SMFs when single sideband subcarrier modulation is adopted in the downstream systems. (c) 2010 Optical Society of America.

  2. Cloud Atlas: Discovery of Rotational Spectral Modulations in a Low-mass, L-type Brown Dwarf Companion to a Star

    NASA Astrophysics Data System (ADS)

    Manjavacas, Elena; Apai, Dániel; Zhou, Yifan; Karalidi, Theodora; Lew, Ben W. P.; Schneider, Glenn; Cowan, Nicolas; Metchev, Stan; Miles-Páez, Paulo A.; Burgasser, Adam J.; Radigan, Jacqueline; Bedin, Luigi R.; Lowrance, Patrick J.; Marley, Mark S.

    2018-01-01

    Observations of rotational modulations of brown dwarfs and giant exoplanets allow the characterization of condensate cloud properties. As of now, rotational spectral modulations have only been seen in three L-type brown dwarfs. We report here the discovery of rotational spectral modulations in LP261-75B, an L6-type intermediate surface gravity companion to an M4.5 star. As a part of the Cloud Atlas Treasury program, we acquired time-resolved Wide Field Camera 3 grism spectroscopy (1.1–1.69 μm) of LP261-75B. We find gray spectral variations with the relative amplitude displaying only a weak wavelength dependence and no evidence for lower-amplitude modulations in the 1.4 μm water band than in the adjacent continuum. The likely rotational modulation period is 4.78 ± 0.95 hr, although the rotational phase is not well sampled. The minimum relative amplitude in the white light curve measured over the whole wavelength range is 2.41% ± 0.14%. We report an unusual light curve, which seems to have three peaks approximately evenly distributed in rotational phase. The spectral modulations suggests that the upper atmosphere cloud properties in LP261-75B are similar to two other mid-L dwarfs of typical infrared colors, but differ from that of the extremely red L-dwarf WISE0047.

  3. Photoacoustic Study of Fungal Disease of Acai ( Euterpe oleracea) Seeds

    NASA Astrophysics Data System (ADS)

    Rezende, Denise V.; Nunes, O. A. C.; Oliveira, A. C.

    2009-10-01

    Photoacoustic spectroscopy is introduced as a promising experimental technique to investigate fungus infected Acai ( Euterpe oleracea) seeds. Photoacoustic spectra of healthy and infected Acai seeds with the fungus Colletotrichum gloeosporioides were recorded firstly in the modulation frequency range of 5Hz to 700 Hz, while keeping the wavelength of excitation radiation of a Xe arc-lamp constant, to ascertain the depth of penetration of infection within the seed and secondly, at variable wavelength (wavelength scanning) in the interval 250nm to 1,000 nm, while keeping the modulation frequency constant. In the former, the photoacoustic signal strength from the infected seed was found higher than that of the healthy one, and has been associated with the appearance of new biomolecules associated with the pathogen infection. In the latter, characteristics peaks and bands were observed in the range from 650 nm to 900 nm ascribed to organic compounds with carboxylates and amines (functional groups) forming the typical metabolic structures of the fungus.

  4. Development of the GaAs-based THz Photoconductor and Balloon-borne Experiment Module TG-ZERO

    NASA Astrophysics Data System (ADS)

    Watanabe, Kentaroh; Kataza, Hirokazu; Wada, Takehiko; Murakami, Hiroshi; Kamizuka, Takafumi; Makitsubo, Hironobu; Yamashita, Kyohei; Wakaki, Moriaki; Abe, Osamu

    2009-08-01

    The far-infrared (around 1 terahertz (THz)) extrinsic photoconductor is fabricated by a LPE-grown GaAs semiconductor. This GaAs detector can detect longer wavelength photons than the stressed Ge:Ga conventionally used for astronomical infrared observation. We applied the liquid phase epitaxy to obtain a suitable purity of GaAs crystals, and the test N-GaAs photoconductor device shows spectroscopic response over a wide wavelength range of 150-300 micron. The best sample shows 30 A/W of responsivity and 10-16 W/Hz0.5 of NEP is expected at 295 micron of wavelength and T = 1.6 K. In addition, we constructed the terahertz photometer module (TG-ZERO) using our N-GaAs photoconductors. TG-ZERO has four channel bands with N-GaAs and Ge:Ga photoconductors. The development process, the result of experiments, and the basic specifications of TG-ZERO are all reported in this paper.

  5. Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures.

    PubMed

    Song, Young Min; Jeong, Yonkil; Yeo, Chan Il; Lee, Yong Tak

    2012-11-05

    We present the effect of broadband antireflective coverglasses (BARCs) with moth eye structures on the power generation capability of a sub-receiver module for concentrated photovoltaics. The period and height of the moth eye structures were designed by a rigorous coupled-wave analysis method in order to cover the full solar spectral ranges without transmission band shrinkage. The BARCs with moth eye structures were prepared by the dry etching of silver (Ag) nanomasks, and the fabricated moth eye structures on coverglass showed strongly enhanced transmittance compared to the bare glass with a flat surface, at wavelengths of 300 - 1800 nm. The BARCs were mounted on InGaP/GaAs/Ge triple-junction solar cells and the power conversion efficiency of this sub-receiver module reached 42.16% for 196 suns, which is a 7.41% boosted value compared to that of a module with bare coverglass, without any detrimental changes of the open circuit voltages (Voc) and fill factor (FF).

  6. Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures.

    PubMed

    Song, Young Min; Jeong, Yonkil; Yeo, Chan Il; Lee, Yong Tak

    2012-11-05

    We present the effect of broadband antireflective coverglasses (BARCs) with moth eye structures on the power generation capability of a sub-receiver module for concentrated photovoltaics. The period and height of the moth eye structures were designed by a rigorous coupled-wave analysis method in order to cover the full solar spectral ranges without transmission band shrinkage. The BARCs with moth eye structures were prepared by the dry etching of silver (Ag) nanomasks, and the fabricated moth eye structures on coverglass showed strongly enhanced transmittance compared to the bare glass with a flat surface, at wavelengths of 300 - 1800 nm. The BARCs were mounted on InGaP/GaAs/Ge triple-junction solar cells and the power conversion efficiency of this sub-receiver module reached 42.16% for 196 suns, which is a 7.41% boosted value compared to that of a module with bare coverglass, without any detrimental changes of the open circuit voltages (V(oc)) and fill factor (FF).

  7. Intensity-modulated refractive index sensor with anti-light source fluctuation based on no-core fiber filter

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Xu, Shan; Zhao, Junfa; Li, Hongqiang; Bai, Hua; Miao, Changyun

    2017-12-01

    A differential intensity-modulated refractive index (RI) sensor consisting of a no-core fiber (NCF) filter, a circulator and two fiber Bragg gratings (FBGs) is proposed and demonstrated. A section of the NCF is sandwiched between two parts of single mode fibers (SMFs) to form a band-pass filter. The Bragg wavelengths of the FBGs are chosen at the two edges of the filter, respectively. The peak wavelength of the NCF filter has a red-shift with the increase of the surrounding refractive index (SRI) while the Bragg wavelengths have no change, which results in the variation of the difference of the two FBGs reflective intensities, thus the differential intensity modulation to the SRI can be accomplished. Compared with directly connecting the NCF filter and the FBGs, this sensing structure can increase the output power so as to improve the measuring resolution. The experimental results show that the RI sensitivities are -99.191 dB/RIU and -139.958 dB/RIU at the range of 1.3329-1.3781 and 1.3781-1.401, respectively. In addition, the disturbance from the light source fluctuation and temperature cross sensitivity can be minimized effectively, which has great potential in actual applications.

  8. Quantum cascade transmitters for ultrasensitive chemical agent and explosives detection

    NASA Astrophysics Data System (ADS)

    Schultz, John F.; Taubman, Matthew S.; Harper, Warren W.; Williams, Richard M.; Myers, Tanya L.; Cannon, Bret D.; Sheen, David M.; Anheier, Norman C., Jr.; Allen, Paul J.; Sundaram, S. K.; Johnson, Bradley R.; Aker, Pamela M.; Wu, Ming C.; Lau, Erwin K.

    2003-07-01

    The small size, high power, promise of access to any wavelength between 3.5 and 16 microns, substantial tuning range about a chosen center wavelength, and general robustness of quantum cascade (QC) lasers provide opportunities for new approaches to ultra-sensitive chemical detection and other applications in the mid-wave infrared. PNNL is developing novel remote and sampling chemical sensing systems based on QC lasers, using QC lasers loaned by Lucent Technologies. In recent months laboratory cavity-enhanced sensing experiments have achieved absorption sensitivities of 8.5 x 10-11 cm-1 Hz-1/2, and the PNNL team has begun monostatic and bi-static frequency modulated, differential absorption lidar (FM DIAL) experiments at ranges of up to 2.5 kilometers. In related work, PNNL and UCLA are developing miniature QC laser transmitters with the multiplexed tunable wavelengths, frequency and amplitude stability, modulation characteristics, and power levels needed for chemical sensing and other applications. Current miniaturization concepts envision coupling QC oscillators, QC amplifiers, frequency references, and detectors with miniature waveguides and waveguide-based modulators, isolators, and other devices formed from chalcogenide or other types of glass. Significant progress has been made on QC laser stabilization and amplification, and on development and characterization of high-purity chalcogenide glasses, waveguide writing techniques, and waveguide metrology.

  9. A versatile, C-band spanning, high repetition rate, cascaded four wave mixing based multi-wavelength source

    NASA Astrophysics Data System (ADS)

    Vikram, B. S.; Prakash, Roopa; K. P., Nagarjun; Selvaraja, Shankar Kumar; Supradeepa, V. R.

    2018-02-01

    Demand for bandwidth in optical communications necessitates the development of scalable transceivers that cater to these needs. For this, in DWDM systems with/without Superchannels, the optical source needs to provide a large number of optical carriers. The conventional method of utilizing separate lasers makes the system bulky and inefficient. A multi-wavelength source which spans the entire C-band with sufficient power is needed to replace individual lasers. In addition, multi-wavelength sources at high repetition rates are necessary in various applications such as spectroscopy, astronomical spectrograph calibration, microwave photonics and arbitrary waveform generation. Here, we demonstrate a novel technique for equalized, multi-wavelength source generation which generates over 160 lines at 25GHz repetition rate, spanning the entire C-band with total power >700mW. A 25GHz Comb with 16 lines is generated around 1550nm starting with two individual lasers using a system of directly driven, cascaded intensity and phase modulators. This is then amplified to >1W using an optimized, Erbium-Ytterbium co-doped fiber amplifier. Subsequently, they are passed through Highly NonLinear Fiber at its zero-dispersion wavelength. Through cascaded Four Wave Mixing, a ten-fold increase in the number of lines is demonstrated. A bandwidth of 4.32 THz (174 lines, SNR>15 dB), covering the entire C-band is generated. Enhanced spectral broadening is enabled by two key aspects - Dual laser input provides the optimal temporal profile for spectral broadening while the comb generation prior to amplification enables greater power scaling by suppression of Brillouin scattering. The multi-wavelength source is extremely agile with tunable center frequency and repetition rate.

  10. Optically Tunable Long Wavelength Infrared Quantum Cascade Laser Operated at Room Temperature

    DTIC Science & Technology

    2013-01-09

    optics (Figure 2(d)). QCL emission spectra were obtained using a FTIR spectrometer with resolution of 0.125 cm1 and a photovoltaic MCT detector . A...frequency modulation (FM) optical data links,1 which can have orders of magnitude higher signal-to- noise ratio compared to the amplitude-modulation (AM

  11. Effect of external plasma flows on the interaction between turbulence and convective cells

    NASA Astrophysics Data System (ADS)

    Uzawa, Ken; Li, Jiquan

    2005-10-01

    It is widely recognized that large scale structures, such as zonal flows, streamers and also long wavelength Kelvin-Helmholtz modes are nonlinearly generated from maternal turbulence through modulational instability process and play a crucial role in regulating the transport in tokamaks. In order to control the transport, it is desirable to control such structures and/or modulational process. One of control parameters may be mean flow which intrinsically exists in tokamak plasmas. Besides the direct influence on the transport through vortex decorrelation, the mean flow may indirectly change the zonal flow generation by acting on the modulational process itself. In this work, we theoretically investigate the characteristics of zonal flow generation due to the electron temperature gradient (ETG) turbulence in the presence of long wavelength ITG driven zonal flow. This was done by extending our previous modulational analyses[1]. We have numerically analyzed the influence of mean flow on zonal flow generation. The main result is that the zonal flow generation is suppressed by the presence of the mean flow. [1]J. Li, Y. Kishimoto, Physics of Plasmas, 9, 1241 (2002)

  12. Carrier-envelope offset stabilization of a GHz repetition rate femtosecond laser using opto-optical modulation of a SESAM.

    PubMed

    Hakobyan, Sargis; Wittwer, Valentin J; Gürel, Kutan; Mayer, Aline S; Schilt, Stéphane; Südmeyer, Thomas

    2017-11-15

    We demonstrate, to the best of our knowledge, the first carrier-envelope offset (CEO) frequency stabilization of a GHz femtosecond laser based on opto-optical modulation (OOM) of a semiconductor saturable absorber mirror (SESAM). The 1.05-GHz laser is based on a Yb:CALGO gain crystal and emits sub-100-fs pulses with 2.1-W average power at a center wavelength of 1055 nm. The SESAM plays two key roles: it starts and stabilizes the mode-locking operation and is simultaneously used as an actuator to control the CEO frequency. This second functionality is implemented by pumping the SESAM with a continuous-wave 980-nm laser diode in order to slightly modify its nonlinear reflectivity. We use the standard f-to-2f method for detection of the CEO frequency, which is stabilized by applying a feedback signal to the current of the SESAM pump diode. We compare the SESAM-OOM stabilization with the traditional method of gain modulation via control of the pump power of the Yb:CALGO gain crystal. While the bandwidth for gain modulation is intrinsically limited to ∼250  kHz by the laser cavity dynamics, we show that the OOM provides a feedback bandwidth above 500 kHz. Hence, we were able to obtain a residual integrated phase noise of 430 mrad for the stabilized CEO beat, which represents an improvement of more than 30% compared to gain modulation stabilization.

  13. Ultra-compact imaging plate scanner module using a MEMS mirror and specially designed MPPC

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yuichi; Sasaki, Kensuke; Takasaka, Masaomi; Fujimoto, Masatoshi; Yamamoto, Koei

    2017-02-01

    Computed radiography (CR), which is one of the most useful methods for dental imaging and nondestructive testing, uses a phosphor imaging plate (IP) because it is flexible, reusable, and inexpensive. Conventional IP scanners utilize a galvanometer or a polygon mirror as a scanning device and a photomultiplier as an optical sensor. Microelectromechanical systems (MEMS) technology currently provides silicon-based devices and has the potential to replace such discrete devices and sensors. Using these devices, we constructed an ultra-compact IP scanner. Our extremely compact plate scanner utilizes a module that is composed of a one-dimensional MEMS mirror and a long multi-pixel photon counter (MPPC) that is combined with a specially designed wavelength filter and a rod lens. The MEMS mirror, which is a non-resonant electromagnetic type, is 2.6 mm in diameter with a recommended optical scanning angle up to +/-15°. The CR's wide dynamic range is maintained using a newly developed MPPC. The MPPC is a sort of silicon photomultiplier and is a high-sensitivity photon-counting device. To achieve such a wide dynamic range, we developed a long MPPC that has over 10,000 pixels. For size reduction and high optical efficiency, we set the MPPC close to an IP across the rod lens. To prevent the MPPC from detecting excitation light, which is much more intense than photo-stimulated light, we produced a sharp-cut wavelength filter that has a wide angle (+/-60°) of tolerance. We evaluated our constructed scanner module through gray chart and resolution chart images.

  14. Generating a high brightness multi-kilowatt laser by dense spectral combination of VBG stabilized single emitter laser diodes

    NASA Astrophysics Data System (ADS)

    Fritsche, H.; Koch, Ralf; Krusche, B.; Ferrario, F.; Grohe, Andreas; Pflueger, S.; Gries, W.

    2014-05-01

    Generating high power laser radiation with diode lasers is commonly realized by geometrical stacking of diode bars, which results in high output power but poor beam parameter product (BPP). The accessible brightness in this approach is limited by the fill factor, both in slow and fast axis. By using a geometry that accesses the BPP of the individual diodes, generating a multi kilowatt diode laser with a BPP comparable to fiber lasers is possible. We will demonstrate such a modular approach for generating multi kilowatt lasers by combining single emitter diode lasers. Single emitter diodes have advantages over bars, mainly a simplified cooling, better reliability and a higher brightness per emitter. Additionally, because single emitters can be arranged in many different geometries, they allow building laser modules where the brightness of the single emitters is preserved. In order to maintain the high brightness of the single emitter we developed a modular laser design which uses single emitters in a staircase arrangement, then coupling two of those bases with polarization combination which is our basic module. Those modules generate up to 160 W with a BPP better than 7.5 mm*mrad. For further power scaling wavelength stabilization is crucial. The wavelength is stabilized with only one Volume Bragg Grating (VBG) in front of a base providing the very same feedback to all of the laser diodes. This results in a bandwidth of < 0.5 nm and a wavelength stability of better than 250 MHz over one hour. Dense spectral combination with dichroic mirrors and narrow channel spacing allows us to combine multiple wavelength channels, resulting in a 2 kW laser module with a BPP better than 7.5 mm*mrad, which can easily coupled into a 100 μm fiber and 0.15 NA.

  15. Spectral characterization of differential group delay in uniform fiber Bragg gratings.

    PubMed

    Bette, S; Caucheteur, C; Wuilpart, M; Mégret, P; Garcia-Olcina, R; Sales, S; Capmany, J

    2005-12-12

    In this paper, we completely study the wavelength dependency of differential group delay (DGD) in uniform fiber Bragg gratings (FBG) exhibiting birefringence. An analytical expression of DGD is established. We analyze the impact of grating parameters (physical length, index modulation and apodization profile) on the wavelength dependency of DGD. Experimental results complete the paper. A very good agreement between theory and experience is reported.

  16. High-Power, High-Speed Electro-Optic Pockels Cell Modulator

    NASA Technical Reports Server (NTRS)

    Hawthorne, Justin; Battle, Philip

    2013-01-01

    Electro-optic modulators rely on a change in the index of refraction for the optical wave as a function of an applied voltage. The corresponding change in index acts to delay the wavefront in the waveguide. The goal of this work was to develop a high-speed, high-power waveguide- based modulator (phase and amplitude) and investigate its use as a pulse slicer. The key innovation in this effort is the use of potassium titanyl phosphate (KTP) waveguides, making the highpower, polarization-based waveguide amplitude modulator possible. Furthermore, because it is fabricated in KTP, the waveguide component will withstand high optical power and have a significantly higher RF modulation figure of merit (FOM) relative to lithium niobate. KTP waveguides support high-power TE and TM modes - a necessary requirement for polarization-based modulation as with a Pockels cell. High-power fiber laser development has greatly outpaced fiber-based modulators in terms of its maturity and specifications. The demand for high-performance nonlinear optical (NLO) devices in terms of power handling, efficiency, bandwidth, and useful wavelength range has driven the development of bulk NLO options, which are limited in their bandwidth, as well as waveguide based LN modulators, which are limited by their low optical damage threshold. Today, commercially available lithium niobate (LN) modulators are used for laser formatting; however, because of photorefractive damage that can reduce transmission and increase requirements on bias control, LN modulators cannot be used with powers over several mW, dependent on wavelength. The high-power, high-speed modulators proposed for development under this effort will enable advancements in several exciting fields including lidarbased remote sensing, atomic interferometry, free-space laser communications, and others.

  17. High speed cross-amplitude modulation in concatenated SOA-EAM-SOA.

    PubMed

    Cleary, Ciaran S; Manning, Robert J

    2012-06-18

    We observe a near-ideal high speed amplitude impulse response in an SOA-EAM-SOA configuration under optimum conditions. Full amplitude recovery times as low as 10 ps with modulation depths of 70% were observed in pump-probe measurements. System behavior could be controlled by the choice of signal wavelength, SOA current biases and EAM reverse bias voltages. Experimental data and impulse response modelling indicated that the slow tail in the gain response of first SOA was negated by a combination of cross-absorption modulation between pump and modulated CW probe, and self-gain modulation of the modulated CW probe in both the EAM and second SOA.

  18. Reconfigurable WDM-PON empowered by a low-cost 8-channel directly modulated laser module

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-ming; Liu, Yu; Zhang, Zhi-ke; Zhao, Ze-ping; Tian, Ye; Zhu, Ning-hua

    2017-11-01

    A 10 Gbit/s 16-km-long reconfigurable wavelength-division-multiplexing passive optical network (WDM-PON) is presented empowered by a low-cost multi-channel directly modulated laser (DML) module. Compared with the case using discrete devices in conventional scheme, the proposed DML module provides a cost-effective solution with reduced complexity. The clear eye diagram and the bit error rate ( BER) of less than 2×10-7 with a sensitivity of -7 dBm are obtained. Due to the special packaging design, the crosstalk between channels under condition of simultaneous operation can be negligible.

  19. Static magnetic Faraday rotation spectroscopy combined with a differential scheme for OH detection

    NASA Astrophysics Data System (ADS)

    Zhao, Weixiong; Deng, Lunhua; Qian, Xiaodong; Fang, Bo; Gai, Yanbo; Chen, Weidong; Gao, Xiaoming; Zhang, Weijun

    2015-04-01

    The hydroxyl (OH) radical plays a critical role in atmospheric chemistry due to its high reactivity with volatile organic compounds (VOCs) and other trace gaseous species. Because of its very short life time and very low concentration in the atmosphere, interference-free high sensitivity in-situ OH monitoring by laser spectroscopy represents a real challenge. Faraday rotation spectroscopy (FRS) relies on the particular magneto-optic effect observed for paramagnetic species, which makes it capable of enhancing the detection sensitivity and mitigation of spectral interferences from diamagnetic species in the atmosphere. When an AC magnetic field is used, the Zeeman splitting of the molecular absorption line (and thus the magnetic circular birefringence) is modulated. This provides an 'internal modulation' of the sample, which permits to suppress the external noise like interference fringes. An alternative FRS detection scheme is to use a static magnetic field (DC-field) associated with laser wavelength modulation to effectively modulate the Zeeman splitting of the absorption lines. In the DC field case, wavelength modulation of the laser frequency can provide excellent performance compared to most of the sensing systems based on direct absorption and wavelength modulation spectroscopy. The dimension of the DC solenoid is not limited by the resonant frequency of the RLC circuit, which makes large dimension solenoid coil achievable and the absorption base length could be further increased. By employing a combination of the environmental photochemical reactor or smog chamber with multipass absorption cell, one can lower the minimum detection limit for high accuracy atmospheric chemistry studies. In this paper, we report on the development of a DC field based FRS in conjunction with a balanced detection scheme for OH radical detection at 2.8 μm and the construction of OH chemistry research platform which combined a large dimension superconducting magnetic coil with the multipass cell and photochemical reactor chamber for real time in-situ measurement of OH radical concentration in the chamber.

  20. Determination of fermentable sugars in beer wort by gold nanoparticles@polydopamine: A layer-by-layer approach for Localized Surface Plasmon Resonance measurements at fixed wavelength.

    PubMed

    Scarano, S; Pascale, E; Palladino, P; Fratini, E; Minunni, M

    2018-06-01

    Polydopamine decorated in-situ with Localized Surface Plasmon Resonance (LSPR)-active gold nanoparticles (AuNPs) may extend the applicability of nanoplasmonic materials to original and innovative applications in several fields. Here we report the modification of disposable UV-Vis polystyrene cuvettes with AuNPs@PDA for refractive index LSPR-based measurements. An original layer-by-layer deposition method of PDA followed by AuNPs growth is here developed, showing linear correlation between PDA thickness and optical properties. In particular, the modulation from wavelength sensitivity toward absorbance sensitivity is obtained, allowing measurements at fixed wavelength (578 nm). As applicative example of the photonic cuvettes, the measurement of fermentable sugars in beer wort is here reported. The analytical performance of our approach has been directly compared to portable refractometer of reference, displaying excellent results in terms of the precise estimation of sugars in beer wort (expressed in degrees Brix), reproducibility and sensitivity. The approach may be extended to other materials of interest in LSPR based optical sensors, e.g. optical fibers. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Sentinel lymph node detection by an optical method using scattered photons

    PubMed Central

    Tellier, Franklin; Ravelo, Rasata; Simon, Hervé; Chabrier, Renée; Steibel, Jérôme; Poulet, Patrick

    2010-01-01

    We present a new near infrared optical probe for the sentinel lymph node detection, based on the recording of scattered photons. A two wavelengths setup was developed to improve the detection threshold of an injected dye: the Patent Blue V dye. The method used consists in modulating each laser diode at a given frequency. A Fast Fourier Transform of the recorded signal separates both components. The signal amplitudes are used to compute relative Patent Blue V concentration. Results on the probe using phantoms model and small animal experimentation exhibit a sensitivity threshold of 3.2 µmol/L, which is thirty fold better than the eye visible threshold. PMID:21258517

  2. Spectral ballistic imaging: a novel technique for viewing through turbid or obstructing media.

    PubMed

    Granot, Er'el; Sternklar, Shmuel

    2003-08-01

    We propose a new method for viewing through turbid or obstructing media. The medium is illuminated with a modulated cw laser and the amplitude and phase of the transmitted (or reflected) signal is measured. This process takes place for a set of wavelengths in a certain wide band. In this way we acquire the Fourier transform of the temporal output. With this information we can reconstruct the temporal shape of the transmitted signal by computing the inverse transform. The proposed method benefits from the advantages of the first-light technique: high resolution, simple algorithms, insensitivity to boundary condition, etc., without suffering from its main deficiencies: complex and expensive equipment.

  3. Laser color recording unit

    NASA Astrophysics Data System (ADS)

    Jung, E.

    1984-05-01

    A color recording unit was designed for output and control of digitized picture data within computer controlled reproduction and picture processing systems. In order to get a color proof picture of high quality similar to a color print, together with reduced time and material consumption, a photographic color film material was exposed pixelwise by modulated laser beams of three wavelengths for red, green and blue light. Components of different manufacturers for lasers, acousto-optic modulators and polygon mirrors were tested, also different recording methods as (continuous tone mode or screened mode and with a drum or flatbed recording principle). Besides the application for the graphic arts - the proof recorder CPR 403 with continuous tone color recording with a drum scanner - such a color hardcopy peripheral unit with large picture formats and high resolution can be used in medicine, communication, and satellite picture processing.

  4. High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Chen, Qian; Gu, Guohua; Feng, Shijie; Feng, Fangxiaoyu; Li, Rubin; Shen, Guochen

    2013-08-01

    This paper introduces a high-speed three-dimensional (3-D) shape measurement technique for dynamic scenes by using bi-frequency tripolar pulse-width-modulation (TPWM) fringe projection. Two wrapped phase maps with different wavelengths can be obtained simultaneously by our bi-frequency phase-shifting algorithm. Then the two phase maps are unwrapped using a simple look-up-table based number-theoretical approach. To guarantee the robustness of phase unwrapping as well as the high sinusoidality of projected patterns, TPWM technique is employed to generate ideal fringe patterns with slight defocus. We detailed our technique, including its principle, pattern design, and system setup. Several experiments on dynamic scenes were performed, verifying that our method can achieve a speed of 1250 frames per second for fast, dense, and accurate 3-D measurements.

  5. A fiber air-gap Fabry-Pérot temperature sensor demodulated by using frequency modulated continuous wave

    NASA Astrophysics Data System (ADS)

    Zheng, Wanfu; Xie, Jianglei; Li, Yi; Xu, Ben; Kang, Juan; Shen, Changyu; Wang, Jianfeng; Jin, Yongxing; Liu, Honglin; Ni, Kai; Dong, Xinyong; Zhao, Chunliu; Jin, Shangzhong

    In this study, a fiber in-line air-gap Fabry-Pérot interferometer (FPI) is fabricated by HF acid etching. For a low-cost and higher precise measurement, a demodulation system based on frequency modulated continuous wave (FMCW) technique is build up and demonstrated in this air-gap FPI. In temperature measurements, the temperature sensitivity is about 1.75 rad/°C by phase shift detection. We also test the long term performance of the system and the RMS error is about 0.04 rad, which corresponds to the temperature resolution of ~0.02 °C. It is much higher than the measurement resolution by using the traditional wavelength shift detection method. Our experiments show that the FMCW can provide a low-cost, high resolution and high speed interrogation solution to the fiber FPIs.

  6. Deep ultraviolet semiconductor light sources for sensing and security

    NASA Astrophysics Data System (ADS)

    Shatalov, Max; Bilenko, Yuri; Yang, Jinwei; Gaska, Remis

    2009-09-01

    III-Nitride based deep ultraviolet (DUV) light emitting diodes (LEDs) rapidly penetrate into sensing market owing to several advantages over traditional UV sources (i.e. mercury, xenon and deuterium lamps). Small size, a wide choice of peak emission wavelengths, lower power consumption and reduced cost offer flexibility to system integrators. Short emission wavelength offer advantages for gas detection and optical sensing systems based on UV induced fluorescence. Large modulation bandwidth for these devices makes them attractive for frequency-domain spectroscopy. We will review present status of DUV LED technology and discuss recent advances in short wavelength emitters and high power LED lamps.

  7. Simultaneous dual-color fluorescence microscope: a characterization study.

    PubMed

    Li, Zheng; Chen, Xiaodong; Ren, Liqiang; Song, Jie; Li, Yuhua; Zheng, Bin; Liu, Hong

    2013-01-01

    High spatial resolution and geometric accuracy is crucial for chromosomal analysis of clinical cytogenetic applications. High resolution and rapid simultaneous acquisition of multiple fluorescent wavelengths can be achieved by utilizing concurrent imaging with multiple detectors. However, such class of microscopic systems functions differently from traditional fluorescence microscopes. To develop a practical characterization framework to assess and optimize the performance of a high resolution and dual-color fluorescence microscope designed for clinical chromosomal analysis. A dual-band microscopic imaging system utilizes a dichroic mirror, two sets of specially selected optical filters, and two detectors to simultaneously acquire two fluorescent wavelengths. The system's geometric distortion, linearity, the modulation transfer function, and the dual detectors' alignment were characterized. Experiment results show that the geometric distortion at lens periphery is less than 1%. Both fluorescent channels show linear signal responses, but there exists discrepancy between the two due to the detectors' non-uniform response ratio to different wavelengths. In terms of the spatial resolution, the two contrast transfer function curves trend agreeably with the spatial frequency. The alignment measurement allows quantitatively assessing the cameras' alignment. A result image of adjusted alignment is demonstrated to show the reduced discrepancy by using the alignment measurement method. In this paper, we present a system characterization study and its methods for a specially designed imaging system for clinical cytogenetic applications. The presented characterization methods are not only unique to this dual-color imaging system but also applicable to evaluation and optimization of other similar multi-color microscopic image systems for improving their clinical utilities for future cytogenetic applications.

  8. Chlorine measurement in the jet singlet oxygen generator considering the effects of the droplets.

    PubMed

    Goodarzi, Mohamad S; Saghafifar, Hossein

    2016-09-01

    A new method is presented to measure chlorine concentration more accurately than conventional method in exhaust gases of a jet-type singlet oxygen generator. One problem in this measurement is the existence of micrometer-sized droplets. In this article, an empirical method is reported to eliminate the effects of the droplets. Two wavelengths from a fiber coupled LED are adopted and the measurement is made on both selected wavelengths. Chlorine is measured by the two-wavelength more accurately than the one-wavelength method by eliminating the droplet term in the equations. This method is validated without the basic hydrogen peroxide injection in the reactor. In this case, a pressure meter value in the diagnostic cell is compared with the optically calculated pressure, which is obtained by the one-wavelength and the two-wavelength methods. It is found that chlorine measurement by the two-wavelength method and pressure meter is nearly the same, while the one-wavelength method has a significant error due to the droplets.

  9. Design of CMOS compatible and compact, thermally-compensated electro-optic modulator based on off-axis microring resonator for dense wavelength division multiplexing applications.

    PubMed

    Haldar, Raktim; Banik, Abhik D; Varshney, Shailendra K

    2014-09-22

    In this work, we propose and demonstrate the performance of silicon-on-insulator (SOI) off-axis microring resonator (MRR) as electro-optic modulator (EOM). Adding an extra off-axis inner-ring in conventional microring structure provides control to compensate thermal effects on EOM. It is shown that dynamically controlled bias-voltage applied to the outer ring has the potency to quell the thermal effects over a wide range of temperature. Thus, besides the appositely biased conventional microring, off-axis inner microring with pre-emphasized electrical input message signal enables our proposed structure suitable for high data-rate dense wavelength division multiplexing scheme of optical communication within a very compact device size.

  10. Multilayered metal-insulator nanocavities: toward tunable multi-resonance nano-devices for integrated optics

    NASA Astrophysics Data System (ADS)

    Song, Junyeob; Zhou, Wei

    2017-02-01

    Plasmonic nanocavities can control light flows and enhance light-mater interactions at subwavelength scale, and thus can potentially be used as nanoscale components in integrated optics systems either for passive optical coupling, or for active optical modulation and emission. In this work, we investigated a new type of multilayered metal-insulator optical nanocavities that can support multiple localized plasmon resonances with ultra-small mode volumes. The total number of resonance peaks and their resonance wavelengths can be freely and accurately controlled by simple geometric design rules. Multi-resonance plasmonic nanocavities can serve as a nanoscale wavelength-multiplexed optical components in integrated optics systems, such as optical couplers, light emitters, nanolasers, optical sensors, and optical modulators.

  11. Diode laser detection of greenhouse gases in the near-infrared region by wavelength modulation spectroscopy: pressure dependence of the detection sensitivity.

    PubMed

    Asakawa, Takashi; Kanno, Nozomu; Tonokura, Kenichi

    2010-01-01

    We have investigated the pressure dependence of the detection sensitivity of CO(2), N(2)O and CH(4) using wavelength modulation spectroscopy (WMS) with distributed feed-back diode lasers in the near infrared region. The spectral line shapes and the background noise of the second harmonics (2f) detection of the WMS were analyzed theoretically. We determined the optimum pressure conditions in the detection of CO(2), N(2)O and CH(4), by taking into consideration the background noise in the WMS. At the optimum total pressure for the detection of CO(2), N(2)O and CH(4), the limits of detection in the present system were determined.

  12. Generation of ultra-long pure magnetization needle and multiple spots by phase modulated doughnut Gaussian beam

    NASA Astrophysics Data System (ADS)

    Udhayakumar, M.; Prabakaran, K.; Rajesh, K. B.; Jaroszewicz, Z.; Belafhal, Abdelmajid; Velauthapillai, Dhayalan

    2018-06-01

    Based on vector diffraction theory and inverse Faraday effect (IFE), the light induced magnetization distribution of a tightly focused azimuthally polarized doughnut Gaussian beam superimposed with a helical phase and modulated by an optimized multi belt complex phase filter (MBCPF) is analysed numerically. It is noted that by adjusting the radii of different rings of the complex phase filter, one can achieve many novel magnetization focal distribution such as sub wavelength scale (0.29λ) and super long (52.2λ) longitudinal magnetic probe suitable for all optical magnetic recording and the formation of multiple magnetization chain with four, six and eight sub-wavelength spherical magnetization spots suitable for multiple trapping of magnetic particles are achieved.

  13. Design and implementation of a laser-based absorption spectroscopy sensor for in situ monitoring of biomass gasification

    NASA Astrophysics Data System (ADS)

    Viveros Salazar, David; Goldenstein, Christopher S.; Jeffries, Jay B.; Seiser, Reinhard; Cattolica, Robert J.; Hanson, Ronald K.

    2017-12-01

    Research to demonstrate in situ laser-absorption-based sensing of H2O, CH4, CO2, and CO mole fraction is reported for the product gas line of a biomass gasifier. Spectral simulations were used to select candidate sensor wavelengths that optimize sensitive monitoring of the target species while minimizing interference from other species in the gas stream. A prototype sensor was constructed and measurements performed in the laboratory at Stanford to validate performance. Field measurements then were demonstrated in a pilot scale biomass gasifier at West Biofuels in Woodland, CA. The performance of a prototype sensor was compared for two sensor strategies: wavelength-scanned direct absorption (DA) and wavelength-scanned wavelength modulation spectroscopy (WMS). The lasers used had markedly different wavelength tuning response to injection current, and modern distributed feedback lasers (DFB) with nearly linear tuning response to injection current were shown to be superior, leading to guidelines for laser selection for sensor fabrication. Non-absorption loss in the transmitted laser intensity from particulate scattering and window fouling encouraged the use of normalized WMS measurement schemes. The complications of using normalized WMS for relatively large values of absorbance and its mitigation are discussed. A method for reducing adverse sensor performance effects of a time-varying WMS background signal is also presented. The laser absorption sensor provided measurements with the sub-second time resolution needed for gasifier control and more importantly provided precise measurements of H2O in the gasification products, which can be problematic for the typical gas chromatography sensors used by industry.

  14. Breakdown flash at telecom wavelengths in InGaAs avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Shi, Yicheng; Lim, Janet Zheng Jie; Poh, Hou Shun; Tan, Peng Kian; Tan, Peiyu Amelia; Ling, Alexander; Kurtsiefer, Christian

    2017-11-01

    Quantum key distribution (QKD) at telecom wavelengths (1260-1625nm) has the potential for fast deployment due to existing optical fibre infrastructure and mature telecom technologies. At these wavelengths, indium gallium arsenide (InGaAs) avalanche photodiode (APD) based detectors are the preferred choice for photon detection. Similar to their silicon counterparts used at shorter wavelengths, they exhibit fluorescence from recombination of electron-hole pairs generated in the avalanche breakdown process. This fluorescence may open side channels for attacks on QKD systems. Here, we characterize the breakdown fluorescence from two commercial InGaAs single photon counting modules, and find a spectral distribution between 1000nm and 1600nm. We also show that by spectral filtering, this side channel can be efficiently suppressed.

  15. Breakdown flash at telecom wavelengths in InGaAs avalanche photodiodes.

    PubMed

    Shi, Yicheng; Lim, Janet Zheng Jie; Poh, Hou Shun; Tan, Peng Kian; Tan, Peiyu Amelia; Ling, Alexander; Kurtsiefer, Christian

    2017-11-27

    Quantum key distribution (QKD) at telecom wavelengths (1260 - 1625 nm) has the potential for fast deployment due to existing optical fibre infrastructure and mature telecom technologies. At these wavelengths, Indium Gallium Arsenide (InGaAs) avalanche photodiode (APD) based detectors are the preferred choice for photon detection. Similar to their Silicon counterparts used at shorter wavelengths, they exhibit fluorescence from recombination of electron-hole pairs generated in the avalanche breakdown process. This fluorescence may open side channels for attacks on QKD systems. Here, we characterize the breakdown fluorescence from two commercial InGaAs single photon counting modules, and find a spectral distribution between 1000 nm and 1600 nm. We also show that by spectral filtering, this side channel can be efficiently suppressed.

  16. Upstream capacity upgrade in TDM-PON using RSOA based tunable fiber ring laser.

    PubMed

    Yi, Lilin; Li, Zhengxuan; Dong, Yi; Xiao, Shilin; Chen, Jian; Hu, Weisheng

    2012-04-23

    An upstream multi-wavelength shared (UMWS) time division multiplexing passive optical network (TDM-PON) is presented by using a reflective semiconductor amplifier (RSOA) and tunable optical filter (TOF) based directly modulated fiber ring laser as upstream laser source. The stable laser operation is easily achieved no matter what the bandwidth and shape of the TOF is and it can be directly modulated when the RSOA is driven at its saturation region. In this UMWS TDM-PON system, an individual wavelength can be assigned to the user who has a high bandwidth demand by tuning the central wavelength of the TOF in its upgraded optical network unit (ONU), while others maintain their traditional ONU structure and share the bandwidth via time slots, which greatly and dynamically upgrades the upstream capacity. We experimentally demonstrated the bidirectional transmission of downstream data at 10-Gb/s and upstream data at 1.25-Gb/s per wavelength over 25-km single mode fiber (SMF) with almost no power penalty at both ends. A stable performance is observed for the upstream wavelength tuned from 1530 nm to 1595 nm. Moreover, due to the high extinction ratio (ER) of the upstream signal, the burst-mode transmitting is successfully presented and a better time-division multiplexing performance can be obtained by turning off the unused lasers thanks to the rapid formation of the laser in the fiber ring. © 2012 Optical Society of America

  17. Optical Frequency Upconversion Technique for Transmission of Wireless MIMO-Type Signals over Optical Fiber

    PubMed Central

    Shaddad, R. Q.; Mohammad, A. B.; Al-Gailani, S. A.; Al-Hetar, A. M.

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength. PMID:24772009

  18. BPSK optical mm-wave signal generation by septupling frequency via a single optical phase modulator

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Ma, Jianxin

    2016-09-01

    In this paper, we have proposed a novel and simple scheme to generate the BPSK optical millimeter wave (MMW) signal with frequency septupling by using an optical phase modulator (PM) and a wavelength selective switch (WSS). In this scheme, the PM is driven by a radio frequency (RF) BPSK signal at the optimized modulation index of 4.89 to assure the 4th and 3rd-order sidebands have equal amplitudes. An wavelength selective switch (WSS) is used to abstract the -4th and +3rd-order sidebands from the spectrum generated by RF BPSK signal modulating the lightwave to form the BPSK optical MMW signal with frequency septupling the driving RF signal. In these two tones, only the +3rd-order sideband bears the BPSK signal while the -4th-order sideband is unmodulated since the phase information is canceled by the even times multiplication of the phase of BPSK signal. The MMW signal can avoid the pulse walk-off effect and the amplitude fading effect caused by the fiber chromatic dispersion. By adjusting the modulation index to assure the two tones have equal amplitude, the generated optical MMW signal has the maximal opto-electrical conversion efficiency and good transmission performance.

  19. Comparison of Cornea Module and DermaInspect for noninvasive imaging of ocular surface pathologies

    NASA Astrophysics Data System (ADS)

    Steven, Philipp; Müller, Maya; Koop, Norbert; Rose, Christian; Hüttmann, Gereon

    2009-11-01

    Minimally invasive imaging of ocular surface pathologies aims at securing clinical diagnosis without actual tissue probing. For this matter, confocal microscopy (Cornea Module) is in daily use in ophthalmic practice. Multiphoton microscopy is a new optical technique that enables high-resolution imaging and functional analysis of living tissues based on tissue autofluorescence. This study was set up to compare the potential of a multiphoton microscope (DermaInspect) to the Cornea Module. Ocular surface pathologies such as pterygia, papillomae, and nevi were investigated in vivo using the Cornea Module and imaged immediately after excision by DermaInspect. Two excitation wavelengths, fluorescence lifetime imaging and second-harmonic generation (SHG), were used to discriminate different tissue structures. Images were compared with the histopathological assessment of the samples. At wavelengths of 730 nm, multiphoton microscopy exclusively revealed cellular structures. Collagen fibrils were specifically demonstrated by second-harmonic generation. Measurements of fluorescent lifetimes enabled the highly specific detection of goblet cells, erythrocytes, and nevus-cell clusters. At the settings used, DermaInspect reaches higher resolutions than the Cornea Module and obtains additional structural information. The parallel detection of multiphoton excited autofluorescence and confocal imaging could expand the possibilities of minimally invasive investigation of the ocular surface toward functional analysis at higher resolutions.

  20. Microbunching-instability-induced sidebands in a seeded free-electron laser

    DOE PAGES

    Zhang, Zhen; Lindberg, Ryan; Fawley, William M.; ...

    2016-05-02

    Measurements of the multishot-averaged, soft x-ray, self-seeding spectrum at the LCLS free-electron laser often have a pedestal-like distribution around the seeded wavelength, which limits the spectral purity and can negatively affect some user applications not employing a post-undulator monochromator. In this paper, we study the origins of such pedestals, focusing on longitudinal phase space modulations produced by the microbunching instability upstream of the free-electron laser (FEL) undulator. Furthermore, we show from theory and numerical simulation that both energy and density modulations can induce sidebands in a high-gain, seeded FEL whose fractional strength typically grows as the square of the undulatormore » length. The results place a tight constraint on the longitudinal phase space uniformity of the electron beam for a seeded FEL, possibly requiring the amplitude of long-wavelength modulations to be much smaller than the typical incoherent energy spread if the output sideband power is to remain only a couple percent or less of the amplified seed power.« less

  1. Upgrade of an optical network unit in a 40 Gb/s time and wavelength-division multiplexed passive optical network using an upstream tunable colorless laser

    NASA Astrophysics Data System (ADS)

    Bindhaiq, Salem; Supa'at, Abu Sahmah M.; Zulkifli, Nadiatulhuda; Shaddad, Redhwan Q.; Mataria, Abdallah

    2014-07-01

    A high data transmission rate is the main requirement for next-generation telecommunication networks. A design for a 40 Gb/s time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 is presented. The use of a modulated grating Y-branch (MG-Y) laser is proposed as an upstream tunable colorless laser source to upgrade the optical network unit. The electronically tuned MG-Y externally modulated laser with a 10 Gb/s modulation rate is applied to a TWDM-PON and presented across a 3.2-nm tuning range. The performance of the proposed laser is analyzed in terms of bit error rate, eye diagram, and optical signal-to-noise ratio. The proposed TWDM-PON achieved an aggregated data rate of 40 Gb/s along 40 km of bidirectional fiber at a 1:128 splitting ratio without amplification and dispersion compensation.

  2. Conceptual design of a hybrid Ge:Ga detector array

    NASA Technical Reports Server (NTRS)

    Parry, C. M.

    1984-01-01

    For potential applications in space infrared astronomy missions such as the Space Infrared Telescope Facility and the Large Deployable Reflector, integrated arrays of long-wavelength detectors are desired. The results of a feasibility study which developed a design for applying integrated array techniques to a long-wavelength (gallium-doped germanium) material to achieve spectral coverage between 30 and 200 microns are presented. An approach which builds up a two-dimensional array by stacking linear detector modules is presented. The spectral response of the Ge:Ga detectors is extended to 200 microns by application of uniaxial stress to the stack of modules. The detectors are assembled with 1 mm spacing between the elements. Multiplexed readout of each module is accomplished with integration sampling of a metal-oxide-semiconductor (MOS) switch chip. Aspects of the overall design, including the anticipated level of particle effects on the array in the space environment, a transparent electrode design for 200 microns response, estimates of optical crosstalk, and mechanical stress design calculations are included.

  3. A cost-effective WDM-PON architecture simultaneously supporting wired, wireless and optical VPN services

    NASA Astrophysics Data System (ADS)

    Wu, Yanzhi; Ye, Tong; Zhang, Liang; Hu, Xiaofeng; Li, Xinwan; Su, Yikai

    2011-03-01

    It is believed that next-generation passive optical networks (PONs) are required to provide flexible and various services to users in a cost-effective way. To address this issue, for the first time, this paper proposes and demonstrates a novel wavelength-division-multiplexed PON (WDM-PON) architecture to simultaneously support three types of services: 1) wireless access traffic, 2) optical virtual passive network (VPN) communications, and 3) conventional wired services. In the optical line terminal (OLT), we use two cascaded Mach-Zehnder modulators (MZMs) on each wavelength channel to generate an optical carrier, and produce the wireless and the downstream traffic using the orthogonal modulation technique. In each optical network unit (ONU), the obtained optical carrier is modulated by a single MZM to provide the VPN and upstream communications. Consequently, the light sources in the ONUs are saved and the system cost is reduced. The feasibility of our proposal is experimentally and numerically verified.

  4. Resonantly diode laser pumped 1.6-μm Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Garbuzov, Dmitri; Kudryashov, Igor; Dubinskii, Mark

    2005-06-01

    We report what is believed to be the first demonstration of direct resonant diode pumping of a 1.6-mm Er3+-doped bulk solid-state laser (DPSSL). The most of the results is obtained with pumping Er:YAG by the single mode diode laser packaged in fibered modules. The fibered modules, emitting at 1470 nm and 1530 nm wavelength with and without fiber grating (FBG) stabilization, have been used in pumping experiments. The very first results on high power DPSSL operation achieved with diode array pumping also will be presented. The highest absorbed photon conversion efficiency of 26% has been obtained for Er:YAG DPSSL using the 1470-nm single-mode module. Analysis of the DPSSL input-output characteristics suggests that the obtained slope efficiency can be increased at least up to 40% through the reduction of intracavity losses and pumping efficiency improvement. Diode pumped SSL (DPSSL) operates at a wavelength of 1617 nm and 1645 nm.

  5. Extending the applicability of the Arndt formula in wavelength modulation spectroscopy for absorbance in the lower percent range

    NASA Astrophysics Data System (ADS)

    Hartmann, A.; Strzoda, R.; Schrobenhauser, R.; Weigel, R.

    2014-01-01

    The Arndt formula for Lorentzian signals broadened by modulation is enhanced for the usage on 2f WMS (wavelength modulation spectroscopy) signals produced by spectroscopic lines with high absorption (percent range). Next to the first order approach of the Beer-Lambert law, which is covered by the Arndt formula, a second order term is included for a better approximation of the damped Lorentzian line shape. This second order approximation of the 2f signal can be described by a combination of several components created by the Arndt formula. The error of a pure Arndt evaluation and the improvement of the Arndt extended technique are illustrated in the example of a humidity measurement performed at 100 °C and up to 100 vol%. The energy transition at ν=10,526.274910 cm-1 is used in this setup. With the presented technique, the error is reduced by a factor of 90.

  6. Analysis of reflection-peak wavelengths of sampled fiber Bragg gratings with large chirp.

    PubMed

    Zou, Xihua; Pan, Wei; Luo, Bin

    2008-09-10

    The reflection-peak wavelengths (RPWs) in the spectra of sampled fiber Bragg gratings with large chirp (SFBGs-LC) are theoretically investigated. Such RPWs are divided into two parts, the RPWs of equivalent uniform SFBGs (U-SFBGs) and the wavelength shift caused by the large chirp in the grating period (CGP). We propose a quasi-equivalent transform to deal with the CGP. That is, the CGP is transferred into quasi-equivalent phase shifts to directly derive the Fourier transform of the refractive index modulation. Then, in the case of both the direct and the inverse Talbot effect, the wavelength shift is obtained from the Fourier transform. Finally, the RPWs of SFBGs-LC can be achieved by combining the wavelength shift and the RPWs of equivalent U-SFBGs. Several simulations are shown to numerically confirm these predicted RPWs of SFBGs-LC.

  7. Diode-pumped simultaneous multi-wavelength linearly polarized Nd:YVO4 laser at 1062, 1064 and 1066 nm

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping

    2016-01-01

    We report on a diode-end-pumped simultaneous multiple wavelength Nd:YVO4 laser. Dual-wavelength laser is achieved at a π-polarized 1064 nm emission line and a σ-polarized 1066 nm emission line with total maximum output power of 1.38 W. Moreover, tri-wavelength laser emission at the π-polarized 1064 nm emission line and σ-polarized 1062 and 1066 nm emission lines can also be obtained with total maximum output power of about 1.23 W, for the first time to our knowledge. The operation of such simultaneous dual- and tri-wavelength lasers is only realized by employing a simple glass etalon to modulate the intracavity losses for these potential lasing wavelengths inside of an intracavity polarizer, which therefore makes a very compact two-mirror linear cavity and simultaneous orthogonal lasing possible. Such orthogonal linearly polarized multi-wavelength laser sources could be especially promising in THz wave generation and in efficient nonlinear frequency conversion to visible lasers.

  8. A Compact, Tunable Near-UV Source for Quantitative Microgravity Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Peterson, K. A.; Oh, D. B.

    1999-01-01

    There is a need for improved optical diagnostic methods for use in microgravity combustion research. Spectroscopic methods with fast time response that can provide absolute concentrations and concentration profiles of important chemical species in flames are needed to facilitate the understanding of combustion kinetics in microgravity. Although a variety of sophisticated laser-based diagnostics (such as planar laser induced fluorescence, degenerate four wave mixing and coherent Raman methods) have been applied to the study of combustion in laboratory flames, the instrumentation associated with these methods is not well suited to microgravity drop tower or space station platforms. Important attributes of diagnostic systems for such applications include compact size, low power consumption, ruggedness, and reliability. We describe a diode laser-based near-UV source designed with the constraints of microgravity research in mind. Coherent light near 420 nm is generated by frequency doubling in a nonlinear crystal. This light source is single mode with a very narrow bandwidth suitable for gas phase diagnostics, can be tuned over several 1/cm and can be wavelength modulated at up to MHz frequencies. We demonstrate the usefulness of this source for combustion diagnostics by measuring CH radical concentration profiles in an atmospheric pressure laboratory flame. The radical concentrations are measured using wavelength modulation spectroscopy (WMS) to obtain the line-of-sight integrated absorption for different paths through the flame. Laser induced fluorescence (LIF) measurements are also demonstrated with this instrument, showing the feasibility of simultaneous WMS absorption and LIF measurements with the same light source. LIF detection perpendicular to the laser beam can be used to map relative species densities along the line-of-sight while the integrated absorption available through WMS provides a mathematical constraint on the extraction of quantitative information from the LIF data. Combining absorption with LIF - especially if the measurements are made simultaneously with the same excitation beam - may allow elimination of geometrical factors and effects of intensity fluctuations (common difficulties with the analysis of LIF data) from the analysis.

  9. Observation of the Self-Modulation Instability via Time-Resolved Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, M.; Engel, J.; Good, J.

    Self-modulation of an electron beam in a plasma has been observed. The propagation of a long (several plasma wavelengths) electron bunch in an overdense plasma resulted in the production of multiple bunches via the self-modulation instability. Using a combination of a radio-frequency deflector and a dipole spectrometer, the time and energy structure of the self-modulated beam was measured. The longitudinal phase space measurement showed the modulation of a long electron bunch into three bunches with an approximatelymore » $$200\\text{ }\\text{ }\\mathrm{keV}/c$$ amplitude momentum modulation. Demonstrating this effect is a breakthrough for proton-driven plasma accelerator schemes aiming to utilize the same physical effect.« less

  10. Observation of the Self-Modulation Instability via Time-Resolved Measurements

    DOE PAGES

    Gross, M.; Engel, J.; Good, J.; ...

    2018-04-06

    Self-modulation of an electron beam in a plasma has been observed. The propagation of a long (several plasma wavelengths) electron bunch in an overdense plasma resulted in the production of multiple bunches via the self-modulation instability. Using a combination of a radio-frequency deflector and a dipole spectrometer, the time and energy structure of the self-modulated beam was measured. The longitudinal phase space measurement showed the modulation of a long electron bunch into three bunches with an approximatelymore » $$200\\text{ }\\text{ }\\mathrm{keV}/c$$ amplitude momentum modulation. Demonstrating this effect is a breakthrough for proton-driven plasma accelerator schemes aiming to utilize the same physical effect.« less

  11. Systematization method for distinguishing plastic groups by using NIR spectroscopy.

    PubMed

    Kaihara, Mikio; Satoh, Minami; Satoh, Minoru

    2007-07-01

    A systematic classification method for polymers is not yet available in case of using near infrared spectra (NIR). That is why we have been searching for a systematic method. Because raw NIR spectra usually have few obvious peaks, NIR spectra have been pretreated by 2nd derivation for taking well modulated spectra. After the pretreatment, we applied classification and regression trees (CART) to the discrimination between the spectra and the species of polymers. As a result, we obtained a relatively simple classification tree. Judging from the obtained splitting conditions and the classified polymers, we concluded that obtained knowledge on the chemical function groups estimated by the important wavelength regions is not always applicable to this classification tree. However, we clarified the splitting rules for polymer species from the NIR spectral point of view.

  12. Construction of the Zeus forward/rear calorimeter modules at NIKHEF

    NASA Astrophysics Data System (ADS)

    Blankers, R.; Engelen, J.; Geerinck, H.; Homma, J.; Hunck, P.; Dekoning, N.; Kooijman, P.; Korporaal, A.; Loos, R.; Straver, J.

    1990-07-01

    The design and assembly procedure of the FCAL/RCAL (Forward (in proton direction) Calorimeter/Rear (in electron direction) Calorimeter) of the Zeus detector to study electron proton interactions at Desy, Hamburg (Germany, F.R.) are detailed. The main components of the modules are described: steel C-frame which provides the overall mechanical module structure; a stack of depleted uranium plates and scintillator plates; wavelength shifter material, mounted in cassettes for the readout of the scintillator light; stainless steel straps which compress the stack and fix it to the C-frame. Finite element techniques for module force calculations are outlined. The module assembly and transport and calibration tools are described.

  13. Non-destructive evaluation of water ingress in photovoltaic modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bora, Mihail; Kotovsky, Jack

    Systems and techniques for non-destructive evaluation of water ingress in photovoltaic modules include and/or are configured to illuminate a photovoltaic module comprising a photovoltaic cell and an encapsulant with at least one beam of light having a wavelength in a range from about 1400 nm to about 2700 nm; capture one or more images of the illuminated photovoltaic module, each image relating to a water content of the photovoltaic module; and determine a water content of the photovoltaic module based on the one or more images. Systems preferably include one or more of a light source, a moving mirror, amore » focusing lens, a beam splitter, a stationary mirror, an objective lens and an imaging module.« less

  14. Optical ultra-wide-band pulse bipolar and shape modulation based on a symmetric PM-IM conversion architecture.

    PubMed

    Wang, Shiguang; Chen, Hongwei; Xin, Ming; Chen, Minghua; Xie, Shizhong

    2009-10-15

    A simple and feasible technique for ultra-wide-band (UWB) pulse bipolar modulation (PBM) and pulse shape modulation (PSM) in the optical domain is proposed and demonstrated. The PBM and PSM are performed using a symmetric phase modulation to intensity modulation conversion architecture, including a couple of phase modulators and an optical bandpass filter (OBPF). Two optical carriers, which are separately phase modulated by two appropriate electrical pulse patterns, are at the long- and short-wavelength linear slopes of the OBPF spectrum, respectively. The high-speed PBM and PSM without limit of chip length, polarity, and shape are implemented in simulation and are also verified by experiment. (c) 2009 Optical Society of America.

  15. Design and analysis of photonic optical switches with improved wavelength selectivity

    NASA Astrophysics Data System (ADS)

    Wielichowski, Marcin; Patela, Sergiusz

    2005-09-01

    Efficient optical modulators and switches are the key elements of the future all-optical fiber networks. Aside from numerous advantages, the integrated optical devices suffer from excessive longitudinal dimensions. The dimensions may be significantly reduced with help of periodic structures, such as Bragg gratings, arrayed waveguides or multilayer structures. In this paper we describe methods of analysis and example of analytical results of a photonic switch with properties modified by the application of periodic change of effective refractive index. The switch is composed of a strip-waveguide directional coupler and a transversal Bragg grating.

  16. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, A.R.

    1984-02-21

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon, which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPB for each wavelength. A probe electrode immersed in an electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 voltsmore » couples the SPV to a measurement system. The redox couple solution functions to create a liquid Schottky barrier at the surface of the material. The Schottky barrier is contacted by merely placing the probe in the solution. The redox solution is placed over and in contact with the material to be tested and light is passed through the solution to generate the SPV. To compensate for colored redox solutions a portion of the redox solution not over the material is also illuminated for determining the color compensated light intensity. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.« less

  17. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Moore, Arnold R.

    1984-02-21

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon, which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV for each wavelength. A probe electrode immersed in an electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 volts couples the SPV to a measurement system. The redox couple solution functions to create a liquid Schottky barrier at the surface of the material. The Schottky barrier is contacted by merely placing the probe in the solution. The redox solution is placed over and in contact with the material to be tested and light is passed through the solution to generate the SPV. To compensate for colored redox solutions a portion of the redox solution not over the material is also illuminated for determining the color compensated light intensity. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.

  18. A method of reducing background fluctuation in tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Rendi; Dong, Xiaozhou; Bi, Yunfeng; Lv, Tieliang

    2018-03-01

    Optical interference fringe is the main factor that leads to background fluctuation in gas concentration detection based on tunable diode laser absorption spectroscopy. The interference fringes are generated by multiple reflections or scatterings upon optical surfaces in optical path and make the background signal present an approximated sinusoidal oscillation. To reduce the fluctuation of the background, a method that combines dual tone modulation (DTM) with vibration reflector (VR) is proposed in this paper. The combination of DTM and VR can make the unwanted periodic interference fringes to be averaged out and the effectiveness of the method in reducing background fluctuation has been verified by simulation and real experiments in this paper. In the detection system based on the proposed method, the standard deviation (STD) value of the background signal is decreased to 0.0924 parts per million (ppm), which is reduced by a factor of 16 compared with that of wavelength modulation spectroscopy. The STD value of 0.0924 ppm corresponds to the absorption of 4 . 328 × 10-6Hz - 1 / 2 (with effective optical path length of 4 m and integral time of 0.1 s). Moreover, the proposed method presents a better stable performance in reducing background fluctuation in long time experiments.

  19. Fiber optical parametric amplifiers in optical communication systems

    PubMed Central

    Marhic (†), Michel E; Andrekson, Peter A; Petropoulos, Periklis; Radic, Stojan; Peucheret, Christophe; Jazayerifar, Mahmoud

    2015-01-01

    The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time-division multiplexed formats. High-quality mid-span spectral inversion has been demonstrated at 0.64 Tb/s, avoiding electronic dispersion compensation. All-optical amplitude regeneration of amplitude-modulated signals has been performed, while PSAs have been used to demonstrate phase regeneration of phase-modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512 Gb/s have been transmitted over 6,000 km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products in excess of 14,000 Tb/s × km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed. PMID:25866588

  20. MODIS Aqua Optical Throughput Degradation Impact on Relative Spectral Response and Calibration on Ocean Color Products

    NASA Technical Reports Server (NTRS)

    Lee, Shihyan; Meister, Gerhard

    2017-01-01

    Since Moderate Resolution Imaging Spectroradiometer Aqua's launch in 2002, the radiometric system gains of the reflective solar bands have been degrading, indicating changes in the systems optical throughput. To estimate the optical throughput degradation, the electronic gain changes were estimated and removed from the measured system gain. The derived optical throughput degradation shows a rate that is much faster in the shorter wavelengths than the longer wavelengths. The wavelength-dependent optical throughput degradation modulated the relative spectral response (RSR) of the bands. In addition, the optical degradation is also scan angle-dependent due to large changes in response versus the scan angle over time. We estimated the modulated RSR as a function of time and scan angles and its impacts on sensor radiometric calibration for the ocean science. Our results show that the calibration bias could be up to 1.8 % for band 8 (412 nm) due to its larger out-of-band response. For the other ocean bands, the calibration biases are much smaller with magnitudes at least one order smaller.

  1. Enhanced Pulse Compression in Nonlinear Fiber by a WDM Optical Pulse

    NASA Technical Reports Server (NTRS)

    Yeh, C.; Bergman, L.

    1997-01-01

    A new way to compress an optical pulse in a single-mode fiber is presented in this paper. By the use of the cross phase modulation (CPM) effect caused by the nonlinearity of the optical fiber, a shepherd pulse propagating on a different wavelength beam in a wavelength division multiplexed (WDM) single-mode fiber system can be used to enhance the pulse compression of a co-propagating primary pulse.

  2. Silicon based mechanic-photonic wavelength converter for infrared photo-detection

    NASA Astrophysics Data System (ADS)

    Rudnitsky, Arkady; Agdarov, Sergey; Gulitsky, Konstantin; Zalevsky, Zeev

    2017-06-01

    In this paper we present a new concept to realize a mechanic-photonic wavelength converter in silicon chip by construction of nanorods and by modulating the input illumination at temporal frequency matched to the mechanic resonance of the nanorods. The use case is to realize an infrared photo detector in silicon which is not based on absorption but rather on the mechanical interaction of the nanorods with the incoming illumination.

  3. [Remote system of natural gas leakage based on multi-wavelength characteristics spectrum analysis].

    PubMed

    Li, Jing; Lu, Xu-Tao; Yang, Ze-Hui

    2014-05-01

    In order to be able to quickly, to a wide range of natural gas pipeline leakage monitoring, the remote detection system for concentration of methane gas was designed based on static Fourier transform interferometer. The system used infrared light, which the center wavelength was calibrated to absorption peaks of methane molecules, to irradiated tested area, and then got the interference fringes by converging collimation system and interference module. Finally, the system calculated the concentration-path-length product in tested area by multi-wavelength characteristics spectrum analysis algorithm, furthermore the inversion of the corresponding concentration of methane. By HITRAN spectrum database, Selected wavelength position of 1. 65 microm as the main characteristic absorption peaks, thereby using 1. 65 pm DFB laser as the light source. In order to improve the detection accuracy and stability without increasing the hardware configuration of the system, solved absorbance ratio by the auxiliary wave-length, and then get concentration-path-length product of measured gas by the method of the calculation proportion of multi-wavelength characteristics. The measurement error from external disturbance is caused by this innovative approach, and it is more similar to a differential measurement. It will eliminate errors in the process of solving the ratio of multi-wavelength characteristics, and can improve accuracy and stability of the system. The infrared absorption spectrum of methane is constant, the ratio of absorbance of any two wavelengths by methane is also constant. The error coefficients produced by the system is the same when it received the same external interference, so the measured noise of the system can be effectively reduced by the ratio method. Experimental tested standards methane gas tank with leaking rate constant. Using the tested data of PN1000 type portable methane detector as the standard data, and were compared to the tested data of the system, while tested distance of the system were 100, 200 and 500 m. Experimental results show that the methane concentration detected value was stable after a certain time leakage, the concentration-path-length product value of the system was stable. For detection distance of 100 m, the detection error of the concentration-path-length product was less than 1. 0%. With increasing distance from tested area, the detection error is increased correspondingly. When the distance was 500 m, the detection error was less than 4. 5%. In short, the detected error of the system is less than 5. 0% after the gas leakage stable, to meet the requirements of the field of natural gas leakage remote sensing.

  4. The radio-on-fiber-wavelength-division-multiplexed-passive-optical network (WDM-RoF-PON) for wireless and wire layout with linearly-polarized dual-wavelength fiber laser and carrier reusing

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Chang, Jun

    2013-07-01

    In this paper, we design a WDM-RoF-PON based on linearly-polarized dual-wavelength fiber laser and CSRZ-DPSK, which can achieve wire-line and wireless access synchronously. With the CSRZ-DPSK modulation, the wireless access in ONU can save RF source and the frequency of radio carrier can be controlled by OLT. The dual-wavelength fiber laser is the union light source of WDM-PON with polarization multiplexing. By the RSOA and downstream light source reusing, the ONU can save omit laser source and makes the WDM-PON to be colorless. The networking has the credible transmission property, including wireless access and fiber transmission. The networking also has excellent covering range.

  5. High speed and high resolution interrogation of a fiber Bragg grating sensor based on microwave photonic filtering and chirped microwave pulse compression.

    PubMed

    Xu, Ou; Zhang, Jiejun; Yao, Jianping

    2016-11-01

    High speed and high resolution interrogation of a fiber Bragg grating (FBG) sensor based on microwave photonic filtering and chirped microwave pulse compression is proposed and experimentally demonstrated. In the proposed sensor, a broadband linearly chirped microwave waveform (LCMW) is applied to a single-passband microwave photonic filter (MPF) which is implemented based on phase modulation and phase modulation to intensity modulation conversion using a phase modulator (PM) and a phase-shifted FBG (PS-FBG). Since the center frequency of the MPF is a function of the central wavelength of the PS-FBG, when the PS-FBG experiences a strain or temperature change, the wavelength is shifted, which leads to the change in the center frequency of the MPF. At the output of the MPF, a filtered chirped waveform with the center frequency corresponding to the applied strain or temperature is obtained. By compressing the filtered LCMW in a digital signal processor, the resolution is improved. The proposed interrogation technique is experimentally demonstrated. The experimental results show that interrogation sensitivity and resolution as high as 1.25 ns/με and 0.8 με are achieved.

  6. Simulation and Spectrum Extraction in the Spectroscopic Channel of the SNAP Experiment

    NASA Astrophysics Data System (ADS)

    Tilquin, Andre; Bonissent, A.; Gerdes, D.; Ealet, A.; Prieto, E.; Macaire, C.; Aumenier, M. H.

    2007-05-01

    A pixel-level simulation software is described. It is composed of two modules. The first module applies Fourier optics at each active element of the system to construct the PSF at a large variety of wavelengths and spatial locations of the point source. The input is provided by the engineer's design program (Zemax). It describes the optical path and the distortions. The PSF properties are compressed and interpolated using shapelets decomposition and neural network techniques. A second module is used for production jobs. It uses the output of the first module to reconstruct the relevant PSF and integrate it on the detector pixels. Extended and polychromatic sources are approximated by a combination of monochromatic point sources. For the spectrum extraction, we use a fast simulator based on a multidimensional linear interpolation of the pixel response tabulated on a grid of values of wavelength, position on sky and slice number. The prediction of the fast simulator is compared to the observed pixel content, and a chi-square minimization where the parameters are the bin contents is used to build the extracted spectrum. The visible and infrared arms are combined in the same chi-square, providing a single spectrum.

  7. Full-band TDM-OPDMA for OBI-reduced simultaneous multiple access in a single-wavelength optical access network.

    PubMed

    Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook

    2018-05-14

    Simultaneous multiple access (MA) within a single wavelength can increase the data rate and split ratio in a passive optical network while optical beat interference (OBI) becomes serious in the uplink. Previous techniques to reduce OBI were limited by their complexity and lack of extendibility; as well, bandwidth allocation among MA signals is needed for single photo diode (PD) detection. We proposed and experimentally demonstrated full-band optical pulse division multiplexing-based MA (OPDMA) in an optical access network, which can effectively reduce OBI with extendibility and fully utilize frequency resources of optical modulator without bandwidth allocation in a single-wavelength MA.

  8. Design and fabrication of a diffractive beam splitter for dual-wavelength and concurrent irradiation of process points.

    PubMed

    Amako, Jun; Shinozaki, Yu

    2016-07-11

    We report on a dual-wavelength diffractive beam splitter designed for use in parallel laser processing. This novel optical element generates two beam arrays of different wavelengths and allows their overlap at the process points on a workpiece. To design the deep surface-relief profile of a splitter using a simulated annealing algorithm, we introduce a heuristic but practical scheme to determine the maximum depth and the number of quantization levels. The designed corrugations were fabricated in a photoresist by maskless grayscale exposure using a high-resolution spatial light modulator. We characterized the photoresist splitter, thereby validating the proposed beam-splitting concept.

  9. Frequency stabilized diode laser with variable linewidth at a wavelength of 404.7  nm.

    PubMed

    Rein, Benjamin; Walther, Thomas

    2017-04-15

    We report on a frequency stabilized laser system with a variable linewidth at a wavelength of 404.7 nm used as an incoherent repump on the 6P30↔7S31 transition in mercury. By directly modulating the laser diode current with Gaussian white noise, the laser linewidth can be broadened up to 68 MHz. A Doppler-free dichroic atomic vapor laser lock spectroscopy provides an error signal suitable for frequency stabilization even for the broadened laser. Without the need of an acousto-optic modulator for the linewidth tuning or lock-in technique for frequency stabilization, this laser system provides an inexpensive approach for an incoherent and highly efficient repumper in atomic experiments.

  10. kW-class direct diode laser for sheet metal cutting based on DWDM of pump modules by use of ultra-steep dielectric filters.

    PubMed

    Witte, U; Schneider, F; Traub, M; Hoffmann, D; Drovs, S; Brand, T; Unger, A

    2016-10-03

    A direct diode laser was built with > 800 W output power at 940 nm to 980 nm. The radiation is coupled into a 100 µm fiber and the NA ex fiber is 0.17. The laser system is based on pump modules that are wavelength stabilized by VBGs. Dense and coarse wavelength multiplexing are realized with commercially available ultra-steep dielectric filters. The electro-optical efficiency is above 30%. Based on a detailed analysis of losses, an improved e-o-efficiency in the range of 40% to 45% is expected in the near future. System performance and reliability were demonstrated with sheet metal cutting tests on stainless steel with a thickness of 4.2 mm.

  11. High-speed photonically assisted analog-to-digital conversion using a continuous wave multiwavelength source and phase modulation.

    PubMed

    Bortnik, Bartosz J; Fetterman, Harold R

    2008-10-01

    A more simple photonically assisted analog-to-digital conversion system utilizing a cw multiwavelength source and phase modulation instead of a mode-locked laser is presented. The output of the cw multiwavelength source is launched into a dispersive device (such as a single-mode fiber). This fiber creates a pulse train, where the central wavelength of each pulse corresponds to a spectral line of the optical source. The pulses can then be either dispersed again to perform discrete wavelength time stretching or demultiplexed for continuous time analog-to-digital conversion. We experimentally demonstrate the operation of both time stretched and interleaved systems at 38 GHz. The potential of integrating this type of system on a monolithic chip is discussed.

  12. A novel phase retrieval method from three-wavelength in-line phase-shifting interferograms based on positive negative 2π phase shifts

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqing; Wang, Yawei; Ji, Ying; Xu, Yuanyuan; Xie, Ming

    2018-01-01

    A new method to extract quantitative phases for each wavelength from three-wavelength in-line phase-shifting interferograms is proposed. Firstly, seven interferograms with positive negative 2π phase shifts are sequentially captured by using the phase-shifting technique. Secondly, six dc-term suppressed intensities can be achieved by the use of the algebraic algorithm. Finally, the wrapped phases at the three wavelengths can be acquired simultaneously from these six interferograms add-subtracting by employing the trigonometric function method. The surface morphology with increased ambiguity-free range at synthetic beat wavelength can be obtained, while maintaining the low noise precision of the single wavelength measurement, by combining this method with three-wavelength phase unwrapping method. We illustrate the principle of this algorithm, and the simulated experiments of the spherical cap and the HeLa cell are conducted to prove our proposed method, respectively.

  13. Cloning, purification, crystallization and preliminary X-ray studies of a carbohydrate-binding module from family 64 (StX).

    PubMed

    Campos, Bruna Medeia; Liberato, Marcelo Vizona; Polikarpov, Igor; Zeri, Ana Carolina de Mattos; Squina, Fabio Marcio

    2015-03-01

    In recent years, biofuels have attracted great interest as a source of renewable energy owing to the growing global demand for energy, the dependence on fossil fuels, limited natural resources and environmental pollution. However, the cost-effective production of biofuels from plant biomass is still a challenge. In this context, the study of carbohydrate-binding modules (CBMs), which are involved in guiding the catalytic domains of glycoside hydrolases to polysaccharides, is crucial for enzyme development. Aiming at the structural and functional characterization of novel CBMs involved in plant polysaccharide deconstruction, an analysis of the CAZy database was performed and CBM family 64 was chosen owing to its capacity to bind with high specificity to microcrystalline cellulose and to the fact that is found in thermophilic microorganisms. In this communication, the CBM-encoding module named StX was expressed, purified and crystallized, and X-ray diffraction data were collected from native and derivatized crystals to 1.8 and 2.0 Å resolution, respectively. The crystals, which were obtained by the hanging-drop vapour-diffusion method, belonged to space group P3121, with unit-cell parameters a = b = 43.42, c = 100.96 Å for the native form. The phases were found using the single-wavelength anomalous diffraction method.

  14. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui

    2018-01-01

    We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis.

  15. Manipulations of Wavefront Propagation: Useful Methods and Applications for Interferometric Measurements and Scanning

    PubMed Central

    Novoselski, Eitan; Yifrach, Ariel; Lanzmann, Emmanuel; Arieli, Yoel

    2017-01-01

    Phase measurements obtained by high-coherence interferometry are restricted by the 2π ambiguity, to height differences smaller than λ/2. A further restriction in most interferometric systems is for focusing the system on the measured object. We present two methods that overcome these restrictions. In the first method, different segments of a measured wavefront are digitally propagated and focused locally after measurement. The divergent distances, by which the diverse segments of the wavefront are propagated in order to achieve a focused image, provide enough information so as to resolve the 2π ambiguity. The second method employs an interferogram obtained by a spectrum constituting a small number of wavelengths. The magnitude of the interferogram's modulations is utilized to resolve the 2π ambiguity. Such methods of wavefront propagation enable several applications such as focusing and resolving the 2π ambiguity, as described in the article. PMID:29109825

  16. Optimisation of frequency-modulated characteristics of output radiation in a lidar with Raman amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigorievsky, V I; Tezadov, Ya A

    2016-03-31

    The reported study is aimed at increasing the power in the transmission path of a lidar with Raman amplification for longpath sensing of methane by optimising the frequency-modulated characteristics of the output radiation. The pump current of the used distributed-feedback master laser was modulated by a linearfrequency signal with simultaneous application of a non-synchronous high-frequency signal. For such a modulation regime, the Raman amplifier provided the mean output power of 2.5 W at a wavelength of 1650 nm. The spectral broadening did not significantly decrease the lidar sensitivity at long paths. (lidars)

  17. Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy.

    PubMed

    Yi, X; Vahala, K; Li, J; Diddams, S; Ycas, G; Plavchan, P; Leifer, S; Sandhu, J; Vasisht, G; Chen, P; Gao, P; Gagne, J; Furlan, E; Bottom, M; Martin, E C; Fitzgerald, M P; Doppmann, G; Beichman, C

    2016-01-27

    An important technique for discovering and characterizing planets beyond our solar system relies upon measurement of weak Doppler shifts in the spectra of host stars induced by the influence of orbiting planets. A recent advance has been the introduction of optical frequency combs as frequency references. Frequency combs produce a series of equally spaced reference frequencies and they offer extreme accuracy and spectral grasp that can potentially revolutionize exoplanet detection. Here we demonstrate a laser frequency comb using an alternate comb generation method based on electro-optical modulation, with the comb centre wavelength stabilized to a molecular or atomic reference. In contrast to mode-locked combs, the line spacing is readily resolvable using typical astronomical grating spectrographs. Built using commercial off-the-shelf components, the instrument is relatively simple and reliable. Proof of concept experiments operated at near-infrared wavelengths were carried out at the NASA Infrared Telescope Facility and the Keck-II telescope.

  18. Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy

    PubMed Central

    Yi, X.; Vahala, K.; Li, J.; Diddams, S.; Ycas, G.; Plavchan, P.; Leifer, S.; Sandhu, J.; Vasisht, G.; Chen, P.; Gao, P.; Gagne, J.; Furlan, E.; Bottom, M.; Martin, E. C.; Fitzgerald, M. P.; Doppmann, G.; Beichman, C.

    2016-01-01

    An important technique for discovering and characterizing planets beyond our solar system relies upon measurement of weak Doppler shifts in the spectra of host stars induced by the influence of orbiting planets. A recent advance has been the introduction of optical frequency combs as frequency references. Frequency combs produce a series of equally spaced reference frequencies and they offer extreme accuracy and spectral grasp that can potentially revolutionize exoplanet detection. Here we demonstrate a laser frequency comb using an alternate comb generation method based on electro-optical modulation, with the comb centre wavelength stabilized to a molecular or atomic reference. In contrast to mode-locked combs, the line spacing is readily resolvable using typical astronomical grating spectrographs. Built using commercial off-the-shelf components, the instrument is relatively simple and reliable. Proof of concept experiments operated at near-infrared wavelengths were carried out at the NASA Infrared Telescope Facility and the Keck-II telescope. PMID:26813804

  19. A spectrally tunable all-graphene-based flexible field-effect light-emitting device

    PubMed Central

    Wang, Xiaomu; Tian, He; Mohammad, Mohammad Ali; Li, Cheng; Wu, Can; Yang, Yi; Ren, Tian-Ling

    2015-01-01

    The continuous tuning of the emission spectrum of a single light-emitting diode (LED) by an external electrical bias is of great technological significance as a crucial property in high-quality displays, yet this capability has not been demonstrated in existing LEDs. Graphene, a tunable optical platform, is a promising medium to achieve this goal. Here we demonstrate a bright spectrally tunable electroluminescence from blue (∼450 nm) to red (∼750 nm) at the graphene oxide/reduced-graphene oxide interface. We explain the electroluminescence results from the recombination of Poole–Frenkel emission ionized electrons at the localized energy levels arising from semi-reduced graphene oxide, and holes from the top of the π band. Tuning of the emission wavelength is achieved by gate modulation of the participating localized energy levels. Our demonstration of current-driven tunable LEDs not only represents a method for emission wavelength tuning but also may find applications in high-quality displays. PMID:26178323

  20. An analog method of cross-talk compensation for a RGB wavelength division multiplexed optical link

    NASA Astrophysics Data System (ADS)

    Chisholm, George; Leveneur, Jérôme; Futter, John; Kennedy, John

    2018-06-01

    Pulse-width modulation (PWM) over optical fiber can be a very advantageous data transmission approach when an electrically isolated data link is required. The use of wavelength division multiplexing allows multiple data streams to be sent through a single fiber independently. The present investigation aims to demonstrate a novel approach to reduce cross-talk in a three-channel RGB optical link without the need for complex optical componentry. An op-amp circuit is developed to reduce the cross-talk so that the resolution of the PWM data is preserved. An iterative Monte-Carlo simulation approach is used to optimize the op-amp circuit. The approach is developed for a set of three PWM Hall effect magnetometers with 12-bit resolution and 128 Hz sampling rate. We show that, in these conditions, the loss of resolution due to cross-talk is prevented. We also show that the cross-talk compensation allows the RGB PWM link to outperform other transmission schemes.

  1. Design of a tunable graphene plasmonic-on-white graphene switch at infrared range

    NASA Astrophysics Data System (ADS)

    Farmani, Ali; Zarifkar, Abbas; Sheikhi, Mohammad H.; Miri, Mehdi

    2017-12-01

    A tunable Y-branch graphene plasmonic switch operating at the wavelength of 1.55 μm is proposed in which graphene is placed on white graphene. The switch structure is investigated analytically and numerically by the finite difference time domain method. The graphene plasmonic switch considered here supports both transverse magnetic and transverse electric graphene plasmons whose propagation characteristics can be controlled by modulating the external electric field and the temperature of graphene. Our calculations show that by strong coupling between the incident waves and the graphene plasmons of the structure, a high polarization extinction ratio of 45 dB and relatively large bandwidth of 150 nm around the central wavelength of 1.55 μm are achievable. Furthermore, the application of white graphene as the substrate of graphene decreases the propagation loss of the graphene plasmons and the required applied electric field. It is also shown that the propagation mode of the graphene plasmons can be tuned by changing the temperature and the calculated threshold temperature is 650 K.

  2. Polarized optical absorption and photoluminescence measurements in single-crystal thin films of 4'-dimethylamino-N-methyl-4-stilbazolium tosylate

    NASA Astrophysics Data System (ADS)

    Bhowmik, Achintya K.; Xu, Jianjun; Thakur, Mrinal

    1999-11-01

    Single-crystal thin films of the anhydrous (red) and the hydrated (orange) phases of the organic salt 4'-dimethylamino-N-methyl-4-stilbazolium tosylate were grown by a modification of the shear method. The optical absorption coefficients of the films were measured with light polarized along and normal to the dipole/molecular axis at both resonant and off-resonant wavelengths, and a strong dichroism was observed at the resonant wavelengths. The absorption measurements are important considering potential applications of these films (red phase) in high-speed single-pass thin-film electro-optic modulators [M. Thakur, J. Xu, A. Bhowmik, and L. Zhou, Appl. Phys. Lett. 74, 635 (1999)] and other photonic devices. Highly polarized photoluminescence (PL) has been observed in these films. The PL efficiencies of the red- and orange-phase single-crystal films were measured to be about 12% and 14%, respectively, which are significantly higher than the maximum PL efficiency measured in solution (3%).

  3. Research on fiber-optic cantilever-enhanced photoacoustic spectroscopy for trace gas detection

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Zhou, Xinlei; Gong, Zhenfeng; Yu, Shaochen; Qu, Chao; Guo, Min; Yu, Qingxu

    2018-01-01

    We demonstrate a new scheme of cantilever-enhanced photoacoustic spectroscopy, combining a sensitivity-improved fiber-optic cantilever acoustic sensor with a tunable high-power fiber laser, for trace gas detection. The Fabry-Perot interferometer based cantilever acoustic sensor has advantages such as high sensitivity, small size, easy to install and immune to electromagnetic. Tunable erbium-doped fiber ring laser with an erbium-doped fiber amplifier is used as the light source for acoustic excitation. In order to improve the sensitivity for photoacoustic signal detection, a first-order longitudinal resonant photoacoustic cell with the resonant frequency of 1624 Hz and a large size cantilever with the first resonant frequency of 1687 Hz are designed. The size of the cantilever is 2.1 mm×1 mm, and the thickness is 10 μm. With the wavelength modulation spectrum and second-harmonic detection methods, trace ammonia (NH3) has been measured. The gas detection limits (signal-to-noise ratio = 1) near the wavelength of 1522.5 nm is achieved to be 3 ppb.

  4. Peptide secondary structure modulates single-walled carbon nanotube fluorescence as a chaperone sensor for nitroaromatics

    PubMed Central

    Heller, Daniel A.; Pratt, George W.; Zhang, Jingqing; Nair, Nitish; Hansborough, Adam J.; Boghossian, Ardemis A.; Reuel, Nigel F.; Barone, Paul W.; Strano, Michael S.

    2011-01-01

    A class of peptides from the bombolitin family, not previously identified for nitroaromatic recognition, allows near-infrared fluorescent single-walled carbon nanotubes to transduce specific changes in their conformation. In response to the binding of specific nitroaromatic species, such peptide–nanotube complexes form a virtual “chaperone sensor,” which reports modulation of the peptide secondary structure via changes in single-walled carbon nanotubes, near-infrared photoluminescence. A split-channel microscope constructed to image quantized spectral wavelength shifts in real time, in response to nitroaromatic adsorption, results in the first single-nanotube imaging of solvatochromic events. The described indirect detection mechanism, as well as an additional exciton quenching-based optical nitroaromatic detection method, illustrate that functionalization of the carbon nanotube surface can result in completely unique sites for recognition, resolvable at the single-molecule level. PMID:21555544

  5. Three-dimensional cross point readout detector design for including depth information

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Jae; Baek, Cheol-Ha

    2018-04-01

    We designed a depth-encoding positron emission tomography (PET) detector using a cross point readout method with wavelength-shifting (WLS) fibers. To evaluate the characteristics of the novel detector module and the PET system, we used the DETECT2000 to perform optical photon transport in the crystal array. The GATE was also used. The detector module is made up of four layers of scintillator arrays, the five layers of WLS fiber arrays, and two sensor arrays. The WLS fiber arrays in each layer cross each other to transport light to each sensor array. The two sensor arrays are coupled to the forward and left sides of the WLS fiber array, respectively. The identification of three-dimensional pixels was determined using a digital positioning algorithm. All pixels were well decoded, with the system resolution ranging from 2.11 mm to 2.29 mm at full width at half maximum (FWHM).

  6. 2D XAFS-XEOL Spectroscopy - Some recent developments

    NASA Astrophysics Data System (ADS)

    Ward, M. J.; Smith, J. G.; Regier, T. Z.; Sham, T. K.

    2013-03-01

    The use of optical photons to measure the modulation of the absorption coefficient upon X-ray excitation, or optical XAFS, is of particular interest for application to the study of light emitting semiconducting nanomaterials due to the additional information that may be gained. The potential for site-selectivity, elemental and excitation energy specific luminescence decay channels, and surface vs. bulk effects all make the use of X-ray excited optical luminescence (XEOL) desirable as a detection method. Previous experiments have made use of a monochromator to select the optical emission wavelength used to monitor optical XAFS. This method of detection suffers from the primary limitation of only being able to monitor the optical response at one emission wavelength. By combining the high resolution soft X-ray Spherical Grating Monochromator beam-line at the Canadian Light Source with an Ocean Optics QE 65000 fast CCD spectrophotometer and custom integration software we have developed a technique for collecting 2D XAFS-XEOL spectra, in which the excitation energy is scanned and a XEOL spectra is collected for every energy value. Herein we report the development of this technique and its capabilities using the study of the luminescence emitted from single crystal zinc oxide as an example.

  7. Noninvasive hemoglobin measurement using dynamic spectrum

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoqing; Li, Gang; Lin, Ling

    2017-08-01

    Spectroscopy methods for noninvasive hemoglobin (Hgb) measurement are interfered by individual difference and particular weak signal. In order to address these problems, we have put forward a series of improvement methods based on dynamic spectrum (DS), including instrument design, spectrum extraction algorithm, and modeling approach. The instrument adopts light sources composed of eight laser diodes with the wavelength range from 600 nm to 1100 nm and records photoplethysmography signals at eight wavelengths synchronously. In order to simplify the optical design, we modulate the light sources with orthogonal square waves and design the corresponding demodulation algorithm, instead of adopting a beam-splitting system. A newly designed algorithm named difference accumulation has been proved to be effective in improving the accuracy of dynamic spectrum extraction. 220 subjects are involved in the clinical experiment. An extreme learning machine calibration model between the DS data and the Hgb levels is established. Correlation coefficient and root-mean-square error of prediction sets are 0.8645 and 8.48 g/l, respectively. The results indicate that the Hgb level can be derived by this approach noninvasively with acceptable precision and accuracy. It is expected to achieve a clinic application in the future.

  8. Sub-diffraction-limit localization imaging of a plasmonic nanoparticle pair with wavelength-resolved dark-field microscopy.

    PubMed

    Wei, Lin; Ma, Yanhong; Zhu, Xupeng; Xu, Jianghong; Wang, Yaxin; Duan, Huigao; Xiao, Lehui

    2017-06-29

    In this work, with wavelength-resolved dark-field microscopy, the center-of-mass localization information from nanoparticle pairs (i.e., spherical (45 nm in diameter) and rod (45 × 70 nm) shaped gold nanoparticle pairs with different gap distances and orientations) was explored and compared with the results determined by scanning electron microscopy (SEM) measurements. When the gap distance was less than 20 nm, the scattering spectrum of the nanoparticle pair was seriously modulated by the plasmonic coupling effect. The measured coordinate information determined by the optical method (Gaussian fitting) was not consistent with the true results determined by SEM measurement. A good correlation between the optical and SEM measurements was achieved when the gap distance was further increased (e.g., 20, 40 and 60 nm). Under these conditions, well-defined scattering peaks assigned to the corresponding individual nanoparticles could be distinguished from the obtained scattering spectrum. These results would afford valuable information for the studies on single plasmonic nanoparticle imaging applications with the optical microscopy method such as super-localization imaging, high precision single particle tracking in a crowding environment and so on.

  9. Connecting active to passive fluorescence with photosynthesis: a method for evaluating remote sensing measurements of Chl fluorescence.

    PubMed

    Magney, Troy S; Frankenberg, Christian; Fisher, Joshua B; Sun, Ying; North, Gretchen B; Davis, Thomas S; Kornfeld, Ari; Siebke, Katharina

    2017-09-01

    Recent advances in the retrieval of Chl fluorescence from space using passive methods (solar-induced Chl fluorescence, SIF) promise improved mapping of plant photosynthesis globally. However, unresolved issues related to the spatial, spectral, and temporal dynamics of vegetation fluorescence complicate our ability to interpret SIF measurements. We developed an instrument to measure leaf-level gas exchange simultaneously with pulse-amplitude modulation (PAM) and spectrally resolved fluorescence over the same field of view - allowing us to investigate the relationships between active and passive fluorescence with photosynthesis. Strongly correlated, slope-dependent relationships were observed between measured spectra across all wavelengths (F λ , 670-850 nm) and PAM fluorescence parameters under a range of actinic light intensities (steady-state fluorescence yields, F t ) and saturation pulses (maximal fluorescence yields, F m ). Our results suggest that this method can accurately reproduce the full Chl emission spectra - capturing the spectral dynamics associated with changes in the yields of fluorescence, photochemical (ΦPSII), and nonphotochemical quenching (NPQ). We discuss how this method may establish a link between photosynthetic capacity and the mechanistic drivers of wavelength-specific fluorescence emission during changes in environmental conditions (light, temperature, humidity). Our emphasis is on future research directions linking spectral fluorescence to photosynthesis, ΦPSII, and NPQ. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  10. Direct diode lasers and their advantages for materials processing and other applications

    NASA Astrophysics Data System (ADS)

    Fritsche, Haro; Ferrario, Fabio; Koch, Ralf; Kruschke, Bastian; Pahl, Ulrich; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang; Eibl, Florian; Kohl, Stefanie; Dobler, Michael

    2015-03-01

    The brightness of diode lasers is improving continuously and has recently started to approach the level of some solid state lasers. The main technology drivers over the last decade were improvements of the diode laser output power and divergence, enhanced optical stacking techniques and system design, and most recently dense spectral combining. Power densities at the work piece exceed 1 MW/cm2 with commercially available industrial focus optics. These power densities are sufficient for cutting and welding as well as ablation. Single emitter based diode laser systems further offer the advantage of fast current modulation due their lower drive current compared to diode bars. Direct diode lasers may not be able to compete with other technologies as fiber or CO2-lasers in terms of maximum power or beam quality. But diode lasers offer a range of features that are not possible to implement in a classical laser. We present an overview of those features that will make the direct diode laser a very valuable addition in the near future, especially for the materials processing market. As the brightness of diode lasers is constantly improving, BPP of less than 5mm*mrad have been reported with multikW output power. Especially single emitter-based diode lasers further offer the advantage of very fast current modulation due to their low drive current and therefore low drive voltage. State of the art diode drivers are already demonstrated with pulse durations of <10μs and repetition rates can be adjusted continuously from several kHz up to cw mode while addressing power levels from 0-100%. By combining trigger signals with analog modulations nearly any kind of pulse form can be realized. Diode lasers also offer a wide, adaptable range of wavelengths, and wavelength stabilization. We report a line width of less than 0.1nm while the wavelength stability is in the range of MHz which is comparable to solid state lasers. In terms of applications, especially our (broad) wavelength combining technology for power scaling opens the window to new processes of cutting or welding and process control. Fast power modulation through direct current control allows pulses of several microseconds with hundreds of watts average power. Spot sizes of less than 100 μm are obtained at the work piece. Such a diode system allows materials processing with a pulse parameter range that is hardly addressed by any other laser system. High productivity material ablation with cost effective lasers is enabled. The wide variety of wavelengths, high brightness, fast power modulation and high efficiency of diode lasers results in a strong pull of existing markets, but also spurs the development of a wide variety of new applications.

  11. Narrowband resonant transmitter

    DOEpatents

    Hutchinson, Donald P.; Simpson, Marcus L.; Simpson, John T.

    2004-06-29

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  12. Transverse-longitudinal integrated resonator

    DOEpatents

    Hutchinson, Donald P [Knoxville, TN; Simpson, Marcus L [Knoxville, TN; Simpson, John T [Knoxville, TN

    2003-03-11

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  13. Applications of 1.55 μm optically injection-locked VCSELs in wavelength division multiplexed passive optical networks

    NASA Astrophysics Data System (ADS)

    Wong, Elaine; Zhao, Xiaoxue; Chang-Hasnain, Connie J.; Hofmann, Werner; Amann, Marcus C.

    2007-11-01

    In this paper, we will discuss the utilization of optically injection-locked (OIL) 1.55 μm vertical-cavity surface-emitting lasers (VCSELs) for operation as low-cost, stable, directly modulated, and potentially uncooled transmitters, whereby the injection-locking master source is furnished by modulated downstream signals. Such a transmitter will find useful application in wavelength division multiplexed passive optical networks (WDM-PONs) which is actively being developed to meet the ever-increasing bandwidth demands of end users. Our scheme eliminates the need for external injection locking optical sources, external modulators, and wavelength stabilization circuitry. We show through experiments that the injection-locked VCSEL favors low injection powers and responds only strongly to the carrier but not the modulated data of the downstream signal. Further, we will discuss results from experimental studies performed on the dependence of OIL-VCSELs in bidirectional networks on the degree of Rayleigh backscattered signal and extinction ratio. We show that error-free upstream performance can be achieved when the upstream signal to Rayleigh backscattering ratio is greater than 13.4 dB, and with minimal dependence on the downstream extinction ratio. We will also review a fault monitoring and localization scheme based on a highly-sensitive yet low-cost monitor comprising a low output power broadband source and low bandwidth detectors. The proposed scheme benefits from the high reflectivity top distributed Bragg reflector mirror of the OIL-VCSEL, incurring only a minimal penalty on the upstream transmissions of the existing infrastructure. Such a scheme provides fault monitoring without having to further invest in the upgrade of customer premises.

  14. Materials Suitable for preparing Inorganic Nanocasts of butterflies and other insects

    NASA Astrophysics Data System (ADS)

    Silver, J.; Fern, G. R.; Ireland, T. G.

    2015-06-01

    Replication of 3D-structures, in particular those that have a periodic modulation of a dielectric material at optical wavelengths and below have proven very difficult to fabricate. The majority of such replication techniques are complex or use moisture sensitive precursors requiring the use of for example a glove box. Here we demonstrate how an air stable supersaturated europium-doped yttrium nitrate phosphor precursor solution has the ability to easily impregnate a structure or produce a cast yielding faithful replicas composed of Y2O:Eu3+ after a final short annealing step. New replicas of Lepidoptera (moth) wing scales using field emission scanning electron microscopy, structures down to 10 nm have been imaged. Moreover as these replicas are made of phosphors, their luminescence in some cases may be modulated by the internal periodic modulation built into their structures. In this work we will discuss more recent results on the use of the phosphors for making nanocasts of moth wing scales and show a range of beautiful pictures to show what the method can achieve.

  15. Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm

    NASA Astrophysics Data System (ADS)

    Farooq, A.; Jeffries, J. B.; Hanson, R. K.

    2009-07-01

    Tunable diode-laser absorption of CO2 near 2.7 μm incorporating wavelength modulation spectroscopy with second-harmonic detection (WMS-2f) is used to provide a new sensor for sensitive and accurate measurement of the temperature behind reflected shock waves in a shock-tube. The temperature is inferred from the ratio of 2f signals for two selected absorption transitions, at 3633.08 and 3645.56 cm-1, belonging to the ν 1+ ν 3 combination vibrational band of CO2 near 2.7 μm. The modulation depths of 0.078 and 0.063 cm-1 are optimized for the target conditions of the shock-heated gases ( P˜1-2 atm, T˜800-1600 K). The sensor is designed to achieve a high sensitivity to the temperature and a low sensitivity to cold boundary-layer effects and any changes in gas pressure or composition. The fixed-wavelength WMS-2f sensor is tested for temperature and CO2 concentration measurements in a heated static cell (600-1200 K) and in non-reactive shock-tube experiments (900-1700 K) using CO2-Ar mixtures. The relatively large CO2 absorption strength near 2.7 μm and the use of a WMS-2f strategy minimizes noise and enables measurements with lower concentration, higher accuracy, better sensitivity and improved signal-to-noise ratio (SNR) relative to earlier work, using transitions in the 1.5 and 2.0 μm CO2 combination bands. The standard deviation of the measured temperature histories behind reflected shock waves is less than 0.5%. The temperature sensor is also demonstrated in reactive shock-tube experiments of n-heptane oxidation. Seeding of relatively inert CO2 in the initial fuel-oxidizer mixture is utilized to enable measurements of the pre-ignition temperature profiles. To our knowledge, this work represents the first application of wavelength modulation spectroscopy to this new class of diode lasers near 2.7 μm.

  16. Re-modulated technology of WDM-PON employing different DQPSK downstream signals

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Xin, Xiang-jun; Yu, Chong-xiu

    2012-11-01

    This paper proposes a kind of modulation architecture for wavelength-division-multiplexing passive optical network (WDMPON) employing optical differential quadrature phase shift keying (DQPSK) downstream signals and two different modulation formats of re-modulated upstream signals. At the optical line terminal (OLT), 10 Gbit/s signal is modulated with DQPSK. At the optical network unit (ONU), part of the downstream signal is re-modulated with on-off keying (OOK) or inverse-return-to-zero (IRZ). Simulation results show the impact on the system employing NRZ, RZ and carrier-suppressed return-to-zero (CSRZ). The analyses also reflect that the architecture can restrain chromatic dispersion and channel crosstalk, which makes it the best architecture of access network in the future.

  17. FIM, a Novel FTIR-Based Imaging Method for High Throughput Locomotion Analysis

    PubMed Central

    Otto, Nils; Löpmeier, Tim; Valkov, Dimitar; Jiang, Xiaoyi; Klämbt, Christian

    2013-01-01

    We designed a novel imaging technique based on frustrated total internal reflection (FTIR) to obtain high resolution and high contrast movies. This FTIR-based Imaging Method (FIM) is suitable for a wide range of biological applications and a wide range of organisms. It operates at all wavelengths permitting the in vivo detection of fluorescent proteins. To demonstrate the benefits of FIM, we analyzed large groups of crawling Drosophila larvae. The number of analyzable locomotion tracks was increased by implementing a new software module capable of preserving larval identity during most collision events. This module is integrated in our new tracking program named FIMTrack which subsequently extracts a number of features required for the analysis of complex locomotion phenotypes. FIM enables high throughput screening for even subtle behavioral phenotypes. We tested this newly developed setup by analyzing locomotion deficits caused by the glial knockdown of several genes. Suppression of kinesin heavy chain (khc) or rab30 function led to contraction pattern or head sweeping defects, which escaped in previous analysis. Thus, FIM permits forward genetic screens aimed to unravel the neural basis of behavior. PMID:23349775

  18. Temporal characterization of ultrashort linearly chirped electron bunches generated from a laser wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, C. J.; Hua, J. F.; Wan, Y.

    A new method for diagnosing the temporal characteristics of ultrashort electron bunches with linear energy chirp generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser, it is deflected and stretched along the direction of the electric field of the laser. Upon exiting the plasma, if the bunch goes through a narrow slit in front of the dipole magnet that disperses the electrons in the plane of the laser polarization, it can form a series of bunchlets that have different energies but are separated by half a laser wavelength. Sincemore » only the electrons that are undeflected by the laser go through the slit, the energy spectrum of the bunch is modulated. By analyzing the modulated energy spectrum, the shots where the bunch has a linear energy chirp can be recognized. Consequently, the energy chirp and beam current profile of those bunches can be reconstructed. Lastly, this method is demonstrated through particle-in-cell simulations and experiment.« less

  19. Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA.

    PubMed

    Contestabile, G; Yoshida, Y; Maruta, A; Kitayama, K

    2012-12-03

    We report broadband, all-optical wavelength conversion over 100 nm span, in full S- and C-band, with positive conversion efficiency with low optical input power exploiting dual pump Four-Wave-Mixing in a Quantum Dot Semiconductor Optical Amplifier (QD-SOA). We also demonstrate by Error Vector Magnitude analysis the full transparency of the conversion scheme for coherent modulation formats (QPSK, 8-PSK, 16-QAM, OFDM-16QAM) in the whole C-band.

  20. COMBIC, Combined Obscuration Model for Battlefield Induced Contaminants: Volume 1-Technical Documentation and Users Guide

    DTIC Science & Technology

    2000-08-01

    12345678901234567890123456789012345678901234567890123456789012345678901234567890 WAVL WAVE1 WAVE2 MULDV Name Units Typically Description WAVE1 µm 1.06 Wavelength used for...the calculation. Alternatively, one can specify either frequency or wavenumber by using a FREQ or WVNUM record instead of WAVL. If WAVE2 is not...specified, WAVE1 is the single wave- length used; if WAVE2 is specified, the modules will attempt to do their calculation for a range of wavelengths. There

  1. Analysis of a multi-wavelength multi-camera phase-shifting profilometric system for real-time operation

    NASA Astrophysics Data System (ADS)

    Stoykova, Elena; Gotchev, Atanas; Sainov, Ventseslav

    2011-01-01

    Real-time accomplishment of a phase-shifting profilometry through simultaneous projection and recording of fringe patterns requires a reliable phase retrieval procedure. In the present work we consider a four-wavelength multi-camera system with four sinusoidal phase gratings for pattern projection that implements a four-step algorithm. Successful operation of the system depends on overcoming two challenges which stem out from the inherent limitations of the phase-shifting algorithm, namely the demand for a sinusoidal fringe profile and the necessity to ensure equal background and contrast of fringes in the recorded fringe patterns. As a first task, we analyze the systematic errors due to the combined influence of the higher harmonics and multi-wavelength illumination in the Fresnel diffraction zone considering the case when the modulation parameters of the four gratings are different. As a second task we simulate the system performance to evaluate the degrading effect of the speckle noise and the spatially varying fringe modulation at non-uniform illumination on the overall accuracy of the profilometric measurement. We consider the case of non-correlated speckle realizations in the recorded fringe patterns due to four-wavelength illumination. Finally, we apply a phase retrieval procedure which includes normalization, background removal and denoising of the recorded fringe patterns to both simulated and measured data obtained for a dome surface.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Young Joon; Lee, Chul -Ho; Yoo, Jinkyoung

    Integration of nanostructure lighting source arrays with well-defined emission wavelengths is of great importance for optoelectronic integrated monolithic circuitry. We report on the fabrication and optical properties of GaN-based p–n junction multishell nanotube microarrays with composition-modulated nonpolar m-plane In xGa 1–xN/GaN multiple quantum wells (MQWs) integrated on c-sapphire or Si substrates. The emission wavelengths were controlled in the visible spectral range of green to violet by varying the indium mole fraction of the In xGa 1–xN MQWs in the range 0.13 ≤ x ≤ 0.36. Homogeneous emission from the entire area of the nanotube LED arrays was achieved via themore » formation of MQWs with uniform QW widths and composition by heteroepitaxy on the well-ordered nanotube arrays. Importantly, the wavelength-invariant electroluminescence emission was observed above a turn-on of 3.0 V because both the quantum-confinement Stark effect and band filling were suppressed due to the lack of spontaneous inherent electric field in the m-plane nanotube nonpolar MQWs. Lastly, the method of fabricating the multishell nanotube LED microarrays with controlled emission colors has potential applications in monolithic nonpolar photonic and optoelectronic devices on commonly used c-sapphire and Si substrates.« less

  3. Electro-optic studies of novel organic materials and devices

    NASA Astrophysics Data System (ADS)

    Xu, Jianjun

    1997-11-01

    Specific single crystal organic materials have high potential for use in high speed optical signal processing and various other electro-optic applications. In this project some of the most important organic crystal materials were studied regarding their detailed electro- optic properties and potential device applications. In particular, the electro-optic properties of N-(4- Nitrophenyl)-L-Prolinol (NPP) and 4'-N,N- dimethylamino-4-methylstilbazolium tosylate (DAST) both of which have extremely large second order susceptibilites were studied. The orientation of the thin film crystal with respect to the substrate surface was determined using-X-ray diffraction. The principal axes of the single crystal thin film were determined by polarization transmission microscopy. The elements of the electro-optic coefficient tensor were measured by field induced birefringence measurements. Detailed measurements for NPP thin films with different orientations of the external electric field with respect to the charge transfer axis were carried out at a wavelength of 1064nm. The wavelength dependence of the electro-optic effect for DAST single crystal thin films was measured using a Ti:Sapphire laser. Several device geometries involving organic single crystal thin film materials were studied. A new method for the fabrication of channel waveguides for organic materials was initiated. Channel waveguides for NPP and ABP were obtained using this methods. Optical modulation due to the electro-optic effect based on the organic channel waveguide for NPP single crystal was demonstrated. The electro-optic modulation using NPP single crystals thin film in a Fabry-Perot cavity was measured. A device using a optical fiber half coupler and organic electro-optic thin film material was constructed, and it has potential applications in optical signal processing.

  4. Quasi-distributed fiber sensor using active mode locking laser cavity with multiple FBG reflections

    NASA Astrophysics Data System (ADS)

    Park, Chang Hyun; Kim, Gyeong Hun; Kim, Chang-Seok; Lee, Hwi Don; Chung, Youngjoo

    2017-04-01

    We have demonstrated a quasi-distributed sensor using an active mode-locking (AML) laser with multiple fiber Bragg grating (FBG) reflections of the same center wavelength. We found that variations in the multiple cavity segment lengths between FBGs can be measured by simply sweeping the modulation frequency, because the modulation frequency of the AML laser is proportionally affected by cavity length.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alloatti, L., E-mail: luca.alloatti@gmail.com; Cheian, D.; Ram, R. J.

    A microring depletion modulator is demonstrated with T-shaped lateral p-n junctions used to realize efficient modulation while maximizing the RC limited bandwidth. The device having a 3 dB bandwidth of 13 GHz has been fabricated in a standard 45 nm microelectronics CMOS process. The cavity has a linewidth of 17 GHz and an average wavelength-shift of 9 pm/V in reverse-bias conditions.

  6. An AWG-based 10 Gbit/s colorless WDM-PON system using a chirp-managed directly modulated laser

    NASA Astrophysics Data System (ADS)

    Latif, Abdul; Yu, Chong-xiu; Xin, Xiang-jun; Husain, Aftab; Hussain, Ashiq; Munir, Abid; Khan, Yousaf

    2012-09-01

    We propose an arrayed waveguide grating (AWG)-based 10 Gbit/s per channel full duplex wavelength division multiplexing passive optical network (WDM-PON). A chirp managed directly modulated laser with return-to-zero (RZ) differential phase shift keying (DPSK) modulation technique is utilized for downlink (DL) direction, and then the downlink signal is re-modulated for the uplink (UL) direction using intensity modulation technique with the data rate of 10 Gbit/s per channel. A successful WDM-PON transmission operation with the data rate of 10 Gbit/s per channel over a distance of 25 km without any optical amplification or dispersion compensation is demonstrated with low power penalty.

  7. Phase retrieval from the phase-shift moiré fringe patterns in simultaneous dual-wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Cheng, Jinlong; Gao, Zhishan; Bie, Shuyou; Dou, Yimeng; Ni, Ruihu; Yuan, Qun

    2018-02-01

    Simultaneous dual-wavelength interferometry (SDWI) could extend the measured range of each single-wavelength interferometry. The moiré fringe generated in SDWI indirectly represents the information of the measured long synthetic-wavelength ({λ }{{S}}) phase, thus the phase demodulation is rather arduous. To address this issue, we present a method to convert the moiré fringe pattern into a synthetic-wavelength interferogram (moiré to synthetic-wavelength, MTS). After the square of the moiré fringe pattern in the MTS method, the additive moiré pattern is turned into a multiplicative one. And the synthetic-wavelength interferogram could be obtained by a low-pass filtering in spectrum of the multiplicative moiré fringe pattern. Therefore, when the dual-wavelength interferometer is implemented with the π/2 phase shift at {λ }{{S}}, a sequence of synthetic-wavelength phase-shift interferograms with π/2 phase shift could be obtained after the MTS method processing on the captured moiré fringe patterns. And then the synthetic-wavelength phase could be retrieved by the conventional phase-shift algorithm. Compared with other methods in SDWI, the proposed MTS approach could reduce the restriction of the phase shift and frame numbers for the adoption of the conventional phase-shift algorithm. Following, numerical simulations are executed to evaluate the performance of the MTS method in processing time, frames of interferograms and the phase shift error compensation. And the necessary linear carrier for MTS method is less than 0.11 times of the traditional dual-wavelength spatial-domain Fourier transform method. Finally, the deviations for MTS method in experiment are 0.97% for a step with the height of 7.8 μm and 1.11% for a Fresnel lens with the step height of 6.2328 μm.

  8. All-optical regenerator of multi-channel signals.

    PubMed

    Li, Lu; Patki, Pallavi G; Kwon, Young B; Stelmakh, Veronika; Campbell, Brandon D; Annamalai, Muthiah; Lakoba, Taras I; Vasilyev, Michael

    2017-10-12

    One of the main reasons why nonlinear-optical signal processing (regeneration, logic, etc.) has not yet become a practical alternative to electronic processing is that the all-optical elements with nonlinear input-output relationship have remained inherently single-channel devices (just like their electronic counterparts) and, hence, cannot fully utilise the parallel processing potential of optical fibres and amplifiers. The nonlinear input-output transfer function requires strong optical nonlinearity, e.g. self-phase modulation, which, for fundamental reasons, is always accompanied by cross-phase modulation and four-wave mixing. In processing multiple wavelength-division-multiplexing channels, large cross-phase modulation and four-wave mixing crosstalks among the channels destroy signal quality. Here we describe a solution to this problem: an optical signal processor employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without such nonlinear crosstalk. We demonstrate, for the first time to our knowledge, simultaneous all-optical regeneration of up to 16 wavelength-division-multiplexing channels by one device. This multi-channel concept can be extended to other nonlinear-optical processing schemes.Nonlinear optical processing devices are not yet fully practical as they are single channel. Here the authors demonstrate all-optical regeneration of up to 16 channels by one device, employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without nonlinear inter-channel crosstalk.

  9. Pulsed laser-based optical frequency comb generator for high capacity wavelength division multiplexed passive optical network supporting 1.2 Tbps

    NASA Astrophysics Data System (ADS)

    Ullah, Rahat; Liu, Bo; Zhang, Qi; Saad Khan, Muhammad; Ahmad, Ibrar; Ali, Amjad; Khan, Razaullah; Tian, Qinghua; Yan, Cheng; Xin, Xiangjun

    2016-09-01

    An architecture for flattened and broad spectrum multicarriers is presented by generating 60 comb lines from pulsed laser driven by user-defined bit stream in cascade with three modulators. The proposed scheme is a cost-effective architecture for optical line terminal (OLT) in wavelength division multiplexed passive optical network (WDM-PON) system. The optical frequency comb generator consists of a pulsed laser in cascade with a phase modulator and two Mach-Zehnder modulators driven by an RF source incorporating no phase shifter, filter, or electrical amplifier. Optical frequency comb generation is deployed in the simulation environment at OLT in WDM-PON system supports 1.2-Tbps data rate. With 10-GHz frequency spacing, each frequency tone carries data signal of 20 Gbps-based differential quadrature phase shift keying (DQPSK) in downlink transmission. We adopt DQPSK-based modulation technique in the downlink transmission because it supports 2 bits per symbol, which increases the data rate in WDM-PON system. Furthermore, DQPSK format is tolerant to different types of dispersions and has a high spectral efficiency with less complex configurations. Part of the downlink power is utilized in the uplink transmission; the uplink transmission is based on intensity modulated on-off keying. Minimum power penalties have been observed with excellent eye diagrams and other transmission performances at specified bit error rates.

  10. Fiber-Coupled Planar Light-Wave Circuit for Seed Laser Control in High Spectral Resolution Lidar Systems

    NASA Technical Reports Server (NTRS)

    Cook, Anthony; McNeil, Shirley; Switzer, Gregg; Battle, Philip

    2010-01-01

    Precise laser remote sensing of aerosol extinction and backscatter in the atmosphere requires a high-power, pulsed, frequency doubled Nd:YAG laser that is wavelength- stabilized to a narrow absorption line such as found in iodine vapor. One method for precise wavelength control is to injection seed the Nd:YAG laser with a low-power CW laser that is stabilized by frequency converting a fraction of the beam to 532 nm, and to actively frequency-lock it to an iodine vapor absorption line. While the feasibility of this approach has been demonstrated using bulk optics in NASA Langley s Airborne High Spectral Resolution Lidar (HSRL) program, an ideal, lower cost solution is to develop an all-waveguide, frequency-locked seed laser in a compact, robust package that will withstand the temperature, shock, and vibration levels associated with airborne and space-based remote sensing platforms. A key technology leading to this miniaturization is the integration of an efficient waveguide frequency doubling element, and a low-voltage phase modulation element into a single, monolithic, planar light-wave circuit (PLC). The PLC concept advances NASA's future lidar systems due to its compact, efficient and reliable design, thus enabling use on small aircraft and satellites. The immediate application for this technology is targeted for NASA Langley's HSRL system for aerosol and cloud characterization. This Phase I effort proposes the development of a potassium titanyl phosphate (KTP) waveguide phase modulator for future integration into a PLC. For this innovation, the proposed device is the integration of a waveguide-based frequency doubler and phase modulator in a single, fiber pigtail device that will be capable of efficient second harmonic generation of 1,064-nm light and subsequent phase modulation of the 532 nm light at 250 MHz, providing a properly spectrally formatted beam for HSRL s seed laser locking system. Fabrication of the integrated PLC chip for NASA Langley, planned for the Phase II effort, will require full integration and optimization of the waveguide components (SHG waveguide, splitters, and phase modulator) onto a single, monolithic device. The PLC will greatly reduce the size and weight, improve electrical- to-optical efficiency, and significantly reduce the cost of NASA Langley s current stabilized HSRL seed laser system built around a commercial off-the-shelf seed laser that is free-space coupled to a bulk doubler and bulk phase modulator.

  11. Dual-wavelength digital holographic imaging with phase background subtraction

    NASA Astrophysics Data System (ADS)

    Khmaladze, Alexander; Matz, Rebecca L.; Jasensky, Joshua; Seeley, Emily; Holl, Mark M. Banaszak; Chen, Zhan

    2012-05-01

    Three-dimensional digital holographic microscopic phase imaging of objects that are thicker than the wavelength of the imaging light is ambiguous and results in phase wrapping. In recent years, several unwrapping methods that employed two or more wavelengths were introduced. These methods compare the phase information obtained from each of the wavelengths and extend the range of unambiguous height measurements. A straightforward dual-wavelength phase imaging method is presented which allows for a flexible tradeoff between the maximum height of the sample and the amount of noise the method can tolerate. For highly accurate phase measurements, phase unwrapping of objects with heights higher than the beat (synthetic) wavelength (i.e. the product of the original two wavelengths divided by their difference), can be achieved. Consequently, three-dimensional measurements of a wide variety of biological systems and microstructures become technically feasible. Additionally, an effective method of removing phase background curvature based on slowly varying polynomial fitting is proposed. This method allows accurate volume measurements of several small objects with the same image frame.

  12. All-optical wavelength conversion for mode division multiplexed superchannels.

    PubMed

    Gong, Jiaxin; Xu, Jing; Luo, Ming; Li, Xiang; Qiu, Ying; Yang, Qi; Zhang, Xinliang; Yu, Shaohua

    2016-04-18

    We report in this work the first all-optical wavelength conversion (AOWC) of a mode division multiplexed (MDM) superchannel consisting of 2N modes by dividing the superchannel into N single-mode (SM) tributaries, wavelength converting N SM signals using well developed SM-AOWC techniques, and finally combining the N SM tributaries back to an MDM superchannel at the converted wavelength, inspired by the idea of using SM filtering techniques to filter multimode signals in astronomy. The conversions between multimode and SM are realized by 3D laser-writing photonic lanterns and SM-AOWCs are realized based on polarization insensitive four wave mixing (FWM) configuration in N semiconductor optical amplifiers (SOAs). As a proof of concept demonstration, the conversion of a 6-mode MDM superchannel with each mode modulated with orthogonal frequency division multiplexed (OFDM) quadrature phase-shift keying (QPSK)/16 quadrature amplitude modulation (QAM) signals is demonstrated in this work, indicating that the scheme is transparent to data format, polarization and compatible with multi-carrier signals. Data integrity of the converted superchannel has been verified by using coherent detection and digital signal processing (DSP). Bit error rates (BERs) below the forward error correction (FEC) hard limit (3.8 × 10-3) have been obtained for QPSK modulation at a net bitrate of 104.2 Gbit/s and BERs below the soft decision FEC threshold (1.98 × 10-2) have been achieved for 16-QAM format, giving a total aggregate bit rate of 185.8 Gbit/s when taking 20% coding overhead into account. Add and drop functionalities that usually come along with wavelength conversion in flexible network nodes have also been demonstrated. The working conditions of the SOAs, especially the pump and signal power levels, are critical for the quality of the converted signal and have been thoroughly discussed. The impact of imbalanced FWM conversion efficiency among different SM tributaries has also been analyzed. This work illustrates a promising way to perform all-optical signal processing for MDM superchannels.

  13. Flatland Photonics: Circumventing Diffraction with Planar Plasmonic Architectures

    NASA Astrophysics Data System (ADS)

    Dionne, Jennifer Anne

    On subwavelength scales, photon-matter interactions are limited by diffraction. The diffraction limit restricts the size of optical devices and the resolution of conventional microscopes to wavelength-scale dimensions, severely hampering our ability to control and probe subwavelength-scale optical phenomena. Circumventing diffraction is now a principle focus of integrated nanophotonics. Surface plasmons provide a particularly promising approach to sub-diffraction-limited photonics. Surface plasmons are hybrid electron-photon modes confined to the interface between conductors and transparent materials. Combining the high localization of electronic waves with the propagation properties of optical waves, plasmons can achieve extremely small mode wavelengths and large local electromagnetic field intensities. Through their unique dispersion, surface plasmons provide access to an enormous phase space of refractive indices and propagation constants that can be readily tuned with material or geometry. In this thesis, we explore both the theory and applications of dispersion in planar plasmonic architectures. Particular attention is given to the modes of metallic core and plasmon slot waveguides, which can span positive, near-zero, and even negative indices. We demonstrate how such basic plasmonic geometries can be used to develop a suite of passive and active plasmonic components, including subwavelength waveguides, color filters, negative index metamaterials, and optical MOS field effect modulators. Positive index modes are probed by near- and far-field techniques, revealing plasmon wavelengths as small as one-tenth of the excitation wavelength. Negative index modes are characterized through direct visualization of negative refraction. By fabricating prisms comprised of gold, silicon nitride, and silver multilayers, we achieve the first experimental demonstration of a negative index material at visible frequencies, with potential applications for sub-diffraction-limited microscopy and electromagnetic cloaking. We exploit this tunability of complex plasmon mode indices to create a compact metal-oxide-Si (MOS) field effect plasmonic modulator (or plasMOStor). By transforming the MOS gate oxide into an optical channel, amplitude modulation depths of 11.2 dB are achieved in device volumes as small as one one-fifth of a cubic wavelength. Our results indicate the accessibility of tunable refractive indices over a wide frequency band, facilitating design of a new materials class with extraordinary optical properties and applications.

  14. Broadband infrared metamaterial absorber based on anodic aluminum oxide template

    NASA Astrophysics Data System (ADS)

    Yang, Jingfan; Qu, Shaobo; Ma, Hua; Wang, Jiafu; Yang, Shen; Pang, Yongqiang

    2018-05-01

    In this work, a broadband infrared metamaterial absorber is proposed based on trapezoid-shaped anodic aluminum oxide (AAO) template. Unlike traditional metamaterial absorber constructed from metal-dielectric-metal sandwich structure, our proposed absorber is composed of trapezoid-shaped AAO template with metallic nanowires inside. The infrared absorption efficiency is numerically calculated and the mechanism analysis is given in the paper. Owing to the superposition of multiple resonances produced by the nanowires with different heights, the infrared metamatrial absorber can keep high absorption efficiency during broad working wavelength band from 3.4 μm to 6.1 μm. In addition, the resonance wavelength is associated with the height of nanowires, which indicates that the resonance wavelength can be modulated flexibly through changing the heights of nanowires. This kind of design can also be adapted to other wavelength regions.

  15. External cavity quantum cascade lasers with ultra rapid acousto-optic tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyakh, A., E-mail: alyakh@pranalytica.com; Barron-Jimenez, R.; Dunayevskiy, I.

    2015-04-06

    We report operation of tunable external cavity quantum cascade lasers with emission wavelength controlled by an acousto-optic modulator (AOM). A long-wave infrared quantum cascade laser wavelength tuned from ∼8.5 μm to ∼9.8 μm when the AOM frequency was changed from ∼41MHz to ∼49 MHz. The laser delivered over 350 mW of average power at the center of the tuning curve in a linewidth of ∼4.7 cm{sup −1}. Measured wavelength switching time between any two wavelengths within the tuning range of the QCL was less than 1 μs. Spectral measurements of infrared absorption features of Freon demonstrated a capability of obtaining complete spectral data in less thanmore » 20 μs.« less

  16. In-fiber modal interferometer based on multimode and double cladding fiber segments for tunable fiber laser applications

    NASA Astrophysics Data System (ADS)

    Prieto-Cortés, P.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Castillo-Guzmán, A.; Salceda-Delgado, G.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.; Selvas-Aguilar, R.

    2018-02-01

    We report an in-fiber structure based on the use of a multimode fiber segment and a double cladding fiber segment, and its application as spectral filter in an erbium-doped fiber laser for selection and tuning of the laser line wavelength. The output transmission of the proposed device exhibit spectrum modulation of the input signal with free spectral range of 21 nm and maximum visibility enhanced to more than 20 dB. The output spectrum of the in-fiber filter is wavelength displaced by bending application which allows a wavelength tuning of the generated laser line in a range of 12 nm. The use of the proposed in-fiber structure is demonstrated as a reliable, simple, and low-cost wavelength filter for tunable fiber lasers design and optical instrumentation applications.

  17. Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: expanding the application range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, Valeriy V.; Anderson, Erik H.; Barber, Samuel K.

    2011-03-14

    A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47, 073602 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A616, 172 (2010)]. Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's datamore » processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less

  18. Optical signal processing for enabling high-speed, highly spectrally efficient and high capacity optical systems

    NASA Astrophysics Data System (ADS)

    Fazal, Muhammad Irfan

    The unabated demand for more capacity due to the ever-increasing internet traffic dictates that the boundaries of the state of the art maybe pushed to send more data through the network. Traditionally, this need has been satisfied by multiple wavelengths (wavelength division multiplexing), higher order modulation formats and coherent communication (either individually or combined together). WDM has the ability to reduce cost by using multiple channels within the same physical fiber, and with EDFA amplifiers, the need for O-E-O regenerators is eliminated. Moreover the availability of multiple colors allows for wavelength-based routing and network planning. Higher order modulation formats increases the capacity of the link by their ability to encode data in both the phase and amplitude of light, thereby increasing the bits/sec/Hz as compared to simple on-off keyed format. Coherent communications has also emerged as a primary means of transmitting and receiving optical data due to its support of formats that utilize both phase and amplitude to further increase the spectral efficiency of the optical channel, including quadrature amplitude modulation (QAM) and quadrature phase shift keying (QPSK). Polarization multiplexing of channels can double capacity by allowing two channels to share the same wavelength by propagating on orthogonal polarization axis and is easily supported in coherent systems where the polarization tracking can be performed in the digital domain. Furthermore, the forthcoming IEEE 100 Gbit/s Ethernet Standard, 802.3ba, provides greater bandwidth, higher data rates, and supports a mixture of modulation formats. In particular, Pol-MUX QPSK is increasingly becoming the industry's format of choice as the high spectral efficiency allows for 100 Gbit/s transmission while still occupying the current 50 GHz/channel allocation of current 10 Gbit/s OOK fiber systems. In this manner, 100 Gbit/s transfer speeds using current fiber links, amplifiers, and filters may be possible. Recently, interest has increased in exploring the spatial dimension of light to increase capacity, both in fiber as well as free-space communication channels. The orbital angular momentum (OAM) of light, carried by Laguerre-Gaussian (LG) beams have the interesting property that, in theory, an infinite number of OAMs can be transmitted; which due to its inherent orthogonality will not affect each other. Thus, in theory, one can increase the channel capacity arbitrarily. However, in practice, the device dimensions will reduce the number of OAMs used. In addition to advanced modulation formats, it is expected that optical signal processing may play a role in the future development of more efficient optical transmission systems. The hope is that performing signal processing in the optical domain may reduce optical-to-electronic conversion inefficiencies, eliminate bottlenecks and take advantage of the ultrahigh bandwidth inherent in optics. While 40 to 50 Gbit/s electronic components are the peak of commercial technology and 100 Gbit/s capable RF components are still in their infancy, optical signal processing of these high-speed data signals may provide a potential solution. Furthermore, any optical processing system or sub-system must be capable of handling the wide array of data formats and data rates that networks may employ. The work presented in this Ph.D. dissertation attempts at addressing the issue of optical processing for advanced optical modulation formats, and particularly explores the state of the art in increasing the capacity of an optical link by a combination of wavelength/phase/polarization/OAM dimensions of light. Spatial multiplexing and demultiplexing of both coherently and directly detected signals at the 100 Gbit/s Ethernet standard is addressed. The application of a continuously tunable all-optical delay for all-optical functionality like time-slot interchange at high data-rates is presented. Moreover the interplay of chirp generated by differently cross-phase modulation wavelength-convertors based on SOA-MZI with the residual dispersion of a fiber link is studied and the optimal operating conditions are explored

  19. Blind third-order dispersion estimation based on fractional Fourier transformation for coherent optical communication

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Guo, Peng; Yang, Aiying; Qiao, Yaojun

    2018-02-01

    In this paper, we propose a blind third-order dispersion estimation method based on fractional Fourier transformation (FrFT) in optical fiber communication system. By measuring the chromatic dispersion (CD) at different wavelengths, this method can estimation dispersion slope and further calculate the third-order dispersion. The simulation results demonstrate that the estimation error is less than 2 % in 28GBaud dual polarization quadrature phase-shift keying (DP-QPSK) and 28GBaud dual polarization 16 quadrature amplitude modulation (DP-16QAM) system. Through simulations, the proposed third-order dispersion estimation method is shown to be robust against nonlinear and amplified spontaneous emission (ASE) noise. In addition, to reduce the computational complexity, searching step with coarse and fine granularity is chosen to search optimal order of FrFT. The third-order dispersion estimation method based on FrFT can be used to monitor the third-order dispersion in optical fiber system.

  20. Dataset of surface plasmon resonance based on photonic crystal fiber for chemical sensing applications.

    PubMed

    Khalek, Md Abdul; Chakma, Sujan; Paul, Bikash Kumar; Ahmed, Kawsar

    2018-08-01

    In this research work a perfectly circular lattice Photonic Crystal Fiber (PCF) based surface Plasmon resonance (SPR) based sensor has been proposed. The investigation process has been successfully carried out using finite element method (FEM) based commercial available software package COMSOL Multiphysics version 4.2. The whole investigation module covers the wider optical spectrum ranging from 0.48 µm to 1.10 µm. Using the wavelength interrogation method the proposed model exposed maximum sensitivity of 9000 nm/RIU(Refractive Index Unit) and using the amplitude interrogation method it obtained maximum sensitivity of 318 RIU -1 . Moreover the maximum sensor resolution of 1.11×10 -5 in the sensing ranges between 1.34 and 1.37. Based on the suggested sensor model may provide great impact in biological area such as bio-imaging.

  1. Coupled-cavity surface-emitting lasers: spectral and polarization threshold characteristics and electrooptic switching.

    PubMed

    Panajotov, Krassimir P; Zujewski, Mateusz; Thienpont, Hugo

    2010-12-20

    We study spectral and polarization threshold characteristics of coupled-cavity Vertical-Surface-Emitting Lasers (CC-VCSEL) on the base of a simple matrix approach. We show that strong wavelength discrimination can be achieved in CC-VCSELs by slightly detuning the cavities. However, polarization discrimination is not provided by the coupled-cavity design. We also consider the case of reverse-biasing one of the cavities, i.e. using it as a modulator via linear and/or quadratic electrooptic effect. Such a CC-VCSEL can act as a voltage-controlled polarization or wavelength switching device that is decoupled from the laser design and can be optimized for high modulation speed. We also show that using QD stack instead of quantum wells in the top cavity would lead to significant reduction of the driving electrical field.

  2. Submillisecond-response and scattering-free infrared liquid crystal phase modulators.

    PubMed

    Sun, Jie; Chen, Yuan; Wu, Shin-Tson

    2012-08-27

    We demonstrate a submillisecond-response and scattering-free infrared phase modulator using a polymer network liquid crystal (PNLC). The required voltage for achieving 2π phase change at λ = 1.06 µm is 70V (or 5.8 V/μm) and the measured response time is ~200 µs at 25°C and 30 µs at 70°C. Opposite to our conventional understanding, a high viscosity LC helps to achieve small domain size during polymerization process, which in turn reduces the response time and light scattering. We use Rayleigh-Gans-Debye scattering model to analyze the voltage-on state transmission spectra. When the domain size is comparable to the wavelength, the model fits with experimental results well. But when the domain size is smaller than the wavelength, the simple Rayleigh model works well.

  3. Microsecond-range optical shutter for unpolarized light with chiral nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Mohammadimasoudi, Mohammad; Shin, Jungsoon; Lee, Keechang; Neyts, Kristiaan; Beeckman, Jeroen

    2015-04-01

    A fast electro-optic shutter is fabricated and demonstrated. The device works independently of the polarization state of the incoming light beam. Modulation between 3% transmission and 60% transmission is obtained within a wavelength range of 50 nm with a response time of 20 μs. The device consists of two partly polymerized chiral nematic liquid crystal layers separated by a half wave plate. The transmission modulation is due to a 50 nm wavelength shift of the photonic band gap of the chiral liquid crystal realized by applying an electric field over a mixture of photo-polymerized LC and non-reactive nematic LC containing a chiral dopant. The shutter features high reflectivity in the photonic band gap. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.

  4. Apparatus for controlling the scan width of a scanning laser beam

    DOEpatents

    Johnson, Gary W.

    1996-01-01

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board.

  5. Apparatus for controlling the scan width of a scanning laser beam

    DOEpatents

    Johnson, G.W.

    1996-10-22

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board. 8 figs.

  6. Using integrating spheres with wavelength modulation spectroscopy: effect of pathlength distribution on 2nd harmonic signals

    NASA Astrophysics Data System (ADS)

    Hodgkinson, J.; Masiyano, D.; Tatam, R. P.

    2013-02-01

    We have studied the effect on 2nd harmonic wavelength modulation spectroscopy of the use of integrating spheres as multipass gas cells. The gas lineshape becomes distorted at high concentrations, as a consequence of the exponential pathlength distribution of the sphere, introducing nonlinearity beyond that expected from the Beer-Lambert law. We have modelled this numerically for methane absorption at 1.651 μm, with gas concentrations in the range of 0-2.5 %vol in air. The results of this model compare well with experimental measurements. The nonlinearity for the 2 fWMS measurements is larger than that for direct scan measurements; if this additional effect were not accounted for, the resulting error would be approximately 20 % of the reading at a concentration of 2.5 %vol methane.

  7. Ultra-high capacity WDM-SDM optical access network with self-homodyne detection downstream and 32QAM-FBMC upstream.

    PubMed

    Feng, Zhenhua; Xu, Liang; Wu, Qiong; Tang, Ming; Fu, Songnian; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-03-20

    Towards 100G beyond large-capacity optical access networks, wavelength division multiplexing (WDM) techniques incorporating with space division multiplexing (SDM) and affordable spectrally efficient advanced modulation formats are indispensable. In this paper, we proposed and experimentally demonstrated a cost-efficient multicore fiber (MCF) based hybrid WDM-SDM optical access network with self-homodyne coherent detection (SHCD) based downstream (DS) and direct detection optical filter bank multi carrier (DDO-FBMC) based upstream (US). In the DS experiments, the inner core of the 7-core fiber is used as a dedicated channel to deliver the local oscillator (LO) lights while the other 6 outer cores are used to transmit 4 channels of wavelength multiplexed 200-Gb/s PDM-16QAM-OFDM signals. For US transmission, 4 wavelengths with channel spacing of 100 GHz are intensity modulated with 30 Gb/s 32-QAM-FBMC and directly detected by a ~7 GHz bandwidth receiver after transmission along one of the outer core. The results show that a 4 × 6 × 200-Gb/s DS transmission can be realized over 37 km 7-core fiber without carrier frequency offset (CFO) and phase noise (PN) compensation even using 10 MHz linewidth DFB lasers. The SHCD based on MCF provides a compromise and cost efficient scheme between conventional intradyne coherent detection and intensity modulation and direct detection (IM/DD) schemes. Both US and DS have acceptable BER performance and high spectral efficiency.

  8. Remote beating of parallel or orthogonally polarized dual-wavelength optical carriers for 5G millimeter-wave radio-over-fiber link.

    PubMed

    Wang, Huai-Yung; Chi, Yu-Chieh; Lin, Gong-Ru

    2016-08-08

    A novel millimeter-wave radio over fiber (MMW-RoF) link at carrier frequency of 35-GHz is proposed with the use of remotely beating MMW generation from reference master and injected slave colorless laser diode (LD) carriers at orthogonally polarized dual-wavelength injection-locking. The slave colorless LD supports lasing one of the dual-wavelength master modes with orthogonal polarizations, which facilitates the single-mode direct modulation of the quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data. Such an injected single-carrier encoding and coupled dual-carrier transmission with orthogonal polarization effectively suppresses the cross-heterodyne mode-beating intensity noise, the nonlinear modulation (NLM) and four-wave mixing (FWM) sidemodes during injection locking and fiber transmission. In 25-km single-mode fiber (SMF) based wireline system, the dual-carrier under single-mode encoding provides baseband 24-Gbit/s 64-QAM OFDM transmission with an error vector magnitude (EVM) of 8.8%, a bit error rate (BER) of 3.7 × 10-3, a power penalty of <1.5 dB. After remotely self-beating for wireless transmission, the beat MMW carrier at 35 GHz can deliver the passband 16-QAM OFDM at 4 Gbit/s to show corresponding EVM and BER of 15.5% and 1.4 × 10-3, respectively, after 25-km SMF and 1.6-m free-space transmission.

  9. A Characterization Of Alcohol Fuel Vapor For Wavelength Modulation Spectroscopy Applied To Microgravity Flame Spread

    NASA Technical Reports Server (NTRS)

    Kulis, Michael J.; Perry, David S.; Miller, Fletcher; Piltch, Nancy

    2003-01-01

    A diode laser diagnostic is being developed for use in an ongoing investigation of flame spread in microgravity at NASA Glenn Research Center. Flame spread rates through non-homogenous gas mixtures are significantly different in a microgravity environment because of buoyancy and possibly hydrostatic pressure effects. These effects contribute to the fuel vapor concentration ahead of the flame being altered so that flame spread is more rapid in microgravity. This paper describes spectral transmission measurements made through mixtures of alcohol, water vapor, and nitrogen in a gas cell that was designed and built to allow measurements at temperatures up to 500 C. The alcohols considered are methanol, ethanol, and n-propanol. The basic technique of wavelength modulation spectroscopy for gas species measurements in microgravity was developed by Silver et al. For this technique to be applicable, one must carefully choose the spectral features over which the diode laser is modulated to provide good sensitivity and minimize interference from other molecular lines such as those in water. Because the methanol spectrum was not known with sufficient resolution in the wavelength region of interest, our first task was to perform high-resolution transmission measurements with an FTIR spectrometer for methanol vapor in nitrogen, followed recently by ethanol and n-propanol. A computer program was written to generate synthesized data to mimic that expected from the experiment using the laser diode, and results from that simulation are also presented.

  10. Passively Q-switched and mode-locked dual-wavelength Nd:GGG laser with Cr4+:YAG as a saturable absorber

    NASA Astrophysics Data System (ADS)

    Chu, Hongwei; Zhao, Shengzhi; Li, Yufei; Yang, Kejian; Li, Guiqiu; Li, Dechun; Zhao, Jia; Qiao, Wenchao; Li, Tao; Feng, Chuansheng; Zhang, Haijuan

    2014-03-01

    By using neodymium-doped gadolinium gallium garnet (Nd:GGG) as a laser medium, a simultaneously passively Q-switched and mode-locked (QML) dual-wavelength laser with Cr4+:YAG as a saturable absorber is presented. The laser simultaneously oscillated at 1061 nm and 1063 nm, corresponding to a frequency difference of 0.53 THz. QML pulses with nearly 100% modulation depth were observed. The mode-locked pulse duration underneath the Q-switched envelope was estimated to be about 908 ps. The experimental results indicated that the dual-wavelength QML Nd:GGG laser can be an excellent candidate for the generation of THz waves.

  11. Fast and wide tuning wavelength-swept source based on dispersion-tuned fiber optical parametric oscillator.

    PubMed

    Zhou, Yue; Cheung, Kim K Y; Li, Qin; Yang, Sigang; Chui, P C; Wong, Kenneth K Y

    2010-07-15

    We demonstrate a dispersion-tuned fiber optical parametric oscillator (FOPO)-based swept source with a sweep rate of 40 kHz and a wavelength tuning range of 109 nm around 1550 nm. The cumulative speed exceeds 4,000,000 nm/s. The FOPO is pumped by a sinusoidally modulated pump, which is driven by a clock sweeping linearly from 1 to 1.0006 GHz. A spool of dispersion-compensating fiber is added inside the cavity to perform dispersion tuning. The instantaneous linewidth is 0.8 nm without the use of any wavelength selective element inside the cavity. 1 GHz pulses with pulse width of 150 ps are generated.

  12. Comparison of different wavelength pump sources for Tm subnanosecond amplifier

    NASA Astrophysics Data System (ADS)

    Cserteg, Andras; Guillemet, Sébastien; Hernandez, Yves; Giannone, Domenico

    2012-06-01

    We report here a comparison of different pumping wavelengths for short pulse Thulium fibre amplifiers. We compare the results in terms of efficiency and required fibre length. As we operate the laser in the sub-nanosecond regime, the fibre length is a critical parameter regarding non linear effects. With 793 nm clad-pumping, a 4 m long active fibre was necessary, leading to strong spectral deformation through Self Phase Modulation (SPM). Core-pumping scheme was then more in-depth investigated with several wavelengths tested. Good results with Erbium and Raman shifted pumping sources were obtained, with very short fibre length, aiming to reach a few micro-joules per pulse without (or with limited) SPM.

  13. Optical signal processing techniques and applications of optical phase modulation in high-speed communication systems

    NASA Astrophysics Data System (ADS)

    Deng, Ning

    In recent years, optical phase modulation has attracted much research attention in the field of fiber optic communications. Compared with the traditional optical intensity-modulated signal, one of the main merits of the optical phase-modulated signal is the better transmission performance. For optical phase modulation, in spite of the comprehensive study of its transmission performance, only a little research has been carried out in terms of its functions, applications and signal processing for future optical networks. These issues are systematically investigated in this thesis. The research findings suggest that optical phase modulation and its signal processing can greatly facilitate flexible network functions and high bandwidth which can be enjoyed by end users. In the thesis, the most important physical-layer technology, signal processing and multiplexing, are investigated with optical phase-modulated signals. Novel and advantageous signal processing and multiplexing approaches are proposed and studied. Experimental investigations are also reported and discussed in the thesis. Optical time-division multiplexing and demultiplexing. With the ever-increasing demand on communication bandwidth, optical time division multiplexing (OTDM) is an effective approach to upgrade the capacity of each wavelength channel in current optical systems. OTDM multiplexing can be simply realized, however, the demultiplexing requires relatively complicated signal processing and stringent timing control, and thus hinders its practicability. To tackle this problem, in this thesis a new OTDM scheme with hybrid DPSK and OOK signals is proposed. Experimental investigation shows this scheme can greatly enhance the demultiplexing timing misalignment and improve the demultiplexing performance, and thus make OTDM more practical and cost effective. All-optical signal processing. In current and future optical communication systems and networks, the data rate per wavelength has been approaching the speed limitation of electronics. Thus, all-optical signal processing techniques are highly desirable to support the necessary optical switching functionalities in future ultrahigh-speed optical packet-switching networks. To cope with the wide use of optical phase-modulated signals, in the thesis, an all-optical logic for DPSK or PSK input signals is developed, for the first time. Based on four-wave mixing in semiconductor optical amplifier, the structure of the logic gate is simple, compact, and capable of supporting ultrafast operation. In addition to the general logic processing, a simple label recognition scheme, as a specific signal processing function, is proposed for phase-modulated label signals. The proposed scheme can recognize any incoming label pattern according to the local pattern, and is potentially capable of handling variable-length label patterns. Optical access network with multicast overlay and centralized light sources. In the arena of optical access networks, wavelength division multiplexing passive optical network (WDM-PON) is a promising technology to deliver high-speed data traffic. However, most of proposed WDM-PONs only support conventional point-to-point service, and cannot meet the requirement of increasing demand on broadcast and multicast service. In this thesis, a simple network upgrade is proposed based on the traditional PON architecture to support both point-to-point and multicast service. In addition, the two service signals are modulated on the same lightwave carrier. The upstream signal is also remodulated on the same carrier at the optical network unit, which can significantly relax the requirement on wavelength management at the network unit.

  14. Development of Advanced Seed Laser Modules for Lidar and Spectroscopy Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Rosiewicz, Alex; Coleman, Steven M.

    2013-01-01

    We report on recent progress made in the development of highly compact, single mode, distributed feedback laser (DFB) seed laser modules for lidar and spectroscopy applications from space based platforms. One of the intended application of this technology is in the NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The DFB laser modules operating at 1571 nm and 1262 nm have advanced current and temperature drivers built into them. A combination of temperature and current tuning allows coarse and fine adjustment of the diode wavelengths.

  15. EML Array fabricated by SAG technique monolithically integrated with a buried ridge AWG multiplexer

    NASA Astrophysics Data System (ADS)

    Xu, Junjie; Liang, Song; Zhang, Zhike; An, Junming; Zhu, Hongliang; Wang, Wei

    2017-06-01

    We report the fabrication of a ten channel electroabsorption modulated DFB laser (EML) array. Different emission wavelengths of the laser array are obtained by selective area growth (SAG) technique, which is also used for the integration of electroabsorption modulators (EAM) with the lasers. An arrayed waveguide grating (AWG) combiner is integrated monolithically with the laser array by butt-joint regrowth (BJR) technique. A buried ridge waveguide structure is adopted for the AWG combiner. A self aligned fabrication procedure is adopted for the fabrication of the waveguide structure of the device to eliminate the misalignment between the laser active waveguide and the passive waveguide. A Ti thin film heater is integrated for each laser in the array. With the help of the heaters, ten laser emissions with 1.8 nm channel spacing are obtained. The integrated EAM has a larger than 11 dB static extinction ratios and larger than 8 GHz small signal modulation bandwidths. The light power collected in the output waveguide of the AWG is larger than -13 dBm for each wavelength.

  16. Research on the trace detection of carbon dioxide gas and modulation parameter optimization based on the TDLAS technology

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Tao, Jun; Yu, Chang-rui; Li, Ye

    2014-02-01

    Based on the technology of tunable diode laser absorption spectroscopy, modulation of the center wavelength of 2004 nm distributed feedback laser diode at a room-temperature, the second harmonic amplitude of CO2 at 2004nm can be obtained. The CO2 concentration can be calculated via the Beer-Lambert law. Sinusoidal modulation parameter is an important factor that affects the sensitivity and accuracy of the system, through the research on the relationship between sinusoidal modulation signal frequency, amplitude and Second harmonic linetype, we finally achieve the detection limit of 10ppm under 12 m optical path.

  17. Size, weight, and power reduction of mercury cadmium telluride infrared detection modules

    NASA Astrophysics Data System (ADS)

    Breiter, Rainer; Ihle, Tobias; Wendler, Joachim C.; Lutz, Holger; Rutzinger, Stefan; Schallenberg, Timo; Hofmann, Karl C.; Ziegler, Johann

    2011-06-01

    Application requirements driving present IR technology development activities are improved capability to detect and identify a threat as well as the need to reduce size weight and power consumption (SWaP) of thermal sights. In addition to the development of 3rd Gen IR modules providing dual-band or dual-color capability, AIM is focused on IR FPAs with reduced pitch and high operating temperature for SWaP reduction. State-of-the-art MCT technology allows AIM the production of mid-wave infrared (MWIR) detectors operating at temperatures exceeding 120 K without any need to sacrifice the 5-μm cut-off wavelength. These FPAs allow manufacturing of low cost IR modules with minimum size, weight, and power for state-of-the-art high performance IR systems. AIM has realized full TV format MCT 640×512 mid-wave and long-wave IR detection modules with a 15-μm pitch to meet the requirements of critical military applications like thermal weapon sights or thermal imagers in unmanned aerial vehicles applications. In typical configurations like an F/4.6 cold shield for the 640×512 MWIR module an noise equivalent temperature difference (NETD) <25 mK @ 5 ms integration time is achieved, while the long-wavelength infrared (LWIR) modules achieve an NETD <38 mK @ F/2 and 180 μs integration time. For the LWIR modules, FPAs with a cut-off up to 10 μm have been realized. The modules are available either with different integral rotary cooler configurations for portable applications that require minimum cooling power or a new split linear cooler providing long lifetime with a mean time to failure (MTTF) > 20000, e.g., for warning sensors in 24/7 operation. The modules are available with optional image processing electronics providing nonuniformity correction and further image processing for a complete IR imaging solution. The latest results and performance of those modules and their applications are presented.

  18. High-Speed Digital Interferometry

    NASA Technical Reports Server (NTRS)

    De Vine, Glenn; Shaddock, Daniel A.; Ware, Brent; Spero, Robert E.; Wuchenich, Danielle M.; Klipstein, William M.; McKenzie, Kirk

    2012-01-01

    Digitally enhanced heterodyne interferometry (DI) is a laser metrology technique employing pseudo-random noise (PRN) codes phase-modulated onto an optical carrier. Combined with heterodyne interferometry, the PRN code is used to select individual signals, returning the inherent interferometric sensitivity determined by the optical wavelength. The signal isolation arises from the autocorrelation properties of the PRN code, enabling both rejection of spurious signals (e.g., from scattered light) and multiplexing capability using a single metrology system. The minimum separation of optical components is determined by the wavelength of the PRN code.

  19. Small Business Innovation Research (SBIR) Program, FY 1993. Program Solicitation 93.1, Closing Date: 15 January 1993

    DTIC Science & Technology

    1992-01-01

    tactical computers. The module must correct for optical irregularities in illumination, pixel gain, offset nonuniformities due to dark currents and...large search FOR, for IR FPA. DESCRIPTION: Large area staring IR lPAs in both Medium Wavelength Infrared (MWIR) and Long Wavelength Infrared ( LWIR ) are a...of HTS materials to BLIP limited detection of radiation in the optical, IR, MWIR, and LWIR bands as well as for signal processing applications is also

  20. Actively Q-switched dual-wavelength pumped Er3+ :ZBLAN fiber laser at 3.47 µm.

    PubMed

    Bawden, Nathaniel; Matsukuma, Hiraku; Henderson-Sapir, Ori; Klantsataya, Elizaveta; Tokita, Shigeki; Ottaway, David J

    2018-06-01

    We demonstrate the first actively Q-switched fiber laser operating in the 3.5 μm regime. The dual-wavelength pumped system makes use of an Er 3+ doped ZBLAN fiber and a germanium acousto-optic modulator. Robust Q-switching saw a pulse energy of 7.8 μJ achieved at a repetition rate of 15 kHz, corresponding to a peak power of 14.5 W.

Top