Sample records for wavelet based image

  1. Skin image retrieval using Gabor wavelet texture feature.

    PubMed

    Ou, X; Pan, W; Zhang, X; Xiao, P

    2016-12-01

    Skin imaging plays a key role in many clinical studies. We have used many skin imaging techniques, including the recently developed capacitive contact skin imaging based on fingerprint sensors. The aim of this study was to develop an effective skin image retrieval technique using Gabor wavelet transform, which can be used on different types of skin images, but with a special focus on skin capacitive contact images. Content-based image retrieval (CBIR) is a useful technology to retrieve stored images from database by supplying query images. In a typical CBIR, images are retrieved based on colour, shape, texture, etc. In this study, texture feature is used for retrieving skin images, and Gabor wavelet transform is used for texture feature description and extraction. The results show that the Gabor wavelet texture features can work efficiently on different types of skin images. Although Gabor wavelet transform is slower compared with other image retrieval techniques, such as principal component analysis (PCA) and grey-level co-occurrence matrix (GLCM), Gabor wavelet transform is the best for retrieving skin capacitive contact images and facial images with different orientations. Gabor wavelet transform can also work well on facial images with different expressions and skin cancer/disease images. We have developed an effective skin image retrieval method based on Gabor wavelet transform, that it is useful for retrieving different types of images, namely digital colour face images, digital colour skin cancer and skin disease images, and particularly greyscale skin capacitive contact images. Gabor wavelet transform can also be potentially useful for face recognition (with different orientation and expressions) and skin cancer/disease diagnosis. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Wavelet-based compression of pathological images for telemedicine applications

    NASA Astrophysics Data System (ADS)

    Chen, Chang W.; Jiang, Jianfei; Zheng, Zhiyong; Wu, Xue G.; Yu, Lun

    2000-05-01

    In this paper, we present the performance evaluation of wavelet-based coding techniques as applied to the compression of pathological images for application in an Internet-based telemedicine system. We first study how well suited the wavelet-based coding is as it applies to the compression of pathological images, since these images often contain fine textures that are often critical to the diagnosis of potential diseases. We compare the wavelet-based compression with the DCT-based JPEG compression in the DICOM standard for medical imaging applications. Both objective and subjective measures have been studied in the evaluation of compression performance. These studies are performed in close collaboration with expert pathologists who have conducted the evaluation of the compressed pathological images and communication engineers and information scientists who designed the proposed telemedicine system. These performance evaluations have shown that the wavelet-based coding is suitable for the compression of various pathological images and can be integrated well with the Internet-based telemedicine systems. A prototype of the proposed telemedicine system has been developed in which the wavelet-based coding is adopted for the compression to achieve bandwidth efficient transmission and therefore speed up the communications between the remote terminal and the central server of the telemedicine system.

  3. Wavelet tree structure based speckle noise removal for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Liu, Xuan; Liu, Yang

    2018-02-01

    We report a new speckle noise removal algorithm in optical coherence tomography (OCT). Though wavelet domain thresholding algorithms have demonstrated superior advantages in suppressing noise magnitude and preserving image sharpness in OCT, the wavelet tree structure has not been investigated in previous applications. In this work, we propose an adaptive wavelet thresholding algorithm via exploiting the tree structure in wavelet coefficients to remove the speckle noise in OCT images. The threshold for each wavelet band is adaptively selected following a special rule to retain the structure of the image across different wavelet layers. Our results demonstrate that the proposed algorithm outperforms conventional wavelet thresholding, with significant advantages in preserving image features.

  4. Improved medical image fusion based on cascaded PCA and shift invariant wavelet transforms.

    PubMed

    Reena Benjamin, J; Jayasree, T

    2018-02-01

    In the medical field, radiologists need more informative and high-quality medical images to diagnose diseases. Image fusion plays a vital role in the field of biomedical image analysis. It aims to integrate the complementary information from multimodal images, producing a new composite image which is expected to be more informative for visual perception than any of the individual input images. The main objective of this paper is to improve the information, to preserve the edges and to enhance the quality of the fused image using cascaded principal component analysis (PCA) and shift invariant wavelet transforms. A novel image fusion technique based on cascaded PCA and shift invariant wavelet transforms is proposed in this paper. PCA in spatial domain extracts relevant information from the large dataset based on eigenvalue decomposition, and the wavelet transform operating in the complex domain with shift invariant properties brings out more directional and phase details of the image. The significance of maximum fusion rule applied in dual-tree complex wavelet transform domain enhances the average information and morphological details. The input images of the human brain of two different modalities (MRI and CT) are collected from whole brain atlas data distributed by Harvard University. Both MRI and CT images are fused using cascaded PCA and shift invariant wavelet transform method. The proposed method is evaluated based on three main key factors, namely structure preservation, edge preservation, contrast preservation. The experimental results and comparison with other existing fusion methods show the superior performance of the proposed image fusion framework in terms of visual and quantitative evaluations. In this paper, a complex wavelet-based image fusion has been discussed. The experimental results demonstrate that the proposed method enhances the directional features as well as fine edge details. Also, it reduces the redundant details, artifacts, distortions.

  5. Wavelet Types Comparison for Extracting Iris Feature Based on Energy Compaction

    NASA Astrophysics Data System (ADS)

    Rizal Isnanto, R.

    2015-06-01

    Human iris has a very unique pattern which is possible to be used as a biometric recognition. To identify texture in an image, texture analysis method can be used. One of method is wavelet that extract the image feature based on energy. Wavelet transforms used are Haar, Daubechies, Coiflets, Symlets, and Biorthogonal. In the research, iris recognition based on five mentioned wavelets was done and then comparison analysis was conducted for which some conclusions taken. Some steps have to be done in the research. First, the iris image is segmented from eye image then enhanced with histogram equalization. The features obtained is energy value. The next step is recognition using normalized Euclidean distance. Comparison analysis is done based on recognition rate percentage with two samples stored in database for reference images. After finding the recognition rate, some tests are conducted using Energy Compaction for all five types of wavelets above. As the result, the highest recognition rate is achieved using Haar, whereas for coefficients cutting for C(i) < 0.1, Haar wavelet has a highest percentage, therefore the retention rate or significan coefficient retained for Haaris lower than other wavelet types (db5, coif3, sym4, and bior2.4)

  6. Wavelet Transforms in Parallel Image Processing

    DTIC Science & Technology

    1994-01-27

    NUMBER OF PAGES Object Segmentation, Texture Segmentation, Image Compression, Image 137 Halftoning , Neural Network, Parallel Algorithms, 2D and 3D...Vector Quantization of Wavelet Transform Coefficients ........ ............................. 57 B.1.f Adaptive Image Halftoning based on Wavelet...application has been directed to the adaptive image halftoning . The gray information at a pixel, including its gray value and gradient, is represented by

  7. Wavelet based free-form deformations for nonrigid registration

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.

  8. Content Based Image Retrieval based on Wavelet Transform coefficients distribution

    PubMed Central

    Lamard, Mathieu; Cazuguel, Guy; Quellec, Gwénolé; Bekri, Lynda; Roux, Christian; Cochener, Béatrice

    2007-01-01

    In this paper we propose a content based image retrieval method for diagnosis aid in medical fields. We characterize images without extracting significant features by using distribution of coefficients obtained by building signatures from the distribution of wavelet transform. The research is carried out by computing signature distances between the query and database images. Several signatures are proposed; they use a model of wavelet coefficient distribution. To enhance results, a weighted distance between signatures is used and an adapted wavelet base is proposed. Retrieval efficiency is given for different databases including a diabetic retinopathy, a mammography and a face database. Results are promising: the retrieval efficiency is higher than 95% for some cases using an optimization process. PMID:18003013

  9. Local wavelet transform: a cost-efficient custom processor for space image compression

    NASA Astrophysics Data System (ADS)

    Masschelein, Bart; Bormans, Jan G.; Lafruit, Gauthier

    2002-11-01

    Thanks to its intrinsic scalability features, the wavelet transform has become increasingly popular as decorrelator in image compression applications. Throuhgput, memory requirements and complexity are important parameters when developing hardware image compression modules. An implementation of the classical, global wavelet transform requires large memory sizes and implies a large latency between the availability of the input image and the production of minimal data entities for entropy coding. Image tiling methods, as proposed by JPEG2000, reduce the memory sizes and the latency, but inevitably introduce image artefacts. The Local Wavelet Transform (LWT), presented in this paper, is a low-complexity wavelet transform architecture using a block-based processing that results in the same transformed images as those obtained by the global wavelet transform. The architecture minimizes the processing latency with a limited amount of memory. Moreover, as the LWT is an instruction-based custom processor, it can be programmed for specific tasks, such as push-broom processing of infinite-length satelite images. The features of the LWT makes it appropriate for use in space image compression, where high throughput, low memory sizes, low complexity, low power and push-broom processing are important requirements.

  10. Segmentation-based wavelet transform for still-image compression

    NASA Astrophysics Data System (ADS)

    Mozelle, Gerard; Seghier, Abdellatif; Preteux, Francoise J.

    1996-10-01

    In order to address simultaneously the two functionalities, content-based scalability required by MPEG-4, we introduce a segmentation-based wavelet transform (SBWT). SBWT takes into account both the mathematical properties of multiresolution analysis and the flexibility of region-based approaches for image compression. The associated methodology has two stages: 1) image segmentation into convex and polygonal regions; 2) 2D-wavelet transform of the signal corresponding to each region. In this paper, we have mathematically studied a method for constructing a multiresolution analysis (VjOmega)j (epsilon) N adapted to a polygonal region which provides an adaptive region-based filtering. The explicit construction of scaling functions, pre-wavelets and orthonormal wavelets bases defined on a polygon is carried out by using scaling functions is established by using the theory of Toeplitz operators. The corresponding expression can be interpreted as a location property which allow defining interior and boundary scaling functions. Concerning orthonormal wavelets and pre-wavelets, a similar expansion is obtained by taking advantage of the properties of the orthogonal projector P(V(j(Omega )) perpendicular from the space Vj(Omega ) + 1 onto the space (Vj(Omega )) perpendicular. Finally the mathematical results provide a simple and fast algorithm adapted to polygonal regions.

  11. Onboard image compression schemes for modular airborne imaging spectrometer (MAIS) based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenyu; Wang, Jianyu

    1996-11-01

    In this paper, two compression schemes are presented to meet the urgent needs of compressing the huge volume and high data rate of imaging spectrometer images. According to the multidimensional feature of the images and the high fidelity requirement of the reconstruction, both schemes were devised to exploit the high redundancy in both spatial and spectral dimension based on the mature wavelet transform technology. Wavelet transform was applied here in two ways: First, with the spatial wavelet transform and the spectral DPCM decorrelation, a ratio up to 84.3 with PSNR > 48db's near-lossless result was attained. This is based ont he fact that the edge structure among all the spectral bands are similar while WT has higher resolution in high frequency components. Secondly, with the wavelet's high efficiency in processing the 'wideband transient' signals, it was used to transform the raw nonstationary signals in the spectral dimension. A good result was also attained.

  12. Block-based scalable wavelet image codec

    NASA Astrophysics Data System (ADS)

    Bao, Yiliang; Kuo, C.-C. Jay

    1999-10-01

    This paper presents a high performance block-based wavelet image coder which is designed to be of very low implementational complexity yet with rich features. In this image coder, the Dual-Sliding Wavelet Transform (DSWT) is first applied to image data to generate wavelet coefficients in fixed-size blocks. Here, a block only consists of wavelet coefficients from a single subband. The coefficient blocks are directly coded with the Low Complexity Binary Description (LCBiD) coefficient coding algorithm. Each block is encoded using binary context-based bitplane coding. No parent-child correlation is exploited in the coding process. There is also no intermediate buffering needed in between DSWT and LCBiD. The compressed bit stream generated by the proposed coder is both SNR and resolution scalable, as well as highly resilient to transmission errors. Both DSWT and LCBiD process the data in blocks whose size is independent of the size of the original image. This gives more flexibility in the implementation. The codec has a very good coding performance even the block size is (16,16).

  13. Fingerprint recognition of wavelet-based compressed images by neuro-fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Liu, Ti C.; Mitra, Sunanda

    1996-06-01

    Image compression plays a crucial role in many important and diverse applications requiring efficient storage and transmission. This work mainly focuses on a wavelet transform (WT) based compression of fingerprint images and the subsequent classification of the reconstructed images. The algorithm developed involves multiresolution wavelet decomposition, uniform scalar quantization, entropy and run- length encoder/decoder and K-means clustering of the invariant moments as fingerprint features. The performance of the WT-based compression algorithm has been compared with JPEG current image compression standard. Simulation results show that WT outperforms JPEG in high compression ratio region and the reconstructed fingerprint image yields proper classification.

  14. High-performance wavelet engine

    NASA Astrophysics Data System (ADS)

    Taylor, Fred J.; Mellot, Jonathon D.; Strom, Erik; Koren, Iztok; Lewis, Michael P.

    1993-11-01

    Wavelet processing has shown great promise for a variety of image and signal processing applications. Wavelets are also among the most computationally expensive techniques in signal processing. It is demonstrated that a wavelet engine constructed with residue number system arithmetic elements offers significant advantages over commercially available wavelet accelerators based upon conventional arithmetic elements. Analysis is presented predicting the dynamic range requirements of the reported residue number system based wavelet accelerator.

  15. Noise adaptive wavelet thresholding for speckle noise removal in optical coherence tomography.

    PubMed

    Zaki, Farzana; Wang, Yahui; Su, Hao; Yuan, Xin; Liu, Xuan

    2017-05-01

    Optical coherence tomography (OCT) is based on coherence detection of interferometric signals and hence inevitably suffers from speckle noise. To remove speckle noise in OCT images, wavelet domain thresholding has demonstrated significant advantages in suppressing noise magnitude while preserving image sharpness. However, speckle noise in OCT images has different characteristics in different spatial scales, which has not been considered in previous applications of wavelet domain thresholding. In this study, we demonstrate a noise adaptive wavelet thresholding (NAWT) algorithm that exploits the difference of noise characteristics in different wavelet sub-bands. The algorithm is simple, fast, effective and is closely related to the physical origin of speckle noise in OCT image. Our results demonstrate that NAWT outperforms conventional wavelet thresholding.

  16. Shearlet Features for Registration of Remotely Sensed Multitemporal Images

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Le Moigne, Jacqueline

    2015-01-01

    We investigate the role of anisotropic feature extraction methods for automatic image registration of remotely sensed multitemporal images. Building on the classical use of wavelets in image registration, we develop an algorithm based on shearlets, a mathematical generalization of wavelets that offers increased directional sensitivity. Initial experimental results on LANDSAT images are presented, which indicate superior performance of the shearlet algorithm when compared to classical wavelet algorithms.

  17. Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain

    PubMed Central

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality. PMID:23049544

  18. Medical image compression based on vector quantization with variable block sizes in wavelet domain.

    PubMed

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.

  19. Automatic Image Registration of Multimodal Remotely Sensed Data with Global Shearlet Features

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2015-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone.

  20. Automatic Image Registration of Multi-Modal Remotely Sensed Data with Global Shearlet Features

    PubMed Central

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2017-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone. PMID:29123329

  1. Wavelet-Based Signal and Image Processing for Target Recognition

    NASA Astrophysics Data System (ADS)

    Sherlock, Barry G.

    2002-11-01

    The PI visited NSWC Dahlgren, VA, for six weeks in May-June 2002 and collaborated with scientists in the G33 TEAMS facility, and with Marilyn Rudzinsky of T44 Technology and Photonic Systems Branch. During this visit the PI also presented six educational seminars to NSWC scientists on various aspects of signal processing. Several items from the grant proposal were completed, including (1) wavelet-based algorithms for interpolation of 1-d signals and 2-d images; (2) Discrete Wavelet Transform domain based algorithms for filtering of image data; (3) wavelet-based smoothing of image sequence data originally obtained for the CRITTIR (Clutter Rejection Involving Temporal Techniques in the Infra-Red) project. The PI visited the University of Stellenbosch, South Africa to collaborate with colleagues Prof. B.M. Herbst and Prof. J. du Preez on the use of wavelet image processing in conjunction with pattern recognition techniques. The University of Stellenbosch has offered the PI partial funding to support a sabbatical visit in Fall 2003, the primary purpose of which is to enable the PI to develop and enhance his expertise in Pattern Recognition. During the first year, the grant supported publication of 3 referred papers, presentation of 9 seminars and an intensive two-day course on wavelet theory. The grant supported the work of two students who functioned as research assistants.

  2. Enhancing hyperspectral spatial resolution using multispectral image fusion: A wavelet approach

    NASA Astrophysics Data System (ADS)

    Jazaeri, Amin

    High spectral and spatial resolution images have a significant impact in remote sensing applications. Because both spatial and spectral resolutions of spaceborne sensors are fixed by design and it is not possible to further increase the spatial or spectral resolution, techniques such as image fusion must be applied to achieve such goals. This dissertation introduces the concept of wavelet fusion between hyperspectral and multispectral sensors in order to enhance the spectral and spatial resolution of a hyperspectral image. To test the robustness of this concept, images from Hyperion (hyperspectral sensor) and Advanced Land Imager (multispectral sensor) were first co-registered and then fused using different wavelet algorithms. A regression-based fusion algorithm was also implemented for comparison purposes. The results show that the fused images using a combined bi-linear wavelet-regression algorithm have less error than other methods when compared to the ground truth. In addition, a combined regression-wavelet algorithm shows more immunity to misalignment of the pixels due to the lack of proper registration. The quantitative measures of average mean square error show that the performance of wavelet-based methods degrades when the spatial resolution of hyperspectral images becomes eight times less than its corresponding multispectral image. Regardless of what method of fusion is utilized, the main challenge in image fusion is image registration, which is also a very time intensive process. Because the combined regression wavelet technique is computationally expensive, a hybrid technique based on regression and wavelet methods was also implemented to decrease computational overhead. However, the gain in faster computation was offset by the introduction of more error in the outcome. The secondary objective of this dissertation is to examine the feasibility and sensor requirements for image fusion for future NASA missions in order to be able to perform onboard image fusion. In this process, the main challenge of image registration was resolved by registering the input images using transformation matrices of previously acquired data. The composite image resulted from the fusion process remarkably matched the ground truth, indicating the possibility of real time onboard fusion processing.

  3. ICER-3D: A Progressive Wavelet-Based Compressor for Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Kiely, A.; Klimesh, M.; Xie, H.; Aranki, N.

    2005-01-01

    ICER-3D is a progressive, wavelet-based compressor for hyperspectral images. ICER-3D is derived from the ICER image compressor. ICER-3D can provide lossless and lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The three-dimensional wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of hyperspectral data sets, while facilitating elimination of spectral ringing artifacts. Correlation is further exploited by a context modeler that effectively exploits spectral dependencies in the wavelet-transformed hyperspectral data. Performance results illustrating the benefits of these features are presented.

  4. Wavelet SVM in Reproducing Kernel Hilbert Space for hyperspectral remote sensing image classification

    NASA Astrophysics Data System (ADS)

    Du, Peijun; Tan, Kun; Xing, Xiaoshi

    2010-12-01

    Combining Support Vector Machine (SVM) with wavelet analysis, we constructed wavelet SVM (WSVM) classifier based on wavelet kernel functions in Reproducing Kernel Hilbert Space (RKHS). In conventional kernel theory, SVM is faced with the bottleneck of kernel parameter selection which further results in time-consuming and low classification accuracy. The wavelet kernel in RKHS is a kind of multidimensional wavelet function that can approximate arbitrary nonlinear functions. Implications on semiparametric estimation are proposed in this paper. Airborne Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing image with 64 bands and Reflective Optics System Imaging Spectrometer (ROSIS) data with 115 bands were used to experiment the performance and accuracy of the proposed WSVM classifier. The experimental results indicate that the WSVM classifier can obtain the highest accuracy when using the Coiflet Kernel function in wavelet transform. In contrast with some traditional classifiers, including Spectral Angle Mapping (SAM) and Minimum Distance Classification (MDC), and SVM classifier using Radial Basis Function kernel, the proposed wavelet SVM classifier using the wavelet kernel function in Reproducing Kernel Hilbert Space is capable of improving classification accuracy obviously.

  5. Convex composite wavelet frame and total variation-based image deblurring using nonconvex penalty functions

    NASA Astrophysics Data System (ADS)

    Shen, Zhengwei; Cheng, Lishuang

    2017-09-01

    Total variation (TV)-based image deblurring method can bring on staircase artifacts in the homogenous region of the latent images recovered from the degraded images while a wavelet/frame-based image deblurring method will lead to spurious noise spikes and pseudo-Gibbs artifacts in the vicinity of discontinuities of the latent images. To suppress these artifacts efficiently, we propose a nonconvex composite wavelet/frame and TV-based image deblurring model. In this model, the wavelet/frame and the TV-based methods may complement each other, which are verified by theoretical analysis and experimental results. To further improve the quality of the latent images, nonconvex penalty function is used to be the regularization terms of the model, which may induce a stronger sparse solution and will more accurately estimate the relative large gradient or wavelet/frame coefficients of the latent images. In addition, by choosing a suitable parameter to the nonconvex penalty function, the subproblem that splits by the alternative direction method of multipliers algorithm from the proposed model can be guaranteed to be a convex optimization problem; hence, each subproblem can converge to a global optimum. The mean doubly augmented Lagrangian and the isotropic split Bregman algorithms are used to solve these convex subproblems where the designed proximal operator is used to reduce the computational complexity of the algorithms. Extensive numerical experiments indicate that the proposed model and algorithms are comparable to other state-of-the-art model and methods.

  6. Exploring an optimal wavelet-based filter for cryo-ET imaging.

    PubMed

    Huang, Xinrui; Li, Sha; Gao, Song

    2018-02-07

    Cryo-electron tomography (cryo-ET) is one of the most advanced technologies for the in situ visualization of molecular machines by producing three-dimensional (3D) biological structures. However, cryo-ET imaging has two serious disadvantages-low dose and low image contrast-which result in high-resolution information being obscured by noise and image quality being degraded, and this causes errors in biological interpretation. The purpose of this research is to explore an optimal wavelet denoising technique to reduce noise in cryo-ET images. We perform tests using simulation data and design a filter using the optimum selected wavelet parameters (three-level decomposition, level-1 zeroed out, subband-dependent threshold, a soft-thresholding and spline-based discrete dyadic wavelet transform (DDWT)), which we call a modified wavelet shrinkage filter; this filter is suitable for noisy cryo-ET data. When testing using real cryo-ET experiment data, higher quality images and more accurate measures of a biological structure can be obtained with the modified wavelet shrinkage filter processing compared with conventional processing. Because the proposed method provides an inherent advantage when dealing with cryo-ET images, it can therefore extend the current state-of-the-art technology in assisting all aspects of cryo-ET studies: visualization, reconstruction, structural analysis, and interpretation.

  7. Cell edge detection in JPEG2000 wavelet domain - analysis on sigmoid function edge model.

    PubMed

    Punys, Vytenis; Maknickas, Ramunas

    2011-01-01

    Big virtual microscopy images (80K x 60K pixels and larger) are usually stored using the JPEG2000 image compression scheme. Diagnostic quantification, based on image analysis, might be faster if performed on compressed data (approx. 20 times less the original amount), representing the coefficients of the wavelet transform. The analysis of possible edge detection without reverse wavelet transform is presented in the paper. Two edge detection methods, suitable for JPEG2000 bi-orthogonal wavelets, are proposed. The methods are adjusted according calculated parameters of sigmoid edge model. The results of model analysis indicate more suitable method for given bi-orthogonal wavelet.

  8. The wavelet/scalar quantization compression standard for digital fingerprint images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J.N.; Brislawn, C.M.

    1994-04-01

    A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.

  9. Quality of reconstruction of compressed off-axis digital holograms by frequency filtering and wavelets.

    PubMed

    Cheremkhin, Pavel A; Kurbatova, Ekaterina A

    2018-01-01

    Compression of digital holograms can significantly help with the storage of objects and data in 2D and 3D form, its transmission, and its reconstruction. Compression of standard images by methods based on wavelets allows high compression ratios (up to 20-50 times) with minimum losses of quality. In the case of digital holograms, application of wavelets directly does not allow high values of compression to be obtained. However, additional preprocessing and postprocessing can afford significant compression of holograms and the acceptable quality of reconstructed images. In this paper application of wavelet transforms for compression of off-axis digital holograms are considered. The combined technique based on zero- and twin-order elimination, wavelet compression of the amplitude and phase components of the obtained Fourier spectrum, and further additional compression of wavelet coefficients by thresholding and quantization is considered. Numerical experiments on reconstruction of images from the compressed holograms are performed. The comparative analysis of applicability of various wavelets and methods of additional compression of wavelet coefficients is performed. Optimum parameters of compression of holograms by the methods can be estimated. Sizes of holographic information were decreased up to 190 times.

  10. Speckle noise reduction in quantitative optical metrology techniques by application of the discrete wavelet transformation

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    2002-06-01

    Effective suppression of speckle noise content in interferometric data images can help in improving accuracy and resolution of the results obtained with interferometric optical metrology techniques. In this paper, novel speckle noise reduction algorithms based on the discrete wavelet transformation are presented. The algorithms proceed by: (a) estimating the noise level contained in the interferograms of interest, (b) selecting wavelet families, (c) applying the wavelet transformation using the selected families, (d) wavelet thresholding, and (e) applying the inverse wavelet transformation, producing denoised interferograms. The algorithms are applied to the different stages of the processing procedures utilized for generation of quantitative speckle correlation interferometry data of fiber-optic based opto-electronic holography (FOBOEH) techniques, allowing identification of optimal processing conditions. It is shown that wavelet algorithms are effective for speckle noise reduction while preserving image features otherwise faded with other algorithms.

  11. Image sharpness assessment based on wavelet energy of edge area

    NASA Astrophysics Data System (ADS)

    Li, Jin; Zhang, Hong; Zhang, Lei; Yang, Yifan; He, Lei; Sun, Mingui

    2018-04-01

    Image quality assessment is needed in multiple image processing areas and blur is one of the key reasons of image deterioration. Although great full-reference image quality assessment metrics have been proposed in the past few years, no-reference method is still an area of current research. Facing this problem, this paper proposes a no-reference sharpness assessment method based on wavelet transformation which focuses on the edge area of image. Based on two simple characteristics of human vision system, weights are introduced to calculate weighted log-energy of each wavelet sub band. The final score is given by the ratio of high-frequency energy to the total energy. The algorithm is tested on multiple databases. Comparing with several state-of-the-art metrics, proposed algorithm has better performance and less runtime consumption.

  12. Application of Time-Frequency Domain Transform to Three-Dimensional Interpolation of Medical Images.

    PubMed

    Lv, Shengqing; Chen, Yimin; Li, Zeyu; Lu, Jiahui; Gao, Mingke; Lu, Rongrong

    2017-11-01

    Medical image three-dimensional (3D) interpolation is an important means to improve the image effect in 3D reconstruction. In image processing, the time-frequency domain transform is an efficient method. In this article, several time-frequency domain transform methods are applied and compared in 3D interpolation. And a Sobel edge detection and 3D matching interpolation method based on wavelet transform is proposed. We combine wavelet transform, traditional matching interpolation methods, and Sobel edge detection together in our algorithm. What is more, the characteristics of wavelet transform and Sobel operator are used. They deal with the sub-images of wavelet decomposition separately. Sobel edge detection 3D matching interpolation method is used in low-frequency sub-images under the circumstances of ensuring high frequency undistorted. Through wavelet reconstruction, it can get the target interpolation image. In this article, we make 3D interpolation of the real computed tomography (CT) images. Compared with other interpolation methods, our proposed method is verified to be effective and superior.

  13. Visual information processing II; Proceedings of the Meeting, Orlando, FL, Apr. 14-16, 1993

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)

    1993-01-01

    Various papers on visual information processing are presented. Individual topics addressed include: aliasing as noise, satellite image processing using a hammering neural network, edge-detetion method using visual perception, adaptive vector median filters, design of a reading test for low-vision image warping, spatial transformation architectures, automatic image-enhancement method, redundancy reduction in image coding, lossless gray-scale image compression by predictive GDF, information efficiency in visual communication, optimizing JPEG quantization matrices for different applications, use of forward error correction to maintain image fidelity, effect of peanoscanning on image compression. Also discussed are: computer vision for autonomous robotics in space, optical processor for zero-crossing edge detection, fractal-based image edge detection, simulation of the neon spreading effect by bandpass filtering, wavelet transform (WT) on parallel SIMD architectures, nonseparable 2D wavelet image representation, adaptive image halftoning based on WT, wavelet analysis of global warming, use of the WT for signal detection, perfect reconstruction two-channel rational filter banks, N-wavelet coding for pattern classification, simulation of image of natural objects, number-theoretic coding for iconic systems.

  14. Multiresolution MAP despeckling of SAR images based on locally adaptive generalized Gaussian pdf modeling.

    PubMed

    Argenti, Fabrizio; Bianchi, Tiziano; Alparone, Luciano

    2006-11-01

    In this paper, a new despeckling method based on undecimated wavelet decomposition and maximum a posteriori MIAP) estimation is proposed. Such a method relies on the assumption that the probability density function (pdf) of each wavelet coefficient is generalized Gaussian (GG). The major novelty of the proposed approach is that the parameters of the GG pdf are taken to be space-varying within each wavelet frame. Thus, they may be adjusted to spatial image context, not only to scale and orientation. Since the MAP equation to be solved is a function of the parameters of the assumed pdf model, the variance and shape factor of the GG function are derived from the theoretical moments, which depend on the moments and joint moments of the observed noisy signal and on the statistics of speckle. The solution of the MAP equation yields the MAP estimate of the wavelet coefficients of the noise-free image. The restored SAR image is synthesized from such coefficients. Experimental results, carried out on both synthetic speckled images and true SAR images, demonstrate that MAP filtering can be successfully applied to SAR images represented in the shift-invariant wavelet domain, without resorting to a logarithmic transformation.

  15. The EM Method in a Probabilistic Wavelet-Based MRI Denoising

    PubMed Central

    2015-01-01

    Human body heat emission and others external causes can interfere in magnetic resonance image acquisition and produce noise. In this kind of images, the noise, when no signal is present, is Rayleigh distributed and its wavelet coefficients can be approximately modeled by a Gaussian distribution. Noiseless magnetic resonance images can be modeled by a Laplacian distribution in the wavelet domain. This paper proposes a new magnetic resonance image denoising method to solve this fact. This method performs shrinkage of wavelet coefficients based on the conditioned probability of being noise or detail. The parameters involved in this filtering approach are calculated by means of the expectation maximization (EM) method, which avoids the need to use an estimator of noise variance. The efficiency of the proposed filter is studied and compared with other important filtering techniques, such as Nowak's, Donoho-Johnstone's, Awate-Whitaker's, and nonlocal means filters, in different 2D and 3D images. PMID:26089959

  16. The EM Method in a Probabilistic Wavelet-Based MRI Denoising.

    PubMed

    Martin-Fernandez, Marcos; Villullas, Sergio

    2015-01-01

    Human body heat emission and others external causes can interfere in magnetic resonance image acquisition and produce noise. In this kind of images, the noise, when no signal is present, is Rayleigh distributed and its wavelet coefficients can be approximately modeled by a Gaussian distribution. Noiseless magnetic resonance images can be modeled by a Laplacian distribution in the wavelet domain. This paper proposes a new magnetic resonance image denoising method to solve this fact. This method performs shrinkage of wavelet coefficients based on the conditioned probability of being noise or detail. The parameters involved in this filtering approach are calculated by means of the expectation maximization (EM) method, which avoids the need to use an estimator of noise variance. The efficiency of the proposed filter is studied and compared with other important filtering techniques, such as Nowak's, Donoho-Johnstone's, Awate-Whitaker's, and nonlocal means filters, in different 2D and 3D images.

  17. Target Identification Using Harmonic Wavelet Based ISAR Imaging

    NASA Astrophysics Data System (ADS)

    Shreyamsha Kumar, B. K.; Prabhakar, B.; Suryanarayana, K.; Thilagavathi, V.; Rajagopal, R.

    2006-12-01

    A new approach has been proposed to reduce the computations involved in the ISAR imaging, which uses harmonic wavelet-(HW) based time-frequency representation (TFR). Since the HW-based TFR falls into a category of nonparametric time-frequency (T-F) analysis tool, it is computationally efficient compared to parametric T-F analysis tools such as adaptive joint time-frequency transform (AJTFT), adaptive wavelet transform (AWT), and evolutionary AWT (EAWT). Further, the performance of the proposed method of ISAR imaging is compared with the ISAR imaging by other nonparametric T-F analysis tools such as short-time Fourier transform (STFT) and Choi-Williams distribution (CWD). In the ISAR imaging, the use of HW-based TFR provides similar/better results with significant (92%) computational advantage compared to that obtained by CWD. The ISAR images thus obtained are identified using a neural network-based classification scheme with feature set invariant to translation, rotation, and scaling.

  18. Image restoration by minimizing zero norm of wavelet frame coefficients

    NASA Astrophysics Data System (ADS)

    Bao, Chenglong; Dong, Bin; Hou, Likun; Shen, Zuowei; Zhang, Xiaoqun; Zhang, Xue

    2016-11-01

    In this paper, we propose two algorithms, namely the extrapolated proximal iterative hard thresholding (EPIHT) algorithm and the EPIHT algorithm with line-search, for solving the {{\\ell }}0-norm regularized wavelet frame balanced approach for image restoration. Under the theoretical framework of Kurdyka-Łojasiewicz property, we show that the sequences generated by the two algorithms converge to a local minimizer with linear convergence rate. Moreover, extensive numerical experiments on sparse signal reconstruction and wavelet frame based image restoration problems including CT reconstruction, image deblur, demonstrate the improvement of {{\\ell }}0-norm based regularization models over some prevailing ones, as well as the computational efficiency of the proposed algorithms.

  19. Segmentation of dermoscopy images using wavelet networks.

    PubMed

    Sadri, Amir Reza; Zekri, Maryam; Sadri, Saeed; Gheissari, Niloofar; Mokhtari, Mojgan; Kolahdouzan, Farzaneh

    2013-04-01

    This paper introduces a new approach for the segmentation of skin lesions in dermoscopic images based on wavelet network (WN). The WN presented here is a member of fixed-grid WNs that is formed with no need of training. In this WN, after formation of wavelet lattice, determining shift and scale parameters of wavelets with two screening stage and selecting effective wavelets, orthogonal least squares algorithm is used to calculate the network weights and to optimize the network structure. The existence of two stages of screening increases globality of the wavelet lattice and provides a better estimation of the function especially for larger scales. R, G, and B values of a dermoscopy image are considered as the network inputs and the network structure formation. Then, the image is segmented and the skin lesions exact boundary is determined accordingly. The segmentation algorithm were applied to 30 dermoscopic images and evaluated with 11 different metrics, using the segmentation result obtained by a skilled pathologist as the ground truth. Experimental results show that our method acts more effectively in comparison with some modern techniques that have been successfully used in many medical imaging problems.

  20. Detection of small bowel tumors in capsule endoscopy frames using texture analysis based on the discrete wavelet transform.

    PubMed

    Barbosa, Daniel J C; Ramos, Jaime; Lima, Carlos S

    2008-01-01

    Capsule endoscopy is an important tool to diagnose tumor lesions in the small bowel. The capsule endoscopic images possess vital information expressed by color and texture. This paper presents an approach based in the textural analysis of the different color channels, using the wavelet transform to select the bands with the most significant texture information. A new image is then synthesized from the selected wavelet bands, trough the inverse wavelet transform. The features of each image are based on second-order textural information, and they are used in a classification scheme using a multilayer perceptron neural network. The proposed methodology has been applied in real data taken from capsule endoscopic exams and reached 98.7% sensibility and 96.6% specificity. These results support the feasibility of the proposed algorithm.

  1. Alcoholism detection in magnetic resonance imaging by Haar wavelet transform and back propagation neural network

    NASA Astrophysics Data System (ADS)

    Yu, Yali; Wang, Mengxia; Lima, Dimas

    2018-04-01

    In order to develop a novel alcoholism detection method, we proposed a magnetic resonance imaging (MRI)-based computer vision approach. We first use contrast equalization to increase the contrast of brain slices. Then, we perform Haar wavelet transform and principal component analysis. Finally, we use back propagation neural network (BPNN) as the classification tool. Our method yields a sensitivity of 81.71±4.51%, a specificity of 81.43±4.52%, and an accuracy of 81.57±2.18%. The Haar wavelet gives better performance than db4 wavelet and sym3 wavelet.

  2. Applications of wavelets in morphometric analysis of medical images

    NASA Astrophysics Data System (ADS)

    Davatzikos, Christos; Tao, Xiaodong; Shen, Dinggang

    2003-11-01

    Morphometric analysis of medical images is playing an increasingly important role in understanding brain structure and function, as well as in understanding the way in which these change during development, aging and pathology. This paper presents three wavelet-based methods with related applications in morphometric analysis of magnetic resonance (MR) brain images. The first method handles cases where very limited datasets are available for the training of statistical shape models in the deformable segmentation. The method is capable of capturing a larger range of shape variability than the standard active shape models (ASMs) can, by using the elegant spatial-frequency decomposition of the shape contours provided by wavelet transforms. The second method addresses the difficulty of finding correspondences in anatomical images, which is a key step in shape analysis and deformable registration. The detection of anatomical correspondences is completed by using wavelet-based attribute vectors as morphological signatures of voxels. The third method uses wavelets to characterize the morphological measurements obtained from all voxels in a brain image, and the entire set of wavelet coefficients is further used to build a brain classifier. Since the classification scheme operates in a very-high-dimensional space, it can determine subtle population differences with complex spatial patterns. Experimental results are provided to demonstrate the performance of the proposed methods.

  3. Wavelet-based associative memory

    NASA Astrophysics Data System (ADS)

    Jones, Katharine J.

    2004-04-01

    Faces provide important characteristics of a person"s identification. In security checks, face recognition still remains the method in continuous use despite other approaches (i.e. fingerprints, voice recognition, pupil contraction, DNA scanners). With an associative memory, the output data is recalled directly using the input data. This can be achieved with a Nonlinear Holographic Associative Memory (NHAM). This approach can also distinguish between strongly correlated images and images that are partially or totally enclosed by others. Adaptive wavelet lifting has been used for Content-Based Image Retrieval. In this paper, adaptive wavelet lifting will be applied to face recognition to achieve an associative memory.

  4. Image superresolution of cytology images using wavelet based patch search

    NASA Astrophysics Data System (ADS)

    Vargas, Carlos; García-Arteaga, Juan D.; Romero, Eduardo

    2015-01-01

    Telecytology is a new research area that holds the potential of significantly reducing the number of deaths due to cervical cancer in developing countries. This work presents a novel super-resolution technique that couples high and low frequency information in order to reduce the bandwidth consumption of cervical image transmission. The proposed approach starts by decomposing into wavelets the high resolution images and transmitting only the lower frequency coefficients. The transmitted coefficients are used to reconstruct an image of the original size. Additional details are added by iteratively replacing patches of the wavelet reconstructed image with equivalent high resolution patches from a previously acquired image database. Finally, the original transmitted low frequency coefficients are used to correct the final image. Results show a higher signal to noise ratio in the proposed method over simply discarding high frequency wavelet coefficients or replacing directly down-sampled patches from the image-database.

  5. Context Modeler for Wavelet Compression of Spectral Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron; Xie, Hua; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    A context-modeling sub-algorithm has been developed as part of an algorithm that effects three-dimensional (3D) wavelet-based compression of hyperspectral image data. The context-modeling subalgorithm, hereafter denoted the context modeler, provides estimates of probability distributions of wavelet-transformed data being encoded. These estimates are utilized by an entropy coding subalgorithm that is another major component of the compression algorithm. The estimates make it possible to compress the image data more effectively than would otherwise be possible. The following background discussion is prerequisite to a meaningful summary of the context modeler. This discussion is presented relative to ICER-3D, which is the name attached to a particular compression algorithm and the software that implements it. The ICER-3D software is summarized briefly in the preceding article, ICER-3D Hyperspectral Image Compression Software (NPO-43238). Some aspects of this algorithm were previously described, in a slightly more general context than the ICER-3D software, in "Improving 3D Wavelet-Based Compression of Hyperspectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. In turn, ICER-3D is a product of generalization of ICER, another previously reported algorithm and computer program that can perform both lossless and lossy wavelet-based compression and decompression of gray-scale-image data. In ICER-3D, hyperspectral image data are decomposed using a 3D discrete wavelet transform (DWT). Following wavelet decomposition, mean values are subtracted from spatial planes of spatially low-pass subbands prior to encoding. The resulting data are converted to sign-magnitude form and compressed. In ICER-3D, compression is progressive, in that compressed information is ordered so that as more of the compressed data stream is received, successive reconstructions of the hyperspectral image data are of successively higher overall fidelity.

  6. Wavelet-based de-noising algorithm for images acquired with parallel magnetic resonance imaging (MRI).

    PubMed

    Delakis, Ioannis; Hammad, Omer; Kitney, Richard I

    2007-07-07

    Wavelet-based de-noising has been shown to improve image signal-to-noise ratio in magnetic resonance imaging (MRI) while maintaining spatial resolution. Wavelet-based de-noising techniques typically implemented in MRI require that noise displays uniform spatial distribution. However, images acquired with parallel MRI have spatially varying noise levels. In this work, a new algorithm for filtering images with parallel MRI is presented. The proposed algorithm extracts the edges from the original image and then generates a noise map from the wavelet coefficients at finer scales. The noise map is zeroed at locations where edges have been detected and directional analysis is also used to calculate noise in regions of low-contrast edges that may not have been detected. The new methodology was applied on phantom and brain images and compared with other applicable de-noising techniques. The performance of the proposed algorithm was shown to be comparable with other techniques in central areas of the images, where noise levels are high. In addition, finer details and edges were maintained in peripheral areas, where noise levels are low. The proposed methodology is fully automated and can be applied on final reconstructed images without requiring sensitivity profiles or noise matrices of the receiver coils, therefore making it suitable for implementation in a clinical MRI setting.

  7. Efficacy Evaluation of Different Wavelet Feature Extraction Methods on Brain MRI Tumor Detection

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel; Kubat, Miroslav

    2014-03-01

    Automated Magnetic Resonance Imaging brain tumor detection and segmentation is a challenging task. Among different available methods, feature-based methods are very dominant. While many feature extraction techniques have been employed, it is still not quite clear which of feature extraction methods should be preferred. To help improve the situation, we present the results of a study in which we evaluate the efficiency of using different wavelet transform features extraction methods in brain MRI abnormality detection. Applying T1-weighted brain image, Discrete Wavelet Transform (DWT), Discrete Wavelet Packet Transform (DWPT), Dual Tree Complex Wavelet Transform (DTCWT), and Complex Morlet Wavelet Transform (CMWT) methods are applied to construct the feature pool. Three various classifiers as Support Vector Machine, K Nearest Neighborhood, and Sparse Representation-Based Classifier are applied and compared for classifying the selected features. The results show that DTCWT and CMWT features classified with SVM, result in the highest classification accuracy, proving of capability of wavelet transform features to be informative in this application.

  8. Experimental Studies on a Compact Storage Scheme for Wavelet-based Multiresolution Subregion Retrieval

    NASA Technical Reports Server (NTRS)

    Poulakidas, A.; Srinivasan, A.; Egecioglu, O.; Ibarra, O.; Yang, T.

    1996-01-01

    Wavelet transforms, when combined with quantization and a suitable encoding, can be used to compress images effectively. In order to use them for image library systems, a compact storage scheme for quantized coefficient wavelet data must be developed with a support for fast subregion retrieval. We have designed such a scheme and in this paper we provide experimental studies to demonstrate that it achieves good image compression ratios, while providing a natural indexing mechanism that facilitates fast retrieval of portions of the image at various resolutions.

  9. Impulse Noise Cancellation of Medical Images Using Wavelet Networks and Median Filters

    PubMed Central

    Sadri, Amir Reza; Zekri, Maryam; Sadri, Saeid; Gheissari, Niloofar

    2012-01-01

    This paper presents a new two-stage approach to impulse noise removal for medical images based on wavelet network (WN). The first step is noise detection, in which the so-called gray-level difference and average background difference are considered as the inputs of a WN. Wavelet Network is used as a preprocessing for the second stage. The second step is removing impulse noise with a median filter. The wavelet network presented here is a fixed one without learning. Experimental results show that our method acts on impulse noise effectively, and at the same time preserves chromaticity and image details very well. PMID:23493998

  10. A fast method for the detection of vascular structure in images, based on the continuous wavelet transform with the Morlet wavelet having a low central frequency

    NASA Astrophysics Data System (ADS)

    Postnikov, Eugene B.; Tsoy, Maria O.; Kurochkin, Maxim A.; Postnov, Dmitry E.

    2017-04-01

    A manual measurement of blood vessels diameter is a conventional component of routine visual assessment of microcirculation, say, during optical capillaroscopy. However, many modern optical methods for blood flow measurements demand the reliable procedure for a fully automated detection of vessels and estimation of their diameter that is a challenging task. Specifically, if one measure the velocity of red blood cells by means of laser speckle imaging, then visual measurements become impossible, while the velocity-based estimation has their own limitations. One of promising approaches is based on fast switching of illumination type, but it drastically reduces the observation time, and hence, the achievable quality of images. In the present work we address this problem proposing an alternative method for the processing of noisy images of vascular structure, which extracts the mask denoting locations of vessels, based on the application of the continuous wavelet transform with the Morlet wavelet having small central frequencies. Such a method combines a reasonable accuracy with the possibility of fast direct implementation to images. Discussing the latter, we describe in details a new MATLAB program code realization for the CWT with the Morlet wavelet, which does not use loops completely replaced with element-by-element operations that drastically reduces the computation time.

  11. Wavelet analysis for wind fields estimation.

    PubMed

    Leite, Gladeston C; Ushizima, Daniela M; Medeiros, Fátima N S; de Lima, Gilson G

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B(3) spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms(-1). Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms.

  12. Exploiting the wavelet structure in compressed sensing MRI.

    PubMed

    Chen, Chen; Huang, Junzhou

    2014-12-01

    Sparsity has been widely utilized in magnetic resonance imaging (MRI) to reduce k-space sampling. According to structured sparsity theories, fewer measurements are required for tree sparse data than the data only with standard sparsity. Intuitively, more accurate image reconstruction can be achieved with the same number of measurements by exploiting the wavelet tree structure in MRI. A novel algorithm is proposed in this article to reconstruct MR images from undersampled k-space data. In contrast to conventional compressed sensing MRI (CS-MRI) that only relies on the sparsity of MR images in wavelet or gradient domain, we exploit the wavelet tree structure to improve CS-MRI. This tree-based CS-MRI problem is decomposed into three simpler subproblems then each of the subproblems can be efficiently solved by an iterative scheme. Simulations and in vivo experiments demonstrate the significant improvement of the proposed method compared to conventional CS-MRI algorithms, and the feasibleness on MR data compared to existing tree-based imaging algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Adaptive multifocus image fusion using block compressed sensing with smoothed projected Landweber integration in the wavelet domain.

    PubMed

    V S, Unni; Mishra, Deepak; Subrahmanyam, G R K S

    2016-12-01

    The need for image fusion in current image processing systems is increasing mainly due to the increased number and variety of image acquisition techniques. Image fusion is the process of combining substantial information from several sensors using mathematical techniques in order to create a single composite image that will be more comprehensive and thus more useful for a human operator or other computer vision tasks. This paper presents a new approach to multifocus image fusion based on sparse signal representation. Block-based compressive sensing integrated with a projection-driven compressive sensing (CS) recovery that encourages sparsity in the wavelet domain is used as a method to get the focused image from a set of out-of-focus images. Compression is achieved during the image acquisition process using a block compressive sensing method. An adaptive thresholding technique within the smoothed projected Landweber recovery process reconstructs high-resolution focused images from low-dimensional CS measurements of out-of-focus images. Discrete wavelet transform and dual-tree complex wavelet transform are used as the sparsifying basis for the proposed fusion. The main finding lies in the fact that sparsification enables a better selection of the fusion coefficients and hence better fusion. A Laplacian mixture model fit is done in the wavelet domain and estimation of the probability density function (pdf) parameters by expectation maximization leads us to the proper selection of the coefficients of the fused image. Using the proposed method compared with the fusion scheme without employing the projected Landweber (PL) scheme and the other existing CS-based fusion approaches, it is observed that with fewer samples itself, the proposed method outperforms other approaches.

  14. Wavelet-based image compression using shuffling and bit plane correlation

    NASA Astrophysics Data System (ADS)

    Kim, Seungjong; Jeong, Jechang

    2000-12-01

    In this paper, we propose a wavelet-based image compression method using shuffling and bit plane correlation. The proposed method improves coding performance in two steps: (1) removing the sign bit plane by shuffling process on quantized coefficients, (2) choosing the arithmetic coding context according to maximum correlation direction. The experimental results are comparable or superior for some images with low correlation, to existing coders.

  15. Hyperspectral imaging with wavelet transform for classification of colon tissue biopsy samples

    NASA Astrophysics Data System (ADS)

    Masood, Khalid

    2008-08-01

    Automatic classification of medical images is a part of our computerised medical imaging programme to support the pathologists in their diagnosis. Hyperspectral data has found its applications in medical imagery. Its usage is increasing significantly in biopsy analysis of medical images. In this paper, we present a histopathological analysis for the classification of colon biopsy samples into benign and malignant classes. The proposed study is based on comparison between 3D spectral/spatial analysis and 2D spatial analysis. Wavelet textural features in the wavelet domain are used in both these approaches for classification of colon biopsy samples. Experimental results indicate that the incorporation of wavelet textural features using a support vector machine, in 2D spatial analysis, achieve best classification accuracy.

  16. [An improved medical image fusion algorithm and quality evaluation].

    PubMed

    Chen, Meiling; Tao, Ling; Qian, Zhiyu

    2009-08-01

    Medical image fusion is of very important value for application in medical image analysis and diagnosis. In this paper, the conventional method of wavelet fusion is improved,so a new algorithm of medical image fusion is presented and the high frequency and low frequency coefficients are studied respectively. When high frequency coefficients are chosen, the regional edge intensities of each sub-image are calculated to realize adaptive fusion. The choice of low frequency coefficient is based on the edges of images, so that the fused image preserves all useful information and appears more distinctly. We apply the conventional and the improved fusion algorithms based on wavelet transform to fuse two images of human body and also evaluate the fusion results through a quality evaluation method. Experimental results show that this algorithm can effectively retain the details of information on original images and enhance their edge and texture features. This new algorithm is better than the conventional fusion algorithm based on wavelet transform.

  17. Combining a wavelet transform with a channelized Hotelling observer for tumor detection in 3D PET oncology imaging

    NASA Astrophysics Data System (ADS)

    Lartizien, Carole; Tomei, Sandrine; Maxim, Voichita; Odet, Christophe

    2007-03-01

    This study evaluates new observer models for 3D whole-body Positron Emission Tomography (PET) imaging based on a wavelet sub-band decomposition and compares them with the classical constant-Q CHO model. Our final goal is to develop an original method that performs guided detection of abnormal activity foci in PET oncology imaging based on these new observer models. This computer-aided diagnostic method would highly benefit to clinicians for diagnostic purpose and to biologists for massive screening of rodents populations in molecular imaging. Method: We have previously shown good correlation of the channelized Hotelling observer (CHO) using a constant-Q model with human observer performance for 3D PET oncology imaging. We propose an alternate method based on combining a CHO observer with a wavelet sub-band decomposition of the image and we compare it to the standard CHO implementation. This method performs an undecimated transform using a biorthogonal B-spline 4/4 wavelet basis to extract the features set for input to the Hotelling observer. This work is based on simulated 3D PET images of an extended MCAT phantom with randomly located lesions. We compare three evaluation criteria: classification performance using the signal-to-noise ratio (SNR), computation efficiency and visual quality of the derived 3D maps of the decision variable λ. The SNR is estimated on a series of test images for a variable number of training images for both observers. Results: Results show that the maximum SNR is higher with the constant-Q CHO observer, especially for targets located in the liver, and that it is reached with a smaller number of training images. However, preliminary analysis indicates that the visual quality of the 3D maps of the decision variable λ is higher with the wavelet-based CHO and the computation time to derive a 3D λ-map is about 350 times shorter than for the standard CHO. This suggests that the wavelet-CHO observer is a good candidate for use in our guided detection method.

  18. Optical asymmetric image encryption using gyrator wavelet transform

    NASA Astrophysics Data System (ADS)

    Mehra, Isha; Nishchal, Naveen K.

    2015-11-01

    In this paper, we propose a new optical information processing tool termed as gyrator wavelet transform to secure a fully phase image, based on amplitude- and phase-truncation approach. The gyrator wavelet transform constitutes four basic parameters; gyrator transform order, type and level of mother wavelet, and position of different frequency bands. These parameters are used as encryption keys in addition to the random phase codes to the optical cryptosystem. This tool has also been applied for simultaneous compression and encryption of an image. The system's performance and its sensitivity to the encryption parameters, such as, gyrator transform order, and robustness has also been analyzed. It is expected that this tool will not only update current optical security systems, but may also shed some light on future developments. The computer simulation results demonstrate the abilities of the gyrator wavelet transform as an effective tool, which can be used in various optical information processing applications, including image encryption, and image compression. Also this tool can be applied for securing the color image, multispectral, and three-dimensional images.

  19. Image-adaptive and robust digital wavelet-domain watermarking for images

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Zhang, Liping

    2018-03-01

    We propose a new frequency domain wavelet based watermarking technique. The key idea of our scheme is twofold: multi-tier solution representation of image and odd-even quantization embedding/extracting watermark. Because many complementary watermarks need to be hidden, the watermark image designed is image-adaptive. The meaningful and complementary watermark images was embedded into the original image (host image) by odd-even quantization modifying coefficients, which was selected from the detail wavelet coefficients of the original image, if their magnitudes are larger than their corresponding Just Noticeable Difference thresholds. The tests show good robustness against best-known attacks such as noise addition, image compression, median filtering, clipping as well as geometric transforms. Further research may improve the performance by refining JND thresholds.

  20. Wavelet-based adaptive thresholding method for image segmentation

    NASA Astrophysics Data System (ADS)

    Chen, Zikuan; Tao, Yang; Chen, Xin; Griffis, Carl

    2001-05-01

    A nonuniform background distribution may cause a global thresholding method to fail to segment objects. One solution is using a local thresholding method that adapts to local surroundings. In this paper, we propose a novel local thresholding method for image segmentation, using multiscale threshold functions obtained by wavelet synthesis with weighted detail coefficients. In particular, the coarse-to- fine synthesis with attenuated detail coefficients produces a threshold function corresponding to a high-frequency- reduced signal. This wavelet-based local thresholding method adapts to both local size and local surroundings, and its implementation can take advantage of the fast wavelet algorithm. We applied this technique to physical contaminant detection for poultry meat inspection using x-ray imaging. Experiments showed that inclusion objects in deboned poultry could be extracted at multiple resolutions despite their irregular sizes and uneven backgrounds.

  1. Implementation in an FPGA circuit of Edge detection algorithm based on the Discrete Wavelet Transforms

    NASA Astrophysics Data System (ADS)

    Bouganssa, Issam; Sbihi, Mohamed; Zaim, Mounia

    2017-07-01

    The 2D Discrete Wavelet Transform (DWT) is a computationally intensive task that is usually implemented on specific architectures in many imaging systems in real time. In this paper, a high throughput edge or contour detection algorithm is proposed based on the discrete wavelet transform. A technique for applying the filters on the three directions (Horizontal, Vertical and Diagonal) of the image is used to present the maximum of the existing contours. The proposed architectures were designed in VHDL and mapped to a Xilinx Sparten6 FPGA. The results of the synthesis show that the proposed architecture has a low area cost and can operate up to 100 MHz, which can perform 2D wavelet analysis for a sequence of images while maintaining the flexibility of the system to support an adaptive algorithm.

  2. Wavelet Filter Banks for Super-Resolution SAR Imaging

    NASA Technical Reports Server (NTRS)

    Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess

    2011-01-01

    This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.

  3. Multispectral multisensor image fusion using wavelet transforms

    USGS Publications Warehouse

    Lemeshewsky, George P.

    1999-01-01

    Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The performance of fusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the reduction in artifacts due to the SIDWT based fusion.

  4. LiveWire interactive boundary extraction algorithm based on Haar wavelet transform and control point set direction search

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Zhang, Jun; Tian, Jinwen

    2015-12-01

    Based on deep analysis of the LiveWire interactive boundary extraction algorithm, a new algorithm focusing on improving the speed of LiveWire algorithm is proposed in this paper. Firstly, the Haar wavelet transform is carried on the input image, and the boundary is extracted on the low resolution image obtained by the wavelet transform of the input image. Secondly, calculating LiveWire shortest path is based on the control point set direction search by utilizing the spatial relationship between the two control points users provide in real time. Thirdly, the search order of the adjacent points of the starting node is set in advance. An ordinary queue instead of a priority queue is taken as the storage pool of the points when optimizing their shortest path value, thus reducing the complexity of the algorithm from O[n2] to O[n]. Finally, A region iterative backward projection method based on neighborhood pixel polling has been used to convert dual-pixel boundary of the reconstructed image to single-pixel boundary after Haar wavelet inverse transform. The algorithm proposed in this paper combines the advantage of the Haar wavelet transform and the advantage of the optimal path searching method based on control point set direction search. The former has fast speed of image decomposition and reconstruction and is more consistent with the texture features of the image and the latter can reduce the time complexity of the original algorithm. So that the algorithm can improve the speed in interactive boundary extraction as well as reflect the boundary information of the image more comprehensively. All methods mentioned above have a big role in improving the execution efficiency and the robustness of the algorithm.

  5. Wavelet Analysis for Wind Fields Estimation

    PubMed Central

    Leite, Gladeston C.; Ushizima, Daniela M.; Medeiros, Fátima N. S.; de Lima, Gilson G.

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B3 spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms. PMID:22219699

  6. 3D Wavelet-Based Filter and Method

    DOEpatents

    Moss, William C.; Haase, Sebastian; Sedat, John W.

    2008-08-12

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  7. Devil's vortex Fresnel lens phase masks on an asymmetric cryptosystem based on phase-truncation in gyrator wavelet transform domain

    NASA Astrophysics Data System (ADS)

    Singh, Hukum

    2016-06-01

    An asymmetric scheme has been proposed for optical double images encryption in the gyrator wavelet transform (GWT) domain. Grayscale and binary images are encrypted separately using double random phase encoding (DRPE) in the GWT domain. Phase masks based on devil's vortex Fresnel Lens (DVFLs) and random phase masks (RPMs) are jointly used in spatial as well as in the Fourier plane. The images to be encrypted are first gyrator transformed and then single-level discrete wavelet transformed (DWT) to decompose LL , HL , LH and HH matrices of approximation, horizontal, vertical and diagonal coefficients. The resulting coefficients from the DWT are multiplied by other RPMs and the results are applied to inverse discrete wavelet transform (IDWT) for obtaining the encrypted images. The images are recovered from their corresponding encrypted images by using the correct parameters of the GWT, DVFL and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The mother wavelet family, DVFL and gyrator transform orders associated with the GWT are extra keys that cause difficulty to an attacker. Thus, the scheme is more secure as compared to conventional techniques. The efficacy of the proposed scheme is verified by computing mean-squared-error (MSE) between recovered and the original images. The sensitivity of the proposed scheme is verified with encryption parameters and noise attacks.

  8. 3D image restoration for confocal microscopy: toward a wavelet deconvolution for the study of complex biological structures

    NASA Astrophysics Data System (ADS)

    Boutet de Monvel, Jacques; Le Calvez, Sophie; Ulfendahl, Mats

    2000-05-01

    Image restoration algorithms provide efficient tools for recovering part of the information lost in the imaging process of a microscope. We describe recent progress in the application of deconvolution to confocal microscopy. The point spread function of a Biorad-MRC1024 confocal microscope was measured under various imaging conditions, and used to process 3D-confocal images acquired in an intact preparation of the inner ear developed at Karolinska Institutet. Using these experiments we investigate the application of denoising methods based on wavelet analysis as a natural regularization of the deconvolution process. Within the Bayesian approach to image restoration, we compare wavelet denoising with the use of a maximum entropy constraint as another natural regularization method. Numerical experiments performed with test images show a clear advantage of the wavelet denoising approach, allowing to `cool down' the image with respect to the signal, while suppressing much of the fine-scale artifacts appearing during deconvolution due to the presence of noise, incomplete knowledge of the point spread function, or undersampling problems. We further describe a natural development of this approach, which consists of performing the Bayesian inference directly in the wavelet domain.

  9. Adaptive zero-tree structure for curved wavelet image coding

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Wang, Demin; Vincent, André

    2006-02-01

    We investigate the issue of efficient data organization and representation of the curved wavelet coefficients [curved wavelet transform (WT)]. We present an adaptive zero-tree structure that exploits the cross-subband similarity of the curved wavelet transform. In the embedded zero-tree wavelet (EZW) and the set partitioning in hierarchical trees (SPIHT), the parent-child relationship is defined in such a way that a parent has four children, restricted to a square of 2×2 pixels, the parent-child relationship in the adaptive zero-tree structure varies according to the curves along which the curved WT is performed. Five child patterns were determined based on different combinations of curve orientation. A new image coder was then developed based on this adaptive zero-tree structure and the set-partitioning technique. Experimental results using synthetic and natural images showed the effectiveness of the proposed adaptive zero-tree structure for encoding of the curved wavelet coefficients. The coding gain of the proposed coder can be up to 1.2 dB in terms of peak SNR (PSNR) compared to the SPIHT coder. Subjective evaluation shows that the proposed coder preserves lines and edges better than the SPIHT coder.

  10. Clinical utility of wavelet compression for resolution-enhanced chest radiography

    NASA Astrophysics Data System (ADS)

    Andriole, Katherine P.; Hovanes, Michael E.; Rowberg, Alan H.

    2000-05-01

    This study evaluates the usefulness of wavelet compression for resolution-enhanced storage phosphor chest radiographs in the detection of subtle interstitial disease, pneumothorax and other abnormalities. A wavelet compression technique, MrSIDTM (LizardTech, Inc., Seattle, WA), is implemented which compresses the images from their original 2,000 by 2,000 (2K) matrix size, and then decompresses the image data for display at optimal resolution by matching the spatial frequency characteristics of image objects using a 4,000- square matrix. The 2K-matrix computed radiography (CR) chest images are magnified to a 4K-matrix using wavelet series expansion. The magnified images are compared with the original uncompressed 2K radiographs and with two-times magnification of the original images. Preliminary results show radiologist preference for MrSIDTM wavelet-based magnification over magnification of original data, and suggest that the compressed/decompressed images may provide an enhancement to the original. Data collection for clinical trials of 100 chest radiographs including subtle interstitial abnormalities and/or subtle pneumothoraces and normal cases, are in progress. Three experienced thoracic radiologists will view images side-by- side on calibrated softcopy workstations under controlled viewing conditions, and rank order preference tests will be performed. This technique combines image compression with image enhancement, and suggests that compressed/decompressed images can actually improve the originals.

  11. Highly efficient codec based on significance-linked connected-component analysis of wavelet coefficients

    NASA Astrophysics Data System (ADS)

    Chai, Bing-Bing; Vass, Jozsef; Zhuang, Xinhua

    1997-04-01

    Recent success in wavelet coding is mainly attributed to the recognition of importance of data organization. There has been several very competitive wavelet codecs developed, namely, Shapiro's Embedded Zerotree Wavelets (EZW), Servetto et. al.'s Morphological Representation of Wavelet Data (MRWD), and Said and Pearlman's Set Partitioning in Hierarchical Trees (SPIHT). In this paper, we propose a new image compression algorithm called Significant-Linked Connected Component Analysis (SLCCA) of wavelet coefficients. SLCCA exploits both within-subband clustering of significant coefficients and cross-subband dependency in significant fields. A so-called significant link between connected components is designed to reduce the positional overhead of MRWD. In addition, the significant coefficients' magnitude are encoded in bit plane order to match the probability model of the adaptive arithmetic coder. Experiments show that SLCCA outperforms both EZW and MRWD, and is tied with SPIHT. Furthermore, it is observed that SLCCA generally has the best performance on images with large portion of texture. When applied to fingerprint image compression, it outperforms FBI's wavelet scalar quantization by about 1 dB.

  12. Reconstruction of color images via Haar wavelet based on digital micromirror device

    NASA Astrophysics Data System (ADS)

    Liu, Xingjiong; He, Weiji; Gu, Guohua

    2015-10-01

    A digital micro mirror device( DMD) is introduced to form Haar wavelet basis , projecting on the color target image by making use of structured illumination, including red, green and blue light. The light intensity signals reflected from the target image are received synchronously by the bucket detector which has no spatial resolution, converted into voltage signals and then transferred into PC[1] .To reach the aim of synchronization, several synchronization processes are added during data acquisition. In the data collection process, according to the wavelet tree structure, the locations of significant coefficients at the finer scale are predicted by comparing the coefficients sampled at the coarsest scale with the threshold. The monochrome grayscale images are obtained under red , green and blue structured illumination by using Haar wavelet inverse transform algorithm, respectively. The color fusion algorithm is carried on the three monochrome grayscale images to obtain the final color image. According to the imaging principle, the experimental demonstration device is assembled. The letter "K" and the X-rite Color Checker Passport are projected and reconstructed as target images, and the final reconstructed color images have good qualities. This article makes use of the method of Haar wavelet reconstruction, reducing the sampling rate considerably. It provides color information without compromising the resolution of the final image.

  13. Perceptual compression of magnitude-detected synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Werness, Susan A.

    1994-01-01

    A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.

  14. A quality quantitative method of silicon direct bonding based on wavelet image analysis

    NASA Astrophysics Data System (ADS)

    Tan, Xiao; Tao, Zhi; Li, Haiwang; Xu, Tiantong; Yu, Mingxing

    2018-04-01

    The rapid development of MEMS (micro-electro-mechanical systems) has received significant attention from researchers in various fields and subjects. In particular, the MEMS fabrication process is elaborate and, as such, has been the focus of extensive research inquiries. However, in MEMS fabrication, component bonding is difficult to achieve and requires a complex approach. Thus, improvements in bonding quality are relatively important objectives. A higher quality bond can only be achieved with improved measurement and testing capabilities. In particular, the traditional testing methods mainly include infrared testing, tensile testing, and strength testing, despite the fact that using these methods to measure bond quality often results in low efficiency or destructive analysis. Therefore, this paper focuses on the development of a precise, nondestructive visual testing method based on wavelet image analysis that is shown to be highly effective in practice. The process of wavelet image analysis includes wavelet image denoising, wavelet image enhancement, and contrast enhancement, and as an end result, can display an image with low background noise. In addition, because the wavelet analysis software was developed with MATLAB, it can reveal the bonding boundaries and bonding rates to precisely indicate the bond quality at all locations on the wafer. This work also presents a set of orthogonal experiments that consist of three prebonding factors, the prebonding temperature, the positive pressure value and the prebonding time, which are used to analyze the prebonding quality. This method was used to quantify the quality of silicon-to-silicon wafer bonding, yielding standard treatment quantities that could be practical for large-scale use.

  15. A new approach to pre-processing digital image for wavelet-based watermark

    NASA Astrophysics Data System (ADS)

    Agreste, Santa; Andaloro, Guido

    2008-11-01

    The growth of the Internet has increased the phenomenon of digital piracy, in multimedia objects, like software, image, video, audio and text. Therefore it is strategic to individualize and to develop methods and numerical algorithms, which are stable and have low computational cost, that will allow us to find a solution to these problems. We describe a digital watermarking algorithm for color image protection and authenticity: robust, not blind, and wavelet-based. The use of Discrete Wavelet Transform is motivated by good time-frequency features and a good match with Human Visual System directives. These two combined elements are important for building an invisible and robust watermark. Moreover our algorithm can work with any image, thanks to the step of pre-processing of the image that includes resize techniques that adapt to the size of the original image for Wavelet transform. The watermark signal is calculated in correlation with the image features and statistic properties. In the detection step we apply a re-synchronization between the original and watermarked image according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has been shown to be resistant against geometric, filtering, and StirMark attacks with a low rate of false alarm.

  16. A neural network detection model of spilled oil based on the texture analysis of SAR image

    NASA Astrophysics Data System (ADS)

    An, Jubai; Zhu, Lisong

    2006-01-01

    A Radial Basis Function Neural Network (RBFNN) Model is investigated for the detection of spilled oil based on the texture analysis of SAR imagery. In this paper, to take the advantage of the abundant texture information of SAR imagery, the texture features are extracted by both wavelet transform and the Gray Level Co-occurrence matrix. The RBFNN Model is fed with a vector of these texture features. The RBFNN Model is trained and tested by the sample data set of the feature vectors. Finally, a SAR image is classified by this model. The classification results of a spilled oil SAR image show that the classification accuracy for oil spill is 86.2 by the RBFNN Model using both wavelet texture and gray texture, while the classification accuracy for oil spill is 78.0 by same RBFNN Model using only wavelet texture as the input of this RBFNN model. The model using both wavelet transform and the Gray Level Co-occurrence matrix is more effective than that only using wavelet texture. Furthermore, it keeps the complicated proximity and has a good performance of classification.

  17. A study on multiresolution lossless video coding using inter/intra frame adaptive prediction

    NASA Astrophysics Data System (ADS)

    Nakachi, Takayuki; Sawabe, Tomoko; Fujii, Tetsuro

    2003-06-01

    Lossless video coding is required in the fields of archiving and editing digital cinema or digital broadcasting contents. This paper combines a discrete wavelet transform and adaptive inter/intra-frame prediction in the wavelet transform domain to create multiresolution lossless video coding. The multiresolution structure offered by the wavelet transform facilitates interchange among several video source formats such as Super High Definition (SHD) images, HDTV, SDTV, and mobile applications. Adaptive inter/intra-frame prediction is an extension of JPEG-LS, a state-of-the-art lossless still image compression standard. Based on the image statistics of the wavelet transform domains in successive frames, inter/intra frame adaptive prediction is applied to the appropriate wavelet transform domain. This adaptation offers superior compression performance. This is achieved with low computational cost and no increase in additional information. Experiments on digital cinema test sequences confirm the effectiveness of the proposed algorithm.

  18. Texture feature extraction based on wavelet transform and gray-level co-occurrence matrices applied to osteosarcoma diagnosis.

    PubMed

    Hu, Shan; Xu, Chao; Guan, Weiqiao; Tang, Yong; Liu, Yana

    2014-01-01

    Osteosarcoma is the most common malignant bone tumor among children and adolescents. In this study, image texture analysis was made to extract texture features from bone CR images to evaluate the recognition rate of osteosarcoma. To obtain the optimal set of features, Sym4 and Db4 wavelet transforms and gray-level co-occurrence matrices were applied to the image, with statistical methods being used to maximize the feature selection. To evaluate the performance of these methods, a support vector machine algorithm was used. The experimental results demonstrated that the Sym4 wavelet had a higher classification accuracy (93.44%) than the Db4 wavelet with respect to osteosarcoma occurrence in the epiphysis, whereas the Db4 wavelet had a higher classification accuracy (96.25%) for osteosarcoma occurrence in the diaphysis. Results including accuracy, sensitivity, specificity and ROC curves obtained using the wavelets were all higher than those obtained using the features derived from the GLCM method. It is concluded that, a set of texture features can be extracted from the wavelets and used in computer-aided osteosarcoma diagnosis systems. In addition, this study also confirms that multi-resolution analysis is a useful tool for texture feature extraction during bone CR image processing.

  19. Analysis of autostereoscopic three-dimensional images using multiview wavelets.

    PubMed

    Saveljev, Vladimir; Palchikova, Irina

    2016-08-10

    We propose that multiview wavelets can be used in processing multiview images. The reference functions for the synthesis/analysis of multiview images are described. The synthesized binary images were observed experimentally as three-dimensional visual images. The symmetric multiview B-spline wavelets are proposed. The locations recognized in the continuous wavelet transform correspond to the layout of the test objects. The proposed wavelets can be applied to the multiview, integral, and plenoptic images.

  20. Gait recognition based on Gabor wavelets and modified gait energy image for human identification

    NASA Astrophysics Data System (ADS)

    Huang, Deng-Yuan; Lin, Ta-Wei; Hu, Wu-Chih; Cheng, Chih-Hsiang

    2013-10-01

    This paper proposes a method for recognizing human identity using gait features based on Gabor wavelets and modified gait energy images (GEIs). Identity recognition by gait generally involves gait representation, extraction, and classification. In this work, a modified GEI convolved with an ensemble of Gabor wavelets is proposed as a gait feature. Principal component analysis is then used to project the Gabor-wavelet-based gait features into a lower-dimension feature space for subsequent classification. Finally, support vector machine classifiers based on a radial basis function kernel are trained and utilized to recognize human identity. The major contributions of this paper are as follows: (1) the consideration of the shadow effect to yield a more complete segmentation of gait silhouettes; (2) the utilization of motion estimation to track people when walkers overlap; and (3) the derivation of modified GEIs to extract more useful gait information. Extensive performance evaluation shows a great improvement of recognition accuracy due to the use of shadow removal, motion estimation, and gait representation using the modified GEIs and Gabor wavelets.

  1. Multidimensional, mapping-based complex wavelet transforms.

    PubMed

    Fernandes, Felix C A; van Spaendonck, Rutger L C; Burrus, C Sidney

    2005-01-01

    Although the discrete wavelet transform (DWT) is a powerful tool for signal and image processing, it has three serious disadvantages: shift sensitivity, poor directionality, and lack of phase information. To overcome these disadvantages, we introduce multidimensional, mapping-based, complex wavelet transforms that consist of a mapping onto a complex function space followed by a DWT of the complex mapping. Unlike other popular transforms that also mitigate DWT shortcomings, the decoupled implementation of our transforms has two important advantages. First, the controllable redundancy of the mapping stage offers a balance between degree of shift sensitivity and transform redundancy. This allows us to create a directional, nonredundant, complex wavelet transform with potential benefits for image coding systems. To the best of our knowledge, no other complex wavelet transform is simultaneously directional and nonredundant. The second advantage of our approach is the flexibility to use any DWT in the transform implementation. As an example, we exploit this flexibility to create the complex double-density DWT: a shift-insensitive, directional, complex wavelet transform with a low redundancy of (3M - 1)/(2M - 1) in M dimensions. No other transform achieves all these properties at a lower redundancy, to the best of our knowledge. By exploiting the advantages of our multidimensional, mapping-based complex wavelet transforms in seismic signal-processing applications, we have demonstrated state-of-the-art results.

  2. Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features

    NASA Astrophysics Data System (ADS)

    Rezaeian, A.; Homayouni, S.; Safari, A.

    2015-12-01

    Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  3. Hierarchical content-based image retrieval by dynamic indexing and guided search

    NASA Astrophysics Data System (ADS)

    You, Jane; Cheung, King H.; Liu, James; Guo, Linong

    2003-12-01

    This paper presents a new approach to content-based image retrieval by using dynamic indexing and guided search in a hierarchical structure, and extending data mining and data warehousing techniques. The proposed algorithms include: a wavelet-based scheme for multiple image feature extraction, the extension of a conventional data warehouse and an image database to an image data warehouse for dynamic image indexing, an image data schema for hierarchical image representation and dynamic image indexing, a statistically based feature selection scheme to achieve flexible similarity measures, and a feature component code to facilitate query processing and guide the search for the best matching. A series of case studies are reported, which include a wavelet-based image color hierarchy, classification of satellite images, tropical cyclone pattern recognition, and personal identification using multi-level palmprint and face features.

  4. Wavelet-domain de-noising of OCT images of human brain malignant glioma

    NASA Astrophysics Data System (ADS)

    Dolganova, I. N.; Aleksandrova, P. V.; Beshplav, S.-I. T.; Chernomyrdin, N. V.; Dubyanskaya, E. N.; Goryaynov, S. A.; Kurlov, V. N.; Reshetov, I. V.; Potapov, A. A.; Tuchin, V. V.; Zaytsev, K. I.

    2018-04-01

    We have proposed a wavelet-domain de-noising technique for imaging of human brain malignant glioma by optical coherence tomography (OCT). It implies OCT image decomposition using the direct fast wavelet transform, thresholding of the obtained wavelet spectrum and further inverse fast wavelet transform for image reconstruction. By selecting both wavelet basis and thresholding procedure, we have found an optimal wavelet filter, which application improves differentiation of the considered brain tissue classes - i.e. malignant glioma and normal/intact tissue. Namely, it allows reducing the scattering noise in the OCT images and retaining signal decrement for each tissue class. Therefore, the observed results reveals the wavelet-domain de-noising as a prospective tool for improved characterization of biological tissue using the OCT.

  5. Some uses of wavelets for imaging dynamic processes in live cochlear structures

    NASA Astrophysics Data System (ADS)

    Boutet de Monvel, J.

    2007-09-01

    A variety of image and signal processing algorithms based on wavelet filtering tools have been developed during the last few decades, that are well adapted to the experimental variability typically encountered in live biological microscopy. A number of processing tools are reviewed, that use wavelets for adaptive image restoration and for motion or brightness variation analysis by optical flow computation. The usefulness of these tools for biological imaging is illustrated in the context of the restoration of images of the inner ear and the analysis of cochlear motion patterns in two and three dimensions. I also report on recent work that aims at capturing fluorescence intensity changes associated with vesicle dynamics at synaptic zones of sensory hair cells. This latest application requires one to separate the intensity variations associated with the physiological process under study from the variations caused by motion of the observed structures. A wavelet optical flow algorithm for doing this is presented, and its effectiveness is demonstrated on artificial and experimental image sequences.

  6. SU-F-J-27: Segmentation of Prostate CBCT Images with Implanted Calypso Transponders Using Double Haar Wavelet Transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Saleh, Z; Tang, X

    Purpose: Segmentation of prostate CBCT images is an essential step towards real-time adaptive radiotherapy. It is challenging For Calypso patients, as more artifacts are generated by the beacon transponders. We herein propose a novel wavelet-based segmentation algorithm for rectum, bladder, and prostate of CBCT images with implanted Calypso transponders. Methods: Five hypofractionated prostate patients with daily CBCT were studied. Each patient had 3 Calypso transponder beacons implanted, and the patients were setup and treated with Calypso tracking system. Two sets of CBCT images from each patient were studied. The structures (i.e. rectum, bladder, and prostate) were contoured by a trainedmore » expert, and these served as ground truth. For a given CBCT, the moving window-based Double Haar transformation is applied first to obtain the wavelet coefficients. Based on a user defined point in the object of interest, a cluster algorithm based adaptive thresholding is applied to the low frequency components of the wavelet coefficients, and a Lee filter theory based adaptive thresholding is applied to the high frequency components. For the next step, the wavelet reconstruction is applied to the thresholded wavelet coefficients. A binary/segmented image of the object of interest is therefore obtained. DICE, sensitivity, inclusiveness and ΔV were used to evaluate the segmentation result. Results: Considering all patients, the bladder has the DICE, sensitivity, inclusiveness, and ΔV ranges of [0.81–0.95], [0.76–0.99], [0.83–0.94], [0.02–0.21]. For prostate, the ranges are [0.77–0.93], [0.84–0.97], [0.68–0.92], [0.1–0.46]. For rectum, the ranges are [0.72–0.93], [0.57–0.99], [0.73–0.98], [0.03–0.42]. Conclusion: The proposed algorithm appeared effective segmenting prostate CBCT images with the present of the Calypso artifacts. However, it is not robust in two scenarios: 1) rectum with significant amount of gas; 2) prostate with very low contrast. Model based algorithm might improve the segmentation in these two scenarios.« less

  7. Efficient random access high resolution region-of-interest (ROI) image retrieval using backward coding of wavelet trees (BCWT)

    NASA Astrophysics Data System (ADS)

    Corona, Enrique; Nutter, Brian; Mitra, Sunanda; Guo, Jiangling; Karp, Tanja

    2008-03-01

    Efficient retrieval of high quality Regions-Of-Interest (ROI) from high resolution medical images is essential for reliable interpretation and accurate diagnosis. Random access to high quality ROI from codestreams is becoming an essential feature in many still image compression applications, particularly in viewing diseased areas from large medical images. This feature is easier to implement in block based codecs because of the inherent spatial independency of the code blocks. This independency implies that the decoding order of the blocks is unimportant as long as the position for each is properly identified. In contrast, wavelet-tree based codecs naturally use some interdependency that exploits the decaying spectrum model of the wavelet coefficients. Thus one must keep track of the decoding order from level to level with such codecs. We have developed an innovative multi-rate image subband coding scheme using "Backward Coding of Wavelet Trees (BCWT)" which is fast, memory efficient, and resolution scalable. It offers far less complexity than many other existing codecs including both, wavelet-tree, and block based algorithms. The ROI feature in BCWT is implemented through a transcoder stage that generates a new BCWT codestream containing only the information associated with the user-defined ROI. This paper presents an efficient technique that locates a particular ROI within the BCWT coded domain, and decodes it back to the spatial domain. This technique allows better access and proper identification of pathologies in high resolution images since only a small fraction of the codestream is required to be transmitted and analyzed.

  8. Double Density Dual Tree Discrete Wavelet Transform implementation for Degraded Image Enhancement

    NASA Astrophysics Data System (ADS)

    Vimala, C.; Aruna Priya, P.

    2018-04-01

    Wavelet transform is a main tool for image processing applications in modern existence. A Double Density Dual Tree Discrete Wavelet Transform is used and investigated for image denoising. Images are considered for the analysis and the performance is compared with discrete wavelet transform and the Double Density DWT. Peak Signal to Noise Ratio values and Root Means Square error are calculated in all the three wavelet techniques for denoised images and the performance has evaluated. The proposed techniques give the better performance when comparing other two wavelet techniques.

  9. Design of compactly supported wavelet to match singularities in medical images

    NASA Astrophysics Data System (ADS)

    Fung, Carrson C.; Shi, Pengcheng

    2002-11-01

    Analysis and understanding of medical images has important clinical values for patient diagnosis and treatment, as well as technical implications for computer vision and pattern recognition. One of the most fundamental issues is the detection of object boundaries or singularities, which is often the basis for further processes such as organ/tissue recognition, image registration, motion analysis, measurement of anatomical and physiological parameters, etc. The focus of this work involved taking a correlation based approach toward edge detection, by exploiting some of desirable properties of wavelet analysis. This leads to the possibility of constructing a bank of detectors, consisting of multiple wavelet basis functions of different scales which are optimal for specific types of edges, in order to optimally detect all the edges in an image. Our work involved developing a set of wavelet functions which matches the shape of the ramp and pulse edges. The matching algorithm used focuses on matching the edges in the frequency domain. It was proven that this technique could create matching wavelets applicable at all scales. Results have shown that matching wavelets can be obtained for the pulse edge while the ramp edge requires another matching algorithm.

  10. An optimized digital watermarking algorithm in wavelet domain based on differential evolution for color image.

    PubMed

    Cui, Xinchun; Niu, Yuying; Zheng, Xiangwei; Han, Yingshuai

    2018-01-01

    In this paper, a new color watermarking algorithm based on differential evolution is proposed. A color host image is first converted from RGB space to YIQ space, which is more suitable for the human visual system. Then, apply three-level discrete wavelet transformation to luminance component Y and generate four different frequency sub-bands. After that, perform singular value decomposition on these sub-bands. In the watermark embedding process, apply discrete wavelet transformation to a watermark image after the scrambling encryption processing. Our new algorithm uses differential evolution algorithm with adaptive optimization to choose the right scaling factors. Experimental results show that the proposed algorithm has a better performance in terms of invisibility and robustness.

  11. 3D Gabor wavelet based vessel filtering of photoacoustic images.

    PubMed

    Haq, Israr Ul; Nagoaka, Ryo; Makino, Takahiro; Tabata, Takuya; Saijo, Yoshifumi

    2016-08-01

    Filtering and segmentation of vasculature is an important issue in medical imaging. The visualization of vasculature is crucial for the early diagnosis and therapy in numerous medical applications. This paper investigates the use of Gabor wavelet to enhance the effect of vasculature while eliminating the noise due to size, sensitivity and aperture of the detector in 3D Optical Resolution Photoacoustic Microscopy (OR-PAM). A detailed multi-scale analysis of wavelet filtering and Hessian based method is analyzed for extracting vessels of different sizes since the blood vessels usually vary with in a range of radii. The proposed algorithm first enhances the vasculature in the image and then tubular structures are classified by eigenvalue decomposition of the local Hessian matrix at each voxel in the image. The algorithm is tested on non-invasive experiments, which shows appreciable results to enhance vasculature in photo-acoustic images.

  12. Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms

    NASA Technical Reports Server (NTRS)

    Kurdila, Andrew J.; Sharpley, Robert C.

    1999-01-01

    This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.

  13. A wavelet-based statistical analysis of FMRI data: I. motivation and data distribution modeling.

    PubMed

    Dinov, Ivo D; Boscardin, John W; Mega, Michael S; Sowell, Elizabeth L; Toga, Arthur W

    2005-01-01

    We propose a new method for statistical analysis of functional magnetic resonance imaging (fMRI) data. The discrete wavelet transformation is employed as a tool for efficient and robust signal representation. We use structural magnetic resonance imaging (MRI) and fMRI to empirically estimate the distribution of the wavelet coefficients of the data both across individuals and spatial locations. An anatomical subvolume probabilistic atlas is used to tessellate the structural and functional signals into smaller regions each of which is processed separately. A frequency-adaptive wavelet shrinkage scheme is employed to obtain essentially optimal estimations of the signals in the wavelet space. The empirical distributions of the signals on all the regions are computed in a compressed wavelet space. These are modeled by heavy-tail distributions because their histograms exhibit slower tail decay than the Gaussian. We discovered that the Cauchy, Bessel K Forms, and Pareto distributions provide the most accurate asymptotic models for the distribution of the wavelet coefficients of the data. Finally, we propose a new model for statistical analysis of functional MRI data using this atlas-based wavelet space representation. In the second part of our investigation, we will apply this technique to analyze a large fMRI dataset involving repeated presentation of sensory-motor response stimuli in young, elderly, and demented subjects.

  14. Content-based multiple bitstream image transmission over noisy channels.

    PubMed

    Cao, Lei; Chen, Chang Wen

    2002-01-01

    In this paper, we propose a novel combined source and channel coding scheme for image transmission over noisy channels. The main feature of the proposed scheme is a systematic decomposition of image sources so that unequal error protection can be applied according to not only bit error sensitivity but also visual content importance. The wavelet transform is adopted to hierarchically decompose the image. The association between the wavelet coefficients and what they represent spatially in the original image is fully exploited so that wavelet blocks are classified based on their corresponding image content. The classification produces wavelet blocks in each class with similar content and statistics, therefore enables high performance source compression using the set partitioning in hierarchical trees (SPIHT) algorithm. To combat the channel noise, an unequal error protection strategy with rate-compatible punctured convolutional/cyclic redundancy check (RCPC/CRC) codes is implemented based on the bit contribution to both peak signal-to-noise ratio (PSNR) and visual quality. At the receiving end, a postprocessing method making use of the SPIHT decoding structure and the classification map is developed to restore the degradation due to the residual error after channel decoding. Experimental results show that the proposed scheme is indeed able to provide protection both for the bits that are more sensitive to errors and for the more important visual content under a noisy transmission environment. In particular, the reconstructed images illustrate consistently better visual quality than using the single-bitstream-based schemes.

  15. A wavelet-based Bayesian framework for 3D object segmentation in microscopy

    NASA Astrophysics Data System (ADS)

    Pan, Kangyu; Corrigan, David; Hillebrand, Jens; Ramaswami, Mani; Kokaram, Anil

    2012-03-01

    In confocal microscopy, target objects are labeled with fluorescent markers in the living specimen, and usually appear with irregular brightness in the observed images. Also, due to the existence of out-of-focus objects in the image, the segmentation of 3-D objects in the stack of image slices captured at different depth levels of the specimen is still heavily relied on manual analysis. In this paper, a novel Bayesian model is proposed for segmenting 3-D synaptic objects from given image stack. In order to solve the irregular brightness and out-offocus problems, the segmentation model employs a likelihood using the luminance-invariant 'wavelet features' of image objects in the dual-tree complex wavelet domain as well as a likelihood based on the vertical intensity profile of the image stack in 3-D. Furthermore, a smoothness 'frame' prior based on the a priori knowledge of the connections of the synapses is introduced to the model for enhancing the connectivity of the synapses. As a result, our model can successfully segment the in-focus target synaptic object from a 3D image stack with irregular brightness.

  16. Pixel-based speckle adjustment for noise reduction in Fourier-domain OCT images.

    PubMed

    Zhang, Anqi; Xi, Jiefeng; Sun, Jitao; Li, Xingde

    2017-03-01

    Speckle resides in OCT signals and inevitably effects OCT image quality. In this work, we present a novel method for speckle noise reduction in Fourier-domain OCT images, which utilizes the phase information of complex OCT data. In this method, speckle area is pre-delineated pixelwise based on a phase-domain processing method and then adjusted by the results of wavelet shrinkage of the original image. Coefficient shrinkage method such as wavelet or contourlet is applied afterwards for further suppressing the speckle noise. Compared with conventional methods without speckle adjustment, the proposed method demonstrates significant improvement of image quality.

  17. Distributed Compressive Sensing

    DTIC Science & Technology

    2009-01-01

    example, smooth signals are sparse in the Fourier basis, and piecewise smooth signals are sparse in a wavelet basis [8]; the commercial coding standards MP3...including wavelets [8], Gabor bases [8], curvelets [35], etc., are widely used for representation and compression of natural signals, images, and...spikes and the sine waves of a Fourier basis, or the Fourier basis and wavelets . Signals that are sparsely represented in frames or unions of bases can

  18. Wavelet optimization for content-based image retrieval in medical databases.

    PubMed

    Quellec, G; Lamard, M; Cazuguel, G; Cochener, B; Roux, C

    2010-04-01

    We propose in this article a content-based image retrieval (CBIR) method for diagnosis aid in medical fields. In the proposed system, images are indexed in a generic fashion, without extracting domain-specific features: a signature is built for each image from its wavelet transform. These image signatures characterize the distribution of wavelet coefficients in each subband of the decomposition. A distance measure is then defined to compare two image signatures and thus retrieve the most similar images in a database when a query image is submitted by a physician. To retrieve relevant images from a medical database, the signatures and the distance measure must be related to the medical interpretation of images. As a consequence, we introduce several degrees of freedom in the system so that it can be tuned to any pathology and image modality. In particular, we propose to adapt the wavelet basis, within the lifting scheme framework, and to use a custom decomposition scheme. Weights are also introduced between subbands. All these parameters are tuned by an optimization procedure, using the medical grading of each image in the database to define a performance measure. The system is assessed on two medical image databases: one for diabetic retinopathy follow up and one for screening mammography, as well as a general purpose database. Results are promising: a mean precision of 56.50%, 70.91% and 96.10% is achieved for these three databases, when five images are returned by the system. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Automated Diagnosis of Glaucoma Using Empirical Wavelet Transform and Correntropy Features Extracted From Fundus Images.

    PubMed

    Maheshwari, Shishir; Pachori, Ram Bilas; Acharya, U Rajendra

    2017-05-01

    Glaucoma is an ocular disorder caused due to increased fluid pressure in the optic nerve. It damages the optic nerve and subsequently causes loss of vision. The available scanning methods are Heidelberg retinal tomography, scanning laser polarimetry, and optical coherence tomography. These methods are expensive and require experienced clinicians to use them. So, there is a need to diagnose glaucoma accurately with low cost. Hence, in this paper, we have presented a new methodology for an automated diagnosis of glaucoma using digital fundus images based on empirical wavelet transform (EWT). The EWT is used to decompose the image, and correntropy features are obtained from decomposed EWT components. These extracted features are ranked based on t value feature selection algorithm. Then, these features are used for the classification of normal and glaucoma images using least-squares support vector machine (LS-SVM) classifier. The LS-SVM is employed for classification with radial basis function, Morlet wavelet, and Mexican-hat wavelet kernels. The classification accuracy of the proposed method is 98.33% and 96.67% using threefold and tenfold cross validation, respectively.

  20. A Wavelet Polarization Decomposition Net Model for Polarimetric SAR Image Classification

    NASA Astrophysics Data System (ADS)

    He, Chu; Ou, Dan; Yang, Teng; Wu, Kun; Liao, Mingsheng; Chen, Erxue

    2014-11-01

    In this paper, a deep model based on wavelet texture has been proposed for Polarimetric Synthetic Aperture Radar (PolSAR) image classification inspired by recent successful deep learning method. Our model is supposed to learn powerful and informative representations to improve the generalization ability for the complex scene classification tasks. Given the influence of speckle noise in Polarimetric SAR image, wavelet polarization decomposition is applied first to obtain basic and discriminative texture features which are then embedded into a Deep Neural Network (DNN) in order to compose multi-layer higher representations. We demonstrate that the model can produce a powerful representation which can capture some untraceable information from Polarimetric SAR images and show a promising achievement in comparison with other traditional SAR image classification methods for the SAR image dataset.

  1. Enhanced CT images by the wavelet transform improving diagnostic accuracy of chest nodules.

    PubMed

    Guo, Xiuhua; Liu, Xiangye; Wang, Huan; Liang, Zhigang; Wu, Wei; He, Qian; Li, Kuncheng; Wang, Wei

    2011-02-01

    The objective of this study was to compare the diagnostic accuracy in the interpretation of chest nodules using original CT images versus enhanced CT images based on the wavelet transform. The CT images of 118 patients with cancers and 60 with benign nodules were used in this study. All images were enhanced through an algorithm based on the wavelet transform. Two experienced radiologists interpreted all the images in two reading sessions. The reading sessions were separated by a minimum of 1 month in order to minimize the effect of observer's recall. The Mann-Whitney U nonparametric test was used to analyze the interpretation results between original and enhanced images. The Kruskal-Wallis H nonparametric test of K independent samples was used to investigate the related factors which could affect the diagnostic accuracy of observers. The area under the ROC curves for the original and enhanced images was 0.681 and 0.736, respectively. There is significant difference in diagnosing the malignant nodules between the original and enhanced images (z = 7.122, P < 0.001), whereas there is no significant difference in diagnosing the benign nodules (z = 0.894, P = 0.371). The results showed that there is significant difference between original and enhancement images when the size of nodules was larger than 2 cm (Z = -2.509, P = 0.012, indicating the size of the nodules is a critical evaluating factor of the diagnostic accuracy of observers). This study indicated that the image enhancement based on wavelet transform could improve the diagnostic accuracy of radiologists for the malignant chest nodules.

  2. Adaptive tight frame based medical image reconstruction: a proof-of-concept study for computed tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Weifeng; Cai, Jian-Feng; Gao, Hao

    2013-12-01

    A popular approach for medical image reconstruction has been through the sparsity regularization, assuming the targeted image can be well approximated by sparse coefficients under some properly designed system. The wavelet tight frame is such a widely used system due to its capability for sparsely approximating piecewise-smooth functions, such as medical images. However, using a fixed system may not always be optimal for reconstructing a variety of diversified images. Recently, the method based on the adaptive over-complete dictionary that is specific to structures of the targeted images has demonstrated its superiority for image processing. This work is to develop the adaptive wavelet tight frame method image reconstruction. The proposed scheme first constructs the adaptive wavelet tight frame that is task specific, and then reconstructs the image of interest by solving an l1-regularized minimization problem using the constructed adaptive tight frame system. The proof-of-concept study is performed for computed tomography (CT), and the simulation results suggest that the adaptive tight frame method improves the reconstructed CT image quality from the traditional tight frame method.

  3. Content Based Image Retrieval by Using Color Descriptor and Discrete Wavelet Transform.

    PubMed

    Ashraf, Rehan; Ahmed, Mudassar; Jabbar, Sohail; Khalid, Shehzad; Ahmad, Awais; Din, Sadia; Jeon, Gwangil

    2018-01-25

    Due to recent development in technology, the complexity of multimedia is significantly increased and the retrieval of similar multimedia content is a open research problem. Content-Based Image Retrieval (CBIR) is a process that provides a framework for image search and low-level visual features are commonly used to retrieve the images from the image database. The basic requirement in any image retrieval process is to sort the images with a close similarity in term of visually appearance. The color, shape and texture are the examples of low-level image features. The feature plays a significant role in image processing. The powerful representation of an image is known as feature vector and feature extraction techniques are applied to get features that will be useful in classifying and recognition of images. As features define the behavior of an image, they show its place in terms of storage taken, efficiency in classification and obviously in time consumption also. In this paper, we are going to discuss various types of features, feature extraction techniques and explaining in what scenario, which features extraction technique will be better. The effectiveness of the CBIR approach is fundamentally based on feature extraction. In image processing errands like object recognition and image retrieval feature descriptor is an immense among the most essential step. The main idea of CBIR is that it can search related images to an image passed as query from a dataset got by using distance metrics. The proposed method is explained for image retrieval constructed on YCbCr color with canny edge histogram and discrete wavelet transform. The combination of edge of histogram and discrete wavelet transform increase the performance of image retrieval framework for content based search. The execution of different wavelets is additionally contrasted with discover the suitability of specific wavelet work for image retrieval. The proposed algorithm is prepared and tried to implement for Wang image database. For Image Retrieval Purpose, Artificial Neural Networks (ANN) is used and applied on standard dataset in CBIR domain. The execution of the recommended descriptors is assessed by computing both Precision and Recall values and compared with different other proposed methods with demonstrate the predominance of our method. The efficiency and effectiveness of the proposed approach outperforms the existing research in term of average precision and recall values.

  4. Using component technologies for web based wavelet enhanced mammographic image visualization.

    PubMed

    Sakellaropoulos, P; Costaridou, L; Panayiotakis, G

    2000-01-01

    The poor contrast detectability of mammography can be dealt with by domain specific software visualization tools. Remote desktop client access and time performance limitations of a previously reported visualization tool are addressed, aiming at more efficient visualization of mammographic image resources existing in web or PACS image servers. This effort is also motivated by the fact that at present, web browsers do not support domain-specific medical image visualization. To deal with desktop client access the tool was redesigned by exploring component technologies, enabling the integration of stand alone domain specific mammographic image functionality in a web browsing environment (web adaptation). The integration method is based on ActiveX Document Server technology. ActiveX Document is a part of Object Linking and Embedding (OLE) extensible systems object technology, offering new services in existing applications. The standard DICOM 3.0 part 10 compatible image-format specification Papyrus 3.0 is supported, in addition to standard digitization formats such as TIFF. The visualization functionality of the tool has been enhanced by including a fast wavelet transform implementation, which allows for real time wavelet based contrast enhancement and denoising operations. Initial use of the tool with mammograms of various breast structures demonstrated its potential in improving visualization of diagnostic mammographic features. Web adaptation and real time wavelet processing enhance the potential of the previously reported tool in remote diagnosis and education in mammography.

  5. Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image.

    PubMed

    Singh, Anushikha; Dutta, Malay Kishore; ParthaSarathi, M; Uher, Vaclav; Burget, Radim

    2016-02-01

    Glaucoma is a disease of the retina which is one of the most common causes of permanent blindness worldwide. This paper presents an automatic image processing based method for glaucoma diagnosis from the digital fundus image. In this paper wavelet feature extraction has been followed by optimized genetic feature selection combined with several learning algorithms and various parameter settings. Unlike the existing research works where the features are considered from the complete fundus or a sub image of the fundus, this work is based on feature extraction from the segmented and blood vessel removed optic disc to improve the accuracy of identification. The experimental results presented in this paper indicate that the wavelet features of the segmented optic disc image are clinically more significant in comparison to features of the whole or sub fundus image in the detection of glaucoma from fundus image. Accuracy of glaucoma identification achieved in this work is 94.7% and a comparison with existing methods of glaucoma detection from fundus image indicates that the proposed approach has improved accuracy of classification. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Wavelet energy-guided level set-based active contour: a segmentation method to segment highly similar regions.

    PubMed

    Achuthan, Anusha; Rajeswari, Mandava; Ramachandram, Dhanesh; Aziz, Mohd Ezane; Shuaib, Ibrahim Lutfi

    2010-07-01

    This paper introduces an approach to perform segmentation of regions in computed tomography (CT) images that exhibit intra-region intensity variations and at the same time have similar intensity distributions with surrounding/adjacent regions. In this work, we adapt a feature computed from wavelet transform called wavelet energy to represent the region information. The wavelet energy is embedded into a level set model to formulate the segmentation model called wavelet energy-guided level set-based active contour (WELSAC). The WELSAC model is evaluated using several synthetic and CT images focusing on tumour cases, which contain regions demonstrating the characteristics of intra-region intensity variations and having high similarity in intensity distributions with the adjacent regions. The obtained results show that the proposed WELSAC model is able to segment regions of interest in close correspondence with the manual delineation provided by the medical experts and to provide a solution for tumour detection. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Multiscale Medical Image Fusion in Wavelet Domain

    PubMed Central

    Khare, Ashish

    2013-01-01

    Wavelet transforms have emerged as a powerful tool in image fusion. However, the study and analysis of medical image fusion is still a challenging area of research. Therefore, in this paper, we propose a multiscale fusion of multimodal medical images in wavelet domain. Fusion of medical images has been performed at multiple scales varying from minimum to maximum level using maximum selection rule which provides more flexibility and choice to select the relevant fused images. The experimental analysis of the proposed method has been performed with several sets of medical images. Fusion results have been evaluated subjectively and objectively with existing state-of-the-art fusion methods which include several pyramid- and wavelet-transform-based fusion methods and principal component analysis (PCA) fusion method. The comparative analysis of the fusion results has been performed with edge strength (Q), mutual information (MI), entropy (E), standard deviation (SD), blind structural similarity index metric (BSSIM), spatial frequency (SF), and average gradient (AG) metrics. The combined subjective and objective evaluations of the proposed fusion method at multiple scales showed the effectiveness and goodness of the proposed approach. PMID:24453868

  8. A new method of Quickbird own image fusion

    NASA Astrophysics Data System (ADS)

    Han, Ying; Jiang, Hong; Zhang, Xiuying

    2009-10-01

    With the rapid development of remote sensing technology, the means of accessing to remote sensing data become increasingly abundant, thus the same area can form a large number of multi-temporal, different resolution image sequence. At present, the fusion methods are mainly: HPF, IHS transform method, PCA method, Brovey, Mallat algorithm and wavelet transform and so on. There exists a serious distortion of the spectrums in the IHS transform, Mallat algorithm omits low-frequency information of the high spatial resolution images, the integration results of which has obvious blocking effects. Wavelet multi-scale decomposition for different sizes, the directions, details and the edges can have achieved very good results, but different fusion rules and algorithms can achieve different effects. This article takes the Quickbird own image fusion as an example, basing on wavelet transform and HVS, wavelet transform and IHS integration. The result shows that the former better. This paper introduces the correlation coefficient, the relative average spectral error index and usual index to evaluate the quality of image.

  9. Artificial retina model for the retinally blind based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Zeng, Yan-an; Song, Xin-qiang; Jiang, Fa-gang; Chang, Da-ding

    2007-01-01

    Artificial retina is aimed for the stimulation of remained retinal neurons in the patients with degenerated photoreceptors. Microelectrode arrays have been developed for this as a part of stimulator. Design such microelectrode arrays first requires a suitable mathematical method for human retinal information processing. In this paper, a flexible and adjustable human visual information extracting model is presented, which is based on the wavelet transform. With the flexible of wavelet transform to image information processing and the consistent to human visual information extracting, wavelet transform theory is applied to the artificial retina model for the retinally blind. The response of the model to synthetic image is shown. The simulated experiment demonstrates that the model behaves in a manner qualitatively similar to biological retinas and thus may serve as a basis for the development of an artificial retina.

  10. Sonar target enhancement by shrinkage of incoherent wavelet coefficients.

    PubMed

    Hunter, Alan J; van Vossen, Robbert

    2014-01-01

    Background reverberation can obscure useful features of the target echo response in broadband low-frequency sonar images, adversely affecting detection and classification performance. This paper describes a resolution and phase-preserving means of separating the target response from the background reverberation noise using a coherence-based wavelet shrinkage method proposed recently for de-noising magnetic resonance images. The algorithm weights the image wavelet coefficients in proportion to their coherence between different looks under the assumption that the target response is more coherent than the background. The algorithm is demonstrated successfully on experimental synthetic aperture sonar data from a broadband low-frequency sonar developed for buried object detection.

  11. Wavelet-based higher-order neural networks for mine detection in thermal IR imagery

    NASA Astrophysics Data System (ADS)

    Baertlein, Brian A.; Liao, Wen-Jiao

    2000-08-01

    An image processing technique is described for the detection of miens in RI imagery. The proposed technique is based on a third-order neural network, which processes the output of a wavelet packet transform. The technique is inherently invariant to changes in signature position, rotation and scaling. The well-known memory limitations that arise with higher-order neural networks are addressed by (1) the data compression capabilities of wavelet packets, (2) protections of the image data into a space of similar triangles, and (3) quantization of that 'triangle space'. Using these techniques, image chips of size 28 by 28, which would require 0(109) neural net weights, are processed by a network having 0(102) weights. ROC curves are presented for mine detection in real and simulated imagery.

  12. Wavelet-based polarimetry analysis

    NASA Astrophysics Data System (ADS)

    Ezekiel, Soundararajan; Harrity, Kyle; Farag, Waleed; Alford, Mark; Ferris, David; Blasch, Erik

    2014-06-01

    Wavelet transformation has become a cutting edge and promising approach in the field of image and signal processing. A wavelet is a waveform of effectively limited duration that has an average value of zero. Wavelet analysis is done by breaking up the signal into shifted and scaled versions of the original signal. The key advantage of a wavelet is that it is capable of revealing smaller changes, trends, and breakdown points that are not revealed by other techniques such as Fourier analysis. The phenomenon of polarization has been studied for quite some time and is a very useful tool for target detection and tracking. Long Wave Infrared (LWIR) polarization is beneficial for detecting camouflaged objects and is a useful approach when identifying and distinguishing manmade objects from natural clutter. In addition, the Stokes Polarization Parameters, which are calculated from 0°, 45°, 90°, 135° right circular, and left circular intensity measurements, provide spatial orientations of target features and suppress natural features. In this paper, we propose a wavelet-based polarimetry analysis (WPA) method to analyze Long Wave Infrared Polarimetry Imagery to discriminate targets such as dismounts and vehicles from background clutter. These parameters can be used for image thresholding and segmentation. Experimental results show the wavelet-based polarimetry analysis is efficient and can be used in a wide range of applications such as change detection, shape extraction, target recognition, and feature-aided tracking.

  13. Fast, large-scale hologram calculation in wavelet domain

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Matsushima, Kyoji; Takahashi, Takayuki; Nagahama, Yuki; Hasegawa, Satoki; Sano, Marie; Hirayama, Ryuji; Kakue, Takashi; Ito, Tomoyoshi

    2018-04-01

    We propose a large-scale hologram calculation using WAvelet ShrinkAge-Based superpositIon (WASABI), a wavelet transform-based algorithm. An image-type hologram calculated using the WASABI method is printed on a glass substrate with the resolution of 65 , 536 × 65 , 536 pixels and a pixel pitch of 1 μm. The hologram calculation time amounts to approximately 354 s on a commercial CPU, which is approximately 30 times faster than conventional methods.

  14. Multi-threshold de-noising of electrical imaging logging data based on the wavelet packet transform

    NASA Astrophysics Data System (ADS)

    Xie, Fang; Xiao, Chengwen; Liu, Ruilin; Zhang, Lili

    2017-08-01

    A key problem of effectiveness evaluation for fractured-vuggy carbonatite reservoir is how to accurately extract fracture and vug information from electrical imaging logging data. Drill bits quaked during drilling and resulted in rugged surfaces of borehole walls and thus conductivity fluctuations in electrical imaging logging data. The occurrence of the conductivity fluctuations (formation background noise) directly affects the fracture/vug information extraction and reservoir effectiveness evaluation. We present a multi-threshold de-noising method based on wavelet packet transform to eliminate the influence of rugged borehole walls. The noise is present as fluctuations in button-electrode conductivity curves and as pockmarked responses in electrical imaging logging static images. The noise has responses in various scales and frequency ranges and has low conductivity compared with fractures or vugs. Our de-noising method is to decompose the data into coefficients with wavelet packet transform on a quadratic spline basis, then shrink high-frequency wavelet packet coefficients in different resolutions with minimax threshold and hard-threshold function, and finally reconstruct the thresholded coefficients. We use electrical imaging logging data collected from fractured-vuggy Ordovician carbonatite reservoir in Tarim Basin to verify the validity of the multi-threshold de-noising method. Segmentation results and extracted parameters are shown as well to prove the effectiveness of the de-noising procedure.

  15. Use of multiresolution wavelet feature pyramids for automatic registration of multisensor imagery

    NASA Technical Reports Server (NTRS)

    Zavorin, Ilya; Le Moigne, Jacqueline

    2005-01-01

    The problem of image registration, or the alignment of two or more images representing the same scene or object, has to be addressed in various disciplines that employ digital imaging. In the area of remote sensing, just like in medical imaging or computer vision, it is necessary to design robust, fast, and widely applicable algorithms that would allow automatic registration of images generated by various imaging platforms at the same or different times and that would provide subpixel accuracy. One of the main issues that needs to be addressed when developing a registration algorithm is what type of information should be extracted from the images being registered, to be used in the search for the geometric transformation that best aligns them. The main objective of this paper is to evaluate several wavelet pyramids that may be used both for invariant feature extraction and for representing images at multiple spatial resolutions to accelerate registration. We find that the bandpass wavelets obtained from the steerable pyramid due to Simoncelli performs best in terms of accuracy and consistency, while the low-pass wavelets obtained from the same pyramid give the best results in terms of the radius of convergence. Based on these findings, we propose a modification of a gradient-based registration algorithm that has recently been developed for medical data. We test the modified algorithm on several sets of real and synthetic satellite imagery.

  16. Super-resolution algorithm based on sparse representation and wavelet preprocessing for remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Ren, Ruizhi; Gu, Lingjia; Fu, Haoyang; Sun, Chenglin

    2017-04-01

    An effective super-resolution (SR) algorithm is proposed for actual spectral remote sensing images based on sparse representation and wavelet preprocessing. The proposed SR algorithm mainly consists of dictionary training and image reconstruction. Wavelet preprocessing is used to establish four subbands, i.e., low frequency, horizontal, vertical, and diagonal high frequency, for an input image. As compared to the traditional approaches involving the direct training of image patches, the proposed approach focuses on the training of features derived from these four subbands. The proposed algorithm is verified using different spectral remote sensing images, e.g., moderate-resolution imaging spectroradiometer (MODIS) images with different bands, and the latest Chinese Jilin-1 satellite images with high spatial resolution. According to the visual experimental results obtained from the MODIS remote sensing data, the SR images using the proposed SR algorithm are superior to those using a conventional bicubic interpolation algorithm or traditional SR algorithms without preprocessing. Fusion algorithms, e.g., standard intensity-hue-saturation, principal component analysis, wavelet transform, and the proposed SR algorithms are utilized to merge the multispectral and panchromatic images acquired by the Jilin-1 satellite. The effectiveness of the proposed SR algorithm is assessed by parameters such as peak signal-to-noise ratio, structural similarity index, correlation coefficient, root-mean-square error, relative dimensionless global error in synthesis, relative average spectral error, spectral angle mapper, and the quality index Q4, and its performance is better than that of the standard image fusion algorithms.

  17. Classification of endoscopic capsule images by using color wavelet features, higher order statistics and radial basis functions.

    PubMed

    Lima, C S; Barbosa, D; Ramos, J; Tavares, A; Monteiro, L; Carvalho, L

    2008-01-01

    This paper presents a system to support medical diagnosis and detection of abnormal lesions by processing capsule endoscopic images. Endoscopic images possess rich information expressed by texture. Texture information can be efficiently extracted from medium scales of the wavelet transform. The set of features proposed in this paper to code textural information is named color wavelet covariance (CWC). CWC coefficients are based on the covariances of second order textural measures, an optimum subset of them is proposed. Third and forth order moments are added to cope with distributions that tend to become non-Gaussian, especially in some pathological cases. The proposed approach is supported by a classifier based on radial basis functions procedure for the characterization of the image regions along the video frames. The whole methodology has been applied on real data containing 6 full endoscopic exams and reached 95% specificity and 93% sensitivity.

  18. Study on Underwater Image Denoising Algorithm Based on Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Jian, Sun; Wen, Wang

    2017-02-01

    This paper analyzes the application of MATLAB in underwater image processing, the transmission characteristics of the underwater laser light signal and the kinds of underwater noise has been described, the common noise suppression algorithm: Wiener filter, median filter, average filter algorithm is brought out. Then the advantages and disadvantages of each algorithm in image sharpness and edge protection areas have been compared. A hybrid filter algorithm based on wavelet transform has been proposed which can be used for Color Image Denoising. At last the PSNR and NMSE of each algorithm has been given out, which compares the ability to de-noising

  19. Wavelet-based image analysis system for soil texture analysis

    NASA Astrophysics Data System (ADS)

    Sun, Yun; Long, Zhiling; Jang, Ping-Rey; Plodinec, M. John

    2003-05-01

    Soil texture is defined as the relative proportion of clay, silt and sand found in a given soil sample. It is an important physical property of soil that affects such phenomena as plant growth and agricultural fertility. Traditional methods used to determine soil texture are either time consuming (hydrometer), or subjective and experience-demanding (field tactile evaluation). Considering that textural patterns observed at soil surfaces are uniquely associated with soil textures, we propose an innovative approach to soil texture analysis, in which wavelet frames-based features representing texture contents of soil images are extracted and categorized by applying a maximum likelihood criterion. The soil texture analysis system has been tested successfully with an accuracy of 91% in classifying soil samples into one of three general categories of soil textures. In comparison with the common methods, this wavelet-based image analysis approach is convenient, efficient, fast, and objective.

  20. Wavelet-based energy features for glaucomatous image classification.

    PubMed

    Dua, Sumeet; Acharya, U Rajendra; Chowriappa, Pradeep; Sree, S Vinitha

    2012-01-01

    Texture features within images are actively pursued for accurate and efficient glaucoma classification. Energy distribution over wavelet subbands is applied to find these important texture features. In this paper, we investigate the discriminatory potential of wavelet features obtained from the daubechies (db3), symlets (sym3), and biorthogonal (bio3.3, bio3.5, and bio3.7) wavelet filters. We propose a novel technique to extract energy signatures obtained using 2-D discrete wavelet transform, and subject these signatures to different feature ranking and feature selection strategies. We have gauged the effectiveness of the resultant ranked and selected subsets of features using a support vector machine, sequential minimal optimization, random forest, and naïve Bayes classification strategies. We observed an accuracy of around 93% using tenfold cross validations to demonstrate the effectiveness of these methods.

  1. Imaging reconstruction based on improved wavelet denoising combined with parallel-beam filtered back-projection algorithm

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2012-11-01

    The image reconstruction is a key step in medical imaging (MI) and its algorithm's performance determinates the quality and resolution of reconstructed image. Although some algorithms have been used, filter back-projection (FBP) algorithm is still the classical and commonly-used algorithm in clinical MI. In FBP algorithm, filtering of original projection data is a key step in order to overcome artifact of the reconstructed image. Since simple using of classical filters, such as Shepp-Logan (SL), Ram-Lak (RL) filter have some drawbacks and limitations in practice, especially for the projection data polluted by non-stationary random noises. So, an improved wavelet denoising combined with parallel-beam FBP algorithm is used to enhance the quality of reconstructed image in this paper. In the experiments, the reconstructed effects were compared between the improved wavelet denoising and others (directly FBP, mean filter combined FBP and median filter combined FBP method). To determine the optimum reconstruction effect, different algorithms, and different wavelet bases combined with three filters were respectively test. Experimental results show the reconstruction effect of improved FBP algorithm is better than that of others. Comparing the results of different algorithms based on two evaluation standards i.e. mean-square error (MSE), peak-to-peak signal-noise ratio (PSNR), it was found that the reconstructed effects of the improved FBP based on db2 and Hanning filter at decomposition scale 2 was best, its MSE value was less and the PSNR value was higher than others. Therefore, this improved FBP algorithm has potential value in the medical imaging.

  2. Wavelet domain image restoration with adaptive edge-preserving regularization.

    PubMed

    Belge, M; Kilmer, M E; Miller, E L

    2000-01-01

    In this paper, we consider a wavelet based edge-preserving regularization scheme for use in linear image restoration problems. Our efforts build on a collection of mathematical results indicating that wavelets are especially useful for representing functions that contain discontinuities (i.e., edges in two dimensions or jumps in one dimension). We interpret the resulting theory in a statistical signal processing framework and obtain a highly flexible framework for adapting the degree of regularization to the local structure of the underlying image. In particular, we are able to adapt quite easily to scale-varying and orientation-varying features in the image while simultaneously retaining the edge preservation properties of the regularizer. We demonstrate a half-quadratic algorithm for obtaining the restorations from observed data.

  3. Design of almost symmetric orthogonal wavelet filter bank via direct optimization.

    PubMed

    Murugesan, Selvaraaju; Tay, David B H

    2012-05-01

    It is a well-known fact that (compact-support) dyadic wavelets [based on the two channel filter banks (FBs)] cannot be simultaneously orthogonal and symmetric. Although orthogonal wavelets have the energy preservation property, biorthogonal wavelets are preferred in image processing applications because of their symmetric property. In this paper, a novel method is presented for the design of almost symmetric orthogonal wavelet FB. Orthogonality is structurally imposed by using the unnormalized lattice structure, and this leads to an objective function, which is relatively simple to optimize. The designed filters have good frequency response, flat group delay, almost symmetric filter coefficients, and symmetric wavelet function.

  4. Efficient storage and management of radiographic images using a novel wavelet-based multiscale vector quantizer

    NASA Astrophysics Data System (ADS)

    Yang, Shuyu; Mitra, Sunanda

    2002-05-01

    Due to the huge volumes of radiographic images to be managed in hospitals, efficient compression techniques yielding no perceptual loss in the reconstructed images are becoming a requirement in the storage and management of such datasets. A wavelet-based multi-scale vector quantization scheme that generates a global codebook for efficient storage and transmission of medical images is presented in this paper. The results obtained show that even at low bit rates one is able to obtain reconstructed images with perceptual quality higher than that of the state-of-the-art scalar quantization method, the set partitioning in hierarchical trees.

  5. Pixel-based speckle adjustment for noise reduction in Fourier-domain OCT images

    PubMed Central

    Zhang, Anqi; Xi, Jiefeng; Sun, Jitao; Li, Xingde

    2017-01-01

    Speckle resides in OCT signals and inevitably effects OCT image quality. In this work, we present a novel method for speckle noise reduction in Fourier-domain OCT images, which utilizes the phase information of complex OCT data. In this method, speckle area is pre-delineated pixelwise based on a phase-domain processing method and then adjusted by the results of wavelet shrinkage of the original image. Coefficient shrinkage method such as wavelet or contourlet is applied afterwards for further suppressing the speckle noise. Compared with conventional methods without speckle adjustment, the proposed method demonstrates significant improvement of image quality. PMID:28663860

  6. Remote sensing of soil organic matter of farmland with hyperspectral image

    NASA Astrophysics Data System (ADS)

    Gu, Xiaohe; Wang, Lei; Yang, Guijun; Zhang, Liyan

    2017-10-01

    Monitoring soil organic matter (SOM) of cultivated land quantitively and mastering its spatial change are helpful for fertility adjustment and sustainable development of agriculture. The study aimed to analyze the response between SOM and reflectivity of hyperspectral image with different pixel size and develop the optimal model of estimating SOM with imaging spectral technology. The wavelet transform method was used to analyze the correlation between the hyperspectral reflectivity and SOM. Then the optimal pixel size and sensitive wavelet feature scale were screened to develop the inversion model of SOM. Result showed that wavelet transform of soil hyperspectrum was help to improve the correlation between the wavelet features and SOM. In the visible wavelength range, the susceptible wavelet features of SOM mainly concentrated 460 603 nm. As the wavelength increased, the wavelet scale corresponding correlation coefficient increased maximum and then gradually decreased. In the near infrared wavelength range, the susceptible wavelet features of SOM mainly concentrated 762 882 nm. As the wavelength increased, the wavelet scale gradually decreased. The study developed multivariate model of continuous wavelet transforms by the method of stepwise linear regression (SLR). The CWT-SLR models reached higher accuracies than those of univariate models. With the resampling scale increasing, the accuracies of CWT-SLR models gradually increased, while the determination coefficients (R2) fluctuated from 0.52 to 0.59. The R2 of 5*5 scale reached highest (0.5954), while the RMSE reached lowest (2.41 g/kg). It indicated that multivariate model based on continuous wavelet transform had better ability for estimating SOM than univariate model.

  7. Use of the wavelet transform to investigate differences in brain PET images between patient groups

    NASA Astrophysics Data System (ADS)

    Ruttimann, Urs E.; Unser, Michael A.; Rio, Daniel E.; Rawlings, Robert R.

    1993-06-01

    Suitability of the wavelet transform was studied for the analysis of glucose utilization differences between subject groups as displayed in PET images. To strengthen statistical inference, it was of particular interest investigating the tradeoff between signal localization and image decomposition into uncorrelated components. This tradeoff is shown to be controlled by wavelet regularity, with the optimal compromise attained by third-order orthogonal spline wavelets. Testing of the ensuing wavelet coefficients identified only about 1.5% as statistically different (p < .05) from noise, which then served to resynthesize the difference images by the inverse wavelet transform. The resulting images displayed relatively uniform, noise-free regions of significant differences with, due to the good localization maintained by the wavelets, very little reconstruction artifacts.

  8. Hierarchical and successive approximate registration of the non-rigid medical image based on thin-plate splines

    NASA Astrophysics Data System (ADS)

    Hu, Jinyan; Li, Li; Yang, Yunfeng

    2017-06-01

    The hierarchical and successive approximate registration method of non-rigid medical image based on the thin-plate splines is proposed in the paper. There are two major novelties in the proposed method. First, the hierarchical registration based on Wavelet transform is used. The approximate image of Wavelet transform is selected as the registered object. Second, the successive approximation registration method is used to accomplish the non-rigid medical images registration, i.e. the local regions of the couple images are registered roughly based on the thin-plate splines, then, the current rough registration result is selected as the object to be registered in the following registration procedure. Experiments show that the proposed method is effective in the registration process of the non-rigid medical images.

  9. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a manner similar to that of a baseline hyperspectral- image-compression method. The mean values are encoded in the compressed bit stream and added back to the data at the appropriate decompression step. The overhead incurred by encoding the mean values only a few bits per spectral band is negligible with respect to the huge size of a typical hyperspectral data set. The other method is denoted modified decomposition. This method is so named because it involves a modified version of a commonly used multiresolution wavelet decomposition, known in the art as the 3D Mallat decomposition, in which (a) the first of multiple stages of a 3D wavelet transform is applied to the entire dataset and (b) subsequent stages are applied only to the horizontally-, vertically-, and spectrally-low-pass subband from the preceding stage. In the modified decomposition, in stages after the first, not only is the spatially-low-pass, spectrally-low-pass subband further decomposed, but also spatially-low-pass, spectrally-high-pass subbands are further decomposed spatially. Either method can be used alone to improve the quality of a reconstructed image (see figure). Alternatively, the two methods can be combined by first performing modified decomposition, then subtracting the mean values from spatial planes of spatially-low-pass subbands.

  10. Developing a multi-Kinect-system for monitoring in dairy cows: object recognition and surface analysis using wavelets.

    PubMed

    Salau, J; Haas, J H; Thaller, G; Leisen, M; Junge, W

    2016-09-01

    Camera-based systems in dairy cattle were intensively studied over the last years. Different from this study, single camera systems with a limited range of applications were presented, mostly using 2D cameras. This study presents current steps in the development of a camera system comprising multiple 3D cameras (six Microsoft Kinect cameras) for monitoring purposes in dairy cows. An early prototype was constructed, and alpha versions of software for recording, synchronizing, sorting and segmenting images and transforming the 3D data in a joint coordinate system have already been implemented. This study introduced the application of two-dimensional wavelet transforms as method for object recognition and surface analyses. The method was explained in detail, and four differently shaped wavelets were tested with respect to their reconstruction error concerning Kinect recorded depth maps from different camera positions. The images' high frequency parts reconstructed from wavelet decompositions using the haar and the biorthogonal 1.5 wavelet were statistically analyzed with regard to the effects of image fore- or background and of cows' or persons' surface. Furthermore, binary classifiers based on the local high frequencies have been implemented to decide whether a pixel belongs to the image foreground and if it was located on a cow or a person. Classifiers distinguishing between image regions showed high (⩾0.8) values of Area Under reciever operation characteristic Curve (AUC). The classifications due to species showed maximal AUC values of 0.69.

  11. Perceptual security of encrypted images based on wavelet scaling analysis

    NASA Astrophysics Data System (ADS)

    Vargas-Olmos, C.; Murguía, J. S.; Ramírez-Torres, M. T.; Mejía Carlos, M.; Rosu, H. C.; González-Aguilar, H.

    2016-08-01

    The scaling behavior of the pixel fluctuations of encrypted images is evaluated by using the detrended fluctuation analysis based on wavelets, a modern technique that has been successfully used recently for a wide range of natural phenomena and technological processes. As encryption algorithms, we use the Advanced Encryption System (AES) in RBT mode and two versions of a cryptosystem based on cellular automata, with the encryption process applied both fully and partially by selecting different bitplanes. In all cases, the results show that the encrypted images in which no understandable information can be visually appreciated and whose pixels look totally random present a persistent scaling behavior with the scaling exponent α close to 0.5, implying no correlation between pixels when the DFA with wavelets is applied. This suggests that the scaling exponents of the encrypted images can be used as a perceptual security criterion in the sense that when their values are close to 0.5 (the white noise value) the encrypted images are more secure also from the perceptual point of view.

  12. Wavelet-based compression of M-FISH images.

    PubMed

    Hua, Jianping; Xiong, Zixiang; Wu, Qiang; Castleman, Kenneth R

    2005-05-01

    Multiplex fluorescence in situ hybridization (M-FISH) is a recently developed technology that enables multi-color chromosome karyotyping for molecular cytogenetic analysis. Each M-FISH image set consists of a number of aligned images of the same chromosome specimen captured at different optical wavelength. This paper presents embedded M-FISH image coding (EMIC), where the foreground objects/chromosomes and the background objects/images are coded separately. We first apply critically sampled integer wavelet transforms to both the foreground and the background. We then use object-based bit-plane coding to compress each object and generate separate embedded bitstreams that allow continuous lossy-to-lossless compression of the foreground and the background. For efficient arithmetic coding of bit planes, we propose a method of designing an optimal context model that specifically exploits the statistical characteristics of M-FISH images in the wavelet domain. Our experiments show that EMIC achieves nearly twice as much compression as Lempel-Ziv-Welch coding. EMIC also performs much better than JPEG-LS and JPEG-2000 for lossless coding. The lossy performance of EMIC is significantly better than that of coding each M-FISH image with JPEG-2000.

  13. Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme

    NASA Astrophysics Data System (ADS)

    Li, Xianye; Meng, Xiangfeng; Yang, Xiulun; Wang, Yurong; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-03-01

    A multiple-image encryption method via lifting wavelet transform (LWT) and XOR operation is proposed, which is based on a row scanning compressive ghost imaging scheme. In the encryption process, the scrambling operation is implemented for the sparse images transformed by LWT, then the XOR operation is performed on the scrambled images, and the resulting XOR images are compressed in the row scanning compressive ghost imaging, through which the ciphertext images can be detected by bucket detector arrays. During decryption, the participant who possesses his/her correct key-group, can successfully reconstruct the corresponding plaintext image by measurement key regeneration, compression algorithm reconstruction, XOR operation, sparse images recovery, and inverse LWT (iLWT). Theoretical analysis and numerical simulations validate the feasibility of the proposed method.

  14. Wavelet-space correlation imaging for high-speed MRI without motion monitoring or data segmentation.

    PubMed

    Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles

    2015-12-01

    This study aims to (i) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and (ii) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called "wavelet-space correlation imaging", is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI, and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. © 2014 Wiley Periodicals, Inc.

  15. Optical image encryption using chaos-based compressed sensing and phase-shifting interference in fractional wavelet domain

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Wang, Ying; Wang, Jun; Wang, Qiong-Hua

    2018-02-01

    In this paper, a novel optical image encryption system combining compressed sensing with phase-shifting interference in fractional wavelet domain is proposed. To improve the encryption efficiency, the volume data of original image are decreased by compressed sensing. Then the compacted image is encoded through double random phase encoding in asymmetric fractional wavelet domain. In the encryption system, three pseudo-random sequences, generated by three-dimensional chaos map, are used as the measurement matrix of compressed sensing and two random-phase masks in the asymmetric fractional wavelet transform. It not only simplifies the keys to storage and transmission, but also enhances our cryptosystem nonlinearity to resist some common attacks. Further, holograms make our cryptosystem be immune to noises and occlusion attacks, which are obtained by two-step-only quadrature phase-shifting interference. And the compression and encryption can be achieved in the final result simultaneously. Numerical experiments have verified the security and validity of the proposed algorithm.

  16. Detection and classification of Breast Cancer in Wavelet Sub-bands of Fractal Segmented Cancerous Zones.

    PubMed

    Shirazinodeh, Alireza; Noubari, Hossein Ahmadi; Rabbani, Hossein; Dehnavi, Alireza Mehri

    2015-01-01

    Recent studies on wavelet transform and fractal modeling applied on mammograms for the detection of cancerous tissues indicate that microcalcifications and masses can be utilized for the study of the morphology and diagnosis of cancerous cases. It is shown that the use of fractal modeling, as applied to a given image, can clearly discern cancerous zones from noncancerous areas. In this paper, for fractal modeling, the original image is first segmented into appropriate fractal boxes followed by identifying the fractal dimension of each windowed section using a computationally efficient two-dimensional box-counting algorithm. Furthermore, using appropriate wavelet sub-bands and image Reconstruction based on modified wavelet coefficients, it is shown that it is possible to arrive at enhanced features for detection of cancerous zones. In this paper, we have attempted to benefit from the advantages of both fractals and wavelets by introducing a new algorithm. By using a new algorithm named F1W2, the original image is first segmented into appropriate fractal boxes, and the fractal dimension of each windowed section is extracted. Following from that, by applying a maximum level threshold on fractal dimensions matrix, the best-segmented boxes are selected. In the next step, the segmented Cancerous zones which are candidates are then decomposed by utilizing standard orthogonal wavelet transform and db2 wavelet in three different resolution levels, and after nullifying wavelet coefficients of the image at the first scale and low frequency band of the third scale, the modified reconstructed image is successfully utilized for detection of breast cancer regions by applying an appropriate threshold. For detection of cancerous zones, our simulations indicate the accuracy of 90.9% for masses and 88.99% for microcalcifications detection results using the F1W2 method. For classification of detected mictocalcification into benign and malignant cases, eight features are identified and utilized in radial basis function neural network. Our simulation results indicate the accuracy of 92% classification using F1W2 method.

  17. A Wavelet-Based Algorithm for the Spatial Analysis of Poisson Data

    NASA Astrophysics Data System (ADS)

    Freeman, P. E.; Kashyap, V.; Rosner, R.; Lamb, D. Q.

    2002-01-01

    Wavelets are scalable, oscillatory functions that deviate from zero only within a limited spatial regime and have average value zero, and thus may be used to simultaneously characterize the shape, location, and strength of astronomical sources. But in addition to their use as source characterizers, wavelet functions are rapidly gaining currency within the source detection field. Wavelet-based source detection involves the correlation of scaled wavelet functions with binned, two-dimensional image data. If the chosen wavelet function exhibits the property of vanishing moments, significantly nonzero correlation coefficients will be observed only where there are high-order variations in the data; e.g., they will be observed in the vicinity of sources. Source pixels are identified by comparing each correlation coefficient with its probability sampling distribution, which is a function of the (estimated or a priori known) background amplitude. In this paper, we describe the mission-independent, wavelet-based source detection algorithm ``WAVDETECT,'' part of the freely available Chandra Interactive Analysis of Observations (CIAO) software package. Our algorithm uses the Marr, or ``Mexican Hat'' wavelet function, but may be adapted for use with other wavelet functions. Aspects of our algorithm include: (1) the computation of local, exposure-corrected normalized (i.e., flat-fielded) background maps; (2) the correction for exposure variations within the field of view (due to, e.g., telescope support ribs or the edge of the field); (3) its applicability within the low-counts regime, as it does not require a minimum number of background counts per pixel for the accurate computation of source detection thresholds; (4) the generation of a source list in a manner that does not depend upon a detailed knowledge of the point spread function (PSF) shape; and (5) error analysis. These features make our algorithm considerably more general than previous methods developed for the analysis of X-ray image data, especially in the low count regime. We demonstrate the robustness of WAVDETECT by applying it to an image from an idealized detector with a spatially invariant Gaussian PSF and an exposure map similar to that of the Einstein IPC; to Pleiades Cluster data collected by the ROSAT PSPC; and to simulated Chandra ACIS-I image of the Lockman Hole region.

  18. Fast frequency domain method to detect skew in a document image

    NASA Astrophysics Data System (ADS)

    Mehta, Sunita; Walia, Ekta; Dutta, Maitreyee

    2015-12-01

    In this paper, a new fast frequency domain method based on Discrete Wavelet Transform and Fast Fourier Transform has been implemented for the determination of the skew angle in a document image. Firstly, image size reduction is done by using two-dimensional Discrete Wavelet Transform and then skew angle is computed using Fast Fourier Transform. Skew angle error is almost negligible. The proposed method is experimented using a large number of documents having skew between -90° and +90° and results are compared with Moments with Discrete Wavelet Transform method and other commonly used existing methods. It has been determined that this method works more efficiently than the existing methods. Also, it works with typed, picture documents having different fonts and resolutions. It overcomes the drawback of the recently proposed method of Moments with Discrete Wavelet Transform that does not work with picture documents.

  19. Multispectral image sharpening using a shift-invariant wavelet transform and adaptive processing of multiresolution edges

    USGS Publications Warehouse

    Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.

    2002-01-01

    Enhanced false color images from mid-IR, near-IR (NIR), and visible bands of the Landsat thematic mapper (TM) are commonly used for visually interpreting land cover type. Described here is a technique for sharpening or fusion of NIR with higher resolution panchromatic (Pan) that uses a shift-invariant implementation of the discrete wavelet transform (SIDWT) and a reported pixel-based selection rule to combine coefficients. There can be contrast reversals (e.g., at soil-vegetation boundaries between NIR and visible band images) and consequently degraded sharpening and edge artifacts. To improve performance for these conditions, I used a local area-based correlation technique originally reported for comparing image-pyramid-derived edges for the adaptive processing of wavelet-derived edge data. Also, using the redundant data of the SIDWT improves edge data generation. There is additional improvement because sharpened subband imagery is used with the edge-correlation process. A reported technique for sharpening three-band spectral imagery used forward and inverse intensity, hue, and saturation transforms and wavelet-based sharpening of intensity. This technique had limitations with opposite contrast data, and in this study sharpening was applied to single-band multispectral-Pan image pairs. Sharpening used simulated 30-m NIR imagery produced by degrading the spatial resolution of a higher resolution reference. Performance, evaluated by comparison between sharpened and reference image, was improved when sharpened subband data were used with the edge correlation.

  20. Combined self-learning based single-image super-resolution and dual-tree complex wavelet transform denoising for medical images

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Ye, Xujiong; Slabaugh, Greg; Keegan, Jennifer; Mohiaddin, Raad; Firmin, David

    2016-03-01

    In this paper, we propose a novel self-learning based single-image super-resolution (SR) method, which is coupled with dual-tree complex wavelet transform (DTCWT) based denoising to better recover high-resolution (HR) medical images. Unlike previous methods, this self-learning based SR approach enables us to reconstruct HR medical images from a single low-resolution (LR) image without extra training on HR image datasets in advance. The relationships between the given image and its scaled down versions are modeled using support vector regression with sparse coding and dictionary learning, without explicitly assuming reoccurrence or self-similarity across image scales. In addition, we perform DTCWT based denoising to initialize the HR images at each scale instead of simple bicubic interpolation. We evaluate our method on a variety of medical images. Both quantitative and qualitative results show that the proposed approach outperforms bicubic interpolation and state-of-the-art single-image SR methods while effectively removing noise.

  1. Agile Multi-Scale Decompositions for Automatic Image Registration

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Leija, Omar Navarro; Le Moigne, Jacqueline

    2016-01-01

    In recent works, the first and third authors developed an automatic image registration algorithm based on a multiscale hybrid image decomposition with anisotropic shearlets and isotropic wavelets. This prototype showed strong performance, improving robustness over registration with wavelets alone. However, this method imposed a strict hierarchy on the order in which shearlet and wavelet features were used in the registration process, and also involved an unintegrated mixture of MATLAB and C code. In this paper, we introduce a more agile model for generating features, in which a flexible and user-guided mix of shearlet and wavelet features are computed. Compared to the previous prototype, this method introduces a flexibility to the order in which shearlet and wavelet features are used in the registration process. Moreover, the present algorithm is now fully coded in C, making it more efficient and portable than the MATLAB and C prototype. We demonstrate the versatility and computational efficiency of this approach by performing registration experiments with the fully-integrated C algorithm. In particular, meaningful timing studies can now be performed, to give a concrete analysis of the computational costs of the flexible feature extraction. Examples of synthetically warped and real multi-modal images are analyzed.

  2. Optimal wavelet transform for the detection of microaneurysms in retina photographs.

    PubMed

    Quellec, Gwénolé; Lamard, Mathieu; Josselin, Pierre Marie; Cazuguel, Guy; Cochener, Béatrice; Roux, Christian

    2008-09-01

    In this paper, we propose an automatic method to detect microaneurysms in retina photographs. Microaneurysms are the most frequent and usually the first lesions to appear as a consequence of diabetic retinopathy. So, their detection is necessary for both screening the pathology and follow up (progression measurement). Automating this task, which is currently performed manually, would bring more objectivity and reproducibility. We propose to detect them by locally matching a lesion template in subbands of wavelet transformed images. To improve the method performance, we have searched for the best adapted wavelet within the lifting scheme framework. The optimization process is based on a genetic algorithm followed by Powell's direction set descent. Results are evaluated on 120 retinal images analyzed by an expert and the optimal wavelet is compared to different conventional mother wavelets. These images are of three different modalities: there are color photographs, green filtered photographs, and angiographs. Depending on the imaging modality, microaneurysms were detected with a sensitivity of respectively 89.62%, 90.24%, and 93.74% and a positive predictive value of respectively 89.50%, 89.75%, and 91.67%, which is better than previously published methods.

  3. Optimal wavelet transform for the detection of microaneurysms in retina photographs

    PubMed Central

    Quellec, Gwénolé; Lamard, Mathieu; Josselin, Pierre Marie; Cazuguel, Guy; Cochener, Béatrice; Roux, Christian

    2008-01-01

    In this article, we propose an automatic method to detect microaneurysms in retina photographs. Microaneurysms are the most frequent and usually the first lesions to appear as a consequence of diabetic retinopathy. So, their detection is necessary for both screening the pathology and follow up (progression measurement). Automating this task, which is currently performed manually, would bring more objectivity and reproducibility. We propose to detect them by locally matching a lesion template in subbands of wavelet transformed images. To improve the method performance, we have searched for the best adapted wavelet within the lifting scheme framework. The optimization process is based on a genetic algorithm followed by Powell’s direction set descent. Results are evaluated on 120 retinal images analyzed by an expert and the optimal wavelet is compared to different conventional mother wavelets. These images are of three different modalites: there are color photographs, green filtered photographs and angiographs. Depending on the imaging modality, microaneurysms were detected with a sensitivity of respectively 89.62%, 90.24% and 93.74% and a positive predictive value of respectively 89.50%, 89.75% and 91.67%, which is better than previously published methods. PMID:18779064

  4. Wavelet-space Correlation Imaging for High-speed MRI without Motion Monitoring or Data Segmentation

    PubMed Central

    Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles

    2014-01-01

    Purpose This study aims to 1) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and 2) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Methods Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called “wavelet-space correlation imaging”, is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Results Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Conclusion Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. PMID:25470230

  5. Wavelet median denoising of ultrasound images

    NASA Astrophysics Data System (ADS)

    Macey, Katherine E.; Page, Wyatt H.

    2002-05-01

    Ultrasound images are contaminated with both additive and multiplicative noise, which is modeled by Gaussian and speckle noise respectively. Distinguishing small features such as fallopian tubes in the female genital tract in the noisy environment is problematic. A new method for noise reduction, Wavelet Median Denoising, is presented. Wavelet Median Denoising consists of performing a standard noise reduction technique, median filtering, in the wavelet domain. The new method is tested on 126 images, comprised of 9 original images each with 14 levels of Gaussian or speckle noise. Results for both separable and non-separable wavelets are evaluated, relative to soft-thresholding in the wavelet domain, using the signal-to-noise ratio and subjective assessment. The performance of Wavelet Median Denoising is comparable to that of soft-thresholding. Both methods are more successful in removing Gaussian noise than speckle noise. Wavelet Median Denoising outperforms soft-thresholding for a larger number of cases of speckle noise reduction than of Gaussian noise reduction. Noise reduction is more successful using non-separable wavelets than separable wavelets. When both methods are applied to ultrasound images obtained from a phantom of the female genital tract a small improvement is seen; however, a substantial improvement is required prior to clinical use.

  6. Wavelet entropy of BOLD time series: An application to Rolandic epilepsy.

    PubMed

    Gupta, Lalit; Jansen, Jacobus F A; Hofman, Paul A M; Besseling, René M H; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H

    2017-12-01

    To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal irregularities (disorder/order) on a voxel-by-voxel basis in the brains of children with Rolandic epilepsy. The BOLD time series was decomposed using the discrete wavelet transform and the wavelet entropy was calculated. Using a model time series consisting of multiple harmonics and nonstationary components, the wavelet entropy was compared with Shannon and spectral (Fourier-based) entropy. As an application, the wavelet entropy in 22 children with Rolandic epilepsy was compared to 22 age-matched healthy controls. The images were obtained by performing resting-state functional magnetic resonance imaging (fMRI) using a 3T system, an 8-element receive-only head coil, and an echo planar imaging pulse sequence ( T2*-weighted). The wavelet entropy was also compared to spectral entropy, regional homogeneity, and Shannon entropy. Wavelet entropy was found to identify the nonstationary components of the model time series. In Rolandic epilepsy patients, a significantly elevated wavelet entropy was observed relative to controls for the whole cerebrum (P = 0.03). Spectral entropy (P = 0.41), regional homogeneity (P = 0.52), and Shannon entropy (P = 0.32) did not reveal significant differences. The wavelet entropy measure appeared more sensitive to detect abnormalities in cerebral fluctuations represented by nonstationary effects in the BOLD time series than more conventional measures. This effect was observed in the model time series as well as in Rolandic epilepsy. These observations suggest that the brains of children with Rolandic epilepsy exhibit stronger nonstationary temporal signal fluctuations than controls. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1728-1737. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Novel Algorithm for Classification of Medical Images

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat; Juneja, Monika

    2010-11-01

    Content-based image retrieval (CBIR) methods in medical image databases have been designed to support specific tasks, such as retrieval of medical images. These methods cannot be transferred to other medical applications since different imaging modalities require different types of processing. To enable content-based queries in diverse collections of medical images, the retrieval system must be familiar with the current Image class prior to the query processing. Further, almost all of them deal with the DICOM imaging format. In this paper a novel algorithm based on energy information obtained from wavelet transform for the classification of medical images according to their modalities is described. For this two types of wavelets have been used and have been shown that energy obtained in either case is quite distinct for each of the body part. This technique can be successfully applied to different image formats. The results are shown for JPEG imaging format.

  8. Multispectral image sharpening using wavelet transform techniques and spatial correlation of edges

    USGS Publications Warehouse

    Lemeshewsky, George P.; Schowengerdt, Robert A.

    2000-01-01

    Several reported image fusion or sharpening techniques are based on the discrete wavelet transform (DWT). The technique described here uses a pixel-based maximum selection rule to combine respective transform coefficients of lower spatial resolution near-infrared (NIR) and higher spatial resolution panchromatic (pan) imagery to produce a sharpened NIR image. Sharpening assumes a radiometric correlation between the spectral band images. However, there can be poor correlation, including edge contrast reversals (e.g., at soil-vegetation boundaries), between the fused images and, consequently, degraded performance. To improve sharpening, a local area-based correlation technique originally reported for edge comparison with image pyramid fusion is modified for application with the DWT process. Further improvements are obtained by using redundant, shift-invariant implementation of the DWT. Example images demonstrate the improvements in NIR image sharpening with higher resolution pan imagery.

  9. Wavelet/scalar quantization compression standard for fingerprint images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brislawn, C.M.

    1996-06-12

    US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class ofmore » potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.« less

  10. Wavelets in medical imaging

    NASA Astrophysics Data System (ADS)

    Zahra, Noor e.; Sevindir, Hulya Kodal; Aslan, Zafer; Siddiqi, A. H.

    2012-07-01

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  11. Wavelet denoising during optical coherence tomography of the prostate nerves using the complex wavelet transform.

    PubMed

    Chitchian, Shahab; Fiddy, Michael; Fried, Nathaniel M

    2008-01-01

    Preservation of the cavernous nerves during prostate cancer surgery is critical in preserving sexual function after surgery. Optical coherence tomography (OCT) of the prostate nerves has recently been studied for potential use in nerve-sparing prostate surgery. In this study, the discrete wavelet transform and complex dual-tree wavelet transform are implemented for wavelet shrinkage denoising in OCT images of the rat prostate. Applying the complex dual-tree wavelet transform provides improved results for speckle noise reduction in the OCT prostate image. Image quality metrics of the cavernous nerves and signal-to-noise ratio (SNR) were improved significantly using this complex wavelet denoising technique.

  12. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images.

    PubMed

    Boix, Macarena; Cantó, Begoña

    2013-04-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells.

  13. An Application of Rotation- and Translation-Invariant Overcomplete Wavelets to the registration of Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Zavorine, Ilya

    1999-01-01

    A wavelet-based image registration approach has previously been proposed by the authors. In this work, wavelet coefficient maxima obtained from an orthogonal wavelet decomposition using Daubechies filters were utilized to register images in a multi-resolution fashion. Tested on several remote sensing datasets, this method gave very encouraging results. Despite the lack of translation-invariance of these filters, we showed that when using cross-correlation as a feature matching technique, features of size larger than twice the size of the filters are correctly registered by using the low-frequency subbands of the Daubechies wavelet decomposition. Nevertheless, high-frequency subbands are still sensitive to translation effects. In this work, we are considering a rotation- and translation-invariant representation developed by E. Simoncelli and integrate it in our image registration scheme. The two types of filters, Daubechies and Simoncelli filters, are then being compared from a registration point of view, utilizing synthetic data as well as data from the Landsat/ Thematic Mapper (TM) and from the NOAA Advanced Very High Resolution Radiometer (AVHRR).

  14. An Application of Rotation- and Translation-Invariant Overcomplete Wavelets to the Registration of Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Zavorine, Ilya

    1999-01-01

    A wavelet-based image registration approach has previously been proposed by the authors. In this work, wavelet coefficient maxima obtained from an orthogonal wavelet decomposition using Daubechies filters were utilized to register images in a multi-resolution fashion. Tested on several remote sensing datasets, this method gave very encouraging results. Despite the lack of translation-invariance of these filters, we showed that when using cross-correlation as a feature matching technique, features of size larger than twice the size of the filters are correctly registered by using the low-frequency subbands of the Daubechies wavelet decomposition. Nevertheless, high-frequency subbands are still sensitive to translation effects. In this work, we are considering a rotation- and translation-invariant representation developed by E. Simoncelli and integrate it in our image registration scheme. The two types of filters, Daubechies and Simoncelli filters, are then being compared from a registration point of view, utilizing synthetic data as well as data from the Landsat/ Thematic Mapper (TM) and from the NOAA Advanced Very High Resolution Radiometer (AVHRR).

  15. Early Detection of Amyloid Plaque in Alzheimer’s Disease via X-Ray Phase CT

    DTIC Science & Technology

    2014-06-01

    normal, pathologic and Alzheimer’s brains, in which the amyloid precursor protein (APP) will be included as a reference. Toward this goal, we have made...in x-ray flat panel imagers and the artifact removal using a wavelet -analysis-based algorithm” Med. Phys., 28(3): 812-25, 2001. 4. X Wu and H Liu...panel imagers and the artifact removal using a wavelet -analysis-based algorithm” Med. Phys., 28(3): 812-25, 2001 12. Tang X, Hsieh J, Nilsen RA

  16. Early Detection of Amyloid Plaque in Alzheimer’s Disease via X-Ray Phase CT

    DTIC Science & Technology

    2013-06-01

    fibrils in the x-ray phase contrast CT imaging, as a function over the molar concentrations corresponding to normal, pathologic and Alzheimer’s...panel imagers and the artifact removal using a wavelet -analysis-based algorithm” Med. Phys., 28(3): 812-25, 2001. 4. X Wu and H Liu, “Clinical...and the artifact removal using a wavelet -analysis-based algorithm” Med. Phys., 28(3): 812-25, 2001 12. Tang X, Hsieh J, Nilsen RA, Hagiwara A

  17. [Recognition of landscape characteristic scale based on two-dimension wavelet analysis].

    PubMed

    Gao, Yan-Ni; Chen, Wei; He, Xing-Yuan; Li, Xiao-Yu

    2010-06-01

    Three wavelet bases, i. e., Haar, Daubechies, and Symlet, were chosen to analyze the validity of two-dimension wavelet analysis in recognizing the characteristic scales of the urban, peri-urban, and rural landscapes of Shenyang. Owing to the transform scale of two-dimension wavelet must be the integer power of 2, some characteristic scales cannot be accurately recognized. Therefore, the pixel resolution of images was resampled to 3, 3.5, 4, and 4.5 m to densify the scale in analysis. It was shown that two-dimension wavelet analysis worked effectively in checking characteristic scale. Haar, Daubechies, and Symle were the optimal wavelet bases to the peri-urban landscape, urban landscape, and rural landscape, respectively. Both Haar basis and Symlet basis played good roles in recognizing the fine characteristic scale of rural landscape and in detecting the boundary of peri-urban landscape. Daubechies basis and Symlet basis could be also used to detect the boundary of urban landscape and rural landscape, respectively.

  18. Wavelet domain textual coding of Ottoman script images

    NASA Astrophysics Data System (ADS)

    Gerek, Oemer N.; Cetin, Enis A.; Tewfik, Ahmed H.

    1996-02-01

    Image coding using wavelet transform, DCT, and similar transform techniques is well established. On the other hand, these coding methods neither take into account the special characteristics of the images in a database nor are they suitable for fast database search. In this paper, the digital archiving of Ottoman printings is considered. Ottoman documents are printed in Arabic letters. Witten et al. describes a scheme based on finding the characters in binary document images and encoding the positions of the repeated characters This method efficiently compresses document images and is suitable for database research, but it cannot be applied to Ottoman or Arabic documents as the concept of character is different in Ottoman or Arabic. Typically, one has to deal with compound structures consisting of a group of letters. Therefore, the matching criterion will be according to those compound structures. Furthermore, the text images are gray tone or color images for Ottoman scripts for the reasons that are described in the paper. In our method the compound structure matching is carried out in wavelet domain which reduces the search space and increases the compression ratio. In addition to the wavelet transformation which corresponds to the linear subband decomposition, we also used nonlinear subband decomposition. The filters in the nonlinear subband decomposition have the property of preserving edges in the low resolution subband image.

  19. Edge detection based on adaptive threshold b-spline wavelet for optical sub-aperture measuring

    NASA Astrophysics Data System (ADS)

    Zhang, Shiqi; Hui, Mei; Liu, Ming; Zhao, Zhu; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin

    2015-08-01

    In the research of optical synthetic aperture imaging system, phase congruency is the main problem and it is necessary to detect sub-aperture phase. The edge of the sub-aperture system is more complex than that in the traditional optical imaging system. And with the existence of steep slope for large-aperture optical component, interference fringe may be quite dense when interference imaging. Deep phase gradient may cause a loss of phase information. Therefore, it's urgent to search for an efficient edge detection method. Wavelet analysis as a powerful tool is widely used in the fields of image processing. Based on its properties of multi-scale transform, edge region is detected with high precision in small scale. Longing with the increase of scale, noise is reduced in contrary. So it has a certain suppression effect on noise. Otherwise, adaptive threshold method which sets different thresholds in various regions can detect edge points from noise. Firstly, fringe pattern is obtained and cubic b-spline wavelet is adopted as the smoothing function. After the multi-scale wavelet decomposition of the whole image, we figure out the local modulus maxima in gradient directions. However, it also contains noise, and thus adaptive threshold method is used to select the modulus maxima. The point which greater than threshold value is boundary point. Finally, we use corrosion and expansion deal with the resulting image to get the consecutive boundary of image.

  20. Line fitting based feature extraction for object recognition

    NASA Astrophysics Data System (ADS)

    Li, Bing

    2014-06-01

    Image feature extraction plays a significant role in image based pattern applications. In this paper, we propose a new approach to generate hierarchical features. This new approach applies line fitting to adaptively divide regions based upon the amount of information and creates line fitting features for each subsequent region. It overcomes the feature wasting drawback of the wavelet based approach and demonstrates high performance in real applications. For gray scale images, we propose a diffusion equation approach to map information-rich pixels (pixels near edges and ridge pixels) into high values, and pixels in homogeneous regions into small values near zero that form energy map images. After the energy map images are generated, we propose a line fitting approach to divide regions recursively and create features for each region simultaneously. This new feature extraction approach is similar to wavelet based hierarchical feature extraction in which high layer features represent global characteristics and low layer features represent local characteristics. However, the new approach uses line fitting to adaptively focus on information-rich regions so that we avoid the feature waste problems of the wavelet approach in homogeneous regions. Finally, the experiments for handwriting word recognition show that the new method provides higher performance than the regular handwriting word recognition approach.

  1. Neural network face recognition using wavelets

    NASA Astrophysics Data System (ADS)

    Karunaratne, Passant V.; Jouny, Ismail I.

    1997-04-01

    The recognition of human faces is a phenomenon that has been mastered by the human visual system and that has been researched extensively in the domain of computer neural networks and image processing. This research is involved in the study of neural networks and wavelet image processing techniques in the application of human face recognition. The objective of the system is to acquire a digitized still image of a human face, carry out pre-processing on the image as required, an then, given a prior database of images of possible individuals, be able to recognize the individual in the image. The pre-processing segment of the system includes several procedures, namely image compression, denoising, and feature extraction. The image processing is carried out using Daubechies wavelets. Once the images have been passed through the wavelet-based image processor they can be efficiently analyzed by means of a neural network. A back- propagation neural network is used for the recognition segment of the system. The main constraints of the system is with regard to the characteristics of the images being processed. The system should be able to carry out effective recognition of the human faces irrespective of the individual's facial-expression, presence of extraneous objects such as head-gear or spectacles, and face/head orientation. A potential application of this face recognition system would be as a secondary verification method in an automated teller machine.

  2. Classification of the Gabon SAR Mosaic Using a Wavelet Based Rule Classifier

    NASA Technical Reports Server (NTRS)

    Simard, Marc; Saatchi, Sasan; DeGrandi, Gianfranco

    2000-01-01

    A method is developed for semi-automated classification of SAR images of the tropical forest. Information is extracted using the wavelet transform (WT). The transform allows for extraction of structural information in the image as a function of scale. In order to classify the SAR image, a Desicion Tree Classifier is used. The method of pruning is used to optimize classification rate versus tree size. The results give explicit insight on the type of information useful for a given class.

  3. An improved wavelet neural network medical image segmentation algorithm with combined maximum entropy

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoqian; Tao, Jinxu; Ye, Zhongfu; Qiu, Bensheng; Xu, Jinzhang

    2018-05-01

    In order to solve the problem of medical image segmentation, a wavelet neural network medical image segmentation algorithm based on combined maximum entropy criterion is proposed. Firstly, we use bee colony algorithm to optimize the network parameters of wavelet neural network, get the parameters of network structure, initial weights and threshold values, and so on, we can quickly converge to higher precision when training, and avoid to falling into relative extremum; then the optimal number of iterations is obtained by calculating the maximum entropy of the segmented image, so as to achieve the automatic and accurate segmentation effect. Medical image segmentation experiments show that the proposed algorithm can reduce sample training time effectively and improve convergence precision, and segmentation effect is more accurate and effective than traditional BP neural network (back propagation neural network : a multilayer feed forward neural network which trained according to the error backward propagation algorithm.

  4. A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.

    PubMed

    Liao, Ke; Zhu, Min; Ding, Lei

    2013-08-01

    The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Multiresolution With Super-Compact Wavelets

    NASA Technical Reports Server (NTRS)

    Lee, Dohyung

    2000-01-01

    The solution data computed from large scale simulations are sometimes too big for main memory, for local disks, and possibly even for a remote storage disk, creating tremendous processing time as well as technical difficulties in analyzing the data. The excessive storage demands a corresponding huge penalty in I/O time, rendering time and transmission time between different computer systems. In this paper, a multiresolution scheme is proposed to compress field simulation or experimental data without much loss of important information in the representation. Originally, the wavelet based multiresolution scheme was introduced in image processing, for the purposes of data compression and feature extraction. Unlike photographic image data which has rather simple settings, computational field simulation data needs more careful treatment in applying the multiresolution technique. While the image data sits on a regular spaced grid, the simulation data usually resides on a structured curvilinear grid or unstructured grid. In addition to the irregularity in grid spacing, the other difficulty is that the solutions consist of vectors instead of scalar values. The data characteristics demand more restrictive conditions. In general, the photographic images have very little inherent smoothness with discontinuities almost everywhere. On the other hand, the numerical solutions have smoothness almost everywhere and discontinuities in local areas (shock, vortices, and shear layers). The wavelet bases should be amenable to the solution of the problem at hand and applicable to constraints such as numerical accuracy and boundary conditions. In choosing a suitable wavelet basis for simulation data among a variety of wavelet families, the supercompact wavelets designed by Beam and Warming provide one of the most effective multiresolution schemes. Supercompact multi-wavelets retain the compactness of Haar wavelets, are piecewise polynomial and orthogonal, and can have arbitrary order of approximation. The advantages of the multiresolution algorithm are that no special treatment is required at the boundaries of the interval, and that the application to functions which are only piecewise continuous (internal boundaries) can be efficiently implemented. In this presentation, Beam's supercompact wavelets are generalized to higher dimensions using multidimensional scaling and wavelet functions rather than alternating the directions as in the 1D version. As a demonstration of actual 3D data compression, supercompact wavelet transforms are applied to a 3D data set for wing tip vortex flow solutions (2.5 million grid points). It is shown that high data compression ratio can be achieved (around 50:1 ratio) in both vector and scalar data set.

  6. Speckle noise reduction in ultrasound images using a discrete wavelet transform-based image fusion technique.

    PubMed

    Choi, Hyun Ho; Lee, Ju Hwan; Kim, Sung Min; Park, Sung Yun

    2015-01-01

    Here, the speckle noise in ultrasonic images is removed using an image fusion-based denoising method. To optimize the denoising performance, each discrete wavelet transform (DWT) and filtering technique was analyzed and compared. In addition, the performances were compared in order to derive the optimal input conditions. To evaluate the speckle noise removal performance, an image fusion algorithm was applied to the ultrasound images, and comparatively analyzed with the original image without the algorithm. As a result, applying DWT and filtering techniques caused information loss and noise characteristics, and did not represent the most significant noise reduction performance. Conversely, an image fusion method applying SRAD-original conditions preserved the key information in the original image, and the speckle noise was removed. Based on such characteristics, the input conditions of SRAD-original had the best denoising performance with the ultrasound images. From this study, the best denoising technique proposed based on the results was confirmed to have a high potential for clinical application.

  7. Rock classification based on resistivity patterns in electrical borehole wall images

    NASA Astrophysics Data System (ADS)

    Linek, Margarete; Jungmann, Matthias; Berlage, Thomas; Pechnig, Renate; Clauser, Christoph

    2007-06-01

    Electrical borehole wall images represent grey-level-coded micro-resistivity measurements at the borehole wall. Different scientific methods have been implemented to transform image data into quantitative log curves. We introduce a pattern recognition technique applying texture analysis, which uses second-order statistics based on studying the occurrence of pixel pairs. We calculate so-called Haralick texture features such as contrast, energy, entropy and homogeneity. The supervised classification method is used for assigning characteristic texture features to different rock classes and assessing the discriminative power of these image features. We use classifiers obtained from training intervals to characterize the entire image data set recovered in ODP hole 1203A. This yields a synthetic lithology profile based on computed texture data. We show that Haralick features accurately classify 89.9% of the training intervals. We obtained misclassification for vesicular basaltic rocks. Hence, further image analysis tools are used to improve the classification reliability. We decompose the 2D image signal by the application of wavelet transformation in order to enhance image objects horizontally, diagonally and vertically. The resulting filtered images are used for further texture analysis. This combined classification based on Haralick features and wavelet transformation improved our classification up to a level of 98%. The application of wavelet transformation increases the consistency between standard logging profiles and texture-derived lithology. Texture analysis of borehole wall images offers the potential to facilitate objective analysis of multiple boreholes with the same lithology.

  8. Bone marrow cavity segmentation using graph-cuts with wavelet-based texture feature.

    PubMed

    Shigeta, Hironori; Mashita, Tomohiro; Kikuta, Junichi; Seno, Shigeto; Takemura, Haruo; Ishii, Masaru; Matsuda, Hideo

    2017-10-01

    Emerging bioimaging technologies enable us to capture various dynamic cellular activities [Formula: see text]. As large amounts of data are obtained these days and it is becoming unrealistic to manually process massive number of images, automatic analysis methods are required. One of the issues for automatic image segmentation is that image-taking conditions are variable. Thus, commonly, many manual inputs are required according to each image. In this paper, we propose a bone marrow cavity (BMC) segmentation method for bone images as BMC is considered to be related to the mechanism of bone remodeling, osteoporosis, and so on. To reduce manual inputs to segment BMC, we classified the texture pattern using wavelet transformation and support vector machine. We also integrated the result of texture pattern classification into the graph-cuts-based image segmentation method because texture analysis does not consider spatial continuity. Our method is applicable to a particular frame in an image sequence in which the condition of fluorescent material is variable. In the experiment, we evaluated our method with nine types of mother wavelets and several sets of scale parameters. The proposed method with graph-cuts and texture pattern classification performs well without manual inputs by a user.

  9. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitrios

    Purpose: Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. Methods: The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. Results: A totalmore » of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists’ qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. Conclusions: A new wavelet-based EFCM clustering model was introduced toward noise reduction and detail preservation. The proposed method improves the overall US image quality, which in turn could affect the decision-making on whether additional imaging and/or intervention is needed.« less

  10. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction.

    PubMed

    Tsantis, Stavros; Spiliopoulos, Stavros; Skouroliakou, Aikaterini; Karnabatidis, Dimitrios; Hazle, John D; Kagadis, George C

    2014-07-01

    Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. A total of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists' qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. A new wavelet-based EFCM clustering model was introduced toward noise reduction and detail preservation. The proposed method improves the overall US image quality, which in turn could affect the decision-making on whether additional imaging and/or intervention is needed.

  11. EIT Imaging Regularization Based on Spectral Graph Wavelets.

    PubMed

    Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Vauhkonen, Marko; Wolf, Gerhard; Mueller-Lisse, Ullrich; Moeller, Knut

    2017-09-01

    The objective of electrical impedance tomographic reconstruction is to identify the distribution of tissue conductivity from electrical boundary conditions. This is an ill-posed inverse problem usually solved under the finite-element method framework. In previous studies, standard sparse regularization was used for difference electrical impedance tomography to achieve a sparse solution. However, regarding elementwise sparsity, standard sparse regularization interferes with the smoothness of conductivity distribution between neighboring elements and is sensitive to noise. As an effect, the reconstructed images are spiky and depict a lack of smoothness. Such unexpected artifacts are not realistic and may lead to misinterpretation in clinical applications. To eliminate such artifacts, we present a novel sparse regularization method that uses spectral graph wavelet transforms. Single-scale or multiscale graph wavelet transforms are employed to introduce local smoothness on different scales into the reconstructed images. The proposed approach relies on viewing finite-element meshes as undirected graphs and applying wavelet transforms derived from spectral graph theory. Reconstruction results from simulations, a phantom experiment, and patient data suggest that our algorithm is more robust to noise and produces more reliable images.

  12. Pixel-level multisensor image fusion based on matrix completion and robust principal component analysis

    NASA Astrophysics Data System (ADS)

    Wang, Zhuozheng; Deller, J. R.; Fleet, Blair D.

    2016-01-01

    Acquired digital images are often corrupted by a lack of camera focus, faulty illumination, or missing data. An algorithm is presented for fusion of multiple corrupted images of a scene using the lifting wavelet transform. The method employs adaptive fusion arithmetic based on matrix completion and self-adaptive regional variance estimation. Characteristics of the wavelet coefficients are used to adaptively select fusion rules. Robust principal component analysis is applied to low-frequency image components, and regional variance estimation is applied to high-frequency components. Experiments reveal that the method is effective for multifocus, visible-light, and infrared image fusion. Compared with traditional algorithms, the new algorithm not only increases the amount of preserved information and clarity but also improves robustness.

  13. Automated pathologies detection in retina digital images based on complex continuous wavelet transform phase angles.

    PubMed

    Lahmiri, Salim; Gargour, Christian S; Gabrea, Marcel

    2014-10-01

    An automated diagnosis system that uses complex continuous wavelet transform (CWT) to process retina digital images and support vector machines (SVMs) for classification purposes is presented. In particular, each retina image is transformed into two one-dimensional signals by concatenating image rows and columns separately. The mathematical norm of phase angles found in each one-dimensional signal at each level of CWT decomposition are relied on to characterise the texture of normal images against abnormal images affected by exudates, drusen and microaneurysms. The leave-one-out cross-validation method was adopted to conduct experiments and the results from the SVM show that the proposed approach gives better results than those obtained by other methods based on the correct classification rate, sensitivity and specificity.

  14. An Automated Parallel Image Registration Technique Based on the Correlation of Wavelet Features

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Campbell, William J.; Cromp, Robert F.; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    With the increasing importance of multiple platform/multiple remote sensing missions, fast and automatic integration of digital data from disparate sources has become critical to the success of these endeavors. Our work utilizes maxima of wavelet coefficients to form the basic features of a correlation-based automatic registration algorithm. Our wavelet-based registration algorithm is tested successfully with data from the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and the Landsat/Thematic Mapper(TM), which differ by translation and/or rotation. By the choice of high-frequency wavelet features, this method is similar to an edge-based correlation method, but by exploiting the multi-resolution nature of a wavelet decomposition, our method achieves higher computational speeds for comparable accuracies. This algorithm has been implemented on a Single Instruction Multiple Data (SIMD) massively parallel computer, the MasPar MP-2, as well as on the CrayT3D, the Cray T3E and a Beowulf cluster of Pentium workstations.

  15. Automated segmentation of retinal blood vessels and identification of proliferative diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Jelinek, Herbert F.; Cree, Michael J.; Leandro, Jorge J. G.; Soares, João V. B.; Cesar, Roberto M.; Luckie, A.

    2007-05-01

    Proliferative diabetic retinopathy can lead to blindness. However, early recognition allows appropriate, timely intervention. Fluorescein-labeled retinal blood vessels of 27 digital images were automatically segmented using the Gabor wavelet transform and classified using traditional features such as area, perimeter, and an additional five morphological features based on the derivatives-of-Gaussian wavelet-derived data. Discriminant analysis indicated that traditional features do not detect early proliferative retinopathy. The best single feature for discrimination was the wavelet curvature with an area under the curve (AUC) of 0.76. Linear discriminant analysis with a selection of six features achieved an AUC of 0.90 (0.73-0.97, 95% confidence interval). The wavelet method was able to segment retinal blood vessels and classify the images according to the presence or absence of proliferative retinopathy.

  16. Dual tree fractional quaternion wavelet transform for disparity estimation.

    PubMed

    Kumar, Sanoj; Kumar, Sanjeev; Sukavanam, Nagarajan; Raman, Balasubramanian

    2014-03-01

    This paper proposes a novel phase based approach for computing disparity as the optical flow from the given pair of consecutive images. A new dual tree fractional quaternion wavelet transform (FrQWT) is proposed by defining the 2D Fourier spectrum upto a single quadrant. In the proposed FrQWT, each quaternion wavelet consists of a real part (a real DWT wavelet) and three imaginary parts that are organized according to the quaternion algebra. First two FrQWT phases encode the shifts of image features in the absolute horizontal and vertical coordinate system, while the third phase has the texture information. The FrQWT allowed a multi-scale framework for calculating and adjusting local disparities and executing phase unwrapping from coarse to fine scales with linear computational efficiency. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  17. The Brera Multiscale Wavelet ROSAT HRI Source Catalog. I. The Algorithm

    NASA Astrophysics Data System (ADS)

    Lazzati, Davide; Campana, Sergio; Rosati, Piero; Panzera, Maria Rosa; Tagliaferri, Gianpiero

    1999-10-01

    We present a new detection algorithm based on the wavelet transform for the analysis of high-energy astronomical images. The wavelet transform, because of its multiscale structure, is suited to the optimal detection of pointlike as well as extended sources, regardless of any loss of resolution with the off-axis angle. Sources are detected as significant enhancements in the wavelet space, after the subtraction of the nonflat components of the background. Detection thresholds are computed through Monte Carlo simulations in order to establish the expected number of spurious sources per field. The source characterization is performed through a multisource fitting in the wavelet space. The procedure is designed to correctly deal with very crowded fields, allowing for the simultaneous characterization of nearby sources. To obtain a fast and reliable estimate of the source parameters and related errors, we apply a novel decimation technique that, taking into account the correlation properties of the wavelet transform, extracts a subset of almost independent coefficients. We test the performance of this algorithm on synthetic fields, analyzing with particular care the characterization of sources in poor background situations, where the assumption of Gaussian statistics does not hold. In these cases, for which standard wavelet algorithms generally provide underestimated errors, we infer errors through a procedure that relies on robust basic statistics. Our algorithm is well suited to the analysis of images taken with the new generation of X-ray instruments equipped with CCD technology, which will produce images with very low background and/or high source density.

  18. Measurement of in-plane displacements using the phase singularities generated by directional wavelet transforms of speckle pattern images.

    PubMed

    Vadnjal, Ana Laura; Etchepareborda, Pablo; Federico, Alejandro; Kaufmann, Guillermo H

    2013-03-20

    We present a method to determine micro and nano in-plane displacements based on the phase singularities generated by application of directional wavelet transforms to speckle pattern images. The spatial distribution of the obtained phase singularities by the wavelet transform configures a network, which is characterized by two quasi-orthogonal directions. The displacement value is determined by identifying the intersection points of the network before and after the displacement produced by the tested object. The performance of this method is evaluated using simulated speckle patterns and experimental data. The proposed approach is compared with the optical vortex metrology and digital image correlation methods in terms of performance and noise robustness, and the advantages and limitations associated to each method are also discussed.

  19. PET-CT image fusion using random forest and à-trous wavelet transform.

    PubMed

    Seal, Ayan; Bhattacharjee, Debotosh; Nasipuri, Mita; Rodríguez-Esparragón, Dionisio; Menasalvas, Ernestina; Gonzalo-Martin, Consuelo

    2018-03-01

    New image fusion rules for multimodal medical images are proposed in this work. Image fusion rules are defined by random forest learning algorithm and a translation-invariant à-trous wavelet transform (AWT). The proposed method is threefold. First, source images are decomposed into approximation and detail coefficients using AWT. Second, random forest is used to choose pixels from the approximation and detail coefficients for forming the approximation and detail coefficients of the fused image. Lastly, inverse AWT is applied to reconstruct fused image. All experiments have been performed on 198 slices of both computed tomography and positron emission tomography images of a patient. A traditional fusion method based on Mallat wavelet transform has also been implemented on these slices. A new image fusion performance measure along with 4 existing measures has been presented, which helps to compare the performance of 2 pixel level fusion methods. The experimental results clearly indicate that the proposed method outperforms the traditional method in terms of visual and quantitative qualities and the new measure is meaningful. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Wavelet-Based Visible and Infrared Image Fusion: A Comparative Study

    PubMed Central

    Sappa, Angel D.; Carvajal, Juan A.; Aguilera, Cristhian A.; Oliveira, Miguel; Romero, Dennis; Vintimilla, Boris X.

    2016-01-01

    This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and Long Wave InfraRed (LWIR). PMID:27294938

  1. Wavelet-Based Visible and Infrared Image Fusion: A Comparative Study.

    PubMed

    Sappa, Angel D; Carvajal, Juan A; Aguilera, Cristhian A; Oliveira, Miguel; Romero, Dennis; Vintimilla, Boris X

    2016-06-10

    This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and Long Wave InfraRed (LWIR).

  2. Joint sparse reconstruction of multi-contrast MRI images with graph based redundant wavelet transform.

    PubMed

    Lai, Zongying; Zhang, Xinlin; Guo, Di; Du, Xiaofeng; Yang, Yonggui; Guo, Gang; Chen, Zhong; Qu, Xiaobo

    2018-05-03

    Multi-contrast images in magnetic resonance imaging (MRI) provide abundant contrast information reflecting the characteristics of the internal tissues of human bodies, and thus have been widely utilized in clinical diagnosis. However, long acquisition time limits the application of multi-contrast MRI. One efficient way to accelerate data acquisition is to under-sample the k-space data and then reconstruct images with sparsity constraint. However, images are compromised at high acceleration factor if images are reconstructed individually. We aim to improve the images with a jointly sparse reconstruction and Graph-based redundant wavelet transform (GBRWT). First, a sparsifying transform, GBRWT, is trained to reflect the similarity of tissue structures in multi-contrast images. Second, joint multi-contrast image reconstruction is formulated as a ℓ 2, 1 norm optimization problem under GBRWT representations. Third, the optimization problem is numerically solved using a derived alternating direction method. Experimental results in synthetic and in vivo MRI data demonstrate that the proposed joint reconstruction method can achieve lower reconstruction errors and better preserve image structures than the compared joint reconstruction methods. Besides, the proposed method outperforms single image reconstruction with joint sparsity constraint of multi-contrast images. The proposed method explores the joint sparsity of multi-contrast MRI images under graph-based redundant wavelet transform and realizes joint sparse reconstruction of multi-contrast images. Experiment demonstrate that the proposed method outperforms the compared joint reconstruction methods as well as individual reconstructions. With this high quality image reconstruction method, it is possible to achieve the high acceleration factors by exploring the complementary information provided by multi-contrast MRI.

  3. Filtering of the Radon transform to enhance linear signal features via wavelet pyramid decomposition

    NASA Astrophysics Data System (ADS)

    Meckley, John R.

    1995-09-01

    The information content in many signal processing applications can be reduced to a set of linear features in a 2D signal transform. Examples include the narrowband lines in a spectrogram, ship wakes in a synthetic aperture radar image, and blood vessels in a medical computer-aided tomography scan. The line integrals that generate the values of the projections of the Radon transform can be characterized as a bank of matched filters for linear features. This localization of energy in the Radon transform for linear features can be exploited to enhance these features and to reduce noise by filtering the Radon transform with a filter explicitly designed to pass only linear features, and then reconstructing a new 2D signal by inverting the new filtered Radon transform (i.e., via filtered backprojection). Previously used methods for filtering the Radon transform include Fourier based filtering (a 2D elliptical Gaussian linear filter) and a nonlinear filter ((Radon xfrm)**y with y >= 2.0). Both of these techniques suffer from the mismatch of the filter response to the true functional form of the Radon transform of a line. The Radon transform of a line is not a point but is a function of the Radon variables (rho, theta) and the total line energy. This mismatch leads to artifacts in the reconstructed image and a reduction in achievable processing gain. The Radon transform for a line is computed as a function of angle and offset (rho, theta) and the line length. The 2D wavelet coefficients are then compared for the Haar wavelets and the Daubechies wavelets. These filter responses are used as frequency filters for the Radon transform. The filtering is performed on the wavelet pyramid decomposition of the Radon transform by detecting the most likely positions of lines in the transform and then by convolving the local area with the appropriate response and zeroing the pyramid coefficients outside of the response area. The response area is defined to contain 95% of the total wavelet coefficient energy. The detection algorithm provides an estimate of the line offset, orientation, and length that is then used to index the appropriate filter shape. Additional wavelet pyramid decomposition is performed in areas of high energy to refine the line position estimate. After filtering, the new Radon transform is generated by inverting the wavelet pyramid. The Radon transform is then inverted by filtered backprojection to produce the final 2D signal estimate with the enhanced linear features. The wavelet-based method is compared to both the Fourier and the nonlinear filtering with examples of sparse and dense shapes in imaging, acoustics and medical tomography with test images of noisy concentric lines, a real spectrogram of a blow fish (a very nonstationary spectrum), and the Shepp Logan Computer Tomography phantom image. Both qualitative and derived quantitative measures demonstrate the improvement of wavelet-based filtering. Additional research is suggested based on these results. Open questions include what level(s) to use for detection and filtering because multiple-level representations exist. The lower levels are smoother at reduced spatial resolution, while the higher levels provide better response to edges. Several examples are discussed based on analytical and phenomenological arguments.

  4. Detection of spontaneous vesicle release at individual synapses using multiple wavelets in a CWT-based algorithm.

    PubMed

    Sokoll, Stefan; Tönnies, Klaus; Heine, Martin

    2012-01-01

    In this paper we present an algorithm for the detection of spontaneous activity at individual synapses in microscopy images. By employing the optical marker pHluorin, we are able to visualize synaptic vesicle release with a spatial resolution in the nm range in a non-invasive manner. We compute individual synaptic signals from automatically segmented regions of interest and detect peaks that represent synaptic activity using a continuous wavelet transform based algorithm. As opposed to standard peak detection algorithms, we employ multiple wavelets to match all relevant features of the peak. We evaluate our multiple wavelet algorithm (MWA) on real data and assess the performance on synthetic data over a wide range of signal-to-noise ratios.

  5. A New Method for Computed Tomography Angiography (CTA) Imaging via Wavelet Decomposition-Dependented Edge Matching Interpolation.

    PubMed

    Li, Zeyu; Chen, Yimin; Zhao, Yan; Zhu, Lifeng; Lv, Shengqing; Lu, Jiahui

    2016-08-01

    The interpolation technique of computed tomography angiography (CTA) image provides the ability for 3D reconstruction, as well as reduces the detect cost and the amount of radiation. However, most of the image interpolation algorithms cannot take the automation and accuracy into account. This study provides a new edge matching interpolation algorithm based on wavelet decomposition of CTA. It includes mark, scale and calculation (MSC). Combining the real clinical image data, this study mainly introduces how to search for proportional factor and use the root mean square operator to find a mean value. Furthermore, we re- synthesize the high frequency and low frequency parts of the processed image by wavelet inverse operation, and get the final interpolation image. MSC can make up for the shortage of the conventional Computed Tomography (CT) and Magnetic Resonance Imaging(MRI) examination. The radiation absorption and the time to check through the proposed synthesized image were significantly reduced. In clinical application, it can help doctor to find hidden lesions in time. Simultaneously, the patients get less economic burden as well as less radiation exposure absorbed.

  6. A wavelet-based adaptive fusion algorithm of infrared polarization imaging

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Gu, Guohua; Chen, Qian; Zeng, Haifang

    2011-08-01

    The purpose of infrared polarization image is to highlight man-made target from a complex natural background. For the infrared polarization images can significantly distinguish target from background with different features, this paper presents a wavelet-based infrared polarization image fusion algorithm. The method is mainly for image processing of high-frequency signal portion, as for the low frequency signal, the original weighted average method has been applied. High-frequency part is processed as follows: first, the source image of the high frequency information has been extracted by way of wavelet transform, then signal strength of 3*3 window area has been calculated, making the regional signal intensity ration of source image as a matching measurement. Extraction method and decision mode of the details are determined by the decision making module. Image fusion effect is closely related to the setting threshold of decision making module. Compared to the commonly used experiment way, quadratic interpolation optimization algorithm is proposed in this paper to obtain threshold. Set the endpoints and midpoint of the threshold searching interval as initial interpolation nodes, and compute the minimum quadratic interpolation function. The best threshold can be obtained by comparing the minimum quadratic interpolation function. A series of image quality evaluation results show this method has got improvement in fusion effect; moreover, it is not only effective for some individual image, but also for a large number of images.

  7. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields

    NASA Technical Reports Server (NTRS)

    Baxes, Gregory A. (Inventor); Linger, Timothy C. (Inventor)

    2011-01-01

    Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.

  8. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields

    NASA Technical Reports Server (NTRS)

    Baxes, Gregory A. (Inventor)

    2010-01-01

    Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.

  9. Scope and applications of translation invariant wavelets to image registration

    NASA Technical Reports Server (NTRS)

    Chettri, Samir; LeMoigne, Jacqueline; Campbell, William

    1997-01-01

    The first part of this article introduces the notion of translation invariance in wavelets and discusses several wavelets that have this property. The second part discusses the possible applications of such wavelets to image registration. In the case of registration of affinely transformed images, we would conclude that the notion of translation invariance is not really necessary. What is needed is affine invariance and one way to do this is via the method of moment invariants. Wavelets or, in general, pyramid processing can then be combined with the method of moment invariants to reduce the computational load.

  10. Compression of multispectral fluorescence microscopic images based on a modified set partitioning in hierarchal trees

    NASA Astrophysics Data System (ADS)

    Mansoor, Awais; Robinson, J. Paul; Rajwa, Bartek

    2009-02-01

    Modern automated microscopic imaging techniques such as high-content screening (HCS), high-throughput screening, 4D imaging, and multispectral imaging are capable of producing hundreds to thousands of images per experiment. For quick retrieval, fast transmission, and storage economy, these images should be saved in a compressed format. A considerable number of techniques based on interband and intraband redundancies of multispectral images have been proposed in the literature for the compression of multispectral and 3D temporal data. However, these works have been carried out mostly in the elds of remote sensing and video processing. Compression for multispectral optical microscopy imaging, with its own set of specialized requirements, has remained under-investigated. Digital photography{oriented 2D compression techniques like JPEG (ISO/IEC IS 10918-1) and JPEG2000 (ISO/IEC 15444-1) are generally adopted for multispectral images which optimize visual quality but do not necessarily preserve the integrity of scientic data, not to mention the suboptimal performance of 2D compression techniques in compressing 3D images. Herein we report our work on a new low bit-rate wavelet-based compression scheme for multispectral fluorescence biological imaging. The sparsity of signicant coefficients in high-frequency subbands of multispectral microscopic images is found to be much greater than in natural images; therefore a quad-tree concept such as Said et al.'s SPIHT1 along with correlation of insignicant wavelet coefficients has been proposed to further exploit redundancy at high-frequency subbands. Our work propose a 3D extension to SPIHT, incorporating a new hierarchal inter- and intra-spectral relationship amongst the coefficients of 3D wavelet-decomposed image. The new relationship, apart from adopting the parent-child relationship of classical SPIHT, also brought forth the conditional "sibling" relationship by relating only the insignicant wavelet coefficients of subbands at the same level of decomposition. The insignicant quadtrees in dierent subbands in the high-frequency subband class are coded by a combined function to reduce redundancy. A number of experiments conducted on microscopic multispectral images have shown promising results for the proposed method over current state-of-the-art image-compression techniques.

  11. Computer-aided diagnosis of breast microcalcifications based on dual-tree complex wavelet transform.

    PubMed

    Jian, Wushuai; Sun, Xueyan; Luo, Shuqian

    2012-12-19

    Digital mammography is the most reliable imaging modality for breast carcinoma diagnosis and breast micro-calcifications is regarded as one of the most important signs on imaging diagnosis. In this paper, a computer-aided diagnosis (CAD) system is presented for breast micro-calcifications based on dual-tree complex wavelet transform (DT-CWT) to facilitate radiologists like double reading. Firstly, 25 abnormal ROIs were extracted according to the center and diameter of the lesions manually and 25 normal ROIs were selected randomly. Then micro-calcifications were segmented by combining space and frequency domain techniques. We extracted three texture features based on wavelet (Haar, DB4, DT-CWT) transform. Totally 14 descriptors were introduced to define the characteristics of the suspicious micro-calcifications. Principal Component Analysis (PCA) was used to transform these descriptors to a compact and efficient vector expression. Support Vector Machine (SVM) classifier was used to classify potential micro-calcifications. Finally, we used the receiver operating characteristic (ROC) curve and free-response operating characteristic (FROC) curve to evaluate the performance of the CAD system. The results of SVM classifications based on different wavelets shows DT-CWT has a better performance. Compared with other results, DT-CWT method achieved an accuracy of 96% and 100% for the classification of normal and abnormal ROIs, and the classification of benign and malignant micro-calcifications respectively. In FROC analysis, our CAD system for clinical dataset detection achieved a sensitivity of 83.5% at a false positive per image of 1.85. Compared with general wavelets, DT-CWT could describe the features more effectively, and our CAD system had a competitive performance.

  12. Computer-aided diagnosis of breast microcalcifications based on dual-tree complex wavelet transform

    PubMed Central

    2012-01-01

    Background Digital mammography is the most reliable imaging modality for breast carcinoma diagnosis and breast micro-calcifications is regarded as one of the most important signs on imaging diagnosis. In this paper, a computer-aided diagnosis (CAD) system is presented for breast micro-calcifications based on dual-tree complex wavelet transform (DT-CWT) to facilitate radiologists like double reading. Methods Firstly, 25 abnormal ROIs were extracted according to the center and diameter of the lesions manually and 25 normal ROIs were selected randomly. Then micro-calcifications were segmented by combining space and frequency domain techniques. We extracted three texture features based on wavelet (Haar, DB4, DT-CWT) transform. Totally 14 descriptors were introduced to define the characteristics of the suspicious micro-calcifications. Principal Component Analysis (PCA) was used to transform these descriptors to a compact and efficient vector expression. Support Vector Machine (SVM) classifier was used to classify potential micro-calcifications. Finally, we used the receiver operating characteristic (ROC) curve and free-response operating characteristic (FROC) curve to evaluate the performance of the CAD system. Results The results of SVM classifications based on different wavelets shows DT-CWT has a better performance. Compared with other results, DT-CWT method achieved an accuracy of 96% and 100% for the classification of normal and abnormal ROIs, and the classification of benign and malignant micro-calcifications respectively. In FROC analysis, our CAD system for clinical dataset detection achieved a sensitivity of 83.5% at a false positive per image of 1.85. Conclusions Compared with general wavelets, DT-CWT could describe the features more effectively, and our CAD system had a competitive performance. PMID:23253202

  13. QWT: Retrospective and New Applications

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Yang, Xiaokang; Song, Li; Traversoni, Leonardo; Lu, Wei

    Quaternion wavelet transform (QWT) achieves much attention in recent years as a new image analysis tool. In most cases, it is an extension of the real wavelet transform and complex wavelet transform (CWT) by using the quaternion algebra and the 2D Hilbert transform of filter theory, where analytic signal representation is desirable to retrieve phase-magnitude description of intrinsically 2D geometric structures in a grayscale image. In the context of color image processing, however, it is adapted to analyze the image pattern and color information as a whole unit by mapping sequential color pixels to a quaternion-valued vector signal. This paper provides a retrospective of QWT and investigates its potential use in the domain of image registration, image fusion, and color image recognition. It is indicated that it is important for QWT to induce the mechanism of adaptive scale representation of geometric features, which is further clarified through two application instances of uncalibrated stereo matching and optical flow estimation. Moreover, quaternionic phase congruency model is defined based on analytic signal representation so as to operate as an invariant feature detector for image registration. To achieve better localization of edges and textures in image fusion task, we incorporate directional filter bank (DFB) into the quaternion wavelet decomposition scheme to greatly enhance the direction selectivity and anisotropy of QWT. Finally, the strong potential use of QWT in color image recognition is materialized in a chromatic face recognition system by establishing invariant color features. Extensive experimental results are presented to highlight the exciting properties of QWT.

  14. 3D Texture Analysis in Renal Cell Carcinoma Tissue Image Grading

    PubMed Central

    Cho, Nam-Hoon; Choi, Heung-Kook

    2014-01-01

    One of the most significant processes in cancer cell and tissue image analysis is the efficient extraction of features for grading purposes. This research applied two types of three-dimensional texture analysis methods to the extraction of feature values from renal cell carcinoma tissue images, and then evaluated the validity of the methods statistically through grade classification. First, we used a confocal laser scanning microscope to obtain image slices of four grades of renal cell carcinoma, which were then reconstructed into 3D volumes. Next, we extracted quantitative values using a 3D gray level cooccurrence matrix (GLCM) and a 3D wavelet based on two types of basis functions. To evaluate their validity, we predefined 6 different statistical classifiers and applied these to the extracted feature sets. In the grade classification results, 3D Haar wavelet texture features combined with principal component analysis showed the best discrimination results. Classification using 3D wavelet texture features was significantly better than 3D GLCM, suggesting that the former has potential for use in a computer-based grading system. PMID:25371701

  15. Comparative Study of Speckle Filtering Methods in PolSAR Radar Images

    NASA Astrophysics Data System (ADS)

    Boutarfa, S.; Bouchemakh, L.; Smara, Y.

    2015-04-01

    Images acquired by polarimetric SAR (PolSAR) radar systems are characterized by the presence of a noise called speckle. This noise has a multiplicative nature, corrupts both the amplitude and phase images, which complicates data interpretation, degrades segmentation performance and reduces the detectability of targets. Hence, the need to preprocess the images by adapted filtering methods before analysis.In this paper, we present a comparative study of implemented methods for reducing speckle in PolSAR images. These developed filters are: refined Lee filter based on the estimation of the minimum mean square error MMSE, improved Sigma filter with detection of strong scatterers based on the calculation of the coherency matrix to detect the different scatterers in order to preserve the polarization signature and maintain structures that are necessary for image interpretation, filtering by stationary wavelet transform SWT using multi-scale edge detection and the technique for improving the wavelet coefficients called SSC (sum of squared coefficients), and Turbo filter which is a combination between two complementary filters the refined Lee filter and the wavelet transform SWT. One filter can boost up the results of the other.The originality of our work is based on the application of these methods to several types of images: amplitude, intensity and complex, from a satellite or an airborne radar, and on the optimization of wavelet filtering by adding a parameter in the calculation of the threshold. This parameter will control the filtering effect and get a good compromise between smoothing homogeneous areas and preserving linear structures.The methods are applied to the fully polarimetric RADARSAT-2 images (HH, HV, VH, VV) acquired on Algiers, Algeria, in C-band and to the three polarimetric E-SAR images (HH, HV, VV) acquired on Oberpfaffenhofen area located in Munich, Germany, in P-band.To evaluate the performance of each filter, we used the following criteria: smoothing homogeneous areas, preserving edges and polarimetric information.Experimental results are included to illustrate the different implemented methods.

  16. Compression of real time volumetric echocardiographic data using modified SPIHT based on the three-dimensional wavelet packet transform.

    PubMed

    Hang, X; Greenberg, N L; Shiota, T; Firstenberg, M S; Thomas, J D

    2000-01-01

    Real-time three-dimensional echocardiography has been introduced to provide improved quantification and description of cardiac function. Data compression is desired to allow efficient storage and improve data transmission. Previous work has suggested improved results utilizing wavelet transforms in the compression of medical data including 2D echocardiogram. Set partitioning in hierarchical trees (SPIHT) was extended to compress volumetric echocardiographic data by modifying the algorithm based on the three-dimensional wavelet packet transform. A compression ratio of at least 40:1 resulted in preserved image quality.

  17. The use of wavelet filters for reducing noise in posterior fossa Computed Tomography images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pita-Machado, Reinado; Perez-Diaz, Marlen, E-mail: mperez@uclv.edu.cu; Lorenzo-Ginori, Juan V., E-mail: mperez@uclv.edu.cu

    Wavelet transform based de-noising like wavelet shrinkage, gives the good results in CT. This procedure affects very little the spatial resolution. Some applications are reconstruction methods, while others are a posteriori de-noising methods. De-noising after reconstruction is very difficult because the noise is non-stationary and has unknown distribution. Therefore, methods which work on the sinogram-space don’t have this problem, because they always work over a known noise distribution at this point. On the other hand, the posterior fossa in a head CT is a very complex region for physicians, because it is commonly affected by artifacts and noise which aremore » not eliminated during the reconstruction procedure. This can leads to some false positive evaluations. The purpose of our present work is to compare different wavelet shrinkage de-noising filters to reduce noise, particularly in images of the posterior fossa within CT scans in the sinogram-space. This work describes an experimental search for the best wavelets, to reduce Poisson noise in Computed Tomography (CT) scans. Results showed that de-noising with wavelet filters improved the quality of posterior fossa region in terms of an increased CNR, without noticeable structural distortions.« less

  18. An image adaptive, wavelet-based watermarking of digital images

    NASA Astrophysics Data System (ADS)

    Agreste, Santa; Andaloro, Guido; Prestipino, Daniela; Puccio, Luigia

    2007-12-01

    In digital management, multimedia content and data can easily be used in an illegal way--being copied, modified and distributed again. Copyright protection, intellectual and material rights protection for authors, owners, buyers, distributors and the authenticity of content are crucial factors in solving an urgent and real problem. In such scenario digital watermark techniques are emerging as a valid solution. In this paper, we describe an algorithm--called WM2.0--for an invisible watermark: private, strong, wavelet-based and developed for digital images protection and authenticity. Using discrete wavelet transform (DWT) is motivated by good time-frequency features and well-matching with human visual system directives. These two combined elements are important in building an invisible and robust watermark. WM2.0 works on a dual scheme: watermark embedding and watermark detection. The watermark is embedded into high frequency DWT components of a specific sub-image and it is calculated in correlation with the image features and statistic properties. Watermark detection applies a re-synchronization between the original and watermarked image. The correlation between the watermarked DWT coefficients and the watermark signal is calculated according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has shown to be resistant against geometric, filtering and StirMark attacks with a low rate of false alarm.

  19. Fusion of digital breast tomosynthesis images via wavelet synthesis for improved lesion conspicuity

    NASA Astrophysics Data System (ADS)

    Hariharan, Harishwaran; Pomponiu, Victor; Zheng, Bin; Whiting, Bruce; Gur, David

    2014-03-01

    Full-field digital mammography (FFDM) is the most common screening procedure for detecting early breast cancer. However, due to complications such as overlapping breast tissue in projection images, the efficacy of FFDM reading is reduced. Recent studies have shown that digital breast tomosynthesis (DBT), in combination with FFDM, increases detection sensitivity considerably while decreasing false-positive, recall rates. There is a huge interest in creating diagnostically accurate 2-D interpretations from the DBT slices. Most of the 2-D syntheses rely on visualizing the maximum intensities (brightness) from each slice through different methods. We propose a wavelet based fusion method, where we focus on preserving holistic information from larger structures such as masses while adding high frequency information that is relevant and helpful for diagnosis. This method enables the spatial generation of a 2D image from a series of DBT images, each of which contains both smooth and coarse structures distributed in the wavelet domain. We believe that the wavelet-synthesized images, generated from their DBT image datasets, provide radiologists with improved lesion and micro-calcification conspicuity as compared with FFDM images. The potential impact of this fusion method is (1) Conception of a device-independent, data-driven modality that increases the conspicuity of lesions, thereby facilitating early detection and potentially reducing recall rates; (2) Reduction of the accompanying radiation dose to the patient.

  20. Visual information processing; Proceedings of the Meeting, Orlando, FL, Apr. 20-22, 1992

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)

    1992-01-01

    Topics discussed in these proceedings include nonlinear processing and communications; feature extraction and recognition; image gathering, interpolation, and restoration; image coding; and wavelet transform. Papers are presented on noise reduction for signals from nonlinear systems; driving nonlinear systems with chaotic signals; edge detection and image segmentation of space scenes using fractal analyses; a vision system for telerobotic operation; a fidelity analysis of image gathering, interpolation, and restoration; restoration of images degraded by motion; and information, entropy, and fidelity in visual communication. Attention is also given to image coding methods and their assessment, hybrid JPEG/recursive block coding of images, modified wavelets that accommodate causality, modified wavelet transform for unbiased frequency representation, and continuous wavelet transform of one-dimensional signals by Fourier filtering.

  1. Wavelet-based reversible watermarking for authentication

    NASA Astrophysics Data System (ADS)

    Tian, Jun

    2002-04-01

    In the digital information age, digital content (audio, image, and video) can be easily copied, manipulated, and distributed. Copyright protection and content authentication of digital content has become an urgent problem to content owners and distributors. Digital watermarking has provided a valuable solution to this problem. Based on its application scenario, most digital watermarking methods can be divided into two categories: robust watermarking and fragile watermarking. As a special subset of fragile watermark, reversible watermark (which is also called lossless watermark, invertible watermark, erasable watermark) enables the recovery of the original, unwatermarked content after the watermarked content has been detected to be authentic. Such reversibility to get back unwatermarked content is highly desired in sensitive imagery, such as military data and medical data. In this paper we present a reversible watermarking method based on an integer wavelet transform. We look into the binary representation of each wavelet coefficient and embed an extra bit to expandable wavelet coefficient. The location map of all expanded coefficients will be coded by JBIG2 compression and these coefficient values will be losslessly compressed by arithmetic coding. Besides these two compressed bit streams, an SHA-256 hash of the original image will also be embedded for authentication purpose.

  2. Defect Detection in Textures through the Use of Entropy as a Means for Automatically Selecting the Wavelet Decomposition Level.

    PubMed

    Navarro, Pedro J; Fernández-Isla, Carlos; Alcover, Pedro María; Suardíaz, Juan

    2016-07-27

    This paper presents a robust method for defect detection in textures, entropy-based automatic selection of the wavelet decomposition level (EADL), based on a wavelet reconstruction scheme, for detecting defects in a wide variety of structural and statistical textures. Two main features are presented. One of the new features is an original use of the normalized absolute function value (NABS) calculated from the wavelet coefficients derived at various different decomposition levels in order to identify textures where the defect can be isolated by eliminating the texture pattern in the first decomposition level. The second is the use of Shannon's entropy, calculated over detail subimages, for automatic selection of the band for image reconstruction, which, unlike other techniques, such as those based on the co-occurrence matrix or on energy calculation, provides a lower decomposition level, thus avoiding excessive degradation of the image, allowing a more accurate defect segmentation. A metric analysis of the results of the proposed method with nine different thresholding algorithms determined that selecting the appropriate thresholding method is important to achieve optimum performance in defect detection. As a consequence, several different thresholding algorithms depending on the type of texture are proposed.

  3. Histogram of gradient and binarized statistical image features of wavelet subband-based palmprint features extraction

    NASA Astrophysics Data System (ADS)

    Attallah, Bilal; Serir, Amina; Chahir, Youssef; Boudjelal, Abdelwahhab

    2017-11-01

    Palmprint recognition systems are dependent on feature extraction. A method of feature extraction using higher discrimination information was developed to characterize palmprint images. In this method, two individual feature extraction techniques are applied to a discrete wavelet transform of a palmprint image, and their outputs are fused. The two techniques used in the fusion are the histogram of gradient and the binarized statistical image features. They are then evaluated using an extreme learning machine classifier before selecting a feature based on principal component analysis. Three palmprint databases, the Hong Kong Polytechnic University (PolyU) Multispectral Palmprint Database, Hong Kong PolyU Palmprint Database II, and the Delhi Touchless (IIDT) Palmprint Database, are used in this study. The study shows that our method effectively identifies and verifies palmprints and outperforms other methods based on feature extraction.

  4. Image Retrieval using Integrated Features of Binary Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Agarwal, Megha; Maheshwari, R. P.

    2011-12-01

    In this paper a new approach for image retrieval is proposed with the application of binary wavelet transform. This new approach facilitates the feature calculation with the integration of histogram and correlogram features extracted from binary wavelet subbands. Experiments are performed to evaluate and compare the performance of proposed method with the published literature. It is verified that average precision and average recall of proposed method (69.19%, 41.78%) is significantly improved compared to optimal quantized wavelet correlogram (OQWC) [6] (64.3%, 38.00%) and Gabor wavelet correlogram (GWC) [10] (64.1%, 40.6%). All the experiments are performed on Corel 1000 natural image database [20].

  5. Use of Multi-Resolution Wavelet Feature Pyramids for Automatic Registration of Multi-Sensor Imagery

    NASA Technical Reports Server (NTRS)

    Zavorin, Ilya; LeMoigne, Jacqueline

    2003-01-01

    The problem of image registration, or alignment of two or more images representing the same scene or object, has to be addressed in various disciplines that employ digital imaging. In the area of remote sensing, just like in medical imaging or computer vision, it is necessary to design robust, fast and widely applicable algorithms that would allow automatic registration of images generated by various imaging platforms at the same or different times, and that would provide sub-pixel accuracy. One of the main issues that needs to be addressed when developing a registration algorithm is what type of information should be extracted from the images being registered, to be used in the search for the geometric transformation that best aligns them. The main objective of this paper is to evaluate several wavelet pyramids that may be used both for invariant feature extraction and for representing images at multiple spatial resolutions to accelerate registration. We find that the band-pass wavelets obtained from the Steerable Pyramid due to Simoncelli perform better than two types of low-pass pyramids when the images being registered have relatively small amount of nonlinear radiometric variations between them. Based on these findings, we propose a modification of a gradient-based registration algorithm that has recently been developed for medical data. We test the modified algorithm on several sets of real and synthetic satellite imagery.

  6. Comparative Analysis of Haar and Daubechies Wavelet for Hyper Spectral Image Classification

    NASA Astrophysics Data System (ADS)

    Sharif, I.; Khare, S.

    2014-11-01

    With the number of channels in the hundreds instead of in the tens Hyper spectral imagery possesses much richer spectral information than multispectral imagery. The increased dimensionality of such Hyper spectral data provides a challenge to the current technique for analyzing data. Conventional classification methods may not be useful without dimension reduction pre-processing. So dimension reduction has become a significant part of Hyper spectral image processing. This paper presents a comparative analysis of the efficacy of Haar and Daubechies wavelets for dimensionality reduction in achieving image classification. Spectral data reduction using Wavelet Decomposition could be useful because it preserves the distinction among spectral signatures. Daubechies wavelets optimally capture the polynomial trends while Haar wavelet is discontinuous and resembles a step function. The performance of these wavelets are compared in terms of classification accuracy and time complexity. This paper shows that wavelet reduction has more separate classes and yields better or comparable classification accuracy. In the context of the dimensionality reduction algorithm, it is found that the performance of classification of Daubechies wavelets is better as compared to Haar wavelet while Daubechies takes more time compare to Haar wavelet. The experimental results demonstrate the classification system consistently provides over 84% classification accuracy.

  7. The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J.N.; Brislawn, C.M.; Hopper, T.

    1993-05-01

    The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI`s Integrated Automated Fingerprint Identification System.

  8. The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J.N.; Brislawn, C.M.; Hopper, T.

    1993-01-01

    The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI's Integrated Automated Fingerprint Identification System.

  9. A wavelet domain adaptive image watermarking method based on chaotic encryption

    NASA Astrophysics Data System (ADS)

    Wei, Fang; Liu, Jian; Cao, Hanqiang; Yang, Jun

    2009-10-01

    A digital watermarking technique is a specific branch of steganography, which can be used in various applications, provides a novel way to solve security problems for multimedia information. In this paper, we proposed a kind of wavelet domain adaptive image digital watermarking method using chaotic stream encrypt and human eye visual property. The secret information that can be seen as a watermarking is hidden into a host image, which can be publicly accessed, so the transportation of the secret information will not attract the attention of illegal receiver. The experimental results show that the method is invisible and robust against some image processing.

  10. Application of wavelet techniques for cancer diagnosis using ultrasound images: A Review.

    PubMed

    Sudarshan, Vidya K; Mookiah, Muthu Rama Krishnan; Acharya, U Rajendra; Chandran, Vinod; Molinari, Filippo; Fujita, Hamido; Ng, Kwan Hoong

    2016-02-01

    Ultrasound is an important and low cost imaging modality used to study the internal organs of human body and blood flow through blood vessels. It uses high frequency sound waves to acquire images of internal organs. It is used to screen normal, benign and malignant tissues of various organs. Healthy and malignant tissues generate different echoes for ultrasound. Hence, it provides useful information about the potential tumor tissues that can be analyzed for diagnostic purposes before therapeutic procedures. Ultrasound images are affected with speckle noise due to an air gap between the transducer probe and the body. The challenge is to design and develop robust image preprocessing, segmentation and feature extraction algorithms to locate the tumor region and to extract subtle information from isolated tumor region for diagnosis. This information can be revealed using a scale space technique such as the Discrete Wavelet Transform (DWT). It decomposes an image into images at different scales using low pass and high pass filters. These filters help to identify the detail or sudden changes in intensity in the image. These changes are reflected in the wavelet coefficients. Various texture, statistical and image based features can be extracted from these coefficients. The extracted features are subjected to statistical analysis to identify the significant features to discriminate normal and malignant ultrasound images using supervised classifiers. This paper presents a review of wavelet techniques used for preprocessing, segmentation and feature extraction of breast, thyroid, ovarian and prostate cancer using ultrasound images. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Infrared and visible image fusion with spectral graph wavelet transform.

    PubMed

    Yan, Xiang; Qin, Hanlin; Li, Jia; Zhou, Huixin; Zong, Jing-guo

    2015-09-01

    Infrared and visible image fusion technique is a popular topic in image analysis because it can integrate complementary information and obtain reliable and accurate description of scenes. Multiscale transform theory as a signal representation method is widely used in image fusion. In this paper, a novel infrared and visible image fusion method is proposed based on spectral graph wavelet transform (SGWT) and bilateral filter. The main novelty of this study is that SGWT is used for image fusion. On the one hand, source images are decomposed by SGWT in its transform domain. The proposed approach not only effectively preserves the details of different source images, but also excellently represents the irregular areas of the source images. On the other hand, a novel weighted average method based on bilateral filter is proposed to fuse low- and high-frequency subbands by taking advantage of spatial consistency of natural images. Experimental results demonstrate that the proposed method outperforms seven recently proposed image fusion methods in terms of both visual effect and objective evaluation metrics.

  12. A Multiscale Vision Model and Applications to Astronomical Image and Data Analyses

    NASA Astrophysics Data System (ADS)

    Bijaoui, A.; Slezak, E.; Vandame, B.

    Many researches were carried out on the automated identification of the astrophy sical sources, and their relevant measurements. Some vision models have been developed for this task, their use depending on the image content. We have developed a multiscale vision model (MVM) \\cite{BR95} well suited for analyzing complex structures such like interstellar clouds, galaxies, or cluster of galaxies. Our model is based on a redundant wavelet transform. For each scale we detect significant wavelet coefficients by application of a decision rule based on their probability density functions (PDF) under the hypothesis of a uniform distribution. In the case of a Poisson noise, this PDF can be determined from the autoconvolution of the wavelet function histogram \\cite{SLB93}. We may also apply Anscombe's transform, scale by scale in order to take into account the integrated number of events at each scale \\cite{FSB98}. Our aim is to compute an image of all detected structural features. MVM allows us to build oriented trees from the neighbouring of significant wavelet coefficients. Each tree is also divided into subtrees taking into account the maxima along the scale axis. This leads to identify objects in the scale space, and then to restore their images by classical inverse methods. This model works only if the sampling is correct at each scale. It is not generally the case for the orthogonal wavelets, so that we apply the so-called `a trous algorithm \\cite{BSM94} or a specific pyramidal one \\cite{RBV98}. It leads to ext ract superimposed objets of different size, and it gives for each of them a separate image, from which we can obtain position, flux and p attern parameters. We have applied these methods to different kinds of images, photographic plates, CCD frames or X-ray images. We have only to change the statistical rule for extr acting significant coefficients to adapt the model from an image class to another one. We have also applied this model to extract clusters hierarchically distributed or to identify regions devoid of objects from galaxy counts.

  13. Cryptosystem for Securing Image Encryption Using Structured Phase Masks in Fresnel Wavelet Transform Domain

    NASA Astrophysics Data System (ADS)

    Singh, Hukum

    2016-12-01

    A cryptosystem for securing image encryption is considered by using double random phase encoding in Fresnel wavelet transform (FWT) domain. Random phase masks (RPMs) and structured phase masks (SPMs) based on devil's vortex toroidal lens (DVTL) are used in spatial as well as in Fourier planes. The images to be encrypted are first Fresnel transformed and then single-level discrete wavelet transform (DWT) is apply to decompose LL,HL, LH and HH matrices. The resulting matrices from the DWT are multiplied by additional RPMs and the resultants are subjected to inverse DWT for the encrypted images. The scheme is more secure because of many parameters used in the construction of SPM. The original images are recovered by using the correct parameters of FWT and SPM. Phase mask SPM based on DVTL increases security that enlarges the key space for encryption and decryption. The proposed encryption scheme is a lens-less optical system and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The computed value of mean-squared-error between the retrieved and the input images shows the efficacy of scheme. The sensitivity to encryption parameters, robustness against occlusion, entropy and multiplicative Gaussian noise attacks have been analysed.

  14. Speckle reduction in optical coherence tomography images based on wave atoms

    PubMed Central

    Du, Yongzhao; Liu, Gangjun; Feng, Guoying; Chen, Zhongping

    2014-01-01

    Abstract. Optical coherence tomography (OCT) is an emerging noninvasive imaging technique, which is based on low-coherence interferometry. OCT images suffer from speckle noise, which reduces image contrast. A shrinkage filter based on wave atoms transform is proposed for speckle reduction in OCT images. Wave atoms transform is a new multiscale geometric analysis tool that offers sparser expansion and better representation for images containing oscillatory patterns and textures than other traditional transforms, such as wavelet and curvelet transforms. Cycle spinning-based technology is introduced to avoid visual artifacts, such as Gibbs-like phenomenon, and to develop a translation invariant wave atoms denoising scheme. The speckle suppression degree in the denoised images is controlled by an adjustable parameter that determines the threshold in the wave atoms domain. The experimental results show that the proposed method can effectively remove the speckle noise and improve the OCT image quality. The signal-to-noise ratio, contrast-to-noise ratio, average equivalent number of looks, and cross-correlation (XCOR) values are obtained, and the results are also compared with the wavelet and curvelet thresholding techniques. PMID:24825507

  15. Fusion and quality analysis for remote sensing images using contourlet transform

    NASA Astrophysics Data System (ADS)

    Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram

    2013-05-01

    Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.

  16. A Lossless hybrid wavelet-fractal compression for welding radiographic images.

    PubMed

    Mekhalfa, Faiza; Avanaki, Mohammad R N; Berkani, Daoud

    2016-01-01

    In this work a lossless wavelet-fractal image coder is proposed. The process starts by compressing and decompressing the original image using wavelet transformation and fractal coding algorithm. The decompressed image is removed from the original one to obtain a residual image which is coded by using Huffman algorithm. Simulation results show that with the proposed scheme, we achieve an infinite peak signal to noise ratio (PSNR) with higher compression ratio compared to typical lossless method. Moreover, the use of wavelet transform speeds up the fractal compression algorithm by reducing the size of the domain pool. The compression results of several welding radiographic images using the proposed scheme are evaluated quantitatively and compared with the results of Huffman coding algorithm.

  17. Face recognition algorithm based on Gabor wavelet and locality preserving projections

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojie; Shen, Lin; Fan, Honghui

    2017-07-01

    In order to solve the effects of illumination changes and differences of personal features on the face recognition rate, this paper presents a new face recognition algorithm based on Gabor wavelet and Locality Preserving Projections (LPP). The problem of the Gabor filter banks with high dimensions was solved effectively, and also the shortcoming of the LPP on the light illumination changes was overcome. Firstly, the features of global image information were achieved, which used the good spatial locality and orientation selectivity of Gabor wavelet filters. Then the dimensions were reduced by utilizing the LPP, which well-preserved the local information of the image. The experimental results shown that this algorithm can effectively extract the features relating to facial expressions, attitude and other information. Besides, it can reduce influence of the illumination changes and the differences in personal features effectively, which improves the face recognition rate to 99.2%.

  18. Difference between healthy children and ADHD based on wavelet spectral analysis of nuclear magnetic resonance images

    NASA Astrophysics Data System (ADS)

    González Gómez, Dulce I.; Moreno Barbosa, E.; Martínez Hernández, Mario Iván; Ramos Méndez, José; Hidalgo Tobón, Silvia; Dies Suarez, Pilar; Barragán Pérez, Eduardo; De Celis Alonso, Benito

    2014-11-01

    The main goal of this project was to create a computer algorithm based on wavelet analysis of region of homogeneity images obtained during resting state studies. Ideally it would automatically diagnose ADHD. Because the cerebellum is an area known to be affected by ADHD, this study specifically analysed this region. Male right handed volunteers (infants with ages between 7 and 11 years old) were studied and compared with age matched controls. Statistical differences between the values of the absolute integrated wavelet spectrum were found and showed significant differences (p<0.0015) between groups. This difference might help in the future to distinguish healthy from ADHD patients and therefore diagnose ADHD. Even if results were statistically significant, the small size of the sample limits the applicability of this methods as it is presented here, and further work with larger samples and using freely available datasets must be done.

  19. Wavelet analysis in two-dimensional tomography

    NASA Astrophysics Data System (ADS)

    Burkovets, Dimitry N.

    2002-02-01

    The diagnostic possibilities of wavelet-analysis of coherent images of connective tissue in its pathological changes diagnostics. The effectiveness of polarization selection in obtaining wavelet-coefficients' images is also shown. The wavelet structures, characterizing the process of skin psoriasis, bone-tissue osteoporosis have been analyzed. The histological sections of physiological normal and pathologically changed samples of connective tissue of human skin and spongy bone tissue have been analyzed.

  20. Embedded wavelet-based face recognition under variable position

    NASA Astrophysics Data System (ADS)

    Cotret, Pascal; Chevobbe, Stéphane; Darouich, Mehdi

    2015-02-01

    For several years, face recognition has been a hot topic in the image processing field: this technique is applied in several domains such as CCTV, electronic devices delocking and so on. In this context, this work studies the efficiency of a wavelet-based face recognition method in terms of subject position robustness and performance on various systems. The use of wavelet transform has a limited impact on the position robustness of PCA-based face recognition. This work shows, for a well-known database (Yale face database B*), that subject position in a 3D space can vary up to 10% of the original ROI size without decreasing recognition rates. Face recognition is performed on approximation coefficients of the image wavelet transform: results are still satisfying after 3 levels of decomposition. Furthermore, face database size can be divided by a factor 64 (22K with K = 3). In the context of ultra-embedded vision systems, memory footprint is one of the key points to be addressed; that is the reason why compression techniques such as wavelet transform are interesting. Furthermore, it leads to a low-complexity face detection stage compliant with limited computation resources available on such systems. The approach described in this work is tested on three platforms from a standard x86-based computer towards nanocomputers such as RaspberryPi and SECO boards. For K = 3 and a database with 40 faces, the execution mean time for one frame is 0.64 ms on a x86-based computer, 9 ms on a SECO board and 26 ms on a RaspberryPi (B model).

  1. Wavelet Fusion for Concealed Object Detection Using Passive Millimeter Wave Sequence Images

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Pang, L.; Liu, H.; Xu, X.

    2018-04-01

    PMMW imaging system can create interpretable imagery on the objects concealed under clothing, which gives the great advantage to the security check system. Paper addresses wavelet fusion to detect concealed objects using passive millimeter wave (PMMW) sequence images. According to PMMW real-time imager acquired image characteristics and storage methods firstly, using the sum of squared difference (SSD) as the image-related parameters to screen the sequence images. Secondly, the selected images are optimized using wavelet fusion algorithm. Finally, the concealed objects are detected by mean filter, threshold segmentation and edge detection. The experimental results show that this method improves the detection effect of concealed objects by selecting the most relevant images from PMMW sequence images and using wavelet fusion to enhance the information of the concealed objects. The method can be effectively applied to human body concealed object detection in millimeter wave video.

  2. Image Fusion Algorithms Using Human Visual System in Transform Domain

    NASA Astrophysics Data System (ADS)

    Vadhi, Radhika; Swamy Kilari, Veera; Samayamantula, Srinivas Kumar

    2017-08-01

    The endeavor of digital image fusion is to combine the important visual parts from various sources to advance the visibility eminence of the image. The fused image has a more visual quality than any source images. In this paper, the Human Visual System (HVS) weights are used in the transform domain to select appropriate information from various source images and then to attain a fused image. In this process, mainly two steps are involved. First, apply the DWT to the registered source images. Later, identify qualitative sub-bands using HVS weights. Hence, qualitative sub-bands are selected from different sources to form high quality HVS based fused image. The quality of the HVS based fused image is evaluated with general fusion metrics. The results show the superiority among the state-of-the art resolution Transforms (MRT) such as Discrete Wavelet Transform (DWT), Stationary Wavelet Transform (SWT), Contourlet Transform (CT), and Non Sub Sampled Contourlet Transform (NSCT) using maximum selection fusion rule.

  3. Wavelet denoising of multiframe optical coherence tomography data

    PubMed Central

    Mayer, Markus A.; Borsdorf, Anja; Wagner, Martin; Hornegger, Joachim; Mardin, Christian Y.; Tornow, Ralf P.

    2012-01-01

    We introduce a novel speckle noise reduction algorithm for OCT images. Contrary to present approaches, the algorithm does not rely on simple averaging of multiple image frames or denoising on the final averaged image. Instead it uses wavelet decompositions of the single frames for a local noise and structure estimation. Based on this analysis, the wavelet detail coefficients are weighted, averaged and reconstructed. At a signal-to-noise gain at about 100% we observe only a minor sharpness decrease, as measured by a full-width-half-maximum reduction of 10.5%. While a similar signal-to-noise gain would require averaging of 29 frames, we achieve this result using only 8 frames as input to the algorithm. A possible application of the proposed algorithm is preprocessing in retinal structure segmentation algorithms, to allow a better differentiation between real tissue information and unwanted speckle noise. PMID:22435103

  4. Wavelet denoising of multiframe optical coherence tomography data.

    PubMed

    Mayer, Markus A; Borsdorf, Anja; Wagner, Martin; Hornegger, Joachim; Mardin, Christian Y; Tornow, Ralf P

    2012-03-01

    We introduce a novel speckle noise reduction algorithm for OCT images. Contrary to present approaches, the algorithm does not rely on simple averaging of multiple image frames or denoising on the final averaged image. Instead it uses wavelet decompositions of the single frames for a local noise and structure estimation. Based on this analysis, the wavelet detail coefficients are weighted, averaged and reconstructed. At a signal-to-noise gain at about 100% we observe only a minor sharpness decrease, as measured by a full-width-half-maximum reduction of 10.5%. While a similar signal-to-noise gain would require averaging of 29 frames, we achieve this result using only 8 frames as input to the algorithm. A possible application of the proposed algorithm is preprocessing in retinal structure segmentation algorithms, to allow a better differentiation between real tissue information and unwanted speckle noise.

  5. Automatic detection of anomalies in screening mammograms

    PubMed Central

    2013-01-01

    Background Diagnostic performance in breast screening programs may be influenced by the prior probability of disease. Since breast cancer incidence is roughly half a percent in the general population there is a large probability that the screening exam will be normal. That factor may contribute to false negatives. Screening programs typically exhibit about 83% sensitivity and 91% specificity. This investigation was undertaken to determine if a system could be developed to pre-sort screening-images into normal and suspicious bins based on their likelihood to contain disease. Wavelets were investigated as a method to parse the image data, potentially removing confounding information. The development of a classification system based on features extracted from wavelet transformed mammograms is reported. Methods In the multi-step procedure images were processed using 2D discrete wavelet transforms to create a set of maps at different size scales. Next, statistical features were computed from each map, and a subset of these features was the input for a concerted-effort set of naïve Bayesian classifiers. The classifier network was constructed to calculate the probability that the parent mammography image contained an abnormality. The abnormalities were not identified, nor were they regionalized. The algorithm was tested on two publicly available databases: the Digital Database for Screening Mammography (DDSM) and the Mammographic Images Analysis Society’s database (MIAS). These databases contain radiologist-verified images and feature common abnormalities including: spiculations, masses, geometric deformations and fibroid tissues. Results The classifier-network designs tested achieved sensitivities and specificities sufficient to be potentially useful in a clinical setting. This first series of tests identified networks with 100% sensitivity and up to 79% specificity for abnormalities. This performance significantly exceeds the mean sensitivity reported in literature for the unaided human expert. Conclusions Classifiers based on wavelet-derived features proved to be highly sensitive to a range of pathologies, as a result Type II errors were nearly eliminated. Pre-sorting the images changed the prior probability in the sorted database from 37% to 74%. PMID:24330643

  6. Directional filtering for block recovery using wavelet features

    NASA Astrophysics Data System (ADS)

    Hyun, Seung H.; Eom, Il K.; Kim, Yoo S.

    2005-07-01

    When images compressed with block-based compression techniques are transmitted over a noisy channel, unexpected block losses occur. Conventional methods that do not consider edge directions can cause blocked blurring artifacts. In this paper, we present a post-processing-based block recovery scheme using Haar wavelet features. The adaptive selection of neighboring blocks is performed based on the energy of wavelet subbands (EWS) and difference between DC values (DDC). The lost blocks are recovered by linear interpolation in the spatial domain using selected blocks. The method using only EWS performs well for horizontal and vertical edges, but not as well for diagonal edges. Conversely, only using DDC performs well for diagonal edges with the exception of line- or roof-type edge profiles. Therefore, we combine EWS and DDC for better results. The proposed directional recovery method is effective for the strong edge because exploit the varying neighboring blocks adaptively according to the edges and the directional information in the image. The proposed method outperforms the previous methods that used only fixed blocks.

  7. Minimum risk wavelet shrinkage operator for Poisson image denoising.

    PubMed

    Cheng, Wu; Hirakawa, Keigo

    2015-05-01

    The pixel values of images taken by an image sensor are said to be corrupted by Poisson noise. To date, multiscale Poisson image denoising techniques have processed Haar frame and wavelet coefficients--the modeling of coefficients is enabled by the Skellam distribution analysis. We extend these results by solving for shrinkage operators for Skellam that minimizes the risk functional in the multiscale Poisson image denoising setting. The minimum risk shrinkage operator of this kind effectively produces denoised wavelet coefficients with minimum attainable L2 error.

  8. Identification and classification of similar looking food grains

    NASA Astrophysics Data System (ADS)

    Anami, B. S.; Biradar, Sunanda D.; Savakar, D. G.; Kulkarni, P. V.

    2013-01-01

    This paper describes the comparative study of Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers by taking a case study of identification and classification of four pairs of similar looking food grains namely, Finger Millet, Mustard, Soyabean, Pigeon Pea, Aniseed, Cumin-seeds, Split Greengram and Split Blackgram. Algorithms are developed to acquire and process color images of these grains samples. The developed algorithms are used to extract 18 colors-Hue Saturation Value (HSV), and 42 wavelet based texture features. Back Propagation Neural Network (BPNN)-based classifier is designed using three feature sets namely color - HSV, wavelet-texture and their combined model. SVM model for color- HSV model is designed for the same set of samples. The classification accuracies ranging from 93% to 96% for color-HSV, ranging from 78% to 94% for wavelet texture model and from 92% to 97% for combined model are obtained for ANN based models. The classification accuracy ranging from 80% to 90% is obtained for color-HSV based SVM model. Training time required for the SVM based model is substantially lesser than ANN for the same set of images.

  9. Multispectral Image Compression Based on DSC Combined with CCSDS-IDC

    PubMed Central

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches. PMID:25110741

  10. Multi-focus image fusion based on area-based standard deviation in dual tree contourlet transform domain

    NASA Astrophysics Data System (ADS)

    Dong, Min; Dong, Chenghui; Guo, Miao; Wang, Zhe; Mu, Xiaomin

    2018-04-01

    Multiresolution-based methods, such as wavelet and Contourlet are usually used to image fusion. This work presents a new image fusion frame-work by utilizing area-based standard deviation in dual tree Contourlet trans-form domain. Firstly, the pre-registered source images are decomposed with dual tree Contourlet transform; low-pass and high-pass coefficients are obtained. Then, the low-pass bands are fused with weighted average based on area standard deviation rather than the simple "averaging" rule. While the high-pass bands are merged with the "max-absolute' fusion rule. Finally, the modified low-pass and high-pass coefficients are used to reconstruct the final fused image. The major advantage of the proposed fusion method over conventional fusion is the approximately shift invariance and multidirectional selectivity of dual tree Contourlet transform. The proposed method is compared with wavelet- , Contourletbased methods and other the state-of-the art methods on common used multi focus images. Experiments demonstrate that the proposed fusion framework is feasible and effective, and it performs better in both subjective and objective evaluation.

  11. Multispectral image compression based on DSC combined with CCSDS-IDC.

    PubMed

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches.

  12. Improved photo response non-uniformity (PRNU) based source camera identification.

    PubMed

    Cooper, Alan J

    2013-03-10

    The concept of using Photo Response Non-Uniformity (PRNU) as a reliable forensic tool to match an image to a source camera is now well established. Traditionally, the PRNU estimation methodologies have centred on a wavelet based de-noising approach. Resultant filtering artefacts in combination with image and JPEG contamination act to reduce the quality of PRNU estimation. In this paper, it is argued that the application calls for a simplified filtering strategy which at its base level may be realised using a combination of adaptive and median filtering applied in the spatial domain. The proposed filtering method is interlinked with a further two stage enhancement strategy where only pixels in the image having high probabilities of significant PRNU bias are retained. This methodology significantly improves the discrimination between matching and non-matching image data sets over that of the common wavelet filtering approach. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Retinal image quality assessment based on image clarity and content

    NASA Astrophysics Data System (ADS)

    Abdel-Hamid, Lamiaa; El-Rafei, Ahmed; El-Ramly, Salwa; Michelson, Georg; Hornegger, Joachim

    2016-09-01

    Retinal image quality assessment (RIQA) is an essential step in automated screening systems to avoid misdiagnosis caused by processing poor quality retinal images. A no-reference transform-based RIQA algorithm is introduced that assesses images based on five clarity and content quality issues: sharpness, illumination, homogeneity, field definition, and content. Transform-based RIQA algorithms have the advantage of considering retinal structures while being computationally inexpensive. Wavelet-based features are proposed to evaluate the sharpness and overall illumination of the images. A retinal saturation channel is designed and used along with wavelet-based features for homogeneity assessment. The presented sharpness and illumination features are utilized to assure adequate field definition, whereas color information is used to exclude nonretinal images. Several publicly available datasets of varying quality grades are utilized to evaluate the feature sets resulting in area under the receiver operating characteristic curve above 0.99 for each of the individual feature sets. The overall quality is assessed by a classifier that uses the collective features as an input vector. The classification results show superior performance of the algorithm in comparison to other methods from literature. Moreover, the algorithm addresses efficiently and comprehensively various quality issues and is suitable for automatic screening systems.

  14. The application of wavelet denoising in material discrimination system

    NASA Astrophysics Data System (ADS)

    Fu, Kenneth; Ranta, Dale; Guest, Clark; Das, Pankaj

    2010-01-01

    Recently, the need for cargo inspection imaging systems to provide a material discrimination function has become desirable. This is done by scanning the cargo container with x-rays at two different energy levels. The ratio of attenuations of the two energy scans can provide information on the composition of the material. However, with the statistical error from noise, the accuracy of such systems can be low. Because the moving source emits two energies of x-rays alternately, images from the two scans will not be identical. That means edges of objects in the two images are not perfectly aligned. Moreover, digitization creates blurry-edge artifacts. Different energy x-rays produce different edge spread functions. Those combined effects contribute to a source of false classification namely, the "edge effect." Other types of false classification are caused by noise, mainly Poisson noise associated with photons. The Poisson noise in xray images can be dealt with using either a Wiener filter or a wavelet shrinkage denoising approach. In this paper, we propose a method that uses the wavelet shrinkage denoising approach to enhance the performance of the material identification system. Test results show that this wavelet-based approach has improved performance in object detection and eliminating false positives due to the edge effects.

  15. Wavelet-based multicomponent denoising on GPU to improve the classification of hyperspectral images

    NASA Astrophysics Data System (ADS)

    Quesada-Barriuso, Pablo; Heras, Dora B.; Argüello, Francisco; Mouriño, J. C.

    2017-10-01

    Supervised classification allows handling a wide range of remote sensing hyperspectral applications. Enhancing the spatial organization of the pixels over the image has proven to be beneficial for the interpretation of the image content, thus increasing the classification accuracy. Denoising in the spatial domain of the image has been shown as a technique that enhances the structures in the image. This paper proposes a multi-component denoising approach in order to increase the classification accuracy when a classification method is applied. It is computed on multicore CPUs and NVIDIA GPUs. The method combines feature extraction based on a 1Ddiscrete wavelet transform (DWT) applied in the spectral dimension followed by an Extended Morphological Profile (EMP) and a classifier (SVM or ELM). The multi-component noise reduction is applied to the EMP just before the classification. The denoising recursively applies a separable 2D DWT after which the number of wavelet coefficients is reduced by using a threshold. Finally, inverse 2D-DWT filters are applied to reconstruct the noise free original component. The computational cost of the classifiers as well as the cost of the whole classification chain is high but it is reduced achieving real-time behavior for some applications through their computation on NVIDIA multi-GPU platforms.

  16. Pigmented skin lesion detection using random forest and wavelet-based texture

    NASA Astrophysics Data System (ADS)

    Hu, Ping; Yang, Tie-jun

    2016-10-01

    The incidence of cutaneous malignant melanoma, a disease of worldwide distribution and is the deadliest form of skin cancer, has been rapidly increasing over the last few decades. Because advanced cutaneous melanoma is still incurable, early detection is an important step toward a reduction in mortality. Dermoscopy photographs are commonly used in melanoma diagnosis and can capture detailed features of a lesion. A great variability exists in the visual appearance of pigmented skin lesions. Therefore, in order to minimize the diagnostic errors that result from the difficulty and subjectivity of visual interpretation, an automatic detection approach is required. The objectives of this paper were to propose a hybrid method using random forest and Gabor wavelet transformation to accurately differentiate which part belong to lesion area and the other is not in a dermoscopy photographs and analyze segmentation accuracy. A random forest classifier consisting of a set of decision trees was used for classification. Gabor wavelets transformation are the mathematical model of visual cortical cells of mammalian brain and an image can be decomposed into multiple scales and multiple orientations by using it. The Gabor function has been recognized as a very useful tool in texture analysis, due to its optimal localization properties in both spatial and frequency domain. Texture features based on Gabor wavelets transformation are found by the Gabor filtered image. Experiment results indicate the following: (1) the proposed algorithm based on random forest outperformed the-state-of-the-art in pigmented skin lesions detection (2) and the inclusion of Gabor wavelet transformation based texture features improved segmentation accuracy significantly.

  17. The FBI compression standard for digitized fingerprint images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brislawn, C.M.; Bradley, J.N.; Onyshczak, R.J.

    1996-10-01

    The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the currentmore » status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.« less

  18. FBI compression standard for digitized fingerprint images

    NASA Astrophysics Data System (ADS)

    Brislawn, Christopher M.; Bradley, Jonathan N.; Onyshczak, Remigius J.; Hopper, Thomas

    1996-11-01

    The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the current status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    I. W. Ginsberg

    Multiresolutional decompositions known as spectral fingerprints are often used to extract spectral features from multispectral/hyperspectral data. In this study, the authors investigate the use of wavelet-based algorithms for generating spectral fingerprints. The wavelet-based algorithms are compared to the currently used method, traditional convolution with first-derivative Gaussian filters. The comparison analyses consists of two parts: (a) the computational expense of the new method is compared with the computational costs of the current method and (b) the outputs of the wavelet-based methods are compared with those of the current method to determine any practical differences in the resulting spectral fingerprints. The resultsmore » show that the wavelet-based algorithms can greatly reduce the computational expense of generating spectral fingerprints, while practically no differences exist in the resulting fingerprints. The analysis is conducted on a database of hyperspectral signatures, namely, Hyperspectral Digital Image Collection Experiment (HYDICE) signatures. The reduction in computational expense is by a factor of about 30, and the average Euclidean distance between resulting fingerprints is on the order of 0.02.« less

  20. Texture segmentation of non-cooperative spacecrafts images based on wavelet and fractal dimension

    NASA Astrophysics Data System (ADS)

    Wu, Kanzhi; Yue, Xiaokui

    2011-06-01

    With the increase of on-orbit manipulations and space conflictions, missions such as tracking and capturing the target spacecrafts are aroused. Unlike cooperative spacecrafts, fixing beacons or any other marks on the targets is impossible. Due to the unknown shape and geometry features of non-cooperative spacecraft, in order to localize the target and obtain the latitude, we need to segment the target image and recognize the target from the background. The data and errors during the following procedures such as feature extraction and matching can also be reduced. Multi-resolution analysis of wavelet theory reflects human beings' recognition towards images from low resolution to high resolution. In addition, spacecraft is the only man-made object in the image compared to the natural background and the differences will be certainly observed between the fractal dimensions of target and background. Combined wavelet transform and fractal dimension, in this paper, we proposed a new segmentation algorithm for the images which contains complicated background such as the universe and planet surfaces. At first, Daubechies wavelet basis is applied to decompose the image in both x axis and y axis, thus obtain four sub-images. Then, calculate the fractal dimensions in four sub-images using different methods; after analyzed the results of fractal dimensions in sub-images, we choose Differential Box Counting in low resolution image as the principle to segment the texture which has the greatest divergences between different sub-images. This paper also presents the results of experiments by using the algorithm above. It is demonstrated that an accurate texture segmentation result can be obtained using the proposed technique.

  1. Vector coding of wavelet-transformed images

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Zhi, Cheng; Zhou, Yuanhua

    1998-09-01

    Wavelet, as a brand new tool in signal processing, has got broad recognition. Using wavelet transform, we can get octave divided frequency band with specific orientation which combines well with the properties of Human Visual System. In this paper, we discuss the classified vector quantization method for multiresolution represented image.

  2. Hyperspectral image compressing using wavelet-based method

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Zhang, Zhi-jie; Lei, Bo; Wang, Chen-sheng

    2017-10-01

    Hyperspectral imaging sensors can acquire images in hundreds of continuous narrow spectral bands. Therefore each object presented in the image can be identified from their spectral response. However, such kind of imaging brings a huge amount of data, which requires transmission, processing, and storage resources for both airborne and space borne imaging. Due to the high volume of hyperspectral image data, the exploration of compression strategies has received a lot of attention in recent years. Compression of hyperspectral data cubes is an effective solution for these problems. Lossless compression of the hyperspectral data usually results in low compression ratio, which may not meet the available resources; on the other hand, lossy compression may give the desired ratio, but with a significant degradation effect on object identification performance of the hyperspectral data. Moreover, most hyperspectral data compression techniques exploits the similarities in spectral dimensions; which requires bands reordering or regrouping, to make use of the spectral redundancy. In this paper, we explored the spectral cross correlation between different bands, and proposed an adaptive band selection method to obtain the spectral bands which contain most of the information of the acquired hyperspectral data cube. The proposed method mainly consist three steps: First, the algorithm decomposes the original hyperspectral imagery into a series of subspaces based on the hyper correlation matrix of the hyperspectral images between different bands. And then the Wavelet-based algorithm is applied to the each subspaces. At last the PCA method is applied to the wavelet coefficients to produce the chosen number of components. The performance of the proposed method was tested by using ISODATA classification method.

  3. Investigation of the scaling characteristics of LANDSAT temperature and vegetation data: a wavelet-based approach

    NASA Astrophysics Data System (ADS)

    Rathinasamy, Maheswaran; Bindhu, V. M.; Adamowski, Jan; Narasimhan, Balaji; Khosa, Rakesh

    2017-10-01

    An investigation of the scaling characteristics of vegetation and temperature data derived from LANDSAT data was undertaken for a heterogeneous area in Tamil Nadu, India. A wavelet-based multiresolution technique decomposed the data into large-scale mean vegetation and temperature fields and fluctuations in horizontal, diagonal, and vertical directions at hierarchical spatial resolutions. In this approach, the wavelet coefficients were used to investigate whether the normalized difference vegetation index (NDVI) and land surface temperature (LST) fields exhibited self-similar scaling behaviour. In this study, l-moments were used instead of conventional simple moments to understand scaling behaviour. Using the first six moments of the wavelet coefficients through five levels of dyadic decomposition, the NDVI data were shown to be statistically self-similar, with a slope of approximately -0.45 in each of the horizontal, vertical, and diagonal directions of the image, over scales ranging from 30 to 960 m. The temperature data were also shown to exhibit self-similarity with slopes ranging from -0.25 in the diagonal direction to -0.20 in the vertical direction over the same scales. These findings can help develop appropriate up- and down-scaling schemes of remotely sensed NDVI and LST data for various hydrologic and environmental modelling applications. A sensitivity analysis was also undertaken to understand the effect of mother wavelets on the scaling characteristics of LST and NDVI images.

  4. Wavelet-based unsupervised learning method for electrocardiogram suppression in surface electromyograms.

    PubMed

    Niegowski, Maciej; Zivanovic, Miroslav

    2016-03-01

    We present a novel approach aimed at removing electrocardiogram (ECG) perturbation from single-channel surface electromyogram (EMG) recordings by means of unsupervised learning of wavelet-based intensity images. The general idea is to combine the suitability of certain wavelet decomposition bases which provide sparse electrocardiogram time-frequency representations, with the capacity of non-negative matrix factorization (NMF) for extracting patterns from images. In order to overcome convergence problems which often arise in NMF-related applications, we design a novel robust initialization strategy which ensures proper signal decomposition in a wide range of ECG contamination levels. Moreover, the method can be readily used because no a priori knowledge or parameter adjustment is needed. The proposed method was evaluated on real surface EMG signals against two state-of-the-art unsupervised learning algorithms and a singular spectrum analysis based method. The results, expressed in terms of high-to-low energy ratio, normalized median frequency, spectral power difference and normalized average rectified value, suggest that the proposed method enables better ECG-EMG separation quality than the reference methods. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Fusion of spectral and panchromatic images using false color mapping and wavelet integrated approach

    NASA Astrophysics Data System (ADS)

    Zhao, Yongqiang; Pan, Quan; Zhang, Hongcai

    2006-01-01

    With the development of sensory technology, new image sensors have been introduced that provide a greater range of information to users. But as the power limitation of radiation, there will always be some trade-off between spatial and spectral resolution in the image captured by specific sensors. Images with high spatial resolution can locate objects with high accuracy, whereas images with high spectral resolution can be used to identify the materials. Many applications in remote sensing require fusing low-resolution imaging spectral images with panchromatic images to identify materials at high resolution in clutter. A pixel-based false color mapping and wavelet transform integrated fusion algorithm is presented in this paper, the resulting images have a higher information content than each of the original images and retain sensor-specific image information. The simulation results show that this algorithm can enhance the visibility of certain details and preserve the difference of different materials.

  6. Two-Layer Fragile Watermarking Method Secured with Chaotic Map for Authentication of Digital Holy Quran

    PubMed Central

    Khalil, Mohammed S.; Khan, Muhammad Khurram; Alginahi, Yasser M.

    2014-01-01

    This paper presents a novel watermarking method to facilitate the authentication and detection of the image forgery on the Quran images. Two layers of embedding scheme on wavelet and spatial domain are introduced to enhance the sensitivity of fragile watermarking and defend the attacks. Discrete wavelet transforms are applied to decompose the host image into wavelet prior to embedding the watermark in the wavelet domain. The watermarked wavelet coefficient is inverted back to spatial domain then the least significant bits is utilized to hide another watermark. A chaotic map is utilized to blur the watermark to make it secure against the local attack. The proposed method allows high watermark payloads, while preserving good image quality. Experiment results confirm that the proposed methods are fragile and have superior tampering detection even though the tampered area is very small. PMID:25028681

  7. Two-layer fragile watermarking method secured with chaotic map for authentication of digital Holy Quran.

    PubMed

    Khalil, Mohammed S; Kurniawan, Fajri; Khan, Muhammad Khurram; Alginahi, Yasser M

    2014-01-01

    This paper presents a novel watermarking method to facilitate the authentication and detection of the image forgery on the Quran images. Two layers of embedding scheme on wavelet and spatial domain are introduced to enhance the sensitivity of fragile watermarking and defend the attacks. Discrete wavelet transforms are applied to decompose the host image into wavelet prior to embedding the watermark in the wavelet domain. The watermarked wavelet coefficient is inverted back to spatial domain then the least significant bits is utilized to hide another watermark. A chaotic map is utilized to blur the watermark to make it secure against the local attack. The proposed method allows high watermark payloads, while preserving good image quality. Experiment results confirm that the proposed methods are fragile and have superior tampering detection even though the tampered area is very small.

  8. Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering.

    PubMed

    Gong, Maoguo; Zhou, Zhiqiang; Ma, Jingjing

    2012-04-01

    This paper presents an unsupervised distribution-free change detection approach for synthetic aperture radar (SAR) images based on an image fusion strategy and a novel fuzzy clustering algorithm. The image fusion technique is introduced to generate a difference image by using complementary information from a mean-ratio image and a log-ratio image. In order to restrain the background information and enhance the information of changed regions in the fused difference image, wavelet fusion rules based on an average operator and minimum local area energy are chosen to fuse the wavelet coefficients for a low-frequency band and a high-frequency band, respectively. A reformulated fuzzy local-information C-means clustering algorithm is proposed for classifying changed and unchanged regions in the fused difference image. It incorporates the information about spatial context in a novel fuzzy way for the purpose of enhancing the changed information and of reducing the effect of speckle noise. Experiments on real SAR images show that the image fusion strategy integrates the advantages of the log-ratio operator and the mean-ratio operator and gains a better performance. The change detection results obtained by the improved fuzzy clustering algorithm exhibited lower error than its preexistences.

  9. Sparsity prediction and application to a new steganographic technique

    NASA Astrophysics Data System (ADS)

    Phillips, David; Noonan, Joseph

    2004-10-01

    Steganography is a technique of embedding information in innocuous data such that only the innocent data is visible. The wavelet transform lends itself to image steganography because it generates a large number of coefficients representing the information in the image. Altering a small set of these coefficients allows embedding of information (payload) into an image (cover) without noticeably altering the original image. We propose a novel, dual-wavelet steganographic technique, using transforms selected such that the transform of the cover image has low sparsity, while the payload transform has high sparsity. Maximizing the sparsity of the payload transform reduces the amount of information embedded in the cover, and minimizing the sparsity of the cover increases the locations that can be altered without significantly altering the image. Making this system effective on any given image pair requires a metric to indicate the best (maximum sparsity) and worst (minimum sparsity) wavelet transforms to use. This paper develops the first stage of this metric, which can predict, averaged across many wavelet families, which of two images will have a higher sparsity. A prototype implementation of the dual-wavelet system as a proof of concept is also developed.

  10. Detection algorithm for glass bottle mouth defect by continuous wavelet transform based on machine vision

    NASA Astrophysics Data System (ADS)

    Qian, Jinfang; Zhang, Changjiang

    2014-11-01

    An efficient algorithm based on continuous wavelet transform combining with pre-knowledge, which can be used to detect the defect of glass bottle mouth, is proposed. Firstly, under the condition of ball integral light source, a perfect glass bottle mouth image is obtained by Japanese Computar camera through the interface of IEEE-1394b. A single threshold method based on gray level histogram is used to obtain the binary image of the glass bottle mouth. In order to efficiently suppress noise, moving average filter is employed to smooth the histogram of original glass bottle mouth image. And then continuous wavelet transform is done to accurately determine the segmentation threshold. Mathematical morphology operations are used to get normal binary bottle mouth mask. A glass bottle to be detected is moving to the detection zone by conveyor belt. Both bottle mouth image and binary image are obtained by above method. The binary image is multiplied with normal bottle mask and a region of interest is got. Four parameters (number of connected regions, coordinate of centroid position, diameter of inner cycle, and area of annular region) can be computed based on the region of interest. Glass bottle mouth detection rules are designed by above four parameters so as to accurately detect and identify the defect conditions of glass bottle. Finally, the glass bottles of Coca-Cola Company are used to verify the proposed algorithm. The experimental results show that the proposed algorithm can accurately detect the defect conditions of the glass bottles and have 98% detecting accuracy.

  11. Exploring the impact of wavelet-based denoising in the classification of remote sensing hyperspectral images

    NASA Astrophysics Data System (ADS)

    Quesada-Barriuso, Pablo; Heras, Dora B.; Argüello, Francisco

    2016-10-01

    The classification of remote sensing hyperspectral images for land cover applications is a very intensive topic. In the case of supervised classification, Support Vector Machines (SVMs) play a dominant role. Recently, the Extreme Learning Machine algorithm (ELM) has been extensively used. The classification scheme previously published by the authors, and called WT-EMP, introduces spatial information in the classification process by means of an Extended Morphological Profile (EMP) that is created from features extracted by wavelets. In addition, the hyperspectral image is denoised in the 2-D spatial domain, also using wavelets and it is joined to the EMP via a stacked vector. In this paper, the scheme is improved achieving two goals. The first one is to reduce the classification time while preserving the accuracy of the classification by using ELM instead of SVM. The second one is to improve the accuracy results by performing not only a 2-D denoising for every spectral band, but also a previous additional 1-D spectral signature denoising applied to each pixel vector of the image. For each denoising the image is transformed by applying a 1-D or 2-D wavelet transform, and then a NeighShrink thresholding is applied. Improvements in terms of classification accuracy are obtained, especially for images with close regions in the classification reference map, because in these cases the accuracy of the classification in the edges between classes is more relevant.

  12. Wavelet transform: fundamentals, applications, and implementation using acousto-optic correlators

    NASA Astrophysics Data System (ADS)

    DeCusatis, Casimer M.; Koay, J.; Litynski, Daniel M.; Das, Pankaj K.

    1995-10-01

    In recent years there has been a great deal of interest in the use of wavelets to supplement or replace conventional Fourier transform signal processing. This paper provides a review of wavelet transforms for signal processing applications, and discusses several emerging applications which benefit from the advantages of wavelets. The wavelet transform can be implemented as an acousto-optic correlator; perfect reconstruction of digital signals may also be achieved using acousto-optic finite impulse response filter banks. Acousto-optic image correlators are discussed as a potential implementation of the wavelet transform, since a 1D wavelet filter bank may be encoded as a 2D image. We discuss applications of the wavelet transform including nondestructive testing of materials, biomedical applications in the analysis of EEG signals, and interference excision in spread spectrum communication systems. Computer simulations and experimental results for these applications are also provided.

  13. Coarse-to-fine wavelet-based airport detection

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Wang, Shuigen; Pang, Zhaofeng; Zhao, Baojun

    2015-10-01

    Airport detection on optical remote sensing images has attracted great interest in the applications of military optics scout and traffic control. However, most of the popular techniques for airport detection from optical remote sensing images have three weaknesses: 1) Due to the characteristics of optical images, the detection results are often affected by imaging conditions, like weather situation and imaging distortion; and 2) optical images contain comprehensive information of targets, so that it is difficult for extracting robust features (e.g., intensity and textural information) to represent airport area; 3) the high resolution results in large data volume, which makes real-time processing limited. Most of the previous works mainly focus on solving one of those problems, and thus, the previous methods cannot achieve the balance of performance and complexity. In this paper, we propose a novel coarse-to-fine airport detection framework to solve aforementioned three issues using wavelet coefficients. The framework includes two stages: 1) an efficient wavelet-based feature extraction is adopted for multi-scale textural feature representation, and support vector machine(SVM) is exploited for classifying and coarsely deciding airport candidate region; and then 2) refined line segment detection is used to obtain runway and landing field of airport. Finally, airport recognition is achieved by applying the fine runway positioning to the candidate regions. Experimental results show that the proposed approach outperforms the existing algorithms in terms of detection accuracy and processing efficiency.

  14. Filtering and left ventricle segmentation of the fetal heart in ultrasound images

    NASA Astrophysics Data System (ADS)

    Vargas-Quintero, Lorena; Escalante-Ramírez, Boris

    2013-11-01

    In this paper, we propose to use filtering methods and a segmentation algorithm for the analysis of fetal heart in ultrasound images. Since noise speckle makes difficult the analysis of ultrasound images, the filtering process becomes a useful task in these types of applications. The filtering techniques consider in this work assume that the speckle noise is a random variable with a Rayleigh distribution. We use two multiresolution methods: one based on wavelet decomposition and the another based on the Hermite transform. The filtering process is used as way to strengthen the performance of the segmentation tasks. For the wavelet-based approach, a Bayesian estimator at subband level for pixel classification is employed. The Hermite method computes a mask to find those pixels that are corrupted by speckle. On the other hand, we picked out a method based on a deformable model or "snake" to evaluate the influence of the filtering techniques in the segmentation task of left ventricle in fetal echocardiographic images.

  15. Log-Gabor Energy Based Multimodal Medical Image Fusion in NSCT Domain

    PubMed Central

    Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan

    2014-01-01

    Multimodal medical image fusion is a powerful tool in clinical applications such as noninvasive diagnosis, image-guided radiotherapy, and treatment planning. In this paper, a novel nonsubsampled Contourlet transform (NSCT) based method for multimodal medical image fusion is presented, which is approximately shift invariant and can effectively suppress the pseudo-Gibbs phenomena. The source medical images are initially transformed by NSCT followed by fusing low- and high-frequency components. The phase congruency that can provide a contrast and brightness-invariant representation is applied to fuse low-frequency coefficients, whereas the Log-Gabor energy that can efficiently determine the frequency coefficients from the clear and detail parts is employed to fuse the high-frequency coefficients. The proposed fusion method has been compared with the discrete wavelet transform (DWT), the fast discrete curvelet transform (FDCT), and the dual tree complex wavelet transform (DTCWT) based image fusion methods and other NSCT-based methods. Visually and quantitatively experimental results indicate that the proposed fusion method can obtain more effective and accurate fusion results of multimodal medical images than other algorithms. Further, the applicability of the proposed method has been testified by carrying out a clinical example on a woman affected with recurrent tumor images. PMID:25214889

  16. Wavelet-based fMRI analysis: 3-D denoising, signal separation, and validation metrics

    PubMed Central

    Khullar, Siddharth; Michael, Andrew; Correa, Nicolle; Adali, Tulay; Baum, Stefi A.; Calhoun, Vince D.

    2010-01-01

    We present a novel integrated wavelet-domain based framework (w-ICA) for 3-D de-noising functional magnetic resonance imaging (fMRI) data followed by source separation analysis using independent component analysis (ICA) in the wavelet domain. We propose the idea of a 3-D wavelet-based multi-directional de-noising scheme where each volume in a 4-D fMRI data set is sub-sampled using the axial, sagittal and coronal geometries to obtain three different slice-by-slice representations of the same data. The filtered intensity value of an arbitrary voxel is computed as an expected value of the de-noised wavelet coefficients corresponding to the three viewing geometries for each sub-band. This results in a robust set of de-noised wavelet coefficients for each voxel. Given the decorrelated nature of these de-noised wavelet coefficients; it is possible to obtain more accurate source estimates using ICA in the wavelet domain. The contributions of this work can be realized as two modules. First, the analysis module where we combine a new 3-D wavelet denoising approach with better signal separation properties of ICA in the wavelet domain, to yield an activation component that corresponds closely to the true underlying signal and is maximally independent with respect to other components. Second, we propose and describe two novel shape metrics for post-ICA comparisons between activation regions obtained through different frameworks. We verified our method using simulated as well as real fMRI data and compared our results against the conventional scheme (Gaussian smoothing + spatial ICA: s-ICA). The results show significant improvements based on two important features: (1) preservation of shape of the activation region (shape metrics) and (2) receiver operating characteristic (ROC) curves. It was observed that the proposed framework was able to preserve the actual activation shape in a consistent manner even for very high noise levels in addition to significant reduction in false positives voxels. PMID:21034833

  17. Poster — Thur Eve — 09: Evaluation of electrical impedance and computed tomography fusion algorithms using an anthropomorphic phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chugh, Brige Paul; Krishnan, Kalpagam; Liu, Jeff

    2014-08-15

    Integration of biological conductivity information provided by Electrical Impedance Tomography (EIT) with anatomical information provided by Computed Tomography (CT) imaging could improve the ability to characterize tissues in clinical applications. In this paper, we report results of our study which compared the fusion of EIT with CT using three different image fusion algorithms, namely: weighted averaging, wavelet fusion, and ROI indexing. The ROI indexing method of fusion involves segmenting the regions of interest from the CT image and replacing the pixels with the pixels of the EIT image. The three algorithms were applied to a CT and EIT image ofmore » an anthropomorphic phantom, constructed out of five acrylic contrast targets with varying diameter embedded in a base of gelatin bolus. The imaging performance was assessed using Detectability and Structural Similarity Index Measure (SSIM). Wavelet fusion and ROI-indexing resulted in lower Detectability (by 35% and 47%, respectively) yet higher SSIM (by 66% and 73%, respectively) than weighted averaging. Our results suggest that wavelet fusion and ROI-indexing yielded more consistent and optimal fusion performance than weighted averaging.« less

  18. JPEG and wavelet compression of ophthalmic images

    NASA Astrophysics Data System (ADS)

    Eikelboom, Robert H.; Yogesan, Kanagasingam; Constable, Ian J.; Barry, Christopher J.

    1999-05-01

    This study was designed to determine the degree and methods of digital image compression to produce ophthalmic imags of sufficient quality for transmission and diagnosis. The photographs of 15 subjects, which inclined eyes with normal, subtle and distinct pathologies, were digitized to produce 1.54MB images and compressed to five different methods: (i) objectively by calculating the RMS error between the uncompressed and compressed images, (ii) semi-subjectively by assessing the visibility of blood vessels, and (iii) subjectively by asking a number of experienced observers to assess the images for quality and clinical interpretation. Results showed that as a function of compressed image size, wavelet compressed images produced less RMS error than JPEG compressed images. Blood vessel branching could be observed to a greater extent after Wavelet compression compared to JPEG compression produced better images then a JPEG compression for a given image size. Overall, it was shown that images had to be compressed to below 2.5 percent for JPEG and 1.7 percent for Wavelet compression before fine detail was lost, or when image quality was too poor to make a reliable diagnosis.

  19. Wavelet subspace decomposition of thermal infrared images for defect detection in artworks

    NASA Astrophysics Data System (ADS)

    Ahmad, M. Z.; Khan, A. A.; Mezghani, S.; Perrin, E.; Mouhoubi, K.; Bodnar, J. L.; Vrabie, V.

    2016-07-01

    Health of ancient artworks must be routinely monitored for their adequate preservation. Faults in these artworks may develop over time and must be identified as precisely as possible. The classical acoustic testing techniques, being invasive, risk causing permanent damage during periodic inspections. Infrared thermometry offers a promising solution to map faults in artworks. It involves heating the artwork and recording its thermal response using infrared camera. A novel strategy based on pseudo-random binary excitation principle is used in this work to suppress the risks associated with prolonged heating. The objective of this work is to develop an automatic scheme for detecting faults in the captured images. An efficient scheme based on wavelet based subspace decomposition is developed which favors identification of, the otherwise invisible, weaker faults. Two major problems addressed in this work are the selection of the optimal wavelet basis and the subspace level selection. A novel criterion based on regional mutual information is proposed for the latter. The approach is successfully tested on a laboratory based sample as well as real artworks. A new contrast enhancement metric is developed to demonstrate the quantitative efficiency of the algorithm. The algorithm is successfully deployed for both laboratory based and real artworks.

  20. ICER-3D Hyperspectral Image Compression Software

    NASA Technical Reports Server (NTRS)

    Xie, Hua; Kiely, Aaron; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    Software has been developed to implement the ICER-3D algorithm. ICER-3D effects progressive, three-dimensional (3D), wavelet-based compression of hyperspectral images. If a compressed data stream is truncated, the progressive nature of the algorithm enables reconstruction of hyperspectral data at fidelity commensurate with the given data volume. The ICER-3D software is capable of providing either lossless or lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The compression algorithm, which was derived from the ICER image compression algorithm, includes wavelet-transform, context-modeling, and entropy coding subalgorithms. The 3D wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of sets of hyperspectral image data, while facilitating elimination of spectral ringing artifacts, using a technique summarized in "Improving 3D Wavelet-Based Compression of Spectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. Correlation is further exploited by a context-modeling subalgorithm, which exploits spectral dependencies in the wavelet-transformed hyperspectral data, using an algorithm that is summarized in "Context Modeler for Wavelet Compression of Hyperspectral Images" (NPO-43239), which follows this article. An important feature of ICER-3D is a scheme for limiting the adverse effects of loss of data during transmission. In this scheme, as in the similar scheme used by ICER, the spatial-frequency domain is partitioned into rectangular error-containment regions. In ICER-3D, the partitions extend through all the wavelength bands. The data in each partition are compressed independently of those in the other partitions, so that loss or corruption of data from any partition does not affect the other partitions. Furthermore, because compression is progressive within each partition, when data are lost, any data from that partition received prior to the loss can be used to reconstruct that partition at lower fidelity. By virtue of the compression improvement it achieves relative to previous means of onboard data compression, this software enables (1) increased return of hyperspectral scientific data in the presence of limits on the rates of transmission of data from spacecraft to Earth via radio communication links and/or (2) reduction in spacecraft radio-communication power and/or cost through reduction in the amounts of data required to be downlinked and stored onboard prior to downlink. The software is also suitable for compressing hyperspectral images for ground storage or archival purposes.

  1. Coherent multiscale image processing using dual-tree quaternion wavelets.

    PubMed

    Chan, Wai Lam; Choi, Hyeokho; Baraniuk, Richard G

    2008-07-01

    The dual-tree quaternion wavelet transform (QWT) is a new multiscale analysis tool for geometric image features. The QWT is a near shift-invariant tight frame representation whose coefficients sport a magnitude and three phases: two phases encode local image shifts while the third contains image texture information. The QWT is based on an alternative theory for the 2-D Hilbert transform and can be computed using a dual-tree filter bank with linear computational complexity. To demonstrate the properties of the QWT's coherent magnitude/phase representation, we develop an efficient and accurate procedure for estimating the local geometrical structure of an image. We also develop a new multiscale algorithm for estimating the disparity between a pair of images that is promising for image registration and flow estimation applications. The algorithm features multiscale phase unwrapping, linear complexity, and sub-pixel estimation accuracy.

  2. A new set of wavelet- and fractals-based features for Gleason grading of prostate cancer histopathology images

    NASA Astrophysics Data System (ADS)

    Mosquera Lopez, Clara; Agaian, Sos

    2013-02-01

    Prostate cancer detection and staging is an important step towards patient treatment selection. Advancements in digital pathology allow the application of new quantitative image analysis algorithms for computer-assisted diagnosis (CAD) on digitized histopathology images. In this paper, we introduce a new set of features to automatically grade pathological images using the well-known Gleason grading system. The goal of this study is to classify biopsy images belonging to Gleason patterns 3, 4, and 5 by using a combination of wavelet and fractal features. For image classification we use pairwise coupling Support Vector Machine (SVM) classifiers. The accuracy of the system, which is close to 97%, is estimated through three different cross-validation schemes. The proposed system offers the potential for automating classification of histological images and supporting prostate cancer diagnosis.

  3. Twofold processing for denoising ultrasound medical images.

    PubMed

    Kishore, P V V; Kumar, K V V; Kumar, D Anil; Prasad, M V D; Goutham, E N D; Rahul, R; Krishna, C B S Vamsi; Sandeep, Y

    2015-01-01

    Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India.

  4. Multiresolution motion planning for autonomous agents via wavelet-based cell decompositions.

    PubMed

    Cowlagi, Raghvendra V; Tsiotras, Panagiotis

    2012-10-01

    We present a path- and motion-planning scheme that is "multiresolution" both in the sense of representing the environment with high accuracy only locally and in the sense of addressing the vehicle kinematic and dynamic constraints only locally. The proposed scheme uses rectangular multiresolution cell decompositions, efficiently generated using the wavelet transform. The wavelet transform is widely used in signal and image processing, with emerging applications in autonomous sensing and perception systems. The proposed motion planner enables the simultaneous use of the wavelet transform in both the perception and in the motion-planning layers of vehicle autonomy, thus potentially reducing online computations. We rigorously prove the completeness of the proposed path-planning scheme, and we provide numerical simulation results to illustrate its efficacy.

  5. Evaluating the Efficacy of Wavelet Configurations on Turbulent-Flow Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaomeng; Gruchalla, Kenny; Potter, Kristin

    2015-10-25

    I/O is increasingly becoming a significant constraint for simulation codes and visualization tools on modern supercomputers. Data compression is an attractive workaround, and, in particular, wavelets provide a promising solution. However, wavelets can be applied in multiple configurations, and the variations in configuration impact accuracy, storage cost, and execution time. While the variation in these factors over wavelet configurations have been explored in image processing, they are not well understood for visualization and analysis of scientific data. To illuminate this issue, we evaluate multiple wavelet configurations on turbulent-flow data. Our approach is to repeat established analysis routines on uncompressed andmore » lossy-compressed versions of a data set, and then quantitatively compare their outcomes. Our findings show that accuracy varies greatly based on wavelet configuration, while storage cost and execution time vary less. Overall, our study provides new insights for simulation analysts and visualization experts, who need to make tradeoffs between accuracy, storage cost, and execution time.« less

  6. Heterogeneity wavelet kinetics from DCE-MRI for classifying gene expression based breast cancer recurrence risk.

    PubMed

    Mahrooghy, Majid; Ashraf, Ahmed B; Daye, Dania; Mies, Carolyn; Feldman, Michael; Rosen, Mark; Kontos, Despina

    2013-01-01

    Breast tumors are heterogeneous lesions. Intra-tumor heterogeneity presents a major challenge for cancer diagnosis and treatment. Few studies have worked on capturing tumor heterogeneity from imaging. Most studies to date consider aggregate measures for tumor characterization. In this work we capture tumor heterogeneity by partitioning tumor pixels into subregions and extracting heterogeneity wavelet kinetic (HetWave) features from breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to obtain the spatiotemporal patterns of the wavelet coefficients and contrast agent uptake from each partition. Using a genetic algorithm for feature selection, and a logistic regression classifier with leave one-out cross validation, we tested our proposed HetWave features for the task of classifying breast cancer recurrence risk. The classifier based on our features gave an ROC AUC of 0.78, outperforming previously proposed kinetic, texture, and spatial enhancement variance features which give AUCs of 0.69, 0.64, and 0.65, respectively.

  7. Fast and robust wavelet-based dynamic range compression and contrast enhancement model with color restoration

    NASA Astrophysics Data System (ADS)

    Unaldi, Numan; Asari, Vijayan K.; Rahman, Zia-ur

    2009-05-01

    Recently we proposed a wavelet-based dynamic range compression algorithm to improve the visual quality of digital images captured from high dynamic range scenes with non-uniform lighting conditions. The fast image enhancement algorithm that provides dynamic range compression, while preserving the local contrast and tonal rendition, is also a good candidate for real time video processing applications. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some "pathological" scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for the final color restoration process. In this paper the latest version of the proposed algorithm, which deals with this issue is presented. The results obtained by applying the algorithm to numerous natural images show strong robustness and high image quality.

  8. Choice of word length in the design of a specialized hardware for lossless wavelet compression of medical images

    NASA Astrophysics Data System (ADS)

    Urriza, Isidro; Barragan, Luis A.; Artigas, Jose I.; Garcia, Jose I.; Navarro, Denis

    1997-11-01

    Image compression plays an important role in the archiving and transmission of medical images. Discrete cosine transform (DCT)-based compression methods are not suitable for medical images because of block-like image artifacts that could mask or be mistaken for pathology. Wavelet transforms (WTs) are used to overcome this problem. When implementing WTs in hardware, finite precision arithmetic introduces quantization errors. However, lossless compression is usually required in the medical image field. Thus, the hardware designer must look for the optimum register length that, while ensuring the lossless accuracy criteria, will also lead to a high-speed implementation with small chip area. In addition, wavelet choice is a critical issue that affects image quality as well as system design. We analyze the filters best suited to image compression that appear in the literature. For them, we obtain the maximum quantization errors produced in the calculation of the WT components. Thus, we deduce the minimum word length required for the reconstructed image to be numerically identical to the original image. The theoretical results are compared with experimental results obtained from algorithm simulations on random test images. These results enable us to compare the hardware implementation cost of the different filter banks. Moreover, to reduce the word length, we have analyzed the case of increasing the integer part of the numbers while maintaining constant the word length when the scale increases.

  9. Employing wavelet-based texture features in ammunition classification

    NASA Astrophysics Data System (ADS)

    Borzino, Ángelo M. C. R.; Maher, Robert C.; Apolinário, José A.; de Campos, Marcello L. R.

    2017-05-01

    Pattern recognition, a branch of machine learning, involves classification of information in images, sounds, and other digital representations. This paper uses pattern recognition to identify which kind of ammunition was used when a bullet was fired based on a carefully constructed set of gunshot sound recordings. To do this task, we show that texture features obtained from the wavelet transform of a component of the gunshot signal, treated as an image, and quantized in gray levels, are good ammunition discriminators. We test the technique with eight different calibers and achieve a classification rate better than 95%. We also compare the performance of the proposed method with results obtained by standard temporal and spectrographic techniques

  10. Lifting Scheme DWT Implementation in a Wireless Vision Sensor Network

    NASA Astrophysics Data System (ADS)

    Ong, Jia Jan; Ang, L.-M.; Seng, K. P.

    This paper presents the practical implementation of a Wireless Visual Sensor Network (WVSN) with DWT processing on the visual nodes. WVSN consists of visual nodes that capture video and transmit to the base-station without processing. Limitation of network bandwidth restrains the implementation of real time video streaming from remote visual nodes through wireless communication. Three layers of DWT filters are implemented to process the captured image from the camera. With having all the wavelet coefficients produced, it is possible just to transmit the low frequency band coefficients and obtain an approximate image at the base-station. This will reduce the amount of power required in transmission. When necessary, transmitting all the wavelet coefficients will produce the full detail of image, which is similar to the image captured at the visual nodes. The visual node combines the CMOS camera, Xilinx Spartan-3L FPGA and wireless ZigBee® network that uses the Ember EM250 chip.

  11. Improved l1-SPIRiT using 3D walsh transform-based sparsity basis.

    PubMed

    Feng, Zhen; Liu, Feng; Jiang, Mingfeng; Crozier, Stuart; Guo, He; Wang, Yuxin

    2014-09-01

    l1-SPIRiT is a fast magnetic resonance imaging (MRI) method which combines parallel imaging (PI) with compressed sensing (CS) by performing a joint l1-norm and l2-norm optimization procedure. The original l1-SPIRiT method uses two-dimensional (2D) Wavelet transform to exploit the intra-coil data redundancies and a joint sparsity model to exploit the inter-coil data redundancies. In this work, we propose to stack all the coil images into a three-dimensional (3D) matrix, and then a novel 3D Walsh transform-based sparsity basis is applied to simultaneously reduce the intra-coil and inter-coil data redundancies. Both the 2D Wavelet transform-based and the proposed 3D Walsh transform-based sparsity bases were investigated in the l1-SPIRiT method. The experimental results show that the proposed 3D Walsh transform-based l1-SPIRiT method outperformed the original l1-SPIRiT in terms of image quality and computational efficiency. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain

    NASA Astrophysics Data System (ADS)

    Li, Xianye; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2017-09-01

    A multiple-image encryption method is proposed that is based on row scanning compressive ghost imaging, (t, n) threshold secret sharing, and phase retrieval in the Fresnel domain. In the encryption process, after wavelet transform and Arnold transform of the target image, the ciphertext matrix can be first detected using a bucket detector. Based on a (t, n) threshold secret sharing algorithm, the measurement key used in the row scanning compressive ghost imaging can be decomposed and shared into two pairs of sub-keys, which are then reconstructed using two phase-only mask (POM) keys with fixed pixel values, placed in the input plane and transform plane 2 of the phase retrieval scheme, respectively; and the other POM key in the transform plane 1 can be generated and updated by the iterative encoding of each plaintext image. In each iteration, the target image acts as the input amplitude constraint in the input plane. During decryption, each plaintext image possessing all the correct keys can be successfully decrypted by measurement key regeneration, compression algorithm reconstruction, inverse wavelet transformation, and Fresnel transformation. Theoretical analysis and numerical simulations both verify the feasibility of the proposed method.

  13. The whole number axis integer linear transformation reversible information hiding algorithm on wavelet domain

    NASA Astrophysics Data System (ADS)

    Jiang, Zhuo; Xie, Chengjun

    2013-12-01

    This paper improved the algorithm of reversible integer linear transform on finite interval [0,255], which can realize reversible integer linear transform in whole number axis shielding data LSB (least significant bit). Firstly, this method use integer wavelet transformation based on lifting scheme to transform the original image, and select the transformed high frequency areas as information hiding area, meanwhile transform the high frequency coefficients blocks in integer linear way and embed the secret information in LSB of each coefficient, then information hiding by embedding the opposite steps. To extract data bits and recover the host image, a similar reverse procedure can be conducted, and the original host image can be lossless recovered. The simulation experimental results show that this method has good secrecy and concealment, after conducted the CDF (m, n) and DD (m, n) series of wavelet transformed. This method can be applied to information security domain, such as medicine, law and military.

  14. Application of wavelet based MFDFA on Mueller matrix images for cervical pre-cancer detection

    NASA Astrophysics Data System (ADS)

    Zaffar, Mohammad; Pradhan, Asima

    2018-02-01

    A systematic study has been conducted on application of wavelet based multifractal de-trended fluctuation analysis (MFDFA) on Mueller matrix (MM) images of cervical tissue sections for early cancer detection. Changes in multiple scattering and orientation of fibers are observed by utilizing a discrete wavelet transform (Daubechies) which identifies fluctuations over polynomial trends. Fluctuation profiles, after 9th level decomposition, for all elements of MM qualitatively establish a demarcation of different grades of cancer from normal tissue. Moreover, applying MFDFA on MM images, Hurst exponent profiles for images of MM qualitatively are seen to display differences. In addition, the values of Hurst exponent increase for the diagonal elements of MM with increasing grades of the cervical cancer, while the value for the elements which correspond to linear polarizance decrease. However, for circular polarizance the value increases with increasing grades. These fluctuation profiles reveal the trend of local variation of refractive -indices and along with Hurst exponent profile, may serve as a useful biological metric in the early detection of cervical cancer. The quantitative measurements of Hurst exponent for diagonal and first column (polarizance governing elements) elements which reflect changes in multiple scattering and structural anisotropy in stroma, may be sensitive indicators of pre-cancer.

  15. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification.

    PubMed

    Soares, João V B; Leandro, Jorge J G; Cesar Júnior, Roberto M; Jelinek, Herbert F; Cree, Michael J

    2006-09-01

    We present a method for automated segmentation of the vasculature in retinal images. The method produces segmentations by classifying each image pixel as vessel or nonvessel, based on the pixel's feature vector. Feature vectors are composed of the pixel's intensity and two-dimensional Gabor wavelet transform responses taken at multiple scales. The Gabor wavelet is capable of tuning to specific frequencies, thus allowing noise filtering and vessel enhancement in a single step. We use a Bayesian classifier with class-conditional probability density functions (likelihoods) described as Gaussian mixtures, yielding a fast classification, while being able to model complex decision surfaces. The probability distributions are estimated based on a training set of labeled pixels obtained from manual segmentations. The method's performance is evaluated on publicly available DRIVE (Staal et al., 2004) and STARE (Hoover et al., 2000) databases of manually labeled images. On the DRIVE database, it achieves an area under the receiver operating characteristic curve of 0.9614, being slightly superior than that presented by state-of-the-art approaches. We are making our implementation available as open source MATLAB scripts for researchers interested in implementation details, evaluation, or development of methods.

  16. A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine.

    PubMed

    Malar, E; Kandaswamy, A; Chakravarthy, D; Giri Dharan, A

    2012-09-01

    The objective of this paper is to reveal the effectiveness of wavelet based tissue texture analysis for microcalcification detection in digitized mammograms using Extreme Learning Machine (ELM). Microcalcifications are tiny deposits of calcium in the breast tissue which are potential indicators for early detection of breast cancer. The dense nature of the breast tissue and the poor contrast of the mammogram image prohibit the effectiveness in identifying microcalcifications. Hence, a new approach to discriminate the microcalcifications from the normal tissue is done using wavelet features and is compared with different feature vectors extracted using Gray Level Spatial Dependence Matrix (GLSDM) and Gabor filter based techniques. A total of 120 Region of Interests (ROIs) extracted from 55 mammogram images of mini-Mias database, including normal and microcalcification images are used in the current research. The network is trained with the above mentioned features and the results denote that ELM produces relatively better classification accuracy (94%) with a significant reduction in training time than the other artificial neural networks like Bayesnet classifier, Naivebayes classifier, and Support Vector Machine. ELM also avoids problems like local minima, improper learning rate, and over fitting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Bayesian denoising in digital radiography: a comparison in the dental field.

    PubMed

    Frosio, I; Olivieri, C; Lucchese, M; Borghese, N A; Boccacci, P

    2013-01-01

    We compared two Bayesian denoising algorithms for digital radiographs, based on Total Variation regularization and wavelet decomposition. The comparison was performed on simulated radiographs with different photon counts and frequency content and on real dental radiographs. Four different quality indices were considered to quantify the quality of the filtered radiographs. The experimental results suggested that Total Variation is more suited to preserve fine anatomical details, whereas wavelets produce images of higher quality at global scale; they also highlighted the need for more reliable image quality indices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Image-Data Compression Using Edge-Optimizing Algorithm for WFA Inference.

    ERIC Educational Resources Information Center

    Culik, Karel II; Kari, Jarkko

    1994-01-01

    Presents an inference algorithm that produces a weighted finite automata (WFA), in particular, the grayness functions of graytone images. Image-data compression results based on the new inference algorithm produces a WFA with a relatively small number of edges. Image-data compression results alone and in combination with wavelets are discussed.…

  19. Four-dimensional wavelet compression of arbitrarily sized echocardiographic data.

    PubMed

    Zeng, Li; Jansen, Christian P; Marsch, Stephan; Unser, Michael; Hunziker, Patrick R

    2002-09-01

    Wavelet-based methods have become most popular for the compression of two-dimensional medical images and sequences. The standard implementations consider data sizes that are powers of two. There is also a large body of literature treating issues such as the choice of the "optimal" wavelets and the performance comparison of competing algorithms. With the advent of telemedicine, there is a strong incentive to extend these techniques to higher dimensional data such as dynamic three-dimensional (3-D) echocardiography [four-dimensional (4-D) datasets]. One of the practical difficulties is that the size of this data is often not a multiple of a power of two, which can lead to increased computational complexity and impaired compression power. Our contribution in this paper is to present a genuine 4-D extension of the well-known zerotree algorithm for arbitrarily sized data. The key component of our method is a one-dimensional wavelet algorithm that can handle arbitrarily sized input signals. The method uses a pair of symmetric/antisymmetric wavelets (10/6) together with some appropriate midpoint symmetry boundary conditions that reduce border artifacts. The zerotree structure is also adapted so that it can accommodate noneven data splitting. We have applied our method to the compression of real 3-D dynamic sequences from clinical cardiac ultrasound examinations. Our new algorithm compares very favorably with other more ad hoc adaptations (image extension and tiling) of the standard powers-of-two methods, in terms of both compression performance and computational cost. It is vastly superior to slice-by-slice wavelet encoding. This was seen not only in numerical image quality parameters but also in expert ratings, where significant improvement using the new approach could be documented. Our validation experiments show that one can safely compress 4-D data sets at ratios of 128:1 without compromising the diagnostic value of the images. We also display some more extreme compression results at ratios of 2000:1 where some key diagnostically relevant key features are preserved.

  20. Wavelet imaging cleaning method for atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Lessard, R. W.; Cayón, L.; Sembroski, G. H.; Gaidos, J. A.

    2002-07-01

    We present a new method of image cleaning for imaging atmospheric Cherenkov telescopes. The method is based on the utilization of wavelets to identify noise pixels in images of gamma-ray and hadronic induced air showers. This method selects more signal pixels with Cherenkov photons than traditional image processing techniques. In addition, the method is equally efficient at rejecting pixels with noise alone. The inclusion of more signal pixels in an image of an air shower allows for a more accurate reconstruction, especially at lower gamma-ray energies that produce low levels of light. We present the results of Monte Carlo simulations of gamma-ray and hadronic air showers which show improved angular resolution using this cleaning procedure. Data from the Whipple Observatory's 10-m telescope are utilized to show the efficacy of the method for extracting a gamma-ray signal from the background of hadronic generated images.

  1. Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform

    PubMed Central

    Mayer, Markus A.; Boretsky, Adam R.; van Kuijk, Frederik J.; Motamedi, Massoud

    2012-01-01

    Abstract. Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denoising, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet transform and the dual-tree complex wavelet transform, is applied to reduce speckle noise in OCT images of the retina. The algorithm overcomes the limitations of commonly used multiple frame averaging technique, namely the limited number of frames that can be recorded due to eye movements, by providing a comparable image quality in significantly less acquisition time equal to an order of magnitude less time compared to the averaging method. In addition, improvements of image quality metrics and 5 dB increase in the signal-to-noise ratio are attained. PMID:23117804

  2. Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform.

    PubMed

    Chitchian, Shahab; Mayer, Markus A; Boretsky, Adam R; van Kuijk, Frederik J; Motamedi, Massoud

    2012-11-01

    ABSTRACT. Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denoising, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet transform and the dual-tree complex wavelet transform, is applied to reduce speckle noise in OCT images of the retina. The algorithm overcomes the limitations of commonly used multiple frame averaging technique, namely the limited number of frames that can be recorded due to eye movements, by providing a comparable image quality in significantly less acquisition time equal to an order of magnitude less time compared to the averaging method. In addition, improvements of image quality metrics and 5 dB increase in the signal-to-noise ratio are attained.

  3. Fusion of GFP and phase contrast images with complex shearlet transform and Haar wavelet-based energy rule.

    PubMed

    Qiu, Chenhui; Wang, Yuanyuan; Guo, Yanen; Xia, Shunren

    2018-03-14

    Image fusion techniques can integrate the information from different imaging modalities to get a composite image which is more suitable for human visual perception and further image processing tasks. Fusing green fluorescent protein (GFP) and phase contrast images is very important for subcellular localization, functional analysis of protein and genome expression. The fusion method of GFP and phase contrast images based on complex shearlet transform (CST) is proposed in this paper. Firstly the GFP image is converted to IHS model and its intensity component is obtained. Secondly the CST is performed on the intensity component and the phase contrast image to acquire the low-frequency subbands and the high-frequency subbands. Then the high-frequency subbands are merged by the absolute-maximum rule while the low-frequency subbands are merged by the proposed Haar wavelet-based energy (HWE) rule. Finally the fused image is obtained by performing the inverse CST on the merged subbands and conducting IHS-to-RGB conversion. The proposed fusion method is tested on a number of GFP and phase contrast images and compared with several popular image fusion methods. The experimental results demonstrate that the proposed fusion method can provide better fusion results in terms of subjective quality and objective evaluation. © 2018 Wiley Periodicals, Inc.

  4. Measurement of entanglement entropy in the two-dimensional Potts model using wavelet analysis.

    PubMed

    Tomita, Yusuke

    2018-05-01

    A method is introduced to measure the entanglement entropy using a wavelet analysis. Using this method, the two-dimensional Haar wavelet transform of a configuration of Fortuin-Kasteleyn (FK) clusters is performed. The configuration represents a direct snapshot of spin-spin correlations since spin degrees of freedom are traced out in FK representation. A snapshot of FK clusters loses image information at each coarse-graining process by the wavelet transform. It is shown that the loss of image information measures the entanglement entropy in the Potts model.

  5. The New CCSDS Image Compression Recommendation

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Armbruster, Philippe; Kiely, Aaron; Masschelein, Bart; Moury, Gilles; Schaefer, Christoph

    2005-01-01

    The Consultative Committee for Space Data Systems (CCSDS) data compression working group has recently adopted a recommendation for image data compression, with a final release expected in 2005. The algorithm adopted in the recommendation consists of a two-dimensional discrete wavelet transform of the image, followed by progressive bit-plane coding of the transformed data. The algorithm can provide both lossless and lossy compression, and allows a user to directly control the compressed data volume or the fidelity with which the wavelet-transformed data can be reconstructed. The algorithm is suitable for both frame-based image data and scan-based sensor data, and has applications for near-Earth and deep-space missions. The standard will be accompanied by free software sources on a future web site. An Application-Specific Integrated Circuit (ASIC) implementation of the compressor is currently under development. This paper describes the compression algorithm along with the requirements that drove the selection of the algorithm. Performance results and comparisons with other compressors are given for a test set of space images.

  6. Multiple description distributed image coding with side information for mobile wireless transmission

    NASA Astrophysics Data System (ADS)

    Wu, Min; Song, Daewon; Chen, Chang Wen

    2005-03-01

    Multiple description coding (MDC) is a source coding technique that involves coding the source information into multiple descriptions, and then transmitting them over different channels in packet network or error-prone wireless environment to achieve graceful degradation if parts of descriptions are lost at the receiver. In this paper, we proposed a multiple description distributed wavelet zero tree image coding system for mobile wireless transmission. We provide two innovations to achieve an excellent error resilient capability. First, when MDC is applied to wavelet subband based image coding, it is possible to introduce correlation between the descriptions in each subband. We consider using such a correlation as well as potentially error corrupted description as side information in the decoding to formulate the MDC decoding as a Wyner Ziv decoding problem. If only part of descriptions is lost, however, their correlation information is still available, the proposed Wyner Ziv decoder can recover the description by using the correlation information and the error corrupted description as side information. Secondly, in each description, single bitstream wavelet zero tree coding is very vulnerable to the channel errors. The first bit error may cause the decoder to discard all subsequent bits whether or not the subsequent bits are correctly received. Therefore, we integrate the multiple description scalar quantization (MDSQ) with the multiple wavelet tree image coding method to reduce error propagation. We first group wavelet coefficients into multiple trees according to parent-child relationship and then code them separately by SPIHT algorithm to form multiple bitstreams. Such decomposition is able to reduce error propagation and therefore improve the error correcting capability of Wyner Ziv decoder. Experimental results show that the proposed scheme not only exhibits an excellent error resilient performance but also demonstrates graceful degradation over the packet loss rate.

  7. An effective detection algorithm for region duplication forgery in digital images

    NASA Astrophysics Data System (ADS)

    Yavuz, Fatih; Bal, Abdullah; Cukur, Huseyin

    2016-04-01

    Powerful image editing tools are very common and easy to use these days. This situation may cause some forgeries by adding or removing some information on the digital images. In order to detect these types of forgeries such as region duplication, we present an effective algorithm based on fixed-size block computation and discrete wavelet transform (DWT). In this approach, the original image is divided into fixed-size blocks, and then wavelet transform is applied for dimension reduction. Each block is processed by Fourier Transform and represented by circle regions. Four features are extracted from each block. Finally, the feature vectors are lexicographically sorted, and duplicated image blocks are detected according to comparison metric results. The experimental results show that the proposed algorithm presents computational efficiency due to fixed-size circle block architecture.

  8. SU-C-304-05: Use of Local Noise Power Spectrum and Wavelets in Comprehensive EPID Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S; Gopal, A; Yan, G

    2015-06-15

    Purpose: As EPIDs are increasingly used for IMRT QA and real-time treatment verification, comprehensive quality assurance (QA) of EPIDs becomes critical. Current QA with phantoms such as the Las Vegas and PIPSpro™ can fail in the early detection of EPID artifacts. Beyond image quality assessment, we propose a quantitative methodology using local noise power spectrum (NPS) to characterize image noise and wavelet transform to identify bad pixels and inter-subpanel flat-fielding artifacts. Methods: A total of 93 image sets including bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Quantitative metrics such asmore » modulation transform function (MTF), NPS and detective quantum efficiency (DQE) were computed for each image set. Local 2D NPS was calculated for each subpanel. A 1D NPS was obtained by radial averaging the 2D NPS and fitted to a power-law function. R-square and slope of the linear regression analysis were used for panel performance assessment. Haar wavelet transformation was employed to identify pixel defects and non-uniform gain correction across subpanels. Results: Overall image quality was assessed with DQE based on empirically derived area under curve (AUC) thresholds. Using linear regression analysis of 1D NPS, panels with acceptable flat fielding were indicated by r-square between 0.8 and 1, and slopes of −0.4 to −0.7. However, for panels requiring flat fielding recalibration, r-square values less than 0.8 and slopes from +0.2 to −0.4 were observed. The wavelet transform successfully identified pixel defects and inter-subpanel flat fielding artifacts. Standard QA with the Las Vegas and PIPSpro phantoms failed to detect these artifacts. Conclusion: The proposed QA methodology is promising for the early detection of imaging and dosimetric artifacts of EPIDs. Local NPS can accurately characterize the noise level within each subpanel, while the wavelet transforms can detect bad pixels and inter-subpanel flat fielding artifacts.« less

  9. Three-dimensional object recognitions from two-dimensional images using wavelet transforms and neural networks

    NASA Astrophysics Data System (ADS)

    Deschenes, Sylvain; Sheng, Yunlong; Chevrette, Paul C.

    1998-03-01

    3D object classification from 2D IR images is shown. The wavelet transform is used for edge detection. Edge tracking is used for removing noise effectively int he wavelet transform. The invariant Fourier descriptor is used to describe the contour curves. Invariance under out-of-plane rotation is achieved by the feature space trajectory neural network working as a classifier.

  10. Video compression of coronary angiograms based on discrete wavelet transform with block classification.

    PubMed

    Ho, B T; Tsai, M J; Wei, J; Ma, M; Saipetch, P

    1996-01-01

    A new method of video compression for angiographic images has been developed to achieve high compression ratio (~20:1) while eliminating block artifacts which leads to loss of diagnostic accuracy. This method adopts motion picture experts group's (MPEGs) motion compensated prediction to takes advantage of frame to frame correlation. However, in contrast to MPEG, the error images arising from mismatches in the motion estimation are encoded by discrete wavelet transform (DWT) rather than block discrete cosine transform (DCT). Furthermore, the authors developed a classification scheme which label each block in an image as intra, error, or background type and encode it accordingly. This hybrid coding can significantly improve the compression efficiency in certain eases. This method can be generalized for any dynamic image sequences applications sensitive to block artifacts.

  11. Dual-Tree Complex Wavelet Transform and Image Block Residual-Based Multi-Focus Image Fusion in Visual Sensor Networks

    PubMed Central

    Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan

    2014-01-01

    This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs. PMID:25587878

  12. Dual-tree complex wavelet transform and image block residual-based multi-focus image fusion in visual sensor networks.

    PubMed

    Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan

    2014-11-26

    This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs.

  13. A comparison of spectral decorrelation techniques and performance evaluation metrics for a wavelet-based, multispectral data compression algorithm

    NASA Technical Reports Server (NTRS)

    Matic, Roy M.; Mosley, Judith I.

    1994-01-01

    Future space-based, remote sensing systems will have data transmission requirements that exceed available downlinks necessitating the use of lossy compression techniques for multispectral data. In this paper, we describe several algorithms for lossy compression of multispectral data which combine spectral decorrelation techniques with an adaptive, wavelet-based, image compression algorithm to exploit both spectral and spatial correlation. We compare the performance of several different spectral decorrelation techniques including wavelet transformation in the spectral dimension. The performance of each technique is evaluated at compression ratios ranging from 4:1 to 16:1. Performance measures used are visual examination, conventional distortion measures, and multispectral classification results. We also introduce a family of distortion metrics that are designed to quantify and predict the effect of compression artifacts on multi spectral classification of the reconstructed data.

  14. Directional Multi-scale Modeling of High-Resolution Computed Tomography (HRCT) Lung Images for Diffuse Lung Disease Classification

    NASA Astrophysics Data System (ADS)

    Vo, Kiet T.; Sowmya, Arcot

    A directional multi-scale modeling scheme based on wavelet and contourlet transforms is employed to describe HRCT lung image textures for classifying four diffuse lung disease patterns: normal, emphysema, ground glass opacity (GGO) and honey-combing. Generalized Gaussian density parameters are used to represent the detail sub-band features obtained by wavelet and contourlet transforms. In addition, support vector machines (SVMs) with excellent performance in a variety of pattern classification problems are used as classifier. The method is tested on a collection of 89 slices from 38 patients, each slice of size 512x512, 16 bits/pixel in DICOM format. The dataset contains 70,000 ROIs of those slices marked by experienced radiologists. We employ this technique at different wavelet and contourlet transform scales for diffuse lung disease classification. The technique presented here has best overall sensitivity 93.40% and specificity 98.40%.

  15. Tomographic reconstruction of tokamak plasma light emission from single image using wavelet-vaguelette decomposition

    NASA Astrophysics Data System (ADS)

    Nguyen van yen, R.; Fedorczak, N.; Brochard, F.; Bonhomme, G.; Schneider, K.; Farge, M.; Monier-Garbet, P.

    2012-01-01

    Images acquired by cameras installed in tokamaks are difficult to interpret because the three-dimensional structure of the plasma is flattened in a non-trivial way. Nevertheless, taking advantage of the slow variation of the fluctuations along magnetic field lines, the optical transformation may be approximated by a generalized Abel transform, for which we propose an inversion technique based on the wavelet-vaguelette decomposition. After validation of the new method using an academic test case and numerical data obtained with the Tokam 2D code, we present an application to an experimental movie obtained in the tokamak Tore Supra. A comparison with a classical regularization technique for ill-posed inverse problems, the singular value decomposition, allows us to assess the efficiency. The superiority of the wavelet-vaguelette technique is reflected in preserving local features, such as blobs and fronts, in the denoised emissivity map.

  16. Using PACS and wavelet-based image compression in a wide-area network to support radiation therapy imaging applications for satellite hospitals

    NASA Astrophysics Data System (ADS)

    Smith, Charles L.; Chu, Wei-Kom; Wobig, Randy; Chao, Hong-Yang; Enke, Charles

    1999-07-01

    An ongoing PACS project at our facility has been expanded to include providing and managing images used for routine clinical operation of the department of radiation oncology. The intent of our investigation has been to enable out clinical radiotherapy service to enter the tele-medicine environment through the use of a PACS system initially implemented in the department of radiology. The backbone for the imaging network includes five CT and three MR scanners located across three imaging centers. A PC workstation in the department of radiation oncology was used to transmit CT imags to a satellite facility located approximately 60 miles from the primary center. Chest CT images were used to analyze network transmission performance. Connectivity established between the primary department and satellite has fulfilled all image criteria required by the oncologist. Establishing the link tot eh oncologist at the satellite diminished bottlenecking of imaging related tasks at the primary facility due to physician absence. A 30:1 compression ratio using a wavelet-based algorithm provided clinically acceptable images treatment planning. Clinical radiotherapy images can be effectively managed in a wide- area-network to link satellite facilities to larger clinical centers.

  17. Wavelet analysis of hemispheroid flow separation toward understanding human vocal fold pathologies

    NASA Astrophysics Data System (ADS)

    Plesniak, Daniel H.; Carr, Ian A.; Bulusu, Kartik V.; Plesniak, Michael W.

    2014-11-01

    Physiological flows observed in human vocal fold pathologies, such as polyps and nodules, can be modeled by flow over a wall-mounted protuberance. The experimental investigation of flow separation over a surface-mounted hemispheroid was performed using particle image velocimetry (PIV) and measurements of surface pressure in a low-speed wind tunnel. This study builds on the hypothesis that the signatures of vortical structures associated with flow separation are imprinted on the surface pressure distributions. Wavelet decomposition methods in one- and two-dimensions were utilized to elucidate the flow behavior. First, a complex Gaussian wavelet was used for the reconstruction of surface pressure time series from static pressure measurements acquired from ports upstream, downstream, and on the surface of the hemispheroid. This was followed by the application of a novel continuous wavelet transform algorithm (PIVlet 1.2) using a 2D-Ricker wavelet for coherent structure detection on instantaneous PIV-data. The goal of this study is to correlate phase shifts in surface pressure with Strouhal numbers associated with the vortex shedding. Ultimately, the wavelet-based analytical framework will be aimed at addressing pulsatile flows. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  18. A novel wavelet neural network based pathological stage detection technique for an oral precancerous condition

    PubMed Central

    Paul, R R; Mukherjee, A; Dutta, P K; Banerjee, S; Pal, M; Chatterjee, J; Chaudhuri, K; Mukkerjee, K

    2005-01-01

    Aim: To describe a novel neural network based oral precancer (oral submucous fibrosis; OSF) stage detection method. Method: The wavelet coefficients of transmission electron microscopy images of collagen fibres from normal oral submucosa and OSF tissues were used to choose the feature vector which, in turn, was used to train the artificial neural network. Results: The trained network was able to classify normal and oral precancer stages (less advanced and advanced) after obtaining the image as an input. Conclusions: The results obtained from this proposed technique were promising and suggest that with further optimisation this method could be used to detect and stage OSF, and could be adapted for other conditions. PMID:16126873

  19. Illumination-tolerant face verification of low-bit-rate JPEG2000 wavelet images with advanced correlation filters for handheld devices

    NASA Astrophysics Data System (ADS)

    Wijaya, Surya Li; Savvides, Marios; Vijaya Kumar, B. V. K.

    2005-02-01

    Face recognition on mobile devices, such as personal digital assistants and cell phones, is a big challenge owing to the limited computational resources available to run verifications on the devices themselves. One approach is to transmit the captured face images by use of the cell-phone connection and to run the verification on a remote station. However, owing to limitations in communication bandwidth, it may be necessary to transmit a compressed version of the image. We propose using the image compression standard JPEG2000, which is a wavelet-based compression engine used to compress the face images to low bit rates suitable for transmission over low-bandwidth communication channels. At the receiver end, the face images are reconstructed with a JPEG2000 decoder and are fed into the verification engine. We explore how advanced correlation filters, such as the minimum average correlation energy filter [Appl. Opt. 26, 3633 (1987)] and its variants, perform by using face images captured under different illumination conditions and encoded with different bit rates under the JPEG2000 wavelet-encoding standard. We evaluate the performance of these filters by using illumination variations from the Carnegie Mellon University's Pose, Illumination, and Expression (PIE) face database. We also demonstrate the tolerance of these filters to noisy versions of images with illumination variations.

  20. Automatic classification of sleep stages based on the time-frequency image of EEG signals.

    PubMed

    Bajaj, Varun; Pachori, Ram Bilas

    2013-12-01

    In this paper, a new method for automatic sleep stage classification based on time-frequency image (TFI) of electroencephalogram (EEG) signals is proposed. Automatic classification of sleep stages is an important part for diagnosis and treatment of sleep disorders. The smoothed pseudo Wigner-Ville distribution (SPWVD) based time-frequency representation (TFR) of EEG signal has been used to obtain the time-frequency image (TFI). The segmentation of TFI has been performed based on the frequency-bands of the rhythms of EEG signals. The features derived from the histogram of segmented TFI have been used as an input feature set to multiclass least squares support vector machines (MC-LS-SVM) together with the radial basis function (RBF), Mexican hat wavelet, and Morlet wavelet kernel functions for automatic classification of sleep stages from EEG signals. The experimental results are presented to show the effectiveness of the proposed method for classification of sleep stages from EEG signals. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. 3D Segmentation of Maxilla in Cone-beam Computed Tomography Imaging Using Base Invariant Wavelet Active Shape Model on Customized Two-manifold Topology

    PubMed Central

    Chang, Yu-Bing; Xia, James J.; Yuan, Peng; Kuo, Tai-Hong; Xiong, Zixiang; Gateno, Jaime; Zhou, Xiaobo

    2013-01-01

    Recent advances in cone-beam computed tomography (CBCT) have rapidly enabled widepsread applications of dentomaxillofacial imaging and orthodontic practices in the past decades due to its low radiation dose, high spatial resolution, and accessibility. However, low contrast resolution in CBCT image has become its major limitation in building skull models. Intensive hand-segmentation is usually required to reconstruct the skull models. One of the regions affected by this limitation the most is the thin bone images. This paper presents a novel segmentation approach based on wavelet density model (WDM) for a particular interest in the outer surface of anterior wall of maxilla. Nineteen CBCT datasets are used to conduct two experiments. This mode-based segmentation approach is validated and compared with three different segmentation approaches. The results show that the performance of this model-based segmentation approach is better than those of the other approaches. It can achieve 0.25 ± 0.2mm of surface error from ground truth of bone surface. PMID:23694914

  2. Gabor-based kernel PCA with fractional power polynomial models for face recognition.

    PubMed

    Liu, Chengjun

    2004-05-01

    This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.

  3. Wavelet analysis of polarization azimuths maps for laser images of myocardial tissue for the purpose of diagnosing acute coronary insufficiency

    NASA Astrophysics Data System (ADS)

    Wanchuliak, O. Ya.; Peresunko, A. P.; Bakko, Bouzan Adel; Kushnerick, L. Ya.

    2011-09-01

    This paper presents the foundations of a large scale - localized wavelet - polarization analysis - inhomogeneous laser images of histological sections of myocardial tissue. Opportunities were identified defining relations between the structures of wavelet coefficients and causes of death. The optical model of polycrystalline networks of myocardium protein fibrils is presented. The technique of determining the coordinate distribution of polarization azimuth of the points of laser images of myocardium histological sections is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order) parameters are presented which characterize distributions of wavelet - coefficients polarization maps of myocardium layers and death reasons.

  4. Evidence for asymmetric inertial instability in the FIRE satellite dataset

    NASA Technical Reports Server (NTRS)

    Stevens, Duane E.; Ciesielski, Paul E.

    1990-01-01

    One of the main goals of the First ISCCP Regional Experiment (FIRE) is obtaining the basic knowledge to better interpret satellite image of clouds on regional and smaller scales. An analysis of a mesoscale circulation phenomenon as observed in hourly FIRE satellite images is presented. Specifically, the phenomenon of interest appeared on satellite images as a group of propagating cloud wavelets located on the edge of a cirrus canopy on the anticylonic side of a strong, upper-level subtropical jet. These wavelets, which were observed between 1300 and 2200 GMT on 25 February 1987, are seen most distinctly in the GOES-West infrared satellite picture at 1800 GMT. The purpose is to document that these wavelets were a manifestation of asymmetric inertial instability. During their lifetime, the wavelets were located over the North American synoptic sounding network, so that the meteorological conditions surrounding their occurrence could be examined. A particular emphasis of the analysis is on the jet streak in which the wavelets were imbedded. The characteristics of the wavelets are examined using hourly satellite imagery. The hypothesis that inertial instability is the dynamical mechanism responsible for generating the observed cloud wavelets was examined. To further substantiate this contention, the observed characteristics of the wavelets are compared to, and found to be consistent with, a theoretical model of inertia instability by Stevens and Ciesielski.

  5. Real-time modeling of primitive environments through wavelet sensors and Hebbian learning

    NASA Astrophysics Data System (ADS)

    Vaccaro, James M.; Yaworsky, Paul S.

    1999-06-01

    Modeling the world through sensory input necessarily provides a unique perspective for the observer. Given a limited perspective, objects and events cannot always be encoded precisely but must involve crude, quick approximations to deal with sensory information in a real- time manner. As an example, when avoiding an oncoming car, a pedestrian needs to identify the fact that a car is approaching before ascertaining the model or color of the vehicle. In our methodology, we use wavelet-based sensors with self-organized learning to encode basic sensory information in real-time. The wavelet-based sensors provide necessary transformations while a rank-based Hebbian learning scheme encodes a self-organized environment through translation, scale and orientation invariant sensors. Such a self-organized environment is made possible by combining wavelet sets which are orthonormal, log-scale with linear orientation and have automatically generated membership functions. In earlier work we used Gabor wavelet filters, rank-based Hebbian learning and an exponential modulation function to encode textural information from images. Many different types of modulation are possible, but based on biological findings the exponential modulation function provided a good approximation of first spike coding of `integrate and fire' neurons. These types of Hebbian encoding schemes (e.g., exponential modulation, etc.) are useful for quick response and learning, provide several advantages over contemporary neural network learning approaches, and have been found to quantize data nonlinearly. By combining wavelets with Hebbian learning we can provide a real-time front-end for modeling an intelligent process, such as the autonomous control of agents in a simulated environment.

  6. Wavelet method for CT colonography computer-aided polyp detection.

    PubMed

    Li, Jiang; Van Uitert, Robert; Yao, Jianhua; Petrick, Nicholas; Franaszek, Marek; Huang, Adam; Summers, Ronald M

    2008-08-01

    Computed tomographic colonography (CTC) computer aided detection (CAD) is a new method to detect colon polyps. Colonic polyps are abnormal growths that may become cancerous. Detection and removal of colonic polyps, particularly larger ones, has been shown to reduce the incidence of colorectal cancer. While high sensitivities and low false positive rates are consistently achieved for the detection of polyps sized 1 cm or larger, lower sensitivities and higher false positive rates occur when the goal of CAD is to identify "medium"-sized polyps, 6-9 mm in diameter. Such medium-sized polyps may be important for clinical patient management. We have developed a wavelet-based postprocessor to reduce false positives for this polyp size range. We applied the wavelet-based postprocessor to CTC CAD findings from 44 patients in whom 45 polyps with sizes of 6-9 mm were found at segmentally unblinded optical colonoscopy and visible on retrospective review of the CT colonography images. Prior to the application of the wavelet-based postprocessor, the CTC CAD system detected 33 of the polyps (sensitivity 73.33%) with 12.4 false positives per patient, a sensitivity comparable to that of expert radiologists. Fourfold cross validation with 5000 bootstraps showed that the wavelet-based postprocessor could reduce the false positives by 56.61% (p <0.001), to 5.38 per patient (95% confidence interval [4.41, 6.34]), without significant sensitivity degradation (32/45, 71.11%, 95% confidence interval [66.39%, 75.74%], p=0.1713). We conclude that this wavelet-based postprocessor can substantially reduce the false positive rate of our CTC CAD for this important polyp size range.

  7. Adaptive Filtering in the Wavelet Transform Domain Via Genetic Algorithms

    DTIC Science & Technology

    2004-08-01

    inverse transform process. 2. BACKGROUND The image processing research conducted at the AFRL/IFTA Reconfigurable Computing Laboratory has been...coefficients from the wavelet domain back into the original signal domain. In other words, the inverse transform produces the original signal x(t) from the...coefficients for an inverse wavelet transform, such that the MSE of images reconstructed by this inverse transform is significantly less than the mean squared

  8. Lifting wavelet method of target detection

    NASA Astrophysics Data System (ADS)

    Han, Jun; Zhang, Chi; Jiang, Xu; Wang, Fang; Zhang, Jin

    2009-11-01

    Image target recognition plays a very important role in the areas of scientific exploration, aeronautics and space-to-ground observation, photography and topographic mapping. Complex environment of the image noise, fuzzy, all kinds of interference has always been to affect the stability of recognition algorithm. In this paper, the existence of target detection in real-time, accuracy problems, as well as anti-interference ability, using lifting wavelet image target detection methods. First of all, the use of histogram equalization, the goal difference method to obtain the region, on the basis of adaptive threshold and mathematical morphology operations to deal with the elimination of the background error. Secondly, the use of multi-channel wavelet filter wavelet transform of the original image de-noising and enhancement, to overcome the general algorithm of the noise caused by the sensitive issue of reducing the rate of miscarriage of justice will be the multi-resolution characteristics of wavelet and promotion of the framework can be designed directly in the benefits of space-time region used in target detection, feature extraction of targets. The experimental results show that the design of lifting wavelet has solved the movement of the target due to the complexity of the context of the difficulties caused by testing, which can effectively suppress noise, and improve the efficiency and speed of detection.

  9. l0 regularization based on a prior image incorporated non-local means for limited-angle X-ray CT reconstruction.

    PubMed

    Zhang, Lingli; Zeng, Li; Guo, Yumeng

    2018-01-01

    Restricted by the scanning environment in some CT imaging modalities, the acquired projection data are usually incomplete, which may lead to a limited-angle reconstruction problem. Thus, image quality usually suffers from the slope artifacts. The objective of this study is to first investigate the distorted domains of the reconstructed images which encounter the slope artifacts and then present a new iterative reconstruction method to address the limited-angle X-ray CT reconstruction problem. The presented framework of new method exploits the structural similarity between the prior image and the reconstructed image aiming to compensate the distorted edges. Specifically, the new method utilizes l0 regularization and wavelet tight framelets to suppress the slope artifacts and pursue the sparsity. New method includes following 4 steps to (1) address the data fidelity using SART; (2) compensate for the slope artifacts due to the missed projection data using the prior image and modified nonlocal means (PNLM); (3) utilize l0 regularization to suppress the slope artifacts and pursue the sparsity of wavelet coefficients of the transformed image by using iterative hard thresholding (l0W); and (4) apply an inverse wavelet transform to reconstruct image. In summary, this method is referred to as "l0W-PNLM". Numerical implementations showed that the presented l0W-PNLM was superior to suppress the slope artifacts while preserving the edges of some features as compared to the commercial and other popular investigative algorithms. When the image to be reconstructed is inconsistent with the prior image, the new method can avoid or minimize the distorted edges in the reconstructed images. Quantitative assessments also showed that applying the new method obtained the highest image quality comparing to the existing algorithms. This study demonstrated that the presented l0W-PNLM yielded higher image quality due to a number of unique characteristics, which include that (1) it utilizes the structural similarity between the reconstructed image and prior image to modify the distorted edges by slope artifacts; (2) it adopts wavelet tight frames to obtain the first and high derivative in several directions and levels; and (3) it takes advantage of l0 regularization to promote the sparsity of wavelet coefficients, which is effective for the inhibition of the slope artifacts. Therefore, the new method can address the limited-angle CT reconstruction problem effectively and have practical significance.

  10. Wavelet multiresolution complex network for decoding brain fatigued behavior from P300 signals

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Wang, Zi-Bo; Yang, Yu-Xuan; Li, Shan; Dang, Wei-Dong; Mao, Xiao-Qian

    2018-09-01

    Brain-computer interface (BCI) enables users to interact with the environment without relying on neural pathways and muscles. P300 based BCI systems have been extensively used to achieve human-machine interaction. However, the appearance of fatigue symptoms during operation process leads to the decline in classification accuracy of P300. Characterizing brain cognitive process underlying normal and fatigue conditions constitutes a problem of vital importance in the field of brain science. We in this paper propose a novel wavelet decomposition based complex network method to efficiently analyze the P300 signals recorded in the image stimulus test based on classical 'Oddball' paradigm. Initially, multichannel EEG signals are decomposed into wavelet coefficient series. Then we construct complex network by treating electrodes as nodes and determining the connections according to the 2-norm distances between wavelet coefficient series. The analysis of topological structure and statistical index indicates that the properties of brain network demonstrate significant distinctions between normal status and fatigue status. More specifically, the brain network reconfiguration in response to the cognitive task in fatigue status is reflected as the enhancement of the small-worldness.

  11. Preprocessing of 2-Dimensional Gel Electrophoresis Images Applied to Proteomic Analysis: A Review.

    PubMed

    Goez, Manuel Mauricio; Torres-Madroñero, Maria Constanza; Röthlisberger, Sarah; Delgado-Trejos, Edilson

    2018-02-01

    Various methods and specialized software programs are available for processing two-dimensional gel electrophoresis (2-DGE) images. However, due to the anomalies present in these images, a reliable, automated, and highly reproducible system for 2-DGE image analysis has still not been achieved. The most common anomalies found in 2-DGE images include vertical and horizontal streaking, fuzzy spots, and background noise, which greatly complicate computational analysis. In this paper, we review the preprocessing techniques applied to 2-DGE images for noise reduction, intensity normalization, and background correction. We also present a quantitative comparison of non-linear filtering techniques applied to synthetic gel images, through analyzing the performance of the filters under specific conditions. Synthetic proteins were modeled into a two-dimensional Gaussian distribution with adjustable parameters for changing the size, intensity, and degradation. Three types of noise were added to the images: Gaussian, Rayleigh, and exponential, with signal-to-noise ratios (SNRs) ranging 8-20 decibels (dB). We compared the performance of wavelet, contourlet, total variation (TV), and wavelet-total variation (WTTV) techniques using parameters SNR and spot efficiency. In terms of spot efficiency, contourlet and TV were more sensitive to noise than wavelet and WTTV. Wavelet worked the best for images with SNR ranging 10-20 dB, whereas WTTV performed better with high noise levels. Wavelet also presented the best performance with any level of Gaussian noise and low levels (20-14 dB) of Rayleigh and exponential noise in terms of SNR. Finally, the performance of the non-linear filtering techniques was evaluated using a real 2-DGE image with previously identified proteins marked. Wavelet achieved the best detection rate for the real image. Copyright © 2018 Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. Production and hosting by Elsevier B.V. All rights reserved.

  12. Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation

    PubMed Central

    Maji, Pradipta; Roy, Shaswati

    2015-01-01

    Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR) images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentation method desirable. In this regard, this paper presents a new segmentation method for brain MR images, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method assumes that the major brain tissues, namely, gray matter, white matter, and cerebrospinal fluid from the MR images are considered to have different textural properties. The dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel, while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR image segmentation. An unsupervised feature selection method is introduced, based on maximum relevance-maximum significance criterion, to select relevant and significant textural features for segmentation problem, while the mathematical morphology based skull stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The performance of the proposed method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices. PMID:25848961

  13. A new approach of watermarking technique by means multichannel wavelet functions

    NASA Astrophysics Data System (ADS)

    Agreste, Santa; Puccio, Luigia

    2012-12-01

    The digital piracy involving images, music, movies, books, and so on, is a legal problem that has not found a solution. Therefore it becomes crucial to create and to develop methods and numerical algorithms in order to solve the copyright problems. In this paper we focus the attention on a new approach of watermarking technique applied to digital color images. Our aim is to describe the realized watermarking algorithm based on multichannel wavelet functions with multiplicity r = 3, called MCWM 1.0. We report a large experimentation and some important numerical results in order to show the robustness of the proposed algorithm to geometrical attacks.

  14. Wavelet-based edge correlation incorporated iterative reconstruction for undersampled MRI.

    PubMed

    Hu, Changwei; Qu, Xiaobo; Guo, Di; Bao, Lijun; Chen, Zhong

    2011-09-01

    Undersampling k-space is an effective way to decrease acquisition time for MRI. However, aliasing artifacts introduced by undersampling may blur the edges of magnetic resonance images, which often contain important information for clinical diagnosis. Moreover, k-space data is often contaminated by the noise signals of unknown intensity. To better preserve the edge features while suppressing the aliasing artifacts and noises, we present a new wavelet-based algorithm for undersampled MRI reconstruction. The algorithm solves the image reconstruction as a standard optimization problem including a ℓ(2) data fidelity term and ℓ(1) sparsity regularization term. Rather than manually setting the regularization parameter for the ℓ(1) term, which is directly related to the threshold, an automatic estimated threshold adaptive to noise intensity is introduced in our proposed algorithm. In addition, a prior matrix based on edge correlation in wavelet domain is incorporated into the regularization term. Compared with nonlinear conjugate gradient descent algorithm, iterative shrinkage/thresholding algorithm, fast iterative soft-thresholding algorithm and the iterative thresholding algorithm using exponentially decreasing threshold, the proposed algorithm yields reconstructions with better edge recovery and noise suppression. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. High-Frequency Subband Compressed Sensing MRI Using Quadruplet Sampling

    PubMed Central

    Sung, Kyunghyun; Hargreaves, Brian A

    2013-01-01

    Purpose To presents and validates a new method that formalizes a direct link between k-space and wavelet domains to apply separate undersampling and reconstruction for high- and low-spatial-frequency k-space data. Theory and Methods High- and low-spatial-frequency regions are defined in k-space based on the separation of wavelet subbands, and the conventional compressed sensing (CS) problem is transformed into one of localized k-space estimation. To better exploit wavelet-domain sparsity, CS can be used for high-spatial-frequency regions while parallel imaging can be used for low-spatial-frequency regions. Fourier undersampling is also customized to better accommodate each reconstruction method: random undersampling for CS and regular undersampling for parallel imaging. Results Examples using the proposed method demonstrate successful reconstruction of both low-spatial-frequency content and fine structures in high-resolution 3D breast imaging with a net acceleration of 11 to 12. Conclusion The proposed method improves the reconstruction accuracy of high-spatial-frequency signal content and avoids incoherent artifacts in low-spatial-frequency regions. This new formulation also reduces the reconstruction time due to the smaller problem size. PMID:23280540

  16. Nighttime images fusion based on Laplacian pyramid

    NASA Astrophysics Data System (ADS)

    Wu, Cong; Zhan, Jinhao; Jin, Jicheng

    2018-02-01

    This paper expounds method of the average weighted fusion, image pyramid fusion, the wavelet transform and apply these methods on the fusion of multiple exposures nighttime images. Through calculating information entropy and cross entropy of fusion images, we can evaluate the effect of different fusion. Experiments showed that Laplacian pyramid image fusion algorithm is suitable for processing nighttime images fusion, it can reduce the halo while preserving image details.

  17. Identifying Degenerative Brain Disease Using Rough Set Classifier Based on Wavelet Packet Method.

    PubMed

    Cheng, Ching-Hsue; Liu, Wei-Xiang

    2018-05-28

    Population aging has become a worldwide phenomenon, which causes many serious problems. The medical issues related to degenerative brain disease have gradually become a concern. Magnetic Resonance Imaging is one of the most advanced methods for medical imaging and is especially suitable for brain scans. From the literature, although the automatic segmentation method is less laborious and time-consuming, it is restricted in several specific types of images. In addition, hybrid techniques segmentation improves the shortcomings of the single segmentation method. Therefore, this study proposed a hybrid segmentation combined with rough set classifier and wavelet packet method to identify degenerative brain disease. The proposed method is a three-stage image process method to enhance accuracy of brain disease classification. In the first stage, this study used the proposed hybrid segmentation algorithms to segment the brain ROI (region of interest). In the second stage, wavelet packet was used to conduct the image decomposition and calculate the feature values. In the final stage, the rough set classifier was utilized to identify the degenerative brain disease. In verification and comparison, two experiments were employed to verify the effectiveness of the proposed method and compare with the TV-seg (total variation segmentation) algorithm, Discrete Cosine Transform, and the listing classifiers. Overall, the results indicated that the proposed method outperforms the listing methods.

  18. Just Noticeable Distortion Model and Its Application in Color Image Watermarking

    NASA Astrophysics Data System (ADS)

    Liu, Kuo-Cheng

    In this paper, a perceptually adaptive watermarking scheme for color images is proposed in order to achieve robustness and transparency. A new just noticeable distortion (JND) estimator for color images is first designed in the wavelet domain. The key issue of the JND model is to effectively integrate visual masking effects. The estimator is an extension to the perceptual model that is used in image coding for grayscale images. Except for the visual masking effects given coefficient by coefficient by taking into account the luminance content and the texture of grayscale images, the crossed masking effect given by the interaction between luminance and chrominance components and the effect given by the variance within the local region of the target coefficient are investigated such that the visibility threshold for the human visual system (HVS) can be evaluated. In a locally adaptive fashion based on the wavelet decomposition, the estimator applies to all subbands of luminance and chrominance components of color images and is used to measure the visibility of wavelet quantization errors. The subband JND profiles are then incorporated into the proposed color image watermarking scheme. Performance in terms of robustness and transparency of the watermarking scheme is obtained by means of the proposed approach to embed the maximum strength watermark while maintaining the perceptually lossless quality of the watermarked color image. Simulation results show that the proposed scheme with inserting watermarks into luminance and chrominance components is more robust than the existing scheme while retaining the watermark transparency.

  19. Research of second harmonic generation images based on texture analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Li, Yan; Gong, Haiming; Zhu, Xiaoqin; Huang, Zufang; Chen, Guannan

    2014-09-01

    Texture analysis plays a crucial role in identifying objects or regions of interest in an image. It has been applied to a variety of medical image processing, ranging from the detection of disease and the segmentation of specific anatomical structures, to differentiation between healthy and pathological tissues. Second harmonic generation (SHG) microscopy as a potential noninvasive tool for imaging biological tissues has been widely used in medicine, with reduced phototoxicity and photobleaching. In this paper, we clarified the principles of texture analysis including statistical, transform, structural and model-based methods and gave examples of its applications, reviewing studies of the technique. Moreover, we tried to apply texture analysis to the SHG images for the differentiation of human skin scar tissues. Texture analysis method based on local binary pattern (LBP) and wavelet transform was used to extract texture features of SHG images from collagen in normal and abnormal scars, and then the scar SHG images were classified into normal or abnormal ones. Compared with other texture analysis methods with respect to the receiver operating characteristic analysis, LBP combined with wavelet transform was demonstrated to achieve higher accuracy. It can provide a new way for clinical diagnosis of scar types. At last, future development of texture analysis in SHG images were discussed.

  20. Dependency of Optimal Parameters of the IRIS Template on Image Quality and Border Detection Error

    NASA Astrophysics Data System (ADS)

    Matveev, I. A.; Novik, V. P.

    2017-05-01

    Generation of a template containing spatial-frequency features of iris is an important stage of identification. The template is obtained by a wavelet transform in an image region specified by iris borders. One of the main characteristics of the identification system is the value of recognition error, equal error rate (EER) is used as criterion here. The optimal values (in sense of minimizing the EER) of wavelet transform parameters depend on many factors: image quality, sharpness, size of characteristic objects, etc. It is hard to isolate these factors and their influences. The work presents an attempt to study an influence of following factors to EER: iris segmentation precision, defocus level, noise level. Several public domain iris image databases were involved in experiments. The images were subjected to modelled distortions of said types. The dependencies of wavelet parameter and EER values from the distortion levels were build. It is observed that the increase of the segmentation error and image noise leads to the increase of the optimal wavelength of the wavelets, whereas the increase of defocus level leads to decreasing of this value.

  1. Quantification of localized vertebral deformities using a sparse wavelet-based shape model.

    PubMed

    Zewail, R; Elsafi, A; Durdle, N

    2008-01-01

    Medical experts often examine hundreds of spine x-ray images to determine existence of various pathologies. Common pathologies of interest are anterior osteophites, disc space narrowing, and wedging. By careful inspection of the outline shapes of the vertebral bodies, experts are able to identify and assess vertebral abnormalities with respect to the pathology under investigation. In this paper, we present a novel method for quantification of vertebral deformation using a sparse shape model. Using wavelets and Independent component analysis (ICA), we construct a sparse shape model that benefits from the approximation power of wavelets and the capability of ICA to capture higher order statistics in wavelet space. The new model is able to capture localized pathology-related shape deformations, hence it allows for quantification of vertebral shape variations. We investigate the capability of the model to predict localized pathology related deformations. Next, using support-vector machines, we demonstrate the diagnostic capabilities of the method through the discrimination of anterior osteophites in lumbar vertebrae. Experiments were conducted using a set of 150 contours from digital x-ray images of lumbar spine. Each vertebra is labeled as normal or abnormal. Results reported in this work focus on anterior osteophites as the pathology of interest.

  2. Development of a classification method for a crack on a pavement surface images using machine learning

    NASA Astrophysics Data System (ADS)

    Hizukuri, Akiyoshi; Nagata, Takeshi

    2017-03-01

    The purpose of this study is to develop a classification method for a crack on a pavement surface image using machine learning to reduce a maintenance fee. Our database consists of 3500 pavement surface images. This includes 800 crack and 2700 normal pavement surface images. The pavement surface images first are decomposed into several sub-images using a discrete wavelet transform (DWT) decomposition. We then calculate the wavelet sub-band histogram from each several sub-images at each level. The support vector machine (SVM) with computed wavelet sub-band histogram is employed for distinguishing between a crack and normal pavement surface images. The accuracies of the proposed classification method are 85.3% for crack and 84.4% for normal pavement images. The proposed classification method achieved high performance. Therefore, the proposed method would be useful in maintenance inspection.

  3. A Method for Extracting Suspected Parotid Lesions in CT Images using Feature-based Segmentation and Active Contours based on Stationary Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Wu, T. Y.; Lin, S. F.

    2013-10-01

    Automatic suspected lesion extraction is an important application in computer-aided diagnosis (CAD). In this paper, we propose a method to automatically extract the suspected parotid regions for clinical evaluation in head and neck CT images. The suspected lesion tissues in low contrast tissue regions can be localized with feature-based segmentation (FBS) based on local texture features, and can be delineated with accuracy by modified active contour models (ACM). At first, stationary wavelet transform (SWT) is introduced. The derived wavelet coefficients are applied to derive the local features for FBS, and to generate enhanced energy maps for ACM computation. Geometric shape features (GSFs) are proposed to analyze each soft tissue region segmented by FBS; the regions with higher similarity GSFs with the lesions are extracted and the information is also applied as the initial conditions for fine delineation computation. Consequently, the suspected lesions can be automatically localized and accurately delineated for aiding clinical diagnosis. The performance of the proposed method is evaluated by comparing with the results outlined by clinical experts. The experiments on 20 pathological CT data sets show that the true-positive (TP) rate on recognizing parotid lesions is about 94%, and the dimension accuracy of delineation results can also approach over 93%.

  4. Textural characterization of histopathological images for oral sub-mucous fibrosis detection.

    PubMed

    Krishnan, M Muthu Rama; Shah, Pratik; Choudhary, Anirudh; Chakraborty, Chandan; Paul, Ranjan Rashmi; Ray, Ajoy K

    2011-10-01

    In the field of quantitative microscopy, textural information plays a significant role very often in tissue characterization and diagnosis, in addition to morphology and intensity. The aim of this work is to improve the classification accuracy based on textural features for the development of a computer assisted screening of oral sub-mucous fibrosis (OSF). In fact, a systematic approach is introduced in order to grade the histopathological tissue sections into normal, OSF without dysplasia and OSF with dysplasia, which would help the oral onco-pathologists to screen the subjects rapidly. In totality, 71 textural features are extracted from epithelial region of the tissue sections using various wavelet families, Gabor-wavelet, local binary pattern, fractal dimension and Brownian motion curve, followed by preprocessing and segmentation. Wavelet families contribute a common set of 9 features, out of which 8 are significant and other 61 out of 62 obtained from the rest of the extractors are also statistically significant (p<0.05) in discriminating the three stages. Based on mean distance criteria, the best wavelet family (i.e., biorthogonal3.1 (bior3.1)) is selected for classifier design. support vector machine (SVM) is trained by 146 samples based on 69 textural features and its classification accuracy is computed for each of the combinations of wavelet family and rest of the extractors. Finally, it has been investigated that bior3.1 wavelet coefficients leads to higher accuracy (88.38%) in combination with LBP and Gabor wavelet features through three-fold cross validation. Results are shown and discussed in detail. It is shown that combining more than one texture measure instead of using just one might improve the overall accuracy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Pre-processing, registration and selection of adaptive optics corrected retinal images.

    PubMed

    Ramaswamy, Gomathy; Devaney, Nicholas

    2013-07-01

    In this paper, the aim is to demonstrate enhanced processing of sequences of fundus images obtained using a commercial AO flood illumination system. The purpose of the work is to (1) correct for uneven illumination at the retina (2) automatically select the best quality images and (3) precisely register the best images. Adaptive optics corrected retinal images are pre-processed to correct uneven illumination using different methods; subtracting or dividing by the average filtered image, homomorphic filtering and a wavelet based approach. These images are evaluated to measure the image quality using various parameters, including sharpness, variance, power spectrum kurtosis and contrast. We have carried out the registration in two stages; a coarse stage using cross-correlation followed by fine registration using two approaches; parabolic interpolation on the peak of the cross-correlation and maximum-likelihood estimation. The angle of rotation of the images is measured using a combination of peak tracking and Procrustes transformation. We have found that a wavelet approach (Daubechies 4 wavelet at 6th level decomposition) provides good illumination correction with clear improvement in image sharpness and contrast. The assessment of image quality using a 'Designer metric' works well when compared to visual evaluation, although it is highly correlated with other metrics. In image registration, sub-pixel translation measured using parabolic interpolation on the peak of the cross-correlation function and maximum-likelihood estimation are found to give very similar results (RMS difference 0.047 pixels). We have confirmed that correcting rotation of the images provides a significant improvement, especially at the edges of the image. We observed that selecting the better quality frames (e.g. best 75% images) for image registration gives improved resolution, at the expense of poorer signal-to-noise. The sharpness map of the registered and de-rotated images shows increased sharpness over most of the field of view. Adaptive optics assisted images of the cone photoreceptors can be better pre-processed using a wavelet approach. These images can be assessed for image quality using a 'Designer Metric'. Two-stage image registration including correcting for rotation significantly improves the final image contrast and sharpness. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  6. Signal-to-noise ratio comparison of encoding methods for hyperpolarized noble gas MRI

    NASA Technical Reports Server (NTRS)

    Zhao, L.; Venkatesh, A. K.; Albert, M. S.; Panych, L. P.

    2001-01-01

    Some non-Fourier encoding methods such as wavelet and direct encoding use spatially localized bases. The spatial localization feature of these methods enables optimized encoding for improved spatial and temporal resolution during dynamically adaptive MR imaging. These spatially localized bases, however, have inherently reduced image signal-to-noise ratio compared with Fourier or Hadamad encoding for proton imaging. Hyperpolarized noble gases, on the other hand, have quite different MR properties compared to proton, primarily the nonrenewability of the signal. It could be expected, therefore, that the characteristics of image SNR with respect to encoding method will also be very different from hyperpolarized noble gas MRI compared to proton MRI. In this article, hyperpolarized noble gas image SNRs of different encoding methods are compared theoretically using a matrix description of the encoding process. It is shown that image SNR for hyperpolarized noble gas imaging is maximized for any orthonormal encoding method. Methods are then proposed for designing RF pulses to achieve normalized encoding profiles using Fourier, Hadamard, wavelet, and direct encoding methods for hyperpolarized noble gases. Theoretical results are confirmed with hyperpolarized noble gas MRI experiments. Copyright 2001 Academic Press.

  7. Reversible wavelet filter banks with side informationless spatially adaptive low-pass filters

    NASA Astrophysics Data System (ADS)

    Abhayaratne, Charith

    2011-07-01

    Wavelet transforms that have an adaptive low-pass filter are useful in applications that require the signal singularities, sharp transitions, and image edges to be left intact in the low-pass signal. In scalable image coding, the spatial resolution scalability is achieved by reconstructing the low-pass signal subband, which corresponds to the desired resolution level, and discarding other high-frequency wavelet subbands. In such applications, it is vital to have low-pass subbands that are not affected by smoothing artifacts associated with low-pass filtering. We present the mathematical framework for achieving 1-D wavelet transforms that have a spatially adaptive low-pass filter (SALP) using the prediction-first lifting scheme. The adaptivity decisions are computed using the wavelet coefficients, and no bookkeeping is required for the perfect reconstruction. Then, 2-D wavelet transforms that have a spatially adaptive low-pass filter are designed by extending the 1-D SALP framework. Because the 2-D polyphase decompositions are used in this case, the 2-D adaptivity decisions are made nonseparable as opposed to the separable 2-D realization using 1-D transforms. We present examples using the 2-D 5/3 wavelet transform and their lossless image coding and scalable decoding performances in terms of quality and resolution scalability. The proposed 2-D-SALP scheme results in better performance compared to the existing adaptive update lifting schemes.

  8. Statistical characterization of portal images and noise from portal imaging systems.

    PubMed

    González-López, Antonio; Morales-Sánchez, Juan; Verdú-Monedero, Rafael; Larrey-Ruiz, Jorge

    2013-06-01

    In this paper, we consider the statistical characteristics of the so-called portal images, which are acquired prior to the radiotherapy treatment, as well as the noise that present the portal imaging systems, in order to analyze whether the well-known noise and image features in other image modalities, such as natural image, can be found in the portal imaging modality. The study is carried out in the spatial image domain, in the Fourier domain, and finally in the wavelet domain. The probability density of the noise in the spatial image domain, the power spectral densities of the image and noise, and the marginal, joint, and conditional statistical distributions of the wavelet coefficients are estimated. Moreover, the statistical dependencies between noise and signal are investigated. The obtained results are compared with practical and useful references, like the characteristics of the natural image and the white noise. Finally, we discuss the implication of the results obtained in several noise reduction methods that operate in the wavelet domain.

  9. Bayesian demosaicing using Gaussian scale mixture priors with local adaptivity in the dual tree complex wavelet packet transform domain

    NASA Astrophysics Data System (ADS)

    Goossens, Bart; Aelterman, Jan; Luong, Hiep; Pizurica, Aleksandra; Philips, Wilfried

    2013-02-01

    In digital cameras and mobile phones, there is an ongoing trend to increase the image resolution, decrease the sensor size and to use lower exposure times. Because smaller sensors inherently lead to more noise and a worse spatial resolution, digital post-processing techniques are required to resolve many of the artifacts. Color filter arrays (CFAs), which use alternating patterns of color filters, are very popular because of price and power consumption reasons. However, color filter arrays require the use of a post-processing technique such as demosaicing to recover full resolution RGB images. Recently, there has been some interest in techniques that jointly perform the demosaicing and denoising. This has the advantage that the demosaicing and denoising can be performed optimally (e.g. in the MSE sense) for the considered noise model, while avoiding artifacts introduced when using demosaicing and denoising sequentially. In this paper, we will continue the research line of the wavelet-based demosaicing techniques. These approaches are computationally simple and very suited for combination with denoising. Therefore, we will derive Bayesian Minimum Squared Error (MMSE) joint demosaicing and denoising rules in the complex wavelet packet domain, taking local adaptivity into account. As an image model, we will use Gaussian Scale Mixtures, thereby taking advantage of the directionality of the complex wavelets. Our results show that this technique is well capable of reconstructing fine details in the image, while removing all of the noise, at a relatively low computational cost. In particular, the complete reconstruction (including color correction, white balancing etc) of a 12 megapixel RAW image takes 3.5 sec on a recent mid-range GPU.

  10. Fusion of multiscale wavelet-based fractal analysis on retina image for stroke prediction.

    PubMed

    Che Azemin, M Z; Kumar, Dinesh K; Wong, T Y; Wang, J J; Kawasaki, R; Mitchell, P; Arjunan, Sridhar P

    2010-01-01

    In this paper, we present a novel method of analyzing retinal vasculature using Fourier Fractal Dimension to extract the complexity of the retinal vasculature enhanced at different wavelet scales. Logistic regression was used as a fusion method to model the classifier for 5-year stroke prediction. The efficacy of this technique has been tested using standard pattern recognition performance evaluation, Receivers Operating Characteristics (ROC) analysis and medical prediction statistics, odds ratio. Stroke prediction model was developed using the proposed system.

  11. WAVELET-DOMAIN REGRESSION AND PREDICTIVE INFERENCE IN PSYCHIATRIC NEUROIMAGING

    PubMed Central

    Reiss, Philip T.; Huo, Lan; Zhao, Yihong; Kelly, Clare; Ogden, R. Todd

    2016-01-01

    An increasingly important goal of psychiatry is the use of brain imaging data to develop predictive models. Here we present two contributions to statistical methodology for this purpose. First, we propose and compare a set of wavelet-domain procedures for fitting generalized linear models with scalar responses and image predictors: sparse variants of principal component regression and of partial least squares, and the elastic net. Second, we consider assessing the contribution of image predictors over and above available scalar predictors, in particular via permutation tests and an extension of the idea of confounding to the case of functional or image predictors. Using the proposed methods, we assess whether maps of a spontaneous brain activity measure, derived from functional magnetic resonance imaging, can meaningfully predict presence or absence of attention deficit/hyperactivity disorder (ADHD). Our results shed light on the role of confounding in the surprising outcome of the recent ADHD-200 Global Competition, which challenged researchers to develop algorithms for automated image-based diagnosis of the disorder. PMID:27330652

  12. Embedded DCT and wavelet methods for fine granular scalable video: analysis and comparison

    NASA Astrophysics Data System (ADS)

    van der Schaar-Mitrea, Mihaela; Chen, Yingwei; Radha, Hayder

    2000-04-01

    Video transmission over bandwidth-varying networks is becoming increasingly important due to emerging applications such as streaming of video over the Internet. The fundamental obstacle in designing such systems resides in the varying characteristics of the Internet (i.e. bandwidth variations and packet-loss patterns). In MPEG-4, a new SNR scalability scheme, called Fine-Granular-Scalability (FGS), is currently under standardization, which is able to adapt in real-time (i.e. at transmission time) to Internet bandwidth variations. The FGS framework consists of a non-scalable motion-predicted base-layer and an intra-coded fine-granular scalable enhancement layer. For example, the base layer can be coded using a DCT-based MPEG-4 compliant, highly efficient video compression scheme. Subsequently, the difference between the original and decoded base-layer is computed, and the resulting FGS-residual signal is intra-frame coded with an embedded scalable coder. In order to achieve high coding efficiency when compressing the FGS enhancement layer, it is crucial to analyze the nature and characteristics of residual signals common to the SNR scalability framework (including FGS). In this paper, we present a thorough analysis of SNR residual signals by evaluating its statistical properties, compaction efficiency and frequency characteristics. The signal analysis revealed that the energy compaction of the DCT and wavelet transforms is limited and the frequency characteristic of SNR residual signals decay rather slowly. Moreover, the blockiness artifacts of the low bit-rate coded base-layer result in artificial high frequencies in the residual signal. Subsequently, a variety of wavelet and embedded DCT coding techniques applicable to the FGS framework are evaluated and their results are interpreted based on the identified signal properties. As expected from the theoretical signal analysis, the rate-distortion performances of the embedded wavelet and DCT-based coders are very similar. However, improved results can be obtained for the wavelet coder by deblocking the base- layer prior to the FGS residual computation. Based on the theoretical analysis and our measurements, we can conclude that for an optimal complexity versus coding-efficiency trade- off, only limited wavelet decomposition (e.g. 2 stages) needs to be performed for the FGS-residual signal. Also, it was observed that the good rate-distortion performance of a coding technique for a certain image type (e.g. natural still-images) does not necessarily translate into similarly good performance for signals with different visual characteristics and statistical properties.

  13. Wavelet packets for multi- and hyper-spectral imagery

    NASA Astrophysics Data System (ADS)

    Benedetto, J. J.; Czaja, W.; Ehler, M.; Flake, C.; Hirn, M.

    2010-01-01

    State of the art dimension reduction and classification schemes in multi- and hyper-spectral imaging rely primarily on the information contained in the spectral component. To better capture the joint spatial and spectral data distribution we combine the Wavelet Packet Transform with the linear dimension reduction method of Principal Component Analysis. Each spectral band is decomposed by means of the Wavelet Packet Transform and we consider a joint entropy across all the spectral bands as a tool to exploit the spatial information. Dimension reduction is then applied to the Wavelet Packets coefficients. We present examples of this technique for hyper-spectral satellite imaging. We also investigate the role of various shrinkage techniques to model non-linearity in our approach.

  14. Infrared and visual image fusion method based on discrete cosine transform and local spatial frequency in discrete stationary wavelet transform domain

    NASA Astrophysics Data System (ADS)

    Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Lee, Shin-Jye; He, Kangjian

    2018-01-01

    In order to promote the performance of infrared and visual image fusion and provide better visual effects, this paper proposes a hybrid fusion method for infrared and visual image by the combination of discrete stationary wavelet transform (DSWT), discrete cosine transform (DCT) and local spatial frequency (LSF). The proposed method has three key processing steps. Firstly, DSWT is employed to decompose the important features of the source image into a series of sub-images with different levels and spatial frequencies. Secondly, DCT is used to separate the significant details of the sub-images according to the energy of different frequencies. Thirdly, LSF is applied to enhance the regional features of DCT coefficients, and it can be helpful and useful for image feature extraction. Some frequently-used image fusion methods and evaluation metrics are employed to evaluate the validity of the proposed method. The experiments indicate that the proposed method can achieve good fusion effect, and it is more efficient than other conventional image fusion methods.

  15. A de-noising algorithm based on wavelet threshold-exponential adaptive window width-fitting for ground electrical source airborne transient electromagnetic signal

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun

    2016-05-01

    The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.

  16. Wavelet Analysis of SAR Images for Coastal Monitoring

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Wu, Sunny Y.; Tseng, William Y.; Pichel, William G.

    1998-01-01

    The mapping of mesoscale ocean features in the coastal zone is a major potential application for satellite data. The evolution of mesoscale features such as oil slicks, fronts, eddies, and ice edge can be tracked by the wavelet analysis using satellite data from repeating paths. The wavelet transform has been applied to satellite images, such as those from Synthetic Aperture Radar (SAR), Advanced Very High-Resolution Radiometer (AVHRR), and ocean color sensor for feature extraction. In this paper, algorithms and techniques for automated detection and tracking of mesoscale features from satellite SAR imagery employing wavelet analysis have been developed. Case studies on two major coastal oil spills have been investigated using wavelet analysis for tracking along the coast of Uruguay (February 1997), and near Point Barrow, Alaska (November 1997). Comparison of SAR images with SeaWiFS (Sea-viewing Wide Field-of-view Sensor) data for coccolithophore bloom in the East Bering Sea during the fall of 1997 shows a good match on bloom boundary. This paper demonstrates that this technique is a useful and promising tool for monitoring of coastal waters.

  17. Multispectral Image Enhancement Through Adaptive Wavelet Fusion

    DTIC Science & Technology

    2016-09-14

    13. SUPPLEMENTARY NOTES 14. ABSTRACT This research developed a multiresolution image fusion scheme based on guided filtering . Guided filtering can...effectively reduce noise while preserving detail boundaries. When applied in an iterative mode, guided filtering selectively eliminates small scale...details while restoring larger scale edges. The proposed multi-scale image fusion scheme achieves spatial consistency by using guided filtering both at

  18. Design and evaluation of sparse quantization index modulation watermarking schemes

    NASA Astrophysics Data System (ADS)

    Cornelis, Bruno; Barbarien, Joeri; Dooms, Ann; Munteanu, Adrian; Cornelis, Jan; Schelkens, Peter

    2008-08-01

    In the past decade the use of digital data has increased significantly. The advantages of digital data are, amongst others, easy editing, fast, cheap and cross-platform distribution and compact storage. The most crucial disadvantages are the unauthorized copying and copyright issues, by which authors and license holders can suffer considerable financial losses. Many inexpensive methods are readily available for editing digital data and, unlike analog information, the reproduction in the digital case is simple and robust. Hence, there is great interest in developing technology that helps to protect the integrity of a digital work and the copyrights of its owners. Watermarking, which is the embedding of a signal (known as the watermark) into the original digital data, is one method that has been proposed for the protection of digital media elements such as audio, video and images. In this article, we examine watermarking schemes for still images, based on selective quantization of the coefficients of a wavelet transformed image, i.e. sparse quantization-index modulation (QIM) watermarking. Different grouping schemes for the wavelet coefficients are evaluated and experimentally verified for robustness against several attacks. Wavelet tree-based grouping schemes yield a slightly improved performance over block-based grouping schemes. Additionally, the impact of the deployment of error correction codes on the most promising configurations is examined. The utilization of BCH-codes (Bose, Ray-Chaudhuri, Hocquenghem) results in an improved robustness as long as the capacity of the error codes is not exceeded (cliff-effect).

  19. Space imaging infrared optical guidance for autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  20. Anisotropic analysis of trabecular architecture in human femur bone radiographs using quaternion wavelet transforms.

    PubMed

    Sangeetha, S; Sujatha, C M; Manamalli, D

    2014-01-01

    In this work, anisotropy of compressive and tensile strength regions of femur trabecular bone are analysed using quaternion wavelet transforms. The normal and abnormal femur trabecular bone radiographic images are considered for this study. The sub-anatomic regions, which include compressive and tensile regions, are delineated using pre-processing procedures. These delineated regions are subjected to quaternion wavelet transforms and statistical parameters are derived from the transformed images. These parameters are correlated with apparent porosity, which is derived from the strength regions. Further, anisotropy is also calculated from the transformed images and is analyzed. Results show that the anisotropy values derived from second and third phase components of quaternion wavelet transform are found to be distinct for normal and abnormal samples with high statistical significance for both compressive and tensile regions. These investigations demonstrate that architectural anisotropy derived from QWT analysis is able to differentiate normal and abnormal samples.

  1. Improving wavelet denoising based on an in-depth analysis of the camera color processing

    NASA Astrophysics Data System (ADS)

    Seybold, Tamara; Plichta, Mathias; Stechele, Walter

    2015-02-01

    While Denoising is an extensively studied task in signal processing research, most denoising methods are designed and evaluated using readily processed image data, e.g. the well-known Kodak data set. The noise model is usually additive white Gaussian noise (AWGN). This kind of test data does not correspond to nowadays real-world image data taken with a digital camera. Using such unrealistic data to test, optimize and compare denoising algorithms may lead to incorrect parameter tuning or suboptimal choices in research on real-time camera denoising algorithms. In this paper we derive a precise analysis of the noise characteristics for the different steps in the color processing. Based on real camera noise measurements and simulation of the processing steps, we obtain a good approximation for the noise characteristics. We further show how this approximation can be used in standard wavelet denoising methods. We improve the wavelet hard thresholding and bivariate thresholding based on our noise analysis results. Both the visual quality and objective quality metrics show the advantage of the proposed method. As the method is implemented using look-up-tables that are calculated before the denoising step, our method can be implemented with very low computational complexity and can process HD video sequences real-time in an FPGA.

  2. Wavelet transform analysis of the small-scale X-ray structure of the cluster Abell 1367

    NASA Technical Reports Server (NTRS)

    Grebeney, S. A.; Forman, W.; Jones, C.; Murray, S.

    1995-01-01

    We have developed a new technique based on a wavelet transform analysis to quantify the small-scale (less than a few arcminutes) X-ray structure of clusters of galaxies. We apply this technique to the ROSAT position sensitive proportional counter (PSPC) and Einstein high-resolution imager (HRI) images of the central region of the cluster Abell 1367 to detect sources embedded within the diffuse intracluster medium. In addition to detecting sources and determining their fluxes and positions, we show that the wavelet analysis allows a characterization of the sources extents. In particular, the wavelet scale at which a given source achieves a maximum signal-to-noise ratio in the wavelet images provides an estimate of the angular extent of the source. To account for the widely varying point response of the ROSAT PSPC as a function of off-axis angle requires a quantitative measurement of the source size and a comparison to a calibration derived from the analysis of a Deep Survey image. Therefore, we assume that each source could be described as an isotropic two-dimensional Gaussian and used the wavelet amplitudes, at different scales, to determine the equivalent Gaussian Full Width Half-Maximum (FWHM) (and its uncertainty) appropriate for each source. In our analysis of the ROSAT PSPC image, we detect 31 X-ray sources above the diffuse cluster emission (within a radius of 24 min), 16 of which are apparently associated with cluster galaxies and two with serendipitous, background quasars. We find that the angular extents of 11 sources exceed the nominal width of the PSPC point-spread function. Four of these extended sources were previously detected by Bechtold et al. (1983) as 1 sec scale features using the Einstein HRI. The same wavelet analysis technique was applied to the Einstein HRI image. We detect 28 sources in the HRI image, of which nine are extended. Eight of the extended sources correspond to sources previously detected by Bechtold et al. Overall, using both the PSPC and the HRI observations, we detect 16 extended features, of which nine have galaxies coincided with the X-ray-measured positions (within the positional error circles). These extended sources have luminosities lying in the range (3 - 30) x 10(exp 40) ergs/s and gas masses of approximately (1 - 30) x 10(exp 9) solar mass, if the X-rays are of thermal origin. We confirm the presence of extended features in A1367 first reported by Bechtold et al. (1983). The nature of these systems remains uncertain. The luminosities are large if the emission is attributed to single galaxies, and several of the extended features have no associated galaxy counterparts. The extended features may be associated with galaxy groups, as suggested by Canizares, Fabbiano, & Trinchieri (1987), although the number required is large.

  3. Research of generalized wavelet transformations of Haar correctness in remote sensing of the Earth

    NASA Astrophysics Data System (ADS)

    Kazaryan, Maretta; Shakhramanyan, Mihail; Nedkov, Roumen; Richter, Andrey; Borisova, Denitsa; Stankova, Nataliya; Ivanova, Iva; Zaharinova, Mariana

    2017-10-01

    In this paper, Haar's generalized wavelet functions are applied to the problem of ecological monitoring by the method of remote sensing of the Earth. We study generalized Haar wavelet series and suggest the use of Tikhonov's regularization method for investigating them for correctness. In the solution of this problem, an important role is played by classes of functions that were introduced and described in detail by I.M. Sobol for studying multidimensional quadrature formulas and it contains functions with rapidly convergent series of wavelet Haar. A theorem on the stability and uniform convergence of the regularized summation function of the generalized wavelet-Haar series of a function from this class with approximate coefficients is proved. The article also examines the problem of using orthogonal transformations in Earth remote sensing technologies for environmental monitoring. Remote sensing of the Earth allows to receive from spacecrafts information of medium, high spatial resolution and to conduct hyperspectral measurements. Spacecrafts have tens or hundreds of spectral channels. To process the images, the device of discrete orthogonal transforms, and namely, wavelet transforms, was used. The aim of the work is to apply the regularization method in one of the problems associated with remote sensing of the Earth and subsequently to process the satellite images through discrete orthogonal transformations, in particular, generalized Haar wavelet transforms. General methods of research. In this paper, Tikhonov's regularization method, the elements of mathematical analysis, the theory of discrete orthogonal transformations, and methods for decoding of satellite images are used. Scientific novelty. The task of processing of archival satellite snapshots (images), in particular, signal filtering, was investigated from the point of view of an incorrectly posed problem. The regularization parameters for discrete orthogonal transformations were determined.

  4. Fabric wrinkle characterization and classification using modified wavelet coefficients and optimized support-vector-machine classifier

    USDA-ARS?s Scientific Manuscript database

    This paper presents a novel wrinkle evaluation method that uses modified wavelet coefficients and an optimized support-vector-machine (SVM) classification scheme to characterize and classify wrinkle appearance of fabric. Fabric images were decomposed with the wavelet transform (WT), and five parame...

  5. Logo image clustering based on advanced statistics

    NASA Astrophysics Data System (ADS)

    Wei, Yi; Kamel, Mohamed; He, Yiwei

    2007-11-01

    In recent years, there has been a growing interest in the research of image content description techniques. Among those, image clustering is one of the most frequently discussed topics. Similar to image recognition, image clustering is also a high-level representation technique. However it focuses on the coarse categorization rather than the accurate recognition. Based on wavelet transform (WT) and advanced statistics, the authors propose a novel approach that divides various shaped logo images into groups according to the external boundary of each logo image. Experimental results show that the presented method is accurate, fast and insensitive to defects.

  6. A detection method for X-ray images based on wavelet transforms: the case of the ROSAT PSPC.

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Maggio, A.; Micela, G.; Sciortino, S.

    1996-02-01

    The authors have developed a method based on wavelet transforms (WT) to detect efficiently sources in PSPC X-ray images. The multiscale approach typical of WT can be used to detect sources with a large range of sizes, and to estimate their size and count rate. Significance thresholds for candidate detections (found as local WT maxima) have been derived from a detailed study of the probability distribution of the WT of a locally uniform background. The use of the exposure map allows good detection efficiency to be retained even near PSPC ribs and edges. The algorithm may also be used to get upper limits to the count rate of undetected objects. Simulations of realistic PSPC images containing either pure background or background+sources were used to test the overall algorithm performances, and to assess the frequency of spurious detections (vs. detection threshold) and the algorithm sensitivity. Actual PSPC images of galaxies and star clusters show the algorithm to have good performance even in cases of extended sources and crowded fields.

  7. EBLAST: an efficient high-compression image transformation 3. application to Internet image and video transmission

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.; Ritter, Gerhard X.; Caimi, Frank M.

    2001-12-01

    A wide variety of digital image compression transforms developed for still imaging and broadcast video transmission are unsuitable for Internet video applications due to insufficient compression ratio, poor reconstruction fidelity, or excessive computational requirements. Examples include hierarchical transforms that require all, or large portion of, a source image to reside in memory at one time, transforms that induce significant locking effect at operationally salient compression ratios, and algorithms that require large amounts of floating-point computation. The latter constraint holds especially for video compression by small mobile imaging devices for transmission to, and compression on, platforms such as palmtop computers or personal digital assistants (PDAs). As Internet video requirements for frame rate and resolution increase to produce more detailed, less discontinuous motion sequences, a new class of compression transforms will be needed, especially for small memory models and displays such as those found on PDAs. In this, the third series of papers, we discuss the EBLAST compression transform and its application to Internet communication. Leading transforms for compression of Internet video and still imagery are reviewed and analyzed, including GIF, JPEG, AWIC (wavelet-based), wavelet packets, and SPIHT, whose performance is compared with EBLAST. Performance analysis criteria include time and space complexity and quality of the decompressed image. The latter is determined by rate-distortion data obtained from a database of realistic test images. Discussion also includes issues such as robustness of the compressed format to channel noise. EBLAST has been shown to perform superiorly to JPEG and, unlike current wavelet compression transforms, supports fast implementation on embedded processors with small memory models.

  8. Measurement of the noise components in the medical x-ray intensity pattern due to overlaying nonrecognizable structures

    NASA Astrophysics Data System (ADS)

    Tischenko, Oleg; Hoeschen, Christoph; Effenberger, Olaf; Reissberg, Steffen; Buhr, Egbert; Doehring, Wilfried

    2003-06-01

    There are many aspects that influence and deteriorate the detection of pathologies in X-ray images. Some of those are due to effects taking place in the stage of forming the X-ray intensity pattern in front of the x-ray detector. These can be described as motion blurring, depth blurring, anatomical background, scatter noise and structural noise. Structural noise results from an overlapping of fine irrelevant anatomical structures. A method for measuring the combined effect of structural noise and scatter noise was developed and will be presented in this paper. This method is based on the consideration that within a pair of projections created after rotation of the object with a small angle (which is within the typical uncertainty in positioning the patient) both images would show the same relevant structures whereas the projection of the fine overlapping structures will appear quite differently in the two images. To demonstrate the method two X-ray radiographs of a lung phantom were produced. The second radiograph was achieved after rotating the lung by an angle of about 3. Dyadic wavelet representations of both images were regarded. For each value of the wavelet scale parameter the corresponding pair of approximations was matched using the cross correlation matching technique. The homologous regions of approximations were extracted. The image containing only those structures that appear in both images simultaneously was then reconstructed from the wavelet coefficients corresponding to the homologous regions. The difference between one of the original images and the noise-reduced image contains the structural noise and the scatter noise.

  9. Unsupervised symmetrical trademark image retrieval in soccer telecast using wavelet energy and quadtree decomposition

    NASA Astrophysics Data System (ADS)

    Ong, Swee Khai; Lim, Wee Keong; Soo, Wooi King

    2013-04-01

    Trademark, a distinctive symbol, is used to distinguish products or services provided by a particular person, group or organization from other similar entries. As trademark represents the reputation and credit standing of the owner, it is important to differentiate one trademark from another. Many methods have been proposed to identify, classify and retrieve trademarks. However, most methods required features database and sample sets for training prior to recognition and retrieval process. In this paper, a new feature on wavelet coefficients, the localized wavelet energy, is introduced to extract features of trademarks. With this, unsupervised content-based symmetrical trademark image retrieval is proposed without the database and prior training set. The feature analysis is done by an integration of the proposed localized wavelet energy and quadtree decomposed regional symmetrical vector. The proposed framework eradicates the dependence on query database and human participation during the retrieval process. In this paper, trademarks for soccer games sponsors are the intended trademark category. Video frames from soccer telecast are extracted and processed for this study. Reasonably good localization and retrieval results on certain categories of trademarks are achieved. A distinctive symbol is used to distinguish products or services provided by a particular person, group or organization from other similar entries.

  10. Functional magnetic resonance imaging activation detection: fuzzy cluster analysis in wavelet and multiwavelet domains.

    PubMed

    Jahanian, Hesamoddin; Soltanian-Zadeh, Hamid; Hossein-Zadeh, Gholam-Ali

    2005-09-01

    To present novel feature spaces, based on multiscale decompositions obtained by scalar wavelet and multiwavelet transforms, to remedy problems associated with high dimension of functional magnetic resonance imaging (fMRI) time series (when they are used directly in clustering algorithms) and their poor signal-to-noise ratio (SNR) that limits accurate classification of fMRI time series according to their activation contents. Using randomization, the proposed method finds wavelet/multiwavelet coefficients that represent the activation content of fMRI time series and combines them to define new feature spaces. Using simulated and experimental fMRI data sets, the proposed feature spaces are compared to the cross-correlation (CC) feature space and their performances are evaluated. In these studies, the false positive detection rate is controlled using randomization. To compare different methods, several points of the receiver operating characteristics (ROC) curves, using simulated data, are estimated and compared. The proposed features suppress the effects of confounding signals and improve activation detection sensitivity. Experimental results show improved sensitivity and robustness of the proposed method compared to the conventional CC analysis. More accurate and sensitive activation detection can be achieved using the proposed feature spaces compared to CC feature space. Multiwavelet features show superior detection sensitivity compared to the scalar wavelet features. (c) 2005 Wiley-Liss, Inc.

  11. Automatic medical image annotation and keyword-based image retrieval using relevance feedback.

    PubMed

    Ko, Byoung Chul; Lee, JiHyeon; Nam, Jae-Yeal

    2012-08-01

    This paper presents novel multiple keywords annotation for medical images, keyword-based medical image retrieval, and relevance feedback method for image retrieval for enhancing image retrieval performance. For semantic keyword annotation, this study proposes a novel medical image classification method combining local wavelet-based center symmetric-local binary patterns with random forests. For keyword-based image retrieval, our retrieval system use the confidence score that is assigned to each annotated keyword by combining probabilities of random forests with predefined body relation graph. To overcome the limitation of keyword-based image retrieval, we combine our image retrieval system with relevance feedback mechanism based on visual feature and pattern classifier. Compared with other annotation and relevance feedback algorithms, the proposed method shows both improved annotation performance and accurate retrieval results.

  12. Basic Investigation on Medical Ultrasonic Echo Image Compression by JPEG2000 - Availability of Wavelet Transform and ROI Method

    DTIC Science & Technology

    2001-10-25

    Table III. In spite of the same quality in ROI, it is decided that the images in the cases where QF is 1.3, 1.5 or 2.0 are not good for diagnosis. Of...but (b) is not good for diagnosis by decision of ultrasonographer. Results reveal that wavelet transform achieves higher quality of image compared

  13. Semi-regular remeshing based trust region spherical geometry image for 3D deformed mesh used MLWNN

    NASA Astrophysics Data System (ADS)

    Dhibi, Naziha; Elkefi, Akram; Bellil, Wajdi; Ben Amar, Chokri

    2017-03-01

    Triangular surface are now widely used for modeling three-dimensional object, since these models are very high resolution and the geometry of the mesh is often very dense, it is then necessary to remesh this object to reduce their complexity, the mesh quality (connectivity regularity) must be ameliorated. In this paper, we review the main methods of semi-regular remeshing of the state of the art, given the semi-regular remeshing is mainly relevant for wavelet-based compression, then we present our method for re-meshing based trust region spherical geometry image to have good scheme of 3d mesh compression used to deform 3D meh based on Multi library Wavelet Neural Network structure (MLWNN). Experimental results show that the progressive re-meshing algorithm capable of obtaining more compact representations and semi-regular objects and yield an efficient compression capabilities with minimal set of features used to have good 3D deformation scheme.

  14. Testing Pairwise Association between Spatially Autocorrelated Variables: A New Approach Using Surrogate Lattice Data

    PubMed Central

    Deblauwe, Vincent; Kennel, Pol; Couteron, Pierre

    2012-01-01

    Background Independence between observations is a standard prerequisite of traditional statistical tests of association. This condition is, however, violated when autocorrelation is present within the data. In the case of variables that are regularly sampled in space (i.e. lattice data or images), such as those provided by remote-sensing or geographical databases, this problem is particularly acute. Because analytic derivation of the null probability distribution of the test statistic (e.g. Pearson's r) is not always possible when autocorrelation is present, we propose instead the use of a Monte Carlo simulation with surrogate data. Methodology/Principal Findings The null hypothesis that two observed mapped variables are the result of independent pattern generating processes is tested here by generating sets of random image data while preserving the autocorrelation function of the original images. Surrogates are generated by matching the dual-tree complex wavelet spectra (and hence the autocorrelation functions) of white noise images with the spectra of the original images. The generated images can then be used to build the probability distribution function of any statistic of association under the null hypothesis. We demonstrate the validity of a statistical test of association based on these surrogates with both actual and synthetic data and compare it with a corrected parametric test and three existing methods that generate surrogates (randomization, random rotations and shifts, and iterative amplitude adjusted Fourier transform). Type I error control was excellent, even with strong and long-range autocorrelation, which is not the case for alternative methods. Conclusions/Significance The wavelet-based surrogates are particularly appropriate in cases where autocorrelation appears at all scales or is direction-dependent (anisotropy). We explore the potential of the method for association tests involving a lattice of binary data and discuss its potential for validation of species distribution models. An implementation of the method in Java for the generation of wavelet-based surrogates is available online as supporting material. PMID:23144961

  15. Implementation of the 2-D Wavelet Transform into FPGA for Image

    NASA Astrophysics Data System (ADS)

    León, M.; Barba, L.; Vargas, L.; Torres, C. O.

    2011-01-01

    This paper presents a hardware system implementation of the of discrete wavelet transform algoritm in two dimensions for FPGA, using the Daubechies filter family of order 2 (db2). The decomposition algorithm of this transform is designed and simulated with the Hardware Description Language VHDL and is implemented in a programmable logic device (FPGA) XC3S1200E reference, Spartan IIIE family, by Xilinx, take advantage the parallels properties of these gives us and speeds processing that can reach them. The architecture is evaluated using images input of different sizes. This implementation is done with the aim of developing a future images encryption hardware system using wavelet transform for security information.

  16. Limited receptive area neural classifier for recognition of swallowing sounds using continuous wavelet transform.

    PubMed

    Makeyev, Oleksandr; Sazonov, Edward; Schuckers, Stephanie; Lopez-Meyer, Paulo; Melanson, Ed; Neuman, Michael

    2007-01-01

    In this paper we propose a sound recognition technique based on the limited receptive area (LIRA) neural classifier and continuous wavelet transform (CWT). LIRA neural classifier was developed as a multipurpose image recognition system. Previous tests of LIRA demonstrated good results in different image recognition tasks including: handwritten digit recognition, face recognition, metal surface texture recognition, and micro work piece shape recognition. We propose a sound recognition technique where scalograms of sound instances serve as inputs of the LIRA neural classifier. The methodology was tested in recognition of swallowing sounds. Swallowing sound recognition may be employed in systems for automated swallowing assessment and diagnosis of swallowing disorders. The experimental results suggest high efficiency and reliability of the proposed approach.

  17. Compression of multispectral Landsat imagery using the Embedded Zerotree Wavelet (EZW) algorithm

    NASA Technical Reports Server (NTRS)

    Shapiro, Jerome M.; Martucci, Stephen A.; Czigler, Martin

    1994-01-01

    The Embedded Zerotree Wavelet (EZW) algorithm has proven to be an extremely efficient and flexible compression algorithm for low bit rate image coding. The embedding algorithm attempts to order the bits in the bit stream in numerical importance and thus a given code contains all lower rate encodings of the same algorithm. Therefore, precise bit rate control is achievable and a target rate or distortion metric can be met exactly. Furthermore, the technique is fully image adaptive. An algorithm for multispectral image compression which combines the spectral redundancy removal properties of the image-dependent Karhunen-Loeve Transform (KLT) with the efficiency, controllability, and adaptivity of the embedded zerotree wavelet algorithm is presented. Results are shown which illustrate the advantage of jointly encoding spectral components using the KLT and EZW.

  18. Enhancing seismic P phase arrival picking based on wavelet denoising and kurtosis picker

    NASA Astrophysics Data System (ADS)

    Shang, Xueyi; Li, Xibing; Weng, Lei

    2018-01-01

    P phase arrival picking of weak signals is still challenging in seismology. A wavelet denoising is proposed to enhance seismic P phase arrival picking, and the kurtosis picker is applied on the wavelet-denoised signal to identify P phase arrival. It has been called the WD-K picker. The WD-K picker, which is different from those traditional wavelet-based pickers on the basis of a single wavelet component or certain main wavelet components, takes full advantage of the reconstruction of main detail wavelet components and the approximate wavelet component. The proposed WD-K picker considers more wavelet components and presents a better P phase arrival feature. The WD-K picker has been evaluated on 500 micro-seismic signals recorded in the Chinese Yongshaba mine. The comparison between the WD-K pickings and manual pickings shows the good picking accuracy of the WD-K picker. Furthermore, the WD-K picking performance has been compared with the main detail wavelet component combining-based kurtosis (WDC-K) picker, the single wavelet component-based kurtosis (SW-K) picker, and certain main wavelet component-based maximum kurtosis (MMW-K) picker. The comparison has demonstrated that the WD-K picker has better picking accuracy than the other three-wavelet and kurtosis-based pickers, thus showing the enhanced ability of wavelet denoising.

  19. Influence of pansharpening techniques in obtaining accurate vegetation thematic maps

    NASA Astrophysics Data System (ADS)

    Ibarrola-Ulzurrun, Edurne; Gonzalo-Martin, Consuelo; Marcello-Ruiz, Javier

    2016-10-01

    In last decades, there have been a decline in natural resources, becoming important to develop reliable methodologies for their management. The appearance of very high resolution sensors has offered a practical and cost-effective means for a good environmental management. In this context, improvements are needed for obtaining higher quality of the information available in order to get reliable classified images. Thus, pansharpening enhances the spatial resolution of the multispectral band by incorporating information from the panchromatic image. The main goal in the study is to implement pixel and object-based classification techniques applied to the fused imagery using different pansharpening algorithms and the evaluation of thematic maps generated that serve to obtain accurate information for the conservation of natural resources. A vulnerable heterogenic ecosystem from Canary Islands (Spain) was chosen, Teide National Park, and Worldview-2 high resolution imagery was employed. The classes considered of interest were set by the National Park conservation managers. 7 pansharpening techniques (GS, FIHS, HCS, MTF based, Wavelet `à trous' and Weighted Wavelet `à trous' through Fractal Dimension Maps) were chosen in order to improve the data quality with the goal to analyze the vegetation classes. Next, different classification algorithms were applied at pixel-based and object-based approach, moreover, an accuracy assessment of the different thematic maps obtained were performed. The highest classification accuracy was obtained applying Support Vector Machine classifier at object-based approach in the Weighted Wavelet `à trous' through Fractal Dimension Maps fused image. Finally, highlight the difficulty of the classification in Teide ecosystem due to the heterogeneity and the small size of the species. Thus, it is important to obtain accurate thematic maps for further studies in the management and conservation of natural resources.

  20. Reference point detection for camera-based fingerprint image based on wavelet transformation.

    PubMed

    Khalil, Mohammed S

    2015-04-30

    Fingerprint recognition systems essentially require core-point detection prior to fingerprint matching. The core-point is used as a reference point to align the fingerprint with a template database. When processing a larger fingerprint database, it is necessary to consider the core-point during feature extraction. Numerous core-point detection methods are available and have been reported in the literature. However, these methods are generally applied to scanner-based images. Hence, this paper attempts to explore the feasibility of applying a core-point detection method to a fingerprint image obtained using a camera phone. The proposed method utilizes a discrete wavelet transform to extract the ridge information from a color image. The performance of proposed method is evaluated in terms of accuracy and consistency. These two indicators are calculated automatically by comparing the method's output with the defined core points. The proposed method is tested on two data sets, controlled and uncontrolled environment, collected from 13 different subjects. In the controlled environment, the proposed method achieved a detection rate 82.98%. In uncontrolled environment, the proposed method yield a detection rate of 78.21%. The proposed method yields promising results in a collected-image database. Moreover, the proposed method outperformed compare to existing method.

  1. Nonsubsampled rotated complex wavelet transform (NSRCxWT) for medical image fusion related to clinical aspects in neurocysticercosis.

    PubMed

    Chavan, Satishkumar S; Mahajan, Abhishek; Talbar, Sanjay N; Desai, Subhash; Thakur, Meenakshi; D'cruz, Anil

    2017-02-01

    Neurocysticercosis (NCC) is a parasite infection caused by the tapeworm Taenia solium in its larvae stage which affects the central nervous system of the human body (a definite host). It results in the formation of multiple lesions in the brain at different locations during its various stages. During diagnosis of such symptomatic patients, these lesions can be better visualized using a feature based fusion of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). This paper presents a novel approach to Multimodality Medical Image Fusion (MMIF) used for the analysis of the lesions for the diagnostic purpose and post treatment review of NCC. The MMIF presented here is a technique of combining CT and MRI data of the same patient into a new slice using a Nonsubsampled Rotated Complex Wavelet Transform (NSRCxWT). The forward NSRCxWT is applied on both the source modalities separately to extract the complementary and the edge related features. These features are then combined to form a composite spectral plane using average and maximum value selection fusion rules. The inverse transformation on this composite plane results into a new, visually better, and enriched fused image. The proposed technique is tested on the pilot study data sets of patients infected with NCC. The quality of these fused images is measured using objective and subjective evaluation metrics. Objective evaluation is performed by estimating the fusion parameters like entropy, fusion factor, image quality index, edge quality measure, mean structural similarity index measure, etc. The fused images are also evaluated for their visual quality using subjective analysis with the help of three expert radiologists. The experimental results on 43 image data sets of 17 patients are promising and superior when compared with the state of the art wavelet based fusion algorithms. The proposed algorithm can be a part of computer-aided detection and diagnosis (CADD) system which assists the radiologists in clinical practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Riding the Right Wavelet: Detecting Fracture and Fault Orientation Scale Transitions Using Morlet Wavelets

    NASA Astrophysics Data System (ADS)

    Rizzo, R. E.; Healy, D.; Farrell, N. J.; Smith, M.

    2016-12-01

    The analysis of images through two-dimensional (2D) continuous wavelet transforms makes it possible to acquire local information at different scales of resolution. This characteristic allows us to use wavelet analysis to quantify anisotropic random fields such as networks of fractures. Previous studies [1] have used 2D anisotropic Mexican hat wavelets to analyse the organisation of fracture networks from cm- to km-scales. However, Antoine et al. [2] explained that this technique can have a relatively poor directional selectivity. This suggests the use of a wavelet whose transform is more sensitive to directions of linear features, i.e. 2D Morlet wavelets [3]. In this work, we use a fully-anisotropic Morlet wavelet as implemented by Neupauer & Powell [4], which is anisotropic in its real and imaginary parts and also in its magnitude. We demonstrate the validity of this analytical technique by application to both synthetic - generated according to known distributions of orientations and lengths - and experimentally produced fracture networks. We have analysed SEM Back Scattered Electron images of thin sections of Hopeman Sandstone (Scotland, UK) deformed under triaxial conditions. We find that the Morlet wavelet, compared to the Mexican hat, is more precise in detecting dominant orientations in fracture scale transition at every scale from intra-grain fractures (µm-scale) up to the faults cutting the whole thin section (cm-scale). Through this analysis we can determine the relationship between the initial orientation of tensile microcracks and the final geometry of the through-going shear fault, with total areal coverage of the analysed image. By comparing thin sections from experiments at different confining pressures, we can quantitatively explore the relationship between the observed geometry and the inferred mechanical processes. [1] Ouillon et al., Nonlinear Processes in Geophysics (1995) 2:158 - 177. [2] Antoine et al., Cambridge University Press (2008) 192-194. [3] Antoine et al., Signal Processing (1993) 31:241 - 272. [4] Neupauer & Powell, Computer & Geosciences (2005) 31:456 - 471.

  3. Terahertz imaging for subsurface investigation of art paintings

    NASA Astrophysics Data System (ADS)

    Locquet, A.; Dong, J.; Melis, M.; Citrin, D. S.

    2017-08-01

    Terahertz (THz) reflective imaging is applied to the stratigraphic and subsurface investigation of oil paintings, with a focus on the mid-20th century Italian painting, `After Fishing', by Ausonio Tanda. THz frequency-wavelet domain deconvolution, which is an enhanced deconvolution technique combining frequency-domain filtering and stationary wavelet shrinkage, is utilized to resolve the optically thin paint layers or brush strokes. Based on the deconvolved terahertz data, the stratigraphy of the painting including the paint layers is reconstructed and subsurface features are clearly revealed. Specifically, THz C-scans and B-scans are analyzed based on different types of deconvolved signals to investigate the subsurface features of the painting, including the identification of regions with more than one paint layer, the refractive-index difference between paint layers, and the distribution of the paint-layer thickness. In addition, THz images are compared with X-ray images. The THz image of the thickness distribution of the paint exhibits a high degree of correlation with the X-ray transmission image, but THz images also reveal defects in the paperboard that cannot be identified in the X-ray image. Therefore, our results demonstrate that THz imaging can be considered as an effective tool for the stratigraphic and subsurface investigation of art paintings. They also open up the way for the use of non-ionizing THz imaging as a potential substitute for ionizing X-ray analysis in nondestructive evaluation of art paintings.

  4. Multi-source feature extraction and target recognition in wireless sensor networks based on adaptive distributed wavelet compression algorithms

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2008-04-01

    Proposed distributed wavelet-based algorithms are a means to compress sensor data received at the nodes forming a wireless sensor network (WSN) by exchanging information between neighboring sensor nodes. Local collaboration among nodes compacts the measurements, yielding a reduced fused set with equivalent information at far fewer nodes. Nodes may be equipped with multiple sensor types, each capable of sensing distinct phenomena: thermal, humidity, chemical, voltage, or image signals with low or no frequency content as well as audio, seismic or video signals within defined frequency ranges. Compression of the multi-source data through wavelet-based methods, distributed at active nodes, reduces downstream processing and storage requirements along the paths to sink nodes; it also enables noise suppression and more energy-efficient query routing within the WSN. Targets are first detected by the multiple sensors; then wavelet compression and data fusion are applied to the target returns, followed by feature extraction from the reduced data; feature data are input to target recognition/classification routines; targets are tracked during their sojourns through the area monitored by the WSN. Algorithms to perform these tasks are implemented in a distributed manner, based on a partition of the WSN into clusters of nodes. In this work, a scheme of collaborative processing is applied for hierarchical data aggregation and decorrelation, based on the sensor data itself and any redundant information, enabled by a distributed, in-cluster wavelet transform with lifting that allows multiple levels of resolution. The wavelet-based compression algorithm significantly decreases RF bandwidth and other resource use in target processing tasks. Following wavelet compression, features are extracted. The objective of feature extraction is to maximize the probabilities of correct target classification based on multi-source sensor measurements, while minimizing the resource expenditures at participating nodes. Therefore, the feature-extraction method based on the Haar DWT is presented that employs a maximum-entropy measure to determine significant wavelet coefficients. Features are formed by calculating the energy of coefficients grouped around the competing clusters. A DWT-based feature extraction algorithm used for vehicle classification in WSNs can be enhanced by an added rule for selecting the optimal number of resolution levels to improve the correct classification rate and reduce energy consumption expended in local algorithm computations. Published field trial data for vehicular ground targets, measured with multiple sensor types, are used to evaluate the wavelet-assisted algorithms. Extracted features are used in established target recognition routines, e.g., the Bayesian minimum-error-rate classifier, to compare the effects on the classification performance of the wavelet compression. Simulations of feature sets and recognition routines at different resolution levels in target scenarios indicate the impact on classification rates, while formulas are provided to estimate reduction in resource use due to distributed compression.

  5. Embedded wavelet packet transform technique for texture compression

    NASA Astrophysics Data System (ADS)

    Li, Jin; Cheng, Po-Yuen; Kuo, C.-C. Jay

    1995-09-01

    A highly efficient texture compression scheme is proposed in this research. With this scheme, energy compaction of texture images is first achieved by the wavelet packet transform, and an embedding approach is then adopted for the coding of the wavelet packet transform coefficients. By comparing the proposed algorithm with the JPEG standard, FBI wavelet/scalar quantization standard and the EZW scheme with extensive experimental results, we observe a significant improvement in the rate-distortion performance and visual quality.

  6. Image processing for quantifying fracture orientation and length scale transitions during brittle deformation

    NASA Astrophysics Data System (ADS)

    Rizzo, R. E.; Healy, D.; Farrell, N. J.

    2017-12-01

    We have implemented a novel image processing tool, namely two-dimensional (2D) Morlet wavelet analysis, capable of detecting changes occurring in fracture patterns at different scales of observation, and able of recognising the dominant fracture orientations and the spatial configurations for progressively larger (or smaller) scale of analysis. Because of its inherited anisotropy, the Morlet wavelet is proved to be an excellent choice for detecting directional linear features, i.e. regions where the amplitude of the signal is regular along one direction and has sharp variation along the perpendicular direction. Performances of the Morlet wavelet are tested against the 'classic' Mexican hat wavelet, deploying a complex synthetic fracture network. When applied to a natural fracture network, formed triaxially (σ1>σ2=σ3) deforming a core sample of the Hopeman sandstone, the combination of 2D Morlet wavelet and wavelet coefficient maps allows for the detection of characteristic scale orientation and length transitions, associated with the shifts from distributed damage to the growth of localised macroscopic shear fracture. A complementary outcome arises from the wavelet coefficient maps produced by increasing the wavelet scale parameter. These maps can be used to chart the variations in the spatial distribution of the analysed entities, meaning that it is possible to retrieve information on the density of fracture patterns at specific length scales during deformation.

  7. SU-E-I-30: Image Analysis in Ultrasonography for Diagnosis of Sjoegren's Syndrome Using Dual-Tree Complex Wavelet Transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, T; Ohki, M; Nakamura, T

    Purpose: Sjoegren's syndrome (SS) is an autoimmune disease invading mainly salivary and lacrimal glands. Ultrasonography is used for an initial and non-invasive examination of this disease. However, the ultrasonography diagnosis tends to lack in objectivity and depends on the operator's skills. The purpose of this study is to propose a computer-aided diagnosis (CAD) system for SS based on a dual-tree complex wavelet transform (DT-CWT) and machine learning. Methods: The subjects of this study were 174 patients suspected of having SS at Nagasaki University Hospital and examined with ultrasonography of the parotid glands. Out of these patients, 77 patients were diagnosedmore » with SS by sialography. A region of interest (ROI) of 128 × 128 pixels was set within the parotid gland that was indicated by a dental radiologist. The DT-CWT was applied to the images in the ROI and every image was decomposed into 72 sub-images of the real and imaginary components in six different resolution levels and six orientations. The statistical features of the sub-image were calculated and used as data input for the support vector machine (SVM) classifier for the detection of SS. A ten-fold cross-validation was employed to verify the Resultof SVM. The accuracy of diagnosis was compared by a CAD system with a human observer performance. Results: The sensitivity, specificity, and accuracy in the detection of SS were 95%, 86%, and 91% through our CAD system respectively, while those by a human observer were 84%, 81%, and 83% respectively. Conclusion: The proposed computer-aided diagnosis system for Sjoegren's syndrome in ultrasonography based on dual-tree complex wavelet transform had a better performance than a human observer.« less

  8. An Adaptive Inpainting Algorithm Based on DCT Induced Wavelet Regularization

    DTIC Science & Technology

    2013-01-01

    research in image processing. Applications of image inpainting include old films restoration, video inpainting [4], de -interlacing of video sequences...show 5 (a) (b) (c) (d) (e) (f) Fig. 1. Performance of various inpainting algorithms for a cartoon image with text. (a) the original test image; (b...the test image with text; inpainted images by (c) SF (PSNR=37.38 dB); (d) SF-LDCT (PSNR=37.37 dB); (e) MCA (PSNR=37.04 dB); and (f) the proposed

  9. SpotCaliper: fast wavelet-based spot detection with accurate size estimation.

    PubMed

    Püspöki, Zsuzsanna; Sage, Daniel; Ward, John Paul; Unser, Michael

    2016-04-15

    SpotCaliper is a novel wavelet-based image-analysis software providing a fast automatic detection scheme for circular patterns (spots), combined with the precise estimation of their size. It is implemented as an ImageJ plugin with a friendly user interface. The user is allowed to edit the results by modifying the measurements (in a semi-automated way), extract data for further analysis. The fine tuning of the detections includes the possibility of adjusting or removing the original detections, as well as adding further spots. The main advantage of the software is its ability to capture the size of spots in a fast and accurate way. http://bigwww.epfl.ch/algorithms/spotcaliper/ zsuzsanna.puspoki@epfl.ch Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Riding the Right Wavelet: Quantifying Scale Transitions in Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Rizzo, Roberto E.; Healy, David; Farrell, Natalie J.; Heap, Michael J.

    2017-12-01

    The mechanics of brittle failure is a well-described multiscale process that involves a rapid transition from distributed microcracks to localization along a single macroscopic rupture plane. However, considerable uncertainty exists regarding both the length scale at which this transition occurs and the underlying causes that prompt this shift from a distributed to a localized assemblage of cracks or fractures. For the first time, we used an image analysis tool developed to investigate orientation changes at different scales in images of fracture patterns in faulted materials, based on a two-dimensional continuous wavelet analysis. We detected the abrupt change in the fracture pattern from distributed tensile microcracks to localized shear failure in a fracture network produced by triaxial deformation of a sandstone core plug. The presented method will contribute to our ability of unraveling the physical processes at the base of catastrophic rock failure, including the nucleation of earthquakes, landslides, and volcanic eruptions.

  11. Restoration of Wavelet-Compressed Images and Motion Imagery

    DTIC Science & Technology

    2004-01-01

    SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION...images is that they are global translates of each other, where 29 the global motion parameters are known. In a very simple sense , these five images form...Image Proc., vol. 1, Oct. 2001, pp. 185–188. [2] J. W. Woods and T. Naveen, “A filter based bit allocation scheme for subband compresion of HDTV,” IEEE

  12. An improved real time image detection system for elephant intrusion along the forest border areas.

    PubMed

    Sugumar, S J; Jayaparvathy, R

    2014-01-01

    Human-elephant conflict is a major problem leading to crop damage, human death and injuries caused by elephants, and elephants being killed by humans. In this paper, we propose an automated unsupervised elephant image detection system (EIDS) as a solution to human-elephant conflict in the context of elephant conservation. The elephant's image is captured in the forest border areas and is sent to a base station via an RF network. The received image is decomposed using Haar wavelet to obtain multilevel wavelet coefficients, with which we perform image feature extraction and similarity match between the elephant query image and the database image using image vision algorithms. A GSM message is sent to the forest officials indicating that an elephant has been detected in the forest border and is approaching human habitat. We propose an optimized distance metric to improve the image retrieval time from the database. We compare the optimized distance metric with the popular Euclidean and Manhattan distance methods. The proposed optimized distance metric retrieves more images with lesser retrieval time than the other distance metrics which makes the optimized distance method more efficient and reliable.

  13. A New Approach to Image Fusion Based on Cokriging

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; LeMoigne, Jacqueline; Mount, David M.; Morisette, Jeffrey T.

    2005-01-01

    We consider the image fusion problem involving remotely sensed data. We introduce cokriging as a method to perform fusion. We investigate the advantages of fusing Hyperion with ALI. The evaluation is performed by comparing the classification of the fused data with that of input images and by calculating well-chosen quantitative fusion quality metrics. We consider the Invasive Species Forecasting System (ISFS) project as our fusion application. The fusion of ALI with Hyperion data is studies using PCA and wavelet-based fusion. We then propose utilizing a geostatistical based interpolation method called cokriging as a new approach for image fusion.

  14. Wavelet-Based Blind Superresolution from Video Sequence and in MRI

    DTIC Science & Technology

    2005-12-31

    in Fig. 4(e) and (f), respectively. The PSNR- based optimal threshold gives better noise filtering but poor deblurring [see Fig. 4(c) and (e)] while...that ultimately produces the deblurred , noise filtered, superresolved image. Finite support linear shift invariant blurs are reasonable to assume... Deblurred and Noise Filtered HR Image Cameras with different PSFs Figure 1: Multichannel Blind Superresolution Model condition [11] on the zeros of the

  15. Optical Coherence Tomography Noise Reduction Using Anisotropic Local Bivariate Gaussian Mixture Prior in 3D Complex Wavelet Domain.

    PubMed

    Rabbani, Hossein; Sonka, Milan; Abramoff, Michael D

    2013-01-01

    In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and homomorphic/nonhomomorphic model. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs from 650 × 512 × 128 OCT dataset in the presence of wet AMD pathology. Our simulations show that the best MMSE estimator using local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement of 7.8 ± 1.7 in CNR.

  16. A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms

    PubMed Central

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise. PMID:22163672

  17. A rigid image registration based on the nonsubsampled contourlet transform and genetic algorithms.

    PubMed

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.

  18. Entropy-aware projected Landweber reconstruction for quantized block compressive sensing of aerial imagery

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Kangda; Wang, Bing; Tang, Hainie; Gong, Xiaohui

    2017-01-01

    A quantized block compressive sensing (QBCS) framework, which incorporates the universal measurement, quantization/inverse quantization, entropy coder/decoder, and iterative projected Landweber reconstruction, is summarized. Under the QBCS framework, this paper presents an improved reconstruction algorithm for aerial imagery, QBCS, with entropy-aware projected Landweber (QBCS-EPL), which leverages the full-image sparse transform without Wiener filter and an entropy-aware thresholding model for wavelet-domain image denoising. Through analyzing the functional relation between the soft-thresholding factors and entropy-based bitrates for different quantization methods, the proposed model can effectively remove wavelet-domain noise of bivariate shrinkage and achieve better image reconstruction quality. For the overall performance of QBCS reconstruction, experimental results demonstrate that the proposed QBCS-EPL algorithm significantly outperforms several existing algorithms. With the experiment-driven methodology, the QBCS-EPL algorithm can obtain better reconstruction quality at a relatively moderate computational cost, which makes it more desirable for aerial imagery applications.

  19. Enterprise-scale image distribution with a Web PACS.

    PubMed

    Gropper, A; Doyle, S; Dreyer, K

    1998-08-01

    The integration of images with existing and new health care information systems poses a number of challenges in a multi-facility network: image distribution to clinicians; making DICOM image headers consistent across information systems; and integration of teleradiology into PACS. A novel, Web-based enterprise PACS architecture introduced at Massachusetts General Hospital provides a solution. Four AMICAS Web/Intranet Image Servers were installed as the default DICOM destination of 10 digital modalities. A fifth AMICAS receives teleradiology studies via the Internet. Each AMICAS includes: a Java-based interface to the IDXrad radiology information system (RIS), a DICOM autorouter to tape-library archives and to the Agfa PACS, a wavelet image compressor/decompressor that preserves compatibility with DICOM workstations, a Web server to distribute images throughout the enterprise, and an extensible interface which permits links between other HIS and AMICAS. Using wavelet compression and Internet standards as its native formats, AMICAS creates a bridge to the DICOM networks of remote imaging centers via the Internet. This teleradiology capability is integrated into the DICOM network and the PACS thereby eliminating the need for special teleradiology workstations. AMICAS has been installed at MGH since March of 1997. During that time, it has been a reliable component of the evolving digital image distribution system. As a result, the recently renovated neurosurgical ICU will be filmless and use only AMICAS workstations for mission-critical patient care.

  20. Performance of the Wavelet Decomposition on Massively Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek A.; LeMoigne, Jacqueline; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    Traditionally, Fourier Transforms have been utilized for performing signal analysis and representation. But although it is straightforward to reconstruct a signal from its Fourier transform, no local description of the signal is included in its Fourier representation. To alleviate this problem, Windowed Fourier transforms and then wavelet transforms have been introduced, and it has been proven that wavelets give a better localization than traditional Fourier transforms, as well as a better division of the time- or space-frequency plane than Windowed Fourier transforms. Because of these properties and after the development of several fast algorithms for computing the wavelet representation of any signal, in particular the Multi-Resolution Analysis (MRA) developed by Mallat, wavelet transforms have increasingly been applied to signal analysis problems, especially real-life problems, in which speed is critical. In this paper we present and compare efficient wavelet decomposition algorithms on different parallel architectures. We report and analyze experimental measurements, using NASA remotely sensed images. Results show that our algorithms achieve significant performance gains on current high performance parallel systems, and meet scientific applications and multimedia requirements. The extensive performance measurements collected over a number of high-performance computer systems have revealed important architectural characteristics of these systems, in relation to the processing demands of the wavelet decomposition of digital images.

  1. Multi-resolution Shape Analysis via Non-Euclidean Wavelets: Applications to Mesh Segmentation and Surface Alignment Problems.

    PubMed

    Kim, Won Hwa; Chung, Moo K; Singh, Vikas

    2013-01-01

    The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape's local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.

  2. A symmetrical image encryption scheme in wavelet and time domain

    NASA Astrophysics Data System (ADS)

    Luo, Yuling; Du, Minghui; Liu, Junxiu

    2015-02-01

    There has been an increasing concern for effective storages and secure transactions of multimedia information over the Internet. Then a great variety of encryption schemes have been proposed to ensure the information security while transmitting, but most of current approaches are designed to diffuse the data only in spatial domain which result in reducing storage efficiency. A lightweight image encryption strategy based on chaos is proposed in this paper. The encryption process is designed in transform domain. The original image is decomposed into approximation and detail components using integer wavelet transform (IWT); then as the more important component of the image, the approximation coefficients are diffused by secret keys generated from a spatiotemporal chaotic system followed by inverse IWT to construct the diffused image; finally a plain permutation is performed for diffusion image by the Logistic mapping in order to reduce the correlation between adjacent pixels further. Experimental results and performance analysis demonstrate the proposed scheme is an efficient, secure and robust encryption mechanism and it realizes effective coding compression to satisfy desirable storage.

  3. Performance of a Space-Based Wavelet Compressor for Plasma Count Data on the MMS Fast Plasma Investigation

    NASA Technical Reports Server (NTRS)

    Barrie, A. C.; Smith, S. E.; Dorelli, J. C.; Gershman, D. J.; Yeh, P.; Schiff, C.; Avanov, L. A.

    2017-01-01

    Data compression has been a staple of imaging instruments for years. Recently, plasma measurements have utilized compression with relatively low compression ratios. The Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale (MMS) mission generates data roughly 100 times faster than previous plasma instruments, requiring a higher compression ratio to fit within the telemetry allocation. This study investigates the performance of a space-based compression standard employing a Discrete Wavelet Transform and a Bit Plane Encoder (DWT/BPE) in compressing FPI plasma count data. Data from the first 6 months of FPI operation are analyzed to explore the error modes evident in the data and how to adapt to them. While approximately half of the Dual Electron Spectrometer (DES) maps had some level of loss, it was found that there is little effect on the plasma moments and that errors present in individual sky maps are typically minor. The majority of Dual Ion Spectrometer burst sky maps compressed in a lossless fashion, with no error introduced during compression. Because of induced compression error, the size limit for DES burst images has been increased for Phase 1B. Additionally, it was found that the floating point compression mode yielded better results when images have significant compression error, leading to floating point mode being used for the fast survey mode of operation for Phase 1B. Despite the suggested tweaks, it was found that wavelet-based compression, and a DWT/BPE algorithm in particular, is highly suitable to data compression for plasma measurement instruments and can be recommended for future missions.

  4. Fast reversible wavelet image compressor

    NASA Astrophysics Data System (ADS)

    Kim, HyungJun; Li, Ching-Chung

    1996-10-01

    We present a unified image compressor with spline biorthogonal wavelets and dyadic rational filter coefficients which gives high computational speed and excellent compression performance. Convolutions with these filters can be preformed by using only arithmetic shifting and addition operations. Wavelet coefficients can be encoded with an arithmetic coder which also uses arithmetic shifting and addition operations. Therefore, from the beginning to the end, the while encoding/decoding process can be done within a short period of time. The proposed method naturally extends form the lossless compression to the lossy but high compression range and can be easily adapted to the progressive reconstruction.

  5. Chest CT window settings with multiscale adaptive histogram equalization: pilot study.

    PubMed

    Fayad, Laura M; Jin, Yinpeng; Laine, Andrew F; Berkmen, Yahya M; Pearson, Gregory D; Freedman, Benjamin; Van Heertum, Ronald

    2002-06-01

    Multiscale adaptive histogram equalization (MAHE), a wavelet-based algorithm, was investigated as a method of automatic simultaneous display of the full dynamic contrast range of a computed tomographic image. Interpretation times were significantly lower for MAHE-enhanced images compared with those for conventionally displayed images. Diagnostic accuracy, however, was insufficient in this pilot study to allow recommendation of MAHE as a replacement for conventional window display.

  6. Processing strategy for water-gun seismic data from the Gulf of Mexico

    USGS Publications Warehouse

    Lee, Myung W.; Hart, Patrick E.; Agena, Warren F.

    2000-01-01

    In order to study the regional distribution of gas hydrates and their potential relationship to a large-scale sea-fl oor failures, more than 1,300 km of near-vertical-incidence seismic profi les were acquired using a 15-in3 water gun across the upper- and middle-continental slope in the Garden Banks and Green Canyon regions of the Gulf of Mexico. Because of the highly mixed phase water-gun signature, caused mainly by a precursor of the source arriving about 18 ms ahead of the main pulse, a conventional processing scheme based on the minimum phase assumption is not suitable for this data set. A conventional processing scheme suppresses the reverberations and compresses the main pulse, but the failure to suppress precursors results in complex interference between the precursors and primary refl ections, thus obscuring true refl ections. To clearly image the subsurface without interference from the precursors, a wavelet deconvolution based on the mixedphase assumption using variable norm is attempted. This nonminimum- phase wavelet deconvolution compresses a longwave- train water-gun signature into a simple zero-phase wavelet. A second-zero-crossing predictive deconvolution followed by a wavelet deconvolution suppressed variable ghost arrivals attributed to the variable depths of receivers. The processing strategy of using wavelet deconvolution followed by a secondzero- crossing deconvolution resulted in a sharp and simple wavelet and a better defi nition of the polarity of refl ections. Also, the application of dip moveout correction enhanced lateral resolution of refl ections and substantially suppressed coherent noise.

  7. A unified framework for physical print quality

    NASA Astrophysics Data System (ADS)

    Eid, Ahmed; Cooper, Brian; Rippetoe, Ed

    2007-01-01

    In this paper we present a unified framework for physical print quality. This framework includes a design for a testbed, testing methodologies and quality measures of physical print characteristics. An automatic belt-fed flatbed scanning system is calibrated to acquire L* data for a wide range of flat field imagery. Testing methodologies based on wavelet pre-processing and spectral/statistical analysis are designed. We apply the proposed framework to three common printing artifacts: banding, jitter, and streaking. Since these artifacts are directional, wavelet based approaches are used to extract one artifact at a time and filter out other artifacts. Banding is characterized as a medium-to-low frequency, vertical periodic variation down the page. The same definition is applied to the jitter artifact, except that the jitter signal is characterized as a high-frequency signal above the banding frequency range. However, streaking is characterized as a horizontal aperiodic variation in the high-to-medium frequency range. Wavelets at different levels are applied to the input images in different directions to extract each artifact within specified frequency bands. Following wavelet reconstruction, images are converted into 1-D signals describing the artifact under concern. Accurate spectral analysis using a DFT with Blackman-Harris windowing technique is used to extract the power (strength) of periodic signals (banding and jitter). Since streaking is an aperiodic signal, a statistical measure is used to quantify the streaking strength. Experiments on 100 print samples scanned at 600 dpi from 10 different printers show high correlation (75% to 88%) between the ranking of these samples by the proposed metrologies and experts' visual ranking.

  8. Embedded Palmprint Recognition System Using OMAP 3530

    PubMed Central

    Shen, Linlin; Wu, Shipei; Zheng, Songhao; Ji, Zhen

    2012-01-01

    We have proposed in this paper an embedded palmprint recognition system using the dual-core OMAP 3530 platform. An improved algorithm based on palm code was proposed first. In this method, a Gabor wavelet is first convolved with the palmprint image to produce a response image, where local binary patterns are then applied to code the relation among the magnitude of wavelet response at the ccentral pixel with that of its neighbors. The method is fully tested using the public PolyU palmprint database. While palm code achieves only about 89% accuracy, over 96% accuracy is achieved by the proposed G-LBP approach. The proposed algorithm was then deployed to the DSP processor of OMAP 3530 and work together with the ARM processor for feature extraction. When complicated algorithms run on the DSP processor, the ARM processor can focus on image capture, user interface and peripheral control. Integrated with an image sensing module and central processing board, the designed device can achieve accurate and real time performance. PMID:22438721

  9. Embedded palmprint recognition system using OMAP 3530.

    PubMed

    Shen, Linlin; Wu, Shipei; Zheng, Songhao; Ji, Zhen

    2012-01-01

    We have proposed in this paper an embedded palmprint recognition system using the dual-core OMAP 3530 platform. An improved algorithm based on palm code was proposed first. In this method, a Gabor wavelet is first convolved with the palmprint image to produce a response image, where local binary patterns are then applied to code the relation among the magnitude of wavelet response at the central pixel with that of its neighbors. The method is fully tested using the public PolyU palmprint database. While palm code achieves only about 89% accuracy, over 96% accuracy is achieved by the proposed G-LBP approach. The proposed algorithm was then deployed to the DSP processor of OMAP 3530 and work together with the ARM processor for feature extraction. When complicated algorithms run on the DSP processor, the ARM processor can focus on image capture, user interface and peripheral control. Integrated with an image sensing module and central processing board, the designed device can achieve accurate and real time performance.

  10. Quantified Differentiation of Surface Topography for Nano-materials As-Obtained from Atomic Force Microscopy Images

    NASA Astrophysics Data System (ADS)

    Gupta, Mousumi; Chatterjee, Somenath

    2018-04-01

    Surface texture is an important issue to realize the nature (crest and trough) of surfaces. Atomic force microscopy (AFM) image is a key analysis for surface topography. However, in nano-scale, the nature (i.e., deflection or crack) as well as quantification (i.e., height or depth) of deposited layers is essential information for material scientist. In this paper, a gradient-based K-means algorithm is used to differentiate the layered surfaces depending on their color contrast of as-obtained from AFM images. A transformation using wavelet decomposition is initiated to extract the information about deflection or crack on the material surfaces from the same images. Z-axis depth analysis from wavelet coefficients provides information about the crack present in the material. Using the above method corresponding surface information for the material is obtained. In addition, the Gaussian filter is applied to remove the unwanted lines, which occurred during AFM scanning. Few known samples are taken as input, and validity of the above approaches is shown.

  11. Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data in the Wavelet Domain Constrained by Sparsity Regularization

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Fang, H.; Yao, H.; Maceira, M.; van der Hilst, R. D.

    2014-12-01

    Recently, Zhang et al. (2014, Pure and Appiled Geophysics) have developed a joint inversion code incorporating body-wave arrival times and surface-wave dispersion data. The joint inversion code was based on the regional-scale version of the double-difference tomography algorithm tomoDD. The surface-wave inversion part uses the propagator matrix solver in the algorithm DISPER80 (Saito, 1988) for forward calculation of dispersion curves from layered velocity models and the related sensitivities. The application of the joint inversion code to the SAFOD site in central California shows that the fault structure is better imaged in the new model, which is able to fit both the body-wave and surface-wave observations adequately. Here we present a new joint inversion method that solves the model in the wavelet domain constrained by sparsity regularization. Compared to the previous method, it has the following advantages: (1) The method is both data- and model-adaptive. For the velocity model, it can be represented by different wavelet coefficients at different scales, which are generally sparse. By constraining the model wavelet coefficients to be sparse, the inversion in the wavelet domain can inherently adapt to the data distribution so that the model has higher spatial resolution in the good data coverage zone. Fang and Zhang (2014, Geophysical Journal International) have showed the superior performance of the wavelet-based double-difference seismic tomography method compared to the conventional method. (2) For the surface wave inversion, the joint inversion code takes advantage of the recent development of direct inversion of surface wave dispersion data for 3-D variations of shear wave velocity without the intermediate step of phase or group velocity maps (Fang et al., 2014, Geophysical Journal International). A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. We will test the new joint inversion code at the SAFOD site to compare its performance over the previous code. We will also select another fault zone such as the San Jacinto Fault Zone to better image its structure.

  12. A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Hui, E-mail: corinna@seu.edu.cn; Key Laboratory of Computer Network and Information Integration; Centre de Recherche en Information Biomédicale sino-français, Laboratoire International Associé, Inserm, Université de Rennes 1, Rennes 35000

    2015-04-15

    Purpose: In digital x-ray radiography, an antiscatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the antiscatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods: The method is as follows. The input image is first recursively decomposed into several smaller subimagesmore » using a multiscale 2D discrete wavelet transform. The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these subimages using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected subimages to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform. Results: The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1D Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions: The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time.« less

  13. Hybrid Image Fusion for Sharpness Enhancement of Multi-Spectral Lunar Images

    NASA Astrophysics Data System (ADS)

    Awumah, Anna; Mahanti, Prasun; Robinson, Mark

    2016-10-01

    Image fusion enhances the sharpness of a multi-spectral (MS) image by incorporating spatial details from a higher-resolution panchromatic (Pan) image [1,2]. Known applications of image fusion for planetary images are rare, although image fusion is well-known for its applications to Earth-based remote sensing. In a recent work [3], six different image fusion algorithms were implemented and their performances were verified with images from the Lunar Reconnaissance Orbiter (LRO) Camera. The image fusion procedure obtained a high-resolution multi-spectral (HRMS) product from the LRO Narrow Angle Camera (used as Pan) and LRO Wide Angle Camera (used as MS) images. The results showed that the Intensity-Hue-Saturation (IHS) algorithm results in a high-spatial quality product while the Wavelet-based image fusion algorithm best preserves spectral quality among all the algorithms. In this work we show the results of a hybrid IHS-Wavelet image fusion algorithm when applied to LROC MS images. The hybrid method provides the best HRMS product - both in terms of spatial resolution and preservation of spectral details. Results from hybrid image fusion can enable new science and increase the science return from existing LROC images.[1] Pohl, Cle, and John L. Van Genderen. "Review article multisensor image fusion in remote sensing: concepts, methods and applications." International journal of remote sensing 19.5 (1998): 823-854.[2] Zhang, Yun. "Understanding image fusion." Photogramm. Eng. Remote Sens 70.6 (2004): 657-661.[3] Mahanti, Prasun et al. "Enhancement of spatial resolution of the LROC Wide Angle Camera images." Archives, XXIII ISPRS Congress Archives (2016).

  14. Spatial compression algorithm for the analysis of very large multivariate images

    DOEpatents

    Keenan, Michael R [Albuquerque, NM

    2008-07-15

    A method for spatially compressing data sets enables the efficient analysis of very large multivariate images. The spatial compression algorithms use a wavelet transformation to map an image into a compressed image containing a smaller number of pixels that retain the original image's information content. Image analysis can then be performed on a compressed data matrix consisting of a reduced number of significant wavelet coefficients. Furthermore, a block algorithm can be used for performing common operations more efficiently. The spatial compression algorithms can be combined with spectral compression algorithms to provide further computational efficiencies.

  15. Visual communications and image processing '92; Proceedings of the Meeting, Boston, MA, Nov. 18-20, 1992

    NASA Astrophysics Data System (ADS)

    Maragos, Petros

    The topics discussed at the conference include hierarchical image coding, motion analysis, feature extraction and image restoration, video coding, and morphological and related nonlinear filtering. Attention is also given to vector quantization, morphological image processing, fractals and wavelets, architectures for image and video processing, image segmentation, biomedical image processing, and model-based analysis. Papers are presented on affine models for motion and shape recovery, filters for directly detecting surface orientation in an image, tracking of unresolved targets in infrared imagery using a projection-based method, adaptive-neighborhood image processing, and regularized multichannel restoration of color images using cross-validation. (For individual items see A93-20945 to A93-20951)

  16. Identification of large geomorphological anomalies based on 2D discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Doglioni, A.; Simeone, V.

    2012-04-01

    The identification and analysis based on quantitative evidences of large geomorphological anomalies is an important stage for the study of large landslides. Numerical geomorphic analyses represent an interesting approach to this kind of studies, allowing for a detailed and pretty accurate identification of hidden topographic anomalies that may be related to large landslides. Here a geomorphic numerical analyses of the Digital Terrain Model (DTM) is presented. The introduced approach is based on 2D discrete wavelet transform (Antoine et al., 2003; Bruun and Nilsen, 2003, Booth et al., 2009). The 2D wavelet decomposition of the DTM, and in particular the analysis of the detail coefficients of the wavelet transform can provide evidences of anomalies or singularities, i.e. discontinuities of the land surface. These discontinuities are not very evident from the DTM as it is, while 2D wavelet transform allows for grid-based analysis of DTM and for mapping the decomposition. In fact, the grid-based DTM can be assumed as a matrix, where a discrete wavelet transform (Daubechies, 1992) is performed columnwise and linewise, which basically represent horizontal and vertical directions. The outcomes of this analysis are low-frequency approximation coefficients and high-frequency detail coefficients. Detail coefficients are analyzed, since their variations are associated to discontinuities of the DTM. Detailed coefficients are estimated assuming to perform 2D wavelet transform both for the horizontal direction (east-west) and for the vertical direction (north-south). Detail coefficients are then mapped for both the cases, thus allowing to visualize and quantify potential anomalies of the land surface. Moreover, wavelet decomposition can be pushed to further levels, assuming a higher scale number of the transform. This may potentially return further interesting results, in terms of identification of the anomalies of land surface. In this kind of approach, the choice of a proper mother wavelet function is a tricky point, since it conditions the analysis and then their outcomes. Therefore multiple levels as well as multiple wavelet analyses are guessed. Here the introduced approach is applied to some interesting cases study of south Italy, in particular for the identification of large anomalies associated to large landslides at the transition between Apennine chain domain and the foredeep domain. In particular low Biferno valley and Fortore valley are here analyzed. Finally, the wavelet transforms are performed on multiple levels, thus trying to address the problem of which is the level extent for an accurate analysis fit to a specific problem. Antoine J.P., Carrette P., Murenzi R., and Piette B., (2003), Image analysis with two-dimensional continuous wavelet transform, Signal Processing, 31(3), pp. 241-272, doi:10.1016/0165-1684(93)90085-O. Booth A.M., Roering J.J., and Taylor Perron J., (2009), Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon, Geomorphology, 109(3-4), pp. 132-147, doi:10.1016/j.geomorph.2009.02.027. Bruun B.T., and Nilsen S., (2003), Wavelet representation of large digital terrain models, Computers and Geoscience, 29(6), pp. 695-703, doi:10.1016/S0098-3004(03)00015-3. Daubechies, I. (1992), Ten lectures on wavelets, SIAM.

  17. Improved grid-noise removal in single-frame digital moiré 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Mohammadi, Fatemeh; Kofman, Jonathan

    2016-11-01

    A single-frame grid-noise removal technique was developed for application in single-frame digital-moiré 3D shape measurement. The ability of the stationary wavelet transform (SWT) to prevent oscillation artifacts near discontinuities, and the ability of the Fourier transform (FFT) applied to wavelet coefficients to separate grid-noise from useful image information, were combined in a new technique, SWT-FFT, to remove grid-noise from moiré-pattern images generated by digital moiré. In comparison to previous grid-noise removal techniques in moiré, SWT-FFT avoids the requirement for mechanical translation of optical components and capture of multiple frames, to enable single-frame moiré-based measurement. Experiments using FFT, Discrete Wavelet Transform (DWT), DWT-FFT, and SWT-FFT were performed on moiré-pattern images containing grid noise, generated by digital moiré, for several test objects. SWT-FFT had the best performance in removing high-frequency grid-noise, both straight and curved lines, minimizing artifacts, and preserving the moiré pattern without blurring and degradation. SWT-FFT also had the lowest noise amplitude in the reconstructed height and lowest roughness index for all test objects, indicating best grid-noise removal in comparison to the other techniques.

  18. Multispectral image fusion based on fractal features

    NASA Astrophysics Data System (ADS)

    Tian, Jie; Chen, Jie; Zhang, Chunhua

    2004-01-01

    Imagery sensors have been one indispensable part of the detection and recognition systems. They are widely used to the field of surveillance, navigation, control and guide, et. However, different imagery sensors depend on diverse imaging mechanisms, and work within diverse range of spectrum. They also perform diverse functions and have diverse circumstance requires. So it is unpractical to accomplish the task of detection or recognition with a single imagery sensor under the conditions of different circumstances, different backgrounds and different targets. Fortunately, the multi-sensor image fusion technique emerged as important route to solve this problem. So image fusion has been one of the main technical routines used to detect and recognize objects from images. While, loss of information is unavoidable during fusion process, so it is always a very important content of image fusion how to preserve the useful information to the utmost. That is to say, it should be taken into account before designing the fusion schemes how to avoid the loss of useful information or how to preserve the features helpful to the detection. In consideration of these issues and the fact that most detection problems are actually to distinguish man-made objects from natural background, a fractal-based multi-spectral fusion algorithm has been proposed in this paper aiming at the recognition of battlefield targets in the complicated backgrounds. According to this algorithm, source images are firstly orthogonally decomposed according to wavelet transform theories, and then fractal-based detection is held to each decomposed image. At this step, natural background and man-made targets are distinguished by use of fractal models that can well imitate natural objects. Special fusion operators are employed during the fusion of area that contains man-made targets so that useful information could be preserved and features of targets could be extruded. The final fused image is reconstructed from the composition of source pyramid images. So this fusion scheme is a multi-resolution analysis. The wavelet decomposition of image can be actually considered as special pyramid decomposition. According to wavelet decomposition theories, the approximation of image (formula available in paper) at resolution 2j+1 equal to its orthogonal projection in space , that is, where Ajf is the low-frequency approximation of image f(x, y) at resolution 2j and , , represent the vertical, horizontal and diagonal wavelet coefficients respectively at resolution 2j. These coefficients describe the high-frequency information of image at direction of vertical, horizontal and diagonal respectively. Ajf, , and are independent and can be considered as images. In this paper J is set to be 1, so the source image is decomposed to produce the son-images Af, D1f, D2f and D3f. To solve the problem of detecting artifacts, the concepts of vertical fractal dimension FD1, horizontal fractal dimension FD2 and diagonal fractal dimension FD3 are proposed in this paper. The vertical fractal dimension FD1 corresponds to the vertical wavelet coefficients image after the wavelet decomposition of source image, the horizontal fractal dimension FD2 corresponds to the horizontal wavelet coefficients and the diagonal fractal dimension FD3 the diagonal one. These definitions enrich the illustration of source images. Therefore they are helpful to classify the targets. Then the detection of artifacts in the decomposed images is a problem of pattern recognition in 4-D space. The combination of FD0, FD1, FD2 and FD3 make a vector of (FD0, FD1, FD2, FD3), which can be considered as a united feature vector of the studied image. All the parts of the images are classified in the 4-D pattern space created by the vector of (FD0, FD1, FD2, FD3) so that the area that contains man-made objects could be detected. This detection can be considered as a coarse recognition, and then the significant areas in each son-images are signed so that they can be dealt with special rules. There has been various fusion rules developed with each one aiming at a special problem. These rules have different performance, so it is very important to select an appropriate rule during the design of an image fusion system. Recent research denotes that the rule should be adjustable so that it is always suitable to extrude the features of targets and to preserve the pixels of useful information. In this paper, owing to the consideration that fractal dimension is one of the main features to distinguish man-made targets from natural objects, the fusion rule was defined that if the studied region of image contains man-made target, the pixels of the source image whose fractal dimension is minimal are saved to be the pixels of the fused image, otherwise, a weighted average operator is adopted to avoid loss of information. The main idea of this rule is to store the pixels with low fractal dimensions, so it can be named Minimal Fractal dimensions (MFD) fusion rule. This fractal-based algorithm is compared with a common weighted average fusion algorithm. An objective assessment is taken to the two fusion results. The criteria of Entropy, Cross-Entropy, Peak Signal-to-Noise Ratio (PSNR) and Standard Gray Scale Difference are defined in this paper. Reversely to the idea of constructing an ideal image as the assessing reference, the source images are selected to be the reference in this paper. It can be deemed that this assessment is to calculate how much the image quality has been enhanced and the quantity of information has been increased when the fused image is compared with the source images. The experimental results imply that the fractal-based multi-spectral fusion algorithm can effectively preserve the information of man-made objects with a high contrast. It is proved that this algorithm could well preserve features of military targets because that battlefield targets are most man-made objects and in common their images differ from fractal models obviously. Furthermore, the fractal features are not sensitive to the imaging conditions and the movement of targets, so this fractal-based algorithm may be very practical.

  19. Comparison of 2D and 3D wavelet features for TLE lateralization

    NASA Astrophysics Data System (ADS)

    Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost; Patel, Suresh

    2004-04-01

    Intensity and volume features of the hippocampus from MR images of the brain are known to be useful in detecting the abnormality and consequently candidacy of the hippocampus for temporal lobe epilepsy surgery. However, currently, intracranial EEG exams are required to determine the abnormal hippocampus. These exams are lengthy, painful and costly. The aim of this study is to evaluate texture characteristics of the hippocampi from MR images to help physicians determine the candidate hippocampus for surgery. We studied the MR images of 20 epileptic patients. Intracranial EEG results as well as surgery outcome were used as gold standard. The hippocampi were manually segmented by an expert from T1-weighted MR images. Then the segmented regions were mapped on the corresponding FLAIR images for texture analysis. We calculate the average energy features from 2D wavelet transform of each slice of hippocampus as well as the energy features produced by 3D wavelet transform of the whole hippocampus volume. The 2D wavelet transform is calculated both from the original slices as well as from the slices perpendicular to the principal axis of the hippocampus. In order to calculate the 3D wavelet transform we first rotate each hippocampus to fit it in a rectangular prism and then fill the empty area by extrapolating the intensity values. We combine the resulting features with volume feature and compare their ability to distinguish between normal and abnormal hippocampi using linear classifier and fuzzy c-means clustering algorithm. Experimental results show that the texture features can correctly classify the hippocampi.

  20. Rate-distortion analysis of directional wavelets.

    PubMed

    Maleki, Arian; Rajaei, Boshra; Pourreza, Hamid Reza

    2012-02-01

    The inefficiency of separable wavelets in representing smooth edges has led to a great interest in the study of new 2-D transformations. The most popular criterion for analyzing these transformations is the approximation power. Transformations with near-optimal approximation power are useful in many applications such as denoising and enhancement. However, they are not necessarily good for compression. Therefore, most of the nearly optimal transformations such as curvelets and contourlets have not found any application in image compression yet. One of the most promising schemes for image compression is the elegant idea of directional wavelets (DIWs). While these algorithms outperform the state-of-the-art image coders in practice, our theoretical understanding of them is very limited. In this paper, we adopt the notion of rate-distortion and calculate the performance of the DIW on a class of edge-like images. Our theoretical analysis shows that if the edges are not "sharp," the DIW will compress them more efficiently than the separable wavelets. It also demonstrates the inefficiency of the quadtree partitioning that is often used with the DIW. To solve this issue, we propose a new partitioning scheme called megaquad partitioning. Our simulation results on real-world images confirm the benefits of the proposed partitioning algorithm, promised by our theoretical analysis. © 2011 IEEE

  1. Accurate reconstruction in digital holographic microscopy using Fresnel dual-tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Zhang, Xiangchao; Yuan, He; Zhang, Hao; Xu, Min

    2018-02-01

    Digital holography is a promising measurement method in the fields of bio-medicine and micro-electronics. But the captured images of digital holography are severely polluted by the speckle noise because of optical scattering and diffraction. Via analyzing the properties of Fresnel diffraction and the topographies of micro-structures, a novel reconstruction method based on the dual-tree complex wavelet transform (DT-CWT) is proposed. This algorithm is shiftinvariant and capable of obtaining sparse representations for the diffracted signals of salient features, thus it is well suited for multiresolution processing of the interferometric holograms of directional morphologies. An explicit representation of orthogonal Fresnel DT-CWT bases and a specific filtering method are developed. This method can effectively remove the speckle noise without destroying the salient features. Finally, the proposed reconstruction method is compared with the conventional Fresnel diffraction integration and Fresnel wavelet transform with compressive sensing methods to validate its remarkable superiority on the aspects of topography reconstruction and speckle removal.

  2. Stationary Wavelet Transform and AdaBoost with SVM Based Pathological Brain Detection in MRI Scanning.

    PubMed

    Nayak, Deepak Ranjan; Dash, Ratnakar; Majhi, Banshidhar

    2017-01-01

    This paper presents an automatic classification system for segregating pathological brain from normal brains in magnetic resonance imaging scanning. The proposed system employs contrast limited adaptive histogram equalization scheme to enhance the diseased region in brain MR images. Two-dimensional stationary wavelet transform is harnessed to extract features from the preprocessed images. The feature vector is constructed using the energy and entropy values, computed from the level- 2 SWT coefficients. Then, the relevant and uncorrelated features are selected using symmetric uncertainty ranking filter. Subsequently, the selected features are given input to the proposed AdaBoost with support vector machine classifier, where SVM is used as the base classifier of AdaBoost algorithm. To validate the proposed system, three standard MR image datasets, Dataset-66, Dataset-160, and Dataset- 255 have been utilized. The 5 runs of k-fold stratified cross validation results indicate the suggested scheme offers better performance than other existing schemes in terms of accuracy and number of features. The proposed system earns ideal classification over Dataset-66 and Dataset-160; whereas, for Dataset- 255, an accuracy of 99.45% is achieved. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Analysis of breast thermograms using Gabor wavelet anisotropy index.

    PubMed

    Suganthi, S S; Ramakrishnan, S

    2014-09-01

    In this study, an attempt is made to distinguish the normal and abnormal tissues in breast thermal images using Gabor wavelet transform. Thermograms having normal, benign and malignant tissues are considered in this study and are obtained from public online database. Segmentation of breast tissues is performed by multiplying raw image and ground truth mask. Left and right breast regions are separated after removing the non-breast regions from the segmented image. Based on the pathological conditions, the separated breast regions are grouped as normal and abnormal tissues. Gabor features such as energy and amplitude in different scales and orientations are extracted. Anisotropy and orientation measures are calculated from the extracted features and analyzed. A distinctive variation is observed among different orientations of the extracted features. It is found that the anisotropy measure is capable of differentiating the structural changes due to varied metabolic conditions. Further, the Gabor features also showed relative variations among different pathological conditions. It appears that these features can be used efficiently to identify normal and abnormal tissues and hence, improve the relevance of breast thermography in early detection of breast cancer and content based image retrieval.

  4. Analysis of two dimensional signals via curvelet transform

    NASA Astrophysics Data System (ADS)

    Lech, W.; Wójcik, W.; Kotyra, A.; Popiel, P.; Duk, M.

    2007-04-01

    This paper describes an application of curvelet transform analysis problem of interferometric images. Comparing to two-dimensional wavelet transform, curvelet transform has higher time-frequency resolution. This article includes numerical experiments, which were executed on random interferometric image. In the result of nonlinear approximations, curvelet transform obtains matrix with smaller number of coefficients than is guaranteed by wavelet transform. Additionally, denoising simulations show that curvelet could be a very good tool to remove noise from images.

  5. Reversible integer wavelet transform for blind image hiding method

    PubMed Central

    Bibi, Nargis; Mahmood, Zahid; Akram, Tallha; Naqvi, Syed Rameez

    2017-01-01

    In this article, a blind data hiding reversible methodology to embed the secret data for hiding purpose into cover image is proposed. The key advantage of this research work is to resolve the privacy and secrecy issues raised during the data transmission over the internet. Firstly, data is decomposed into sub-bands using the integer wavelets. For decomposition, the Fresnelet transform is utilized which encrypts the secret data by choosing a unique key parameter to construct a dummy pattern. The dummy pattern is then embedded into an approximated sub-band of the cover image. Our proposed method reveals high-capacity and great imperceptibility of the secret embedded data. With the utilization of family of integer wavelets, the proposed novel approach becomes more efficient for hiding and retrieving process. It retrieved the secret hidden data from the embedded data blindly, without the requirement of original cover image. PMID:28498855

  6. Mass Detection in Mammographic Images Using Wavelet Processing and Adaptive Threshold Technique.

    PubMed

    Vikhe, P S; Thool, V R

    2016-04-01

    Detection of mass in mammogram for early diagnosis of breast cancer is a significant assignment in the reduction of the mortality rate. However, in some cases, screening of mass is difficult task for radiologist, due to variation in contrast, fuzzy edges and noisy mammograms. Masses and micro-calcifications are the distinctive signs for diagnosis of breast cancer. This paper presents, a method for mass enhancement using piecewise linear operator in combination with wavelet processing from mammographic images. The method includes, artifact suppression and pectoral muscle removal based on morphological operations. Finally, mass segmentation for detection using adaptive threshold technique is carried out to separate the mass from background. The proposed method has been tested on 130 (45 + 85) images with 90.9 and 91 % True Positive Fraction (TPF) at 2.35 and 2.1 average False Positive Per Image(FP/I) from two different databases, namely Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM). The obtained results show that, the proposed technique gives improved diagnosis in the early breast cancer detection.

  7. Wavelet versus DCT-based spread spectrum watermarking of image databases

    NASA Astrophysics Data System (ADS)

    Mitrea, Mihai P.; Zaharia, Titus B.; Preteux, Francoise J.; Vlad, Adriana

    2004-05-01

    This paper addresses the issue of oblivious robust watermarking, within the framework of colour still image database protection. We present an original method which complies with all the requirements nowadays imposed to watermarking applications: robustness (e.g. low-pass filtering, print & scan, StirMark), transparency (both quality and fidelity), low probability of false alarm, obliviousness and multiple bit recovering. The mark is generated from a 64 bit message (be it a logo, a serial number, etc.) by means of a Spread Spectrum technique and is embedded into DWT (Discrete Wavelet Transform) domain, into certain low frequency coefficients, selected according to the hierarchy of their absolute values. The best results were provided by the (9,7) bi-orthogonal transform. The experiments were carried out on 1200 image sequences, each of them of 32 images. Note that these sequences represented several types of images: natural, synthetic, medical, etc. and each time we obtained the same good results. These results are compared with those we already obtained for the DCT domain, the differences being pointed out and discussed.

  8. An efficient and secure partial image encryption for wireless multimedia sensor networks using discrete wavelet transform, chaotic maps and substitution box

    NASA Astrophysics Data System (ADS)

    Khan, Muazzam A.; Ahmad, Jawad; Javaid, Qaisar; Saqib, Nazar A.

    2017-03-01

    Wireless Sensor Networks (WSN) is widely deployed in monitoring of some physical activity and/or environmental conditions. Data gathered from WSN is transmitted via network to a central location for further processing. Numerous applications of WSN can be found in smart homes, intelligent buildings, health care, energy efficient smart grids and industrial control systems. In recent years, computer scientists has focused towards findings more applications of WSN in multimedia technologies, i.e. audio, video and digital images. Due to bulky nature of multimedia data, WSN process a large volume of multimedia data which significantly increases computational complexity and hence reduces battery time. With respect to battery life constraints, image compression in addition with secure transmission over a wide ranged sensor network is an emerging and challenging task in Wireless Multimedia Sensor Networks. Due to the open nature of the Internet, transmission of data must be secure through a process known as encryption. As a result, there is an intensive demand for such schemes that is energy efficient as well as highly secure since decades. In this paper, discrete wavelet-based partial image encryption scheme using hashing algorithm, chaotic maps and Hussain's S-Box is reported. The plaintext image is compressed via discrete wavelet transform and then the image is shuffled column-wise and row wise-wise via Piece-wise Linear Chaotic Map (PWLCM) and Nonlinear Chaotic Algorithm, respectively. To get higher security, initial conditions for PWLCM are made dependent on hash function. The permuted image is bitwise XORed with random matrix generated from Intertwining Logistic map. To enhance the security further, final ciphertext is obtained after substituting all elements with Hussain's substitution box. Experimental and statistical results confirm the strength of the anticipated scheme.

  9. Efficient Analysis of Mass Spectrometry Data Using the Isotope Wavelet

    NASA Astrophysics Data System (ADS)

    Hussong, Rene; Tholey, Andreas; Hildebrandt, Andreas

    2007-09-01

    Mass spectrometry (MS) has become today's de-facto standard for high-throughput analysis in proteomics research. Its applications range from toxicity analysis to MS-based diagnostics. Often, the time spent on the MS experiment itself is significantly less than the time necessary to interpret the measured signals, since the amount of data can easily exceed several gigabytes. In addition, automated analysis is hampered by baseline artifacts, chemical as well as electrical noise, and an irregular spacing of data points. Thus, filtering techniques originating from signal and image analysis are commonly employed to address these problems. Unfortunately, smoothing, base-line reduction, and in particular a resampling of data points can affect important characteristics of the experimental signal. To overcome these problems, we propose a new family of wavelet functions based on the isotope wavelet, which is hand-tailored for the analysis of mass spectrometry data. The resulting technique is theoretically well-founded and compares very well with standard peak picking tools, since it is highly robust against noise spoiling the data, but at the same time sufficiently sensitive to detect even low-abundant peptides.

  10. Comparison of the Spectral Properties of Pansharpened Images Generated from AVNIR-2 and Prism Onboard Alos

    NASA Astrophysics Data System (ADS)

    Matsuoka, M.

    2012-07-01

    A considerable number of methods for pansharpening remote-sensing images have been developed to generate higher spatial resolution multispectral images by the fusion of lower resolution multispectral images and higher resolution panchromatic images. Because pansharpening alters the spectral properties of multispectral images, method selection is one of the key factors influencing the accuracy of subsequent analyses such as land-cover classification or change detection. In this study, seven pixel-based pansharpening methods (additive wavelet intensity, additive wavelet principal component, generalized Laplacian pyramid with spectral distortion minimization, generalized intensity-hue-saturation (GIHS) transform, GIHS adaptive, Gram-Schmidt spectral sharpening, and block-based synthetic variable ratio) were compared using AVNIR-2 and PRISM onboard ALOS from the viewpoint of the preservation of spectral properties of AVNIR-2. A visual comparison was made between pansharpened images generated from spatially degraded AVNIR-2 and original images over urban, agricultural, and forest areas. The similarity of the images was evaluated in terms of the image contrast, the color distinction, and the brightness of the ground objects. In the quantitative assessment, three kinds of statistical indices, correlation coefficient, ERGAS, and Q index, were calculated by band and land-cover type. These scores were relatively superior in bands 2 and 3 compared with the other two bands, especially over urban and agricultural areas. Band 4 showed a strong dependency on the land-cover type. This was attributable to the differences in the observing spectral wavelengths of the sensors and local scene variances.

  11. A novel image enhancement algorithm based on stationary wavelet transform for infrared thermography to the de-bonding defect in solid rocket motors

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Zhang, Wei; Yan, Shaoze

    2015-10-01

    In this paper, a multi-scale image enhancement algorithm based on low-passing filtering and nonlinear transformation is proposed for infrared testing image of the de-bonding defect in solid propellant rocket motors. Infrared testing images with high-level noise and low contrast are foundations for identifying defects and calculating the defects size. In order to improve quality of the infrared image, according to distribution properties of the detection image, within framework of stationary wavelet transform, the approximation coefficients at suitable decomposition level is processed by index low-passing filtering by using Fourier transform, after that, the nonlinear transformation is applied to further process the figure to improve the picture contrast. To verify validity of the algorithm, the image enhancement algorithm is applied to infrared testing pictures of two specimens with de-bonding defect. Therein, one specimen is made of a type of high-strength steel, and the other is a type of carbon fiber composite. As the result shown, in the images processed by the image enhancement algorithm presented in the paper, most of noises are eliminated, and contrast between defect areas and normal area is improved greatly; in addition, by using the binary picture of the processed figure, the continuous defect edges can be extracted, all of which show the validity of the algorithm. The paper provides a well-performing image enhancement algorithm for the infrared thermography.

  12. Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Tao; Rivard, Benoit; Sánchez-Azofeifa, Arturo G.; Féret, Jean-Baptiste; Jacquemoud, Stéphane; Ustin, Susan L.

    2014-01-01

    Leaf mass per area (LMA), the ratio of leaf dry mass to leaf area, is a trait of central importance to the understanding of plant light capture and carbon gain. It can be estimated from leaf reflectance spectroscopy in the infrared region, by making use of information about the absorption features of dry matter. This study reports on the application of continuous wavelet analysis (CWA) to the estimation of LMA across a wide range of plant species. We compiled a large database of leaf reflectance spectra acquired within the framework of three independent measurement campaigns (ANGERS, LOPEX and PANAMA) and generated a simulated database using the PROSPECT leaf optical properties model. CWA was applied to the measured and simulated databases to extract wavelet features that correlate with LMA. These features were assessed in terms of predictive capability and robustness while transferring predictive models from the simulated database to the measured database. The assessment was also conducted with two existing spectral indices, namely the Normalized Dry Matter Index (NDMI) and the Normalized Difference index for LMA (NDLMA). Five common wavelet features were determined from the two databases, which showed significant correlations with LMA (R2: 0.51-0.82, p < 0.0001). The best robustness (R2 = 0.74, RMSE = 18.97 g/m2 and Bias = 0.12 g/m2) was obtained using a combination of two low-scale features (1639 nm, scale 4) and (2133 nm, scale 5), the first being predominantly important. The transferability of the wavelet-based predictive model to the whole measured database was either better than or comparable to those based on spectral indices. Additionally, only the wavelet-based model showed consistent predictive capabilities among the three measured data sets. In comparison, the models based on spectral indices were sensitive to site-specific data sets. Integrating the NDLMA spectral index and the two robust wavelet features improved the LMA prediction. One of the bands used by this spectral index, 1368 nm, was located in a strong atmospheric water absorption region and replacing it with the next available band (1340 nm) led to lower predictive accuracies. However, the two wavelet features were not affected by data quality in the atmospheric absorption regions and therefore showed potential for canopy-level investigations. The wavelet approach provides a different perspective into spectral responses to LMA variation than the traditional spectral indices and holds greater promise for implementation with airborne or spaceborne imaging spectroscopy data for mapping canopy foliar dry biomass.

  13. Multiscale image fusion using the undecimated wavelet transform with spectral factorization and nonorthogonal filter banks.

    PubMed

    Ellmauthaler, Andreas; Pagliari, Carla L; da Silva, Eduardo A B

    2013-03-01

    Multiscale transforms are among the most popular techniques in the field of pixel-level image fusion. However, the fusion performance of these methods often deteriorates for images derived from different sensor modalities. In this paper, we demonstrate that for such images, results can be improved using a novel undecimated wavelet transform (UWT)-based fusion scheme, which splits the image decomposition process into two successive filtering operations using spectral factorization of the analysis filters. The actual fusion takes place after convolution with the first filter pair. Its significantly smaller support size leads to the minimization of the unwanted spreading of coefficient values around overlapping image singularities. This usually complicates the feature selection process and may lead to the introduction of reconstruction errors in the fused image. Moreover, we will show that the nonsubsampled nature of the UWT allows the design of nonorthogonal filter banks, which are more robust to artifacts introduced during fusion, additionally improving the obtained results. The combination of these techniques leads to a fusion framework, which provides clear advantages over traditional multiscale fusion approaches, independent of the underlying fusion rule, and reduces unwanted side effects such as ringing artifacts in the fused reconstruction.

  14. Multispectral code excited linear prediction coding and its application in magnetic resonance images.

    PubMed

    Hu, J H; Wang, Y; Cahill, P T

    1997-01-01

    This paper reports a multispectral code excited linear prediction (MCELP) method for the compression of multispectral images. Different linear prediction models and adaptation schemes have been compared. The method that uses a forward adaptive autoregressive (AR) model has been proven to achieve a good compromise between performance, complexity, and robustness. This approach is referred to as the MFCELP method. Given a set of multispectral images, the linear predictive coefficients are updated over nonoverlapping three-dimensional (3-D) macroblocks. Each macroblock is further divided into several 3-D micro-blocks, and the best excitation signal for each microblock is determined through an analysis-by-synthesis procedure. The MFCELP method has been applied to multispectral magnetic resonance (MR) images. To satisfy the high quality requirement for medical images, the error between the original image set and the synthesized one is further specified using a vector quantizer. This method has been applied to images from 26 clinical MR neuro studies (20 slices/study, three spectral bands/slice, 256x256 pixels/band, 12 b/pixel). The MFCELP method provides a significant visual improvement over the discrete cosine transform (DCT) based Joint Photographers Expert Group (JPEG) method, the wavelet transform based embedded zero-tree wavelet (EZW) coding method, and the vector tree (VT) coding method, as well as the multispectral segmented autoregressive moving average (MSARMA) method we developed previously.

  15. SPECT reconstruction using DCT-induced tight framelet regularization

    NASA Astrophysics Data System (ADS)

    Zhang, Jiahan; Li, Si; Xu, Yuesheng; Schmidtlein, C. R.; Lipson, Edward D.; Feiglin, David H.; Krol, Andrzej

    2015-03-01

    Wavelet transforms have been successfully applied in many fields of image processing. Yet, to our knowledge, they have never been directly incorporated to the objective function in Emission Computed Tomography (ECT) image reconstruction. Our aim has been to investigate if the ℓ1-norm of non-decimated discrete cosine transform (DCT) coefficients of the estimated radiotracer distribution could be effectively used as the regularization term for the penalized-likelihood (PL) reconstruction, where a regularizer is used to enforce the image smoothness in the reconstruction. In this study, the ℓ1-norm of 2D DCT wavelet decomposition was used as a regularization term. The Preconditioned Alternating Projection Algorithm (PAPA), which we proposed in earlier work to solve penalized likelihood (PL) reconstruction with non-differentiable regularizers, was used to solve this optimization problem. The DCT wavelet decompositions were performed on the transaxial reconstructed images. We reconstructed Monte Carlo simulated SPECT data obtained for a numerical phantom with Gaussian blobs as hot lesions and with a warm random lumpy background. Reconstructed images using the proposed method exhibited better noise suppression and improved lesion conspicuity, compared with images reconstructed using expectation maximization (EM) algorithm with Gaussian post filter (GPF). Also, the mean square error (MSE) was smaller, compared with EM-GPF. A critical and challenging aspect of this method was selection of optimal parameters. In summary, our numerical experiments demonstrated that the ℓ1-norm of discrete cosine transform (DCT) wavelet frame transform DCT regularizer shows promise for SPECT image reconstruction using PAPA method.

  16. Feature extraction using gray-level co-occurrence matrix of wavelet coefficients and texture matching for batik motif recognition

    NASA Astrophysics Data System (ADS)

    Suciati, Nanik; Herumurti, Darlis; Wijaya, Arya Yudhi

    2017-02-01

    Batik is one of Indonesian's traditional cloth. Motif or pattern drawn on a piece of batik fabric has a specific name and philosopy. Although batik cloths are widely used in everyday life, but only few people understand its motif and philosophy. This research is intended to develop a batik motif recognition system which can be used to identify motif of Batik image automatically. First, a batik image is decomposed into sub-images using wavelet transform. Six texture descriptors, i.e. max probability, correlation, contrast, uniformity, homogenity and entropy, are extracted from gray-level co-occurrence matrix of each sub-image. The texture features are then matched to the template features using canberra distance. The experiment is performed on Batik Dataset consisting of 1088 batik images grouped into seven motifs. The best recognition rate, that is 92,1%, is achieved using feature extraction process with 5 level wavelet decomposition and 4 directional gray-level co-occurrence matrix.

  17. Wavelet compression of noisy tomographic images

    NASA Astrophysics Data System (ADS)

    Kappeler, Christian; Mueller, Stefan P.

    1995-09-01

    3D data acquisition is increasingly used in positron emission tomography (PET) to collect a larger fraction of the emitted radiation. A major practical difficulty with data storage and transmission in 3D-PET is the large size of the data sets. A typical dynamic study contains about 200 Mbyte of data. PET images inherently have a high level of photon noise and therefore usually are evaluated after being processed by a smoothing filter. In this work we examined lossy compression schemes under the postulate not induce image modifications exceeding those resulting from low pass filtering. The standard we will refer to is the Hanning filter. Resolution and inhomogeneity serve as figures of merit for quantification of image quality. The images to be compressed are transformed to a wavelet representation using Daubechies12 wavelets and compressed after filtering by thresholding. We do not include further compression by quantization and coding here. Achievable compression factors at this level of processing are thirty to fifty.

  18. Wavelets analysis for differentiating solid, non-macroscopic fat containing, enhancing renal masses: a pilot study

    NASA Astrophysics Data System (ADS)

    Varghese, Bino; Hwang, Darryl; Mohamed, Passant; Cen, Steven; Deng, Christopher; Chang, Michael; Duddalwar, Vinay

    2017-11-01

    Purpose: To evaluate potential use of wavelets analysis in discriminating benign and malignant renal masses (RM) Materials and Methods: Regions of interest of the whole lesion were manually segmented and co-registered from multiphase CT acquisitions of 144 patients (98 malignant RM: renal cell carcinoma (RCC) and 46 benign RM: oncocytoma, lipid-poor angiomyolipoma). Here, the Haar wavelet was used to analyze the grayscale images of the largest segmented tumor in the axial direction. Six metrics (energy, entropy, homogeneity, contrast, standard deviation (SD) and variance) derived from 3-levels of image decomposition in 3 directions (horizontal, vertical and diagonal) respectively, were used to quantify tumor texture. Independent t-test or Wilcoxon rank sum test depending on data normality were used as exploratory univariate analysis. Stepwise logistic regression and receiver operator characteristics (ROC) curve analysis were used to select predictors and assess prediction accuracy, respectively. Results: Consistently, 5 out of 6 wavelet-based texture measures (except homogeneity) were higher for malignant tumors compared to benign, when accounting for individual texture direction. Homogeneity was consistently lower in malignant than benign tumors irrespective of direction. SD and variance measured in the diagonal direction on the corticomedullary phase showed significant (p<0.05) difference between benign versus malignant tumors. The multivariate model with variance (3 directions) and SD (vertical direction) extracted from the excretory and pre-contrast phase, respectively showed an area under the ROC curve (AUC) of 0.78 (p < 0.05) in discriminating malignant from benign. Conclusion: Wavelet analysis is a valuable texture evaluation tool to add to a radiomics platforms geared at reliably characterizing and stratifying renal masses.

  19. Optical Coherence Tomography Noise Reduction Using Anisotropic Local Bivariate Gaussian Mixture Prior in 3D Complex Wavelet Domain

    PubMed Central

    Sonka, Milan; Abramoff, Michael D.

    2013-01-01

    In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and homomorphic/nonhomomorphic model. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs from 650 × 512 × 128 OCT dataset in the presence of wet AMD pathology. Our simulations show that the best MMSE estimator using local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement of 7.8 ± 1.7 in CNR. PMID:24222760

  20. Wavelet-based automatic determination of the P- and S-wave arrivals

    NASA Astrophysics Data System (ADS)

    Bogiatzis, P.; Ishii, M.

    2013-12-01

    The detection of P- and S-wave arrivals is important for a variety of seismological applications including earthquake detection and characterization, and seismic tomography problems such as imaging of hydrocarbon reservoirs. For many years, dedicated human-analysts manually selected the arrival times of P and S waves. However, with the rapid expansion of seismic instrumentation, automatic techniques that can process a large number of seismic traces are becoming essential in tomographic applications, and for earthquake early-warning systems. In this work, we present a pair of algorithms for efficient picking of P and S onset times. The algorithms are based on the continuous wavelet transform of the seismic waveform that allows examination of a signal in both time and frequency domains. Unlike Fourier transform, the basis functions are localized in time and frequency, therefore, wavelet decomposition is suitable for analysis of non-stationary signals. For detecting the P-wave arrival, the wavelet coefficients are calculated using the vertical component of the seismogram, and the onset time of the wave is identified. In the case of the S-wave arrival, we take advantage of the polarization of the shear waves, and cross-examine the wavelet coefficients from the two horizontal components. In addition to the onset times, the automatic picking program provides estimates of uncertainty, which are important for subsequent applications. The algorithms are tested with synthetic data that are generated to include sudden changes in amplitude, frequency, and phase. The performance of the wavelet approach is further evaluated using real data by comparing the automatic picks with manual picks. Our results suggest that the proposed algorithms provide robust measurements that are comparable to manual picks for both P- and S-wave arrivals.

  1. Applications of wavelets in interferometry and artificial vision

    NASA Astrophysics Data System (ADS)

    Escalona Z., Rafael A.

    2001-08-01

    In this paper we present a different point of view of phase measurements performed in interferometry, image processing and intelligent vision using Wavelet Transform. In standard and white-light interferometry, the phase function is retrieved by using phase-shifting, Fourier-Transform, cosinus-inversion and other known algorithms. Our novel technique presented here is faster, robust and shows excellent accuracy in phase determinations. Finally, in our second application, fringes are no more generate by some light interaction but result from the observation of adapted strip set patterns directly printed on the target of interest. The moving target is simply observed by a conventional vision system and usual phase computation algorithms are adapted to an image processing by wavelet transform, in order to sense target position and displacements with a high accuracy. In general, we have determined that wavelet transform presents properties of robustness, relative speed of calculus and very high accuracy in phase computations.

  2. Multimodal Wavelet Embedding Representation for data Combination (MaWERiC): Integrating Magnetic Resonance Imaging and Spectroscopy for Prostate Cancer Detection

    PubMed Central

    Tiwari, Pallavi; Kurhanewicz, John; Viswanath, Satish; Sridhar, Akshay; Madabhushi, Anant

    2011-01-01

    Rationale and Objectives To develop a computerized data integration framework (MaWERiC) for quantitatively combining structural and metabolic information from different Magnetic Resonance (MR) imaging modalities. Materials and Methods In this paper, we present a novel computerized support system that we call Multimodal Wavelet Embedding Representation for data Combination (MaWERiC) which (1) employs wavelet theory and dimensionality reduction for providing a common, uniform representation of the different imaging (T2-w) and non-imaging (spectroscopy) MRI channels, and (2) leverages a random forest classifier for automated prostate cancer detection on a per voxel basis from combined 1.5 Tesla in vivo MRI and MRS. Results A total of 36 1.5 T endorectal in vivo T2-w MRI, MRS patient studies were evaluated on a per-voxel via MaWERiC, using a three-fold cross validation scheme across 25 iterations. Ground truth for evaluation of the results was obtained via ex-vivo whole-mount histology sections which served as the gold standard for expert radiologist annotations of prostate cancer on a per-voxel basis. The results suggest that MaWERiC based MRS-T2-w meta-classifier (mean AUC, μ = 0.89 ± 0.02) significantly outperformed (i) a T2-w MRI (employing wavelet texture features) classifier (μ = 0.55± 0.02), (ii) a MRS (employing metabolite ratios) classifier (μ= 0.77 ± 0.03), (iii) a decision-fusion classifier, obtained by combining individual T2-w MRI and MRS classifier outputs (μ = 0.85 ± 0.03) and (iv) a data combination scheme involving combination of metabolic MRS and MR signal intensity features (μ = 0.66± 0.02). Conclusion A novel data integration framework, MaWERiC, for combining imaging and non-imaging MRI channels was presented. Application to prostate cancer detection via combination of T2-w MRI and MRS data demonstrated significantly higher AUC and accuracy values compared to the individual T2-w MRI, MRS modalities and other data integration strategies. PMID:21960175

  3. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.

    PubMed

    Kang, Eunhee; Min, Junhong; Ye, Jong Chul

    2017-10-01

    Due to the potential risk of inducing cancer, radiation exposure by X-ray CT devices should be reduced for routine patient scanning. However, in low-dose X-ray CT, severe artifacts typically occur due to photon starvation, beam hardening, and other causes, all of which decrease the reliability of the diagnosis. Thus, a high-quality reconstruction method from low-dose X-ray CT data has become a major research topic in the CT community. Conventional model-based de-noising approaches are, however, computationally very expensive, and image-domain de-noising approaches cannot readily remove CT-specific noise patterns. To tackle these problems, we want to develop a new low-dose X-ray CT algorithm based on a deep-learning approach. We propose an algorithm which uses a deep convolutional neural network (CNN) which is applied to the wavelet transform coefficients of low-dose CT images. More specifically, using a directional wavelet transform to extract the directional component of artifacts and exploit the intra- and inter- band correlations, our deep network can effectively suppress CT-specific noise. In addition, our CNN is designed with a residual learning architecture for faster network training and better performance. Experimental results confirm that the proposed algorithm effectively removes complex noise patterns from CT images derived from a reduced X-ray dose. In addition, we show that the wavelet-domain CNN is efficient when used to remove noise from low-dose CT compared to existing approaches. Our results were rigorously evaluated by several radiologists at the Mayo Clinic and won second place at the 2016 "Low-Dose CT Grand Challenge." To the best of our knowledge, this work is the first deep-learning architecture for low-dose CT reconstruction which has been rigorously evaluated and proven to be effective. In addition, the proposed algorithm, in contrast to existing model-based iterative reconstruction (MBIR) methods, has considerable potential to benefit from large data sets. Therefore, we believe that the proposed algorithm opens a new direction in the area of low-dose CT research. © 2017 American Association of Physicists in Medicine.

  4. Reliable structural information from multiscale decomposition with the Mellor-Brady filter

    NASA Astrophysics Data System (ADS)

    Szilágyi, Tünde; Brady, Michael

    2009-08-01

    Image-based medical diagnosis typically relies on the (poorly reproducible) subjective classification of textures in order to differentiate between diseased and healthy pathology. Clinicians claim that significant benefits would arise from quantitative measures to inform clinical decision making. The first step in generating such measures is to extract local image descriptors - from noise corrupted and often spatially and temporally coarse resolution medical signals - that are invariant to illumination, translation, scale and rotation of the features. The Dual-Tree Complex Wavelet Transform (DT-CWT) provides a wavelet multiresolution analysis (WMRA) tool e.g. in 2D with good properties, but has limited rotational selectivity. Also, it requires computationally-intensive steering due to the inherently 1D operations performed. The monogenic signal, which is defined in n >= 2D with the Riesz transform gives excellent orientation information without the need for steering. Recent work has suggested the Monogenic Riesz-Laplace wavelet transform as a possible tool for integrating these two concepts into a coherent mathematical framework. We have found that the proposed construction suffers from a lack of rotational invariance and is not optimal for retrieving local image descriptors. In this paper we show: 1. Local frequency and local phase from the monogenic signal are not equivalent, especially in the phase congruency model of a "feature", and so they are not interchangeable for medical image applications. 2. The accuracy of local phase computation may be improved by estimating the denoising parameters while maximizing a new measure of "featureness".

  5. Wavelet Denoising of Radio Observations of Rotating Radio Transients (RRATs): Improved Timing Parameters for Eight RRATs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, M.; Schmid, N. A.; Cao, Z.-C.

    Rotating radio transients (RRATs) are sporadically emitting pulsars detectable only through searches for single pulses. While over 100 RRATs have been detected, only a small fraction (roughly 20%) have phase-connected timing solutions, which are critical for determining how they relate to other neutron star populations. Detecting more pulses in order to achieve solutions is key to understanding their physical nature. Astronomical signals collected by radio telescopes contain noise from many sources, making the detection of weak pulses difficult. Applying a denoising method to raw time series prior to performing a single-pulse search typically leads to a more accurate estimation ofmore » their times of arrival (TOAs). Taking into account some features of RRAT pulses and noise, we present a denoising method based on wavelet data analysis, an image-processing technique. Assuming that the spin period of an RRAT is known, we estimate the frequency spectrum components contributing to the composition of RRAT pulses. This allows us to suppress the noise, which contributes to other frequencies. We apply the wavelet denoising method including selective wavelet reconstruction and wavelet shrinkage to the de-dispersed time series of eight RRATs with existing timing solutions. The signal-to-noise ratio (S/N) of most pulses are improved after wavelet denoising. Compared to the conventional approach, we measure 12%–69% more TOAs for the eight RRATs. The new timing solutions for the eight RRATs show 16%–90% smaller estimation error of most parameters. Thus, we conclude that wavelet analysis is an effective tool for denoising RRATs signal.« less

  6. Dependence and risk assessment for oil prices and exchange rate portfolios: A wavelet based approach

    NASA Astrophysics Data System (ADS)

    Aloui, Chaker; Jammazi, Rania

    2015-10-01

    In this article, we propose a wavelet-based approach to accommodate the stylized facts and complex structure of financial data, caused by frequent and abrupt changes of markets and noises. Specifically, we show how the combination of both continuous and discrete wavelet transforms with traditional financial models helps improve portfolio's market risk assessment. In the empirical stage, three wavelet-based models (wavelet-EGARCH with dynamic conditional correlations, wavelet-copula, and wavelet-extreme value) are considered and applied to crude oil price and US dollar exchange rate data. Our findings show that the wavelet-based approach provides an effective and powerful tool for detecting extreme moments and improving the accuracy of VaR and Expected Shortfall estimates of oil-exchange rate portfolios after noise is removed from the original data.

  7. Real-time human versus animal classification using pyro-electric sensor array and Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Hossen, Jakir; Jacobs, Eddie L.; Chari, Srikant

    2014-03-01

    In this paper, we propose a real-time human versus animal classification technique using a pyro-electric sensor array and Hidden Markov Model. The technique starts with the variational energy functional level set segmentation technique to separate the object from background. After segmentation, we convert the segmented object to a signal by considering column-wise pixel values and then finding the wavelet coefficients of the signal. HMMs are trained to statistically model the wavelet features of individuals through an expectation-maximization learning process. Human versus animal classifications are made by evaluating a set of new wavelet feature data against the trained HMMs using the maximum-likelihood criterion. Human and animal data acquired-using a pyro-electric sensor in different terrains are used for performance evaluation of the algorithms. Failures of the computationally effective SURF feature based approach that we develop in our previous research are because of distorted images produced when the object runs very fast or if the temperature difference between target and background is not sufficient to accurately profile the object. We show that wavelet based HMMs work well for handling some of the distorted profiles in the data set. Further, HMM achieves improved classification rate over the SURF algorithm with almost the same computational time.

  8. Value-at-risk estimation with wavelet-based extreme value theory: Evidence from emerging markets

    NASA Astrophysics Data System (ADS)

    Cifter, Atilla

    2011-06-01

    This paper introduces wavelet-based extreme value theory (EVT) for univariate value-at-risk estimation. Wavelets and EVT are combined for volatility forecasting to estimate a hybrid model. In the first stage, wavelets are used as a threshold in generalized Pareto distribution, and in the second stage, EVT is applied with a wavelet-based threshold. This new model is applied to two major emerging stock markets: the Istanbul Stock Exchange (ISE) and the Budapest Stock Exchange (BUX). The relative performance of wavelet-based EVT is benchmarked against the Riskmetrics-EWMA, ARMA-GARCH, generalized Pareto distribution, and conditional generalized Pareto distribution models. The empirical results show that the wavelet-based extreme value theory increases predictive performance of financial forecasting according to number of violations and tail-loss tests. The superior forecasting performance of the wavelet-based EVT model is also consistent with Basel II requirements, and this new model can be used by financial institutions as well.

  9. Wavelet analysis techniques applied to removing varying spectroscopic background in calibration model for pear sugar content

    NASA Astrophysics Data System (ADS)

    Liu, Yande; Ying, Yibin; Lu, Huishan; Fu, Xiaping

    2005-11-01

    A new method is proposed to eliminate the varying background and noise simultaneously for multivariate calibration of Fourier transform near infrared (FT-NIR) spectral signals. An ideal spectrum signal prototype was constructed based on the FT-NIR spectrum of fruit sugar content measurement. The performances of wavelet based threshold de-noising approaches via different combinations of wavelet base functions were compared. Three families of wavelet base function (Daubechies, Symlets and Coiflets) were applied to estimate the performance of those wavelet bases and threshold selection rules by a series of experiments. The experimental results show that the best de-noising performance is reached via the combinations of Daubechies 4 or Symlet 4 wavelet base function. Based on the optimization parameter, wavelet regression models for sugar content of pear were also developed and result in a smaller prediction error than a traditional Partial Least Squares Regression (PLSR) mode.

  10. Characterization of palmprints by wavelet signatures via directional context modeling.

    PubMed

    Zhang, Lei; Zhang, David

    2004-06-01

    The palmprint is one of the most reliable physiological characteristics that can be used to distinguish between individuals. Current palmprint-based systems are more user friendly, more cost effective, and require fewer data signatures than traditional fingerprint-based identification systems. The principal lines and wrinkles captured in a low-resolution palmprint image provide more than enough information to uniquely identify an individual. This paper presents a palmprint identification scheme that characterizes a palmprint using a set of statistical signatures. The palmprint is first transformed into the wavelet domain, and the directional context of each wavelet subband is defined and computed in order to collect the predominant coefficients of its principal lines and wrinkles. A set of statistical signatures, which includes gravity center, density, spatial dispersivity and energy, is then defined to characterize the palmprint with the selected directional context values. A classification and identification scheme based on these signatures is subsequently developed. This scheme exploits the features of principal lines and prominent wrinkles sufficiently and achieves satisfactory results. Compared with the line-segments-matching or interesting-points-matching based palmprint verification schemes, the proposed scheme uses a much smaller amount of data signatures. It also provides a convenient classification strategy and more accurate identification.

  11. Wavelet transforms with discrete-time continuous-dilation wavelets

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Rao, Raghuveer M.

    1999-03-01

    Wavelet constructions and transforms have been confined principally to the continuous-time domain. Even the discrete wavelet transform implemented through multirate filter banks is based on continuous-time wavelet functions that provide orthogonal or biorthogonal decompositions. This paper provides a novel wavelet transform construction based on the definition of discrete-time wavelets that can undergo continuous parameter dilations. The result is a transformation that has the advantage of discrete-time or digital implementation while circumventing the problem of inadequate scaling resolution seen with conventional dyadic or M-channel constructions. Examples of constructing such wavelets are presented.

  12. High resolution crustal image of South California Continental Borderland: Reverse time imaging including multiples

    NASA Astrophysics Data System (ADS)

    Bian, A.; Gantela, C.

    2014-12-01

    Strong multiples were observed in marine seismic data of Los Angeles Regional Seismic Experiment (LARSE).It is crucial to eliminate these multiples in conventional ray-based or one-way wave-equation based depth image methods. As long as multiples contain information of target zone along travelling path, it's possible to use them as signal, to improve the illumination coverage thus enhance the image quality of structural boundaries. Reverse time migration including multiples is a two-way wave-equation based prestack depth image method that uses both primaries and multiples to map structural boundaries. Several factors, including source wavelet, velocity model, back ground noise, data acquisition geometry and preprocessing workflow may influence the quality of image. The source wavelet is estimated from direct arrival of marine seismic data. Migration velocity model is derived from integrated model building workflow, and the sharp velocity interfaces near sea bottom needs to be preserved in order to generate multiples in the forward and backward propagation steps. The strong amplitude, low frequency marine back ground noise needs to be removed before the final imaging process. High resolution reverse time image sections of LARSE Lines 1 and Line 2 show five interfaces: depth of sea-bottom, base of sedimentary basins, top of Catalina Schist, a deep layer and a possible pluton boundary. Catalina Schist shows highs in the San Clemente ridge, Emery Knoll, Catalina Ridge, under Catalina Basin on both the lines, and a minor high under Avalon Knoll. The high of anticlinal fold in Line 1 is under the north edge of Emery Knoll and under the San Clemente fault zone. An area devoid of any reflection features are interpreted as sides of an igneous plume.

  13. Real time MRI prostate segmentation based on wavelet multiscale products flow tracking.

    PubMed

    Flores-Tapia, Daniel; Venugopal, Niranjan; Thomas, Gabriel; McCurdy, Boyd; Ryner, Lawrence; Pistorius, Stephen

    2010-01-01

    Currently, prostate cancer is the third leading cause of cancer-related deaths among men in North America. As with many others types of cancer, early detection and treatment greatly increases the patient's chance of survival. Combined Magnetic Resonance Imaging and Spectroscopic Imaging (MRI/MRSI) techniques have became a reliable tool for early stage prostate cancer detection. Nevertheless, their performance is strongly affected by the determination of the region of interest (ROI) prior to data acquisition process. The process of executing prostate MRI/MRSI techniques can be significantly enhanced by segmenting the whole prostate. A novel method for segmentation of the prostate in MRI datasets is presented. This method exploits the different behavior presented by signal singularities and noise in the wavelet domain in order to accurately detect the borders around the prostate. The prostate contour is then traced by using a set of spatially variant rules that are based on prior knowledge about the general shape of the prostate. The proposed method yielded promising results when applied to clinical datasets.

  14. Comparison of motion correction techniques applied to functional near-infrared spectroscopy data from children

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Su; Arredondo, Maria M.; Gomba, Megan; Confer, Nicole; DaSilva, Alexandre F.; Johnson, Timothy D.; Shalinsky, Mark; Kovelman, Ioulia

    2015-12-01

    Motion artifacts are the most significant sources of noise in the context of pediatric brain imaging designs and data analyses, especially in applications of functional near-infrared spectroscopy (fNIRS), in which it can completely affect the quality of the data acquired. Different methods have been developed to correct motion artifacts in fNIRS data, but the relative effectiveness of these methods for data from child and infant subjects (which is often found to be significantly noisier than adult data) remains largely unexplored. The issue is further complicated by the heterogeneity of fNIRS data artifacts. We compared the efficacy of the six most prevalent motion artifact correction techniques with fNIRS data acquired from children participating in a language acquisition task, including wavelet, spline interpolation, principal component analysis, moving average (MA), correlation-based signal improvement, and combination of wavelet and MA. The evaluation of five predefined metrics suggests that the MA and wavelet methods yield the best outcomes. These findings elucidate the varied nature of fNIRS data artifacts and the efficacy of artifact correction methods with pediatric populations, as well as help inform both the theory and practice of optical brain imaging analysis.

  15. On the probability density function and characteristic function moments of image steganalysis in the log prediction error wavelet subband

    NASA Astrophysics Data System (ADS)

    Bao, Zhenkun; Li, Xiaolong; Luo, Xiangyang

    2017-01-01

    Extracting informative statistic features is the most essential technical issue of steganalysis. Among various steganalysis methods, probability density function (PDF) and characteristic function (CF) moments are two important types of features due to the excellent ability for distinguishing the cover images from the stego ones. The two types of features are quite similar in definition. The only difference is that the PDF moments are computed in the spatial domain, while the CF moments are computed in the Fourier-transformed domain. Then, the comparison between PDF and CF moments is an interesting question of steganalysis. Several theoretical results have been derived, and CF moments are proved better than PDF moments in some cases. However, in the log prediction error wavelet subband of wavelet decomposition, some experiments show that the result is opposite and lacks a rigorous explanation. To solve this problem, a comparison result based on the rigorous proof is presented: the first-order PDF moment is proved better than the CF moment, while the second-order CF moment is better than the PDF moment. It tries to open the theoretical discussion on steganalysis and the question of finding suitable statistical features.

  16. The study of evolution and depression of the alpha-rhythm in the human brain EEG by means of wavelet-based methods

    NASA Astrophysics Data System (ADS)

    Runnova, A. E.; Zhuravlev, M. O.; Khramova, M. V.; Pysarchik, A. N.

    2017-04-01

    We study the appearance, development and depression of the alpha-rhythm in human EEG data during a psychophysiological experiment by stimulating cognitive activity with the perception of ambiguous object. The new method based on continuous wavelet transform allows to estimate the energy contribution of various components, including the alpha rhythm, in the general dynamics of the electrical activity of the projections of various areas of the brain. The decision-making process by observe ambiguous images is characterized by specific oscillatory alfa-rhytm patterns in the multi-channel EEG data. We have shown the repeatability of detected principles of the alpha-rhythm evolution in a data of group of 12 healthy male volunteers.

  17. A method for surface topography measurement using a new focus function based on dual-tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Li, Shimiao; Guo, Tong; Yuan, Lin; Chen, Jinping

    2018-01-01

    Surface topography measurement is an important tool widely used in many fields to determine the characteristics and functionality of a part or material. Among existing methods for this purpose, the focus variation method has proved high performance particularly in large slope scenarios. However, its performance depends largely on the effectiveness of focus function. This paper presents a method for surface topography measurement using a new focus measurement function based on dual-tree complex wavelet transform. Experiments are conducted on simulated defocused images to prove its high performance in comparison with other traditional approaches. The results showed that the new algorithm has better unimodality and sharpness. The method was also verified by measuring a MEMS micro resonator structure.

  18. Detection of osmotic damages in GRP boat hulls

    NASA Astrophysics Data System (ADS)

    Krstulović-Opara, L.; Domazet, Ž.; Garafulić, E.

    2013-09-01

    Infrared thermography as a tool of non-destructive testing is method enabling visualization and estimation of structural anomalies and differences in structure's topography. In presented paper problem of osmotic damage in submerged glass reinforced polymer structures is addressed. The osmotic damage can be detected by a simple humidity gauging, but for proper evaluation and estimation testing methods are restricted and hardly applicable. In this paper it is demonstrated that infrared thermography, based on estimation of heat wave propagation, can be used. Three methods are addressed; Pulsed thermography, Fast Fourier Transform and Continuous Morlet Wavelet. An additional image processing based on gradient approach is applied on all addressed methods. It is shown that the Continuous Morlet Wavelet is the most appropriate method for detection of osmotic damage.

  19. Tomographic reconstruction of tokamak plasma light emission using wavelet-vaguelette decomposition

    NASA Astrophysics Data System (ADS)

    Schneider, Kai; Nguyen van Yen, Romain; Fedorczak, Nicolas; Brochard, Frederic; Bonhomme, Gerard; Farge, Marie; Monier-Garbet, Pascale

    2012-10-01

    Images acquired by cameras installed in tokamaks are difficult to interpret because the three-dimensional structure of the plasma is flattened in a non-trivial way. Nevertheless, taking advantage of the slow variation of the fluctuations along magnetic field lines, the optical transformation may be approximated by a generalized Abel transform, for which we proposed in Nguyen van yen et al., Nucl. Fus., 52 (2012) 013005, an inversion technique based on the wavelet-vaguelette decomposition. After validation of the new method using an academic test case and numerical data obtained with the Tokam 2D code, we present an application to an experimental movie obtained in the tokamak Tore Supra. A comparison with a classical regularization technique for ill-posed inverse problems, the singular value decomposition, allows us to assess the efficiency. The superiority of the wavelet-vaguelette technique is reflected in preserving local features, such as blobs and fronts, in the denoised emissivity map.

  20. Intelligent multi-spectral IR image segmentation

    NASA Astrophysics Data System (ADS)

    Lu, Thomas; Luong, Andrew; Heim, Stephen; Patel, Maharshi; Chen, Kang; Chao, Tien-Hsin; Chow, Edward; Torres, Gilbert

    2017-05-01

    This article presents a neural network based multi-spectral image segmentation method. A neural network is trained on the selected features of both the objects and background in the longwave (LW) Infrared (IR) images. Multiple iterations of training are performed until the accuracy of the segmentation reaches satisfactory level. The segmentation boundary of the LW image is used to segment the midwave (MW) and shortwave (SW) IR images. A second neural network detects the local discontinuities and refines the accuracy of the local boundaries. This article compares the neural network based segmentation method to the Wavelet-threshold and Grab-Cut methods. Test results have shown increased accuracy and robustness of this segmentation scheme for multi-spectral IR images.

  1. The Radon cumulative distribution transform and its application to image classification

    PubMed Central

    Kolouri, Soheil; Park, Se Rim; Rohde, Gustavo K.

    2016-01-01

    Invertible image representation methods (transforms) are routinely employed as low-level image processing operations based on which feature extraction and recognition algorithms are developed. Most transforms in current use (e.g. Fourier, Wavelet, etc.) are linear transforms, and, by themselves, are unable to substantially simplify the representation of image classes for classification. Here we describe a nonlinear, invertible, low-level image processing transform based on combining the well known Radon transform for image data, and the 1D Cumulative Distribution Transform proposed earlier. We describe a few of the properties of this new transform, and with both theoretical and experimental results show that it can often render certain problems linearly separable in transform space. PMID:26685245

  2. FIR filters for hardware-based real-time multi-band image blending

    NASA Astrophysics Data System (ADS)

    Popovic, Vladan; Leblebici, Yusuf

    2015-02-01

    Creating panoramic images has become a popular feature in modern smart phones, tablets, and digital cameras. A user can create a 360 degree field-of-view photograph from only several images. Quality of the resulting image is related to the number of source images, their brightness, and the used algorithm for their stitching and blending. One of the algorithms that provides excellent results in terms of background color uniformity and reduction of ghosting artifacts is the multi-band blending. The algorithm relies on decomposition of image into multiple frequency bands using dyadic filter bank. Hence, the results are also highly dependant on the used filter bank. In this paper we analyze performance of the FIR filters used for multi-band blending. We present a set of five filters that showed the best results in both literature and our experiments. The set includes Gaussian filter, biorthogonal wavelets, and custom-designed maximally flat and equiripple FIR filters. The presented results of filter comparison are based on several no-reference metrics for image quality. We conclude that 5/3 biorthogonal wavelet produces the best result in average, especially when its short length is considered. Furthermore, we propose a real-time FPGA implementation of the blending algorithm, using 2D non-separable systolic filtering scheme. Its pipeline architecture does not require hardware multipliers and it is able to achieve very high operating frequencies. The implemented system is able to process 91 fps for 1080p (1920×1080) image resolution.

  3. Automated wavelet denoising of photoacoustic signals for circulating melanoma cell detection and burn image reconstruction.

    PubMed

    Holan, Scott H; Viator, John A

    2008-06-21

    Photoacoustic image reconstruction may involve hundreds of point measurements, each of which contributes unique information about the subsurface absorbing structures under study. For backprojection imaging, two or more point measurements of photoacoustic waves induced by irradiating a biological sample with laser light are used to produce an image of the acoustic source. Each of these measurements must undergo some signal processing, such as denoising or system deconvolution. In order to process the numerous signals, we have developed an automated wavelet algorithm for denoising signals. We appeal to the discrete wavelet transform for denoising photoacoustic signals generated in a dilute melanoma cell suspension and in thermally coagulated blood. We used 5, 9, 45 and 270 melanoma cells in the laser beam path as test concentrations. For the burn phantom, we used coagulated blood in 1.6 mm silicon tube submerged in Intralipid. Although these two targets were chosen as typical applications for photoacoustic detection and imaging, they are of independent interest. The denoising employs level-independent universal thresholding. In order to accommodate nonradix-2 signals, we considered a maximal overlap discrete wavelet transform (MODWT). For the lower melanoma cell concentrations, as the signal-to-noise ratio approached 1, denoising allowed better peak finding. For coagulated blood, the signals were denoised to yield a clean photoacoustic resulting in an improvement of 22% in the reconstructed image. The entire signal processing technique was automated so that minimal user intervention was needed to reconstruct the images. Such an algorithm may be used for image reconstruction and signal extraction for applications such as burn depth imaging, depth profiling of vascular lesions in skin and the detection of single cancer cells in blood samples.

  4. Skin surface removal on breast microwave imagery using wavelet multiscale products

    NASA Astrophysics Data System (ADS)

    Flores-Tapia, Daniel; Thomas, Gabriel; Pistorius, Stephen

    2006-03-01

    In many parts of the world, breast cancer is the leading cause mortality among women and it is the major cause of cancer death, next only to lung cancer. In recent years, microwave imaging has shown its potential as an alternative approach for breast cancer detection. Although advances have improved the likelihood of developing an early detection system based on this technology, there are still limitations. One of these limitations is that target responses are often obscured by surface reflections. Contrary to ground penetrating radar applications, a simple reference subtraction cannot be easily applied to alleviate this problem due to differences in the breast skin composition between patients. A novel surface removal technique for the removal of these high intensity reflections is proposed in this paper. This paper presents an algorithm based on the multiplication of adjacent wavelet subbands in order to enhance target echoes while reducing skin reflections. In these multiscale products, target signatures can be effectively distinguished from surface reflections. A simple threshold is applied to the signal in the wavelet domain in order to eliminate the skin responses. This final signal is reconstructed to the spatial domain in order to obtain a focused image. The proposed algorithm yielded promising results when applied to real data obtained from a phantom which mimics the dielectric properties of breast, cancer and skin tissues.

  5. Wavelet Analysis for RADARSAT Exploitation: Demonstration of Algorithms for Maritime Surveillance

    DTIC Science & Technology

    2007-02-01

    this study , we demonstrate wavelet analysis for exploitation of RADARSAT ocean imagery, including wind direction estimation, oceanic and atmospheric ...of image striations that can arise as a texture pattern caused by turbulent coherent structures in the marine atmospheric boundary layer. The image...associated change in the pattern texture (i.e., the nature of the turbulent atmospheric structures) across the front. Due to the large spatial scale of

  6. Automatic detection of blood versus non-blood regions on intravascular ultrasound (IVUS) images using wavelet packet signatures

    NASA Astrophysics Data System (ADS)

    Katouzian, Amin; Baseri, Babak; Konofagou, Elisa E.; Laine, Andrew F.

    2008-03-01

    Intravascular ultrasound (IVUS) has been proven a reliable imaging modality that is widely employed in cardiac interventional procedures. It can provide morphologic as well as pathologic information on the occluded plaques in the coronary arteries. In this paper, we present a new technique using wavelet packet analysis that differentiates between blood and non-blood regions on the IVUS images. We utilized the multi-channel texture segmentation algorithm based on the discrete wavelet packet frames (DWPF). A k-mean clustering algorithm was deployed to partition the extracted textural features into blood and non-blood in an unsupervised fashion. Finally, the geometric and statistical information of the segmented regions was used to estimate the closest set of pixels to the lumen border and a spline curve was fitted to the set. The presented algorithm may be helpful in delineating the lumen border automatically and more reliably prior to the process of plaque characterization, especially with 40 MHz transducers, where appearance of the red blood cells renders the border detection more challenging, even manually. Experimental results are shown and they are quantitatively compared with manually traced borders by an expert. It is concluded that our two dimensional (2-D) algorithm, which is independent of the cardiac and catheter motions performs well in both in-vivo and in-vitro cases.

  7. Face recognition by applying wavelet subband representation and kernel associative memory.

    PubMed

    Zhang, Bai-Ling; Zhang, Haihong; Ge, Shuzhi Sam

    2004-01-01

    In this paper, we propose an efficient face recognition scheme which has two features: 1) representation of face images by two-dimensional (2-D) wavelet subband coefficients and 2) recognition by a modular, personalised classification method based on kernel associative memory models. Compared to PCA projections and low resolution "thumb-nail" image representations, wavelet subband coefficients can efficiently capture substantial facial features while keeping computational complexity low. As there are usually very limited samples, we constructed an associative memory (AM) model for each person and proposed to improve the performance of AM models by kernel methods. Specifically, we first applied kernel transforms to each possible training pair of faces sample and then mapped the high-dimensional feature space back to input space. Our scheme using modular autoassociative memory for face recognition is inspired by the same motivation as using autoencoders for optical character recognition (OCR), for which the advantages has been proven. By associative memory, all the prototypical faces of one particular person are used to reconstruct themselves and the reconstruction error for a probe face image is used to decide if the probe face is from the corresponding person. We carried out extensive experiments on three standard face recognition datasets, the FERET data, the XM2VTS data, and the ORL data. Detailed comparisons with earlier published results are provided and our proposed scheme offers better recognition accuracy on all of the face datasets.

  8. Quality Scalability Aware Watermarking for Visual Content.

    PubMed

    Bhowmik, Deepayan; Abhayaratne, Charith

    2016-11-01

    Scalable coding-based content adaptation poses serious challenges to traditional watermarking algorithms, which do not consider the scalable coding structure and hence cannot guarantee correct watermark extraction in media consumption chain. In this paper, we propose a novel concept of scalable blind watermarking that ensures more robust watermark extraction at various compression ratios while not effecting the visual quality of host media. The proposed algorithm generates scalable and robust watermarked image code-stream that allows the user to constrain embedding distortion for target content adaptations. The watermarked image code-stream consists of hierarchically nested joint distortion-robustness coding atoms. The code-stream is generated by proposing a new wavelet domain blind watermarking algorithm guided by a quantization based binary tree. The code-stream can be truncated at any distortion-robustness atom to generate the watermarked image with the desired distortion-robustness requirements. A blind extractor is capable of extracting watermark data from the watermarked images. The algorithm is further extended to incorporate a bit-plane discarding-based quantization model used in scalable coding-based content adaptation, e.g., JPEG2000. This improves the robustness against quality scalability of JPEG2000 compression. The simulation results verify the feasibility of the proposed concept, its applications, and its improved robustness against quality scalable content adaptation. Our proposed algorithm also outperforms existing methods showing 35% improvement. In terms of robustness to quality scalable video content adaptation using Motion JPEG2000 and wavelet-based scalable video coding, the proposed method shows major improvement for video watermarking.

  9. Analysis of dual tree M-band wavelet transform based features for brain image classification.

    PubMed

    Ayalapogu, Ratna Raju; Pabboju, Suresh; Ramisetty, Rajeswara Rao

    2018-04-29

    The most complex organ in the human body is the brain. The unrestrained growth of cells in the brain is called a brain tumor. The cause of a brain tumor is still unknown and the survival rate is lower than other types of cancers. Hence, early detection is very important for proper treatment. In this study, an efficient computer-aided diagnosis (CAD) system is presented for brain image classification by analyzing MRI of the brain. At first, the MRI brain images of normal and abnormal categories are modeled by using the statistical features of dual tree m-band wavelet transform (DTMBWT). A maximum margin classifier, support vector machine (SVM) is then used for the classification and validated with k-fold approach. Results show that the system provides promising results on a repository of molecular brain neoplasia data (REMBRANDT) with 97.5% accuracy using 4 th level statistical features of DTMBWT. Viewing the experimental results, we conclude that the system gives a satisfactory performance for the brain image classification. © 2018 International Society for Magnetic Resonance in Medicine.

  10. Wake acoustic analysis and image decomposition via beamforming of microphone signal projections on wavelet subspaces

    DOT National Transportation Integrated Search

    2006-05-08

    This paper describes the integration of wavelet analysis and time-domain beamforming : of microphone array output signals for analyzing the acoustic emissions from airplane : generated wake vortices. This integrated process provides visual and quanti...

  11. The DSFPN, a new neural network for optical character recognition.

    PubMed

    Morns, L P; Dlay, S S

    1999-01-01

    A new type of neural network for recognition tasks is presented in this paper. The network, called the dynamic supervised forward-propagation network (DSFPN), is based on the forward only version of the counterpropagation network (CPN). The DSFPN, trains using a supervised algorithm and can grow dynamically during training, allowing subclasses in the training data to be learnt in an unsupervised manner. It is shown to train in times comparable to the CPN while giving better classification accuracies than the popular backpropagation network. Both Fourier descriptors and wavelet descriptors are used for image preprocessing and the wavelets are proven to give a far better performance.

  12. Chaos-based partial image encryption scheme based on linear fractional and lifting wavelet transforms

    NASA Astrophysics Data System (ADS)

    Belazi, Akram; Abd El-Latif, Ahmed A.; Diaconu, Adrian-Viorel; Rhouma, Rhouma; Belghith, Safya

    2017-01-01

    In this paper, a new chaos-based partial image encryption scheme based on Substitution-boxes (S-box) constructed by chaotic system and Linear Fractional Transform (LFT) is proposed. It encrypts only the requisite parts of the sensitive information in Lifting-Wavelet Transform (LWT) frequency domain based on hybrid of chaotic maps and a new S-box. In the proposed encryption scheme, the characteristics of confusion and diffusion are accomplished in three phases: block permutation, substitution, and diffusion. Then, we used dynamic keys instead of fixed keys used in other approaches, to control the encryption process and make any attack impossible. The new S-box was constructed by mixing of chaotic map and LFT to insure the high confidentiality in the inner encryption of the proposed approach. In addition, the hybrid compound of S-box and chaotic systems strengthened the whole encryption performance and enlarged the key space required to resist the brute force attacks. Extensive experiments were conducted to evaluate the security and efficiency of the proposed approach. In comparison with previous schemes, the proposed cryptosystem scheme showed high performances and great potential for prominent prevalence in cryptographic applications.

  13. Built-Up Area Detection from High-Resolution Satellite Images Using Multi-Scale Wavelet Transform and Local Spatial Statistics

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Zhang, Y.; Gao, J.; Yuan, Y.; Lv, Z.

    2018-04-01

    Recently, built-up area detection from high-resolution satellite images (HRSI) has attracted increasing attention because HRSI can provide more detailed object information. In this paper, multi-resolution wavelet transform and local spatial autocorrelation statistic are introduced to model the spatial patterns of built-up areas. First, the input image is decomposed into high- and low-frequency subbands by wavelet transform at three levels. Then the high-frequency detail information in three directions (horizontal, vertical and diagonal) are extracted followed by a maximization operation to integrate the information in all directions. Afterward, a cross-scale operation is implemented to fuse different levels of information. Finally, local spatial autocorrelation statistic is introduced to enhance the saliency of built-up features and an adaptive threshold algorithm is used to achieve the detection of built-up areas. Experiments are conducted on ZY-3 and Quickbird panchromatic satellite images, and the results show that the proposed method is very effective for built-up area detection.

  14. Skeletonization of Gridded Potential-Field Images

    NASA Astrophysics Data System (ADS)

    Gao, L.; Morozov, I. B.

    2012-12-01

    A new approach to skeletonization was developed for gridded potential-field data. Generally, skeletonization is a pattern-recognition technique allowing automatic recognition of near-linear features in the images, measurement of their parameters, and analyzing them for similarities. Our approach decomposes the images into arbitrarily-oriented "wavelets" characterized by positive or negative amplitudes, orientation angles, spatial dimensions, polarities, and other attributes. Orientations of the wavelets are obtained by scanning the azimuths to detect the strike direction of each anomaly. The wavelets are connected according to the similarities of these attributes, which leads to a "skeleton" map of the potential-field data. In addition, 2-D filtering is conducted concurrently with the wavelet-identification process, which allows extracting parameters of background trends and reduces the adverse effects of low-frequency background (which is often strong in potential-field maps) on skeletonization.. By correlating the neighboring wavelets, linear anomalies are identified and characterized. The advantages of this algorithm are the generality and isotropy of feature detection, as well as being specifically designed for gridded data. With several options for background-trend extraction, the stability for identification of lineaments is improved and optimized. The algorithm is also integrated in a powerful processing system which allows combining it with numerous other tools, such as filtering, computation of analytical signal, empirical mode decomposition, and various types of plotting. The method is applied to potential-field data for the Western Canada Sedimentary Basin, in a study area which extends from southern Saskatchewan into southwestern Manitoba. The target is the structure of crystalline basement beneath Phanerozoic sediments. The examples illustrate that skeletonization aid in the interpretation of complex structures at different scale lengths. The results indicate that this method is useful for identifying structures in complex geophysical images and for automatic extraction of their attributes as well as for quantitative characterization and analysis of potential-field images. Skeletonized potential-field images should also be useful for inversion.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Md. Shafiqul, E-mail: shafique@eng.ukm.my; Hannan, M.A., E-mail: hannan@eng.ukm.my; Basri, Hassan

    Highlights: • Solid waste bin level detection using Dynamic Time Warping (DTW). • Gabor wavelet filter is used to extract the solid waste image features. • Multi-Layer Perceptron classifier network is used for bin image classification. • The classification performance evaluated by ROC curve analysis. - Abstract: The increasing requirement for Solid Waste Management (SWM) has become a significant challenge for municipal authorities. A number of integrated systems and methods have introduced to overcome this challenge. Many researchers have aimed to develop an ideal SWM system, including approaches involving software-based routing, Geographic Information Systems (GIS), Radio-frequency Identification (RFID), or sensormore » intelligent bins. Image processing solutions for the Solid Waste (SW) collection have also been developed; however, during capturing the bin image, it is challenging to position the camera for getting a bin area centralized image. As yet, there is no ideal system which can correctly estimate the amount of SW. This paper briefly discusses an efficient image processing solution to overcome these problems. Dynamic Time Warping (DTW) was used for detecting and cropping the bin area and Gabor wavelet (GW) was introduced for feature extraction of the waste bin image. Image features were used to train the classifier. A Multi-Layer Perceptron (MLP) classifier was used to classify the waste bin level and estimate the amount of waste inside the bin. The area under the Receiver Operating Characteristic (ROC) curves was used to statistically evaluate classifier performance. The results of this developed system are comparable to previous image processing based system. The system demonstration using DTW with GW for feature extraction and an MLP classifier led to promising results with respect to the accuracy of waste level estimation (98.50%). The application can be used to optimize the routing of waste collection based on the estimated bin level.« less

  16. Science-based Region-of-Interest Image Compression

    NASA Technical Reports Server (NTRS)

    Wagstaff, K. L.; Castano, R.; Dolinar, S.; Klimesh, M.; Mukai, R.

    2004-01-01

    As the number of currently active space missions increases, so does competition for Deep Space Network (DSN) resources. Even given unbounded DSN time, power and weight constraints onboard the spacecraft limit the maximum possible data transmission rate. These factors highlight a critical need for very effective data compression schemes. Images tend to be the most bandwidth-intensive data, so image compression methods are particularly valuable. In this paper, we describe a method for prioritizing regions in an image based on their scientific value. Using a wavelet compression method that can incorporate priority information, we ensure that the highest priority regions are transmitted with the highest fidelity.

  17. Image compression/decompression based on mathematical transform, reduction/expansion, and image sharpening

    DOEpatents

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image represented in a first image array of pixels is first decimated in two dimensions before being compressed by a predefined compression algorithm such as JPEG. Another possible predefined compression algorithm can involve a wavelet technique. The compressed, reduced image is then transmitted over the limited bandwidth transmission medium, and the transmitted image is decompressed using an algorithm which is an inverse of the predefined compression algorithm (such as reverse JPEG). The decompressed, reduced image is then interpolated back to its original array size. Edges (contours) in the image are then sharpened to enhance the perceptual quality of the reconstructed image. Specific sharpening techniques are described.

  18. Blind identification of image manipulation type using mixed statistical moments

    NASA Astrophysics Data System (ADS)

    Jeong, Bo Gyu; Moon, Yong Ho; Eom, Il Kyu

    2015-01-01

    We present a blind identification of image manipulation types such as blurring, scaling, sharpening, and histogram equalization. Motivated by the fact that image manipulations can change the frequency characteristics of an image, we introduce three types of feature vectors composed of statistical moments. The proposed statistical moments are generated from separated wavelet histograms, the characteristic functions of the wavelet variance, and the characteristic functions of the spatial image. Our method can solve the n-class classification problem. Through experimental simulations, we demonstrate that our proposed method can achieve high performance in manipulation type detection. The average rate of the correctly identified manipulation types is as high as 99.22%, using 10,800 test images and six manipulation types including the authentic image.

  19. PULSAR SIGNAL DENOISING METHOD BASED ON LAPLACE DISTRIBUTION IN NO-SUBSAMPLING WAVELET PACKET DOMAIN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenbo, Wang; Yanchao, Zhao; Xiangli, Wang

    2016-11-01

    In order to improve the denoising effect of the pulsar signal, a new denoising method is proposed in the no-subsampling wavelet packet domain based on the local Laplace prior model. First, we count the true noise-free pulsar signal’s wavelet packet coefficient distribution characteristics and construct the true signal wavelet packet coefficients’ Laplace probability density function model. Then, we estimate the denosied wavelet packet coefficients by using the noisy pulsar wavelet coefficients based on maximum a posteriori criteria. Finally, we obtain the denoisied pulsar signal through no-subsampling wavelet packet reconstruction of the estimated coefficients. The experimental results show that the proposed method performs better when calculating the pulsar time of arrival than the translation-invariant wavelet denoising method.

  20. Research and Implementation of Heart Sound Denoising

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Wang, Yutai; Wang, Yanxiang

    Heart sound is one of the most important signals. However, the process of getting heart sound signal can be interfered with many factors outside. Heart sound is weak electric signal and even weak external noise may lead to the misjudgment of pathological and physiological information in this signal, thus causing the misjudgment of disease diagnosis. As a result, it is a key to remove the noise which is mixed with heart sound. In this paper, a more systematic research and analysis which is involved in heart sound denoising based on matlab has been made. The study of heart sound denoising based on matlab firstly use the powerful image processing function of matlab to transform heart sound signals with noise into the wavelet domain through wavelet transform and decomposition these signals in muli-level. Then for the detail coefficient, soft thresholding is made using wavelet transform thresholding to eliminate noise, so that a signal denoising is significantly improved. The reconstructed signals are gained with stepwise coefficient reconstruction for the processed detail coefficient. Lastly, 50HZ power frequency and 35 Hz mechanical and electrical interference signals are eliminated using a notch filter.

  1. Deep Convolutional Framelet Denosing for Low-Dose CT via Wavelet Residual Network.

    PubMed

    Kang, Eunhee; Chang, Won; Yoo, Jaejun; Ye, Jong Chul

    2018-06-01

    Model-based iterative reconstruction algorithms for low-dose X-ray computed tomography (CT) are computationally expensive. To address this problem, we recently proposed a deep convolutional neural network (CNN) for low-dose X-ray CT and won the second place in 2016 AAPM Low-Dose CT Grand Challenge. However, some of the textures were not fully recovered. To address this problem, here we propose a novel framelet-based denoising algorithm using wavelet residual network which synergistically combines the expressive power of deep learning and the performance guarantee from the framelet-based denoising algorithms. The new algorithms were inspired by the recent interpretation of the deep CNN as a cascaded convolution framelet signal representation. Extensive experimental results confirm that the proposed networks have significantly improved performance and preserve the detail texture of the original images.

  2. Enhancement of Tropical Land Cover Mapping with Wavelet-Based Fusion and Unsupervised Clustering of SAR and Landsat Image Data

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Laporte, Nadine; Netanyahuy, Nathan S.; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    The characterization and the mapping of land cover/land use of forest areas, such as the Central African rainforest, is a very complex task. This complexity is mainly due to the extent of such areas and, as a consequence, to the lack of full and continuous cloud-free coverage of those large regions by one single remote sensing instrument, In order to provide improved vegetation maps of Central Africa and to develop forest monitoring techniques for applications at the local and regional scales, we propose to utilize multi-sensor remote sensing observations coupled with in-situ data. Fusion and clustering of multi-sensor data are the first steps towards the development of such a forest monitoring system. In this paper, we will describe some preliminary experiments involving the fusion of SAR and Landsat image data of the Lope Reserve in Gabon. Similarly to previous fusion studies, our fusion method is wavelet-based. The fusion provides a new image data set which contains more detailed texture features and preserves the large homogeneous regions that are observed by the Thematic Mapper sensor. The fusion step is followed by unsupervised clustering and provides a vegetation map of the area.

  3. Visibility of wavelet quantization noise

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  4. BOOK REVIEW: The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance

    NASA Astrophysics Data System (ADS)

    Ng, J.; Kingsbury, N. G.

    2004-02-01

    This book provides an overview of the theory and practice of continuous and discrete wavelet transforms. Divided into seven chapters, the first three chapters of the book are introductory, describing the various forms of the wavelet transform and their computation, while the remaining chapters are devoted to applications in fluids, engineering, medicine and miscellaneous areas. Each chapter is well introduced, with suitable examples to demonstrate key concepts. Illustrations are included where appropriate, thus adding a visual dimension to the text. A noteworthy feature is the inclusion, at the end of each chapter, of a list of further resources from the academic literature which the interested reader can consult. The first chapter is purely an introduction to the text. The treatment of wavelet transforms begins in the second chapter, with the definition of what a wavelet is. The chapter continues by defining the continuous wavelet transform and its inverse and a description of how it may be used to interrogate signals. The continuous wavelet transform is then compared to the short-time Fourier transform. Energy and power spectra with respect to scale are also discussed and linked to their frequency counterparts. Towards the end of the chapter, the two-dimensional continuous wavelet transform is introduced. Examples of how the continuous wavelet transform is computed using the Mexican hat and Morlet wavelets are provided throughout. The third chapter introduces the discrete wavelet transform, with its distinction from the discretized continuous wavelet transform having been made clear at the end of the second chapter. In the first half of the chapter, the logarithmic discretization of the wavelet function is described, leading to a discussion of dyadic grid scaling, frames, orthogonal and orthonormal bases, scaling functions and multiresolution representation. The fast wavelet transform is introduced and its computation is illustrated with an example using the Haar wavelet. The second half of the chapter groups together miscellaneous points about the discrete wavelet transform, including coefficient manipulation for signal denoising and smoothing, a description of Daubechies’ wavelets, the properties of translation invariance and biorthogonality, the two-dimensional discrete wavelet transforms and wavelet packets. The fourth chapter is dedicated to wavelet transform methods in the author’s own specialty, fluid mechanics. Beginning with a definition of wavelet-based statistical measures for turbulence, the text proceeds to describe wavelet thresholding in the analysis of fluid flows. The remainder of the chapter describes wavelet analysis of engineering flows, in particular jets, wakes, turbulence and coherent structures, and geophysical flows, including atmospheric and oceanic processes. The fifth chapter describes the application of wavelet methods in various branches of engineering, including machining, materials, dynamics and information engineering. Unlike previous chapters, this (and subsequent) chapters are styled more as literature reviews that describe the findings of other authors. The areas addressed in this chapter include: the monitoring of machining processes, the monitoring of rotating machinery, dynamical systems, chaotic systems, non-destructive testing, surface characterization and data compression. The sixth chapter continues in this vein with the attention now turned to wavelets in the analysis of medical signals. Most of the chapter is devoted to the analysis of one-dimensional signals (electrocardiogram, neural waveforms, acoustic signals etc.), although there is a small section on the analysis of two-dimensional medical images. The seventh and final chapter of the book focuses on the application of wavelets in three seemingly unrelated application areas: fractals, finance and geophysics. The treatment on wavelet methods in fractals focuses on stochastic fractals with a short section on multifractals. The treatment on finance touches on the use of wavelets by other authors in studying stock prices, commodity behaviour, market dynamics and foreign exchange rates. The treatment on geophysics covers what was omitted from the fourth chapter, namely, seismology, well logging, topographic feature analysis and the analysis of climatic data. The text concludes with an assortment of other application areas which could only be mentioned in passing. Unlike most other publications in the subject, this book does not treat wavelet transforms in a mathematically rigorous manner but rather aims to explain the mechanics of the wavelet transform in a way that is easy to understand. Consequently, it serves as an excellent overview of the subject rather than as a reference text. Keeping the mathematics to a minimum and omitting cumbersome and detailed proofs from the text, the book is best-suited to those who are new to wavelets or who want an intuitive understanding of the subject. Such an audience may include graduate students in engineering and professionals and researchers in engineering and the applied sciences.

  5. Speckle-reduction algorithm for ultrasound images in complex wavelet domain using genetic algorithm-based mixture model.

    PubMed

    Uddin, Muhammad Shahin; Tahtali, Murat; Lambert, Andrew J; Pickering, Mark R; Marchese, Margaret; Stuart, Iain

    2016-05-20

    Compared with other medical-imaging modalities, ultrasound (US) imaging is a valuable way to examine the body's internal organs, and two-dimensional (2D) imaging is currently the most common technique used in clinical diagnoses. Conventional 2D US imaging systems are highly flexible cost-effective imaging tools that permit operators to observe and record images of a large variety of thin anatomical sections in real time. Recently, 3D US imaging has also been gaining popularity due to its considerable advantages over 2D US imaging. It reduces dependency on the operator and provides better qualitative and quantitative information for an effective diagnosis. Furthermore, it provides a 3D view, which allows the observation of volume information. The major shortcoming of any type of US imaging is the presence of speckle noise. Hence, speckle reduction is vital in providing a better clinical diagnosis. The key objective of any speckle-reduction algorithm is to attain a speckle-free image while preserving the important anatomical features. In this paper we introduce a nonlinear multi-scale complex wavelet-diffusion based algorithm for speckle reduction and sharp-edge preservation of 2D and 3D US images. In the proposed method we use a Rayleigh and Maxwell-mixture model for 2D and 3D US images, respectively, where a genetic algorithm is used in combination with an expectation maximization method to estimate mixture parameters. Experimental results using both 2D and 3D synthetic, physical phantom, and clinical data demonstrate that our proposed algorithm significantly reduces speckle noise while preserving sharp edges without discernible distortions. The proposed approach performs better than the state-of-the-art approaches in both qualitative and quantitative measures.

  6. Multi-scale Imaging of Cellular and Sub-cellular Structures using Scanning Probe Recognition Microscopy.

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Rice, A. F.

    2005-03-01

    Scanning Probe Recognition Microscopy is a new scanning probe capability under development within our group to reliably return to and directly interact with a specific nanobiological feature of interest. In previous work, we have successfully recognized and classified tubular versus globular biological objects from experimental atomic force microscope images using a method based on normalized central moments [ref. 1]. In this paper we extend this work to include recognition schemes appropriate for cellular and sub-cellular structures. Globular cells containing tubular actin filaments are under investigation. Thus there are differences in external/internal shapes and scales. Continuous Wavelet Transform with a differential Gaussian mother wavelet is employed for multi- scale analysis. [ref. 1] Q. Chen, V. Ayres and L. Udpa, ``Biological Investigation Using Scanning Probe Recognition Microscopy,'' Proceedings 3rd IEEE Conference on Nanotechnology, vol. 2, p 863-865 (2003).

  7. Unified Heat Kernel Regression for Diffusion, Kernel Smoothing and Wavelets on Manifolds and Its Application to Mandible Growth Modeling in CT Images

    PubMed Central

    Chung, Moo K.; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K.

    2014-01-01

    We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel regression is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. Unlike many previous partial differential equation based approaches involving diffusion, our approach represents the solution of diffusion analytically, reducing numerical inaccuracy and slow convergence. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, we have applied the method in characterizing the localized growth pattern of mandible surfaces obtained in CT images from subjects between ages 0 and 20 years by regressing the length of displacement vectors with respect to the template surface. PMID:25791435

  8. Computerized cytometry and wavelet analysis of follicular lesions for detecting malignancy: A pilot study in thyroid cytology.

    PubMed

    Gilshtein, Hayim; Mekel, Michal; Malkin, Leonid; Ben-Izhak, Ofer; Sabo, Edmond

    2017-01-01

    The cytologic diagnosis of indeterminate lesions of the thyroid involves much uncertainty, and the final diagnosis often requires operative resection. Computerized cytomorphometry and wavelets analysis were examined to evaluate their ability to better discriminate between benign and malignant lesions based on cytology slides. Cytologic reports from patients who underwent thyroid operation in a single, tertiary referral center were retrieved. Patients with Bethesda III and IV lesions were divided according to their final histopathology. Cytomorphometry and wavelet analysis were performed on the digitized images of the cytology slides. Cytology slides of 40 patients were analyzed. Seven patients had a histologic diagnosis of follicular malignancy, 13 had follicular adenomas, and 20 had a benign goiter. Computerized cytomorphometry with a combination of descriptors of nuclear size, shape, and texture was able to predict quantitatively adenoma versus malignancy within the indeterminate group with 95% accuracy. An automated wavelets analysis with a neural network algorithm reached an accuracy of 96% in identifying correctly malignant vs. benign lesions based on cytology. Computerized analysis of cytology slides seems to be more accurate in defining indeterminate thyroid lesions compared with conventional cytologic analysis, which is based on visual characteristics on cytology as well as the expertise of the cytologist. This pilot study needs to be validated with a greater number of samples. Providing a successful validation, we believe that such methods carry promise for better patient treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Wavelets for sign language translation

    NASA Astrophysics Data System (ADS)

    Wilson, Beth J.; Anspach, Gretel

    1993-10-01

    Wavelet techniques are applied to help extract the relevant parameters of sign language from video images of a person communicating in American Sign Language or Signed English. The compression and edge detection features of two-dimensional wavelet analysis are exploited to enhance the algorithms under development to classify the hand motion, hand location with respect to the body, and handshape. These three parameters have different processing requirements and complexity issues. The results are described for applying various quadrature mirror filter designs to a filterbank implementation of the desired wavelet transform. The overall project is to develop a system that will translate sign language to English to facilitate communication between deaf and hearing people.

  10. Wavelet Entropy and Directed Acyclic Graph Support Vector Machine for Detection of Patients with Unilateral Hearing Loss in MRI Scanning

    PubMed Central

    Wang, Shuihua; Yang, Ming; Du, Sidan; Yang, Jiquan; Liu, Bin; Gorriz, Juan M.; Ramírez, Javier; Yuan, Ti-Fei; Zhang, Yudong

    2016-01-01

    Highlights We develop computer-aided diagnosis system for unilateral hearing loss detection in structural magnetic resonance imaging.Wavelet entropy is introduced to extract image global features from brain images. Directed acyclic graph is employed to endow support vector machine an ability to handle multi-class problems.The developed computer-aided diagnosis system achieves an overall accuracy of 95.1% for this three-class problem of differentiating left-sided and right-sided hearing loss from healthy controls. Aim: Sensorineural hearing loss (SNHL) is correlated to many neurodegenerative disease. Now more and more computer vision based methods are using to detect it in an automatic way. Materials: We have in total 49 subjects, scanned by 3.0T MRI (Siemens Medical Solutions, Erlangen, Germany). The subjects contain 14 patients with right-sided hearing loss (RHL), 15 patients with left-sided hearing loss (LHL), and 20 healthy controls (HC). Method: We treat this as a three-class classification problem: RHL, LHL, and HC. Wavelet entropy (WE) was selected from the magnetic resonance images of each subjects, and then submitted to a directed acyclic graph support vector machine (DAG-SVM). Results: The 10 repetition results of 10-fold cross validation shows 3-level decomposition will yield an overall accuracy of 95.10% for this three-class classification problem, higher than feedforward neural network, decision tree, and naive Bayesian classifier. Conclusions: This computer-aided diagnosis system is promising. We hope this study can attract more computer vision method for detecting hearing loss. PMID:27807415

  11. Wavelet Entropy and Directed Acyclic Graph Support Vector Machine for Detection of Patients with Unilateral Hearing Loss in MRI Scanning.

    PubMed

    Wang, Shuihua; Yang, Ming; Du, Sidan; Yang, Jiquan; Liu, Bin; Gorriz, Juan M; Ramírez, Javier; Yuan, Ti-Fei; Zhang, Yudong

    2016-01-01

    Highlights We develop computer-aided diagnosis system for unilateral hearing loss detection in structural magnetic resonance imaging.Wavelet entropy is introduced to extract image global features from brain images. Directed acyclic graph is employed to endow support vector machine an ability to handle multi-class problems.The developed computer-aided diagnosis system achieves an overall accuracy of 95.1% for this three-class problem of differentiating left-sided and right-sided hearing loss from healthy controls. Aim: Sensorineural hearing loss (SNHL) is correlated to many neurodegenerative disease. Now more and more computer vision based methods are using to detect it in an automatic way. Materials: We have in total 49 subjects, scanned by 3.0T MRI (Siemens Medical Solutions, Erlangen, Germany). The subjects contain 14 patients with right-sided hearing loss (RHL), 15 patients with left-sided hearing loss (LHL), and 20 healthy controls (HC). Method: We treat this as a three-class classification problem: RHL, LHL, and HC. Wavelet entropy (WE) was selected from the magnetic resonance images of each subjects, and then submitted to a directed acyclic graph support vector machine (DAG-SVM). Results: The 10 repetition results of 10-fold cross validation shows 3-level decomposition will yield an overall accuracy of 95.10% for this three-class classification problem, higher than feedforward neural network, decision tree, and naive Bayesian classifier. Conclusions: This computer-aided diagnosis system is promising. We hope this study can attract more computer vision method for detecting hearing loss.

  12. Use of local noise power spectrum and wavelet analysis in quantitative image quality assurance for EPIDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Soyoung

    Purpose: To investigate the use of local noise power spectrum (NPS) to characterize image noise and wavelet analysis to isolate defective pixels and inter-subpanel flat-fielding artifacts for quantitative quality assurance (QA) of electronic portal imaging devices (EPIDs). Methods: A total of 93 image sets including custom-made bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Global quantitative metrics such as modulation transform function (MTF), NPS, and detective quantum efficiency (DQE) were computed for each image set. Local NPS was also calculated for individual subpanels by sampling region of interests within each subpanelmore » of the EPID. The 1D NPS, obtained by radially averaging the 2D NPS, was fitted to a power-law function. The r-square value of the linear regression analysis was used as a singular metric to characterize the noise properties of individual subpanels of the EPID. The sensitivity of the local NPS was first compared with the global quantitative metrics using historical image sets. It was then compared with two commonly used commercial QA systems with images collected after applying two different EPID calibration methods (single-level gain and multilevel gain). To detect isolated defective pixels and inter-subpanel flat-fielding artifacts, Haar wavelet transform was applied on the images. Results: Global quantitative metrics including MTF, NPS, and DQE showed little change over the period of data collection. On the contrary, a strong correlation between the local NPS (r-square values) and the variation of the EPID noise condition was observed. The local NPS analysis indicated image quality improvement with the r-square values increased from 0.80 ± 0.03 (before calibration) to 0.85 ± 0.03 (after single-level gain calibration) and to 0.96 ± 0.03 (after multilevel gain calibration), while the commercial QA systems failed to distinguish the image quality improvement between the two calibration methods. With wavelet analysis, defective pixels and inter-subpanel flat-fielding artifacts were clearly identified as spikes after thresholding the inversely transformed images. Conclusions: The proposed local NPS (r-square values) showed superior sensitivity to the noise level variations of individual subpanels compared with global quantitative metrics such as MTF, NPS, and DQE. Wavelet analysis was effective in detecting isolated defective pixels and inter-subpanel flat-fielding artifacts. The proposed methods are promising for the early detection of imaging artifacts of EPIDs.« less

  13. Segmentation of optical coherence tomography images for differentiation of the cavernous nerves from the prostate gland

    NASA Astrophysics Data System (ADS)

    Chitchian, Shahab; Weldon, Thomas P.; Fried, Nathaniel M.

    2009-07-01

    The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. Two-dimensional (2-D) optical coherence tomography (OCT) images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. To detect these nerves, three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The Gabor feature was applied with different standard deviations in the x and y directions. In the Daubechies wavelet feature, an 8-tap Daubechies orthonormal wavelet was implemented, and the low-pass sub-band was chosen as the filtered image. Last, Laws feature extraction was applied to the images. The features were segmented using a nearest-neighbor classifier. N-ary morphological postprocessing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058+/-0.019. This algorithm may be useful for implementation in clinical endoscopic OCT systems currently being studied for potential intraoperative diagnostic use in laparoscopic and robotic nerve-sparing prostate cancer surgery.

  14. Segmentation of optical coherence tomography images for differentiation of the cavernous nerves from the prostate gland.

    PubMed

    Chitchian, Shahab; Weldon, Thomas P; Fried, Nathaniel M

    2009-01-01

    The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. Two-dimensional (2-D) optical coherence tomography (OCT) images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. To detect these nerves, three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The Gabor feature was applied with different standard deviations in the x and y directions. In the Daubechies wavelet feature, an 8-tap Daubechies orthonormal wavelet was implemented, and the low-pass sub-band was chosen as the filtered image. Last, Laws feature extraction was applied to the images. The features were segmented using a nearest-neighbor classifier. N-ary morphological postprocessing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058+/-0.019. This algorithm may be useful for implementation in clinical endoscopic OCT systems currently being studied for potential intraoperative diagnostic use in laparoscopic and robotic nerve-sparing prostate cancer surgery.

  15. Image denoising via fundamental anisotropic diffusion and wavelet shrinkage: a comparative study

    NASA Astrophysics Data System (ADS)

    Bayraktar, Bulent; Analoui, Mostafa

    2004-05-01

    Noise removal faces a challenge: Keeping the image details. Resolving the dilemma of two purposes (smoothing and keeping image features in tact) working inadvertently of each other was an almost impossible task until anisotropic dif-fusion (AD) was formally introduced by Perona and Malik (PM). AD favors intra-region smoothing over inter-region in piecewise smooth images. Many authors regularized the original PM algorithm to overcome its drawbacks. We compared the performance of denoising using such 'fundamental' AD algorithms and one of the most powerful multiresolution tools available today, namely, wavelet shrinkage. The AD algorithms here are called 'fundamental' in the sense that the regularized versions center around the original PM algorithm with minor changes to the logic. The algorithms are tested with different noise types and levels. On top of the visual inspection, two mathematical metrics are used for performance comparison: Signal-to-noise ratio (SNR) and universal image quality index (UIQI). We conclude that some of the regu-larized versions of PM algorithm (AD) perform comparably with wavelet shrinkage denoising. This saves a lot of compu-tational power. With this conclusion, we applied the better-performing fundamental AD algorithms to a new imaging modality: Optical Coherence Tomography (OCT).

  16. Wavelet-based 3-D inversion for frequency-domain airborne EM data

    NASA Astrophysics Data System (ADS)

    Liu, Yunhe; Farquharson, Colin G.; Yin, Changchun; Baranwal, Vikas C.

    2018-04-01

    In this paper, we propose a new wavelet-based 3-D inversion method for frequency-domain airborne electromagnetic (FDAEM) data. Instead of inverting the model in the space domain using a smoothing constraint, this new method recovers the model in the wavelet domain based on a sparsity constraint. In the wavelet domain, the model is represented by two types of coefficients, which contain both large- and fine-scale informations of the model, meaning the wavelet-domain inversion has inherent multiresolution. In order to accomplish a sparsity constraint, we minimize an L1-norm measure in the wavelet domain that mostly gives a sparse solution. The final inversion system is solved by an iteratively reweighted least-squares method. We investigate different orders of Daubechies wavelets to accomplish our inversion algorithm, and test them on synthetic frequency-domain AEM data set. The results show that higher order wavelets having larger vanishing moments and regularity can deliver a more stable inversion process and give better local resolution, while the lower order wavelets are simpler and less smooth, and thus capable of recovering sharp discontinuities if the model is simple. At last, we test this new inversion algorithm on a frequency-domain helicopter EM (HEM) field data set acquired in Byneset, Norway. Wavelet-based 3-D inversion of HEM data is compared to L2-norm-based 3-D inversion's result to further investigate the features of the new method.

  17. High-precision terahertz frequency modulated continuous wave imaging method using continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Wang, Tianyi; Dai, Bing; Li, Wenjun; Wang, Wei; You, Chengwu; Wang, Kejia; Liu, Jinsong; Wang, Shenglie; Yang, Zhengang

    2018-02-01

    Inspired by the extensive application of terahertz (THz) imaging technologies in the field of aerospace, we exploit a THz frequency modulated continuous-wave imaging method with continuous wavelet transform (CWT) algorithm to detect a multilayer heat shield made of special materials. This method uses the frequency modulation continuous-wave system to catch the reflected THz signal and then process the image data by the CWT with different basis functions. By calculating the sizes of the defects area in the final images and then comparing the results with real samples, a practical high-precision THz imaging method is demonstrated. Our method can be an effective tool for the THz nondestructive testing of composites, drugs, and some cultural heritages.

  18. Patch-based anisotropic diffusion scheme for fluorescence diffuse optical tomography--part 2: image reconstruction.

    PubMed

    Correia, Teresa; Koch, Maximilian; Ale, Angelique; Ntziachristos, Vasilis; Arridge, Simon

    2016-02-21

    Fluorescence diffuse optical tomography (fDOT) provides 3D images of fluorescence distributions in biological tissue, which represent molecular and cellular processes. The image reconstruction problem is highly ill-posed and requires regularisation techniques to stabilise and find meaningful solutions. Quadratic regularisation tends to either oversmooth or generate very noisy reconstructions, depending on the regularisation strength. Edge preserving methods, such as anisotropic diffusion regularisation (AD), can preserve important features in the fluorescence image and smooth out noise. However, AD has limited ability to distinguish an edge from noise. We propose a patch-based anisotropic diffusion regularisation (PAD), where regularisation strength is determined by a weighted average according to the similarity between patches around voxels within a search window, instead of a simple local neighbourhood strategy. However, this method has higher computational complexity and, hence, we wavelet compress the patches (PAD-WT) to speed it up, while simultaneously taking advantage of the denoising properties of wavelet thresholding. Furthermore, structural information can be incorporated into the image reconstruction with PAD-WT to improve image quality and resolution. In this case, the weights used to average voxels in the image are calculated using the structural image, instead of the fluorescence image. The regularisation strength depends on both structural and fluorescence images, which guarantees that the method can preserve fluorescence information even when it is not structurally visible in the anatomical images. In part 1, we tested the method using a denoising problem. Here, we use simulated and in vivo mouse fDOT data to assess the algorithm performance. Our results show that the proposed PAD-WT method provides high quality and noise free images, superior to those obtained using AD.

  19. Vessel extraction in retinal images using automatic thresholding and Gabor Wavelet.

    PubMed

    Ali, Aziah; Hussain, Aini; Wan Zaki, Wan Mimi Diyana

    2017-07-01

    Retinal image analysis has been widely used for early detection and diagnosis of multiple systemic diseases. Accurate vessel extraction in retinal image is a crucial step towards a fully automated diagnosis system. This work affords an efficient unsupervised method for extracting blood vessels from retinal images by combining existing Gabor Wavelet (GW) method with automatic thresholding. Green channel image is extracted from color retinal image and used to produce Gabor feature image using GW. Both green channel image and Gabor feature image undergo vessel-enhancement step in order to highlight blood vessels. Next, the two vessel-enhanced images are transformed to binary images using automatic thresholding before combined to produce the final vessel output. Combining the images results in significant improvement of blood vessel extraction performance compared to using individual image. Effectiveness of the proposed method was proven via comparative analysis with existing methods validated using publicly available database, DRIVE.

  20. Sparse Poisson noisy image deblurring.

    PubMed

    Carlavan, Mikael; Blanc-Féraud, Laure

    2012-04-01

    Deblurring noisy Poisson images has recently been a subject of an increasing amount of works in many areas such as astronomy and biological imaging. In this paper, we focus on confocal microscopy, which is a very popular technique for 3-D imaging of biological living specimens that gives images with a very good resolution (several hundreds of nanometers), although degraded by both blur and Poisson noise. Deconvolution methods have been proposed to reduce these degradations, and in this paper, we focus on techniques that promote the introduction of an explicit prior on the solution. One difficulty of these techniques is to set the value of the parameter, which weights the tradeoff between the data term and the regularizing term. Only few works have been devoted to the research of an automatic selection of this regularizing parameter when considering Poisson noise; therefore, it is often set manually such that it gives the best visual results. We present here two recent methods to estimate this regularizing parameter, and we first propose an improvement of these estimators, which takes advantage of confocal images. Following these estimators, we secondly propose to express the problem of the deconvolution of Poisson noisy images as the minimization of a new constrained problem. The proposed constrained formulation is well suited to this application domain since it is directly expressed using the antilog likelihood of the Poisson distribution and therefore does not require any approximation. We show how to solve the unconstrained and constrained problems using the recent alternating-direction technique, and we present results on synthetic and real data using well-known priors, such as total variation and wavelet transforms. Among these wavelet transforms, we specially focus on the dual-tree complex wavelet transform and on the dictionary composed of curvelets and an undecimated wavelet transform.

  1. Pedestrian detection based on redundant wavelet transform

    NASA Astrophysics Data System (ADS)

    Huang, Lin; Ji, Liping; Hu, Ping; Yang, Tiejun

    2016-10-01

    Intelligent video surveillance is to analysis video or image sequences captured by a fixed or mobile surveillance camera, including moving object detection, segmentation and recognition. By using it, we can be notified immediately in an abnormal situation. Pedestrian detection plays an important role in an intelligent video surveillance system, and it is also a key technology in the field of intelligent vehicle. So pedestrian detection has very vital significance in traffic management optimization, security early warn and abnormal behavior detection. Generally, pedestrian detection can be summarized as: first to estimate moving areas; then to extract features of region of interest; finally to classify using a classifier. Redundant wavelet transform (RWT) overcomes the deficiency of shift variant of discrete wavelet transform, and it has better performance in motion estimation when compared to discrete wavelet transform. Addressing the problem of the detection of multi-pedestrian with different speed, we present an algorithm of pedestrian detection based on motion estimation using RWT, combining histogram of oriented gradients (HOG) and support vector machine (SVM). Firstly, three intensities of movement (IoM) are estimated using RWT and the corresponding areas are segmented. According to the different IoM, a region proposal (RP) is generated. Then, the features of a RP is extracted using HOG. Finally, the features are fed into a SVM trained by pedestrian databases and the final detection results are gained. Experiments show that the proposed algorithm can detect pedestrians accurately and efficiently.

  2. MR image denoising method for brain surface 3D modeling

    NASA Astrophysics Data System (ADS)

    Zhao, De-xin; Liu, Peng-jie; Zhang, De-gan

    2014-11-01

    Three-dimensional (3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance (MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.

  3. Automatic T1 bladder tumor detection by using wavelet analysis in cystoscopy images

    NASA Astrophysics Data System (ADS)

    Freitas, Nuno R.; Vieira, Pedro M.; Lima, Estevão; Lima, Carlos S.

    2018-02-01

    Correct classification of cystoscopy images depends on the interpreter’s experience. Bladder cancer is a common lesion that can only be confirmed by biopsying the tissue, therefore, the automatic identification of tumors plays a significant role in early stage diagnosis and its accuracy. To our best knowledge, the use of white light cystoscopy images for bladder tumor diagnosis has not been reported so far. In this paper, a texture analysis based approach is proposed for bladder tumor diagnosis presuming that tumors change in tissue texture. As is well accepted by the scientific community, texture information is more present in the medium to high frequency range which can be selected by using a discrete wavelet transform (DWT). Tumor enhancement can be improved by using automatic segmentation, since a mixing with normal tissue is avoided under ideal conditions. The segmentation module proposed in this paper takes advantage of the wavelet decomposition tree to discard poor texture information in such a way that both steps of the proposed algorithm segmentation and classification share the same focus on texture. Multilayer perceptron and a support vector machine with a stratified ten-fold cross-validation procedure were used for classification purposes by using the hue-saturation-value (HSV), red-green-blue, and CIELab color spaces. Performances of 91% in sensitivity and 92.9% in specificity were obtained regarding HSV color by using both preprocessing and classification steps based on the DWT. The proposed method can achieve good performance on identifying bladder tumor frames. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis.

  4. Contourlet domain multiband deblurring based on color correlation for fluid lens cameras.

    PubMed

    Tzeng, Jack; Liu, Chun-Chen; Nguyen, Truong Q

    2010-10-01

    Due to the novel fluid optics, unique image processing challenges are presented by the fluidic lens camera system. Developed for surgical applications, unique properties, such as no moving parts while zooming and better miniaturization than traditional glass optics, are advantages of the fluid lens. Despite these abilities, sharp color planes and blurred color planes are created by the nonuniform reaction of the liquid lens to different color wavelengths. Severe axial color aberrations are caused by this reaction. In order to deblur color images without estimating a point spread function, a contourlet filter bank system is proposed. Information from sharp color planes is used by this multiband deblurring method to improve blurred color planes. Compared to traditional Lucy-Richardson and Wiener deconvolution algorithms, significantly improved sharpness and reduced ghosting artifacts are produced by a previous wavelet-based method. Directional filtering is used by the proposed contourlet-based system to adjust to the contours of the image. An image is produced by the proposed method which has a similar level of sharpness to the previous wavelet-based method and has fewer ghosting artifacts. Conditions for when this algorithm will reduce the mean squared error are analyzed. While improving the blue color plane by using information from the green color plane is the primary focus of this paper, these methods could be adjusted to improve the red color plane. Many multiband systems such as global mapping, infrared imaging, and computer assisted surgery are natural extensions of this work. This information sharing algorithm is beneficial to any image set with high edge correlation. Improved results in the areas of deblurring, noise reduction, and resolution enhancement can be produced by the proposed algorithm.

  5. Optimal wavelets for biomedical signal compression.

    PubMed

    Nielsen, Mogens; Kamavuako, Ernest Nlandu; Andersen, Michael Midtgaard; Lucas, Marie-Françoise; Farina, Dario

    2006-07-01

    Signal compression is gaining importance in biomedical engineering due to the potential applications in telemedicine. In this work, we propose a novel scheme of signal compression based on signal-dependent wavelets. To adapt the mother wavelet to the signal for the purpose of compression, it is necessary to define (1) a family of wavelets that depend on a set of parameters and (2) a quality criterion for wavelet selection (i.e., wavelet parameter optimization). We propose the use of an unconstrained parameterization of the wavelet for wavelet optimization. A natural performance criterion for compression is the minimization of the signal distortion rate given the desired compression rate. For coding the wavelet coefficients, we adopted the embedded zerotree wavelet coding algorithm, although any coding scheme may be used with the proposed wavelet optimization. As a representative example of application, the coding/encoding scheme was applied to surface electromyographic signals recorded from ten subjects. The distortion rate strongly depended on the mother wavelet (for example, for 50% compression rate, optimal wavelet, mean+/-SD, 5.46+/-1.01%; worst wavelet 12.76+/-2.73%). Thus, optimization significantly improved performance with respect to previous approaches based on classic wavelets. The algorithm can be applied to any signal type since the optimal wavelet is selected on a signal-by-signal basis. Examples of application to ECG and EEG signals are also reported.

  6. Automatic small bowel tumor diagnosis by using multi-scale wavelet-based analysis in wireless capsule endoscopy images.

    PubMed

    Barbosa, Daniel C; Roupar, Dalila B; Ramos, Jaime C; Tavares, Adriano C; Lima, Carlos S

    2012-01-11

    Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.

  7. Workflow opportunities using JPEG 2000

    NASA Astrophysics Data System (ADS)

    Foshee, Scott

    2002-11-01

    JPEG 2000 is a new image compression standard from ISO/IEC JTC1 SC29 WG1, the Joint Photographic Experts Group (JPEG) committee. Better thought of as a sibling to JPEG rather than descendant, the JPEG 2000 standard offers wavelet based compression as well as companion file formats and related standardized technology. This paper examines the JPEG 2000 standard for features in four specific areas-compression, file formats, client-server, and conformance/compliance that enable image workflows.

  8. Morphological and wavelet features towards sonographic thyroid nodules evaluation.

    PubMed

    Tsantis, Stavros; Dimitropoulos, Nikos; Cavouras, Dionisis; Nikiforidis, George

    2009-03-01

    This paper presents a computer-based classification scheme that utilized various morphological and novel wavelet-based features towards malignancy risk evaluation of thyroid nodules in ultrasonography. The study comprised 85 ultrasound images-patients that were cytological confirmed (54 low-risk and 31 high-risk). A set of 20 features (12 based on nodules boundary shape and 8 based on wavelet local maxima located within each nodule) has been generated. Two powerful pattern recognition algorithms (support vector machines and probabilistic neural networks) have been designed and developed in order to quantify the power of differentiation of the introduced features. A comparative study has also been held, in order to estimate the impact speckle had onto the classification procedure. The diagnostic sensitivity and specificity of both classifiers was made by means of receiver operating characteristics (ROC) analysis. In the speckle-free feature set, the area under the ROC curve was 0.96 for the support vector machines classifier whereas for the probabilistic neural networks was 0.91. In the feature set with speckle, the corresponding areas under the ROC curves were 0.88 and 0.86 respectively for the two classifiers. The proposed features can increase the classification accuracy and decrease the rate of missing and misdiagnosis in thyroid cancer control.

  9. Shape Adaptive, Robust Iris Feature Extraction from Noisy Iris Images

    PubMed Central

    Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah

    2013-01-01

    In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate. PMID:24696801

  10. Shape adaptive, robust iris feature extraction from noisy iris images.

    PubMed

    Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah

    2013-10-01

    In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate.

  11. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Rahmim, Arman

    2015-01-01

    A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE-MAP algorithm resulted in comparable regional mean values to those from the maximum likelihood algorithm while reducing noise. Achieving robust performance in various noise-level simulation and patient studies, the WJE-MAP algorithm demonstrates its potential in clinical quantitative PET imaging.

  12. TU-CD-BRA-01: A Novel 3D Registration Method for Multiparametric Radiological Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhbardeh, A; Parekth, VS; Jacobs, MA

    2015-06-15

    Purpose: Multiparametric and multimodality radiological imaging methods, such as, magnetic resonance imaging(MRI), computed tomography(CT), and positron emission tomography(PET), provide multiple types of tissue contrast and anatomical information for clinical diagnosis. However, these radiological modalities are acquired using very different technical parameters, e.g.,field of view(FOV), matrix size, and scan planes, which, can lead to challenges in registering the different data sets. Therefore, we developed a hybrid registration method based on 3D wavelet transformation and 3D interpolations that performs 3D resampling and rotation of the target radiological images without loss of information Methods: T1-weighted, T2-weighted, diffusion-weighted-imaging(DWI), dynamic-contrast-enhanced(DCE) MRI and PET/CT were usedmore » in the registration algorithm from breast and prostate data at 3T MRI and multimodality(PET/CT) cases. The hybrid registration scheme consists of several steps to reslice and match each modality using a combination of 3D wavelets, interpolations, and affine registration steps. First, orthogonal reslicing is performed to equalize FOV, matrix sizes and the number of slices using wavelet transformation. Second, angular resampling of the target data is performed to match the reference data. Finally, using optimized angles from resampling, 3D registration is performed using similarity transformation(scaling and translation) between the reference and resliced target volume is performed. After registration, the mean-square-error(MSE) and Dice Similarity(DS) between the reference and registered target volumes were calculated. Results: The 3D registration method registered synthetic and clinical data with significant improvement(p<0.05) of overlap between anatomical structures. After transforming and deforming the synthetic data, the MSE and Dice similarity were 0.12 and 0.99. The average improvement of the MSE in breast was 62%(0.27 to 0.10) and prostate was 63%(0.13 to 0.04;p<0.05). The Dice similarity was in breast 8%(0.91 to 0.99) and for prostate was 89%(0.01 to 0.90;p<0.05) Conclusion: Our 3D wavelet hybrid registration approach registered diverse breast and prostate data of different radiological images(MR/PET/CT) with a high accuracy.« less

  13. The study of cognitive processes in the brain EEG during the perception of bistable images using wavelet skeleton

    NASA Astrophysics Data System (ADS)

    Runnova, Anastasiya E.; Zhuravlev, Maksim O.; Pysarchik, Alexander N.; Khramova, Marina V.; Grubov, Vadim V.

    2017-03-01

    In the paper we study the appearance of the complex patterns in human EEG data during a psychophysiological experiment by stimulating cognitive activity with the perception of ambiguous object. A new method based on the calculation of the maximum energy component for the continuous wavelet transform (skeletons) is proposed. Skeleton analysis allows us to identify specific patterns in the EEG data set, appearing in the perception of ambiguous objects. Thus, it becomes possible to diagnose some cognitive processes associated with the concentration of attention and recognition of complex visual objects. The article presents the processing results of experimental data for 6 male volunteers.

  14. Iterated oversampled filter banks and wavelet frames

    NASA Astrophysics Data System (ADS)

    Selesnick, Ivan W.; Sendur, Levent

    2000-12-01

    This paper takes up the design of wavelet tight frames that are analogous to Daubechies orthonormal wavelets - that is, the design of minimal length wavelet filters satisfying certain polynomial properties, but now in the oversampled case. The oversampled dyadic DWT considered in this paper is based on a single scaling function and tow distinct wavelets. Having more wavelets than necessary gives a closer spacing between adjacent wavelets within the same scale. As a result, the transform is nearly shift-invariant, and can be used to improve denoising. Because the associated time- frequency lattice preserves the dyadic structure of the critically sampled DWT it can be used with tree-based denoising algorithms that exploit parent-child correlation.

  15. Multi-focus image fusion and robust encryption algorithm based on compressive sensing

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Wang, Lan; Xiang, Tao; Wang, Yong

    2017-06-01

    Multi-focus image fusion schemes have been studied in recent years. However, little work has been done in multi-focus image transmission security. This paper proposes a scheme that can reduce data transmission volume and resist various attacks. First, multi-focus image fusion based on wavelet decomposition can generate complete scene images and optimize the perception of the human eye. The fused images are sparsely represented with DCT and sampled with structurally random matrix (SRM), which reduces the data volume and realizes the initial encryption. Then the obtained measurements are further encrypted to resist noise and crop attack through combining permutation and diffusion stages. At the receiver, the cipher images can be jointly decrypted and reconstructed. Simulation results demonstrate the security and robustness of the proposed scheme.

  16. Image compression/decompression based on mathematical transform, reduction/expansion, and image sharpening

    DOEpatents

    Fu, C.Y.; Petrich, L.I.

    1997-12-30

    An image represented in a first image array of pixels is first decimated in two dimensions before being compressed by a predefined compression algorithm such as JPEG. Another possible predefined compression algorithm can involve a wavelet technique. The compressed, reduced image is then transmitted over the limited bandwidth transmission medium, and the transmitted image is decompressed using an algorithm which is an inverse of the predefined compression algorithm (such as reverse JPEG). The decompressed, reduced image is then interpolated back to its original array size. Edges (contours) in the image are then sharpened to enhance the perceptual quality of the reconstructed image. Specific sharpening techniques are described. 22 figs.

  17. Multifocus image fusion using phase congruency

    NASA Astrophysics Data System (ADS)

    Zhan, Kun; Li, Qiaoqiao; Teng, Jicai; Wang, Mingying; Shi, Jinhui

    2015-05-01

    We address the problem of fusing multifocus images based on the phase congruency (PC). PC provides a sharpness feature of a natural image. The focus measure (FM) is identified as strong PC near a distinctive image feature evaluated by the complex Gabor wavelet. The PC is more robust against noise than other FMs. The fusion image is obtained by a new fusion rule (FR), and the focused region is selected by the FR from one of the input images. Experimental results show that the proposed fusion scheme achieves the fusion performance of the state-of-the-art methods in terms of visual quality and quantitative evaluations.

  18. Detecting Buried Archaeological Remains by the Use of Geophysical Data Processing with 'Diffusion Maps' Methodology

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev

    2015-04-01

    Geophysical methods are prompt, non-invasive and low-cost tool for quantitative delineation of buried archaeological targets. However, taking into account the complexity of geological-archaeological media, some unfavourable environments and known ambiguity of geophysical data analysis, a single geophysical method examination might be insufficient (Khesin and Eppelbaum, 1997). Besides this, it is well-known that the majority of inverse-problem solutions in geophysics are ill-posed (e.g., Zhdanov, 2002), which means, according to Hadamard (1902), that the solution does not exist, or is not unique, or is not a continuous function of observed geophysical data (when small perturbations in the observations will cause arbitrary mistakes in the solution). This fact has a wide application for informational, probabilistic and wavelet methodologies in archaeological geophysics (Eppelbaum, 2014a). The goal of the modern geophysical data examination is to detect the geophysical signatures of buried targets at noisy areas via the analysis of some physical parameters with a minimal number of false alarms and miss-detections (Eppelbaum et al., 2011; Eppelbaum, 2014b). The proposed wavelet approach to recognition of archaeological targets (AT) by the examination of geophysical method integration consists of advanced processing of each geophysical method and nonconventional integration of different geophysical methods between themselves. The recently developed technique of diffusion clustering combined with the abovementioned wavelet methods was utilized to integrate the geophysical data and detect existing irregularities. The approach is based on the wavelet packet techniques applied as to the geophysical images (or graphs) versus coordinates. For such an analysis may be utilized practically all geophysical methods (magnetic, gravity, seismic, GPR, ERT, self-potential, etc.). On the first stage of the proposed investigation a few tens of typical physical-archaeological models (PAM) (e.g., Eppelbaum et al., 2010; Eppelbaum, 2011) of the targets under study for the concrete area (region) are developed. These PAM are composed on the basis of the known archaeological and geological data, results of previous archaeogeophysical investigations and 3D modeling of geophysical data. It should be underlined that the PAMs must differ (by depth, size, shape and physical properties of AT as well as peculiarities of the host archaeological-geological media). The PAMs must include also noise components of different orders (corresponding to the archaeogeophysical conditions of the area under study). The same models are computed and without the AT. Introducing complex PAMs (for example, situated in the vicinity of electric power lines, some objects of infrastructure, etc. (Eppelbaum et al., 2001)) will reflect some real class of AT occurring in such unfavorable for geophysical searching conditions. Anomalous effects from such complex PAMs will significantly disturb the geophysical anomalies from AT and impede the wavelet methodology employment. At the same time, the 'self-learning' procedure laid in this methodology will help further to recognize the AT even in the cases of unfavorable S/N ratio. Modern developments in the wavelet theory and data mining are utilized for the analysis of the integrated data. Wavelet approach is applied for derivation of enhanced (e.g., coherence portraits) and combined images of geophysical fields. The modern methodologies based on the matching pursuit with wavelet packet dictionaries enables to extract desired signals even from strongly noised data (Averbuch et al., 2014). Researchers usually met the problem of extraction of essential features from available data contaminated by a random noise and by a non-relevant background (Averbuch et al., 2014). If the essential structure of a signal consists of several sine waves then we may represent it via trigonometric basis (Fourier analysis). In this case one can compare the signal with a set of sinusoids and extract consistent ones. An indicator of presence a wave in a signal f(t) is the Fourier coefficient ∫ f(t) sinwt dt. Wavelet analysis provides a rich library of waveforms available and fast, computationally efficient procedures of representation of signals and of selection of relevant waveforms. The basic assumption justifying an application of wavelet analysis is that the essential structure of a signal analyzed consists of not a large number of various waveforms. The best way to reveal this structure is representation of the signal by a set of basic elements containing waveforms coherent to the signal. For structures of the signal coherent to the basis, large coefficients are attributed to a few basic waveforms, whereas we expect small coefficients for the noise and structures incoherent to all basic waveforms. Wavelets are a family of functions ranging from functions of arbitrary smoothness to fractal ones. Wavelet procedure involves two aspects. The first one is a decomposition, i.e. breaking up a signal to obtain the wavelet coefficients and the 2nd one is a reconstruction, which consists of a reassembling the signal from coefficients There are many modifications of the WA. Note, first of all, so-called Continuous WA in whichsignal f(t) is tested for presence of waveforms ψ(t-b) a. Here, a is scaling parameter (dilation), bdetermines location of the wavelet ψ(t-b) a in a signal f(t). The integral ( ) ∫ t-b (W ψf) (b,a) = f (t) ψ a dt is the Continuous Wavelet Transform.When parameters a,b in ψ( ) t-ab take some discrete values, we have the Discrete Wavelet Transform. A general scheme of the Wavelet Decomposition Tree is shown, for instance, in (Averbuch et al., 2014; Eppelbaum et al., 2014). The signal is compared with the testing signal on each scale. It is estimated wavelet coefficients which enable to reconstruct the 1st approximation of the signal and details. On the next level, wavelet transform is applied to the approximation. Then, we can present A1 as A2 + D2, etc. So, if S - Signal, A - Approximation, D - Details, then S = A1 + D1 = A2 + D2 + D1 = A3 + D3 + D2 + D1. Wavelet packet transform is applied to both low pass results (approximations) and high pass results (Details). For analyzing the geophysical data, we used a technique based on the algorithm to characterize a geophysical image by a limited number of parameters (Eppelbaum et al., 2012). This set of parameters serves as a signature of the image and is utilized for discrimination of images (a) containing AT from the images (b) non-containing AT (let will designate these images as N). The constructed algorithm consists of the following main phases: (a) collection of the database, (b) characterization of geophysical images, (c) and dimensionality reduction. Then, each image is characterized by the histogram of the coherency directions (Alperovich et al., 2013). As a result of the previous steps we obtain two sets: containing AT and N of the signatures vectors for geophysical images. The obtained 3D set of the data representatives can be used as a reference set for the classification of newly arriving geophysical data. The obtained data sets are reduced by embedding features vectors into the 3D Euclidean space using the so-called diffusion map. This map enables to reveal the internal structure of the datasets AT and N and to distinctly separate them. For this, a matrix of the diffusion distances for the combined feature matrix F = FN ∴ FC of size 60 x C is constructed (Coifman and Lafon, 2006; Averbuch et al., 2010). Then, each row of the matrices FN and FC is projected onto three first eigenvectors of the matrix D(F ). As a result, each data curve is represented by a 3D point in the Euclidean space formed by eigenvectors of D(F ). The Euclidean distances between these 3D points reflect the similarity of the data curves. The scattered projections of the data curves onto the diffusion eigenvectors will be composed. Finally we observe that as a result of the above operations we embedded the original data into 3-dimensional space where data related to the AT subsurface are well separated from the N data. This 3D set of the data representatives can be used as a reference set for the classification of newly arriving data. Geophysically it means a reliable division of the studied areas for the AT-containing and not containing (N) these objects. Testing this methodology for delineation of archaeological cavities by magnetic and gravity data analysis displayed an effectiveness of this approach. References Alperovich, L., Eppelbaum, L., Zheludev, V., Dumoulin, J., Soldovieri, F., Proto, M., Bavusi, M. and Loperte, A., 2013. A new combined wavelet methodology applied to GPR and ERT data in the Montagnole experiment (French Alps). Journal of Geophysics and Engineering, 10, No. 2, 025017, 1-17. Averbuch, A., Hochman, K., Rabin, N., Schclar, A. and Zheludev, V., 2010. A diffusion frame-work for detection of moving vehicles. Digital Signal Processing, 20, No.1, 111-122. Averbuch A.Z., Neittaanmäki, P., and Zheludev, V.A., 2014. Spline and Spline Wavelet Methods with Applications to Signal and Image Processing. Volume I: Periodic Splines. Springer. Coifman, R.R. and Lafon, S., 2006. Diffusion maps, Applied and Computational Harmonic Analysis. Special issue on Diffusion Maps and Wavelets, 21, No. 7, 5-30. Eppelbaum, L.V., 2011. Study of magnetic anomalies over archaeological targets in urban conditions. Physics and Chemistry of the Earth, 36, No. 16, 1318-1330. Eppelbaum, L.V., 2014a. Geophysical observations at archaeological sites: Estimating informational content. Archaeological Prospection, 21, No. 2, 25-38. Eppelbaum, L.V. 2014b. Four Color Theorem and Applied Geophysics. Applied Mathematics, 5, 358-366. Eppelbaum, L.V., Alperovich, L., Zheludev, V. and Pechersky, A., 2011. Application of informational and wavelet approaches for integrated processing of geophysical data in complex environments. Proceed. of the 2011 SAGEEP Conference, Charleston, South Carolina, USA, 24, 24-60. Eppelbaum, L.V., Khesin, B.E. and Itkis, S.E., 2001. Prompt magnetic investigations of archaeological remains in areas of infrastructure development: Israeli experience. Archaeological Prospection, 8, No.3, 163-185. Eppelbaum, L.V., Khesin, B.E. and Itkis, S.E., 2010. Archaeological geophysics in arid environments: Examples from Israel. Journal of Arid Environments, 74, No. 7, 849-860. Eppelbaum, L.V., Zheludev, V. and Averbuch, A., 2014. Diffusion maps as a powerful tool for integrated geophysical field analysis to detecting hidden karst terranes. Izv. Acad. Sci. Azerb. Rep., Ser.: Earth Sciences, No. 1-2, 36-46. Hadamard, J., 1902. Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin, 13, 49-52. Khesin, B.E. and Eppelbaum, L.V., 1997. The number of geophysical methods required for target classification: quantitative estimation. Geoinformatics, 8, No.1, 31-39. Zhdanov, M.S., 2002. Geophysical Inverse Theory and Regularization Problems. Methods in Geochemistry and Geophysics, Vol. 36. Elsevier, Amsterdam.

  19. Joint image encryption and compression scheme based on IWT and SPIHT

    NASA Astrophysics Data System (ADS)

    Zhang, Miao; Tong, Xiaojun

    2017-03-01

    A joint lossless image encryption and compression scheme based on integer wavelet transform (IWT) and set partitioning in hierarchical trees (SPIHT) is proposed to achieve lossless image encryption and compression simultaneously. Making use of the properties of IWT and SPIHT, encryption and compression are combined. Moreover, the proposed secure set partitioning in hierarchical trees (SSPIHT) via the addition of encryption in the SPIHT coding process has no effect on compression performance. A hyper-chaotic system, nonlinear inverse operation, Secure Hash Algorithm-256(SHA-256), and plaintext-based keystream are all used to enhance the security. The test results indicate that the proposed methods have high security and good lossless compression performance.

  20. Wavelet methods in multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Helin, T.; Yudytskiy, M.

    2013-08-01

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory.

Top