Temperature dependence of current polarization in Ni80Fe20 by spin wave Doppler measurements
NASA Astrophysics Data System (ADS)
Zhu, Meng; Dennis, Cindi; McMichael, Robert
2010-03-01
The temperature dependence of current polarization in ferromagnetic metals will be important for operation of spin-torque switched memories and domain wall devices in a wide temperature range. Here, we use the spin wave Doppler technique[1] to measure the temperature dependence of both the magnetization drift velocity v(T) and the current polarization P(T) in Ni80Fe20. We obtain these values from current-dependent shifts of the spin wave transmission resonance frequency for fixed-wavelength spin waves in current-carrying wires. For current densities of 10^11 A/m^2, we obtain v(T) decreasing from 4.8 ±0.3 m/s to 4.1 ±0.1 m/s and P(T) dropping from 0.75±0.05 to 0.58±0.02 over a temperature range from 80 K to 340 K. [1] V. Vlaminck et al. Science 322, 410 (2008);
Storlazzi, Curt D.; Presto, M. Kathy
2005-01-01
High-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity were made in Honolua Bay, northwest Maui, Hawaii, during 2003 and 2004 to better understand coastal dynamics in coral reef habitats. Measurements were acquired through two different collection methods. Two hydrographic survey cruises were conducted to acquire spatially-extensive, but temporally-limited, three-dimensional measurements of currents, temperature, salinity and turbidity in the winter and summer of 2003. From mid 2003 through early 2004, a bottom-mounted instrument package was deployed in a water depth of 10 m to collect long-term, single-point high-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity. The purpose of these measurements was to collect hydrographic data to learn how waves, currents and water column properties such as water temperature, salinity and turbidity vary spatially and temporally in a near-shore coral reef system adjacent to a major stream drainage. These measurements support the ongoing process studies being conducted as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Coral Reef Project; the ultimate goal is to better understand the transport mechanisms of sediment, larvae, pollutants and other particles in coral reef settings. This report, the final part in a series, describes data acquisition, processing and analysis. Previous reports provided data and results on: Long-term measurements of currents, temperature, salinity and turbidity off Kahana (PART I), the spatial structure of currents, temperature, salinity and suspended sediment along West Maui (PART II), and flow and coral larvae and sediment dynamics during the 2003 summer spawning season (PART III).
NASA Technical Reports Server (NTRS)
Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.
1994-01-01
We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.
The design of high precision temperature control system for InGaAs short-wave infrared detector
NASA Astrophysics Data System (ADS)
Wang, Zheng-yun; Hu, Yadong; Ni, Chen; Huang, Lin; Zhang, Aiwen; Sun, Xiao-bing; Hong, Jin
2018-02-01
The InGaAs Short-wave infrared detector is a temperature-sensitive device. Accurate temperature control can effectively reduce the background signal and improve detection accuracy, detection sensitivity, and the SNR of the detection system. Firstly, the relationship between temperature and detection background, NEP is analyzed, the principle of TEC and formula between cooling power, cooling current and hot-cold interface temperature difference are introduced. Then, the high precision constant current drive circuit based on triode voltage control current, and an incremental algorithm model based on deviation tracking compensation and PID control are proposed, which effectively suppresses the temperature overshoot, overcomes the temperature inertia, and has strong robustness. Finally, the detector and temperature control system are tested. Results show that: the lower of detector temperature, the smaller the temperature fluctuation, the higher the detection accuracy and the detection sensitivity. The temperature control system achieves the high temperature control with the temperature control rate is 7 8°C/min and the temperature fluctuation is better than +/-0. 04°C.
NASA Astrophysics Data System (ADS)
Thomson, Richard E.; Davis, Earl E.
2017-07-01
Sequences of correlated seafloor temperature, current velocity, and acoustic backscatter events recorded at Ocean Drilling Program (ODP) sites at 4300 m depth in the Middle America Trench have been inferred to result from tidally induced turbidity currents generated in the vicinity of the 3300 m deep sill at the southern end of the trench. New data from the borehole observatories extend the temperature records to 11 years (November 2002 to December 2013) and confirm the highly episodic nature of the events. We present satellite altimetry data and ocean circulation model results to show that event timing is correlated with intraseasonal Kelvin wave motions in the equatorial Pacific. The observed temperature events had a mean (±1 standard deviation) occurrence interval of 61 (±24) days, which spans the periods of the first two baroclinic modes. Lag times between peak bottom water temperatures at the ODP sites and the passage of eastward-propagating Kelvin wave crests at locations in the eastern equatorial Pacific are consistent with the time for mode-1 waves to propagate to the southern end of the trench at a mean phase speed of 2.0 m s-1. Findings indicate that Kelvin wave currents augment tidal motions in the vicinity of the sill, triggering turbidity currents that travel northwestward along the trench axis at mean speeds of ˜0.1 m s-1. We conclude that mode-1 (or, possibly, mixed mode-1 and mode-2) baroclinic Kelvin waves generated by large-scale atmospheric processes in the western tropical Pacific lead to heat and mass transport deep within Middle America Trench in the eastern tropical Pacific.
Upper ocean moored current and density profiler applied to winter conditions near Bermuda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eriksen, C.C.; Dahlen, J.M.; Shillingford, J.T. Jr.
1982-09-20
A new moored instrument which makes repeated high vertical resolution profiles of current, temperature, and salinity in the upper ocean over extended periods was used to observe midwinter conditions near Bermuda. The operation and performance of the instrument, called the profiling current meter (PCM), in the surface wave environment of winter storms is reported here. The PCM profiles along the upper portion of a slightly subsurface mooring by adjusting its buoyancy under computer control. This design decouples the instrument from vertical motions of the mooring induced by surface waves, so that its electromagnetic current sensor operates in a favorable mean-to-fluctuatingmore » flow regime. Current, temperature, and electrical conductivity are (vector) averaged into contiguous preselected bins several meters wide over the possible profile range of 20- to 250-m depth. The PCM is capable of collecting 1000--4000 profiles in a 6- to 12-month period, depending on depth range and ambient currents. A variety of baroclinic motions are evident in the Bermuda observations. Upper ocean manifestations of both Kelvin and superinertial island-trapped waves dominate longshore currents. Vertical coherence of onshore current and temperature suggest that internal wave vertical wave number energy distribution is independent of frequency but modified by island bathymetry. Kinetic energy in shear integrated over a 115.6-m-thick layer in the upper ocean is limited to values less than or equal to the potential energy required to mix the existing stratification. Mixing events occur when kinetic energy associated with shear drives the bulk Richardson number (defined by the ratio of energy integrals over the range profiles) to unity, where it remains while shear and stratification disappear together.« less
Warm vegetarians? Heat waves and diet shifts in tadpoles.
Carreira, B M; Segurado, P; Orizaola, G; Gonçalves, N; Pinto, V; Laurila, A; Rebelo, R
2016-11-01
Temperature can play an important role in determining the feeding preferences of ectotherms. In light of the warmer temperatures arising with the current climatic changes, omnivorous ectotherms may perform diet shifts toward higher herbivory to optimize energetic intake. Such diet shifts may also occur during heat waves, which are projected to become more frequent, intense, and longer lasting in the future. Here, we investigated how heat waves of different duration affect feeding preferences in omnivorous anuran tadpoles and how these choices affect larval life history. In laboratory experiments, we fed tadpoles of three species on animal, plant, or mixed diet and exposed them to short heat waves (similar to the heat waves these species experience currently) or long heat waves (predicted to increase under climate change). We estimated the dietary choices of tadpoles fed on the mixed diet using stable isotopes and recorded tadpole survival and growth, larval period, and mass at metamorphosis. Tadpole feeding preferences were associated with their thermal background, with herbivory increasing with breeding temperature in nature. Patterns in survival, growth, and development generally support decreased efficiency of carnivorous diets and increased efficiency or higher relative quality of herbivorous diets at higher temperatures. All three species increased herbivory in at least one of the heat wave treatments, but the responses varied among species. Diet shifts toward higher herbivory were maladaptive in one species, but beneficial in the other two. Higher herbivory in omnivorous ectotherms under warmer temperatures may impact species differently and further contribute to changes in the structure and function of freshwater environments. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Davis, K. A.; Reid, E. C.; Cohen, A. L.
2016-02-01
Internal waves propagating across the continental slope and shelf are transformed by the competing effects of nonlinear steepening and dispersive spreading, forming nonlinear internal waves (NLIWs) that can penetrate onto the shallow inner shelf, often appearing in the form of bottom-propagating nonlinear internal bores or boluses. NLIWs play a significant role in nearshore dynamics with baroclinic current amplitudes on the order of that of wind- and surface wave-driven flows and rapid temperature changes on the order of annual ranges. In June 2014 we used a Distributed Temperature Sensing (DTS) system to give a continuous cross-shelf view of nonlinear internal wave dynamics on the forereef of Dongsha Atoll, a coral reef in the northern South China Sea. A DTS system measures temperature continuously along the length of an optical fiber, resolving meter-to-kilometer spatial scales. This unique view of cross-shelf temperature structure made it possible to observe internal wave reflection, variable propagation speed across the shelf, bolus formation and dissipation. Additionally, we used the DTS data to track internal waves across the shallow fore reef and onto the reef flat and to quantify spatial patterns in temperature variability. Shoaling internal waves are an important process affecting physical variability and water properties on the reef.
Storlazzi, Curt D.; Presto, M. Kathy; Logan, Joshua B.; Field, Michael E.
2006-01-01
Introduction: High-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity were made in Hanalei Bay, northern Kauai, Hawaii, during the summer of 2005 to better understand coastal circulation and sediment dynamics in coral reef habitats. A series of bottom-mounted instrument packages were deployed in water depths of 10 m or less to collect long-term, high-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity. These data were supplemented with a series of vertical instrument casts to characterize the vertical and spatial variability in water column properties within the bay. The purpose of these measurements was to collect hydrographic data to learn how waves, currents and water column properties vary spatially and temporally in an embayment that hosts a nearshore coral reef ecosystem adjacent to a major river drainage. These measurements support the ongoing process studies being conducted as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Coral Reef Project; the ultimate goal is to better understand the transport mechanisms of sediment, larvae, pollutants and other particles in coral reef settings. This report, the first part in a series, describes data acquisition, processing and analysis.
Method of and apparatus for determining deposition-point temperature
Mansure, A.J.; Spates, J.J.; Martin, S.J.
1998-10-27
Acoustic-wave sensor apparatus and method are disclosed for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated. 5 figs.
Method of and apparatus for determining deposition-point temperature
Mansure, Arthur J.; Spates, James J.; Martin, Stephen J.
1998-01-01
Acoustic-wave sensor apparatus and method for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated.
NASA Astrophysics Data System (ADS)
Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis
2015-05-01
This paper describes experimental and numerical investigations focused on the shock wave modification induced by a dc glow discharge. The model is a flat plate in a Mach 2 air flow, equipped with a plasma actuator composed of two electrodes. A weakly ionized plasma was created above the plate by generating a glow discharge with a negative dc potential applied to the upstream electrode. The natural flow exhibited a shock wave with a hyperbolic shape. Pitot measurements and ICCD images of the modified flow revealed that when the discharge was ignited, the shock wave angle increased with the discharge current. The spatial distribution of the surface temperature was measured with an IR camera. The surface temperature increased with the current and decreased along the model. The temperature distribution was reproduced experimentally by placing a heating element instead of the active electrode, and numerically by modifying the boundary condition at the model surface. For the same surface temperature, experimental investigations showed that the shock wave angle was lower with the heating element than for the case with the discharge switched on. The results show that surface heating is responsible for roughly 50 % of the shock wave angle increase, meaning that purely plasma effects must also be considered to fully explain the flow modifications observed.
46 CFR 109.121 - Operating manual.
Code of Federal Regulations, 2014 CFR
2014-10-01
... maximum deadweight in pounds and kilograms, and the rotor size in feet and meters of the helicopter used... draft, air gap, wave height, wave period, wind, current, temperature, and other environmental factors...
46 CFR 109.121 - Operating manual.
Code of Federal Regulations, 2011 CFR
2011-10-01
... maximum deadweight in pounds and kilograms, and the rotor size in feet and meters of the helicopter used... draft, air gap, wave height, wave period, wind, current, temperature, and other environmental factors...
46 CFR 109.121 - Operating manual.
Code of Federal Regulations, 2013 CFR
2013-10-01
... maximum deadweight in pounds and kilograms, and the rotor size in feet and meters of the helicopter used... draft, air gap, wave height, wave period, wind, current, temperature, and other environmental factors...
46 CFR 109.121 - Operating manual.
Code of Federal Regulations, 2012 CFR
2012-10-01
... maximum deadweight in pounds and kilograms, and the rotor size in feet and meters of the helicopter used... draft, air gap, wave height, wave period, wind, current, temperature, and other environmental factors...
46 CFR 109.121 - Operating manual.
Code of Federal Regulations, 2010 CFR
2010-10-01
... maximum deadweight in pounds and kilograms, and the rotor size in feet and meters of the helicopter used... draft, air gap, wave height, wave period, wind, current, temperature, and other environmental factors...
Tropical Instability Wave Interactions within the Galápagos Archipelago.
In the boreal fall of 2005, the effects of tropical instability waves (TIW) appear as oscillations within the sea surface temperature (SST), meridional current (Vy), and thermocline (20°C) in the eastern equatorial Pacific. Within the Galápagos Archipelago, a strong 3-wave succes...
NASA Astrophysics Data System (ADS)
Zhao, Duo; Fu, Suiyan; Parks, George K.; Sun, Weijie; Zong, Qiugang; Pan, Dongxiao; Wu, Tong
2017-08-01
We present new observations of electron distributions and the accompanying waves during the current sheet activities at ˜60 RE in the geomagnetic tail detected by the ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) spacecraft. We find that electron flat-top distribution is a common feature near the neutral sheet of the tailward flowing plasmas, consistent with the electron distributions that are shaped in the reconnection region. Whistler mode waves are generated by the anisotropic electron temperature associated with the electron flat-top distributions. These whistler mode waves are modulated by low frequency ion scale waves that are possibly excited by the high-energy ions injected during the current sheet instability. The magnetic and electric fields of the ion scale waves are in phase with electron density variations, indicating that they are compressional ion cyclotron waves. Our observations present examples of the dynamical processes occurring during the current sheet activities far downstream of the geomagnetic tail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiano, P. A.; Johnson, J. R.; Chaston, C. C.
2015-07-01
A new 2-D self-consistent hybrid gyrofluid-kinetic electron model in dipolar coordinates is presented and used to simulate dispersive-scale Alfvén wave pulse propagation from the equator to the ionosphere along an L = 10 magnetic field line. The model is an extension of the hybrid MHD-kinetic electron model that incorporates ion Larmor radius corrections via the kinetic fluid model of Cheng and Johnson (1999). It is found that consideration of a realistic ion to electron temperature ratio decreases the propagation time of the wave from the plasma sheet to the ionosphere by several seconds relative to a ρi=0 case (which alsomore » implies shorter timing for a substorm onset signal) and leads to significant dispersion of wave energy perpendicular to the ambient magnetic field. Additionally, ion temperature effects reduce the parallel current and electron energization all along the field line for the same magnitude perpendicular electric field perturbation.« less
2014-09-30
dropsondes, micro- aircraft), cloud top/base heights Arctic Ocean Surface Temperature project Steele Buoy drops for SLP , SST, SSS, & surface velocity...Colón & Vancas (NIC) Drop buoys for SLP , temperature and surface velocity Waves & Fetch in the MIZ Thompson SWIFTS buoys measuring wave energy...Expendable CTD, AXCP= Air Expendable Current Profiler, SLP = Sea Level atmospheric Pressure, SST= Seas Surface Temperature, A/C= aircraft, FSD= Floe Size Distribution, SIC=Sea Ice Concentration
Holographic s-wave and p-wave Josephson junction with backreaction
NASA Astrophysics Data System (ADS)
Wang, Yong-Qiang; Liu, Shuai
2016-11-01
In this paper, we study the holographic models of s-wave and p-wave Josephoson junction away from probe limit in (3+1)-dimensional spacetime, respectively. With the backreaction of the matter, we obtained the anisotropic black hole solution with the condensation of matter fields. We observe that the critical temperature of Josephoson junction decreases with increasing backreaction. In addition to this, the tunneling current and condenstion of Josephoson junction become smaller as backreaction grows larger, but the relationship between current and phase difference still holds for sine function. Moreover, condenstion of Josephoson junction deceases with increasing width of junction exponentially.
Predicting electromagnetic ion cyclotron wave amplitude from unstable ring current plasma conditions
Fu, Xiangrong; Cowee, Misa M.; Jordanova, Vania K.; ...
2016-11-01
Electromagnetic ion cyclotron (EMIC) waves in the Earth's inner magnetosphere are enhanced fluctuations driven unstable by ring current ion temperature anisotropy. EMIC waves can resonate with relativistic electrons and play an important role in precipitation of MeV radiation belt electrons. In this study, we investigate the excitation and saturation of EMIC instability in a homogeneous plasma using both linear theory and nonlinear hybrid simulations. We have explored a four-dimensional parameter space, carried out a large number of simulations, and derived a scaling formula that relates the saturation EMIC wave amplitude to initial plasma conditions. Finally, such scaling can be usedmore » in conjunction with ring current models like ring current-atmosphere interactions model with self-consistent magnetic field to provide global dynamic EMIC wave maps that will be more accurate inputs for radiation belt modeling than statistical models.« less
NASA Astrophysics Data System (ADS)
Akan, Çiǧdem; Moghimi, Saeed; Özkan-Haller, H. Tuba; Osborne, John; Kurapov, Alexander
2017-07-01
Numerical simulations were performed using a 3-D ocean circulation model (ROMS) two-way coupled to a phase-averaged wave propagation model (SWAN), to expand our understanding of the dynamics of wave-current interactions at the Mouth of the Columbia River (MCR). First, model results are compared with water elevations, currents, temperature, salinity, and wave measurements obtained by the U.S. Army Corp of Engineers during the Mega-Transect Experiment in 2005. We then discuss the effects of the currents on the waves and vice versa. Results show that wave heights are intensified notably at the entrance of the mouth in the presence of the tidal currents, especially in ebb flows. We also find nonlocal modifications to the wave field because of wave focusing processes that redirect wave energy toward the inlet mouth from adjacent areas, resulting in the presence of a tidal signatures in areas where local currents are weak. The model also suggests significant wave amplification at the edge of the expanding plume in the later stages of ebb, some tens of kilometers offshore of the inlet mouth, with potential implications for navigation safety. The effect of waves on the location of the plume is also analyzed, and results suggest that the plume is shifted in the down-wave direction when wave effects are considered, and that this shift is more pronounced for larger waves, and consistent with the presence of alongshore advection terms in the salt advection equation, which are related to the Stokes velocities associated with waves.
NASA Astrophysics Data System (ADS)
Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico
2016-11-01
Using the properties of the transfer matrix of one-dimensional quantum mechanical systems, we derive an exact formula for the persistent current across a quantum mechanical ring pierced by a magnetic flux Φ as a single integral of a known function of the system's parameters. Our approach provides exact results at zero temperature, which can be readily extended to a finite temperature T . We apply our technique to exactly compute the persistent current through p -wave and s -wave superconducting-normal hybrid rings, deriving full plots of the current as a function of the applied flux at various system's scales. Doing so, we recover at once a number of effects such as the crossover in the current periodicity on increasing the size of the ring and the signature of the topological phase transition in the p -wave case. In the limit of a large ring size, resorting to a systematic expansion in inverse powers of the ring length, we derive exact analytic closed-form formulas, applicable to a number of cases of physical interest.
Mirror force induced wave dispersion in Alfvén waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiano, P. A.; Johnson, J. R.
2013-06-15
Recent hybrid MHD-kinetic electron simulations of global scale standing shear Alfvén waves along the Earth's closed dipolar magnetic field lines show that the upward parallel current region within these waves saturates and broadens perpendicular to the ambient magnetic field and that this broadening increases with the electron temperature. Using resistive MHD simulations, with a parallel Ohm's law derived from the linear Knight relation (which expresses the current-voltage relationship along an auroral field line), we explore the nature of this broadening in the context of the increased perpendicular Poynting flux resulting from the increased parallel electric field associated with mirror forcemore » effects. This increased Poynting flux facilitates wave energy dispersion across field lines which in-turn allows for electron acceleration to carry the field aligned current on adjacent field lines. This mirror force driven dispersion can dominate over that associated with electron inertial effects for global scale waves.« less
NASA Astrophysics Data System (ADS)
Xu, Xiang; Zhou, Chen; Shi, Run; Ni, Binbin; Zhao, Zhengyu; Zhang, Yuannong
2016-09-01
Powerful high-frequency (HF) radio waves can be used to efficiently modify the upper-ionospheric plasmas of the F region. The pressure gradient induced by modulated electron heating at ultralow-frequency (ULF) drives a local oscillating diamagnetic ring current source perpendicular to the ambient magnetic field, which can act as an antenna radiating ULF waves. In this paper, utilizing the HF heating model and the model of ULF wave generation and propagation, we investigate the effects of both the background ionospheric profiles at different latitudes in the daytime and nighttime ionosphere and the modulation frequency on the process of the HF modulated heating and the subsequent generation and propagation of artificial ULF waves. Firstly, based on a relation among the radiation efficiency of the ring current source, the size of the spatial distribution of the modulated electron temperature and the wavelength of ULF waves, we discuss the possibility of the effects of the background ionospheric parameters and the modulation frequency. Then the numerical simulations with both models are performed to demonstrate the prediction. Six different background parameters are used in the simulation, and they are from the International Reference Ionosphere (IRI-2012) model and the neutral atmosphere model (NRLMSISE-00), including the High Frequency Active Auroral Research Program (HAARP; 62.39° N, 145.15° W), Wuhan (30.52° N, 114.32° E) and Jicamarca (11.95° S, 76.87° W) at 02:00 and 14:00 LT. A modulation frequency sweep is also used in the simulation. Finally, by analyzing the numerical results, we come to the following conclusions: in the nighttime ionosphere, the size of the spatial distribution of the modulated electron temperature and the ground magnitude of the magnetic field of ULF wave are larger, while the propagation loss due to Joule heating is smaller compared to the daytime ionosphere; the amplitude of the electron temperature oscillation decreases with latitude in the daytime ionosphere, while it increases with latitude in the nighttime ionosphere; both the electron temperature oscillation amplitude and the ground ULF wave magnitude decreases as the modulation frequency increases; when the electron temperature oscillation is fixed as input, the radiation efficiency of the ring current source is higher in the nighttime ionosphere than in the daytime ionosphere.
Wave Rotor Research and Technology Development
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1998-01-01
Wave rotor technology offers the potential to increase the performance of gas turbine engines significantly, within the constraints imposed by current material temperature limits. The wave rotor research at the NASA Lewis Research Center is a three-element effort: 1) Development of design and analysis tools to accurately predict the performance of wave rotor components; 2) Experiments to characterize component performance; 3) System integration studies to evaluate the effect of wave rotor topping on the gas turbine engine system.
Extreme Temperatures over India in the 1.5°C and 2°C warmer worlds
NASA Astrophysics Data System (ADS)
Thanigachalam, A.; Achutarao, K. M.
2017-12-01
n the summer of 2015 a heat wave claimed more than 2500 lives of southeastern India. Wehner et al., (2016) showed that the risk of this heat wave has increased due to anthropogenic forcings. Under the RCP 8.5 scenario, surface temperature over India shows a rate of increase of about 0.2°C/decade during the 21st Century (Basha et al., 2017). The extreme temperatures that have occurred in the recent past and further increases projected for the future have implications for human health and productivity. In light of the Paris accords, future stabilization of global mean temperature at the 1.5°C above pre-industrial aspirational target and the "not to be exceeded" 2°C target (still higher than current temperatures), the possibility of increases in extreme temperatures under these scenarios is very real. In this study we seek to understand the nature of extreme temperatures over India in the 1.5°C and 2°C worlds in comparison to the current climate. We make use of model output contributed under the Half a degree Additional warming, Prognosis and Projected Impacts project (HAPPI; Mitchell et al., 2017). The HAPPI database contains output from many atmospheric GCMs with multiple simulations ( 100 each) of historical (2005-2015), 1.5°C warmer decade, and 2°C warmer decade. The large number of ensembles provides an opportunity to study the extremes in temperature that occur over India and how they may change. In order to provide insights into the future comparable against current operational practices, we make use of definitions of "hot days", "heat waves", and "severe heat waves" used by the India Meteorological Department (IMD). We compare modelled data (and bias corrected model output where available) against observed daily temperatures from the IMD gridded (1°x1°) dataset available for 1951-2015 as also circulation features that lead to such events by comparing against reanalysis products. We also investigate the timing of such events in the future scenarios. Preliminary findings indicate that future heat waves, and severe heat waves are expected to become more frequent and arrive earlier in some regions. References Basha, G., et al., (2017), Nature Scientific Reports, 7, 2987. Mitchell, D., et al., (2017), HAPPI:,Geosci. Model Dev., 10, 571-583. Wehner, M. F., et al.,: (2016), Bull. Amer. Met. Soc., 97, S81-S86.
NASA Astrophysics Data System (ADS)
Kim, Sun Ho; Hwang, Yong Seok; Jeong, Seung Ho; Wang, Son Jong; Kwak, Jong Gu
2017-10-01
An efficient current drive scheme in central or off-axis region is required for the steady state operation of tokamak fusion reactors. The current drive by using the fast wave in frequency range higher than two times lower hybrid resonance (w>2wlh) could be such a scheme in high density, high temperature reactor-grade tokamak plasmas. First, it has relatively higher parallel electric field to the magnetic field favorable to the current generation, compared to fast waves in other frequency range. Second, it can deeply penetrate into high density plasmas compared to the slow wave in the same frequency range. Third, parasitic coupling to the slow wave can contribute also to the current drive avoiding parametric instability, thermal mode conversion and ion heating occured in the frequency range w<2wlh. In this study, the propagation boundary, accessibility, and the energy flow of the fast wave are given via cold dispersion relation and group velocity. The power absorption and current drive efficiency are discussed qualitatively through the hot dispersion relation and the polarization. Finally, those characteristics are confirmed with ray tracing code GENRAY for the KSTAR plasmas.
Transport of pollutants and sediment in the area of the Wave Hub (Celtic Sea)
NASA Astrophysics Data System (ADS)
Shapiro, Georgy; Huntley, David
2010-05-01
Ocean waves are a sustainable source of alternative energy that, if properly developed, will provide a quarter of current electricity demand and contribute to lowering the UK's reliance on fossil fuels. The UK government has given planning approval for a pilot power plant called the Wave Hub located in the eastern Celtic Sea off the Cornish north coast. The impact of a small number of devices on the physical environment is expected to be subtle outside the exclusion zone. However, such pilot projects are considered as the launching pad in the UK's ambitious programme to create a new wave energy industry. Large scale off-shore industrial activity can interact with the physical environment of the shelf sea in a two-fold manner: (i) the wave farm is affected by the waves, currents, variation in temperature and movements of sediment, and (ii) it can impact on the marine environment via a number of ways including release of dissolved and suspended matter during construction, operational and decommission stages of the project. These changes in the physical environment can then be translated into changes of the ecosystem and corresponding human activities. The Celtic Sea has a highly variable and complex thermal structure. In the spring and summer the water column becomes stratified due to solar heating of the surface layer, particularly in the areas of greater depth and/or low currents, where the turbulence is insufficient to mix the entire water column. Fronts form at the junctions of stratified and mixed water columns and these fronts generate currents which flow along the fronts. These frontal currents are subject to baroclinic instability and generate a whole set of mesoscale (i.e. comparable with the baroclinic Rossby radius) features such as eddies, filaments and mushroom currents, which are clearly seen on satellite images. Ecosystems are particularly concentrated in the vicinity of fronts so changes in frontal strength or location can have significant biological consequences. This paper presents some preliminary modelling results of a baseline study focussed on hind-cast and now-cast simulation of the 3D structure of temperature, salinity and current velocity in the area immediately adjacent to the location of the Wave Hub. Of the range of available 3D numerical models for shelf sea hydrodynamics, we have selected the Proudman Oceanographic Laboratory Coastal Modelling System (POLCOMS). The POLCOMS has successfully been used in a number of coastal/shelf sea regions to simulate circulation of coastal waters. Modelling is carried out in the region of approximately 200x 200 km with the variable vertical resolution typically less than 2 m. Such parameters allow resololution of the formation of coastal density fronts both within and outside the wave shadow zone, expected to be of the order of tens of kilometres. The meteorological parameters are obtained from the publicly available NCEP re-analyses data base. These parameters include components of the wind velocity and the surface heat fluxes, air pressure at sea level; temperature and humidity in the low troposphere; precipitation and cloudiness. In this study, the transport of pollution is simulated by a number of passive drifters located at a certain depth at a number of locations including the central point of the Wave Hub. Sediment transport is modelled using the Engelund-Hansen algorithm taking the current velocities produced by the POLCOMS as an input parameter. The Celtic sea is a tidally dominated region, and the modelling is run both in full-forcing and in tide-only modes in order to assess effects of density fronts on the residual (tidally averaged) circulation pattern. The results show that the pollution pathways are very sensitive to the formation of temperature fronts. In some cases the passive traces move in nearly opposite directions when the effect of temperature fronts is disregarded. Sediment transport is highly non-uniform spatially with some four areas along the Cornish coast being particularly affected. Sediment transport is also sensitive to the neap-spring phase of the tidal cycle. Residual currents caused by the non-linear tidal stream rectification are comparable or slower (depending on location) than the density driven currents caused by formation of temperature fronts. Location of the Wave Hub is particularly prone to strong transport of suspended particulate matter subject to availability of sediment on the seabed. These preliminary results suggest that the region of the Celtic Sea where the proposed Wave Hub is sited is an excellent location for assessing potential impacts of wave energy extraction. The authors wish to thank D. L. Aleynik for his help in setting up the POLCOMS model and the PRIMaRE project for providing computing facilities.
Classical Heat-Flux Measurements in Coronal Plasmas from Collective Thomson-Scattering Spectra
NASA Astrophysics Data System (ADS)
Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.
2016-10-01
Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude was used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer-Härm flux (qSH = - κ∇Te ) and are in good agreement with the values of the heat flux measured from the scattering-feature asymmetries. Additional experiments probed plasma waves perpendicular to the temperature gradient. The data show small effects resulting from heat flux compared to probing waves along the temperature gradient. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Collisionless slow shocks in magnetotail reconnection
NASA Astrophysics Data System (ADS)
Cremer, Michael; Scholer, Manfred
The kinetic structure of collisionless slow shocks in the magnetotail is studied by solving the Riemann problem of the collapse of a current sheet with a normal magnetic field component using 2-D hybrid simulations. The collapse results in a current layer with a hot isotropic distribution and backstreaming ions in a boundary layer. The lobe plasma outside and within the boundary layer exhibits a large perpendicular to parallel temperature anisotropy. Waves in both regions propagate parallel to the magnetic field. In a second experiment a spatially limited high density beam is injected into a low beta background plasma and the subsequent wave excitation is studied. A model for slow shocks bounding the reconnection layer in the magnetotail is proposed where backstreaming ions first excite obliquely propagating waves by the electromagnetic ion/ion cyclotron instability, which lead to perpendicular heating. The T⊥/T∥ temperature anisotropy subsequently excites parallel propagating Alfvén ion cyclotron waves, which are convected into the slow shock and are refracted in the downstream region.
Definition of temperature thresholds: the example of the French heat wave warning system.
Pascal, Mathilde; Wagner, Vérène; Le Tertre, Alain; Laaidi, Karine; Honoré, Cyrille; Bénichou, Françoise; Beaudeau, Pascal
2013-01-01
Heat-related deaths should be somewhat preventable. In France, some prevention measures are activated when minimum and maximum temperatures averaged over three days reach city-specific thresholds. The current thresholds were computed based on a descriptive analysis of past heat waves and on local expert judgement. We tested whether a different method would confirm these thresholds. The study was set in the six cities of Paris, Lyon, Marseille, Nantes, Strasbourg and Limoges between 1973 and 2003. For each city, we estimated the excess in mortality associated with different temperature thresholds, using a generalised additive model, controlling for long-time trends, seasons and days of the week. These models were used to compute the mortality predicted by different percentiles of temperatures. The thresholds were chosen as the percentiles associated with a significant excess mortality. In all cities, there was a good correlation between current thresholds and the thresholds derived from the models, with 0°C to 3°C differences for averaged maximum temperatures. Both set of thresholds were able to anticipate the main periods of excess mortality during the summers of 1973 to 2003. A simple method relying on descriptive analysis and expert judgement is sufficient to define protective temperature thresholds and to prevent heat wave mortality. As temperatures are increasing along with the climate change and adaptation is ongoing, more research is required to understand if and when thresholds should be modified.
Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, A. P.; Percy, B.; Marshall, A. R. J.
2015-05-18
Short-wave infrared barriode detectors were grown by molecular beam epitaxy. An absorption layer composition of In{sub 0.28}Ga{sub 0.72}As{sub 0.25}Sb{sub 0.75} allowed for lattice matching to GaSb and cut-off wavelengths of 2.9 μm at 250 K and 3.0 μm at room temperature. Arrhenius plots of the dark current density showed diffusion limited dark currents approaching those expected for optimized HgCdTe-based detectors. Specific detectivity figures of around 7×10{sup 10} Jones and 1×10{sup 10} Jones were calculated, for 240 K and room temperature, respectively. Significantly, these devices could support focal plane arrays working at higher operating temperatures.
Dynamic generation of spin-wave currents in hybrid structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyapilin, I. I.; Okorokov, M. S., E-mail: Okorokovmike@gmail.com
2016-11-15
Spin transport through the interface in a semiconductor/ferromagnetic insulator hybrid structure is studied by the nonequilibrium statistical operator method under conditions of the spin Seebeck effect. The effective parameter approach in which each examined subsystem (conduction electrons, magnons, phonons) is characterized by its specific effective temperature is considered. The effect of the resonant (electric dipole) excitation of the spin electronic subsystem of conduction electrons on spin-wave current excitation in a ferromagnetic insulator is considered. The macroscopic equations describing the spin-wave current caused by both resonant excitation of the spin system of conduction electrons and the presence of a nonuniform temperaturemore » field in the ferromagnetic insulator are derived taking into account both the resonance-diffusion propagation of magnons and their relaxation processes. It is shown that spin-wave current excitation is also of resonant nature under the given conditions.« less
Future heat waves due to climate change threaten the survival of Posidonia oceanica seedlings.
Guerrero-Meseguer, Laura; Marín, Arnaldo; Sanz-Lázaro, Carlos
2017-11-01
Extreme weather events are major drivers of ecological change, and their occurrence is likely to increase due to climate change. The transient increases in atmospheric temperatures are leading to a greater occurrence of heat waves, extreme events that can produce a substantial warming of water, especially in enclosed basins such as the Mediterranean Sea. Here, we tested the effects of current and predicted heat waves on the early stages of development of the seagrass Posidonia oceanica. Temperatures above 27 °C limited the growth of the plant by inhibiting its photosynthetic system. It suffered a reduction in leaf growth and faster leaf senescence, and in some cases mortality. This study demonstrates that the greater frequency of heat waves, along with anticipated temperature rises in coming decades, are expected to negatively affect the germination of P. oceanica seedlings. Copyright © 2017 Elsevier Ltd. All rights reserved.
46 CFR 134.170 - Operating manual.
Code of Federal Regulations, 2010 CFR
2010-10-01
...; (iii) Wave height; (iv) Wave period; (v) Wind; (vi) Current; (vii) Temperatures; and (viii) Other environmental factors. (4) The heaviest loads allowable on deck. (5) Information on the use of any special cross... (vii) Access to different compartments and decks. (12) A list of shutdown locations for emergencies and...
Impact of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.
2007-01-01
Effect of the ring current ions in the real part of electromagnetic ion Cyclotron wave dispersion relation is studied on global scale. Recent Cluster observations by Engebretson et al. showed that although the temperature anisotropy of is energetic (> 10 keV) ring current protons was high during the entire 22 November 2003 perigee pass, electromagnetic ion cyclotron waves were observed only in conjunction with intensification of the ion fluxes below 1 keV by over an order of magnitude. To study the effect of the ring current ions on the wave dispersive properties and the corresponding global wave redistribution, we use a self-consistent model of interacting ring current and electromagnetic ion cyclotron waves, and simulate the May 1998 storm. The main findings of our simulation can be summarized as follows: First, the plasma density enhancement in the night MLT sector during the main and recovery storm phases is mostly caused by injection of suprathermal plasma sheet H + (approximately < 1 keV), which dominate the thermal plasma density. Second, during the recovery storm phases, the ring current modification of the wave dispersion relation leads to a qualitative change of the wave patterns in the postmidnight-dawn sector for L > 4.75. This "new" wave activity is well organized by outward edges of dense suprathermal ring current spots, and the waves are not observed if the ring current ions are not included in the real part of dispersion relation. Third, the most intense wave-induced ring current precipitation is located in the night MLT sector and caused by modification of the wave dispersion relation. The strongest precipitating fluxes of about 8 X 10(exp 6)/ (cm(exp 2) - s X st) are found near L=5.75, MLT=2 during the early recovery phase on 4 May. Finally, the nightside precipitation is more intense than the dayside fluxes, even if there are less intense waves, because the convection field moves ring current ions into the loss cone on the nightside, but drives them out of the loss cone on the dayside. So convection and wave scattering reinforce each other in the nightside, but interfere in the dayside sector.
Intraseasonal sea surface warming in the western Indian Ocean by oceanic equatorial Rossby waves
NASA Astrophysics Data System (ADS)
Rydbeck, Adam V.; Jensen, Tommy G.; Nyadjro, Ebenezer S.
2017-05-01
A novel process is identified whereby equatorial Rossby (ER) waves maintain warm sea surface temperature (SST) anomalies against cooling by processes related to atmospheric convection in the western Indian Ocean. As downwelling ER waves enter the western Indian Ocean, SST anomalies of +0.15°C develop near 60°E. These SST anomalies are hypothesized to stimulate convective onset of the Madden-Julian Oscillation. The upper ocean warming that manifests in response to downwelling ER waves is examined in a mixed layer heat budget using observational and reanalysis products, respectively. In the heat budget, horizontal advection is the leading contributor to warming, in part due to an equatorial westward jet of 80 cm s-1 associated with downwelling ER waves. When anomalous currents associated with ER waves are removed in the budget, the warm intraseasonal temperature anomaly in the western Indian Ocean is eliminated in observations and reduced by 55% in reanalysis.
High-Temperature Surface-Acoustic-Wave Transducer
NASA Technical Reports Server (NTRS)
Zhao, Xiaoliang; Tittmann, Bernhard R.
2010-01-01
Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.
Sun, Xiaoming; Sun, Qiao; Yang, Minjuan; Zhou, Xianfeng; Li, Xiaopan; Yu, Aiqing; Geng, Fuhai; Guo, Yuming
2014-10-02
In July 2013, an extended heat episode with extreme high temperature covered Pudong New Area, the largest district in Shanghai. The current study estimates the impacts of temperature and heat waves on emergency department visits (EDV) and emergency ambulance dispatches (EAD) using time-series approaches in Pudong, from 2011 to 2013. An over-dispersed Poisson generalized additive model was used to examine the association between temperature and EDV and EAD. Heat wave effects with different heat wave definitions considering both the intensity and durations were also estimated. Immediate effects of temperature on EDV and EAD were detected, after controlling for trends of time and day of week. The exposure-response relationships showed J-shaped curves with higher threshold temperature of EDV than that of EAD visually. When estimating risk changes on heat days compared with non-heat days using different percentiles of daily mean temperature in definition, EAD showed significant increases while non-significant or even negative associations were found for EDV. Heat wave with intensity above the 90th percentile had 2.62% (95% CI: 1.78%, 3.46%) and 0.95% (95% CI: 0.22%, 1.69%) increases in EDV for a duration of at least 2 days and 3 days respectively. The relative increase of EAD were 4.85% (95% CI: 1.42%, 8.39%) and 3.94% (95% CI: 0.88%, 7.10%). Varied effects of temperature and heat waves on emergency department visits and emergency ambulance dispatches were investigated. This wider view of the health effect of temperature indicated that interventions for both public health education and health services management should be considered in the study region.
Vertical field-effect transistor based on wave-function extension
NASA Astrophysics Data System (ADS)
Sciambi, A.; Pelliccione, M.; Lilly, M. P.; Bank, S. R.; Gossard, A. C.; Pfeiffer, L. N.; West, K. W.; Goldhaber-Gordon, D.
2011-08-01
We demonstrate a mechanism for a dual layer, vertical field-effect transistor, in which nearly depleting one layer will extend its wave function to overlap the other layer and increase tunnel current. We characterize this effect in a specially designed GaAs/AlGaAs device, observing a tunnel current increase of two orders of magnitude at cryogenic temperatures, and we suggest extrapolations of the design to other material systems such as graphene.
NASA Astrophysics Data System (ADS)
Papadopoulos, K.; Eliasson, B.; Shao, X.; Labenski, J.; Chang, C.
2011-12-01
A new concept of generating ionospheric currents in the ULF/ELF range with modulated HF heating using ground-based transmitters even in the absence of electrojet currents is presented. The new concept relies on using HF heating of the F-region to modulate the electron temperature and has been given the name Ionospheric Current Drive (ICD). In ICD, the pressure gradient associated with anomalous or collisional F-region electron heating drives a local diamagnetic current that acts as an antenna to inject mainly Magneto-Sonic (MS) waves in the ionospheric plasma. The electric field associated with the MS wave drives Hall currents when it reaches the E region of the ionosphere. The Hall currents act as a secondary antenna that inject waves in the Earth-Ionosphere Waveguide (EIW) below and shear Alfven waves or EMIC waves upwards towards the conjugate regions. The paper presents: (i) Theoretical results using a cold Hall MHD model to study ICD and the generation of ULF/ELF waves by the modulation of the electron pressure at the F2-region with an intense HF electromagnetic wave. The model solves equations governing the dynamics of the shear Alfven and magnetosonic modes, of the damped modes in the diffusive Pedersen layer, and of the weakly damped helicon wave mode in the Hall-dominated E-region. The model incorporates realistic profile of the ionospheric conductivities and magnetic field configuration. We use the model to simulate propagation and dynamics of the low-frequency waves and their injection into the magnetosphere from the HAARP and Arecibo ionospheric heaters. (ii) Proof of principle experiments using the HAARP ionospheric heater in conjunction with measurements by the DEMETER satellite This work is supported by ONR MURI grant and DARPA BRIOCHE Program
NASA Astrophysics Data System (ADS)
Centurioni, Luca
2017-04-01
The Global Drifter Program is the principal component of the Global Surface Drifting Buoy Array, a branch of NOAA's Global Ocean Observing System and a scientific project of the Data Buoy Cooperation Panel (DBCP). The DBCP is an international program coordinating the use of autonomous data buoys to observe atmospheric and oceanographic conditions over ocean areas where few other measurements are taken. The Global Drifter Program maintains an array of over 1,250 Lagrangian drifters, reporting in near real-time and designed measure 15 m depth Lagrangian currents, sea surface temperature (SST) and sea level atmospheric pressure (SLP), among others, to fulfill the needs to observe the air-sea interface at temporal and spatial scales adequate to support short to medium-range weather forecasting, ocean state estimates and climate science. This overview talk will discuss the main achievements of the program, the main impacts for satellite SST calibration and validation, for numerical weather prediction, and it will review the main scientific findings based on the use of Lagrangian currents. Finally, we will present new developments in Lagrangian drifter technology, which include special drifters designed to measure sea surface salinity, wind and directional wave spectra. New opportunities for expanding the scope of the Global Drifter Program will be discussed.
Physiological breakdown of Jeffrey six constant nanofluid flow in an endoscope with nonuniform wall
NASA Astrophysics Data System (ADS)
Nadeem, S.; Shaheen, A.; Hussain, S.
2015-12-01
This paper analyse the endoscopic effects of peristaltic nanofluid flow of Jeffrey six-constant fluid model in the presence of magnetohydrodynamics flow. The current problem is modeled in the cylindrical coordinate system and exact solutions are managed (where possible) under low Reynolds number and long wave length approximation. The influence of emerging parameters on temperature and velocity profile are discussed graphically. The velocity equation is solved analytically by utilizing the homotopy perturbation technique strongly, while the exact solutions are computed from temperature equation. The obtained expressions for velocity , concentration and temperature is sketched during graphs and the collision of assorted parameters is evaluate for transform peristaltic waves. The solution depend on thermophoresis number Nt, local nanoparticles Grashof number Gr, and Brownian motion number Nb. The obtained expressions for the velocity, temperature, and nanoparticles concentration profiles are plotted and the impact of various physical parameters are investigated for different peristaltic waves.
Storlazzi, C.D.; McManus, M.A.; Figurski, J.D.
2003-01-01
Thermistor chains and acoustic Doppler current profilers were deployed at the northern and southern ends of Monterey Bay to examine the thermal and hydrodynamic structure of the inner (h ??? 20 m) shelf of central California. These instruments sampled temperature and current velocity at 2-min intervals over a 13-month period from June 2000 to July 2001. Time series of these data, in conjunction with SST imagery and CODAR sea surface current maps, helped to establish the basic hydrography for Monterey Bay. Analysis of time series data revealed that depth integrated flow at both sites was shore parallel (northwest-southeast) with net flows out of the Bay (northwest). The current and temperature records were dominated by semi-diurnal and diurnal tidal signals that lagged the surface tides by 3 h on average. Over the course of an internal tidal cycle these flows were asymmetric, with the flow during the flooding internal tide to the southeast typically lasting only one-third as long as the flow to the northwest during the ebbing internal tide. The transitions from ebb to flood were rapid and bore-like in nature; they were also marked by rapid increases in temperature and high shear. During the spring and summer, when thermal stratification was high, we observed almost 2000 high-frequency (Tp ??? 4-20 min) internal waves in packets of 8-10 following the heads of these bore-like features. Previous studies along the West Coast of the US have concluded that warm water bores and high-frequency internal waves may play a significant role in the onshore transport of larvae.
Parametric Instabilities During High Power Helicon Wave Injection on DIII-D
NASA Astrophysics Data System (ADS)
Porkolab, M.; Pinsker, R. I.
2017-10-01
High power helicon (whistler) waves at a frequency of 0.47 GHz are being considered for efficient off-axis current generation in high performance DIII-D plasmas and in K-Star [3]. The need for deploying helicon waves for current profile control has been noted in previous publications since penetration to the core of reactor grade plasmas is easier than with lower hybrid slow waves (LHCD) which suffer from accessibility limitations and strong electron Landau absorption in fusion grade high temperature plasmas. In this work we show that under typical experimental conditions in present day tokamaks with 1 MW of RF power coupled per antenna, the associated perpendicular electric fields of the order of 40 kV/m can drive strong parametric decay instabilities near the lower hybrid layer. The EXB and polarization drift velocities which are the dominant driver of the PDI can be comparable to the speed of sound in the outer plasma layers, a key measure of driving PDI instabilities. Here we calculate growth rates and convective thresholds for PDIs, and we find that decay waves into hot ion lower hybrid waves and ion cyclotron quasi modes dominate in the vicinity of the lower hybrid layer, possibly leading to pump depletion. Such instabilities in future reactor grade high temperature plasmas are less likely.
Storlazzi, Curt D.; Presto, M. Katherine; Logan, Joshua B.; Field, Michael E.
2008-01-01
High-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity were made in Hanalei Bay, northern Kaua'i, Hawai'i, during the summer of 2006 to better understand coastal circulation, sediment dynamics, and the potential impact of a river flood in a coral reef-lined embayment during quiescent summer conditions. A series of bottommounted instrument packages were deployed in water depths of 10 m or less to collect long-term, high-resolution measurements of waves, currents, water levels, temperature, salinity, and turbidity. These data were supplemented with a series of profiles through the water column to characterize the vertical and spatial variability in water column properties within the bay. These measurements support the ongoing process studies being conducted as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Pacific Coral Reef Project; the ultimate goal is to better understand the transport mechanisms of sediment, larvae, pollutants, and other particles in coral reef settings. Information regarding the USGS study conducted in Hanalei Bay during the 2005 summer is available in Storlazzi and others (2006), Draut and others (2006) and Carr and others (2006). This report, the last part in a series, describes data acquisition, processing, and analysis for the 2006 summer data set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galechyan, G.A.; Anna, P.R.
One of the main problems in low temperature plasma is control plasma parameters at fixed values of current and gas pressure in the discharge. It is known that an increase in the intensity of sound wave directed along the positive column to values in excess of a definite threshold leads to essential rise of the temperature of electrons. However, no less important is the reduction of electron temperature in the discharge down to the value less than that in plasma in the absence external influence. It is known that to reduce the electron temperature in the plasma of CO{sub 2}more » laser, easily ionizable admixture are usually introduced in the discharge area with the view of increasing the overpopulation. In the present work we shall show that the value of electron temperature can be reduced by varying of sound wave intensity at its lower values. The experiment was performed on an experimental setup consisted of the tube with length 52 cm and diameter 9.8 cm, two electrodes placed at the distance of 27 cm from each other. An electrodynamical radiator of sound wave was fastened to one of tube ends. Fastened to the flange at the opposite end was a microphone for the control of sound wave parameters. The studies were performed in range of pressures from 40 to 180 Torr and discharge currents from 40 to 110 mA. The intensity of sound wave was varied from 74 to 92 dB. The measurement made at the first resonance frequency f = 150 Hz of sound in the discharge tube, at which a quarter of wave length keep within the length of the tube. The measurement of longitudinal electric field voltage in plasma of positive column was conducted with the help of two probes according to the compensation method. Besides, the measurement of gas temperature in the discharge were taken. Two thermocouple sensors were arranged at the distance of 8 cm from the anode, one of them being installed on the discharge tube axis, the second-fixed the tube wall.« less
New materials and techniques for improved mm wave devices
NASA Technical Reports Server (NTRS)
Alterovitz, Samuel A.
1991-01-01
Current research on microwave and mm wave three terminal semiconductor devices is summarized with particular attention given to the development of the pseudomorphic InGaAs modulation-doped field effect transistor (MODFET). Application of the high-indium-concentration MODFET grown on InP in the temperature range of 120-150 K is also described.
A Modified Through-Flow Wave Rotor Cycle with Combustor Bypass Ducts
NASA Technical Reports Server (NTRS)
Paxson Daniel E.; Nalim, M. Razi
1998-01-01
A wave rotor cycle is described which avoids the inherent problem of combustor exhaust gas recirculation (EGR) found in four-port, through-flow wave rotor cycles currently under consideration for topping gas turbine engines. The recirculated hot gas is eliminated by the judicious placement of a bypass duct which transfers gas from one end of the rotor to the other. The resulting cycle, when analyzed numerically, yields an absolute mean rotor temperature 18% below the already impressive value of the conventional four-port cycle (approximately the turbine inlet temperature). The absolute temperature of the gas leading to the combustor is also reduced from the conventional four-port design by 22%. The overall design point pressure ratio of this new bypass cycle is approximately the same as the conventional four-port cycle. This paper will describe the EGR problem and the bypass cycle solution including relevant wave diagrams. Performance estimates of design and off-design operation of a specific wave rotor will be presented. The results were obtained using a one-dimensional numerical simulation and design code.
NASA Technical Reports Server (NTRS)
Unuvar, C.; Fredrick, D.; Anselmi-Tamburini, U.; Manerbino, A.; Guigne, J. Y.; Munir, Z. A.; Shaw, B. D.
2004-01-01
Combustion synthesis (CS) generally involves mixing reactants together (e.g., metal powders) and igniting the mixture. Typically, a reaction wave will pass through the sample. In field activated combustion synthesis (FACS), the addition of an electric field has a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product as well as capillary flow, mass-transport in porous media, and Marangoni flows, which are influenced by gravity. The objective is to understand the role of an electric field in CS reactions under conditions where gravity-related effects are suppressed or altered. The systems being studied are Ti+Al and Ti+3Al. Two different ignition orientations have been used to observe effects of gravity when one of the reactants becomes molten. This consequentially influences the position and concentration of the electric current, which in turn influences the entire process. Experiments have also been performed in microgravity conditions. This process has been named Microgravity Field Activated Combustion Synthesis (MFACS). Effects of gravity have been demonstrated, where the reaction wave temperature and velocity demonstrate considerable differences besides the changes of combustion mechanisms with the different high currents applied. Also the threshold for the formation of a stable reaction wave is increased under zero gravity conditions. Electric current was also utilized with a chemical oven technique, where inserts of aluminum with minute amounts of tungsten and tantalum were used to allow observation of effects of settling of the higher density solid particles in liquid aluminum at the present temperature profile and wave velocity of the reaction.
Current status of Japanese detectors
NASA Astrophysics Data System (ADS)
Tatsumi, Daisuke; Takahashi, Ryutaro; Arai, Koji; Nakagawa, Noriyasu; Agatsuma, Kazuhiro; Yamazaki, Toshitaka; Fukushima, Mitsuhiro; Fujimoto, Masa-Katsu; Takamori, Akiteru; Bertolini, Alessandro; Sannibale, Virginio; DeSalvo, Riccardo; Márka, Szabolcs; Ando, Masaki; Tsubono, Kimio; Akutsu, Tomomi; Yamamoto, Kazuhiro; Ishitsuka, Hideki; Uchiyama, Takashi; Miyoki, Shinji; Ohashi, Masatake; Kuroda, Kazuaki; Awaya, Norichika; Kanda, Nobuyuki; Araya, Akito; Telada, Souichi; Tomaru, Takayuki; Haruyama, Tomiyoshi; Yamamoto, Akira; Sato, Nobuaki; Suzuki, Toshitaka; Shintomi, Takakazu
2007-10-01
The current status of the TAMA and CLIO detectors in Japan is reported in this paper. These two interferometric gravitational wave detectors are being developed for the large cryogenic gravitational wave telescope (LCGT) which is a future plan for detecting gravitational wave signals at least once per year. TAMA300 is being upgraded to improve the sensitivity in a low-frequency region after the last observational experiment in 2004. To reduce the seismic noises, we are installing a new seismic isolation system, called the TAMA seismic attenuation system, for the four test masses. We confirmed stable mass locks of a cavity and improvements of length and angular fluctuations by using two SASs. We are currently optimizing the performance of the third and fourth SASs. We continue TAMA300 operation and R&D studies for the LCGT. The next data taking is planned for the summer of 2007. CLIO is a 100 m baseline length prototype detector for LCGT to investigate interferometer performance in cryogenic condition. The key features of CLIO are that it locates the Kamioka underground site for a low-seismic noise level, and adopts cryogenic Sapphire mirrors for low-thermal noise level. The first operation of the cryogenic interferometer was successfully demonstrated in February 2006. Current sensitivity at room temperature is close to the target sensitivity within a factor of 4. Several observational experiments at room temperature have been done. Once the displacement noise reaches the thermal noise level of room temperature, its improvement by cooling test mass mirrors should be demonstrated.
Presto, M. Katherine; Storlazzi, Curt D.; Logan, Joshua B.; Reiss, Thomas E.; Rosenberger, Kurt J.
2012-01-01
This report presents a summary of fieldwork conducted in Maunalua Bay, O'ahu, Hawaii to address coral-larval dispersal and recruitment from June through September, 2010. The objectives of this study were to understand the temporal and spatial variations in currents, waves, tides, temperature, and salinity in Maunalua Bay during the summer coral-spawning season of Montipora capitata. Short-term vessel surveys and satellite-tracked drifters were deployed to measure currents during the June 2010 spawning event and to supplement the longer-term measurements of currents and water-column properties by fixed, bottom-mounted instruments deployed in Maunalua Bay. These data show that currents at the surface and just below the surface where coral larvae are found are often oriented in opposite directions due primarily to tidal and trade-winds forcing as the primary mechanisms of circulation in the bay. These data extend our understanding of coral-larvae dispersal patterns due to tidal and wind-driven currents and may be applicable to larvae of other Hawaiian corals.
Island wake produced by Antipodes Islands south of New Zealand
1973-12-16
SL4-137-3655 (16 Dec. 1973) --- An island wake produced by the Antipodes Islands in the ocean current south of New Zealand is seen in this photograph taken from the Skylab space station in Earth orbit. A Skylab 4 crewmen took the picture with a hand-held 70mm Hasselblad camera. The bow wave pattern is quite evident and can be used to determine the current speed from the angle of the bow wave if the propagation speed of the surface wave is known. Also, evident is the darker band extending downstream from the island tens of miles. This is the actual wake of the island. The existence of water color differences from within to outside a turbulent island wake may indicate a temperature difference, with cooler water being stirred to the surface in the wake. This temperature difference could be used to drive a thermo-electric type generator to reduce small islands' dependence on imported oil for power generation. Photo credit: NASA
Internal tides in the Northern Gulf of California
NASA Astrophysics Data System (ADS)
Filonov, Anatoliy E.; LavíN, M. F.
2003-05-01
The characteristics of the internal tide in the Northern Gulf of California are described using data from two moored arrays of temperature and current sensors, one for summer and one for winter, located between Angel de la Guarda Island and the mainland. From the summer six-sensor mooring it was found that: (1) the current fluctuations are dominated by the semidiurnal frequency band, while the quarterdiurnal frequency dominated the temperature fluctuations. (2) The baroclinic semidiurnal horizontal current fluctuations are aligned with the gulf axis, and have amplitudes of 10-15 cm s-1; the vertical displacements reached 4 m in this frequency band. (3) The vertical modal structure for the temperature and velocity oscillations was dominated by the first and third modes. (4) The energy of the semidiurnal internal tide is 45% of that of the barotropic tide. (5) Vertical wave number spectra showed slightly asymmetric peaks in the high wave number components, indicating that their downflowing energy is larger than that flowing upward. From the winter two-sensor mooring, it was found that the vertical oscillations were mainly semidiurnal, with root mean square amplitudes of 7 m.
Current drive at plasma densities required for thermonuclear reactors.
Cesario, R; Amicucci, L; Cardinali, A; Castaldo, C; Marinucci, M; Panaccione, L; Santini, F; Tudisco, O; Apicella, M L; Calabrò, G; Cianfarani, C; Frigione, D; Galli, A; Mazzitelli, G; Mazzotta, C; Pericoli, V; Schettini, G; Tuccillo, A A
2010-08-10
Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.
Are Ring Current Ions Lost in Electromagnetic Ion Cyclotron Wave Dispersion Relation?
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.
2006-01-01
Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by taking into account the RC ions in the EMIC wave dispersion relation. The dramatic wave pattern redistribution is observed in the postdusk-predawn MLT sector (night sector) for L greater than 5. We found the intense EMIC waves (about a few nT) there during the main and early recovery phases of the storm. The observed wave generation in this sector is caused by taking into account the EMIC wave dispersion change due to the RC ions. There are no waves at these locations in our model if the RC ions are taken into account in the wave growth rate only, and the wave dispersion relation is only governed by the thermal plasmaspheric model.
Effect of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation
NASA Technical Reports Server (NTRS)
Gamayunov, K. V.; Khazanov, G. V.
2006-01-01
Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by taking into account the RC ions in the EMIC wave dispersion relation. The dramatic wave pattern redistribution is observed in the postdusk-predawn MLT sector (night sector) for L greater than 5. We found the intense EMIC waves (about a few nT) there during the main and early recovery phases of the storm. The observed wave generation in this sector is caused by taking into account the EMIC wave dispersion change due to the RC ions. There are no waves at these locations in our model if the RC ions are taken into account in the wave growth rate only, and the wave dispersion relation is only governed by the thermal plasmaspheric model.
Effect of double layers on magnetosphere-ionosphere coupling
NASA Technical Reports Server (NTRS)
Lysak, Robert L.; Hudson, Mary K.
1987-01-01
The Earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone field line which characterizes Alfven wave propagation to the scale of microscopic processes which occur over a few Debye lengths. These processes interact in a time-dependent fashion since the current carried by the Alfven waves can excite microscopic turbulence which can in turn provide dissipation of the Alfven wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis on consequences for models of microscopic turbulence. A number of models of microscopic turbulence will be introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. In particular, the effects of a double layer electric field which scales with the plasma temperature and Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is found that the double layer model is less diffusive than in the resistive model leading to the possibility of narrow, intense current structures.
Continuous-wave operation of InAsSb/InP quantum - dot lasers near 2 (mu)m at room temperature
NASA Technical Reports Server (NTRS)
Qiu, Yueming; Uhl, David; Keo, Sam
2004-01-01
InAsSb quantum-dot lasers near 2 pm were demonstrated in cw operation at room temperature with a threshold current density of below 1 kA/cm, output power of 3 mW/facet and a differential quantum efficiency of 13%.
Wave and Current Measurements From the Coastal Storms Program (CSP) Buoy 41012 off St. Augustine, FL
NASA Astrophysics Data System (ADS)
Crout, R. L.
2008-05-01
The Coastal Storms Program (CSP) is a NOAA program that involves several different branches within NOAA. Components of the National Ocean Service, the National Weather Service, the National Marine Fisheries Service, and the Office of Oceanic and Atmospheric Research participate in CSP, which is administered by the Coastal Services Center. CSP selects an area where an impact in support of the NOAA Societal Goals can be made. The first area selected was the northeast coast of Florida in 2002. In addition to coastal water level stations and modeling efforts, a 3-meter discuss buoy (WMO 41012) was deployed off the coast of St. Augustine, FL in approximately 38 meters of water. In addition to the normal complement of meteorological sensors, Buoy 41012 contained a sensor to measure directional waves at hourly intervals, a temperature-conductivity sensor to measure near-surface temperature and salinity, and a current profiler to obtain near-surface to near-bottom currents at hourly intervals. These data on the continental shelf provide a view of the oceanography on the inner margin of the Gulf Stream. The data are served over the National Data Buoy Center's web page and over the Global Telecommunications System. The waves and currents during the period from September 2005 through December 2007 are related to coastal storms, hurricanes, tides, and Gulf Stream intrusions. During several late fall and winter periods the waves exceeded 4.5 meters. The on-offshore component of the currents appears to be tidally driven, however, predominant on- and off-shore flows are observed in response to storms and Gulf Stream intrusions. The primary component of the flow is aligned alongshore and although the tidal influence is obvious, extended periods of northward and southward currents are observed. Currents approaching 2 knots are observed at various times during the period that the buoy has been active. The high currents appear to be in response to strong wind events (atmospheric frontal passages) and Gulf Stream intrusions.
Modelling the fate of the Tijuana River discharge plume
NASA Astrophysics Data System (ADS)
van Ormondt, M.; Terrill, E.; Hibler, L. F.; van Dongeren, A. R.
2010-12-01
After rainfall events, the Tijuana River discharges excess runoff into the ocean in a highly turbid plume. The runoff waters contain large suspended solids concentrations, as well as high levels of toxic contaminants, bacteria, and hepatitis and enteroviruses. Public health hazards posed by the effluent often result in beach closures for several kilometers northward along the U.S. shoreline. A Delft3D model has been set up to predict the fate of the Tijuana River plume. The model takes into account the effects of tides, wind, waves, salinity, and temperature stratification. Heat exchange with the atmosphere is also included. The model consists of a relatively coarse outer domain and a high-resolution surf zone domain that are coupled with Domain Decomposition. The offshore boundary conditions are obtained from the larger NCOM SoCal model (operated by the US Navy) that spans the entire Southern California Bight. A number of discharge events are investigated, in which model results are validated against a wide range of field measurements in the San Diego Bight. These include HF Radar surface currents, REMUS tracks, drifter deployments, satellite imagery, as well as current and temperature profile measurements at a number of locations. The model is able to reproduce the observed current and temperature patterns reasonably well. Under calm conditions, the model results suggest that the hydrodynamics in the San Diego Bight are largely governed by internal waves. During rainfall events, which are typically accompanied by strong winds and high waves, wind and wave driven currents become dominant. An analysis will be made of what conditions determine the trapping and mixing of the plume inside the surfzone and/or the propagation of the plume through the breakers and onto the coastal shelf. The model is now also running in operational mode. Three day forecasts are made every 24 hours. This study was funded by the Office of Naval Research.
Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiano, P. A.; Johnson, J. R.; Chaston, C. C.
In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field.more » It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.« less
Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines
Damiano, P. A.; Johnson, J. R.; Chaston, C. C.
2016-11-10
In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field.more » It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.« less
Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser
NASA Astrophysics Data System (ADS)
Saito, Hideaki; Nishi, Kenichi; Ogura, Ichiro; Sugou, Shigeo; Sugimoto, Yoshimasa
1996-11-01
Self-assembled growth of quantum dots by molecular-beam epitaxy is used to form the active region of a vertical-cavity surface-emitting laser (VCSEL). Ten layers of InGaAs quantum dots are stacked in order to increase the gain. This quantum-dot VCSEL has a continuous-wave operating current of 32 mA at room temperature. Emission spectra at various current injections demonstrate that the lasing action is associated with a higher-order transition in the quantum dots.
Urban Heat Wave Hazard Assessment
NASA Astrophysics Data System (ADS)
Quattrochi, D. A.; Jedlovec, G.; Crane, D. L.; Meyer, P. J.; LaFontaine, F.
2016-12-01
Heat waves are one of the largest causes of environmentally-related deaths globally and are likely to become more numerous as a result of climate change. The intensification of heat waves by the urban heat island effect and elevated humidity, combined with urban demographics, are key elements leading to these disasters. Better warning of the potential hazards may help lower risks associated with heat waves. Moderate resolution thermal data from NASA satellites is used to derive high spatial resolution estimates of apparent temperature (heat index) over urban regions. These data, combined with demographic data, are used to produce a daily heat hazard/risk map for selected cities. MODIS data are used to derive daily composite maximum and minimum land surface temperature (LST) fields to represent the amplitude of the diurnal temperature cycle and identify extreme heat days. Compositing routines are used to generate representative daily maximum and minimum LSTs for the urban environment. The limited effect of relative humidity on the apparent temperature (typically 10-15%) allows for the use of modeled moisture fields to convert LST to apparent temperature without loss of spatial variability. The daily max/min apparent temperature fields are used to identify abnormally extreme heat days relative to climatological values in order to produce a heat wave hazard map. Reference to climatological values normalizes the hazard for a particular region (e.g., the impact of an extreme heat day). A heat wave hazard map has been produced for several case study periods and then computed on a quasi-operational basis during the summer of 2016 for Atlanta, GA, Chicago, IL, St. Louis, MO, and Huntsville, AL. A hazard does not become a risk until someone or something is exposed to that hazard at a level that might do harm. Demographic information is used to assess the urban risk associated with the heat wave hazard. Collectively, the heat wave hazard product can warn people in urban regions who do not have the means to provide air conditioning or take other means to stay cool. The heat wave risk product is conveyed to users via a website that describes current and historical heat wave information and is updated in real time as needed. These risk maps can be used for better monitoring of public health risk from extreme heat events in urban areas.
An operational coupled wave-current forecasting system for the northern Adriatic Sea
NASA Astrophysics Data System (ADS)
Russo, A.; Coluccelli, A.; Deserti, M.; Valentini, A.; Benetazzo, A.; Carniel, S.
2012-04-01
Since 2005 an Adriatic implementation of the Regional Ocean Modeling System (AdriaROMS) is being producing operational short-term forecasts (72 hours) of some hydrodynamic properties (currents, sea level, temperature, salinity) of the Adriatic Sea at 2 km horizontal resolution and 20 vertical s-levels, on a daily basis. The main objective of AdriaROMS, which is managed by the Hydro-Meteo-Clima Service (SIMC) of ARPA Emilia Romagna, is to provide useful products for civil protection purposes (sea level forecasts, outputs to run other forecasting models as for saline wedge, oil spills and coastal erosion). In order to improve the forecasts in the coastal area, where most of the attention is focused, a higher resolution model (0.5 km, again with 20 vertical s-levels) has been implemented for the northern Adriatic domain. The new implementation is based on the Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System (COAWST)and adopts ROMS for the hydrodynamic and Simulating WAve Nearshore (SWAN) for the wave module, respectively. Air-sea fluxes are computed using forecasts produced by the COSMO-I7 operational atmospheric model. At the open boundary of the high resolution model, temperature, salinity and velocity fields are provided by AdriaROMS while the wave characteristics are provided by an operational SWAN implementation (also managed by SIMC). Main tidal components are imposed as well, derived from a tidal model. Work in progress is oriented now on the validation of model results by means of extensive comparisons with acquired hydrographic measurements (such as CTDs or XBTs from sea-truth campaigns), currents and waves acquired at observational sites (including those of SIMC, CNR-ISMAR network and its oceanographic tower, located off the Venice littoral) and satellite-derived wave-heights data. Preliminary results on the forecast waves denote how, especially during intense storms, the effect of coupling can lead to significant variations in the wave heights. Part of the activity has been funded by the EU FP VII program (project "MICORE", contract n. 202798) and by the Regione Veneto regional law 15/2007 (Progetto "MARINA").
NASA Astrophysics Data System (ADS)
Snelling, J. M.; Johnson, J.; Engebretson, M. J.; Kim, E. H.; Tian, S.
2017-12-01
While it is currently well accepted that the free energy for growth of electromagnetic ion cyclotron (EMIC) waves in Earth's magnetosphere comes from unstable configurations of hot anisotropic ions that are injected into the ring current, several questions remain about what controls the instability. A recent study of the occurrence of EMIC waves relative to the plasmapause in Vallen Probes Data showed that plasma density gradients or enhancements were not the dominant factor in determining the site of EMIC wave generation [Tetrick et al. 2017]. However, the factors that control wave growth on each of the branches are not fully understood. For example, in some cases, the measured anisotropy is not adequate to explain local instability, and the relative importance of the density and composition of a cold plasma population is still uncertain. Several intervals of EMIC wave activity are analyzed to determine the role of a cold population in driving instability on each of the wave branches. This study utilizes the WHAMP (Waves in Homogeneous Anisotropic Magnetized Plasma) stability code with plasma distributions optimized to fit the observed distributions including temperature anisotropy, loss cone, and ring beam populations.
Ekino, T; Gabovich, A M; Suan Li, Mai; Szymczak, H; Voitenko, A I
2017-12-20
Quasiparticle tunnel conductance-voltage characteristics (CVCs), [Formula: see text], were calculated for break junctions (BJs) made up of layered d-wave superconductors partially gapped by charge-density waves (CDWs). The current is assumed to flow in the ab-plane of electrodes. The influence of CDWs is analyzed by comparing the resulting CVCs with CVCs calculated for BJs made up of pure d-wave superconductors with relevant parameters. The main CDW-effects were found to be the appearance of new CVC peculiarities and the loss of CVC symmetry with respect to the V-sign. Tunnel directionality was shown to be one of the key factors in the formation of [Formula: see text] dependences. In particular, the orientation of electrodes with respect to the current channel becomes very important. As a result, [Formula: see text] can acquire a large variety of forms similar to those for tunnel junctions between superconductors with s-wave, d-wave, and mixed symmetry of their order parameters. The diversity of peculiarities is especially striking at finite temperatures. In the case of BJs made up of pure d-wave superconductors, the resulting CVC can include a two-peak gap-driven structure. The results were compared with the experimental BJ data for a number of high-T c oxides. It was shown that the large variety of the observed current-voltage characteristics can be interpreted in the framework of our approach. Thus, quasiparticle tunnel currents in the ab-plane can be used as an additional mean to detect CDWs competing with superconductivity in cuprates or other layered superconductors.
NASA Astrophysics Data System (ADS)
Ekino, T.; Gabovich, A. M.; Li, Mai Suan; Szymczak, H.; Voitenko, A. I.
2017-12-01
Quasiparticle tunnel conductance-voltage characteristics (CVCs), G(V) , were calculated for break junctions (BJs) made up of layered d-wave superconductors partially gapped by charge-density waves (CDWs). The current is assumed to flow in the ab-plane of electrodes. The influence of CDWs is analyzed by comparing the resulting CVCs with CVCs calculated for BJs made up of pure d-wave superconductors with relevant parameters. The main CDW-effects were found to be the appearance of new CVC peculiarities and the loss of CVC symmetry with respect to the V-sign. Tunnel directionality was shown to be one of the key factors in the formation of G(V) dependences. In particular, the orientation of electrodes with respect to the current channel becomes very important. As a result, G(V) can acquire a large variety of forms similar to those for tunnel junctions between superconductors with s-wave, d-wave, and mixed symmetry of their order parameters. The diversity of peculiarities is especially striking at finite temperatures. In the case of BJs made up of pure d-wave superconductors, the resulting CVC can include a two-peak gap-driven structure. The results were compared with the experimental BJ data for a number of high-T c oxides. It was shown that the large variety of the observed current-voltage characteristics can be interpreted in the framework of our approach. Thus, quasiparticle tunnel currents in the ab-plane can be used as an additional mean to detect CDWs competing with superconductivity in cuprates or other layered superconductors.
Weak links in high critical temperature superconductors
NASA Astrophysics Data System (ADS)
Tafuri, Francesco; Kirtley, John R.
2005-11-01
The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-TC superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence of d-wave pairing for different types of barriers.
Cronin, Katherine; van Ormondt, Maarten; Storlazzi, Curt D.; Presto, Katherine; Tonnon, Pieter K.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.
2011-01-01
Current regulations in California prohibit the disposal of more than 20% fine-grained sediment in the coastal zone; this threshold is currently being investigated to determine if this environmental regulation can be improved upon. A field monitoring and numerical modeling experiment took place late 2 009 to determine the fate of fine-grained dredge disposal material from Santa Cruz Harbor, California, U.S.A. A multi-nested, hydrodynamic-sediment transport modeling approach was used to simulate the direction and dispersal of the dredge plume. Result s show that the direction and dispersal of the plume was influenced by the wave climate, a large proportion of which moved in a easterly direction during wave events. Therefore it is vitally important to accurately simulate the tides, waves, currents, temperature and salinity when modeling the dispersal of the fine-grained dredge plume.
Investigation of Tropical Dynamics and Transport with UARS Data
NASA Technical Reports Server (NTRS)
Jackman, Charles (Technical Monitor); Dunkerton, Timothy J.; Mote, Philip W.
2003-01-01
Our research focused on Kelvin waves in the tropical lower stratosphere, and resulted in three papers published or submitted to the Journal of Geophysical Research. The first of these, published in 2002, used temperature data from the Microwave Limb Sounder to examine the amplitude, frequency, phase, and spatial structure of leading modes of Kelvin waves. The second and third, submitted late in 2002 and currently in revision, described the response to Kelvin waves of various trace constituents measured by MLS and CLAES (methane, nitrous oxide, CFC-12, and ozone in the second paper; water vapor in the third paper). Water vapor is a special case because the vertical structure induced by Kelvin waves is convolved with water vapor's seasonally varying vertical profile induced by seasonal variations in temperature at the tropical tropopause. Forward modeling indicated that the vertical resolution of MLS was indeed adequate to capture this complicated structure, yet it was not visible in the MLS data, though the Kelvin wave signature was clear on certain UARS levels. The effects of Kelvin waves on the tropical tropopause and on stratosphere- troposphere exchange cannot be quantified from UARS data because of poor vertical resolution and sensitivity in that region. It is recommended that this analysis be repeated using data from the new MLS and HIRDLS instruments aboard Aura, and that priority be given to fine-scale retrievals of temperature, water vapor, and ozone in the tropical tropopause region.
Forward voltage short-pulse technique for measuring high power laser array junction temperature
NASA Technical Reports Server (NTRS)
Meadows, Byron L. (Inventor); Amzajerdian, Frazin (Inventor); Barnes, Bruce W. (Inventor); Baker, Nathaniel R. (Inventor)
2012-01-01
The present invention relates to a method of measuring the temperature of the P-N junction within the light-emitting region of a quasi-continuous-wave or pulsed semiconductor laser diode device. A series of relatively short and low current monitor pulses are applied to the laser diode in the period between the main drive current pulses necessary to cause the semiconductor to lase. At the sufficiently low current level of the monitor pulses, the laser diode device does not lase and behaves similar to an electronic diode. The voltage across the laser diode resulting from each of these low current monitor pulses is measured with a high degree of precision. The junction temperature is then determined from the measured junction voltage using their known linear relationship.
Ground-based Observations for the Upper Atmosphere at King Sejong Station, Antarctica
NASA Astrophysics Data System (ADS)
Jee, Geonhwa; Kim, Jeong-Han; Lee, Changsup; Kim, Yong Ha
2014-06-01
Since the operation of the King Sejong Station (KSS) started in Antarctic Peninsula in 1989, there have been continuous efforts to perform the observation for the upper atmosphere. The observations during the initial period of the station include Fabry-Perot Interferometer (FPI) and Michelson Interferometer for the mesosphere and thermosphere, which are no longer in operation. In 2002, in collaboration with York University, Canada, the Spectral Airglow Temperature Imager (SATI) was installed to observe the temperature in the mesosphere and lower thermosphere (MLT) region and it has still been producing the mesopause temperature data until present. The observation was extended by installing the meteor radar in 2007 to observe the neutral winds and temperature in the MLT region during the day and night in collaboration with Chungnam National University. We also installed the all sky camera in 2008 to observe the wave structures in the MLT region. All these observations are utilized to study on the physical characteristics of the MLT region and also on the wave phenomena such as the tide and gravity wave in the upper atmosphere over KSS that is well known for the strong gravity wave activity. In this article, brief introductions for the currently operating instruments at KSS will be presented with their applications for the study of the upper atmosphere
Anisotropic ion heating and BBELF waves within the low-altitude ion upflow region
NASA Astrophysics Data System (ADS)
Shen, Y.; Knudsen, D. J.; Burchill, J. K.; James, H. G.; Miles, D. M.
2016-12-01
Previous studies have shown that low-energy (<10 eV) ion upflow energization processes involve multiple steps. At the initial stage, contributions from transverse-to-B ion heating by wave-particle interaction (WPI) are often underestimated. The wave-generation mechanisms, the specific wave modes leading to the ion heating, and the minimum altitude where WPI takes place remain unresolved. With this in mind, we statistically investigate the relation between anisotropic ion temperature enhancements and broadband extremely low frequency (BBELF) wave emissions within the ion upflow region using data from the Suprathermal Electron imager (SEI), the Fluxgate Magnetometer (MGF), and the Radio Receiver Instrument (RRI) onboard the e-POP satellite. Initial results demonstrate that perpendicular-to-B ion temperatures can reach up to 4.3 eV in approximately 1 km wide spatial region near 410 km altitude inside an active auroral surge. Intense small-scale field-aligned currents (FACs) as well as strong BBELF wave emissions, comprising electromagnetic waves below 80 Hz and electrostatic waves above, accompany these ion heating events. The minimum altitude of potential WPI reported here is lower than as previously suggested as 520 km by Frederick-Frost et al. 2007. We measure polarization and power spectral density for specific wave modes to explore the nature of ion heating within the BBELF waves. Acknowledgement: This research is supported by an Eyes High Doctoral Recruitment Scholarship at University of Calgary.
Kelvin-wave cascade in the vortex filament model
NASA Astrophysics Data System (ADS)
Baggaley, Andrew W.; Laurie, Jason
2014-01-01
The small-scale energy-transfer mechanism in zero-temperature superfluid turbulence of helium-4 is still a widely debated topic. Currently, the main hypothesis is that weakly nonlinear interacting Kelvin waves (KWs) transfer energy to sufficiently small scales such that energy is dissipated as heat via phonon excitations. Theoretically, there are at least two proposed theories for Kelvin-wave interactions. We perform the most comprehensive numerical simulation of weakly nonlinear interacting KWs to date and show, using a specially designed numerical algorithm incorporating the full Biot-Savart equation, that our results are consistent with the nonlocal six-wave KW interactions as proposed by L'vov and Nazarenko.
NASA Astrophysics Data System (ADS)
Yoshioka, Hironori; Hirata, Kazuto
2018-04-01
The characteristics of SiC MOSFETs (drain current vs. gate voltage) were measured at 0.14-350 K and analyzed considering variable-range hopping conduction through interface states. The total interface state density was determined to be 5.4×1012 cm-2 from the additional shift in the threshold gate voltage with a temperature change. The wave-function size of interface states was determined from the temperature dependence of the measured hopping current and was comparable to the theoretical value. The channel mobility was approximately 100 cm2V-1s-1 and was almost independent of temperature.
Heat-Flux Measurements from Collective Thomson-Scattering Spectra
NASA Astrophysics Data System (ADS)
Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.
2015-11-01
Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude is used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer -Härm flux
NASA Astrophysics Data System (ADS)
Bondur, V. G.; Grebenyuk, Yu. V.; Ezhova, E. V.; Kazakov, V. I.; Sergeev, D. A.; Soustova, I. A.; Troitskaya, Yu. I.
2010-08-01
In a large test reservoir at the Institute of Applied Physics, Russian Academy of Sciences, a series of experiments were performed to investigate the surface manifestations of internal waves radiated by a subsurface buoyant jet. The field of currents on the water surface of the reservoir was studied through the distribution of temperature with shallow thermocline. Using Particle Tracking Velocimetry (PTV), the velocity field of surface currents was measured. A theoretical model was developed to calculate the rates of disturbances on the surface. A comparison with experimental data indicated that the calculated data of the surface rate value are overestimated. This discrepancy was explained by the presence of a film of surface-active substances (SASs) with experimentally obtained parameters. Using scale modeling coefficients, we estimated the parameters of internal waves radiated by the subsurface wastewater system and the values of their surface manifestations in field conditions. We estimated the hydrodynamic contrasts in the field of surface waves, which can be caused by these inhomogeneous currents on the surface. For a wind velocity of 5 m/s, the magnitude of the contrast in the field of short waves can reach up to 10-25%, which is detected with confidence by remote-sensing methods.
NASA Astrophysics Data System (ADS)
Soloviev, A.; Dean, C.
2017-12-01
The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and air-sea interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the sea surface temperature drops below the air temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat air-sea fluxes and reduces the net longwave irradiance from the sea surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the sea surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the sea surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the thermocline. On the way down, the jet partially mixes with the surrounding water reducing the temperature of the upper ocean. The OHC thus can either reduce or increase, depending on the wave-inertia pump parameters. Based on the model results, we discuss feasibility of the implementation of the artificial upwelling system for hurricane intensity mitigation.
Impact of shock waves on the conductive properties and structure of MgB2 tapes
NASA Astrophysics Data System (ADS)
Mikhailov, Boris P.; Mikhailova, Alexandra B.; Borovitskaya, Irina V.; Nikulin, Valerii Ya.; Peregudova, Elena N.; Polukhin, Sergei N.; Silin, Pavel V.
2017-10-01
This article presents data on shock waves effect on the structure and the critical current of superconducting MgB2 tapes. To generate shock waves, a plasma focus installation (PF) was used. The conductive characteristics of the superconducting tapes dependence on the intensity of the impact and the number of shock pulses were studied. A distinct pattern of change in critical currents in transversal and longitudinal magnetic fields in the range of 2-9 T is studied at a temperature of 4.2 K. The microstructure of the superconducting tape and chemical composition of its layer are studied in the original state and after the shock wave effect. Changes were found in a microstructure of layers of MgB2 (granulation, subdivision of grains and consolidation), which arose due to the shock-wave impact (SWI), are found. The possibility of increasing the critical current of tapes on 50-80 A in a transversal magnetic field of 2-3 T by means of SWI has been established. In a parallel magnetic field, the impact of the shock effect was essential in magnetic fields lower than 4 T.
Extreme heat in India and anthropogenic climate change
NASA Astrophysics Data System (ADS)
van Oldenborgh, Geert Jan; Philip, Sjoukje; Kew, Sarah; van Weele, Michiel; Uhe, Peter; Otto, Friederike; Singh, Roop; Pai, Indrani; Cullen, Heidi; AchutaRao, Krishna
2018-01-01
On 19 May 2016 the afternoon temperature reached 51.0 °C in Phalodi in the northwest of India - a new record for the highest observed maximum temperature in India. The previous year, a widely reported very lethal heat wave occurred in the southeast, in Andhra Pradesh and Telangana, killing thousands of people. In both cases it was widely assumed that the probability and severity of heat waves in India are increasing due to global warming, as they do in other parts of the world. However, we do not find positive trends in the highest maximum temperature of the year in most of India since the 1970s (except spurious trends due to missing data). Decadal variability cannot explain this, but both increased air pollution with aerosols blocking sunlight and increased irrigation leading to evaporative cooling have counteracted the effect of greenhouse gases up to now. Current climate models do not represent these processes well and hence cannot be used to attribute heat waves in this area. The health effects of heat are often described better by a combination of temperature and humidity, such as a heat index or wet bulb temperature. Due to the increase in humidity from irrigation and higher sea surface temperatures (SSTs), these indices have increased over the last decades even when extreme temperatures have not. The extreme air pollution also exacerbates the health impacts of heat. From these factors it follows that, from a health impact point of view, the severity of heat waves has increased in India. For the next decades we expect the trend due to global warming to continue but the surface cooling effect of aerosols to diminish as air quality controls are implemented. The expansion of irrigation will likely continue, though at a slower pace, mitigating this trend somewhat. Humidity will probably continue to rise. The combination will result in a strong rise in the temperature of heat waves. The high humidity will make health effects worse, whereas decreased air pollution would decrease the impacts.
NASA Astrophysics Data System (ADS)
Zhang, X.; Stone, G. W.; Gibson, W. J.; Braud, D.
2005-05-01
WAVCIS is a regional ocean observing and forecasting system. It was designed to measure, process, forecast, and distribute oceanographic and meteorological information. WAVCIS was developed and is maintained by the Coastal Studies Institute at Louisiana State University. The in-situ observing stations are distributed along the central Louisiana and Mississippi coast. The forecast region covers the entire Gulf of Mexico with emphasis on offshore Louisiana. By using state-of-the-art instrumentation, WAVCIS measures directional waves, currents, temperature, water level, conductivity, turbidity, salinity, dissolved oxygen, chlorophyll, Meteorological parameters include wind speed and direction, air pressure and temperature visibility and humidity. Through satellite communication links, the measured data are transmitted to the WAVCIS laboratory. After processing, they are available to the public via the internet on a near real-time basis. WAVCIS also includes a forecasting capability. Waves, tides, currents, and winds are forecast daily for up to 80 hours in advance. There are a number of numerical wave and surge models that can be used for forecasts. WAM and SWAN are used for operational purposes to forecast sea state. Tides at each station are predicted based on the harmonic constants calculated from past in-situ observations at respective sites. Interpolated winds from the ETA model are used as input forcing for waves. Both in-situ and forecast information are available online to the users through WWW. Interactive GIS web mapping is implemented on the WAVCIS webpage to visualize the model output and in-situ observational data. WAVCIS data can be queried, retrieved, downloaded, and analyzed through the web page. Near real-time numerical model skill assessment can also be performed by using the data from in-situ observing stations.
Electron Heating and Acceleration from High Amplitude Driven Alfvén Waves in the LAPD
NASA Astrophysics Data System (ADS)
Auerbach, David; Carter, Troy; Brugman, Brian
2006-10-01
High amplitude (δB/B ˜1 %) shear Alfvén waves are generated in the Large Plasma Device Upgrade (LAPD) at UCLA, and elevated electron temperatures and high energy electrons are observed using triple probes and Langmuir current traces. The Poynting flux of the observed waves is calculated, and wave power is compared to estimates of power input required to cause the observed heating. Theoretical calculations of power transfer from wave to plasma due to Landau damping and collisional heating are also presented and compared to experimental measurements. Heating by antenna near field effects is also being explored. The density and potential structures of these waves are explored using interferometer and triple probe measurements. Applications to Auroral generation and plasma heating are discussed.
Effects of elevated temperatures and rising sea level on Arctic Coast
Barnes, Peter W.
1990-01-01
Ice is a major agent on the inner shelf, gouging the bottom, increasing hydraulic scour, transporting sediment, and influencing river flood patterns. Rapid coastal retreat is common and low barrier islands and beaches are constantly changing due to the influence of permafrost, ice-push, waves, and currents. Coastal processes are presently a balance between the influence of ice and the action of waves and currents. Quantitative values for processes are poorly known, however our qualitative understanding is nearly complete. Climatic warming and rising sea levels would decrease the temporal and aerial extent of coastal ice thereby expanding the role of waves and currents. As a result, shoreline retreat rates would increase, producing a transgressive erosional surface on the low coastal plain. With increased wave activity, beaches and barrier islands presently nourished by ice push processes would decay and disappear. Increased sediment supply from a deeply thawed, active layer would release more sediments to rivers and coasts. Additional research should be focused on permafrost and sea ice processes active during freeze up and breakup; the two seasons of most vigorous activity and change.
A Wave Glider for Studies of Biofouling and Ocean Productivity
2017-11-07
sensors for conductivity, water and air temperature , dissolved oxygen , chlorophyll-a fluorescence, wind speed and direction, barometric pressure, and...endurance, reduce fuel consumption , and reduce carbon emissions. During deployments, vessels encounter a range of planktonic assemblages and ocean...with an acoustic Doppler current profiler, an optical camera system, and standard sensors for conductivity, water and air temperature , dissolved
NASA Astrophysics Data System (ADS)
Allen, Philip B.
2018-04-01
Simulations [e.g., X. W. Zhou et al., Phys. Rev. B 79, 115201 (2009), 10.1103/PhysRevB.79.115201] show nonlocal effects of the ballistic/diffusive crossover. The local temperature has nonlinear spatial variation not contained in the local Fourier law j ⃗(r ⃗) =-κ ∇ ⃗T (r ⃗) . The heat current j ⃗(r ⃗) depends not just on the local temperature gradient ∇ ⃗T (r ⃗) but also on temperatures at points r⃗' within phonon mean free paths, which can be micrometers long. This paper uses the Peierls-Boltzmann transport theory in nonlocal form to analyze the spatial variation Δ T (r ⃗) . The relaxation-time approximation (RTA) is used because the full solution is very challenging. Improved methods of extrapolation to obtain the bulk thermal conductivity κ are proposed. Callaway invented an approximate method of correcting RTA for the q ⃗ (phonon wave vector or crystal momentum) conservation of N (Normal as opposed to Umklapp) anharmonic collisions. This method is generalized to the nonlocal case where κ (k ⃗) depends on the wave vector of the current j ⃗(k ⃗) and temperature gradient i k ⃗Δ T (k ⃗) .
Effect of temperature in multiple biomarkers of oxidative stress in coastal shrimp.
Vinagre, Catarina; Madeira, Diana; Mendonça, Vanessa; Dias, Marta; Roma, Joma; Diniz, Mário S
2014-04-01
Various studies in captivity and in the wild have pointed to the effect of season, and temperature in particular, in the levels of the oxidative stress biomarkers currently used for environmental quality assessment. However, knowledge on how temperature affects the oxidative stress response is unavailable for most species. This study investigated the effect of increasing temperature on lipid peroxidation, catalase activity, superoxide dismutase and glutathione-S-transferase in the shrimps, Palaemon elegans and Palaemon serratus. It was concluded that increasing temperatures significantly affect all the biomarkers tested in both species, with the exception of superoxide dismutase in P. serratus which was not affected by temperature. The oxidative stress response was more intense in P. elegans, than in P. serratus, producing higher peaks of all biomarkers at temperatures between 22°C and 26°C, followed by low levels at higher temperatures. It was concluded that monitoring of ecosystems using oxidative stress biomarkers should take into account the species and thermal history of the organisms. Sampling should be avoided during heat waves and immediately after heat waves. Copyright © 2014 Elsevier Ltd. All rights reserved.
Air-Sea Interaction in the Somali Current Region
NASA Astrophysics Data System (ADS)
Jensen, T. G.; Rydbeck, A.
2017-12-01
The western Indian Ocean is an area of high eddy-kinetic energy generated by local wind-stress curl, instability of boundary currents as well as Rossby waves from the west coast of India and the equatorial wave guide as they reflect off the African coast. The presence of meso-scale eddies and coastal upwelling during the Southwest Monsoon affects the air-sea interaction on those scales. The U.S. Navy's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) is used to understand and quantify the surface flux, effects on surface waves and the role of Sea Surface Temperature anomalies on ocean-atmosphere coupling in that area. The COAMPS atmosphere model component with 9 km resolution is fully coupled to the Navy Coastal Ocean Model (NCOM) with 3.5 km resolution and the Simulating WAves Nearshore (SWAN) wave model with 10 km resolution. Data assimilation using a 3D-variational approach is included in hindcast runs performed daily since June 1, 2015. An interesting result is that a westward jet associated with downwelling equatorial Rossy waves initiated the reversal from the southward Somali Current found during the northeast monsoon to a northward flow in March 2016 more than a month before the beginning of the southwest monsoon. It is also found that warm SST anomalies in the Somali Current eddies, locally increase surface wind speed due to an increase in the atmospheric boundary layer height. This results in an increase in significant wave height and also an increase in heat flux to the atmosphere. Cold SST anomalies over upwelling filaments have the opposite impacts on air-sea fluxes.
Self-Consistent Ring Current/Electromagnetic Ion Cyclotron Waves Modeling
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.
2006-01-01
The self-consistent treatment of the RC ion dynamics and EMIC waves, which are thought to exert important influences on the ion dynamical evolution, is an important missing element in our understanding of the storm-and recovery-time ring current evolution. For example, the EMlC waves cause the RC decay on a time scale of about one hour or less during the main phase of storms. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt by EMIC wave scattering during a magnetic storm. That is why the modeling of EMIC waves is critical and timely issue in magnetospheric physics. This study will generalize the self-consistent theoretical description of RC ions and EMIC waves that has been developed by Khazanov et al. [2002, 2003] and include the heavy ions and propagation effects of EMIC waves in the global dynamic of self-consistent RC - EMIC waves coupling. The results of our newly developed model that will be presented at the meeting, focusing mainly on the dynamic of EMIC waves and comparison of these results with the previous global RC modeling studies devoted to EMIC waves formation. We also discuss RC ion precipitations and wave induced thermal electron fluxes into the ionosphere.
The role of satellite directional wave spectra for the improvement of the ocean-waves coupling
NASA Astrophysics Data System (ADS)
Aouf, Lotfi; Hauser, Danièle; Chapron, Bertrand
2017-04-01
Swell waves are well captured by the Synthetic Aperture Radar (SAR) which provides the directional wave spectra for waves roughly larger than 200 m. Since the launch of sentinel-1A and 1B SAR directional wave spectra are available to improve the swell wave forecasting and the coupling processes at the air-sea interface. Moreover next year CFOSAT mission will provide directional wave spectra for waves with wavelengths comprised between 70 to 500 m. This study aims to evaluate the assimilation of SAR and synthetic CFOSAT wave spectra on the coupling between the wave model MFWAM and the ocean model NEMO. Three coupling processes as described in Breivik et al. (2014) of Stokes-Coriolis forcing, the ocean side stress and the turbulence injected by the wave breaking in the ocean mixed layer have been used. a coupling run is performed with and without assimilation of directional wave spectra. the impact of SAR wave data on key parameters such as surface sea temperature, currents and salinity is investigated. Particular attention is carried out for ocean areas with swell dominant wave climate.
NASA Astrophysics Data System (ADS)
Syed, Ahmed Rashid
Among the great physical challenges faced by the current front-end semiconductor equipment manufacturers is the accurate and repeatable surface temperature measurement of wafers during various fabrication steps. Close monitoring of temperature is essential in that it ensures desirable device characteristics to be reliably reproduced across various wafer lots. No where is the need to control temperature more pronounced than it is during Rapid Thermal Processing (RTP) which involves temperature ramp rates in excess of 200°C/s. This dissertation presents an elegant and practical approach to solve the wafer surface temperature estimation problem, in context of RTP, by deploying hardware that acquires the necessary data while preserving the integrity and purity of the wafer. In contrast to the widely used wafer-contacting (and hence contaminating) methods, such as bonded thermocouples, or environment sensitive schemes, such as light-pipes and infrared pyrometry, the proposed research explores the concept of utilizing Lamb (acoustic) waves to detect changes in wafer surface temperature, during RTP. Acoustic waves are transmitted to the wafer via an array of quartz rods that normally props the wafer inside an RTP chamber. These waves are generated using piezoelectric transducers affixed to the bases of the quartz rods. The group velocity of Lamb waves traversing the wafer surface undergoes a monotonic decrease with rise in wafer temperature. The correspondence of delay in phase of the received Lamb waves and the ambient temperature, along all direct paths between sending and receiving transducers, yields a psuedo real-time thermal image of the wafer. Although the custom built hardware-setup implements the above "proof-of-concept" scheme by transceiving acoustic signals at a single frequency, the real-world application will seek to enhance the data acquistion. rate (>1000 temperature measurements per seconds) by sending and receiving Lamb waves at multiple frequencies (by employing broadband quartz rod-transducer assembles). Experimental results, as predicted by prior rigorous simulations, prove that the temperature measurement accuracy obtained through several dynamic runs using the above specified approach, is better than +/-2°C. Furthermore, these results are highly repeatable and independent of wafer treatment conditions, thereby extolling the versatility and immunity of the new method from environmental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovsky, J.E.
1995-02-20
The return-stroke breakdown pulse and the dart leader are treated as electric waves guided by conducting lightning channels; such waves are launched when current is injected into a conducting channel (producing the dart leader) or when charge on a channel begins to drain to Earth (producing the return stroke). The guided waves are self-consistent solutions to the full set of Maxwell`s equations, obeying the physical boundary conditions for cylindrical channels. These waves are shown (1) to move with velocities substantially slower than c along the channel, (2) to push current inside the lightning channel, (3) to move charge and voltagemore » along the channel, and (4) to transport energy along and into the channel via Poynting flux. The velocity of a guided wave is a function of only three parameters: the channel radius r{sub ch}, the channel temperature T, and the risetime {triangle}t of the wave front. These velocities are found to fall in the range of velocities of return strokes and of dart leaders. The dart leader and the return stroke are caused by the same type of guided electromagnetic waves: the difference in velocity is owed mostly to the difference in channel temperature. In the case of the dart leader the waves deliver Poynting flux along the outside of the channel down from a thundercloud generator to the downward-propagating wave front. At the wave front of the dart leader the delivered energy goes into heating the channel and into storage in the form of E{sup 2}/8{pi} around the newly charged channel. In the case of the return stroke the Poynting flux is localized to the vicinity of the wave front where stored energy E{sup 2}/8{pi} is delivered radially inward onto the channel to heat the channel in the propagating front. The net result of a dart leader and return stroke is that charge is moved from the cloud to the ground and that energy is moved from the cloud onto the channel. 123 refs., 11 figs., 5 tabs.« less
Role of the sodium pump in pacemaker generation in dog colonic smooth muscle.
Barajas-López, C; Chow, E; Den Hertog, A; Huizinga, J D
1989-01-01
1. The role of the Na+ pump in the generation of slow wave activity in circular muscle of the dog colon was investigated using a partitioned 'Abe-Tomita' type chamber for voltage control. 2. Blockade of the Na+ pump by omission of extracellular K+, by ouabain, or the combination of 0 mM-Na+ and ouabain, depolarized the membrane up to approximately -40 mV and abolished the slow wave activity. Repolarization back to the control membrane potential by hyperpolarizing current restored the slow wave activity. 3. Slow waves continued to be present in 0 Na+, Li+ HEPES solution. 4. The depolarization induced by the procedures to block Na+ pump activity was associated with an increase in input membrane resistance. 5. Voltage-current relationships show the presence of an inward rectification. 6. Reduction of temperature depolarized the membrane, and decreased the slow wave frequency and amplitude. The slow wave amplitude was restored by repolarization of the membrane. 7. Brief depolarizing pulses evoked premature slow waves. Brief hyperpolarizing pulses terminated the slow waves. 8. We conclude that abolition of slow wave activity by Na+ pump blockade is a direct effect of membrane depolarization and that the Na+ pump is not responsible for the generation of the slow wave. 9. Our results are consistent with the hypothesis that pacemaker activity in smooth muscle is a consequence of membrane conductance changes which are metabolically dependent. PMID:2607455
NASA Astrophysics Data System (ADS)
Marsooli, R.; Orton, P. M.; Georgas, N.; Blumberg, A. F.
2016-02-01
The Stevens Institute of Technology Estuarine and Coastal Ocean Model (sECOM) has been coupled with a more advanced surface wave model to simulate wave‒current interaction, and results have been validated in estuarine and nearshore waters. sECOM is a three‒dimensional, hydrostatic, free surface, primitive equation model. It solves the Navier‒Stokes equations and the conservation equations for temperature and salinity using a finite‒difference method on an Arakawa C‒grid with a terrain‒following (sigma) vertical coordinate and orthogonal curvilinear horizontal coordinate system. The model is coupled with the surface wave model developed by Mellor et al. (2008), which solves the spectral equation and takes into account depth and current refraction, and deep and shallow water. The wave model parameterizes the energy distribution in frequency space and the wave‒wave interaction process by using a specified spectrum shape. The coupled wave‒hydrodynamic model considers the wave‒current interaction through wave‒induced bottom stress, depth‒dependent radiation stress, and wave effects on wind‒induced surface stress. The model is validated using the data collected at a natural sandy beach at Duck, North Carolina, during the DUCK94 experiment. This test case reveals the capability of the model to simulate the wave‒current interaction in nearshore coastal systems. The model is further validated using the data collected in Jamaica Bay, a semi‒enclosed body of water located in New York City region. This test reveals the applicability of the model to estuarine systems. These validations of the model and comparisons to its prior wave model, the Great Lakes Environmental Research Laboratory (GLERL) wave model (Donelan 1977), are presented and discussed. ReferencesG.L. Mellor, M.A. Donelan, and L‒Y. Oey, 2008, A Surface Wave Model for Coupling with Numerical Ocean Circulation Models. J. Atmos. Oceanic Technol., 25, 1785‒1807.Donelan, M. A 1977. A simple numerical model for wave and wind stress application. Report, National Water Research Institute, Burlington, Ontario, Canada, 28 pp.
Boundary Waves on the Ice Surface Created by Currents
NASA Astrophysics Data System (ADS)
Naito, K.; Izumi, N.; Yokokawa, M.; Yamada, T.; de Lima, A. C.
2013-12-01
The formation of periodic boundary waves, e.g. antidunes and cyclic steps (Parker & Izumi 2000) has been known to be caused by instabilities between flow and bed (e.g. Engelund 1970), and are observed not only on river beds or ocean floors but also on ice surfaces, such as the surface of glaciers and underside of river ice (Carey 1966). In addition, owing to recent advancements of remote sensing technology, it has been found that the surfaces of the polar ice caps on Mars as well as on the Earth have step-like formations (Smith & Holt 2010) which are assumed to be boundary waves, because they are generated perpendicularly to the direction of the currents. These currents acting on the polar ice caps are density airflow, i.e. katabatic wind (Howard et al 2000). The comprehension of the formation process of the Martian polar ice caps may reveal climate changes which have occurred on Mars. Although the formation of boundary waves on river beds or ocean floors has been studied by a number of researchers, there are few works on their formation on ice surfaces. Yokokawa et al (2013) suggested that the temperature distribution of the ambient air, fluid and ice is a factor which determines the direction of migration of boundary waves formed on ice surfaces through their experiments. In this study, we propose a mathematical model in order to describe the formation process of the boundary waves and the direction of their migration. We consider that a liquid is flowing through a flume filled with a flat ice layer on the bottom. The flow is assumed to be turbulent and its temperature is assumed to merge with the ambient temperature at the flow surface and with the melting point of ice at the bottom (ice surface). The ice surface evolution is dependent on the unbalance between the interfacial heat flux of the liquid and ice, and we employ the Reynolds-averaged Navier-Stokes equation, the continuity equation, heat transfer equations for the liquid and ice, and a heat balance equation at the flow-ice interface. It is assumed that the interfacial heat fluxes of the liquid and ice are determined by the temperature profile, and the Reynolds stress and the turbulent heat flux are expressed by the eddy diffusivity of momentum and the eddy diffusivity of heat, respectively. In addition, the liquid can be divided into two layers; viscous sublayer and turbulent layer. In order to determine the velocity and temperature profile in the liquid, we employ the Prandtl-Taylor analogy which assumes that the velocity profile follows a linear law in the viscous sublayer and a logarithmic law in the turbulent layer, and the eddy diffusivity of heat is described by the eddy diffusivity of momentum and Prandtl number of the liquid. Finally, we obtain the temperature profiles (because the heat transfer equation for the ice reduces to the Laplace equation, the temperature profile in the ice can be easily estimated) and interfacial heat fluxes.
Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si
NASA Astrophysics Data System (ADS)
Sun, Yi; Zhou, Kun; Sun, Qian; Liu, Jianping; Feng, Meixin; Li, Zengcheng; Zhou, Yu; Zhang, Liqun; Li, Deyao; Zhang, Shuming; Ikeda, Masao; Liu, Sheng; Yang, Hui
2016-09-01
Silicon photonics would greatly benefit from efficient, visible on-chip light sources that are electrically driven at room temperature. To fully utilize the benefits of large-scale, low-cost manufacturing foundries, it is highly desirable to grow direct bandgap III-V semiconductor lasers directly on Si. Here, we report the demonstration of a blue-violet (413 nm) InGaN-based laser diode grown directly on Si that operates under continuous-wave current injection at room temperature, with a threshold current density of 4.7 kA cm-2. The heteroepitaxial growth of GaN on Si is confronted with a large mismatch in both the lattice constant and the coefficient of thermal expansion, often resulting in a high density of defects and even microcrack networks. By inserting an Al-composition step-graded AlN/AlGaN multilayer buffer between the Si and GaN, we have not only successfully eliminated crack formation, but also effectively reduced the dislocation density. The result is the realization of a blue-violet InGaN-based laser on Si.
MIMIC For Millimeter Wave Integrated Circuit Radars
NASA Astrophysics Data System (ADS)
Seashore, C. R.
1987-09-01
A significant program is currently underway in the U.S. to investigate, develop and produce a variety of GaAs analog circuits for use in microwave and millimeter wave sensors and systems. This represents a "new wave" of RF technology which promises to significantly change system engineering thinking relative to RF Architectures. At millimeter wave frequencies, we look forward to a relatively high level of critical component integration based on MESFET and HEMT device implementations. These designs will spawn more compact RF front ends with colocated antenna/transceiver functions and innovative packaging concepts which will survive and function in a typical military operational environment which includes challenging temperature, shock and special handling requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertelli, N.; Valeo, E. J.; Green, D. L.
At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertelli, N.; Valeo, E.J.; Green, D.L.
At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely [T. H. Stix, Nucl. Fusion, 15 737 (1975)], with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC [M. Brambilla, Plasma Phys. Control. Fusion 41, 1 (1999) and M. Brambilla, Plasma Phys. Control. Fusion 44, 2423 (2002)], have been extended to allow the prescriptionmore » of arbitrary velocity distributions of the form f(v||, v_perp, psi , theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either aMonte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tends to increase the absorption with respect to the equivalent Maxwellian distribution.« less
NASA Astrophysics Data System (ADS)
Bertelli, N.; Valeo, E. J.; Green, D. L.; Gorelenkova, M.; Phillips, C. K.; Podestà, M.; Lee, J. P.; Wright, J. C.; Jaeger, E. F.
2017-05-01
At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributions of the form f≤ft({{v}\\parallel},{{v}\\bot},\\psi,θ \\right) . For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.
Bertelli, N.; Valeo, E. J.; Green, D. L.; ...
2017-04-03
At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less
Overview of MST Results and Plans
NASA Astrophysics Data System (ADS)
Sarff, J. S.
2008-11-01
Improved confinement with high beta has been established in MST over its full range of plasma current capability using transient inductive current profile control. Both thermal electron and ion confinement are increased, and energetic electrons are observed to 100 keV. The global energy confinement time is 12 ms at high current and high temperature (Te=2 keV, Ti =1 keV), with βtot=10% (only Ohmic heating). Maximum βtot=26% is attained at lower current and temperature with D2 pellet injection, without evidence of hard-beta-limit phenomena. Momentum transport associated with MHD tearing shows the fascinating behavior that the Maxwell and Reynolds turbulent stresses are both large but oppositely directed in sawtooth magnetic relaxation events. Momentum is transported rapidly in these events, presumably through the imbalance in the stresses. Electron temperature fluctuations associated with MHD tearing are measured using a multi-point, multi-pulse Thomson scattering diagnostic. A 5-250 kHz pulse-burst laser is under construction to extend the Thomson capability to high frequency. Lower hybrid and electron Bernstein wave injection are under development to provide more sustained current profile control and heating. X-ray emission from the plasma is observed for both waves at 175 kW injected power. Substantial new experimental capability will be provided by a recently installed programmable power supply for the toroidal field, a new 1 MW, 20 ms neutral beam injection system, and upgraded OFCD system. Supported by U.S. DoE and NSF.
Design of the NASA Lewis 4-Port Wave Rotor Experiment
NASA Technical Reports Server (NTRS)
Wilson, Jack
1997-01-01
Pressure exchange wave rotors, used in a topping stage, are currently being considered as a possible means of increasing the specific power, and reducing the specific fuel consumption of gas turbine engines. Despite this interest, there is very little information on the performance of a wave rotor operating on the cycle (i.e., set of waves) appropriate for use in a topping stage. One such cycle, which has the advantage of being relatively easy to incorporate into an engine, is the four-port cycle. Consequently, an experiment to measure the performance of a four-port wave rotor for temperature ratios relevant to application as a topping cycle for a gas turbine engine has been designed and built at NASA Lewis. The design of the wave rotor is described, together with the constraints on the experiment.
NASA Astrophysics Data System (ADS)
Carrasco, Ana; Semedo, Alvaro; Behrens, Arno; Weisse, Ralf; Breivik, Øyvind; Saetra, Øyvind; Håkon Christensen, Kai
2016-04-01
The global wave-induced current (the Stokes Drift - SD) is an important feature of the ocean surface, with mean values close to 10 cm/s along the extra-tropical storm tracks in both hemispheres. Besides the horizontal displacement of large volumes of water the SD also plays an important role in the ocean mix-layer turbulence structure, particularly in stormy or high wind speed areas. The role of the wave-induced currents in the ocean mix-layer and in the sea surface temperature (SST) is currently a hot topic of air-sea interaction research, from forecast to climate ranges. The SD is mostly driven by wind sea waves and highly sensitive to changes in the overlaying wind speed and direction. The impact of climate change in the global wave-induced current climate will be presented. The wave model WAM has been forced by the global climate model (GCM) ECHAM5 wind speed (at 10 m height) and ice, for present-day and potential future climate conditions towards the end of the end of the twenty-first century, represented by the Intergovernmental Panel for Climate Change (IPCC) CMIP3 (Coupled Model Inter-comparison Project phase 3) A1B greenhouse gas emission scenario (usually referred to as a ''medium-high emissions'' scenario). Several wave parameters were stored as output in the WAM model simulations, including the wave spectra. The 6 hourly and 0.5°×0.5°, temporal and space resolution, wave spectra were used to compute the SD global climate of two 32-yr periods, representative of the end of the twentieth (1959-1990) and twenty-first (1969-2100) centuries. Comparisons of the present climate run with the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-40 reanalysis are used to assess the capability of the WAM-ECHAM5 runs to produce realistic SD results. This study is part of the WRCP-JCOMM COWCLIP (Coordinated Ocean Wave Climate Project) effort.
NASA Astrophysics Data System (ADS)
Fomin, Vladimir; Diansky, Nikolay; Gusev, Anatoly; Kabatchenko, Ilia; Panasenkova, Irina
2017-04-01
The diagnosis and forecast system for simulating hydrometeorological characteristics of the Russian Western Arctic seas is presented. It performs atmospheric forcing computation with the regional non-hydrostatic atmosphere model Weather Research and Forecasting model (WRF) with spatial resolution 15 km, as well as computation of circulation, sea level, temperature, salinity and sea ice with the marine circulation model INMOM (Institute of Numerical Mathematics Ocean Model) with spatial resolution 2.7 km, and the computation of wind wave parameters using the Russian wind-wave model (RWWM) with spatial resolution 5 km. Verification of the meteorological characteristics is done for air temperature, air pressure, wind velocity, water temperature, currents, sea level anomaly, wave characteristics such as wave height and wave period. The results of the hydrometeorological characteristic verification are presented for both retrospective and forecast computations. The retrospective simulation of the hydrometeorological characteristics for the White, Barents, Kara and Pechora Seas was performed with the diagnosis and forecast system for the period 1986-2015. The important features of the Kara Sea circulation are presented. Water exchange between Pechora and Kara Seas is described. The importance is shown of using non-hydrostatic atmospheric circulation model for the atmospheric forcing computation in coastal areas. According to the computation results, extreme values of hydrometeorological characteristics were obtained for the Russian Western Arctic seas.
Josephson-junction array in an irrational magnetic field: A superconducting glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halsey, T.C.
1985-08-26
A model is used to show that a Josephson junction array in an irrational magnetic field undergoes a glass transition for finite cooling rate. At zero temperature the resultant glassy state possesses a nonzero critical current. The low-temperature behavior of the system can be modeled by a spin-wave theory. The relevance of these results for real experiments on arrays is discussed.
Traveling-wave induction launchers
NASA Technical Reports Server (NTRS)
Elliott, David G.
1989-01-01
An analysis of traveling-wave induction launchers shows that induction is a feasible method of producing armature current and that efficient accelerators can be built without sliding contacts or arcs. In a traveling-wave induction launcher the armature current is induced by a slip speed between the armature and a traveling magnetic field. At 9 m/s slip speed a 9 kg projectile with an aluminum armature weighing 25 percent of the total mass can be accelerated to 3000 m/s in a 5 m-long barrel with a total ohmic loss in the barrel coils and armature of 4 percent of the launch kinetic energy and with an average armature temperature rise of 220 deg C, but a peak excitation frequency of 8600 Hz is required. With a 2 kg launch mass the ohmic loss is 7 percent. A launcher system optimized for rotating generators would have a peak frequency of 4850 Hz; with an aluminum armature weighing 33 percent of the launch mass and a slip speed of 30 m/s the total ohmic loss in the generators, cables, and accelerator would be 43 percent of the launch kinetic energy, and the average armature temperature rise would be 510 deg C.
Excitation of propagating spin waves by pure spin current
NASA Astrophysics Data System (ADS)
Demokritov, Sergej
Recently it was demonstrated that pure spin currents can be utilized to excite coherent magnetization dynamics, which enables development of novel magnetic nano-oscillators. Such oscillators do not require electric current flow through the active magnetic layer, which can help to reduce the Joule power dissipation and electromigration. In addition, this allows one to use insulating magnetic materials and provides an unprecedented geometric flexibility. The pure spin currents can be produced by using the spin-Hall effect (SHE). However, SHE devices have a number of shortcomings. In particular, efficient spin Hall materials exhibit a high resistivity, resulting in the shunting of the driving current through the active magnetic layer and a significant Joule heating. These shortcomings can be eliminated in devices that utilize spin current generated by the nonlocal spin-injection (NLSI) mechanism. Here we review our recent studies of excitation of magnetization dynamics and propagating spin waves by using NLSI. We show that NLSI devices exhibit highly-coherent dynamics resulting in the oscillation linewidth of a few MHz at room temperature. Thanks to the geometrical flexibility of the NLSI oscillators, one can utilize dipolar fields in magnetic nano-patterns to convert current-induced localized oscillations into propagating spin waves. The demonstrated systems exhibit efficient and controllable excitation and directional propagation of coherent spin waves characterized by a large decay length. The obtained results open new perspectives for the future-generation electronics using electron spin degree of freedom for transmission and processing of information on the nanoscale.
Urban Heat Wave Hazard Assessment
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Jedlovec, Gary; Meyer, Paul J.; LaFontaine, Frank J.; Crane, Dakota L.
2016-01-01
Heat waves are the largest cause of environment-related deaths globally. On average, over 6,000 people in the United States alone are hospitalized each summer due to excessive heat. Key elements leading to these disasters are elevated humidity and the urban heat island effect, which act together to increase apparent temperature and amplify the effects of a heat wave. Urban demographics and socioeconomic factors also play a role in determining individual risk. Currently, advisories of impending heat waves are often too generalized, with limited or no spatial variability over urban regions. This frequently contributes to a lack of specific response on behalf of the population. A goal of this project is to develop a product that has the potential to provide more specific heat wave guidance invoking greater awareness and action.
1987-08-06
ABSTRACT (Continue on reverse if necessary and identify by block number) The linearized Balescu -Lenard-Poisson equations are solved in the weakly...free plasma is . unresolved. The purpose of this report is to present a resolution based upon the Balescu -Lenard-Poisson equations. The Balescu -Lenard...acoustic waves become marginally stable. Gur re- sults are based on the closed form solution for the dielectric function for the line- arized Balescu -Lenard
The 25 mA continuous-wave surface-plasma source of H{sup −} ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belchenko, Yu., E-mail: belchenko@inp.nsk.su; Gorbovsky, A.; Sanin, A.
The ion source with the Penning geometry of electrodes producing continuous-wave beam of H{sup −} ions with current up to 25 mA was developed. Several improvements were introduced to increase source intensity, reliability, and lifetime. The collar around the emission aperture increases the electrons filtering. The apertures’ diameters of the ion-optical system electrodes were increased to generate the beam with higher intensity. An optimization of electrodes’ temperature was performed.
Modeling temperature inversion in southeastern Yellow Sea during winter 2016
NASA Astrophysics Data System (ADS)
Pang, Ig-Chan; Moon, Jae-Hong; Lee, Joon-Ho; Hong, Ji-Seok; Pang, Sung-Jun
2017-05-01
A significant temperature inversion with temperature differences larger than 3°C was observed in the southeastern Yellow Sea (YS) during February 2016. By analyzing in situ hydrographic profiles and results from a regional ocean model for the YS, this study examines the spatiotemporal evolution of the temperature inversion and its connection with wind-induced currents in winter. Observations reveal that in winter, when the northwesterly wind prevails over the YS, the temperature inversion occurs largely at the frontal zone southwest of Korea where warm/saline water of a Kuroshio origin meets cold/fresh coastal water. Our model successfully captures the temperature inversion observed in the winter of 2016 and suggests a close relation between northwesterly wind bursts and the occurrence of the large inversion. In this respect, the strong northwesterly wind drove cold coastal water southward in the upper layer via Ekman transport, which pushed the water mass southward and increased the sea level slope in the frontal zone in southeastern YS. The intensified sea level slope propagated northward away from the frontal zone as a shelf wave, causing a northward upwind flow response along the YS trough in the lower layer, thereby resulting in the large temperature inversion. Diagnostic analysis of the momentum balance shows that the westward pressure gradient, which developed with shelf wave propagation along the YS trough, was balanced with the Coriolis force in accordance with the northward upwind current in and around the inversion area.
NASA Astrophysics Data System (ADS)
Taylor, Gary; Bertelli, Nicola; Gerhardt, Stefan P.; Hosea, Joel C.; Mueller, Dennis; Perkins, Rory J.; Poli, Francesca M.; Wilson, James R.; Raman, Roger
2017-10-01
30 MHz fast-wave heating may be an effective tool for non-inductively ramping low-current plasmas to a level suitable for initiating up to 12 MW of neutral beam injection on the National Spherical Tokamak Experiment Upgrade (NSTX-U). Previously on NSTX 30 MHz fast wave heating was shown to efficiently and rapidly heat electrons; at the NSTX maximum axial toroidal magnetic field (BT(0)) of 0.55 T, 1.4 MW of 30 MHz heating increased the central electron temperature from 0.2 to 2 keV in 30 ms and generated an H-mode plasma with a non-inductive fraction (fNI) ˜ 0.7 at a plasma current (Ip) of 300 kA. NSTX-U will operate at BT(0) up to 1 T, with up to 4 MW of 30 MHz power (Prf). Predictive TRANSP free boundary transport simulations, using the TORIC full wave spectral code to calculate the fast-wave heating and current drive, have been run for NSTX-U Ip = 300 kA H-mode plasmas. Favorable scaling of fNI with 30 MHz heating power is predicted, with fNI ≥ 1 for Prf ≥ 2 MW.
Real-time measurement of biomagnetic vector fields in functional syncytium using amorphous metal.
Nakayama, Shinsuke; Uchiyama, Tusyoshi
2015-03-06
Magnetic field detection of biological electric activities would provide a non-invasive and aseptic estimate of the functional state of cellular organization, namely a syncytium constructed with cell-to-cell electric coupling. In this study, we investigated the properties of biomagnetic waves which occur spontaneously in gut musculature as a typical functional syncytium, by applying an amorphous metal-based gradio-magneto sensor operated at ambient temperature without a magnetic shield. The performance of differentiation was improved by using a single amorphous wire with a pair of transducer coils. Biomagnetic waves of up to several nT were recorded ~1 mm below the sample in a real-time manner. Tetraethyl ammonium (TEA) facilitated magnetic waves reflected electric activity in smooth muscle. The direction of magnetic waves altered depending on the relative angle of the muscle layer and magneto sensor, indicating the existence of propagating intercellular currents. The magnitude of magnetic waves rapidly decreased to ~30% by the initial and subsequent 1 mm separations between sample and sensor. The large distance effect was attributed to the feature of bioelectric circuits constructed by two reverse currents separated by a small distance. This study provides a method for detecting characteristic features of biomagnetic fields arising from a syncytial current.
Real-time Measurement of Biomagnetic Vector Fields in Functional Syncytium Using Amorphous Metal
NASA Astrophysics Data System (ADS)
Nakayama, Shinsuke; Uchiyama, Tusyoshi
2015-03-01
Magnetic field detection of biological electric activities would provide a non-invasive and aseptic estimate of the functional state of cellular organization, namely a syncytium constructed with cell-to-cell electric coupling. In this study, we investigated the properties of biomagnetic waves which occur spontaneously in gut musculature as a typical functional syncytium, by applying an amorphous metal-based gradio-magneto sensor operated at ambient temperature without a magnetic shield. The performance of differentiation was improved by using a single amorphous wire with a pair of transducer coils. Biomagnetic waves of up to several nT were recorded ~1 mm below the sample in a real-time manner. Tetraethyl ammonium (TEA) facilitated magnetic waves reflected electric activity in smooth muscle. The direction of magnetic waves altered depending on the relative angle of the muscle layer and magneto sensor, indicating the existence of propagating intercellular currents. The magnitude of magnetic waves rapidly decreased to ~30% by the initial and subsequent 1 mm separations between sample and sensor. The large distance effect was attributed to the feature of bioelectric circuits constructed by two reverse currents separated by a small distance. This study provides a method for detecting characteristic features of biomagnetic fields arising from a syncytial current.
Absorption and Modification of Lower Hybrid Waves in the Scrape Off Layer
NASA Astrophysics Data System (ADS)
Parker, R.; Wallace, G.; Shiraiwa, S.; Baek, S.-G.; Faust, I.
2015-11-01
Loss of current drive efficiency of lower hybrid waves at high density in Alcator C-Mod current drive experiments has been attributed, at least in part, to interactions in the SOL. While ray-tracing calculations indicate that collisional absorption and modification of n|| during reflections in the SOL can be significant, their validity can be called into question owing to steep SOL gradients. In order to further quantify these losses, full-wave calculations using a plane-stratified SOL model have been carried out. The results show that the loss resulting from reflections in the SOL can be substantial, with collisional losses accounting for a loss of up to 50% per bounce of the incident wave power. The loss is sensitive to the SOL parameters with the strongest collisional absorption occurring in the case of steep temperature and weak density gradients. Modification of n|| can also be significant when the density gradient and normal to the flux surfaces are not aligned. These effects are less severe for the fast wave since its penetration into the SOL is significantly less than that of the slow wave. Work supported by USDoE awards DE-FC02-99ER54512 and DE-AC02-09CH11466.
Spin and charge thermopower effects in the ferromagnetic graphene junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vahedi, Javad, E-mail: javahedi@gmail.com; Center for Theoretical Physics of Complex Systems, Institute for Basic Science; Barimani, Fattaneh
2016-08-28
Using wave function matching approach and employing the Landauer-Buttiker formula, a ferromagnetic graphene junction with temperature gradient across the system is studied. We calculate the thermally induced charge and spin current as well as the thermoelectric voltage (Seebeck effect) in the linear and nonlinear regimes. Our calculation revealed that due to the electron-hole symmetry, the charge Seebeck coefficient is, for an undoped magnetic graphene, an odd function of chemical potential while the spin Seebeck coefficient is an even function regardless of the temperature gradient and junction length. We have also found with an accurate tuning external parameter, namely, the exchangemore » filed and gate voltage, the temperature gradient across the junction drives a pure spin current without accompanying the charge current. Another important characteristic of thermoelectric transport, thermally induced current in the nonlinear regime, is examined. It would be our main finding that with increasing thermal gradient applied to the junction the spin and charge thermovoltages decrease and even become zero for non zero temperature bias.« less
Heating by transverse waves in simulated coronal loops
NASA Astrophysics Data System (ADS)
Karampelas, K.; Van Doorsselaere, T.; Antolin, P.
2017-08-01
Context. Recent numerical studies of oscillating flux tubes have established the significance of resonant absorption in the damping of propagating transverse oscillations in coronal loops. The nonlinear nature of the mechanism has been examined alongside the Kelvin-Helmholtz instability, which is expected to manifest in the resonant layers at the edges of the flux tubes. While these two processes have been hypothesized to heat coronal loops through the dissipation of wave energy into smaller scales, the occurring mixing with the hotter surroundings can potentially hide this effect. Aims: We aim to study the effects of wave heating from driven and standing kink waves in a coronal loop. Methods: Using the MPI-AMRVAC code, we perform ideal, three dimensional magnetohydrodynamic (MHD) simulations of both (a) footpoint driven and (b) free standing oscillations in a straight coronal flux tube, in the presence of numerical resistivity. Results: We have observed the development of Kelvin-Helmholtz eddies at the loop boundary layer of all three models considered here, as well as an increase of the volume averaged temperature inside the loop. The main heating mechanism in our setups was Ohmic dissipation, as indicated by the higher values for the temperatures and current densities located near the footpoints. The introduction of a temperature gradient between the inner tube and the surrounding plasma, suggests that the mixing of the two regions, in the case of hotter environment, greatly increases the temperature of the tube at the site of the strongest turbulence, beyond the contribution of the aforementioned wave heating mechanism. Three movies associated to Fig. 1 are available in electronic form at http://www.aanda.org
Transverse Wave Induced Kelvin–Helmholtz Rolls in Spicules
NASA Astrophysics Data System (ADS)
Antolin, P.; Schmit, D.; Pereira, T. M. D.; De Pontieu, B.; De Moortel, I.
2018-03-01
In addition to their jet-like dynamic behavior, spicules usually exhibit strong transverse speeds, multi-stranded structure, and heating from chromospheric to transition region temperatures. In this work we first analyze Hinode and IRIS observations of spicules and find different behaviors in terms of their Doppler velocity evolution and collective motion of their sub-structure. Some have a Doppler shift sign change that is rather fixed along the spicule axis, and lack coherence in the oscillatory motion of strand-like structure, matching rotation models, or long-wavelength torsional Alfvén waves. Others exhibit a Doppler shift sign change at maximum displacement and coherent motion of their strands, suggesting a collective magnetohydrodynamic (MHD) wave. By comparing with an idealized 3D MHD simulation combined with radiative transfer modeling, we analyze the role of transverse MHD waves and associated instabilities in spicule-like features. We find that transverse wave induced Kelvin–Helmholtz (TWIKH) rolls lead to coherence of strand-like structure in imaging and spectral maps, as seen in some observations. The rapid transverse dynamics and the density and temperature gradients at the spicule boundary lead to ring-shaped Mg II k and Ca II H source functions in the transverse cross-section, potentially allowing IRIS to capture the Kelvin–Helmholtz instability dynamics. Twists and currents propagate along the spicule at Alfvénic speeds, and the temperature variations within TWIKH rolls, produce the sudden appearance/disappearance of strands seen in Doppler velocity and in Ca II H intensity. However, only a mild intensity increase in higher-temperature lines is obtained, suggesting there is an additional heating mechanism at work in spicules.
NASA Astrophysics Data System (ADS)
Sturner, Andrew P.; Eriksson, Stefan; Nakamura, Takuma; Gershman, Daniel J.; Plaschke, Ferdinand; Ergun, Robert E.; Wilder, Frederick D.; Giles, Barbara; Pollock, Craig; Paterson, William R.; Strangeway, Robert J.; Baumjohann, Wolfgang; Burch, James L.
2018-02-01
Two magnetopause current sheet crossings with tripolar guide magnetic field signatures were observed by multiple Magnetosphere Multiscale (MMS) spacecraft during Kelvin-Helmholtz wave activity. The two out-of-plane magnetic field depressions of the tripolar guide magnetic field are largely supported by the observed in-plane electron currents, which are reminiscent of two clockwise Hall current loop systems. A comparison with a three-dimensional kinetic simulation of Kelvin-Helmholtz waves and vortex-induced reconnection suggests that MMS likely encountered the two Hall magnetic field depressions on either side of a magnetic reconnection X-line. Moreover, MMS observed an out-of-plane current reversal and a corresponding in-plane magnetic field rotation at the center of one of the current sheets, suggesting the presence of two adjacent flux ropes. The region inside one of the ion-scale flux ropes was characterized by an observed decrease of the total magnetic field, a strong axial current, and significant enhancements of electron density and parallel electron temperature. The flux rope boundary was characterized by currents opposite this axial current, strong in-plane and converging electric fields, parallel electric fields, and weak electron-frame Joule dissipation. These return current region observations may reflect a need to support the axial current rather than representing local reconnection signatures in the absence of any exhausts.
Heat Wave and Mortality: A Multicountry, Multicommunity Study
Gasparrini, Antonio; Armstrong, Ben G.; Tawatsupa, Benjawan; Tobias, Aurelio; Lavigne, Eric; Coelho, Micheline de Sousa Zanotti Stagliorio; Pan, Xiaochuan; Kim, Ho; Hashizume, Masahiro; Honda, Yasushi; Guo, Yue-Liang Leon; Wu, Chang-Fu; Zanobetti, Antonella; Schwartz, Joel D.; Bell, Michelle L.; Scortichini, Matteo; Michelozzi, Paola; Punnasiri, Kornwipa; Li, Shanshan; Tian, Linwei; Garcia, Samuel David Osorio; Seposo, Xerxes; Overcenco, Ala; Zeka, Ariana; Goodman, Patrick; Dang, Tran Ngoc; Dung, Do Van; Mayvaneh, Fatemeh; Saldiva, Paulo Hilario Nascimento; Williams, Gail; Tong, Shilu
2017-01-01
Background: Few studies have examined variation in the associations between heat waves and mortality in an international context. Objectives: We aimed to systematically examine the impacts of heat waves on mortality with lag effects internationally. Methods: We collected daily data of temperature and mortality from 400 communities in 18 countries/regions and defined 12 types of heat waves by combining community-specific daily mean temperature ≥90th, 92.5th, 95th, and 97.5th percentiles of temperature with duration ≥2, 3, and 4 d. We used time-series analyses to estimate the community-specific heat wave–mortality relation over lags of 0–10 d. Then, we applied meta-analysis to pool heat wave effects at the country level for cumulative and lag effects for each type of heat wave definition. Results: Heat waves of all definitions had significant cumulative associations with mortality in all countries, but varied by community. The higher the temperature threshold used to define heat waves, the higher heat wave associations on mortality. However, heat wave duration did not modify the impacts. The association between heat waves and mortality appeared acutely and lasted for 3 and 4 d. Heat waves had higher associations with mortality in moderate cold and moderate hot areas than cold and hot areas. There were no added effects of heat waves on mortality in all countries/regions, except for Brazil, Moldova, and Taiwan. Heat waves defined by daily mean and maximum temperatures produced similar heat wave–mortality associations, but not daily minimum temperature. Conclusions: Results indicate that high temperatures create a substantial health burden, and effects of high temperatures over consecutive days are similar to what would be experienced if high temperature days occurred independently. People living in moderate cold and moderate hot areas are more sensitive to heat waves than those living in cold and hot areas. Daily mean and maximum temperatures had similar ability to define heat waves rather than minimum temperature. https://doi.org/10.1289/EHP1026 PMID:28886602
Ring Current-Electromagnetic Ion Cyclotron Waves Coupling
NASA Technical Reports Server (NTRS)
Khazanov, G. V.
2005-01-01
The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.
Modeling of the control of the driven current profile in ICRF MCCD on EAST plasma
NASA Astrophysics Data System (ADS)
Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Cao, J. J.; Wu, Z. Y.; Chen, Y.; Du, D.
2018-05-01
Control of the current profile is a crucial issue for improved confinement and the inhibition of instability in advanced tokamak operation. Using typical discharge data for the Experimental Advanced Superconducting Tokamak, numerical simulations of driven-current profile control in mode conversion current drive (MCCD) in the ion cyclotron range of frequencies were performed employing a full-wave method and Ehst-Karney efficiency formula. Results indicate that the driven current profile in MCCD can be effectively modified by shifting the mode conversion layer. The peak of the driven current can be located at an aimed position in the normalized minor radius range (-0.60 ≤r/a≤0) by changing the radiofrequency and the minority-ion concentration. The efficiency of the off-axis MCCD can reach 233 kA/MW through optimization, and the mode converted ion cyclotron wave plays an important role in such scenarios. The effects of electron temperature and plasma density on the driven current profile are also investigated.
Time-series Analysis of Heat Waves and Emergency Department Visits in Atlanta, 1993 to 2012.
Chen, Tianqi; Sarnat, Stefanie E; Grundstein, Andrew J; Winquist, Andrea; Chang, Howard H
2017-05-31
Heat waves are extreme weather events that have been associated with adverse health outcomes. However, there is limited knowledge of heat waves' impact on population morbidity, such as emergency department (ED) visits. We investigated associations between heat waves and ED visits for 17 outcomes in Atlanta over a 20-year period, 1993-2012. Associations were estimated using Poisson log-linear models controlling for continuous air temperature, dew-point temperature, day of week, holidays, and time trends. We defined heat waves as periods of consecutive days with temperatures beyond the 98th percentile of the temperature distribution over the period from 1945-2012. We considered six heat wave definitions using maximum, minimum, and average air temperatures and apparent temperatures. Associations by heat wave characteristics were examined. Among all outcome-heat wave combinations, associations were strongest between ED visits for acute renal failure and heat waves defined by maximum apparent temperature at lag 0 [relative risk (RR) = 1.15; 95% confidence interval (CI): 1.03-1.29], ED visits for ischemic stroke and heat waves defined by minimum temperature at lag 0 (RR = 1.09; 95% CI: 1.02-1.17), and ED visits for intestinal infection and heat waves defined by average temperature at lag 1 (RR = 1.10; 95% CI: 1.00-1.21). ED visits for all internal causes were associated with heat waves defined by maximum temperature at lag 1 (RR = 1.02; 95% CI: 1.00, 1.04). Heat waves can confer additional risks of ED visits beyond those of daily air temperature, even in a region with high air-conditioning prevalence. https://doi.org/10.1289/EHP44.
Wireless SAW passive tag temperature measurement in the collision case
NASA Astrophysics Data System (ADS)
Sorokin, A.; Shepeta, A.; Wattimena, M.
2018-04-01
This paper describes temperature measurement in the multisensor systems based on the radio-frequency identification SAW passive tags which are currently applied in the electric power systems and the switchgears. Different approaches of temperature measurement in the collision case are shown here. The study is based on the tag model with specific topology, which allows us to determine temperature through the response signal with time-frequency information. This research considers the collision case for several passive tags as the temperature sensors which are placed in the switchgear. This research proposal is to analyze the possibility of using several SAW passive sensors in the collision case. We consider the using of the different typical elements for passive surface acoustic wave tag which applies as an anticollision passive sensor. These wireless sensors based on the surface acoustic waves tags contain specifically coded structures. This topology makes possible the reliability of increasing tag identification and the temperature measurement in the collision case. As the results for this case we illustrate simultaneous measurement of at least six sensors.
Unidirectional spin-wave heat conveyer.
An, T; Vasyuchka, V I; Uchida, K; Chumak, A V; Yamaguchi, K; Harii, K; Ohe, J; Jungfleisch, M B; Kajiwara, Y; Adachi, H; Hillebrands, B; Maekawa, S; Saitoh, E
2013-06-01
When energy is introduced into a region of matter, it heats up and the local temperature increases. This energy spontaneously diffuses away from the heated region. In general, heat should flow from warmer to cooler regions and it is not possible to externally change the direction of heat conduction. Here we show a magnetically controllable heat flow caused by a spin-wave current. The direction of the flow can be switched by applying a magnetic field. When microwave energy is applied to a region of ferrimagnetic Y3Fe5O12, an end of the magnet far from this region is found to be heated in a controlled manner and a negative temperature gradient towards it is formed. This is due to unidirectional energy transfer by the excitation of spin-wave modes without time-reversal symmetry and to the conversion of spin waves into heat. When a Y3Fe5O12 film with low damping coefficients is used, spin waves are observed to emit heat at the sample end up to 10 mm away from the excitation source. The magnetically controlled remote heating we observe is directly applicable to the fabrication of a heat-flow controller.
A technique to measure the thermal diffusivity of high Tc superconductors
NASA Technical Reports Server (NTRS)
Powers, Charles E.
1991-01-01
High T(sub c) superconducting electrical current leads and ground straps will be used in cryogenic coolers in future NASA Goddard Space Flight Center missions. These superconducting samples are long, thin leads with a typical diameter of two millimeters. A longitudinal method is developed to measure the thermal diffusivity of candidate materials for this application. This technique uses a peltier junction to supply an oscillatory heat wave into one end of a sample and will use low mass thermocouples to follow the heat wave along the sample. The thermal diffusivity is calculated using both the exponential decay of the heat wave and the phase shift to the wave. Measurements are performed in a cryostat between 10 K and room temperature.
Alpha channeling with high-field launch of lower hybrid waves
Ochs, I. E.; Bertelli, N.; Fisch, N. J.
2015-11-04
Although lower hybrid waves are effective at driving currents in present-day tokamaks, they are expected to interact strongly with high-energy particles in extrapolating to reactors. In the presence of a radial alpha particle birth gradient, this interaction can take the form of wave amplification rather than damping. While it is known that this amplification more easily occurs when launching from the tokamak high-field side, the extent of this amplification has not been made quantitative. Here, by tracing rays launched from the high- field-side of a tokamak, the required radial gradients to achieve amplification are calculated for a temperature and densitymore » regime consistent with a hot-ion-mode fusion reactor. As a result, these simulations, while valid only in the linear regime of wave amplification, nonetheless illustrate the possibilities for wave amplification using high-field launch of the lower hybrid wave.« less
Turbulence and Biological Productivity at Dongsha Reef in the S. China Sea.
NASA Astrophysics Data System (ADS)
St Laurent, L.
2016-02-01
The combination of the Kuroshio Current, strong tides, topography, and stratification make the South China Sea one of the most energetic energy cascade environments in the global ocean. Internal waves generated in the Luzon Strait emit into the South China Sea as solitons, and propagate until they dissipate along the continental shelves of China and Vietnam. The abrupt conversion of solitons to nonlinear wave trains occurs as the waves pass onto the Dongsha Plateau. The Dongsha Reef at the center of the Plateau is directly in the path of the incoming waves. A measurement program during 2015 documented the energetic turbulence that results as internal waves collide with the Reef. Glider based measurements of microstructure and optical properties showed that turbulent mixing and transport are correlated to biological productivity. It is speculated that the existence of the Reef itself is the result of the breaking internal waves, which moderate the temperature and nutrient levels.
Trend analysis of regional heat wave warning using RegCM simulations
NASA Astrophysics Data System (ADS)
Pongracz, R.; Bartholy, J.; Bartha, E. B.; Torek, O.; Torma, Cs.
2010-09-01
Heat wave events are important temperature-related climatological extremes due to their impacts on human health. In the future, they are very likely to occur more frequently and more intensely not only in the Carpathian Basin, but in most regions of the world because of global warming. In order to develop adaptation and mitigation strategies on local scale, it is essential to analyze the projected changes related to heat waves. In Hungary, three categories of heat wave warning are applied. They are associated to the daily mean temperature values. (i) Warning category 1 is issued when the daily mean temperature is larger than 25 °C. (ii) Warning category 2 is issued when the daily mean temperature for at least 3 consecutive days is larger than 25 °C. (iii) Warning category 3 is issued when the daily mean temperature for at least 3 consecutive days is larger than 27 °C. In this poster, frequency of these conditions are analyzed using regional climate model experiments of model RegCM with 10-km horizontal resolution adapted at the Department of Meteorology, Eotvos Lorand University in the frame of the CECILIA EU-project. The model RegCM is a 3-dimensional, sigma-coordinate, primitive equation model, and it was originally developed by Giorgi et al. Currently, it is available from the ICTP (International Centre for Theoretical Physics). The initial and lateral boundary conditions of the fine-resolution experiments have been provided by the global climate model ECHAM for the A1B emission scenario for three different time slices (1961-1990, 2021-2050, and 2071-2100).
Heating mechanisms of the solar corona
SAKURAI, Takashi
2017-01-01
The solar corona is a tenuous outer atmosphere of the Sun. Its million-degree temperature was discovered spectroscopically in the 1940s, but its origin has been debated since then without complete convergence. Currently there are two classes of models; the wave theory and the microflare/nanoflare theory. Both models have merits and disadvantages, but the essential issues are nearly pinned down. Recent revival of the wave theory is one of the many contributions from Japanese solar observing satellite Hinode launched in 2006. PMID:28190871
Ultrabright continuously tunable terahertz-wave generation at room temperature
Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki
2014-01-01
The hottest frequency region in terms of research currently lies in the ‘frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm2, brightness temperature of ~1018 K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~1016 K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region. PMID:24898269
Ultrabright continuously tunable terahertz-wave generation at room temperature.
Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki
2014-06-05
The hottest frequency region in terms of research currently lies in the 'frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm(2), brightness temperature of ~10(18) K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~10(16) K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region.
NASA Astrophysics Data System (ADS)
Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Du, J.; Le Contel, O.; Wang, X.; Deng, X.; Fu, H.; Zhou, M.; Shi, Q.; Breuillard, H.; Pang, Y.; Yu, X.; Wang, D.
2017-12-01
Magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region of the magnetic hole and a peak in the outer region of the magnetic hole. There is an enhancement in the perpendicular electron fluxes at 90° pitch angles inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations. We perform a statistically study using high time solution data from the MMS mission. The magnetic holes with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside the holes. Electron fluxes at 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed the magnetic holes seem to be best explained as electron vortex magnetic holes. It is furthermore shown that the magnetic holes are likely to heat and accelerate the electrons. We also investigate the coupling between whistler waves and electron vortex magnetic holes. These whistler waves can be locally generated inside electron vortex magnetic holes by electron temperature anisotropic instability.
Polarization and wavelength diversities of Gulf Stream fronts imaged by AIRSAR
NASA Technical Reports Server (NTRS)
Lee, J. S.; Jansen, R. W.; Marmorino, G. O.; Chubb, S. R.
1995-01-01
During the 1990 Gulf Stream Experiment, NASA/JPL AIRSAR imaged the north edge of the Gulf Stream near the coast of Virginia. Simultaneous in-situ measurements of currents, temperatures, salinities, etc. were made for several crossings of the north edge by the R/V Cape Henlopen. Measurements identified two fronts with shearing and converging flows. The polarimetric SAR images from the fronts showed two bright linear features. One of them corresponds to the temperature front, which separated the warm Gulf Stream water to the south from a cool, freshwater filament to the north. The other line, located about 8 km north of the temperature front, is believed to correspond to the velocity front between the filament and the slope water. At these fronts, wave-current interactions produced narrow bands of steep and breaking waves manifesting higher radar returns in polarimetric SAR images. In general, our AIRSAR imagery shows that the signal-to-clutter ratio of radar cross sections for the temperature front is higher than that of the velocity front. In this paper, we study the polarization and wavelength diversities of radar response of these two fronts using the P-, L-, and C-Band Polarimetric SAR data. The north-south flight path of the AIRSAR crossed the temperature front several times and provided valuable data for analysis. Three individual passes are investigated. We found that for the temperature front, the cross-pol (HV) responses are much higher than co-pol responses (VV and HH), and that P-Band HV has the highest signal to clutter ratio. For the velocity front, the ratio is the strongest in P-Band VV, and it is indistinguishable for all polarizations in C-Band. The radar cross sections for all three polarization (HH, HV, and VV) and for all three bands are modelled using an ocean wave model and a composite Bragg scattering model. In our initial investigations, the theoretical model agrees qualitatively with the AIRSAR observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hau, L.-N.; Department of Physics, National Central University, Jhongli, Taiwan; Lai, Y.-T.
Harris-type current sheets with the magnetic field model of B-vector=B{sub x}(z)x-caret+B{sub y}(z)y-caret have many important applications to space, astrophysical, and laboratory plasmas for which the temperature or pressure usually exhibits the gyrotropic form of p{r_reversible}=p{sub Parallel-To }b-caretb-caret+p{sub Up-Tack }(I{r_reversible}-b-caretb-caret). Here, p{sub Parallel-To} and p{sub Up-Tack} are, respectively, to be the pressure component along and perpendicular to the local magnetic field, b-caret=B-vector/B. This study presents the general formulation for magnetohydrodynamic (MHD) wave propagation, fire-hose, and mirror instabilities in general Harris-type current sheets. The wave equations are expressed in terms of the four MHD characteristic speeds of fast, intermediate, slow, and cuspmore » waves, and in the local (k{sub Parallel-To },k{sub Up-Tack },z) coordinates. Here, k{sub Parallel-To} and k{sub Up-Tack} are, respectively, to be the wave vector along and perpendicular to the local magnetic field. The parameter regimes for the existence of discrete and resonant modes are identified, which may become unstable at the local fire-hose and mirror instability thresholds. Numerical solutions for discrete eigenmodes are shown for stable and unstable cases. The results have important implications for the anomalous heating and stability of thin current sheets.« less
Time-series Analysis of Heat Waves and Emergency Department Visits in Atlanta, 1993 to 2012
Chen, Tianqi; Sarnat, Stefanie E.; Grundstein, Andrew J.; Winquist, Andrea
2017-01-01
Background: Heat waves are extreme weather events that have been associated with adverse health outcomes. However, there is limited knowledge of heat waves’ impact on population morbidity, such as emergency department (ED) visits. Objectives: We investigated associations between heat waves and ED visits for 17 outcomes in Atlanta over a 20-year period, 1993–2012. Methods: Associations were estimated using Poisson log-linear models controlling for continuous air temperature, dew-point temperature, day of week, holidays, and time trends. We defined heat waves as periods of ≥2 consecutive days with temperatures beyond the 98th percentile of the temperature distribution over the period from 1945–2012. We considered six heat wave definitions using maximum, minimum, and average air temperatures and apparent temperatures. Associations by heat wave characteristics were examined. Results: Among all outcome-heat wave combinations, associations were strongest between ED visits for acute renal failure and heat waves defined by maximum apparent temperature at lag 0 [relative risk (RR) = 1.15; 95% confidence interval (CI): 1.03–1.29], ED visits for ischemic stroke and heat waves defined by minimum temperature at lag 0 (RR = 1.09; 95% CI: 1.02–1.17), and ED visits for intestinal infection and heat waves defined by average temperature at lag 1 (RR = 1.10; 95% CI: 1.00–1.21). ED visits for all internal causes were associated with heat waves defined by maximum temperature at lag 1 (RR = 1.02; 95% CI: 1.00, 1.04). Conclusions: Heat waves can confer additional risks of ED visits beyond those of daily air temperature, even in a region with high air-conditioning prevalence. https://doi.org/10.1289/EHP44 PMID:28599264
33 CFR 155.1020 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... not limited to, significant wave height, ice, temperature, weather-related visibility, and currents.... Animal fat means a non-petroleum oil, fat, or grease derived from animals and not specifically identified...-based. It includes, but is not limited to, animal fats and vegetable oils. Ocean means the open ocean...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochs, I. E.; Bertelli, N.; Fisch, N. J.
Although lower hybrid waves are effective at driving currents in present-day tokamaks, they are expected to interact strongly with high-energy particles in extrapolating to reactors. In the presence of a radial alpha particle birth gradient, this interaction can take the form of wave amplification rather than damping. While it is known that this amplification more easily occurs when launching from the tokamak high-field side, the extent of this amplification has not been made quantitative. Here, by tracing rays launched from the high- field-side of a tokamak, the required radial gradients to achieve amplification are calculated for a temperature and densitymore » regime consistent with a hot-ion-mode fusion reactor. As a result, these simulations, while valid only in the linear regime of wave amplification, nonetheless illustrate the possibilities for wave amplification using high-field launch of the lower hybrid wave.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochs, I. E.; Bertelli, N.; Fisch, N. J.
Although lower hybrid waves are effective at driving currents in present-day tokamaks, they are expected to interact strongly with high-energy particles in extrapolating to reactors. In the presence of a radial alpha particle birth gradient, this interaction can take the form of wave amplification rather than damping. While it is known that this amplification more easily occurs when launching from the tokamak high-field side, the extent of this amplification has not been made quantitative. Here, by tracing rays launched from the high-field-side of a tokamak, the required radial gradients to achieve amplification are calculated for a temperature and density regimemore » consistent with a hot-ion-mode fusion reactor. These simulations, while valid only in the linear regime of wave amplification, nonetheless illustrate the possibilities for wave amplification using high-field launch of the lower hybrid wave.« less
Broad-gain (Δλ/λ0~0.4), temperature-insensitive (T<0~510K) quantum cascade lasers.
Fujita, Kazuue; Furuta, Shinichi; Dougakiuchi, Tatsuo; Sugiyama, Atsushi; Edamura, Tadataka; Yamanishi, Masamichi
2011-01-31
Broad-gain operation of λ~8.7 μm quantum cascade lasers based on dual-upper-state to multiple-lower-state transition design is reported. The devices exhibit surprisingly wide (~500 cm(-1)) electroluminescence spectra which are very insensitive to voltage and temperature changes above room temperature. With recourse to the temperature-insensitivity of electroluminescence spectra, the lasers demonstrate an extremely-weak temperature-dependence of laser performances: T0-value of 510 K, associated with a room temperature threshold current density of 2.6 kA/cm2. In addition, despite such wide gain spectra, room temperature, continuous wave operation of the laser with buried hetero structure is achieved.
Development of an Inductively Coupled Thermometer for a Cryogenic Half-Wave Plate
NASA Astrophysics Data System (ADS)
Madurowicz, Alexander; Kusaka, Akito
2017-01-01
The current state of Cosmic Microwave Background (CMB) research has focused much attention on the measurement of polarization. In an effort to modulate the CMB polarization while also minimizing photon noise due to thermal emission, we are developing a sapphire half-wave plate (HWP) cooled to 50 K rotating at 2 Hz on a superconducting magnetic levitating bearing. In order to measure the temperature of the rotor without making physical contact, we designed an inductively coupled cryogenic thermometer. The complex impedance of the circuit has a resonant peak when driven around 1 MHz. The width of this resonance is dependent on the value of the resistor, which varies with temperature and functions as a thermometer once calibrated. In this talk, we will present results from stationary measurements of this impedance and discuss the temperature accuracy of this thermometer, as well as a preliminary circuit design to measure this impedance during the HWP rotation.
Interband cascade lasers with >40% continuous-wave wallplug efficiency at cryogenic temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canedy, C. L.; Kim, C. S.; Merritt, C. D.
2015-09-21
Broad-area 10-stage interband cascade lasers (ICLs) emitting at λ = 3.0–3.2 μm are shown to maintain continuous-wave (cw) wallplug efficiencies exceeding 40% at temperatures up to 125 K, despite having a design optimized for operation at ambient and above. The cw threshold current density at 80 K is only 11 A/cm{sup 2} for a 2 mm cavity with anti-reflection/high-reflection coatings on the two facets. The external differential quantum efficiency for a 1-mm-long cavity with the same coatings is 70% per stage at 80 K, and still above 65% at 150 K. The results demonstrate that at cryogenic temperatures, where free carrier absorption losses are minimized, ICLs can convert electricalmore » to optical energy nearly as efficiently as the best specially designed intersubband-based quantum cascade lasers.« less
Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Luyi
2013-05-17
Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstrationmore » and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly suppressed by electron-electron interactions, leading to remarkable resistance to diffusive spreading of the drifting pulse of spin polarization. Finally, we show that spin helices continue propagate at the same speed as the Fermi sea even when the electron drift velocity exceeds the Fermi velocity of 107 cm s -1.« less
Switching of the Spin-Density-Wave in CeCoIn5 probed by Thermal Conductivity
NASA Astrophysics Data System (ADS)
Kim, Duk Y.; Lin, Shi-Zeng; Weickert, Franziska; Bauer, Eric D.; Ronning, Filip; Thompson, Joe D.; Movshovich, Roman
Unconventional superconductor CeCoIn5 orders magnetically in a spin-density-wave (SDW) in the low-temperature and high-field corner of the superconducting phase. Recent neutron scattering experiment revealed that the single-domain SDW's ordering vector Q depends strongly on the direction of the magnetic field, switching sharply as the field is rotated through the anti-nodal direction. This switching may be manifestation of a pair-density-wave (PDW) p-wave order parameter, which develops in addition to the well-established d-wave order parameter due to the SDW formation. We have investigated the hypersensitivity of the magnetic domain with a thermal conductivity measurement. The heat current (J) was applied along the [110] direction such that the Q vector is either perpendicular or parallel to J, depending on the magnetic field direction. A discontinuous change of the thermal conductivity was observed when the magnetic field is rotated around the [100] direction within 0 . 2° . The thermal conductivity with the Q parallel to the heat current (J ∥Q) is approximately 15% lager than that with the Q perpendicular to the heat current (J ⊥Q). This result is consistent with additional gapping of the nodal quasiparticle by the p-wave PDW coupled to SDW. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.
Effects of current on droplet generation and arc plasma in gas metal arc welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, J.; Tsai, H. L.
2006-09-01
In gas metal arc welding (GMAW), a technology using pulsed currents has been employed to achieve the one-droplet-per-pulse (ODPP) metal transfer mode with the advantages of low average currents, a stable and controllable droplet generation, and reduced spatter. In this paper, a comprehensive model was developed to study the effects of different current profiles on the droplet formation, plasma generation, metal transfer, and weld pool dynamics in GMAW. Five types of welding currents were studied, including two constant currents and three wave form currents. In each type, the transient temperature and velocity distributions of the arc plasma and the moltenmore » metal, and the shapes of the droplet and the weld pool were calculated. The results showed that a higher current generates smaller droplets, higher droplet frequency, and higher electromagnetic force that becomes the dominant factor detaching the droplet from the electrode tip. The model has demonstrated that a stable ODPP metal transfer mode can be achieved by choosing a current with proper wave form for given welding conditions.« less
Affect of Brush Seals on Wave Rotor Performance Assessed
NASA Technical Reports Server (NTRS)
1995-01-01
The NASA Lewis Research Center's experimental and theoretical research shows that wave rotor topping can significantly enhance gas turbine engine performance levels. Engine-specific fuel consumption and specific power are potentially enhanced by 15 and 20 percent, respectively, in small (e.g., 400 to 700 hp) and intermediate (e.g., 3000 to 5000 hp) turboshaft engines. Furthermore, there is potential for a 3- to 6-percent specific fuel consumption enhancement in large (e.g., 80,000 to 100,000 lbf) turbofan engines. This wave-rotor-enhanced engine performance is accomplished within current material-limited temperature constraints. The completed first phase of experimental testing involved a three-port wave rotor cycle in which medium total pressure inlet air was divided into two outlet streams, one of higher total pressure and one of lower total pressure. The experiment successfully provided the data needed to characterize viscous, partial admission, and leakage loss mechanisms. Statistical analysis indicated that wave rotor product efficiency decreases linearly with the rotor to end-wall gap, the square of the friction factor, and the square of the passage of nondimensional opening time. Brush seals were installed to further minimize rotor passage-to-cavity leakage. The graph shows the effect of brush seals on wave rotor product efficiency. For the second-phase experiment, which involves a four-port wave rotor cycle in which heat is added to the Brayton cycle in an external burner, a one-dimensional design/analysis code is used in conjunction with a wave rotor performance optimization scheme and a two-dimensional Navier-Stokes code. The purpose of the four-port experiment is to demonstrate and validate the numerically predicted four-port pressure ratio versus temperature ratio at pressures and temperatures lower than those that would be encountered in a future wave rotor/demonstrator engine test. Lewis and the Allison Engine Company are collaborating to investigate wave rotor integration in an existing turboshaft engine. Recent theoretical efforts include simulating wave rotor dynamics (e.g., startup and load-change transient analysis), modifying the one-dimensional wave rotor code to simulate combustion internal to the wave rotor, and developing an analytical wave rotor design/analysis tool based on macroscopic balances for parametric wave rotor/engine analysis.
Thermo-acousto-photonics for noncontact temperature measurement in silicon wafer processing
NASA Astrophysics Data System (ADS)
Suh, Chii-Der S.; Rabroker, G. Andrew; Chona, Ravinder; Burger, Christian P.
1999-10-01
A non-contact thermometry technique has been developed to characterize the thermal state of silicon wafers during rapid thermal processing. Information on thermal variations is obtained from the dispersion relations of the propagating waveguide mode excited in wafers using a non-contact, broadband optical system referred to as Thermal Acousto- Photonics for Non-Destructive Evaluation. Variations of thermo-mechanical properties in silicon wafers are correlated to temperature changes by performing simultaneous time-frequency analyses on Lamb waveforms acquired with a fiber-tip interferometer sensor. Experimental Lamb wave data collected for cases ranging from room temperature to 400 degrees C is presented. The results show that the temporal progressions of all spectral elements found in the fundamental antisymmetric mode are strong functions of temperature. This particular attribute is exploited to achieve a thermal resolution superior to the +/- 5 degrees C attainable through current pyrometric techniques. By analyzing the temperature-dependent group velocity of a specific frequency component over the temperature range considered and then comparing the results to an analytical model developed for silicon wafers undergoing annealing, excellent agreement was obtained. Presented results demonstrate the feasibility of applying laser-induced stress waves as a temperature diagnostic during rapid thermal processing.
Lower hybrid accessibility in a large, hot reversed field pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dziubek, R.A.
1995-02-01
Recent theoretical and experimental results indicate that driving a current in the outer radius of an RPF suppresses sawtooth activity and increases particle and energy confinement times. One candidate for a form of steady state current drive is the slow wave at the lower hybrid frequency. Here, the accessibility of such a wave in an RFP plasma is investigated theoretically, with focus on the RFX machine of Padua, Italy. To drive current, the slow wave with frequency between 1.0--1.5 GHz is considered where optimal Landau damping is desired at r/a {approximately} 0.7. By numerically determining the values of the wave`smore » perpendicular index of refraction which satisfy the hot plasma dispersion relation, regions of propagation and evanescence can be found. The path of the wave can then be traced over a contour map of these regions so that accessibility can be clearly seen. The possibility of mode conversion events can be ascertained by plotting the values of the perpendicular index of refraction for the fast and slow wave and observing convergence points. To locate regions of maximum Landau damping, a technique developed by Stix was adapted for use with the slow wave in an RFP plasma. Results show that the slow wave is accessible to the target region without mode conversion so long as the value of the parallel index of refraction is correctly chosen at the edge of the plasma. Landau damping can also be optimized with this method. In an RFP, 2--20% of the electron population consists of fast electrons. Because this species alters the total electron distribution function and raises the effective temperature in the outer regions of the plasma, its presence is expected to shift the location of ideal Landau damping.« less
Solar coronal loop heating by cross-field wave transport
NASA Technical Reports Server (NTRS)
Amendt, Peter; Benford, Gregory
1989-01-01
Solar coronal arches heated by turbulent ion-cyclotron waves may suffer significant cross-field transport by these waves. Nonlinear processes fix the wave-propagation speed at about a tenth of the ion thermal velocity, which seems sufficient to spread heat from a central core into a large cool surrounding cocoon. Waves heat cocoon ions both through classical ion-electron collisions and by turbulent stochastic ion motions. Plausible cocoon sizes set by wave damping are in roughly kilometers, although the wave-emitting core may be only 100 m wide. Detailed study of nonlinear stabilization and energy-deposition rates predicts that nearby regions can heat to values intermediate between the roughly electron volt foot-point temperatures and the about 100 eV core, which is heated by anomalous Ohmic losses. A volume of 100 times the core volume may be affected. This qualitative result may solve a persistent problem with current-driven coronal heating; that it affects only small volumes and provides no way to produce the extended warm structures perceptible to existing instruments.
Significant initial results from the environmental measurements experiment on ATS-6
NASA Technical Reports Server (NTRS)
Fritz, T. A.; Arthur, C. W.; Blake, J. B.; Coleman, P. J., Jr.; Corrigan, J. P.; Cummings, W. D.; Deforest, S. E.; Erickson, K. N.; Konradi, A.; Lennartsson, W.
1977-01-01
The Applications Technology Satellite (ATS-6), launched into synchronous orbit on 30 May 1974, carried a set of six particle detectors and a triaxial fluxgate magnetometer. The particle detectors were able to determine the ion and electron distribution functions from 1 to greater than 10 to the 8th power eV. It was found that the magnetic field is weaker and more tilted than predicted by models which neglect internal plasma and that there is a seasonal dependence to the magnitude and tilt. ATS-6 magnetic field measurements showed the effects of field-aligned currents associated with substorms, and large fluxes of field-aligned particles were observed with the particle detectors. Encounters with the plasmasphere revealed the existence of warm plasma with temperatures up to 30 eV. A variety of correlated waves in both the particles and fields were observed: pulsation continuous oscillations, seen predominantly in the plasmasphere bulge; ultralow frequency (ULF) standing waves; ring current proton ULF waves; and low frequency waves that modulate the energetic electrons. In additon, large scale waves on the energetic-ion-trapping boundary were observed, and the intensity of energetic electrons was modulated in association with the passage of sector boundaries of the interplanetary magnetic field.
Langmuir Probe Analysis of Maser-Driven Alfven Waves Using New LaB6 Cathode in LaPD
NASA Astrophysics Data System (ADS)
Clark, Mary; Dorfman, Seth; Zhu, Ziyan; Rossi, Giovanni; Carter, Troy
2015-11-01
Previous research in the Large Plasma Device shows that specific conditions on the magnetic field and cathode discharge voltage allow an Alfven wave to develop in the cathode-anode region. When the speed of bulk electrons (dependent on discharge voltage) entering the region exceeds the Alfven speed, the electrons can excite a wave. This phenomenon mimics one proposed to exist in the Earth's ionosphere. Previous experiments used a cathode coated with Barium Oxide, and this project uses a new cathode coated with Lanthanum Hexaboride (LaB6). The experiment seeks to characterize the behavior of plasmas generated with the LaB6 source, as well as understand properties of the driven wave when using the new cathode. Langmuir probes are used to find electron temperature, ion saturation current, and plasma density. These parameters determine characteristics of the wave. Preliminary analysis implies that density increases with LaB6 discharge voltage until 170 V, where it levels off. A linear increase in density is expected; the plateau implies cathode power does not ionize the plasma after 170 V. It is possible the power is carried out by the generated Alfven wave, or heats the plasma or cathode. This ``missing'' power is currently under investigation. Work funded by DOE and NSF.
Swept-Ramp Detonation Initiation Performance in a High-Pressure Pulse Detonation Combustor
2010-12-01
conditions at sea level, but at elevated temperatures of 300–500°F in the combustor. The current work was motivated by a need to experimentally...The current work was motivated by a need to experimentally evaluate the detonation initiation performance of a PDC at elevated combustor pressures...High-Speed Propulsion Technologies (After [3]) .....................2 Figure 2. Stationary One-Dimensional Combustion Wave Model (From [7
Arnal, Bastien; Pernot, Mathieu; Tanter, Mickael
2011-08-01
The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is currently hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to a precise mapping of the lesion. HIFU treatment and monitoring were respectively performed using a confocal setup consisting of a 2.5-MHz single element transducer focused at 34 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Ultrasound-based strain imaging was combined with shear wave imaging on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created with pushing beams of 100 μs at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Thus, elasticity and strain mapping was achieved every 3 s, leading to real-time monitoring of the treatment. When thermal damage occurs, tissue stiffness was found to increase up to 4-fold and strain imaging showed strong shrinkages that blur the temperature information. We show that strain imaging elastograms are not easy to interpret for accurate lesion characterization, but SWI provides a quantitative mapping of the thermal lesion. Moreover, the concept of shear wave thermometry (SWT) developed in the companion paper allows mapping temperature with the same method. Combined SWT and shear wave imaging can map the lesion stiffening and temperature outside the lesion, which could be used to predict the eventual lesion growth by thermal dose calculation. Finally, SWI is shown to be robust to motion and reliable in vivo on sheep muscle.
Reversal of Thermoelectric Current in Tubular Nanowires
NASA Astrophysics Data System (ADS)
Erlingsson, Sigurdur I.; Manolescu, Andrei; Nemnes, George Alexandru; Bardarson, Jens H.; Sanchez, David
2017-07-01
We calculate the charge current generated by a temperature bias between the two ends of a tubular nanowire. We show that in the presence of a transversal magnetic field the current can change sign; i.e., electrons can either flow from the hot to the cold reservoir, or in the opposite direction, when the temperature bias increases. This behavior occurs when the magnetic field is sufficiently strong, such that Landau and snaking states are created, and the energy dispersion is nonmonotonic with respect to the longitudinal wave vector. The sign reversal can survive in the presence of impurities. We predict this result for core-shell nanowires, for uniform nanowires with surface states due to the Fermi level pinning, and for topological insulator nanowires.
NASA Astrophysics Data System (ADS)
van Haren, Hans; Duineveld, Gerard; de Stigter, Henko
2017-09-01
Rainbow Ridge, a 1950 m deep upthrusted ultramafic block along the axis of the Mid-Atlantic Ridge, has an active hydrothermal vent system at 2400 m on its western slope. However, within 1 km from the vent excessive temperatures are barely measurable, probably due to strong turbulent mixing. This mixing is studied here using a 400 m long high-resolution temperature sensor array moored with a 600 m ranging 75 kHz acoustic Doppler current profiler. Rich internal wave turbulence was recorded, characterized by 100-200 m upshoots and >200 m large overturning in particular near the end of the warming phase of the up and down moving tide. These highly nonlinear internal waves of tides interacting with buoyancy frequency waves extend up to 400 m above the sloping bottom of the ridge. While a turbulent "bottom boundary layer" could barely be defined, the more intense turbulence higher up in the water column is suggested to lead to the strong dispersion of the hydrothermal plume.
Developing a Repertoire of Activities for Teaching Physical Science.
ERIC Educational Resources Information Center
Cain, Peggy W.
This activity manual is divided into 15 units which focus on: the nature of science; metric measurements; properties of matter; energy; atomic structure; chemical reactions; acids, bases, and salts; temperature and heat; readioactivity; mechanics; wave motion, sound, and light; static charges and current electricity magnetism and electromagnetism;…
Simulated heat waves affected alpine grassland only in combination with drought.
De Boeck, Hans J; Bassin, Seraina; Verlinden, Maya; Zeiter, Michaela; Hiltbrunner, Erika
2016-01-01
The Alpine region is warming fast, and concurrently, the frequency and intensity of climate extremes are increasing. It is currently unclear whether alpine ecosystems are sensitive or resistant to such extremes. We subjected Swiss alpine grassland communities to heat waves with varying intensity by transplanting monoliths to four different elevations (2440-660 m above sea level) for 17 d. Half of these were regularly irrigated while the other half were deprived of irrigation to additionally induce a drought at each site. Heat waves had no significant impacts on fluorescence (Fv /Fm , a stress indicator), senescence and aboveground productivity if irrigation was provided. However, when heat waves coincided with drought, the plants showed clear signs of stress, resulting in vegetation browning and reduced phytomass production. This likely resulted from direct drought effects, but also, as measurements of stomatal conductance and canopy temperatures suggest, from increased high-temperature stress as water scarcity decreased heat mitigation through transpiration. The immediate responses to heat waves (with or without droughts) recorded in these alpine grasslands were similar to those observed in the more extensively studied grasslands from temperate climates. Responses following climate extremes may differ in alpine environments, however, because the short growing season likely constrains recovery. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Studies of waves and instabilities using increased beta, warm ion plasmas in LAPD
NASA Astrophysics Data System (ADS)
Carter, Troy; Dorfman, Seth; Gekelman, Walter; Vincena, Steve; van Compernolle, Bart; Tripathi, Shreekrishna; Pribyl, Pat; Morales, George
2015-11-01
A new plasma source based on a Lanthanum Hexaboride (LAB6) emissive cathode has been developed and installed on the LArge Plasma Device (LAPD) at UCLA. The new source provides a much higher discharge current density (compared to the standard LAPD Barium Oxide source) resulting in a factor of ~ 50 increase in plasma density and a factor of ~ 2 - 3 increase in electron temperature. Due to the increased density the ion-electron energy exchange time is shorter in the new plasma, resulting in warm ions (measured spectroscopically to be ~ 5 - 6 eV, up from <~ 1 eV in the standard source plasma). This increased pressure combined with lowered magnetic field provides access to magnetized plasmas with β up to order unity. Topics under investigation include the physics of Alfvén waves in increased β plasmas (dispersion and kinetic damping on ions), electromagnetic effects and magnetic transport in drift-Alfvén wave turbulence, and the excitation of ion-temperature-anisotropy driven modes such as the mirror and firehose instabilities. The capabilities of the new source will be discussed along with initial experimental resuls on electromagnetic drift-Alfvén wave turbulence and Alfvén wave propagation with increased plasma β. Supported by NSF and DOE.
High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xuemin; Shen, Changle; Jiang, Tao
2016-07-15
Terahertz quantum cascade lasers with a record output power up to ∼0.23 W in continuous wave mode were obtained. We show that the optimal 2.9-mm-long device operating at 3.11 THz has a low threshold current density of 270 A/cm{sup 2} at ∼15 K. The maximum operating temperature arrived at ∼65 K in continuous wave mode and the internal quantum efficiencies decreased from 0.53 to 0.19 for the devices with different cavity lengths. By using one convex lens with the effective focal length of 13 mm, the beam profile was collimated to be a quasi Gaussian distribution.
Thermal targets for satellite calibration
NASA Astrophysics Data System (ADS)
Villa-Aleman, Eliel; Garrett, Alfred J.; Kurzeja, Robert J.; O'Steen, Byron L.; Pendergast, Malcolm M.
2001-03-01
The Savannah River Technology Center (SRTC) is currently calibrating the Multispectral Thermal Imager (MTI) satellite sponsored by the Department of Energy. The MTI imager is a research and development project with 15 wavebands in the visible, near-infrared, short-wave infrared, mid-wave infrared and long-wave infrared spectral regions. A plethora of targets with known temperatures such as power plant heated lakes, volcano lava vents, desert playas and aluminized Mylar tarps are being used in the validation of the five thermal bands of the MTI satellite. SRTC efforts in the production of cold targets with aluminized Mylar tarps will be described. Visible and thermal imagery and wavelength dependent radiance measurements of the calibration targets will be presented.
NASA Astrophysics Data System (ADS)
Trowbridge, J. H.; Butman, B.; Limeburner, R.
1994-08-01
Time-series measurements of current velocity, optical attenuation and surface wave intensity obtained during the Sediment Transport Events on Shelves and Slopes (STRESS) experiments, combined with shipboard measurements of conductivity, temperature and optical attenuation obtained during the Shelf Mixed Layer Experiment (SMILE), provide a description of the sediment concentration field over the central and outer shelf off northern California. The questions addressed are: (1) existence and characteristics of bottom nepheloid layers and their relationship to bottom mixed layers; (2) characteristics of temporal fluctuations in sediment concentration and their relationship to waves and currents; (3) spatial scales over which suspended sediment concentrations vary horizontally; and (4) vertical distribution of suspended sediment.
NASA Technical Reports Server (NTRS)
Scudder, J. D.; Aggson, T. L.; Mangeney, A.; Lacombe, C.; Harvey, C. C.
1986-01-01
Data collected by the ISEE dual-spacecraft mission (on November 7, 1977) on a slowly moving, supercritical, high-beta, quasi-perpendicular bow shock are presented, and the local geometry, spatial scales, and stationarity of this shock wave are assessed in a self-consistent Rankine-Hugoniot-constrained frame of reference. Included are spatial profiles of the ac and dc magnetic and electric fields, electron and proton fluid velocities, current densities, electron and proton number densities, temperatures, pressures, and partial densities of the reflected protons. The observed layer profile is shown to be nearly phase standing and one-dimensional in a Rankine-Hugoniot frame, empirically determined by the magnetofluid parameters outside the layer proper.
Remote and In Situ Observations of Surfzone and Inner-Shelf Tracer Dispersion
NASA Astrophysics Data System (ADS)
Hally-Rosendahl, K.; Feddersen, F.; Clark, D.; Guza, R. T.
2014-12-01
Surfzone and inner-shelf tracer dispersion was observed at the approximately alongshore-uniform Imperial Beach, California during the IB09 experiment. Rhodamine dye tracer, released continuously near the shoreline for several hours, was advected alongshore by breaking wave- and wind-driven currents, and ejected offshore from the surfzone to the inner-shelf by transient rips. Aerial multispectral imaging of inner-shelf dye concentration complemented in situ surfzone and inner-shelf measurements of dye, temperature, waves, and currents, providing tracer transport and dispersion observations spanning approximately 400 m cross-shore and 3 km alongshore. Combined in situ and aerial measurements approximately close a surfzone and inner-shelf dye budget. Mean alongshore dye dilution follows a power-law relationship, and both spatial and temporal dye variability decrease with distance from the release. Aerial images reveal coherent inner-shelf dye plume structures extending over 300 m offshore with alongshore length scales up to 400 m. Plume tracking among successive images yields inner-shelf alongshore advection rates consistent with in situ observations. Alongshore advection is faster within the surfzone than on the inner-shelf, and the leading alongshore edge of inner-shelf dye is due to local transient rip ejections from the surfzone. A combination of in situ and aerial surfzone and inner-shelf measurements are used to quantify cross- and alongshore dye tracer transports. This work is funded by NSF (including a Graduate Research Fellowship, Grant No. DGE1144086), ONR, and California Sea Grant. Figure: Aerial multispectral image of surface dye concentration (parts per billion, see colorbar) versus cross-shore coordinate x and alongshore coordinate y, approximately 5 hours after the start of a continuous dye release (green star). The mean shoreline is at x=0 m. Dark gray indicates the beach and a pier, and light gray indicates regions outside the imaged area. Black indicates unresolved regions due to foam from wave breaking. Vertical dashed line delimits the surfzone (SZ) and inner-shelf (IS). Yellow diamonds indicate locations of in situ measurements of dye, temperature, waves, and currents. Yellow circles indicate locations of in situ dye and temperature measurements.
Liu, Guanxiong; Debnath, Bishwajit; Pope, Timothy R; Salguero, Tina T; Lake, Roger K; Balandin, Alexander A
2016-10-01
The charge-density-wave (CDW) phase is a macroscopic quantum state consisting of a periodic modulation of the electronic charge density accompanied by a periodic distortion of the atomic lattice in quasi-1D or layered 2D metallic crystals. Several layered transition metal dichalcogenides, including 1T-TaSe 2 , 1T-TaS 2 and 1T-TiSe 2 exhibit unusually high transition temperatures to different CDW symmetry-reducing phases. These transitions can be affected by the environmental conditions, film thickness and applied electric bias. However, device applications of these intriguing systems at room temperature or their integration with other 2D materials have not been explored. Here, we demonstrate room-temperature current switching driven by a voltage-controlled phase transition between CDW states in films of 1T-TaS 2 less than 10 nm thick. We exploit the transition between the nearly commensurate and the incommensurate CDW phases, which has a transition temperature of 350 K and gives an abrupt change in current accompanied by hysteresis. An integrated graphene transistor provides a voltage-tunable, matched, low-resistance load enabling precise voltage control of the circuit. The 1T-TaS 2 film is capped with hexagonal boron nitride to provide protection from oxidation. The integration of these three disparate 2D materials in a way that exploits the unique properties of each yields a simple, miniaturized, voltage-controlled oscillator suitable for a variety of practical applications.
Low-Frequency Oceanographic Variability Near Flemish Cap and Sackville Spur
NASA Astrophysics Data System (ADS)
Layton, Chantelle; Greenan, Blair J. W.; Hebert, Dave; Kelley, Dan E.
2018-03-01
To address a need for science-based advice on issues of resource exploration, two oceanographic moorings were placed on the abyssal slope of northwest Flemish Cap from July 2013 to July 2014. These yielded some of the first long-term moored measurements of velocity, temperature, and salinity in the region. Hydrographic and lowered-ADCP measurements made during mooring deployment and recovery reveal that the deep Labrador Current flows approximately along isobaths between water depths of 1,200 and 2,200 m. However, these snapshots differ significantly, with stronger currents observed during the deployment survey. The mooring data, obtained near the 1,500 m isobath, reveal a complex temporal variation of the current. The velocity spectrum is dominated by a peak at a period of approximately 21 days, with power increasing with depth in the water column and varying through the year. In other boundary-current studies, variations in the several-week band have been attributed to baroclinic topographic Rossby waves, but with just two widely spaced moorings, we cannot infer the wave number and test for such waves using the dispersion relationship. However, an indirect estimate of wave number can be made by examining the variation of spectral power with depth, and doing this yields results that are reasonably consistent with a linear theory of baroclinic topographic Rossby waves for water of constant stratification over a planar slope. This agreement is somewhat surprising, given the simplicity of the theory and the complexity of the domain, but it appears to offer a clear indication of the importance of baroclinic vorticity dynamics in this region.
Josephson junctions of multiple superconducting wires
NASA Astrophysics Data System (ADS)
Deb, Oindrila; Sengupta, K.; Sen, Diptiman
2018-05-01
We study the spectrum of Andreev bound states and Josephson currents across a junction of N superconducting wires which may have s - or p -wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transport across such junctions. For N ≥3 , it is well known that Berry curvature terms contribute to the Josephson currents; we chart out situations where such terms can have relatively large effects. For a system of three s -wave or three p -wave superconductors, we provide analytic expressions for the Andreev bound-state energies and study the Josephson currents in response to a constant voltage applied across one of the wires; we find that the integrated transconductance at zero temperature is quantized to integer multiples of 4 e2/h , where e is the electron charge and h =2 π ℏ is Planck's constant. For a sinusoidal current with frequency ω applied across one of the wires in the junction, we find that Shapiro plateaus appear in the time-averaged voltage
Using AORSA to simulate helicon waves in DIIID and ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Cornwall H; Jaeger, E. F.; Berry, Lee Alan
2014-01-01
Recent efforts by Vdovin [1] and Prater [2] have shown that helicon waves (fast waves at ~30 ion cyclotron frequency harmonic) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIIID, ITER and DEMO. For DIIID scenarios, the ray tracing code GENRAY has been extensively used to study helicon current drive efficiency and location as a function many plasma parameters. has some limitations on absorption at high cyclotron harmonics, so the full wave code AORSA, which is applicable to arbitrary Larmor radius and can therefore resolve high ion cyclotron harmonics, has been recentlymore » used to validate the GENRAY model. It will be shown that the GENRAY and AORSA driven current drive profiles are comparable for the envisioned high temperature and density advanced scenarios for DIIID, where there is high single pass absorption due to electron Landau damping. AORSA results will be shown for various plasma parameters for DIIID and for ITER. Computational difficulties in achieving these AORSA results will also be discussed. * Work supported by USDOE Contract No. DE-AC05-00OR22725 [1] V. L. Vdovin, Plasma Physics Reports, V.39, No.2, 2013 [2] R. Prater et al, Nucl. Fusion, 52, 083024, 2014« less
Long wavelength vertical cavity surface emitting laser
Choquette, Kent D.; Klem, John F.
2005-08-16
Selectively oxidized vertical cavity lasers emitting near 1300 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave below, at and above room temperature. The lasers employ two n-type Al.sub.0.94 Ga.sub.0.06 As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the active region, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55.degree. C.
Parameterizing Gravity Waves and Understanding Their Impacts on Venus' Upper Atmosphere
NASA Technical Reports Server (NTRS)
Brecht, A. S.; Bougher, S. W.; Yigit, Erdal
2018-01-01
The complexity of Venus’ upper atmospheric circulation is still being investigated. Simulations of Venus’ upper atmosphere largely depend on the utility of Rayleigh Friction (RF) as a driver and necessary process to reproduce observations (i.e. temperature, density, nightglow emission). Currently, there are additional observations which provide more constraints to help characterize the driver(s) of the circulation. This work will largely focus on the impact parameterized gravity waves have on Venus’ upper atmosphere circulation within a three dimensional hydrodynamic model (Venus Thermospheric General Circulation Model).
Brillouin-Mandelstam spectroscopy of standing spin waves in a ferrite waveguide
NASA Astrophysics Data System (ADS)
Balinskiy, Michael; Kargar, Fariborz; Chiang, Howard; Balandin, Alexander A.; Khitun, Alexander G.
2018-05-01
This article reports results of experimental investigation of the spin wave interference over large distances in the Y3Fe2(FeO4)3 waveguide using Brillouin-Mandelstam spectroscopy. Two coherent spin waves are excited by the micro-antennas fabricated at the edges of the waveguide. The amplitudes of the input spin waves are adjusted to provide approximately the same intensity in the central region of the waveguide. The relative phase between the excited spin waves is controlled by the phase shifter. The change of the local intensity distribution in the standing spin wave is monitored using Brillouin-Mandelstam light scattering spectroscopy. Experimental data demonstrate the oscillation of the scattered light intensity depending on the relative phase of the interfering spin waves. The oscillations of the intensity, tunable via the relative phase shift, are observed as far as 7.5 mm away from the spin-wave generating antennas at room temperature. The obtained results are important for developing techniques for remote control of spin currents, with potential applications in spin-based memory and logic devices.
Millimeter-Wave Time Resolved Studies of the Formation and Decay of CO^+
NASA Astrophysics Data System (ADS)
Oesterling, Lee; Herbst, Eric; de Lucia, Frank
1998-04-01
Since the rate constants for ion-molecule interactions are typically much larger than neutral-neutral interactions, understanding ion-molecule interactions is essential to interpreting radio astronomical spectra from interstellar clouds and modeling the processes which lead to the formation of stars in these regions. We have developed a cell which allows us to study ion-molecule interactions in gases at low temperatures and pressures by using an electron gun technique to create ions. By centering our millimeter-wave source on a rotational resonance and gating the electron beam on and off, we are able to study the time-dependent rotational state distribution of the ion during its formation and decay, and so learn about excitation and relaxation processes as functions of temperature, pressure, electron beam energy, and electron beam current.
NASA Astrophysics Data System (ADS)
Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting
2010-11-01
An image spectrometer of a spatial remote sensing satellite requires shortwave band range from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper studies the model of noise for focal plane array (FPA) system, investigated the relationship with temperature and dark current noise, and adopts Incremental PID algorithm to generate PWM wave in order to control the temperature of the sensor. There are four modules compose of the FPGA module design. All of the modules are coded by VHDL and implemented in FPGA device APA300. Experiment shows the intelligent temperature control system succeeds in controlling the temperature of the sensor.
NASA Astrophysics Data System (ADS)
Mishin, E. V.; Burke, W. J.
2005-07-01
We compare plasma and field disturbances observed in the ring current/plasmasphere overlap region and in the conjugate ionosphere during the magnetic storm of 5 June 1991. Data come from the Combined Release and Radiation Effects Satellite (CRRES) flying in a geostationary transfer orbit and three satellites of the Defense Meteorological Satellite Program (DMSP) series in Sun-synchronous polar orbits. In the region between ring current nose structures and the electron plasma sheet, CRRES detected wave-like features in local electric and magnetic fields, embedded in structured cold plasmas. Mapped to the ionosphere, these fields should reflect structuring within subauroral plasma streams (SAPS). Indeed, during the period of interest, DMSP F8, F9, and F10 satellites observed highly structured SAPS in the evening ionosphere at topside altitudes. They were collocated with precipitating ring current ions, enhanced fluxes of suprathermal electrons and ions, elevated electron temperatures, and irregular plasma density troughs. Overall, these events are similar to electromagnetic structures observed by DMSP satellites within SAPS during recent geomagnetic storms (Mishin et al., 2003, 2004). Their features can be explained in terms of Alfvén and fast magnetosonic perturbations. We developed a scenario for the formation of elevated electron temperatures at the equatorward side of the SAPS. It includes a lower-hybrid drift instability driven by diamagnetic currents, consistent with strong lower- and upper-hybrid plasma wave activity and intense fluxes of the low-energy electrons and ions near the ring current's inner edge.
NASA Astrophysics Data System (ADS)
Prakash, Kumar Ravi; Nigam, Tanuja; Pant, Vimlesh
2018-04-01
A coupled atmosphere-ocean-wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB) during 10-14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere-ocean-wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere-ocean-wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave-current interaction and nonlinear wave-wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.
US Drought-Heat Wave Relationships in Past Versus Current Climates
NASA Astrophysics Data System (ADS)
Cheng, L.; Hoerling, M. P.; Eischeid, J.; Liu, Z.
2017-12-01
This study explores the relationship between droughts and heat waves over various regions of the contiguous United States that are distinguished by so-called energy-limited versus water-limited climatologies. We first examine the regional sensitivity of heat waves to soil moisture variability under 19th century climate conditions, and then compare to sensitivities under current climate that has been subjected to human-induced change. Our approach involves application of the conditional statistical framework of vine copula. Vine copula is known for its flexibility in reproducing various dependence structures exhibited by climate variables. Here we highlight its feature for evaluating the importance of conditional relationships between variables and processes that capture underlying physical factors involved in their interdependence during drought/heat waves. Of particular interest is identifying changes in coupling strength between heat waves and land surface conditions that may yield more extreme events as a result of land surface feedbacks. We diagnose two equilibrium experiments a coupled climate model (CESM1), one subjected to Year-1850 external forcing and the other to Year-2000 radiative forcing. We calculate joint heat wave/drought relationships for each climate state, and also calculate their change as a result of external radiative forcing changes across this 150-yr period. Our results reveal no material change in the dependency between heat waves and droughts, aside from small increases in coupling strength over the Great Plains. Overall, hot U.S. summer droughts of 1850-vintage do not become hotter in the current climate -- aside from the warming contribution of long-term climate change, in CESM1. The detectability of changes in hotter droughts as a consequence of anthropogenic forced changes in this single effect, i.e. coupling strength between soil moisture and hot summer temperature, is judged to be low at this time.
NASA Astrophysics Data System (ADS)
Frisch, P. C.; Ogasawara, K.; Livadiotis, G.; Slavin, J. D.; McComas, D. J.; Funsten, H. O.; Schwadron, N.; Heerikhuisen, J.
2017-12-01
Dusty bow waves are common around stars and anticipated around the heliosphere due to the deficit of low-mass interstellar dust grains in the inner heliosphere. Interstellar grains entering the heliosphere must first cross barriers of non-Maxwellian plasma in the heliosheath regions where collisional charging of grains is highly effective. IBEX measures 0.1-6 keV ENAs in the heliosheath plasma, providing an in situ sample of the heliosheath plasma thermodynamics that can be used for grain-charging calculations. Plasma in three-quarters of the sky can be described with a stationary state kappa-distribution, giving predictions for kappa, kappa-distribution temperature, and plasma density [1]. This thermodynamic description allows a more realistic evaluation of the dominant heliosheath electron and ion currents, and hence also grain gyroradii and exclusion from the heliosphere. At the highest temperatures ion collisional currents dominate grain charging; at lower temperatures collisional electron currents are more important together with the photoelectric ejection of electrons. An absence of data on the thermodynamical state of heliosheath electrons has led to the assumption of similar thermodynamic parameters for the electron and ion populations. The balance between electron, proton and photoionization currents on the grains then yield the equilibrium grain charges. Grain gyroradii calculated based on these charging currents differentiate between interstellar grains able to penetrate the heliosphere, versus those that are excluded, and allow predictions of properties of the dusty bow wave likely to be present around the heliosphere. The smallest grains are excluded and grains at the high latitude edges of the described regions tend to have systematically lower grain potentials. Grain charging calculations utilize the modeling of [2]. [1] Livadiotis et al., ApJ 734, 1 (2011). [2] Weingartner Draine, ApJSS 263 (2001)
NASA Astrophysics Data System (ADS)
Warner, J. C.; Armstrong, B. N.; He, R.; Zambon, J. B.; Olabarrieta, M.; Voulgaris, G.; Kumar, N.; Haas, K. A.
2012-12-01
Understanding processes responsible for coastal change is important for managing both our natural and economic coastal resources. Coastal processes respond from both local scale and larger regional scale forcings. Understanding these processes can lead to significant insight into how the coastal zone evolves. Storms are one of the primary driving forces causing coastal change from a coupling of wave and wind driven flows. Here we utilize a numerical modeling approach to investigate these dynamics of coastal storm impacts. We use the Coupled Ocean - Atmosphere - Wave - Sediment Transport (COAWST) Modeling System that utilizes the Model Coupling Toolkit to exchange prognostic variables between the ocean model ROMS, atmosphere model WRF, wave model SWAN, and the Community Sediment Transport Modeling System (CSTMS) sediment routines. The models exchange fields of sea-surface temperature, ocean currents, water levels, bathymetry, wave heights, lengths, periods, bottom orbital velocities, and atmospheric surface heat and momentum fluxes, atmospheric pressure, precipitation, and evaporation. Data fields are exchanged using regridded flux conservative sparse matrix interpolation weights computed from the SCRIP spherical coordinate remapping interpolation package. We describe the modeling components and the model field exchange methods. As part of the system, the wave and ocean models run with cascading, refined, spatial grids to provide increased resolution, scaling down to resolve nearshore wave driven flows simulated by the vortex force formulation, all within selected regions of a larger, coarser-scale coastal modeling system. The ocean and wave models are driven by the atmospheric component, which is affected by wave dependent ocean-surface roughness and sea surface temperature which modify the heat and momentum fluxes at the ocean-atmosphere interface. We describe the application of the modeling system to several regions of multi-scale complexity to identify the significance of larger scale forcing cascading down to smaller scales and to investigate the interactions of the coupled system with increasing degree of model-model interactions. Three examples include the impact of Hurricane Ivan in 2004 in the Gulf of Mexico, Hurricane Ida in 2009 that evolved into a tropical storm on the US East coast, and passage of strong cold fronts across the US southeast. Results identify that hurricane intensity is extremely sensitive to sea-surface temperature, with a reduction in intensity when the atmosphere is coupled to the ocean model due to rapid cooling of the ocean from the surface through the mixed layer. Coupling of the ocean to the atmosphere also results in decreased boundary layer stress and coupling of the waves to the atmosphere results in increased sea-surface stress. Wave results are sensitive to both ocean and atmospheric coupling due to wave-current interactions with the ocean and wave-growth from the atmospheric wind stress. Sediment resuspension at regional scale during the hurricane is controlled by shelf width and wave propagation during hurricane approach. Results from simulation of passage of cold fronts suggest that synoptic meteorological systems can strongly impact surf zone and inner shelf response, therefore act as a strong driver for long term littoral sediment transport. We will also present some of the challenges faced to develop the modeling system.
Unidirectional THz radiation propagation in BiFeO3
NASA Astrophysics Data System (ADS)
Room, Toomas
The mutual coupling between magnetism and electricity present in many multiferroic materials permit the magnetic control of the electric polarization and the electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to write a magnetic state current-free by an electric voltage would provide a huge technological advantage. However, ME coupling changes the low energy electrodynamics of these materials in unprecedented way - optical ME effects give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. The transparent direction can be switched with dc magnetic or electric field, thus opening up new possibilities to manipulate the propagation of electromagnetic waves in multiferroic materials. We studied the unidirectional transmission of THz radiation in BiFeO3 crystals, the unique multiferroic compound offering a real potential for room temperature applications. The electrodynamics of BiFeO3 at 1THz and below is dominated by the spin wave modes of cycloidal spin order. We found that the optical magnetoelectric effect generated by spin waves in BiFeO3 is robust enough to cause considerable nonreciprocal directional dichroism in the GHz-THz range even at room temperature. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. Our work demonstrates that the nonreciprocal directional dichroism spectra of low energy excitations and their theoretical analysis provide microscopic model of ME couplings in multiferroic materials. Recent THz spectroscopy studies of multiferroic materials are an important step toward the realization of optical diodes, devices which transmit light in one but not in the opposite direction.
Self-consistent Model of Magnetospheric Electric Field, RC and EMIC Waves
NASA Technical Reports Server (NTRS)
Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.
2007-01-01
Electromagnetic ion cyclotron (EMIC) waves are an important magnetospheric emission, which is excited near the magnetic equator with frequencies below the proton gyro-frequency. The source of bee energy for wave growth is provided by temperature anisotropy of ring current (RC) ions, which develops naturally during inward convection from the plasma sheet These waves strongly affect the dynamic s of resonant RC ions, thermal electrons and ions, and the outer radiation belt relativistic electrons, leading to non-adiabatic particle heating and/or pitch-angle scattering and loss to the atmosphere. The rate of ion and electron scattering/heating is strongly controlled by the Wave power spectral and spatial distributions, but unfortunately, the currently available observational information regarding EMIC wave power spectral density is poor. So combinations of reliable data and theoretical models should be utilized in order to obtain the power spectral density of EMIC waves over the entire magnetosphere throughout the different storm phases. In this study, we present the simulation results, which are based on two coupled RC models that our group has developed. The first model deals with the large-scale magnetosphere-ionosphere electrodynamic coupling, and provides a self-consistent description of RC ions/electrons and the magnetospheric electric field. The second model is based on a coupled system of two kinetic equations, one equation describes the RC ion dynamics and another equation describes the power spectral density evolution of EMIC waves, and self-consistently treats a micro-scale electrodynamic coupling of RC and EMIC waves. So far, these two models have been applied independently. However, the large-scale magnetosphere-ionosphere electrodynamics controls the convective patterns of both the RC ions and plasmasphere altering conditions for EMIC wave-particle interaction. In turn, the wave induced RC precipitation Changes the local field-aligned current distributions and the ionospheric conductances, which are crucial for a large-scale electrodynamics. The initial results from this new self-consistent model of the magnetospheric electric field, RC and EMIC waves will be shown in this presentation.
Ambient temperature and added heat wave effects on hospitalizations in California from 1999 to 2009.
Sherbakov, Toki; Malig, Brian; Guirguis, Kristen; Gershunov, Alexander; Basu, Rupa
2018-01-01
Investigators have examined how heat waves or incremental changes in temperature affect health outcomes, but few have examined both simultaneously. We utilized distributed lag nonlinear models (DLNM) to explore temperature associations and evaluate possible added heat wave effects on hospitalizations in 16 climate zones throughout California from May through October 1999-2009. We define heat waves as a period when daily mean temperatures were above the zone- and month-specific 95th percentile for at least two consecutive days. DLNMs were used to estimate climate zone-specific non-linear temperature and heat wave effects, which were then combined using random effects meta-analysis to produce an overall estimate for each. With higher temperatures, admissions for acute renal failure, appendicitis, dehydration, ischemic stroke, mental health, non-infectious enteritis, and primary diabetes were significantly increased, with added effects from heat waves observed for acute renal failure and dehydration. Higher temperatures also predicted statistically significant decreases in hypertension admissions, respiratory admissions, and respiratory diseases with secondary diagnoses of diabetes, though heat waves independently predicted an added increase in risk for both respiratory types. Our findings provide evidence that both heat wave and temperature exposures can exert effects independently. Copyright © 2017 Elsevier Inc. All rights reserved.
Digital processing with single electrons for arbitrary waveform generation of current
NASA Astrophysics Data System (ADS)
Okazaki, Yuma; Nakamura, Shuji; Onomitsu, Koji; Kaneko, Nobu-Hisa
2018-03-01
We demonstrate arbitrary waveform generation of current using a GaAs-based single-electron pump. In our experiment, a digital processing algorithm known as delta-sigma modulation is incorporated into single-electron pumping to generate a density-modulated single-electron stream, by which we demonstrate the generation of arbitrary waveforms of current including sinusoidal, square, and triangular waves with a peak-to-peak amplitude of approximately 10 pA and an output bandwidth ranging from dc to close to 1 MHz. The developed current generator can be used as the precise and calculable current reference required for measurements of current noise in low-temperature experiments.
Optical diode effect at spin-wave excitations in the room-temperature multiferroic BiFeO 3.
Kezsmarki, I.; Nagel, U.; Bordacs, S.; ...
2015-09-15
The ability to read and write a magnetic state current-free by an electric voltage would provide a huge technological advantage. Dynamic or optical ME effects are equally interesting, because they give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. This phenomenon, if realized at room temperature, would allow the development of optical diodes which transmit unpolarized light in one, but not in the opposite, direction. Here, we report strong unidirectional transmission in the room-temperature multiferroic BiFeO 3 over the gigahertz-terahertz frequency range. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. Ourmore » findings are an important step toward the realization of optical diodes, supplemented by the ability to switch the transmission direction with a magnetic or electric field.« less
Identifying Changes in the Probability of High Temperature, High Humidity Heat Wave Events
NASA Astrophysics Data System (ADS)
Ballard, T.; Diffenbaugh, N. S.
2016-12-01
Understanding how heat waves will respond to climate change is critical for adequate planning and adaptation. While temperature is the primary determinant of heat wave severity, humidity has been shown to play a key role in heat wave intensity with direct links to human health and safety. Here we investigate the individual contributions of temperature and specific humidity to extreme heat wave conditions in recent decades. Using global NCEP-DOE Reanalysis II daily data, we identify regional variability in the joint probability distribution of humidity and temperature. We also identify a statistically significant positive trend in humidity over the eastern U.S. during heat wave events, leading to an increased probability of high humidity, high temperature events. The extent to which we can expect this trend to continue under climate change is complicated due to variability between CMIP5 models, in particular among projections of humidity. However, our results support the notion that heat wave dynamics are characterized by more than high temperatures alone, and understanding and quantifying the various components of the heat wave system is crucial for forecasting future impacts.
Added effect of heat wave on mortality in Seoul, Korea.
Lee, Won Kyung; Lee, Hye Ah; Lim, Youn Hee; Park, Hyesook
2016-05-01
A heat wave could increase mortality owing to high temperature. However, little is known about the added (duration) effect of heat wave from the prolonged period of high temperature on mortality and different effect sizes depending on the definition of heat waves and models. A distributed lag non-linear model with a quasi-Poisson distribution was used to evaluate the added effect of heat wave on mortality after adjusting for long-term and intra-seasonal trends and apparent temperature. We evaluated the cumulative relative risk of the added wave effect on mortality on lag days 0-30. The models were constructed using nine definitions of heat wave and two relationships (cubic spline and linear threshold model) between temperature and mortality to leave out the high temperature effect. Further, we performed sensitivity analysis to evaluate the changes in the effect of heat wave on mortality according to the different degrees of freedom for time trend and cubic spline of temperature. We found that heat wave had the added effect from the prolonged period of high temperature on mortality and it was considerable in the aspect of cumulative risk because of the lagged influence. When heat wave was defined with a threshold of 98th percentile temperature and ≥2, 3, and 4 consecutive days, mortality increased by 14.8 % (7.5-22.6, 95 % confidence interval (CI)), 18.1 % (10.8-26.0, 95 % CI), 18.1 % (10.7-25.9, 95 % CI), respectively, in cubic spline model. When it came to the definitions of 90th and 95th percentile, the risk increase in mortality declined to 3.7-5.8 % and 8.6-11.3 %, respectively. This effect was robust to the flexibility of the model for temperature and time trend, while the definitions of a heat wave were critical in estimating its relationship with mortality. This finding could help deepen our understanding and quantifying of the relationship between heat wave and mortality and select an appropriate definition of heat wave and temperature model in the future studies.
The correlation between the amplitude of Osborn wave and core body temperature.
Omar, Hesham R; Camporesi, Enrico M
2015-08-01
Several reports illustrate an inverse correlation between the Osborn wave (J wave) amplitude and core body temperature. We attempted to study the strength of this correlation. We reviewed all articles reporting hypothermic J waves from 1950-2014 for patient demographics, core body temperature in Celsius (°C), amplitude of the J wave in millimeters (mm), lead with the highest amplitude of J wave, presence of acidosis, PO2, electrolytes and outcome. In cases with more than one electrocardiogram (ECG), the respective core body temperature and J wave amplitude of each ECG were recorded. The main study outcome is to evaluate the correlation between the J wave amplitude and core body temperature in the admission ECG. We have also examined the strength of this relationship in cases with more than one ECG. We attempted to find the most frequent lead that recorded the highest amplitude of the J wave in addition to the correlation between the amplitude of J wave and pH. We found 64 articles comprising a total of 68 cases. When analyzing only cases with more than one reported ECG, there was a strong inverse correlation (r = - 0.682, p<0.001) between J wave amplitude and body temperature: however, when analyzing admission ECG of all cases, the correlation was only moderate (r = - 0.410, p<0.001). The lead with the highest amplitude of the J wave was V4 (44% of the cases, p<0.001) followed by V3 (23.7% of the cases, p<0.001). The amplitude of the J wave in the admission ECG of hypothermic patients may not accurately predict the core body temperature. © The European Society of Cardiology 2014.
The rise and fall of the "marine heat wave" off Western Australia during the summer of 2010/2011
NASA Astrophysics Data System (ADS)
Pearce, Alan F.; Feng, Ming
2013-02-01
Record high ocean temperatures were experienced along the Western Australian coast during the austral summer of 2010/2011. Satellite-derived sea surface temperature (SST) anomalies in February 2011 peaked at 3 °C above the long-term monthly means over a wide area from Ningaloo (22°S) to Cape Leeuwin (34°S) along the coast and out to > 200 km offshore. Hourly temperature measurements at a number of mooring sites along the coast revealed that the temperature anomalies were mostly trapped in the surface mixed layer, with peak nearshore temperatures rising to ~ 5 °C above average in the central west coastal region over a week encompassing the end of February and early March, resulting in some devastating fish kills as well as temporary southward range extensions of tropical fish species and megafauna such as whale sharks and manta rays. The elevated temperatures were a result of a combination of a record strength Leeuwin Current, a near-record La Niña event, and anomalously high air-sea heat flux into the ocean even though the SST was high. This heat wave was an unprecedented thermal event in Western Australian waters, superimposed on an underlying long-term temperature rise.
NASA Astrophysics Data System (ADS)
Jacobs, K. J. P.; Stevens, B. J.; Baba, R.; Wada, O.; Mukai, T.; Hogg, R. A.
2017-10-01
We report valley current characterisation of high current density InGaAs/AlAs/InP resonant tunnelling diodes (RTDs) grown by metal-organic vapour phase epitaxy (MOVPE) for THz emission, with a view to investigate the origin of the valley current and optimize device performance. By applying a dual-pass fabrication technique, we are able to measure the RTD I-V characteristic for different perimeter/area ratios, which uniquely allows us to investigate the contribution of leakage current to the valley current and its effect on the PVCR from a single device. Temperature dependent (20 - 300 K) characteristics for a device are critically analysed and the effect of temperature on the maximum extractable power (PMAX) and the negative differential conductance (NDC) of the device is investigated. By performing theoretical modelling, we are able to explore the effect of typical variations in structural composition during the growth process on the tunnelling properties of the device, and hence the device performance.
Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature
NASA Astrophysics Data System (ADS)
Austin, Ryan A.
2018-01-01
The effect of temperature on the dynamic flow behavior of aluminum is considered in the context of precursor wave decay measurements and simulations. In this regard, a dislocation-based model of high-rate metal plasticity is brought into agreement with previous measurements of evolving wave profiles at 300 to 933 K, wherein the amplification of the precursor structure with temperature arises naturally from the dislocation mechanics treatment. The model suggests that the kinetics of inelastic flow and stress relaxation are governed primarily by phonon scattering and radiative damping (sound wave emission from dislocation cores), both of which intensify with temperature. The manifestation of these drag effects is linked to low dislocation density ahead of the precursor wave and the high mobility of dislocations in the face-centered cubic lattice. Simulations performed using other typical models of shock wave plasticity do not reproduce the observed temperature-dependence of elastic/plastic wave structure.
and focuses on thermal system and economic analysis for low temperature and co-produced hydrothermal mechanical systems and economic analysis has led to his most recent work with the Marine and Hydrokinetic (MHK) team, where he is one of the lead techno-economic analysts for wave and current energy. His areas
Luminet, Jean-Pierre; Weeks, Jeffrey R; Riazuelo, Alain; Lehoucq, Roland; Uzan, Jean-Philippe
2003-10-09
The current 'standard model' of cosmology posits an infinite flat universe forever expanding under the pressure of dark energy. First-year data from the Wilkinson Microwave Anisotropy Probe (WMAP) confirm this model to spectacular precision on all but the largest scales. Temperature correlations across the microwave sky match expectations on angular scales narrower than 60 degrees but, contrary to predictions, vanish on scales wider than 60 degrees. Several explanations have been proposed. One natural approach questions the underlying geometry of space--namely, its curvature and topology. In an infinite flat space, waves from the Big Bang would fill the universe on all length scales. The observed lack of temperature correlations on scales beyond 60 degrees means that the broadest waves are missing, perhaps because space itself is not big enough to support them. Here we present a simple geometrical model of a finite space--the Poincaré dodecahedral space--which accounts for WMAP's observations with no fine-tuning required. The predicted density is Omega(0) approximately 1.013 > 1, and the model also predicts temperature correlations in matching circles on the sky.
Roux-Marchand, Thibaut; Beyssen, Denis; Sarry, Frederic; Elmazria, Omar
2015-04-01
When a microdroplet is put on the Rayleigh surface acoustic wave path, longitudinal waves are radiated into the liquid and induce several phenomena such as the wellknown surface acoustic wave streaming. At the same time, the temperature of the microdroplet increases as it has been shown. In this paper, we study the temperature uniformity of a microdroplet heated by Rayleigh surface acoustic wave for discrete microfluidic applications such as biological reactions. To precisely ascertain the temperature uniformity and not interfere with the biological reaction, we used an infrared camera. We then tested the temperature uniformity as a function of three parameters: the microdroplet volume, the Rayleigh surface acoustic wave frequency, and the continuous applied radio frequency power. Based on these results, we propose a new device structure to develop a future lab on a chip based on reaction temperatures.
Effects of waves on water dispersion in a semi-enclosed estuarine bay
NASA Astrophysics Data System (ADS)
Delpey, M. T.; Ardhuin, F.; Otheguy, P.
2012-04-01
The bay of Saint Jean de Luz - Ciboure is a touristic destination located in the south west of France on the Basque coast. This small bay is 1.5km wide for 1km long. It is semi-enclosed by breakwaters, so that the area is mostly protected from waves except in its eastern part, where wave breaking is regularly observed over a shallow rock shelf. In the rest of the area the currents are generally weak. The bay receives fresh water inflows from two rivers. During intense raining events, the rivers can introduce pollutants in the bay. The input of pollutants combined with the low level dynamic of the area can affect the water quality for several days. To study such a phenomenon, mechanisms of water dispersion in the bay are investigated. The present paper focuses on the effects of waves on bay dynamics. Several field experiments were conducted in the area, combining wave and current measurements from a set of ADCP and ADV, lagrangian difter experiments in the surfzone, salinity and temperature profile measurements. An analysis of this set of various data is provided. It reveals that the bay combines remarkable density stratification due to fresh water inflows and occasionally intense wave-induced currents in the surfzone. These currents have a strong influence on river plume dynamics when the sea state is energetic. Moreover, modifications of hydrodynamics in the bay passes are found to be remarkably correlated with sea state evolutions. This result suggests a significant impact of waves on the bay flushing. To further analyse these phenomena, a three dimensional numerical model of bay hydrodynamics is developed. The model aims at reproducing fresh water inflows combined with wind-, tide- and wave-induced currents and mixing. The model of the bay is implemented using the code MOHID , which has been modified to allow the three dimensional representation of wave-current interactions proposed by Ardhuin et al. [2008b] . The circulation is forced by the wave field modelled with the code WAVEWATCHIII . A first confrontation between model results and in situ observations is provided, showing a reasonable agreement. ----------------------------------------------------------- 1 Braunschweig, F., Chamble, P., Fernandes, L., Pina, P., Neves, R., The object-oriented design of the integrated modelling system MOHID, Computational Methods in Water Resources International Conference (North Carolina, USA: Chapel Hill). 2 Ardhuin, F., Rascle, N., Belibassakis, K. A., 2008b. Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Modelling 20, 35-60. 3 Tolman, H. L., 2009. User manual and system documentation of WAVEWATCHIIITM version3.14. Tech. Rep. 276, NOAA/NWS/NCEP/MMAB.
Stationary and oscillatory convection of binary fluids in a porous medium.
Augustin, M; Umla, R; Huke, B; Lücke, M
2010-11-01
We investigate numerically stationary convection and traveling wave structures of binary fluid mixtures with negative separation ratio in the Rayleigh-Bénard system filled with a porous medium. The bifurcation behavior of these roll structures is elucidated as well as the properties of the velocity, temperature, and concentration fields. Moreover, we discuss lateral averaged currents of temperature and concentration. Finally, we investigate the influence of the Lewis number, of the separation ratio, and of the normalized porosity on the bifurcation branches.
Magnon detection using a ferroic collinear multilayer spin valve.
Cramer, Joel; Fuhrmann, Felix; Ritzmann, Ulrike; Gall, Vanessa; Niizeki, Tomohiko; Ramos, Rafael; Qiu, Zhiyong; Hou, Dazhi; Kikkawa, Takashi; Sinova, Jairo; Nowak, Ulrich; Saitoh, Eiji; Kläui, Mathias
2018-03-14
Information transport and processing by pure magnonic spin currents in insulators is a promising alternative to conventional charge-current-driven spintronic devices. The absence of Joule heating and reduced spin wave damping in insulating ferromagnets have been suggested for implementing efficient logic devices. After the successful demonstration of a majority gate based on the superposition of spin waves, further components are required to perform complex logic operations. Here, we report on magnetization orientation-dependent spin current detection signals in collinear magnetic multilayers inspired by the functionality of a conventional spin valve. In Y 3 Fe 5 O 12 |CoO|Co, we find that the detection amplitude of spin currents emitted by ferromagnetic resonance spin pumping depends on the relative alignment of the Y 3 Fe 5 O 12 and Co magnetization. This yields a spin valve-like behavior with an amplitude change of 120% in our systems. We demonstrate the reliability of the effect and identify its origin by both temperature-dependent and power-dependent measurements.
A new instrument system to investigate sediment dynamics on continental shelves
Cacchione, D.A.; Drake, D.E.
1979-01-01
A new instrumented tripod, the GEOPROBE system, has been constructed and used to collect time-series data on physical and geological parameters that are important in bottom sediment dynamics on continental shelves. Simultaneous in situ digital recording of pressure, temperature, light scattering, and light transmission, in combination with current velocity profiles measured with a near-bottom vertical array of electromagnetic current meters, is used to correlate bottom shear generated by a variety of oceanic processes (waves, tides, mean flow, etc.) with incipient movement and resuspension of bottom sediment. A bottom camera system that is activated when current speeds exceed preset threshold values provides a unique method to identify initial sediment motion and bed form development. Data from a twenty day deployment of the GEOPROBE system in Norton Sound, Alaska, during the period September 24 - October 14, 1976 show that threshold conditions for sediment movement are commonly exceeded, even in calm weather periods, due to the additive effects of tidal currents, mean circulation, and surface waves. ?? 1979.
Charge density wave transition in single-layer titanium diselenide
Chen, P.; Chan, Y. -H.; Fang, X. -Y.; ...
2015-11-16
A single molecular layer of titanium diselenide (TiSe 2) is a promising material for advanced electronics beyond graphene--a strong focus of current research. Such molecular layers are at the quantum limit of device miniaturization and can show enhanced electronic effects not realizable in thick films. We show that single-layer TiSe 2 exhibits a charge density wave (CDW) transition at critical temperature T C=232±5 K, which is higher than the bulk T C=200±5 K. Angle-resolved photoemission spectroscopy measurements reveal a small absolute bandgap at room temperature, which grows wider with decreasing temperature T below T C in conjunction with the emergencemore » of (2 × 2) ordering. The results are rationalized in terms of first-principles calculations, symmetry breaking and phonon entropy effects. The behavior of the Bardeen-Cooper-Schrieffer (BCS) gap implies a mean-field CDW order in the single layer and an anisotropic CDW order in the bulk.« less
Solitary Wave in One-dimensional Buckyball System at Nanoscale
Xu, Jun; Zheng, Bowen; Liu, Yilun
2016-01-01
We have studied the stress wave propagation in one-dimensional (1-D) nanoscopic buckyball (C60) system by molecular dynamics (MD) simulation and quantitative modeling. Simulation results have shown that solitary waves are generated and propagating in the buckyball system through impacting one buckyball at one end of the buckyball chain. We have found the solitary wave behaviors are closely dependent on the initial temperature and impacting speed of the buckyball chain. There are almost no dispersion and dissipation of the solitary waves (stationary solitary wave) for relatively low temperature and high impacting speed. While for relatively high temperature and low impacting speed the profile of the solitary waves is highly distorted and dissipated after propagating several tens of buckyballs. A phase diagram is proposed to describe the effect of the temperature and impacting speed on the solitary wave behaviors in buckyball system. In order to quantitatively describe the wave behavior in buckyball system, a simple nonlinear-spring model is established, which can describe the MD simulation results at low temperature very well. The results presented in this work may lay a solid step towards the further understanding and manipulation of stress wave propagation and impact energy mitigation at nanoscale. PMID:26891624
NASA Astrophysics Data System (ADS)
Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter
2016-08-01
Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on water temperature distribution and heat exchange at regional scale (the Baltic Sea). Four scenarios—including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination these forcings—were simulated to test the impact of different terms on simulated temperature distribution. The scenario simulations were compared to a control simulation, which included a constant wave-breaking coefficient, but otherwise was without any wave effects. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwelling's. Overall, when all three wave effects were accounted for, did the estimates of temperature improve compared to control simulation. During the summer, the wave-induced water temperature changes were up to 1 °C. In northern parts of the Baltic Sea, a warming of the surface layer occurs in the wave included simulations in summer months. This in turn reduces the cold bias between simulated and measured data, e.g. the control simulation was too cold compared to measurements. The warming is related to sea-state dependent energy flux. This implies that a spatio-temporally varying wave-breaking coefficient is necessary, because it depends on actual sea state. Wave-induced cooling is mostly observed in near-coastal areas and is the result of intensified upwelling in the scenario, when Stokes-Coriolis forcing is accounted for. Accounting for sea-state dependent momentum flux results in modified heat exchange at the water-air boundary which consequently leads to warming of surface water compared to control simulation.
Modelling of the EAST lower-hybrid current drive experiment using GENRAY/CQL3D and TORLH/CQL3D
NASA Astrophysics Data System (ADS)
Yang, C.; Bonoli, P. T.; Wright, J. C.; Ding, B. J.; Parker, R.; Shiraiwa, S.; Li, M. H.
2014-12-01
The coupled GENRAY-CQL3D code has been used to do systematic ray-tracing and Fokker-Planck analysis for EAST Lower Hybrid wave Current Drive (LHCD) experiments. Despite being in the weak absorption regime, the experimental level of LH current drive is successfully simulated, by taking into account the variations in the parallel wavenumber due to the toroidal effect. The effect of radial transport of the fast LH electrons in EAST has also been studied, which shows that a modest amount of radial transport diffusion can redistribute the fast LH current significantly. Taking advantage of the new capability in GENRAY, the actual Scrape Off Layer (SOL) model with magnetic field, density, temperature, and geometry is included in the simulation for both the lower and the higher density cases, so that the collisional losses of Lower Hybrid Wave (LHW) power in the SOL has been accounted for, which together with fast electron losses can reproduce the LHCD experimental observations in different discharges of EAST. We have also analyzed EAST discharges where there is a significant ohmic contribution to the total current, and good agreement with experiment in terms of total current has been obtained. Also, the full-wave code TORLH has been used for the simulation of the LH physics in the EAST, including full-wave effects such as diffraction and focusing which may also play an important role in bridging the spectral gap. The comparisons between the GENRAY and the TORLH codes are done for both the Maxwellian and the quasi-linear electron Landau damping cases. These simulations represent an important addition to the validation studies of the GENRAY-CQL3D and TORLH models being used in weak absorption scenarios of tokamaks with large aspect ratio.
NASA Astrophysics Data System (ADS)
Danylov, Andriy A.; Waldman, Jerry; Light, Alexander R.; Goyette, Thomas M.; Giles, Robert H.; Qian, Xifeng; Chandrayan, Neelima; Goodhue, William D.; Nixon, William E.
2012-02-01
Operational temperature increase of CW THz QCLs to 77 K has enabled us to employ solid nitrogen (SN2) as the cryogen. A roughing pump was used to solidify liquid nitrogen and when the residual vapor pressure in the nitrogen reservoir reached the pumping system's minimum pressure the temperature equilibrated and remained constant until all the nitrogen sublimated. The hold time compared to liquid helium has thereby increased approximately 70-fold, and at a greatly reduced cost. The milliwatt CW QCL was at a temperature of approximately 60 K, dissipating 5 W of electrical power. To measure the long-term frequency, current, and temperature stability, we heterodyned the free-running 2.31 THz QCL with a CO2 pumped far-infrared gas laser line in methanol (2.314 THz) in a corner-cube Schottky diode and recorded the IF frequency, current and temperature. Under these conditions the performance characteristics of the QCL, which will be reported, exceeded that of a device mounted in a mechanical cryocooler.
NASA Astrophysics Data System (ADS)
Sridharan, S.; Sathishkumar, S.; Raghunath, K.
2009-01-01
Rayleigh lidar observations of temperature structure and gravity wave activity were carried out at Gadanki (13.5° N, 79.2° E) during January-February 2006. A major stratospheric warming event occurred at high latitude during the end of January and early February. There was a sudden enhancement in the stratopause temperature over Gadanki coinciding with the date of onset of the major stratospheric warming event which occurred at high latitudes. The temperature enhancement persisted even after the end of the high latitude major warming event. During the same time, the UKMO (United Kingdom Meteorological Office) zonal mean temperature showed a similar warming episode at 10° N and cooling episode at 60° N around the region of stratopause. This could be due to ascending (descending) motions at high (low) latitudes above the critical level of planetary waves, where there was no planetary wave flux. The time variation of the gravity wave potential energy computed from the temperature perturbations over Gadanki shows variabilities at planetary wave periods, suggesting a non-linear interaction between gravity waves and planetary waves. The space-time analysis of UKMO temperature data at high and low latitudes shows the presence of similar periodicities of planetary wave of zonal wavenumber 1.
Storlazzi, Curt D.; Presto, M. Katherine; Logan, Joshua B.; Field, Michael E.
2010-01-01
High-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity were made in Maunalua Bay, southern Oahu, Hawaii, during the 2008-2009 winter to better understand coastal circulation, water-column properties, and sediment dynamics during a range of conditions (trade winds, kona storms, relaxation of trade winds, and south swells). A series of bottom-mounted instrument packages were deployed in water depths of 20 m or less to collect long-term, high-resolution measurements of waves, currents, water levels, temperature, salinity, and turbidity. These data were supplemented with a series of profiles through the water column to characterize the vertical and spatial variability in water-column properties within the bay. These measurements support the ongoing process studies being done as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Pacific Coral Reef Project; the ultimate goal of these studies is to better understand the transport mechanisms of sediment, larvae, pollutants, and other particles in coral reef settings. Project Objectives The objective of this study was to understand the temporal variations in currents, waves, tides, temperature, salinity and turbidity within a coral-lined embayment that receives periodic discharges of freshwater and sediment from multiple terrestrial sources in the Maunalua Bay. Instrument packages were deployed for a three-month period during the 2008-2009 winter and a series of vertical profiles were collected in November 2008, and again in February 2009, to characterize water-column properties within the bay. Measurements of flow and water-column properties in Maunalua Bay provided insight into the potential fate of terrestrial sediment, nutrient, or contaminant delivered to the marine environment and coral larval transport within the embayment. Such data are useful for providing baseline information for future watershed decisions and for establishing guidelines for the U.S. Coral Reef Task Force's (USCRTF) Hawaiian Local Action Strategy to address Land-Based Pollution (LAS-LBP) threats to coral reefs adjacent to the urbanized watersheds of Manualua Bay. Study Area Maunalua Bay is on the south side of Oahu, Hawaii, and is approximately 10 km long and 3 km wide. The bay is flanked by two large, dormant craters: Koko Head to the east and Diamond Head to the west. Rainfall in the watersheds that drain into Maunalua Bay ranges from more than 200 cm/year at the top of the Ko'olau Range that borders the northwestern part of the bay to less than 70 cm/year to the east at Koko Head. Seven major channels flow into the bay, and all but one have been altered by engineering structures.
NASA Astrophysics Data System (ADS)
Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter
2016-04-01
The effects of wind waves on the Baltic Sea water temperature has been studied by coupling the hydrodynamical model NEMO with the wave model WAM. The wave forcing terms that have been taken into consideration are: Stokes-Coriolis force, seastate dependent energy flux and sea-state dependent momentum flux. The combined role of these processes as well as their individual contributions on simulated temperature is analysed. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwellinǵs. In northern parts of the Baltic Sea a warming of the surface layer occurs in the wave included simulations. This in turn reduces the cold bias between simulated and measured data. The warming is primarily caused by sea-state dependent energy flux. Wave induced cooling is mostly observed in near coastal areas and is mainly due to Stokes-Coriolis forcing. The latter triggers effect of intensifying upwellings near the coasts, depending on the direction of the wind. The effect of sea-state dependent momentum flux is predominantly to warm the surface layer. During the summer the wave induced water temperature changes were up to 1 °C.
NASA Astrophysics Data System (ADS)
Gómez, I.; Estrela, M.
2009-09-01
Extreme temperature events have a great impact on human society. Knowledge of minimum temperatures during winter is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, winter minimum temperatures are considered a parameter of interest and concern since persistent cold-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict cold-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that low temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily minimum temperatures during winter over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the winter forecast period from 1 December 2007 - 31 March 2008. The results obtained are encouraging and indicate a good agreement between the observed and simulated minimum temperatures. Moreover, the model captures quite well the temperatures in the extreme cold episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).
NASA Astrophysics Data System (ADS)
Gómez, I.; Estrela, M.
2009-09-01
Extreme temperature events have a great impact on human society. Knowledge of summer maximum temperatures is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, summer maximum daily temperatures are considered a parameter of interest and concern since persistent heat-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict heat-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily maximum temperatures during summer over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the summer forecast period of 1 June - 30 September, 2007. The results obtained are encouraging and indicate a good agreement between the observed and simulated maximum temperatures. Moreover, the model captures quite well the temperatures in the extreme heat episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).
Long-term Global Morphology of Gravity Wave Activity Using UARS Data
NASA Technical Reports Server (NTRS)
Eckermann, Stephen D.; Jackman, C. (Technical Monitor)
2000-01-01
An extensive body of research this quarter is documented. Further methodical analysis of temperature residuals in Cryogenic Limb Array Etalon Spectrometer (CLAES) Version 8 level 3AT data show signatures during December 1992 at middle and high northern latitudes that, when compared to Naval Research Laboratory/Mountain Wave Forecast Model (NRL)/(MWFM) mountain wave hindcasts, reveal evidence of long mountain waves in these data over Eurasia, Greenland, Scandinavia and North America. The explicit detection of gravity waves in limb-scanned Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) temperatures is modeled at length, to derive visibility functions. These insights are used to convert CRISTA gravity wave temperature residuals into data that more closely resemble gravity wave fluctuations detected in data from other satellite instruments, such as Microwave Limb Sounder (MLS), Limb Infrared Monitor of the Stratosphere (LIMS) and Global Positioning System/Meteorology (GPS)/(MET). Finally, newly issued mesospheric temperatures from inversion of CRISTA 15gin emissions are analyzed using a new method that uses separate Kalman fits to the ascending and descending node data. This allows us to study global gravity wave amplitudes at two local times, 12 hours apart. In the equatorial mesosphere, where a large diurnal tidal temperature signal exists, we see modulations of gravity wave activity that are consistent with gravity wave-tidal interactions produced by tidal temperature variability.
NASA Astrophysics Data System (ADS)
Gilet, Ph.; Pougeoise, E.; Grenouillet, L.; Grosse, Ph.; Olivier, N.; Poncet, S.; Chelnokov, A.; Gérard, J. M.; Stevens, R.; Hamelin, R.; Hammar, M.; Berggren, J.; Sundgren, P.
2007-02-01
In this article, we report our results on 1.3μm VCSELs for optical interconnection applications. Room temperature continuous-wave lasing operation is demonstrated for top emitting oxide-confined devices with three different active materials, highly strained InGaAs/GaAs(A) and GaInNAs/GaAs (B) multiple quantum wells (MQW) or InAs/GaAs (C) quantum dots (QD). Conventional epitaxial structures grown respectively by Metal Organic Vapour Phase Epitaxy (MOVPE), Molecular Beam Epitaxy (MBE) and MBE, contain fully doped GaAs/AlGaAs DBRs. All three epilayers are processed in the same way. Current and optical confinement are realized by selective wet oxidation. Circular apertures from 2 (micron)m to 16 (micron)m diameters are defined. At room temperature and in continuous wave operation, all three systems exhibit lasing operation at wavelengths above 1 275nm and reached 1 300nm for material (A). Typical threshold currents are in the range [1- 10]mA and are strongly dependent firstly on oxide diameter and secondly on temperature. Room temperature cw maximum output power corresponds respectively to 1.77mW, 0.5mW and 0.6mW. By increasing driving current, multimode operation occurs at different level depending on the oxide diameter. In case (A), non conventional modal behaviors will be presented and explained by the presence of specific oxide modes. Thermal behaviors of the different devices have been compared. In case (A) and (C) we obtain a negative T0. We will conclude on the different active materials in terms of performances with respect to 1300nm VCSEL applications.
Modeling of Inner Magnetosphere Coupling Processes
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2011-01-01
The Ring Current (RC) is the biggest energy player in the inner magnetosphere. It is the source of free energy for Electromagnetic Ion Cyclotron (EMIC) wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward E B convection from the plasmasheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC-EMIC wave-particle-coupling process and ultimately becomes part of the particle and energy interplay. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric research is the continued progression toward a coupled, interconnected system with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves. As we clearly demonstrated in our studies, EMIC waves strongly interact with electrons and ions of energies ranging from approx.1 eV to approx.10 MeV, and that these waves strongly affect the dynamics of resonant RC ions, thermal electrons and ions, and the outer RB relativistic electrons. As we found, the rate of ion and electron scattering/heating in the Earth's magnetosphere is not only controlled by the wave intensity-spatial-temporal distribution but also strongly depends on the spectral distribution of the wave power. The latter is also a function of the plasmaspheric heavy ion content, and the plasma density and temperature distributions along the magnetic field lines. The above discussion places RC-EMIC wave coupling dynamics in context with inner magnetospheric coupling processes and, ultimately, relates RC studies with plasmaspheric and Superthermal Electrons formation processes as well as with outer RB physics.
Millimeter-wave interconnects for microwave-frequency quantum machines
NASA Astrophysics Data System (ADS)
Pechal, Marek; Safavi-Naeini, Amir H.
2017-10-01
Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.
Mediterranea Forecasting System: a focus on wave-current coupling
NASA Astrophysics Data System (ADS)
Clementi, Emanuela; Delrosso, Damiano; Pistoia, Jenny; Drudi, Massimiliano; Fratianni, Claudia; Grandi, Alessandro; Pinardi, Nadia; Oddo, Paolo; Tonani, Marina
2016-04-01
The Mediterranean Forecasting System (MFS) is a numerical ocean prediction system that produces analyses, reanalyses and short term forecasts for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas. MFS became operational in the late 90's and has been developed and continuously improved in the framework of a series of EU and National funded programs and is now part of the Copernicus Marine Service. The MFS is composed by the hydrodynamic model NEMO (Nucleus for European Modelling of the Ocean) 2-way coupled with the third generation wave model WW3 (WaveWatchIII) implemented in the Mediterranean Sea with 1/16 horizontal resolution and forced by ECMWF atmospheric fields. The model solutions are corrected by the data assimilation system (3D variational scheme adapted to the oceanic assimilation problem) with a daily assimilation cycle, using a background error correlation matrix varying seasonally and in different sub-regions of the Mediterranean Sea. The focus of this work is to present the latest modelling system upgrades and the related achieved improvements. In order to evaluate the performance of the coupled system a set of experiments has been built by coupling the wave and circulation models that hourly exchange the following fields: the sea surface currents and air-sea temperature difference are transferred from NEMO model to WW3 model modifying respectively the mean momentum transfer of waves and the wind speed stability parameter; while the neutral drag coefficient computed by WW3 model is passed to NEMO that computes the turbulent component. In order to validate the modelling system, numerical results have been compared with in-situ and remote sensing data. This work suggests that a coupled model might be capable of a better description of wave-current interactions, in particular feedback from the ocean to the waves might assess an improvement on the prediction capability of wave characteristics, while suggests to proceed toward a fully coupled modelling system in order to achieve stronger enhancements of the hydrodynamic fields.
Incommensurate Phonon Anomaly and the Nature of Charge Density Waves in Cuprates
Miao, H.; Ishikawa, D.; Heid, R.; ...
2018-01-18
While charge density wave (CDW) instabilities are ubiquitous to superconducting cuprates, the different ordering wave vectors in various cuprate families have hampered a unified description of the CDW formation mechanism. Here, we investigate the temperature dependence of the low-energy phonons in the canonical CDW-ordered cuprate La 1.875Ba 0.125CuO 4. We discover that the phonon softening wave vector associated with CDW correlations becomes temperature dependent in the high-temperature precursor phase and changes from a wave vector of 0.238 reciprocal lattice units (r.l.u.) below the ordering transition temperature to 0.3 r.l.u. at 300 K. This high-temperature behavior also shows that “214”-type cupratesmore » can host CDW correlations at a similar wave vector to previously reported CDW correlations in non-214-type cuprates such as YBa 2Cu 3O 6+δ. This indicates that cuprate CDWs may arise from the same underlying instability despite their apparently different low-temperature ordering wave vectors.« less
Incommensurate Phonon Anomaly and the Nature of Charge Density Waves in Cuprates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, H.; Ishikawa, D.; Heid, R.
While charge density wave (CDW) instabilities are ubiquitous to superconducting cuprates, the different ordering wave vectors in various cuprate families have hampered a unified description of the CDW formation mechanism. Here, we investigate the temperature dependence of the low-energy phonons in the canonical CDW-ordered cuprate La 1.875Ba 0.125CuO 4. We discover that the phonon softening wave vector associated with CDW correlations becomes temperature dependent in the high-temperature precursor phase and changes from a wave vector of 0.238 reciprocal lattice units (r.l.u.) below the ordering transition temperature to 0.3 r.l.u. at 300 K. This high-temperature behavior also shows that “214”-type cupratesmore » can host CDW correlations at a similar wave vector to previously reported CDW correlations in non-214-type cuprates such as YBa 2Cu 3O 6+δ. This indicates that cuprate CDWs may arise from the same underlying instability despite their apparently different low-temperature ordering wave vectors.« less
Vertical Mixing In Western Lake Constance Due To Long Internal Waves
NASA Astrophysics Data System (ADS)
Boehrer, B.
Current profiles in the pelagic waters of western Lake Constance have been broken up into modes of the internal wave equation [1,2]. All current profiles can be well represented by a combination of the first and second mode wave. The temporal vari- ation of the modal composition with the interaction of the first and second mode im- plies current shear at varying depths. From current and density profiles, the gradient Richardson number can be evaluated in its spatial and temporal pattern with occa- tional occurence of supercritical values at all depths, also in the deep hypolimnion. An empiric connection between gradient Richardson number and diapycnical mixing [3] is applied to yield a profile of vertical transport coefficients, which can be com- pared with transport coefficients from gradient flux calculations of temperature and electrical conductivity profiles [4]. [1] B. Boehrer, J. Ilmberger and K.O. Münnich (2000): Vertical Structure of Current in Western Lake Constance, JGR-Oceans, 105 (12), 28823-28835 [2] B. Boehrer (2000): Modal Response of a Deep Stratified Lake: Western Lake Con- stance, JGR-Oceans, 105 (12), 28837-28845 [3] H. Peeters, M.C. Gregg and J.M. Toole (1988): On the parameterization of equa- torial turbulence, JGR, 93, 1199-1218 [4] G. Heinz, J. Ilmberger and M. Schimmele (1990): Vertical Mixing in Überlinger See, western part of Lake Constance, Aquat. Sci., 52(3), 256-268
Response of near-surface currents in the Indian Ocean to the anomalous atmospheric condition in 2015
NASA Astrophysics Data System (ADS)
Utari, P. A.; Nurkhakim, M. Y.; Setiabudidaya, D.; Iskandar, I.
2018-05-01
Anomalous ocean-atmosphere conditions were detected in the tropical Indian Ocean during boreal spring to boreal winter 2015. It was suggested that the anomalous conditions were characteristics of the positive Indian Ocean Dipole (pIOD) event. The purpose of this investigation was to investigate the response of near-surface currents in the tropical Indian Ocean to the anomalous atmospheric condition in 2015. Near-surface current from OSCAR (Ocean Surface Current Analyses Real Time) reanalysis data combined with the sea surface temperature (SST) data from OISST – NOAA, sea surface height (SSH) and surface winds from the ECMWF were used in this investigation. The analysis showed that the evolution of 2015 pIOD started in June/July, peaked in the September and terminated in late November 2015. Correlated with the evolution of the pIOD, easterly winds anomalies were detected along the equator. As the oceanic response to these easterly wind anomalies, the surface currents anomalously westward during the peak of the pIOD. It was interesting to note that the evolution of 2015 pIOD event was closely related to the ocean wave dynamics as revealed by the SSH data. Downwelling westward propagating Rossby waves were detected in the southwestern tropical Indian Ocean. Once reached the western boundary of the Indian Ocean, they were redirected back into interior Indian Ocean and propagating eastward as the downwelling Kelvin waves.
Dewar Testing of Coaxial Resonators at MSU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popielarski, J; Facco, A; Hodek, M
2012-07-01
Michigan State University is currently testing prototype and production cavities for two accelerator projects. 80.5 MHz {beta} = 0.085 quarter wave resonators (QWR) are being produced as part of a cryomodule for ReA3. 322 MHz {beta} = 0.53 half wave resonators (HWR) are being prototyped for a driver linac for the Facility for Rare Isotope Beams. This paper will discuss test results and how different cavity preparations effect cavity performs. Also various diagnostics methods have been developed, such as second sound quench location determination, and temperature mapping to determine hot spots from defects and multipacting location.
High sensitive vectorial B-probe for low frequency plasma waves.
Ullrich, Stefan; Grulke, Olaf; Klinger, Thomas; Rahbarnia, Kian
2013-11-01
A miniaturized multidimensional magnetic probe is developed for application in a low-temperature plasma environment. A very high sensitivity for low-frequency magnetic field fluctuations with constant phase run, a very good signal-to-noise ratio combined with an efficient electrostatic pickup rejection, renders the probe superior compared with any commercial solution. A two-step calibration allows for absolute measurement of amplitude and direction of magnetic field fluctuations. The excellent probe performance is demonstrated by measurements of the parallel current pattern of coherent electrostatic drift wave modes in the VINETA (versatile instrument for studies on nonlinearity, electromagnetism, turbulence, and applications) experiment.
Ultra-Low Dark Current HgCdTe Detector in SWIR for Space Applications
NASA Astrophysics Data System (ADS)
Cervera, C.; Boulade, O.; Gravrand, O.; Lobre, C.; Guellec, F.; Sanson, E.; Ballet, P.; Santailler, J. L.; Moreau, V.; Zanatta, J. P.; Fieque, B.; Castelein, P.
2017-10-01
This paper presents recent developments at Commissariat à l'Energie atomique, Laboratoire d'Electronique et de Technologie de l'Information infrared laboratory on processing and characterization of p-on- n HgCdTe (MCT) planar infrared focal plane arrays (FPAs) in short-wave infrared (SWIR) spectral band for the astrophysics applications. These FPAs have been grown using both liquid phase epitaxy and molecular beam epitaxy on a lattice-matched CdZnTe substrate. This technology exhibits lower dark current and lower series resistance in comparison with n-on- p vacancy-doped architecture and is well adapted for low flux detection or high operating temperature. This architecture has been evaluated for space applications in long-wave infrared and very-long-wave infrared spectral bands with cut-off wavelengths from 10 μm up to 17 μm at 78 K and is now evaluated for the SWIR range. The metallurgical nature of the absorbing layer is also examined and both molecular beam epitaxy and liquid phase epitaxy have been investigated. Electro-optical characterizations have been performed on individual photodiodes from test arrays, whereas dark current investigation has been performed with a fully functional readout integrated circuit dedicated to low flux operations.
Electric Field Effects in Self-Propagating High-Temperature Synthesis under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Unuvar, C.; Frederick, D. M.; Shaw, B. D.; Munir, Z. A.
2003-01-01
Self-propagating high-temperature synthesis (SHS) has been used to form many materials. SHS generally involves mixing reactants together (e.g., metal powders) and igniting the mixture such that a combustion (deflagration) wave passes though the mixture. The imposition of an electric field (AC or DC) across SHS reactants has been shown to have a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product . The use of an electric field with SHS has been termed "field-assisted SHS". Combustion wave velocities and temperatures are directly affected by the field, which is typically perpendicular to the average wave velocity. The degree of activation by the field (e.g., combustion rate) is related to the current density distribution within the sample, and is therefore related to the temperature-dependent spatial distribution of the effective electrical conductivity of reactants and products. Furthermore, the field can influence other important SHS-related phenomena including capillary flow, mass-transport in porous media, and Marangoni flows. These phenomena are influenced by gravity in conventional SHS processes (i.e., without electric fields). As a result the influence of the field on SHS under reduced gravity is expected to be different than under normal gravity. It is also known that heat loss rates from samples, which can depend significantly on gravity, can influence final products in SHS. This research program is focused on studying field-assisted SHS under reduced gravity conditions. The broad objective of this research program is to understand the role of an electric field in SHS reactions under conditions where gravity-related effects are suppressed. The research will allow increased understanding of fundamental aspects of field-assisted SHS processes as well as synthesis of materials that cannot be formed in normal gravity.
NASA Astrophysics Data System (ADS)
Hopkins, Julia; Elgar, Steve; Raubenheimer, Britt
2017-04-01
Accurately characterizing the interaction of waves and currents can improve predictions of wave propagation and subsequent sediment transport in the nearshore. Along the southern shoreline of Martha's Vineyard, MA, waves propagate across strong tidal currents as they shoal, providing an ideal environment for investigating wave-current interaction. Wave directions and mean currents observed for two 1-month-long periods in 7- and 2-m water depths along 11 km of the Martha's Vineyard shoreline have strong tidal modulations. Wave directions shift by as much as 70 degrees over a tidal cycle in 7 m depth, and by as much as 25 degrees in 2 m depth. The magnitude of the tidal modulations in the wave field decreases alongshore to the west, consistent with the observed decrease in tidal currents from 2.1 to 0.2 m/s. The observations are reproduced accurately by a numerical model (SWAN and Deflt3D-FLOW) that simulates waves and currents over the observed bathymetry. Model simulations with and without wave-current interaction and tidal depth changes demonstrate that the observed tidal modulations of the wave field primarily are caused by wave-current interaction and not by tidal changes to water depths over the nearby complex shoals. Sediment transport estimates from simulated wave conditions using a range of tidal currents and offshore wave fields indicate that the modulation of the wave field at Martha's Vineyard can impact the direction of wave-induced alongshore sediment transport, sometimes driving transport opposing the direction of the offshore incident wave field. As such, the observations and model simulations suggest the importance of wave-current interaction to tidally averaged transport in mixed-energy wave-and-current nearshore environments. Supported by ASD(R&E), NSF, NOAA (Sea Grant), and ONR.
Electrically injected GaAsBi/GaAs single quantum well laser diodes
NASA Astrophysics Data System (ADS)
Liu, Juanjuan; Pan, Wenwu; Wu, Xiaoyan; Cao, Chunfang; Li, Yaoyao; Chen, Xiren; Zhang, Yanchao; Wang, Lijuan; Yan, Jinyi; Zhang, Dongliang; Song, Yuxin; Shao, Jun; Wang, Shumin
2017-11-01
We present electrically injected GaAs/GaAsBi single quantum well laser diodes (LDs) emitting at a record long wavelength of 1141 nm at room temperature grown by molecular beam epitaxy. The LDs have excellent device performances with internal quantum efficiency of 86%, internal loss of 10 cm-1 and transparency current density of 196 A/cm2. The LDs can operate under continuous-wave mode up to 273 K. The characteristic temperature are extracted to be 125 K in the temperature range of 77˜150 K, and reduced to 90 K in the range of 150˜273 K. The temperature coefficient of 0.3 nm/K is extracted in the temperature range of 77˜273 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Yukio; Abe, Akihisa; Tokushima, Koji
The aim of this study is to examine the difference between shock temperatures predicted by an equation for temperature inside a steady wave front and the Walsh-Christian equation. Calculations are for yttria-doped tetragonal zirconia, which shows an elastic-plastic and a phase transition: Thus the shock waves treated are multiple structure waves composed of one to three steady wave fronts. The evaluated temperature was 3350K at the minimum specific volume of 0.1175 cm{sup 3}/g (or maximum Hugoniot shock pressure of 140GPa) considered in the present examination, while the temperature predicted by the Walsh-Christian equation under identical conditions was 2657K. The causemore » of the large temperature discrepancy is considered to be that the present model treats nonequilibrium states inside steady waves.« less
Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D
2010-09-01
The effectiveness of chemical dispersants (Corexit 9500 and SPC 1000) on heavy fuel oil (IFO180 as test oil) has been evaluated under different wave conditions in a flow-through wave tank. The dispersant effectiveness was determined by measuring oil concentrations and droplet size distributions. An analysis of covariance (ANCOVA) model indicated that wave type and temperature significantly (p<0.05) affected the dynamic dispersant effectiveness (DDE). At higher temperatures (16 degrees C), the test IFO180 was effectively dispersed under breaking waves with a DDE of 90% and 50% for Corexit 9500 and SPC 1000, respectively. The dispersion was ineffective under breaking waves at lower temperature (10 degrees C), and under regular wave conditions at all temperatures (10-17 degrees C), with DDE<15%. Effective chemical dispersion was associated with formation of smaller droplets (with volumetric mean diameters or VMD < or = 200 microm), whereas ineffective dispersion produced large oil droplets (with VMD > or = 400 microm). Copyright 2010 Elsevier Ltd. All rights reserved.
Dynamic Behaviors of Materials under Ramp Wave Loading on Compact Pulsed Power Generators
NASA Astrophysics Data System (ADS)
Zhao, Jianheng; Luo, Binqiang; Wang, Guiji; Chong, Tao; Tan, Fuli; Liu, Cangli; Sun, Chengwei
The technique using intense current to produce magnetic pressure provides a unique way to compress matter near isentrope to high density without obvious temperature increment, which is characterized as ramp wave loading, and firstly developed by Sandia in 1998. Firstly recent advances on compact pulsed power generators developed in our laboratory, such as CQ-4, CQ-3-MMAF and CQ-7 devices, are simply introduced here, which devoted to ramp wave loading from 50GPa to 200 GPa, and to ultrahigh-velocity flyer launching up to 30 km/s. And then, we show our progress in data processing methods and experiments of isentropic compression conducted on these devices mentioned above. The suitability of Gruneisen EOS and Vinet EOS are validated by isentropic experiments of tantalum, and the parameters of SCG constitutive equation of aluminum and copper are modified to give better prediction under isentropic compression. Phase transition of bismuth and tin are investigated under different initial temperatures, parameters of Helmholtz free energy and characteristic relaxation time in kinetic phase transition equation are calibrated. Supported by NNSF of China under Contract No.11327803 and 11176002
Photodrive of magnetic bubbles via magnetoelastic waves
Ogawa, Naoki; Koshibae, Wataru; Beekman, Aron Jonathan; Nagaosa, Naoto; Kubota, Masashi; Kawasaki, Masashi; Tokura, Yoshinori
2015-01-01
Precise control of magnetic domain walls continues to be a central topic in the field of spintronics to boost infotech, logic, and memory applications. One way is to drive the domain wall by current in metals. In insulators, the incoherent flow of phonons and magnons induced by the temperature gradient can carry the spins, i.e., spin Seebeck effect, but the spatial and time dependence is difficult to control. Here, we report that coherent phonons hybridized with spin waves, magnetoelastic waves, can drive magnetic bubble domains, or curved domain walls, in an iron garnet, which are excited by ultrafast laser pulses at a nonabsorbing photon energy. These magnetoelastic waves were imaged by time-resolved Faraday microscopy, and the resultant spin transfer force was evaluated to be larger for domain walls with steeper curvature. This will pave a path for the rapid spatiotemporal control of magnetic textures in insulating magnets. PMID:26150487
Photodrive of magnetic bubbles via magnetoelastic waves.
Ogawa, Naoki; Koshibae, Wataru; Beekman, Aron Jonathan; Nagaosa, Naoto; Kubota, Masashi; Kawasaki, Masashi; Tokura, Yoshinori
2015-07-21
Precise control of magnetic domain walls continues to be a central topic in the field of spintronics to boost infotech, logic, and memory applications. One way is to drive the domain wall by current in metals. In insulators, the incoherent flow of phonons and magnons induced by the temperature gradient can carry the spins, i.e., spin Seebeck effect, but the spatial and time dependence is difficult to control. Here, we report that coherent phonons hybridized with spin waves, magnetoelastic waves, can drive magnetic bubble domains, or curved domain walls, in an iron garnet, which are excited by ultrafast laser pulses at a nonabsorbing photon energy. These magnetoelastic waves were imaged by time-resolved Faraday microscopy, and the resultant spin transfer force was evaluated to be larger for domain walls with steeper curvature. This will pave a path for the rapid spatiotemporal control of magnetic textures in insulating magnets.
NASA Astrophysics Data System (ADS)
Pivovaroff, A. L.; Pesqueira, A.; Sun, W.; Seibt, U.
2016-12-01
Mediterranean-type ecosystems are biodiversity hotspots, but increasing temperature and changes in precipitation will have significant impacts on vegetation, as evidenced by the current die-back of many woody species in southern California, USA, due to exceptional drought conditions. We installed flow-through chambers on four native woody plant species at Stunt Ranch, a University of California Natural Reserve System site, in order to continuously monitor fluxes of carbon and water at the branch-scale from the growing season through the annual seasonal drought period. Study species included Heteromeles arbutifolia, Malosma laurina, Salvia leucophylla, and Quercus agrifolia. Here we present the results of diurnal flux patterns before, during, and after two extreme heat waves events, when daily maximum temperatures doubled. Under typical summer conditions, which include hot, sunny days, study species exhibited two peaks in carbon assimilation during a diurnal cycle: a peak in the morning and a smaller, secondary peak in the afternoon, separated by a midday depression. During heat wave events, which generally lasted 3 days, species exhibited a small morning peak and no afternoon peak at all. All study species returned to their pre-heat wave diurnal flux patterns, which included the second afternoon peak, when weather conditions returned to normal. Since soil moisture was not affected by the short-term heat wave events, we conclude that the pronounced changes in diurnal patterns, including disappearance of the secondary afternoon peak, are the result of stomatal regulation in response to atmospheric water demand rather than root responses to soil moisture deficits. Our results demonstrate that carbon uptake of native species may be impacted under ongoing climate change when increased temperatures and drought conditions may be sustained.
Heat wave hazard classification and risk assessment using artificial intelligence fuzzy logic.
Keramitsoglou, Iphigenia; Kiranoudis, Chris T; Maiheu, Bino; De Ridder, Koen; Daglis, Ioannis A; Manunta, Paolo; Paganini, Marc
2013-10-01
The average summer temperatures as well as the frequency and intensity of hot days and heat waves are expected to increase due to climate change. Motivated by this consequence, we propose a methodology to evaluate the monthly heat wave hazard and risk and its spatial distribution within large cities. A simple urban climate model with assimilated satellite-derived land surface temperature images was used to generate a historic database of urban air temperature fields. Heat wave hazard was then estimated from the analysis of these hourly air temperatures distributed at a 1-km grid over Athens, Greece, by identifying the areas that are more likely to suffer higher temperatures in the case of a heat wave event. Innovation lies in the artificial intelligence fuzzy logic model that was used to classify the heat waves from mild to extreme by taking into consideration their duration, intensity and time of occurrence. The monthly hazard was subsequently estimated as the cumulative effect from the individual heat waves that occurred at each grid cell during a month. Finally, monthly heat wave risk maps were produced integrating geospatial information on the population vulnerability to heat waves calculated from socio-economic variables.
Effects of Hall current and electron temperature anisotropy on proton fire-hose instabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hau, L.-N.; Department of Physics, National Central University, Jhongli, Taiwan; Wang, B.-J.
The standard magnetohydrodynamic (MHD) theory predicts that the Alfvén wave may become fire-hose unstable for β{sub ∥}−β{sub ⊥}>2. In this study, we examine the proton fire-hose instability (FHI) based on the gyrotropic two-fluid model, which incorporates the ion inertial effects arising from the Hall current and electron temperature anisotropy but neglects the electron inertia in the generalized Ohm's law. The linear dispersion relation is derived and analyzed which in the long wavelength approximation, λ{sub i}k→0 or α{sub e}=μ{sub 0}(p{sub ∥,e}−p{sub ⊥,e})/B{sup 2}=1, recovers the ideal MHD model with separate temperature for ions and electrons. Here, λ{sub i} is the ionmore » inertial length and k is the wave number. For parallel propagation, both ion cyclotron and whistler waves become propagating and growing for β{sub ∥}−β{sub ⊥}>2+λ{sub i}{sup 2}k{sup 2}(α{sub e}−1){sup 2}/2. For oblique propagation, the necessary condition for FHI remains to be β{sub ∥}−β{sub ⊥}>2 and there exist one or two unstable fire-hose modes, which can be propagating and growing or purely growing. For large λ{sub i}k values, there exists no nearly parallel FHI leaving only oblique FHI and the effect of α{sub e}>1 may greatly enhance the growth rate of parallel and oblique FHI. The magnetic field polarization of FHI may be reversed due to the sign change associated with (α{sub e}−1) and the purely growing FHI may possess linear polarization while the propagating and growing FHI may possess right-handed or left-handed polarization.« less
Magnetospheric Whistler Mode Raytracing with the Inclusion of Finite Electron and ion Temperature
NASA Astrophysics Data System (ADS)
Maxworth, Ashanthi S.
Whistler mode waves are a type of a low frequency (100 Hz - 30 kHz) wave, which exists only in a magnetized plasma. These waves play a major role in Earth's magnetosphere. Due to the impact of whistler mode waves in many fields such as space weather, satellite communications and lifetime of space electronics, it is important to accurately predict the propagation path of these waves. The method used to determine the propagation path of whistler waves is called numerical raytracing. Numerical raytracing determines the power flow path of the whistler mode waves by solving a set of equations known as the Haselgrove's equations. In the majority of the previous work, raytracing was implemented assuming a cold background plasma (0 K), but the actual magnetosphere is at a temperature of about 1 eV (11600 K). In this work we have modified the numerical raytracing algorithm to work at finite electron and ion temperatures. The finite temperature effects have also been introduced into the formulations for linear cyclotron resonance wave growth and Landau damping, which are the primary mechanisms for whistler mode growth and attenuation in the magnetosphere. Including temperature increases the complexity of numerical raytracing, but the overall effects are mostly limited to increasing the group velocity of the waves at highly oblique wave normal angles.
NASA Astrophysics Data System (ADS)
Zhao, J.; Wang, S.
2017-12-01
Gravity wave drag (GWD) is among the drivers of meridional overturning in the middle atmosphere, also known as the Brewer-Dobson Circulation, and of the quasi-biennial oscillation (QBO). The small spatial scales and complications due to wave breaking require their effects to be parameterised. GWD parameterizations are usually divided into two parts, orographic and non-orographic. The basic dynamical and physical processes of the middle atmosphere and the mechanism of the interactions between the troposphere and the middle atmosphere were studied in the frame of a general circulation model. The model for the troposphere was expanded to a global model considering middle atmosphere with the capability of describing the basic processes in the middle atmosphere and the troposphere-middle atmosphere interactions. Currently, it is too costly to include full non-hydrostatic and rotational wave dynamics in an operational parameterization. The hydrostatic non-rotational wave dynamics which allow an efficient implementation that is suitably fast for operation. The simplified parameterization of non-orographic GWD follows from the WM96 scheme in which a framework is developed using conservative propagation of gravity waves, critical level filtering, and non-linear dissipation. In order to simulate and analysis the influence of non-orographic GWD on the stratospheric wind and temperature fields, experiments using Stratospheric Sudden Warming (SSW) event case occurred in January 2013 were carried out, and results of objective weather forecast verifications of the two months period were compared in detail. The verification of monthly mean of forecast anomaly correlation (ACC) and root mean square (RMS) errors shows consistently positive impact of non-orographic GWD on skill score of forecasting for the three to eight days, both in the stratosphere and troposphere, and visible positive impact on prediction of the stratospheric wind and temperature fields. Numerical simulation during SSW event demonstrates that the influence on the temperature of middle stratosphere is mainly positive and there were larger departure both for the wind and temperature fields considering the non-orographic GWD during the warming process.
Popenko, Oleksandr
2014-01-01
Temperature sensitivity of the fluorescence intensity of the organic dyes solutions was used for noncontact measurement of the electromagnetic millimeter wave absorption in water. By using two different dyes with opposite temperature effects, local temperature increase in the capillary that is placed inside a rectangular waveguide in which millimeter waves propagate was defined. The application of this noncontact temperature sensing is a simple and novel method to detect temperature change in small biological objects. PMID:25435859
Kuzkova, Nataliia; Popenko, Oleksandr; Yakunov, Andrey
2014-01-01
Temperature sensitivity of the fluorescence intensity of the organic dyes solutions was used for noncontact measurement of the electromagnetic millimeter wave absorption in water. By using two different dyes with opposite temperature effects, local temperature increase in the capillary that is placed inside a rectangular waveguide in which millimeter waves propagate was defined. The application of this noncontact temperature sensing is a simple and novel method to detect temperature change in small biological objects.
QBO of temperature in mesopause and lower thermosphere caused by solar activity variations
NASA Astrophysics Data System (ADS)
Shefov, N. N.; Semenov, A. I.
2003-04-01
On the basis of the data of the emission (hydroxyl, sodium and atomic oxygen 557.7 nm) and radiophysical (87-107 km) measurements some regularities of quasi-biennial oscillation (QBO) of the atmospheric temperature at heights of the mesopause and lower thermosphere are investigated. It is shown, that they are closely connected with quasi-biennial variations of solar activity and form within the limits of a cycle of solar activity the fading wave train of oscillations. Such behaviour of the wave train can be adequately described by the Airy function. As a result of the analysis of characteristics of QBO of solar activity during 17-23rd cycles it is shown, that to each 11-years cycle correspond its wave train of QBO. Amplitudes and periods of this wave train decrease during a cycle, i.e. it represents Not harmonious oscillation but it is a cyclic aperiodic oscillation (CAO). Therefore usual methods of Fourier analysis used earlier did not result in the same values of the period. The wave train of the current cycle begins at the end of previous and some time together with the subsequent cycle proceeds. Thus, the time sequence of activity during solar cycle represents superposition of three wave trains. Period of CAO in the beginning of a cycle has ~ 38 months and decreases to the end of a cycle up to ~ 21 months. The first wide negative minimum of Airy function describing of the wave train of CAO corresponds to solar activity minimum in the 11-year cycle. The time scale of the wave train varies from one cycle to another. Full duration of individual wave train is ~ 22 years. Owing to a mutual interference of the consecutive wave trains in the 11-year cycles the observable variations of solar activity are not identical. Structure of CAO obviously displays magnetohydrodynamic processes inside the Sun. This work was supported by the Grant No. 2274 of ISTC.
Two- and Three-Dimensional Probes of Parity in Primordial Gravity Waves.
Masui, Kiyoshi Wesley; Pen, Ue-Li; Turok, Neil
2017-06-02
We show that three-dimensional information is critical to discerning the effects of parity violation in the primordial gravity-wave background. If present, helical gravity waves induce parity-violating correlations in the cosmic microwave background (CMB) between parity-odd polarization B modes and parity-even temperature anisotropies (T) or polarization E modes. Unfortunately, EB correlations are much weaker than would be naively expected, which we show is due to an approximate symmetry resulting from the two-dimensional nature of the CMB. The detectability of parity-violating correlations is exacerbated by the fact that the handedness of individual modes cannot be discerned in the two-dimensional CMB, leading to a noise contribution from scalar matter perturbations. In contrast, the tidal imprints of primordial gravity waves fossilized into the large-scale structure of the Universe are a three-dimensional probe of parity violation. Using such fossils the handedness of gravity waves may be determined on a mode-by-mode basis, permitting future surveys to probe helicity at the percent level if the amplitude of primordial gravity waves is near current observational upper limits.
Ionospheric modification by radio waves: An overview and novel applications
NASA Astrophysics Data System (ADS)
Kosch, M. J.
2008-12-01
High-power high-frequency radio waves, when beamed into the Earth's ionosphere, can heat the plasma by particle collisions in the D-layer or generate wave-plasma resonances in the F-layer. These basic phenomena have been used in many research applications. In the D-layer, ionospheric currents can be modulated through conductance modification to produce artificial ULF and VLF waves, which propagate allowing magnetospheric research. In the mesopause, PMSE can be modified allowing dusty plasma research. In the F-layer, wave-plasma interactions generate a variety of artificially stimulated phenomena, such as (1) magnetic field-aligned plasma irregularities linked to anomalous radio wave absorption, (2) stimulated electromagnetic emissions linked to upper-hybrid resonance, (3) optical emissions linked to electron acceleration and collisions with neutrals, and (4) Langmuir turbulence linked to enhanced radar backscatter. These phenomena are reviewed. In addition, some novel applications of ionospheric heaters will be presented, including HF radar sounding of the magnetosphere, the production of E-region optical emissions, and measurements of D-region electron temperature for controlled PMSE research.
Consequences of the Ion Cyclotron Instability in the Inner Magnetospheric Plasma
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2011-01-01
The inner magnetospheric plasma is a very unique composition of different plasma particles and waves. Among these plasma particles and waves are Ring Current (RC) particles and Electromagnetic Ion Cyclotron (EMIC) waves. The RC is the source of free energy for the EMIC wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward E x B convection from the plasma sheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC-EMIC waves-coupling process, and ultimately becomes part of the particle and energy interplay, generated by the ion cyclotron instability of the inner magnetosphere. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric plasma physics research is the continued progression toward a coupled, interconnected system, with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves.
Intertwined Orders in Heavy-Fermion Superconductor CeCoIn 5
Kim, Duk Young; Lin, Shi-Zeng; Weickert, Franziska; ...
2016-12-20
The appearance of spin-density-wave (SDW) magnetic order in the low-temperature and high-field corner of the superconducting phase diagram of CeCoIn 5 is unique among unconventional superconductors. The nature of this magnetic $Q$ phase is a matter of current debate. Here, we present the thermal conductivity of CeCoIn 5 in a rotating magnetic field, which reveals the presence of an additional order inside the $Q$ phase that is intimately intertwined with the superconducting d-wave and SDW orders. A discontinuous change of the thermal conductivity within the $Q$ phase, when the magnetic field is rotated about antinodes of the superconducting d-wave ordermore » parameter, demands that the additional order must change abruptly, together with the recently observed switching of the SDW. Lastly, a combination of interactions, where spin-orbit coupling orients the SDW, which then selects the secondary p -wave pair-density-wave component (with an average amplitude of 20% of the primary d-wave order parameter), accounts for the observed behavior.« less
NASA Astrophysics Data System (ADS)
Wüst, Sabine; Schmidt, Carsten; Bittner, Michael; Silber, Israel; Price, Colin; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M.
2017-03-01
In this study, we present an analysis of approximately four years of nightly temperature data, acquired with the OH-spectrometer GRIPS 10 (GRound based Infrared P-branch Spectrometer), which was installed in Tel Aviv (32.11°N, 34.8°E), Israel in November 2011 for routine measurements. As our instrument does not give any height information, we use TIMED-SABER data in order to answer the question concerning the height region our measurement technique exactly addresses. For the first time, we estimate the density of wave potential energy for periods between some minutes and some hours for this station. These values are typical for gravity waves. Since GRIPS measurements do not currently provide vertically resolved data, the Brunt-Väisälä frequency, which is needed for the estimation of potential energy density, is calculated using TIMED-SABER measurements. The monthly mean density of wave potential energy is presented for periods shorter and longer than 60 min. For the winter months (November, December, and January), the data base allows the calculation of a seasonal mean for the different years. This publication is the companion paper to Silber et al. (2016). Here, we focus on oscillations with shorter periods.
Fundamental plasma emission involving ion sound waves
NASA Technical Reports Server (NTRS)
Cairns, Iver H.
1987-01-01
The theory for fundamental plasma emission by the three-wave processes L + or - S to T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived.
New method to monitor RF safety in MRI-guided interventions based on RF induced image artefacts.
van den Bosch, Michiel R; Moerland, Marinus A; Lagendijk, Jan J W; Bartels, Lambertus W; van den Berg, Cornelis A T
2010-02-01
Serious tissue heating may occur at the tips of elongated metallic structures used in MRI-guided interventions, such as vascular guidewires, catheters, biopsy needles, and brachytherapy needles. This heating is due to resonating electromagnetic radiofrequency (RF) waves along the structure. Since it is hard to predict the exact length at which resonance occurs under in vivo conditions, there is a need for methods to monitor this resonance behavior. In this study, the authors propose a method based on the RF induced image artefacts and demonstrate its applicability in two phantom experiments. The authors developed an analytical model that describes the RF induced image artefacts as a function of the induced current in an elongated metallic structure placed parallel to the static magnetic field. It describes the total RF field as a sum of the RF fields produced by the transmit coil of the MR scanner and by the elongated metallic structure. Several spoiled gradient echo images with different nominal flip angle settings were acquired to map the B1+ field, which is a quantitative measure for the RF distortion around the structure. From this map, the current was extracted by fitting the analytical model. To investigate the sensitivity of our method we performed two phantom experiments with different setup parameters: One that mimics a brachytherapy needle insertion and one that resembles a guidewire intervention. In the first experiment, a short needle was placed centrally in the MR bore to ensure that the induced currents would be small. In the second experiment, a longer wire was placed in an off-center position to mimic a worst case scenario for the patient. In both experiments, a Luxtron (Santa Clara, CA) fiberoptic temperature sensor was positioned at the structure tip to record the temperature. In the first experiment, no significant temperature increases were measured, while the RF image artefacts and the induced currents in the needle increased with the applied insertion depth. The maximum induced current in the needle was 44 mA. Furthermore, a standing wave pattern became clearly visible for larger insertion depths. In the second experiment, significant temperature increases up to 2.4 degrees C in 1 min were recorded during the image acquisitions. The maximum current value was 1.4 A. In both experiments, a proper estimation of the current in the metallic structure could be made using our analytical model. The authors have developed a method to quantitatively determine the induced current in an elongated metallic structure from its RF distortion. This creates a powerful and sensitive method to investigate the resonant behavior of RF waves along elongated metallic structures used for MRI-guided interventions, for example, to monitor the RF safety or to inspect the influence of coating on the resonance length. Principally, it can be applied under in vivo conditions and for noncylindrical metallic structures such as hip implants by taking their geometry into account.
Current-induced dissipation in spectral wave models
NASA Astrophysics Data System (ADS)
Rapizo, H.; Babanin, A. V.; Provis, D.; Rogers, W. E.
2017-03-01
Despite many recent developments of the parameterization for wave dissipation in spectral models, it is evident that when waves propagate onto strong adverse currents the rate of energy dissipation is not properly estimated. The issue of current-induced dissipation is studied through a comprehensive data set in the tidal inlet of Port Phillip Heads, Australia. The wave parameters analyzed are significantly modulated by the tidal currents. Wave height in conditions of opposing currents (ebb tide) can reach twice the offshore value, whereas during coflowing currents (flood), it can be reduced to half. The wind-wave model SWAN is able to reproduce the tide-induced modulation of waves and the results show that the variation of currents is the dominant factor in modifying the wave field. In stationary simulations, the model provides an accurate representation of wave height for slack and flood tides. During ebb tides, wave energy is highly overestimated over the opposing current jet. None of the four parameterizations for wave dissipation tested performs satisfactorily. A modification to enhance dissipation as a function of the local currents is proposed. It consists of the addition of a factor that represents current-induced wave steepening and it is scaled by the ratio of spectral energy to the threshold breaking level. The new term asymptotes to the original form as the current in the wave direction tends to zero. The proposed modification considerably improves wave height and mean period in conditions of adverse currents, whereas the good model performance in coflowing currents is unaltered.
Temperature effects on the band gaps of Lamb waves in a one-dimensional phononic-crystal plate (L).
Cheng, Y; Liu, X J; Wu, D J
2011-03-01
This study investigates the temperature-tuned band gaps of Lamb waves in a one-dimensional phononic-crystal plate, which is formed by alternating strips of ferroelectric ceramic Ba(0.7)Sr(0.3)TiO(3) and epoxy. The sensitive and continuous temperature-tunability of Lamb wave band gaps is demonstrated using the analyses of the band structures and the transmission spectra. The width and position of Lamb wave band gaps shift prominently with variation of temperature in the range of 26 °C-50 °C. For example, the width of the second band gap increases from 0.066 to 0.111 MHz as the temperature is increased from 26 °C to 50 °C. The strong shift promises that the structure could be suitable for temperature-tuned multi-frequency Lamb wave filters. © 2011 Acoustical Society of America
NASA Technical Reports Server (NTRS)
Spencer, J. W., Jr.; Nur, A. M.
1976-01-01
A description is presented of an experimental assembly which has been developed to conduct concurrent measurements of compressional and shear wave velocities in rocks at high temperatures and confining pressures and with independent control of the pore pressure. The apparatus was used in studies of the joint effects of temperature, external confining pressure, and internal pore water on sonic velocities in Westerly granite. It was found that at a given temperature, confining pressure has a larger accelerating effect on compressional waves in dry rock, whereas at a given confining pressure, temperature has a larger retarding effect on shear waves.
Emerging applications of high temperature superconductors for space communications
NASA Technical Reports Server (NTRS)
Heinen, Vernon O.; Bhasin, Kul B.; Long, Kenwyn J.
1990-01-01
Proposed space missions require longevity of communications system components, high input power levels, and high speed digital logic devices. The complexity of these missions calls for a high data bandwidth capacity. Incorporation of high temperature superconducting (HTS) thin films into some of these communications system components may provide a means of meeting these requirements. Space applications of superconducting technology has previously been limited by the requirement of cooling to near liquid helium temperatures. Development of HTS materials with transition temperatures above 77 K along with the natural cooling ability of space suggest that space applications may lead the way in the applications of high temperature superconductivity. In order for HTS materials to be incorporated into microwave and millimeter wave devices, the material properties such as electrical conductivity, current density, surface resistivity and others as a function of temperature and frequency must be well characterized and understood. The millimeter wave conductivity and surface resistivity were well characterized, and at 77 K are better than copper. Basic microwave circuits such as ring resonators were used to determine transmission line losses. Higher Q values than those of gold resonator circuits were observed below the transition temperature. Several key HTS circuits including filters, oscillators, phase shifters and phased array antenna feeds are feasible in the near future. For technology to improve further, good quality, large area films must be reproducibly grown on low dielectric constant, low loss microwave substrates.
Temperature dependence of the pulse-duration memory effect in NbSe3
NASA Astrophysics Data System (ADS)
Jones, T. C.; Simpson, C. R., Jr.; Clayhold, J. A.; McCarten, J. P.
2000-04-01
The temperature dependence of the oscillatory response of the 59 K charge-density wave in NbSe3 to a sequence of repetitive current pulses was investigated. For 52 K>T>45 K the learned behavior commonly referred to as the pulse-duration memory effect (PDME) is very evident; after training the voltage oscillation always finishes the pulse at a minimum. At lower temperatures the PDME changes qualitatively. In nonswitching samples the voltage oscillation always finishes the pulse increasing. In switching samples there is a conduction delay which becomes fixed after training, but no learning of the duration of the pulse.
NASA Astrophysics Data System (ADS)
Matveev, O. P.; Shvaika, A. M.; Devereaux, T. P.; Freericks, J. K.
2016-01-01
Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for the nonlinear response of an electron-mediated charge-density-wave-ordered material. We examine both the dc current and the order parameter of the conduction electrons as the ordered system is driven by the electric field. Although the formalism we develop applies to all models, for concreteness, we examine the charge-density-wave phase of the Falicov-Kimball model, which displays a number of anomalous behaviors including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field.
NASA Technical Reports Server (NTRS)
Embleton, Tony F. W.; Daigle, Gilles A.
1991-01-01
Reviewed here is the current state of knowledge with respect to each basic mechanism of sound propagation in the atmosphere and how each mechanism changes the spectral or temporal characteristics of the sound received at a distance from the source. Some of the basic processes affecting sound wave propagation which are present in any situation are discussed. They are geometrical spreading, molecular absorption, and turbulent scattering. In geometrical spreading, sound levels decrease with increasing distance from the source; there is no frequency dependence. In molecular absorption, sound energy is converted into heat as the sound wave propagates through the air; there is a strong dependence on frequency. In turbulent scattering, local variations in wind velocity and temperature induce fluctuations in phase and amplitude of the sound waves as they propagate through an inhomogeneous medium; there is a moderate dependence on frequency.
A generalized plasma dispersion function for electron damping in tokamak plasmas
Berry, L. A.; Jaeger, E. F.; Phillips, C. K.; ...
2016-10-14
Radio frequency wave propagation in finite temperature, magnetized plasmas exhibits a wide range of physics phenomena. The plasma response is nonlocal in space and time, and numerous modes are possible with the potential for mode conversions and transformations. Additionally, diffraction effects are important due to finite wavelength and finite-size wave launchers. Multidimensional simulations are required to describe these phenomena, but even with this complexity, the fundamental plasma response is assumed to be the uniform plasma response with the assumption that the local plasma current for a Fourier mode can be described by the Stix conductivity. But, for plasmas with non-uniformmore » magnetic fields, the wave vector itself is nonlocal. When resolved into components perpendicular (k ) and parallel (k ||) to the magnetic field, locality of the parallel component can easily be violated when the wavelength is large. The impact of this inconsistency is that estimates of the wave damping can be incorrect (typically low) due to unresolved resonances. For the case of ion cyclotron damping, this issue has already been addressed by including the effect of parallel magnetic field gradients. In this case, a modified plasma response (Z function) allows resonance broadening even when k || = 0, and this improves the convergence and accuracy of wave simulations. In our paper, we extend this formalism to include electron damping and find improved convergence and accuracy for parameters where electron damping is dominant, such as high harmonic fast wave heating in the NSTX-U tokamak, and helicon wave launch for off-axis current drive in the DIII-D tokamak.« less
Manipulating line waves in flat graphene for agile terahertz applications
NASA Astrophysics Data System (ADS)
Bisharat, Dia'aaldin J.; Sievenpiper, Daniel F.
2018-05-01
Reducing open waveguides enabled by surface waves, such as surface plasmon polaritons, to a one-dimensional line is attractive due to the potentially enhanced control over light confinement and transport. This was recently shown to be possible by simply interfacing two co-planar surfaces with complementary surface impedances, which support transverse-magnetic and transverse-electric modes, respectively. Attractively, the resultant "line wave" at the interface line features singular field enhancement and robust direction-dependent polarizations. Current implementations, however, are limited to microwave frequencies and have fixed functionality due to the lack of dynamic control. In this article, we examine the potential of using gate-tunable graphene sheets for supporting line waves in the terahertz regime and propose an adequate graphene-metasurface configuration for operation at room temperature and low voltage conditions. In addition, we show the occurrence of quasi-line wave under certain conditions of non-complementary boundaries and qualify the degradation in line wave confinement due to dissipation losses. Furthermore, we show the possibility to alter the orientation of the line wave's spin angular momentum on demand unlike conventional surface waves. Our results on active manipulation of electromagnetic line waves in graphene could be useful for various applications including reconfigurable integrated circuits, modulation, sensing and signal processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Zhaoguo; University of Chinese Academy of Sciences, Beijing 100049; Zong, Qiugang, E-mail: qgzong@gmail.com
2014-12-15
Resonant pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves has been suggested to account for the rapid loss of ring current ions and radiation belt electrons. For the rising tone EMIC wave (classified as triggered EMIC emission), its frequency sweep rate strongly affects the efficiency of pitch-angle scattering. Based on the Cluster observations, we analyze three typical cases of rising tone EMIC waves. Two cases locate at the nightside (22.3 and 22.6 magnetic local time (MLT)) equatorial region and one case locates at the duskside (18MLT) higher magnetic latitude (λ = –9.3°) region. For the three cases, the time-dependent wave amplitude,more » cold electron density, and cold ion density ratio are derived from satellite data; while the ambient magnetic field, thermal proton perpendicular temperature, and the wave spectral can be directly provided by observation. These parameters are input into the nonlinear wave growth model to simulate the time-frequency evolutions of the rising tones. The simulated results show good agreements with the observations of the rising tones, providing further support for the previous finding that the rising tone EMIC wave is excited through the nonlinear wave growth process.« less
NASA Astrophysics Data System (ADS)
Lieske, Mike; Schlurmann, Torsten
2016-04-01
INTRODUCTION & MOTIVATION The design of structures in coastal and offshore areas and their maintenance are key components of coastal protection. Usually, assessments of processes and loads on coastal structures are derived from experiments with flow and wave parameters in separate physical models. However, Peregrin (1976) already points out that processes in natural shallow coastal waters flow and sea state processes do not occur separately, but influence each other nonlinearly. Kemp & Simons (1982) perform 2D laboratory tests and study the interactions between a turbulent flow and following waves. They highlight the significance of wave-induced changes in the current properties, especially in the mean flow profiles, and draw attention to turbulent fluctuations and bottom shear stresses. Kemp & Simons (1983) also study these processes and features with opposing waves. Studies on the wave-current interaction in three-dimensional space for a certain wave height, wave period and water depth were conducted by MacIver et al. (2006). The research focus is set on the investigation of long-crested waves on obliquely opposing and following currents in the new 3D wave-current basin. METHODOLOGY In a first step the flow analysis without waves is carried out and includes measurements of flow profiles in the sweet spot of the basin at predefined measurement positions. Five measuring points in the water column have been delineated in different water depths in order to obtain vertical flow profiles. For the characterization of the undisturbed flow properties in the basin, an uniformly distributed flow was generated in the wave basin. In the second step wave analysis without current, the unidirectional wave propagation and wave height were investigated for long-crested waves in intermediate wave conditions. In the sweet spot of the wave basin waves with three different wave directions, three wave periods and uniform wave steepness were examined. For evaluation, we applied a common 3D wave analysis method, the Bayesian Directional Spectrum method (BDM). BDM was presented by Hashimoto et al. (1988). Lastly, identification of the wave-current interaction, the results from experiment with simultaneous waves and currents are compared with results for only-currents and only-waves in order to identify and exemplify the significance of nonlinear interaction processes. RESULTS The first results of the wave-current interaction show, as expected, a reduction in the wave height in the direction of flow and an increase in wave heights against the flow with unidirectional monochromatic waves. The superposition of current and orbital velocities cannot be conducted linearly. Furthermore, the results show a current domination for low wave periods and wave domination for larger wave periods. The criterion of a current or wave domination will be presented in the presentation. ACKNOWLEDGEMENT The support of the KFKI research project "Seegangsbelastungen (Seele)" (Contract No. 03KIS107) by the German "Federal Ministry of Education and Research (BMBF)" is gratefully acknowledged.
Liang, Kun; Yang, Cailan; Peng, Li; Zhou, Bo
2017-02-01
In uncooled long-wave IR camera systems, the temperature of a focal plane array (FPA) is variable along with the environmental temperature as well as the operating time. The spatial nonuniformity of the FPA, which is partly affected by the FPA temperature, obviously changes as well, resulting in reduced image quality. This study presents a real-time nonuniformity correction algorithm based on FPA temperature to compensate for nonuniformity caused by FPA temperature fluctuation. First, gain coefficients are calculated using a two-point correction technique. Then offset parameters at different FPA temperatures are obtained and stored in tables. When the camera operates, the offset tables are called to update the current offset parameters via a temperature-dependent interpolation. Finally, the gain coefficients and offset parameters are used to correct the output of the IR camera in real time. The proposed algorithm is evaluated and compared with two representative shutterless algorithms [minimizing the sum of the squares of errors algorithm (MSSE), template-based solution algorithm (TBS)] using IR images captured by a 384×288 pixel uncooled IR camera with a 17 μm pitch. Experimental results show that this method can quickly trace the response drift of the detector units when the FPA temperature changes. The quality of the proposed algorithm is as good as MSSE, while the processing time is as short as TBS, which means the proposed algorithm is good for real-time control and at the same time has a high correction effect.
Jhaveri, KA; Trammell, RA; Toth, LA
2007-01-01
Ambient temperature exerts a prominent influence on sleep. In rats and humans, low ambient temperatures generally impair sleep, whereas higher temperatures tend to promote sleep. The purpose of the current study was to evaluate sleep patterns and core body temperatures of C57BL/6J mice at ambient temperatures of 22°C, 26°C and 30°C under baseline conditions, after sleep deprivation (SD), and after infection with influenza virus. C57BL/6J mice were surgically implanted with electrodes for recording electroencephalogram (EEG) and electromyogram (EMG) and with intraperitoneal transmitters for recording core body temperature (Tc) and locomotor activity. The data indicate that higher ambient temperatures (26°C and 30°C) promote spontaneous slow wave sleep (SWS) in association with reduced delta wave amplitude during SWS in C57BL/6J mice. Furthermore, higher ambient temperatures also promote recuperative sleep after SD. Thus, in mice, higher ambient temperatures reduced sleep depth under normal conditions, but augmented the recuperative response to sleep loss. Mice infected with influenza virus while maintained at 22 or 26°C developed more SWS, less rapid eye movement sleep, lower locomotor activity and greater hypothermia than did mice maintained at 30°C during infection. In addition, despite equivalent viral titers, mice infected with influenza virus at 30°C showed less leucopenia and lower cytokine induction as compared with 22 and 26°C, respectively, suggesting that less inflammation develops at the higher ambient temperature. PMID:17467232
Mechanism and modulation of terahertz generation from a semimetal - graphite
Ye, Tong; Meng, Sheng; Zhang, Jin; E, Yiwen; Yang, Yuping; Liu, Wuming; Yin, Yan; Wang, Li
2016-01-01
Semi-metals might offer a stronger interaction and a better confinement for terahertz wave than semiconductors, while preserve tunability. Particularly, graphene-based materials are envisioned as terahertz modulators, filters and ultra-broadband sources. However, the understanding of terahertz generation from those materials is still not clear, thus limits us recognizing the potential and improving device performances. Graphite, the mother material of graphene and a typical bulk semi-metal, is a good system to study semi-metals and graphene-based materials. Here we experimentally modulate and maximize the terahertz signal from graphite surface, thus reveal the mechanism - surface field driving photon induced carriers into transient current to radiate terahertz wave. We also discuss the differences between graphite and semiconductors; particularly graphite shows very weak temperature dependency from room temperature to 80 °C. Above knowledge will help us understand terahertz generations, achieve maximum output and electric modulation, in semi-metal or graphene based devices. PMID:26972818
Mechanism and modulation of terahertz generation from a semimetal--graphite.
Ye, Tong; Meng, Sheng; Zhang, Jin; E, Yiwen; Yang, Yuping; Liu, Wuming; Yin, Yan; Wang, Li
2016-03-14
Semi-metals might offer a stronger interaction and a better confinement for terahertz wave than semiconductors, while preserve tunability. Particularly, graphene-based materials are envisioned as terahertz modulators, filters and ultra-broadband sources. However, the understanding of terahertz generation from those materials is still not clear, thus limits us recognizing the potential and improving device performances. Graphite, the mother material of graphene and a typical bulk semi-metal, is a good system to study semi-metals and graphene-based materials. Here we experimentally modulate and maximize the terahertz signal from graphite surface, thus reveal the mechanism--surface field driving photon induced carriers into transient current to radiate terahertz wave. We also discuss the differences between graphite and semiconductors; particularly graphite shows very weak temperature dependency from room temperature to 80 °C. Above knowledge will help us understand terahertz generations, achieve maximum output and electric modulation, in semi-metal or graphene based devices.
Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes
NASA Technical Reports Server (NTRS)
Frankignoul, C.
1985-01-01
Current analytical models for large-scale air-sea interactions in the middle latitudes are reviewed in terms of known sea-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the air-sea feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.
Communications Transceivers for Venus Surface Missions
NASA Technical Reports Server (NTRS)
Force, Dale A.
2004-01-01
The high temperature of the surface of Venus poses many difficulties. Previous Venus landers have only operated for short durations before succumbing to the heat. NASA Glenn Research Center conducted a study on communications for long duration Venus surface missions. I report the findings in this presentation. Current technology allows production of communications transceivers that can operate on the surface of Venus, at temperatures above 450 C and pressures of over 90 atmospheres. While these transceivers would have to be relatively simple, without much of the advanced signal processing often used in modern transceivers, since current and near future integrated circuits cannot operate at such high temperatures, the transceivers will be able to meet the requirements of proposed Venus Surface mission. The communication bands of interest are High Frequency or Very High Frequency (HFNHF) for communication between Venus surface and airborne probes (including surface to surface and air to air), and Ultra High Frequency (UHF) to Microwave bands for communication to orbiters. For HFNHF, transceivers could use existing vacuum tube technology. The packaging of the vacuum tubes may need modification, but the internal operating structure already operates at high temperatures. Using metal vacuum structures instead of glass, allows operation at high pressure. Wide bandgap transistors and diodes may be able to replace some of the thermionic components. VHF communications would be useful for line-of- sight operations, while HF would be useful for short-wave type communications using the Venusian ionosphere. UHF and microwave communications use magnetically focused thermionic devices, such as traveling wave tubes (TWTs), magnetron (M-type) amplifiers, and klystrons for high power amplifiers, and backward wave oscillators (BWOs) and reflex klystrons for oscillators. Permanent magnets are already in use in industry that can operate at 500 C. These magnets could focus electron beam tubes on the surface of Venus. While microwave windows will need to be designed for the high pressure, diamond windows have already been demonstrated, so high-pressure microwave windows can be designed and built. Thus, all of these devices could be useful for Venus surface missions. Current electronic power conditioners to supply the high voltages used in these microwave devices cannot operate at high temperatures, but earlier electronic power conditioners that used vacuum tubes can be modified to work at high temperature. Evaluating the various devices in this study, the M-type traveling wave tube (where a traveling wave structure is used in a crossed-field device, similar to the Amplitron used on the Apollo missions) stood out for the high power amplifier since it requires a single high voltage, simplifying the power supply design. Since the receiver amplifier is a low power amplifier, the loss of efficiency in linear beam devices without a depressed collector (and thus needing a single high voltage) is not important; a low noise TWT is a possible solution. Before solid-state microwave amplifiers were available, such TWTs were built with a 1-2 dB noise figure. A microwave triode or transistor made from a wide bandgap material may be preferable, if available. Much of the development work needed for Venusian communication devices will need to focus on the packaging of the devices, and their connections, but the technology is available to build transceivers that can operate on the surface of Venus indefinitely.
Physical processes in a coupled bay-estuary coastal system: Whitsand Bay and Plymouth Sound
NASA Astrophysics Data System (ADS)
Uncles, R. J.; Stephens, J. A.; Harris, C.
2015-09-01
Whitsand Bay and Plymouth Sound are located in the southwest of England. The Bay and Sound are separated by the ∼2-3 km-wide Rame Peninsula and connected by ∼10-20 m-deep English Channel waters. Results are presented from measurements of waves and currents, drogue tracking, surveys of salinity, temperature and turbidity during stratified and unstratified conditions, and bed sediment surveys. 2D and 3D hydrodynamic models are used to explore the generation of tidally- and wind-driven residual currents, flow separation and the formation of the Rame eddy, and the coupling between the Bay and the Sound. Tidal currents flow around the Rame Peninsula from the Sound to the Bay between approximately 3 h before to 2 h after low water and form a transport path between them that conveys lower salinity, higher turbidity waters from the Sound to the Bay. These waters are then transported into the Bay as part of the Bay-mouth limb of the Rame eddy and subsequently conveyed to the near-shore, east-going limb and re-circulated back towards Rame Head. The Simpson-Hunter stratification parameter indicates that much of the Sound and Bay are likely to stratify thermally during summer months. Temperature stratification in both is pronounced during summer and is largely determined by coastal, deeper-water stratification offshore. Small tidal stresses in the Bay are unable to move bed sediment of the observed sizes. However, the Bay and Sound are subjected to large waves that are capable of driving a substantial bed-load sediment transport. Measurements show relatively low levels of turbidity, but these respond rapidly to, and have a strong correlation with, wave height.
Visible GaAs/0.7/P/0.3/ CW heterojunction lasers
NASA Technical Reports Server (NTRS)
Kressel, H.; Olsen, G. H.; Nuese, C. J.
1977-01-01
The paper reports the first low-threshold red-light-emitting heterojunction laser diodes consisting of lattice-matched Ga(As,P)/(In,Ga)P heteroepitaxial layers. A room-temperature threshold current of 3400 A/sq cm was obtained at a wavelength of about 7000 A; this value is substantially lower than those achieved at this wavelength with (Al,Ga)As lasers. For the first time, continuous-wave laser operation at temperatures as high as 10 C has been obtained for GaAs(1-x)P(x).
The Effect of the Leeuwin Current on Offshore Surface Gravity Waves in Southwest Western Australia
NASA Astrophysics Data System (ADS)
Wandres, Moritz; Wijeratne, E. M. S.; Cosoli, Simone; Pattiaratchi, Charitha
2017-11-01
The knowledge of regional wave regimes is critical for coastal zone planning, protection, and management. In this study, the influence of the offshore current regime on surface gravity waves on the southwest Western Australian (SWWA) continental shelf was examined. This was achieved by coupling the three dimensional, free surface, terrain-following hydrodynamic Regional Ocean Modelling System (ROMS) and the third generation wave model Simulating WAves Nearshore (SWAN) using the Coupled Ocean-Atmosphere-WaveSediment Transport (COAWST) model. Different representative states of the Leeuwin Current (LC), a strong pole-ward flowing boundary current with a persistent eddy field along the SWWA shelf edge were simulated and used to investigate their influence on different large wave events. The coupled wave-current simulations were compared to wave only simulations, which represented scenarios in the absence of a background current field. Results showed that the LC and the eddy field significantly impact SWWA waves. Significant wave heights increased (decreased) when currents were opposing (aligning with) the incoming wave directions. During a fully developed LC system significant wave heights were altered by up to ±25% and wave directions by up to ±20°. The change in wave direction indicates that the LC may modify nearshore wave dynamics and consequently alter sediment patterns. Operational regional wave forecasts and hindcasts may give flawed predictions if wave-current interaction is not properly accounted for.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorranian, Davoud; Sabetkar, Akbar
The nonlinear dust acoustic solitary waves in a dusty plasma with two nonthermal ion species at different temperatures is studied analytically. Using reductive perturbation method, the Kadomtsev-Petviashivili (KP) equation is derived, and the effects of nonthermal coefficient, ions temperature, and ions number density on the amplitude and width of soliton in dusty plasma are investigated. It is shown that the amplitude of solitary wave of KP equation diverges at critical points of plasma parameters. The modified KP equation is also derived, and from there, the soliton like solutions of modified KP equation with finite amplitude is extracted. Results show thatmore » generation of rarefactive or compressive solitary waves strongly depends on the number and temperature of nonthermal ions. Results of KP equation confirm that for different magnitudes of ions temperature (mass) and number density, mostly compressive solitary waves are generated in a dusty plasma. In this case, the amplitude of solitary wave is decreased, while the width of solitary waves is increased. According to the results of modified KP equation for some certain magnitudes of parameters, there is a condition for generation of an evanescent solitary wave in a dusty plasma.« less
Gao, Jinghong; Sun, Yunzong; Liu, Qiyong; Zhou, Maigeng; Lu, Yaogui; Li, Liping
2015-02-01
Few multi-city studies have been conducted to explore the regional level definition of heat wave and examine the association between extreme high temperature and mortality in developing countries. The purpose of the present study was to investigate the impact of extreme high temperature on mortality and to explore the local definition of heat wave in five Chinese cities. We first used a distributed lag non-linear model to characterize the effects of daily mean temperature on non-accidental mortality. We then employed a generalized additive model to explore the city-specific definition of heat wave. Finally, we performed a comparative analysis to evaluate the effectiveness of the definition. For each city, we found a positive non-linear association between extreme high temperature and mortality, with the highest effects appearing within 3 days of extreme heat event onset. Specifically, we defined individual heat waves of Beijing and Tianjin as being two or more consecutive days with daily mean temperatures exceeding 30.2 °C and 29.5 °C, respectively, and Nanjing, Shanghai and Changsha heat waves as ≥3 consecutive days with daily mean temperatures higher than 32.9 °C, 32.3 °C and 34.5 °C, respectively. Comparative analysis generally supported the definition. We found extreme high temperatures were associated with increased mortality, after a short lag period, when temperatures exceeded obvious threshold levels. The city-specific definition of heat wave developed in our study may provide guidance for the establishment and implementation of early heat-health response systems for local government to deal with the projected negative health outcomes due to heat waves. Copyright © 2014 Elsevier B.V. All rights reserved.
Dual-pumped nondegenerate four-wave mixing in semiconductor laser with a built-in external cavity
NASA Astrophysics Data System (ADS)
Wu, Jian-Wei; Qiu, Qi; Hyub Won, Yong
2017-04-01
In this paper, a semiconductor laser system consisting of a conventional multimode Fabry-Pérot laser diode with a built-in external cavity is presented and demonstrated. More than two resonance modes, whose peak levels are significantly higher than other residual modes, are simultaneously supported and output by adjusting the bias current and operating temperature of the active region. Based on this device, dual-pumped nondegenerate four-wave mixing—in which two pump waves and a single signal wave are simultaneously fed into the laser, and the injection power and wavelength of the injected pump and signal waves are changed—is observed and discussed thoroughly. The results show that while the wavelengths of pump wave A and signal wave S are kept constant, the other pump wave B jumps from about 1535 nm to 1578 nm, generating conversion signals with changed wavelengths. The achieved conversion bandwidth between the primary signal and the converted signal waves is broadly tunable in the range of several terahertz frequencies. Both the conversion efficiency and optical signal-to-noise ratio of the newly generated conversion signals are adopted to evaluate the performance of the proposed four-wave mixing process, and are strongly dependent on the wavelength and power of the injected waves. Here, the attained maximum conversion efficiency and optical signal-to-noise ratio are close to -22 dB and 15 dB, respectively.
Observations of wave-particle interactions in the flux pile-up region of asymmetric reconnection
NASA Astrophysics Data System (ADS)
Argall, M. R.; Paulson, K. W.; Ahmadi, N.; Matsui, H.; Torbert, R. B.; Alm, L.; Le Contel, O.; Khotyaintsev, Y. V.; Wilder, F. D.; Turner, D. L.; Strangeway, R. J.; Schwartz, S. J.; Magnes, W.; Giles, B. L.; Lindqvist, P. A.; Ergun, R.; Mauk, B.; Leonard, T. W.
2017-12-01
Recent observations have shown electron energization to >100keV with simultaneous whistler wave activity in the vicinity of the dayside reconnection site. We investigate one possible mechanism for producing these energetic particles. Counter-streaming electrons from the magnetosphere enter the diffusion region and are scattered to all pitch angles (PAs) by strong field-line curvature. As the electrons flow outward into the exhaust, they remagnetize and are focused toward 90° at mirror points within the flux pile-up region. This effect, combined with heating mechanisms in the EDR, produces a temperature anisotropy, while the weak magnetic field lowers the resonant energy into the bulk energy of the plasma. In the end, whistler waves are produced near 100Hz with a wave normal angle of 20°. Simultaneous with the waves, the Electron Drift Instrument observes particle flux modulations of 0° and 180° PA, 500 eV electrons. Multi-spacecraft analysis and Liouville mapping techniques allow us to determine the parallel wave current, potential, and associated energy dissipation. Bursts of 100keV electrons are observed and may interact with the whistler waves.
Optical Diode Effect at Spin-Wave Excitations of the Room-Temperature Multiferroic BiFeO_{3}.
Kézsmárki, I; Nagel, U; Bordács, S; Fishman, R S; Lee, J H; Yi, Hee Taek; Cheong, S-W; Rõõm, T
2015-09-18
Multiferroics permit the magnetic control of the electric polarization and the electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to read and write a magnetic state current-free by an electric voltage would provide a huge technological advantage. Dynamic or optical ME effects are equally interesting, because they give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. This phenomenon, if realized at room temperature, would allow the development of optical diodes which transmit unpolarized light in one, but not in the opposite, direction. Here, we report strong unidirectional transmission in the room-temperature multiferroic BiFeO_{3} over the gigahertz-terahertz frequency range. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. These findings are an important step toward the realization of optical diodes, supplemented by the ability to switch the transmission direction with a magnetic or electric field.
ENSO's far reaching connection to Indian cold waves.
Ratnam, J V; Behera, Swadhin K; Annamalai, H; Ratna, Satyaban B; Rajeevan, M; Yamagata, Toshio
2016-11-23
During boreal winters, cold waves over India are primarily due to transport of cold air from higher latitudes. However, the processes associated with these cold waves are not yet clearly understood. Here by diagnosing a suite of datasets, we explore the mechanisms leading to the development and maintenance of these cold waves. Two types of cold waves are identified based on observed minimum surface temperature and statistical analysis. The first type (TYPE1), also the dominant one, depicts colder than normal temperatures covering most parts of the country while the second type (TYPE2) is more regional, with significant cold temperatures only noticeable over northwest India. Quite interestingly the first (second) type is associated with La Niña (El Niño) like conditions, suggesting that both phases of ENSO provide a favorable background for the occurrence of cold waves over India. During TYPE1 cold wave events, a low-level cyclonic anomaly generated over the Indian region as an atmospheric response to the equatorial convective anomalies is seen advecting cold temperatures into India and maintaining the cold waves. In TYPE2 cold waves, a cyclonic anomaly generated over west India anomalously brings cold winds to northwest India causing cold waves only in those parts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Jijun; Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology; Akimoto, Ryoichi, E-mail: r-akimoto@aist.go.jp
2015-10-19
Low threshold current ridge-waveguide BeZnCdSe quantum-well laser diodes (LDs) have been developed by completely etching away the top p-type BeMgZnSe/ZnSe:N short-period superlattice cladding layer, which can suppress the leakage current that flows laterally outside of the electrode. The waveguide LDs are covered with a thick SiO{sub 2} layer and planarized with chemical-mechanical polishing and a reactive ion etching process. Room-temperature lasing under continuous-wave condition is achieved with the laser cavity formed by the cleaved waveguide facets coated with high-reflectivity dielectric films. For a 4 μm-wide green LD lasing around a wavelength of 535 nm, threshold current and voltage of 7.07 mA and 7.89 Vmore » are achieved for a cavity length of 300 μm, and the internal differential quantum efficiency, internal absorption loss, gain constant, and nominal transparency current density are estimated to be 27%, 4.09 cm{sup −1}, 29.92 (cm × μm)/kA and 6.35 kA/(cm{sup 2 }× μm), respectively. This compact device can realize a significantly improved performance with much lower threshold power consumption, which would benefit the potential application for ZnSe-based green LDs as light sources in full-color display and projector devices installed in consumer products such as pocket projectors.« less
EOS Aura MLS, first year post-launch engineering assessment
NASA Technical Reports Server (NTRS)
Lee, Karen A.; Lay, Richard R.; Jarnot, Robert F.; Cofield, Richard E.; Flower, Dennis A.; Pickett, Herbert M.
2005-01-01
This paper discusses the current status of the MLS instrument which now continuously provides data to produce global maps of targeted chemical species as well as temperature, cloud ice, and gravity wave activity. Performance trends are assessed with respect to characterization during initial on-orbit activiation of the instrument, and with data from ground test verification prior to launch.
LaBombard, B; Lyons, L
2007-07-01
A new method for the real-time evaluation of the conditions in a magnetized plasma is described. The technique employs an electronic "mirror Langmuir probe" (MLP), constructed from bipolar rf transistors and associated high-bandwidth electronics. Utilizing a three-state bias wave form and active feedback control, the mirror probe's I-V characteristic is continuously adjusted to be a scaled replica of the "actual" Langmuir electrode immersed in a plasma. Real-time high-bandwidth measurements of the plasma's electron temperature, ion saturation current, and floating potential can thereby be obtained using only a single electrode. Initial tests of a prototype MLP system are reported, proving the concept. Fast-switching metal-oxide-semiconductor field-effect transistors produce the required three-state voltage bias wave form, completing a full cycle in under 1 mus. Real-time outputs of electron temperature, ion saturation current, and floating potential are demonstrated, which accurately track an independent computation of these values from digitally stored I-V characteristics. The MLP technique represents a significant improvement over existing real-time methods, eliminating the need for multiple electrodes and sampling all three plasma parameters at a single spatial location.
Whistler waves with electron temperature anisotropy and non-Maxwellian distribution functions
NASA Astrophysics Data System (ADS)
Malik, M. Usman; Masood, W.; Qureshi, M. N. S.; Mirza, Arshad M.
2018-05-01
The previous works on whistler waves with electron temperature anisotropy narrated the dependence on plasma parameters, however, they did not explore the reasons behind the observed differences. A comparative analysis of the whistler waves with different electron distributions has not been made to date. This paper attempts to address both these issues in detail by making a detailed comparison of the dispersion relations and growth rates of whistler waves with electron temperature anisotropy for Maxwellian, Cairns, kappa and generalized (r, q) distributions by varying the key plasma parameters for the problem under consideration. It has been found that the growth rate of whistler instability is maximum for flat-topped distribution whereas it is minimum for the Maxwellian distribution. This work not only summarizes and complements the previous work done on the whistler waves with electron temperature anisotropy but also provides a general framework to understand the linear propagation of whistler waves with electron temperature anisotropy that is applicable in all regions of space plasmas where the satellite missions have indicated their presence.
NASA Technical Reports Server (NTRS)
Qui, Y.; Uhl, D.; Keo, S.
2003-01-01
Single-stack InAsSb self-assembled quantum-dot lasers based on (001) InP substrate have been grown by metalorganic vapor-phase epitaxy. The narrow ridge waveguide lasers lased at wavelengths near 2 mu m up to 25 degrees C in continuous-wave operation. At room temperature, a differential quantum efficiency of 13 percent is obtained and the maximum output optical power reaches 3 mW per facet with a threshold current density of 730 A/cm(sup 2). With increasing temperature the emission wavelength is extremely temperature stable, and a very low wavelength temperature sensitivity of 0.05 nm/degrees C is measured, which is even lower than that caused by the refractive index change.
NASA Astrophysics Data System (ADS)
Maneva, Y. G.; Poedts, S.
2017-12-01
Non-thermal kinetic components such as deformed velocity distributions, temperature anisotropies and relative drifts between the multiple ion populations are frequently observed features in the collisionless fast solar wind streams near the Earth whose origin is still to be better understood. Some of the traditional models consider the formation of the temperature anisotropies through the effect of the solar wind expansion, while others assume in situ heating and particle acceleration by local fluctuations, such as plasma waves, or by spacial structures, such as advected or locally generated current sheets. In this study we consider the evolution of initial ion temperature anisotropies and relative drifts in the presence of plasma oscillations, such as ion-cyclotron and kinetic Alfven waves. We perform 2.5D hybrid simulations to study the evolution of observed fast solar wind plasma parcels, including the development of the plasma micro-instabilities, the field-particle correlations and the energy transfer between the multiple ion species. We consider two distinct cases of highly anisotropic and quickly drifting protons which excite ion-cyclotron waves and of moderately anisotropic slower protons, which co-exist with kinetic Alfven waves. The alpha particles for both cases are slightly anisotropic in the beginning and remain anisotropic throughout the simulation time. Both the imposed magnetic fluctuations and the initial differential streaming decrease in time for both cases, while the minor ions are getting heated. Finally we study the effects of the solar wind expansion and discuss its implications for the nonlinear evolution of the system.
Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves.
Oehlschlaeger, Matthew A; Davidson, David F; Jeffries, Jay B
2005-11-01
A diagnostic for microsecond time-resolved temperature measurements behind shock waves, using ultraviolet laser absorption of vibrationally hot carbon dioxide, is demonstrated. Continuous-wave laser radiation at 244 and 266 nm was employed to probe the spectrally smooth CO2 ultraviolet absorption, and an absorbance ratio technique was used to determine temperature. Measurements behind shock waves in both nonreacting and reacting (ignition) systems were made, and comparisons with isentropic and constant-volume calculations are reported.
Analysis of heat wave occurrences in the Carpathian basin using regional climate model simulations
NASA Astrophysics Data System (ADS)
Bartha, E. B.; Pongracz, R.; Bartholy, J.
2012-04-01
Human health is very likely affected by regional consequences of global warming. One of the most severe impacts is probably associated to temperature-related climatological extremes, such as heat waves. In the coming decades hot conditions in most regions of the world are very likely to occur more frequently and more intensely than in the recent decades. In order to develop adaptation and mitigation strategies on local scale, it is essential to analyze the projected changes related to warming climatic conditions including heat waves. In 2004, a Heat Health Watch Warning System was developed in Hungary on the basis of a retrospective analysis of mortality and meteorological data to anticipate heat waves that may result in a large excess of mortality. In the frame of this recently introduced Health Watch System, three levels of heat wave warning are applied. They are associated to the daily mean temperature values, and defined as follows: - Warning level 1 (advisory for internal use) is issued when the daily mean temperature exceeds 25 °C. - Warning level 2 (heat wave watch) is issued when the daily mean temperature for at least 3 consecutive days exceeds 25 °C. - Warning level 3 (heat wave alert) is issued when the daily mean temperature for at least 3 consecutive days exceeds 27 °C. In the present study, frequency of the above climatic conditions are analyzed using regional climate model (RCM) experiments are analyzed for the recent past and the coming decades (1961-2100) for the Carpathian basin. At the Dept. of Meteorology, Eotvos Lorand University two different RCMs have been adapted: RegCM (with 10 km horizontal resolution, originally developed by Giorgi et al., currently, available from the International Centre for Theoretical Physics, ICTP) and PRECIS (with 25 km horizontal resolution, developed at the UK Met Office, Hadley Centre). Their initial and lateral boundary conditions have been provided by global climate models ECHAM and HadCM3, respectively. For both RCMs A1B emission scenario was used. The climatic conditions of 1961-1990 (as a reference), and 2021-2050, 2071-2100 future periods are evaluated using bias corrected daily mean temperature outputs of both RegCM and PRECIS. Based on the results the following main conclusions can be drawn: (i) Heat waves are very likely to occur more frequently in the 21st century than in the reference period, 1961-1990. (ii) By the end of the 21st century heat warning level 3 is projected to occur with similar frequency as the heat warning level 1 in the reference period. (iii) By the end of the 21st century the average first occurrence of the heat warning days is simulated to shift earlier, and the average last occurrence later, than in the reference period - thus the length of the heat wave season is projected to become remarkably larger. (iv) For each time slices (both reference and future periods), PRECIS simulations suggest a more often occurrence of heat warning cases in the Carpathian basin than the RegCM experiments.
NASA Astrophysics Data System (ADS)
Gabovich, Alexander M.; Voitenko, Alexander I.
2016-10-01
The state of the art concerning tunnel measurements of energy gaps in cuprate oxides has been analyzed. A detailed review of the relevant literature is made, and original results calculated for the quasiparticle tunnel current J(V) between a metallic tip and a disordered d-wave superconductor partially gapped by charge density waves (CDWs) are reported, because it is this model of high-temperature superconductors that becomes popular owing to recent experiments in which CDWs were observed directly. The current was calculated suggesting the scatter of both the superconducting and CDW order parameters due to the samples' intrinsic inhomogeneity. It was shown that peculiarities in the current-voltage characteristics inherent to the case of homogeneous superconducting material are severely smeared, and the CDW-related features transform into experimentally observed peak-dip-hump structures. Theoretical results were used to fit data measured for YBa2Cu3O7-δ and Bi2Sr2CaCu2O8+δ. The fitting demonstrated a good qualitative agreement between the experiment and model calculations. The analysis of the energy gaps in high-Tc superconductors is important both per se and as a tool to uncover the nature of superconductivity in cuprates not elucidated so far despite of much theoretical effort and experimental progress.
Denton, R. E.; Jordanova, V. K.; Fraser, B. J.
2014-10-01
We simulate electromagnetic ion cyclotron (EMIC) wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low-density plasmatrough outside the plasmapause. First, we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability for conditions observed on 9 June 2001. Then, using two different models for the cold ion composition, we do a full scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at MLT = 18 and at 1900 UT within a range of L shell frommore » L = 4.9 to 6.7. EMIC waves were observed during June 9, 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least at one location within the region of largest wave growth. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. The density gradient within the plasmapause does, however, affect the orientation of wave fronts and wave vector both within the plasmapause and in adjacent regions. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves, can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold plasma theory are altered by the finite temperature of the ring current H+.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denton, R. E.; Jordanova, V. K.; Fraser, B. J.
We simulate electromagnetic ion cyclotron (EMIC) wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low-density plasmatrough outside the plasmapause. First, we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability for conditions observed on 9 June 2001. Then, using two different models for the cold ion composition, we do a full scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at MLT = 18 and at 1900 UT within a range of L shell frommore » L = 4.9 to 6.7. EMIC waves were observed during June 9, 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least at one location within the region of largest wave growth. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. The density gradient within the plasmapause does, however, affect the orientation of wave fronts and wave vector both within the plasmapause and in adjacent regions. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves, can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold plasma theory are altered by the finite temperature of the ring current H+.« less
Ocean dynamics studies. [of current-wave interactions
NASA Technical Reports Server (NTRS)
1974-01-01
Both the theoretical and experimental investigations into current-wave interactions are discussed. The following three problems were studied: (1) the dispersive relation of a random gravity-capillary wave field; (2) the changes of the statistical properties of surface waves under the influence of currents; and (3) the interaction of capillary-gravity with the nonuniform currents. Wave current interaction was measured and the feasibility of using such measurements for remote sensing of surface currents was considered. A laser probe was developed to measure the surface statistics, and the possibility of using current-wave interaction as a means of current measurement was demonstrated.
Thomas P. Albright; Anna M. Pidgeon; Chadwick D. Rittenhouse; Murray K. Clayton; Curtis H. Flather; Patrick D. Culbert; Volker C. Radeloff
2011-01-01
Heat waves are expected to become more frequent and severe as climate changes, with unknown consequences for biodiversity. We sought to identify ecologically-relevant broad-scale indicators of heat waves based on MODIS land surface temperature (LST) and interpolated air temperature data and assess their associations with avian community structure. Specifically, we...
Imaging Gravity Waves in Lower Stratospheric AMSU-A Radiances. Part 1: Simple Forward Model
2006-08-14
brightening” of microwave radiances acquired from purely vertical background temperature profiles by cross- track scanners. Waves propagating along track...three-dimensional wave fields. For example, some limb sensors return high- resolution vertical temperature profiles with wave oscilla- tions...provide only ver- tical profiles of wave oscillations, similar to radiosonde and rocketsonde data. Similarly, limb-tracking measurements from the
NASA Astrophysics Data System (ADS)
Tao, Xie; Shang-Zhuo, Zhao; William, Perrie; He, Fang; Wen-Jin, Yu; Yi-Jun, He
2016-06-01
To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface, a fractal sea surface wave-current model is derived, based on the mechanism of wave-current interactions. The numerical results show the effect of the ocean current on the wave. Wave amplitude decreases, wavelength and kurtosis of wave height increase, spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave. By comparison, wave amplitude increases, wavelength and kurtosis of wave height decrease, spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave. The wave-current interaction effect of the ocean current is much stronger than that of the nonlinear wave-wave interaction. The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface. The effect of the current on skewness of the probability distribution function is negligible. Therefore, the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Development Program of Jiangsu Higher Education Institutions (PAPD), Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service.
Changes in heat waves indices in Romania over the period 1961-2015
NASA Astrophysics Data System (ADS)
Croitoru, Adina-Eliza; Piticar, Adrian; Ciupertea, Antoniu-Flavius; Roşca, Cristina Florina
2016-11-01
In the last two decades many climate change studies have focused on extreme temperatures as they have a significant impact on environment and society. Among the weather events generated by extreme temperatures, heat waves are some of the most harmful. The main objective of this study was to detect and analyze changes in heat waves in Romania based on daily observation data (maximum and minimum temperature) over the extended summer period (May-Sept) using a set of 10 indices and to explore the spatial patterns of changes. Heat wave data series were derived from daily maximum and minimum temperature data sets recorded in 29 weather stations across Romania over a 55-year period (1961-2015). In this study, the threshold chosen was the 90th percentile calculated based on a 15-day window centered on each calendar day, and for three baseline periods (1961-1990, 1971-2000, and 1981-2010). Two heat wave definitions were considered: at least three consecutive days when maximum temperature exceeds 90th percentile, and at least three consecutive days when minimum temperature exceeds 90th percentile. For each of them, five variables were calculated: amplitude, magnitude, number of events, duration, and frequency. Finally, 10 indices resulted for further analysis. The main results are: most of the indices have statistically significant increasing trends; only one index for one weather station indicated statistically significant decreasing trend; the changes are more intense in case of heat waves detected based on maximum temperature compared to those obtained for heat waves identified based on minimum temperature; western and central regions of Romania are the most exposed to increasing heat waves.
Sahelian springtime heat waves and their evolution over the past 60 years
NASA Astrophysics Data System (ADS)
Barbier, Jessica; Guichard, Françoise; Bouniol, Dominique; Couvreux, Fleur; Roehrig, Romain
2017-04-01
The Sahel is a semi-arid region which experiences very high temperature both during day- and night-times: monthly-mean temperatures in Spring typically oscillate between 30 and 40°C. At the same time a strong climatic warming has been observed over the past 60 years in this region: it reaches +1,5°C over April-May. Thus heat waves in this region have severe impacts on health, ecosystem, agriculture and more broadly economical activities, which will probably worsen in the context of climate change. However, heat waves in the Sahel remain poorly studied. The present work documents Sahelian heat waves and assesses their evolution across the last 60 years. Properties of heat waves are sensitive to the way they are detected. Here, we use a methodology based on anomalies that allows to filter the seasonal, inter-annual and climatic evolutions, using a percentile-type threshold. It is applied separately to daily maximum and minimum temperatures and leads to two types of heat waves: day- and night-time ones. This separation matters because physical processes linked to minimum and maximum temperatures can be quite distinct. The changes in both types of heat wave were studied over the period 1950-2012 using the Berkeley Earth Surface Temperature gridded product: several heat wave characteristics were investigated, including morphological ones such as the length and the spatial extent of the event, the heat wave intensity and the associated warming trends. We found no significant trends in the frequency, duration and spatial extent of both types of heat waves, while on the other hand their maximum and minimum temperatures displayed significant positive trends. They were mainly explained by the regional warming. By contrast, with a standard climatic heat index using percentile-threshold on raw temperatures, both day- and night-time heat wave frequencies were increasing, and while the day-time heat waves were getting longer and larger, the night-time heat waves were getting hotter. The explanations for the differences between the heat indexes will be discussed. The ability of the three reanalyses ERA-Interim, NCEP2 and MERRA to reproduce Sahelian heat wave properties and their associated trends was further assessed on the period 1979-2010. At this shorter scale, we did not find any significant heat wave trend. Furthermore, reanalyses strongly differed in the representation of the heat wave inter-annual variability. These results raise concern about the utilization of meteorological reanalyses for the study of heat wave trends in West Africa.
Operational Forecasting and Warning systems for Coastal hazards in Korea
NASA Astrophysics Data System (ADS)
Park, Kwang-Soon; Kwon, Jae-Il; Kim, Jin-Ah; Heo, Ki-Young; Jun, Kicheon
2017-04-01
Coastal hazards caused by both Mother Nature and humans cost tremendous social, economic and environmental damages. To mitigate these damages many countries have been running the operational forecasting or warning systems. Since 2009 Korea Operational Oceanographic System (KOOS) has been developed by the leading of Korea Institute of Ocean Science and Technology (KIOST) in Korea and KOOS has been operated in 2012. KOOS is consists of several operational modules of numerical models and real-time observations and produces the basic forecasting variables such as winds, tides, waves, currents, temperature and salinity and so on. In practical application systems include storm surges, oil spills, and search and rescue prediction models. In particular, abnormal high waves (swell-like high-height waves) have occurred in the East coast of Korea peninsula during winter season owing to the local meteorological condition over the East Sea, causing property damages and the loss of human lives. In order to improve wave forecast accuracy even very local wave characteristics, numerical wave modeling system using SWAN is established with data assimilation module using 4D-EnKF and sensitivity test has been conducted. During the typhoon period for the prediction of sever waves and the decision making support system for evacuation of the ships, a high-resolution wave forecasting system has been established and calibrated.
Equatorial waves in temperature in the altitude range 4 to 70 km
NASA Astrophysics Data System (ADS)
Krishna Murthy, B. V.; Satheesan, K.; Parameswaran, K.; Sasi, M. N.; Ramkumar, Geetha; Bhavanikumar, Y.; Raghunath, K.; Krishniah, M.
2002-04-01
Using altitude profiles of temperature in the range 4 to 70 km derived from Mesosphere-Stratosphere- Troposphere radar and lidar observations at Gadanki (13.5°N, 79.2°E) from 18 January 1999 to 5 March 1999, characteristics of equatorial waves are studied. Two-dimensional Fourier-transform analysis of the temperature profiles is carried out to identify the periodicities and their vertical wave numbers. From the characteristics obtained, equatorial slow Kelvin waves with periodicities 15.7 d, 9.4 d, 7.8 d and 6.7 d are identified in the troposphere and stratosphere regions and among these 7.8 d and 6.7 d periodicities are found to penetrate into the mesosphere. Equatorial waves with smaller periodicities in the range 5.2 d to 3.6 d are also observed. The vertical flux of horizontal momentum (zonal) of the identified slow Kelvin-wave periodicities in the altitude region 4-25 km is estimated. It is found that equatorial waves modulate tropical tropopause temperature and altitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trushnikov, D. N., E-mail: trdimitr@yandex.ru; Mladenov, G. M., E-mail: gmmladenov@abv.bg; Koleva, E. G., E-mail: eligeorg@abv.bg
Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distancemore » between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 10{sup 16} m{sup −3}, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A·m{sup −2}, i.e. 8 mA for a 3–10 cm{sup 2} collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.« less
NASA Astrophysics Data System (ADS)
Trushnikov, D. N.; Mladenov, G. M.; Belenkiy, V. Ya.; Koleva, E. G.; Varushkin, S. V.
2014-04-01
Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 1016 m-3, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A.m-2, i.e. 8 mA for a 3-10 cm2 collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.
Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves
NASA Astrophysics Data System (ADS)
Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh
2017-08-01
The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.
Detection of heat wave using Kalpana-1 VHRR land surface temperature product over India
NASA Astrophysics Data System (ADS)
Shah, Dhiraj; Pandya, Mehul R.; Pathak, Vishal N.; Darji, Nikunj P.; Trivedi, Himanshu J.
2016-05-01
Heat Waves can have notable impacts on human mortality, ecosystem, economics and energy supply. The effect of heat wave is much more intense during summer than the other seasons. During the period of April to June, spells of very hot weather occur over certain regions of India and global warming scenario may result in further increases of such temperature anomalies and corresponding heat waves conditions. In this paper, satellite observations have been used to detect the heat wave conditions prevailing over India for the period of May-June 2015. The Kalpana-1 VHRR derived land surface temperature (LST) products have been used in the analysis to detect the heat wave affected regions over India. Results from the analysis shows the detection of heat wave affected pixels over Indian land mass. It can be seen that during the study period the parts of the west India, Indo-gangetic plane, Telangana and part of Vidarbh was under severe heat wave conditions which is also confirmed with Automatic Weather Station (AWS) air temperature observations.
Electromigration analysis of solder joints under ac load: A mean time to failure model
NASA Astrophysics Data System (ADS)
Yao, Wei; Basaran, Cemal
2012-03-01
In this study, alternating current (ac) electromigration (EM) degradation simulations were carried out for Sn95.5%Ag4.0%Cu0.5 (SAC405- by weight) solder joints. Mass transport analysis was conducted with viscoplastic material properties for quantifying damage mechanism in solder joints. Square, sine, and triangle current wave forms ac were used as input signals. dc and pulsed dc (PDC) electromigration analysis were conducted for comparison purposes. The maximum current density ranged from 2.2×106A/cm2 to 5.0×106A/cm2, frequency ranged from 0.05 Hz to 5 Hz with ambient temperature varying from 350 K to 450 K. Because the room temperature is nearly two-thirds of SAC solder joint's melting point on absolute temperature scale (494.15 K), viscoplastic material model is essential. Entropy based damage evolution model was used to investigate mean time to failure (MTF) behavior of solder joints subjected to ac stressing. It was observed that MTF was inversely proportional to ambient temperature T1.1 in Celsius and also inversely proportional to current density j0.27 in A/cm2. Higher frequency will lead to a shorter lifetime with in the frequency range we studied, and a relationship is proposed as MTF∝f-0.41. Lifetime of a solder joint subjected to ac is longer compared with dc and PDC loading conditions. By introducing frequency, ambient temperature and current density dependency terms, a modified MTTF equation was proposed for solder joints subjected to ac current stressing.
Turbulent resistive heating of solar coronal arches
NASA Technical Reports Server (NTRS)
Benford, G.
1983-01-01
The possibility that coronal heating occurs by means of anomalous Joule heating by electrostatic ion cyclotron waves is examined, with consideration given to currents running from foot of a loop to the other. It is assumed that self-fields generated by the currents are absent and currents follow the direction of the magnetic field, allowing the plasma cylinder to expand radially. Ion and electron heating rates are defined within the cylinder, together with longitudinal conduction and convection, radiation and cross-field transport, all in terms of Coulomb and turbulent effects. The dominant force is identified as electrostatic ion cyclotron instability, while ion acoustic modes remain stable. Rapid heating from an initial temperature of 10 eV to 100-1000 eV levels is calculated, with plasma reaching and maintaining a temperature in the 100 eV range. Strong heating is also possible according to the turbulent Ohm's law and by resistive heating.
NASA Astrophysics Data System (ADS)
Javed, Tariq; Ahmed, B.; Sajid, M.
2018-04-01
The current study focuses on the numerical investigation of the mixed convective peristaltic mechanism through a vertical tube for non-zero Reynolds and wave number. In the set of constitutional equations, energy equation contains the term representing heat generation parameter. The problem is formulated by dropping the assumption of lubrication theory that turns the model mathematically into a system of the nonlinear partial differential equations. The results of the long wavelength in a creeping flow are deduced from the present analysis. Thus, the current study explores the neglected features of peristaltic heat flow in the mixed convective model by considering moderate values of Reynolds and wave numbers. The finite element based on Galerkin’s weighted residual scheme is applied to solve the governing equations. The computed solution is presented in the form of contours of streamlines and isothermal lines, velocity and temperature profiles for variation of different involved parameters. The investigation shows that the strength of circulation for stream function increases by increasing the wave number and Reynolds number. Symmetric isotherms are reported for small values of time-mean flow. Linear behavior of pressure is noticed by vanishing inertial forces while the increase in pressure is observed by amplifying the Reynolds number.
Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying
2012-01-01
The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness-based parameterization (OOST) provided the best results for wind and wave growth prediction. However, the best agreement between the measured (CODAR) and computed surface currents and storm surge values was obtained with the wave steepness-based roughness parameterization (TY2001), although the differences obtained with respect to DGHQ were not significant. The influence of sea surface temperature (SST) fields on the atmospheric boundary layer dynamics was examined; in particular, we evaluated how the SST affects wind wave generation, surface currents and storm surges. The integrated hydrograph and integrated wave height, parameters that are highly correlated with the storm damage potential, were found to be highly sensitive to the ocean surface roughness parameterization.
Terahertz generation by beating two Langmuir waves in a warm and collisional plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao-Bo; Qiao, Xin; Cheng, Li-Hong
2015-09-15
Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasmamore » temperature and the Langmuir wave-length.« less
NASA Astrophysics Data System (ADS)
Stoddart, P. R.; Comins, J. D.; Every, A. G.
1995-06-01
Brillouin-scattering measurements of the angular dependence of surface-acoustic-wave velociites at high temperatures are reported. The measurements have been performed on the (001) surface of a silicon single crystal at temperatures up to 800 °C, allowing comparison of the results with calculated velocities based on existing data for the elastic constants and thermal expansion of silicon in this temperature range. The change in surface-acoustic-wave velocity with temperature is reproduced well, demonstrating the value of this technique for the characterization of the high-temperature elastic properties of opaque materials.
Meng, Xiankai; Zhou, Jianzhong; Huang, Shu; Su, Chun; Sheng, Jie
2017-01-01
The laser shock wave (LSW) generated by the interaction between a laser and a material has been widely used in laser manufacturing, such as laser shock peening and laser shock forming. However, due to the high strain rate, the propagation of LSW in materials, especially LSW at elevated temperatures, is difficult to study through experimental methods. A molecular dynamics simulation was used in this study to investigate the propagation of LSW in an Al-Cu alloy. The Hugoniot relations of LSW were obtained at different temperatures and the effects of elevated temperatures on shock velocity and shock pressure were analyzed. Then the elastic and plastic wave of the LSW was researched. Finally, the evolution of dislocations induced by LSW and its mechanism under elevated temperatures was explored. The results indicate that the shock velocity and shock pressure induced by LSW both decrease with the increasing temperatures. Moreover, the velocity of elastic wave and plastic wave both decrease with the increasing treatment temperature, while their difference decreases as the temperature increases. Moreover, the dislocation atoms increases with the increasing temperatures before 2 ps, while it decreases with the increasing temperatures after 2 ps. The reason for the results is related to the formation and evolution of extended dislocations. PMID:28772433
Meng, Xiankai; Zhou, Jianzhong; Huang, Shu; Su, Chun; Sheng, Jie
2017-01-18
The laser shock wave (LSW) generated by the interaction between a laser and a material has been widely used in laser manufacturing, such as laser shock peening and laser shock forming. However, due to the high strain rate, the propagation of LSW in materials, especially LSW at elevated temperatures, is difficult to study through experimental methods. A molecular dynamics simulation was used in this study to investigate the propagation of LSW in an Al-Cu alloy. The Hugoniot relations of LSW were obtained at different temperatures and the effects of elevated temperatures on shock velocity and shock pressure were analyzed. Then the elastic and plastic wave of the LSW was researched. Finally, the evolution of dislocations induced by LSW and its mechanism under elevated temperatures was explored. The results indicate that the shock velocity and shock pressure induced by LSW both decrease with the increasing temperatures. Moreover, the velocity of elastic wave and plastic wave both decrease with the increasing treatment temperature, while their difference decreases as the temperature increases. Moreover, the dislocation atoms increases with the increasing temperatures before 2 ps, while it decreases with the increasing temperatures after 2 ps. The reason for the results is related to the formation and evolution of extended dislocations.
Wave-current interactions at the FloWave Ocean Energy Research Facility
NASA Astrophysics Data System (ADS)
Noble, Donald; Davey, Thomas; Steynor, Jeffrey; Bruce, Tom; Smith, Helen; Kaklis, Panagiotis
2015-04-01
Physical scale model testing is an important part of the marine renewable energy development process, allowing the study of forces and device behaviour in a controlled environment prior to deployment at sea. FloWave is a new state-of-the-art ocean energy research facility, designed to provide large scale physical modelling services to the tidal and wave sector. It has the unique ability to provide complex multi-directional waves that can be combined with currents from any direction in the 25m diameter circular tank. The facility is optimised for waves around 2s period and 0.4m height, and is capable of generating currents upwards of 1.6m/s. This offers the ability to model metocean conditions suitable for most renewable energy devices at a typical scale of between 1:10 and 1:40. The test section is 2m deep, which can be classed as intermediate-depth for most waves of interest, thus the full dispersion equation must be solved as the asymptotic simplifications do not apply. The interaction between waves and currents has been studied in the tank. This has involved producing in the tank sets of regular waves, focussed wave groups, and random sea spectra including multi-directional sea states. These waves have been both inline-with and opposing the current, as well as investigating waves at arbitrary angles to the current. Changes in wave height and wavelength have been measured, and compared with theoretical results. Using theoretical wave-current interaction models, methods have been explored to "correct" the wave height in the central test area of the tank when combined with a steady current. This allows the wave height with current to be set equal to that without a current. Thus permitting, for example, direct comparison of device motion response between tests with and without current. Alternatively, this would also permit a specific wave height and current combination to be produced in the tank, reproducing recorded conditions at a particular site of interest. The initial tests used a correction factor based on a linear combination of wave and current (Smith 1997), which was found to be reasonably accurate, although the requirement for higher order theory is also explored. FloWave is a new facility that offers the ability to study wave-current interactions at arbitrary angles with relatively fast currents. This is important as waves and tidal currents at sites of interest for renewable energy generation may not be aligned (Lewis et al. 2014), and so better understanding of these conditions is required. References Lewis, M.J. et al., 2014. Realistic wave conditions and their influence on quantifying the tidal stream energy resource. Applied Energy, 136, pp.495-508. Smith, J.M., 1997. Coastal Engineering Technical Note One-dimensional wave-current interaction (CETN IV-9), Vicksburg, MS.
Stahlschmidt, Z R; French, S S; Ahn, A; Webb, A; Butler, M W
Animals will continue to encounter increasingly warm environments, including more frequent and intense heat waves. Yet the physiological consequences of heat waves remain equivocal, potentially because of variation in adaptive plasticity (reversible acclimation) and/or aspects of experimental design. Thus, we measured a suite of physiological variables in the corn snake (Pantherophis guttatus) after exposure to field-parameterized, fluctuating temperature regimes (moderate temperature and heat wave treatments) to address two hypotheses: (1) a heat wave causes physiological stress, and (2) thermal performance of immune function exhibits adaptive plasticity in response to a heat wave. We found little support for our first hypothesis because a simulated heat wave had a negative effect on body mass, but it also reduced oxidative damage and did not affect peak performance of three immune metrics. Likewise, we found only partial support for our second hypothesis. After exposure to a simulated heat wave, P. guttatus exhibited greater performance breadth and reduced temperature specialization (the standardized difference between peak performance and performance breadth) for only one of three immune metrics and did so in a sex-dependent manner. Further, a simulated heat wave did not elicit greater performance of any immune metric at higher temperatures. Yet a heat wave likely reduced innate immune function in P. guttatus because each metric of innate immune performance in this species (as in most vertebrates) was lower at elevated temperatures. Together with previous research, our study indicates that a heat wave may have complex, modest, and even positive physiological effects in some taxa.
Warming set stage for deadly heat wave
NASA Astrophysics Data System (ADS)
Schultz, Colin
2012-04-01
In the summer of 2010, soaring temperatures and widespread forest fires ravaged western Russia, killing 55,000 and causing $15 billion in economic losses. In the wake of the record-setting heat wave, two studies sought to identify the contribution that human activities made to the event. One showed that temperatures seen during the deadly heat wave fell within the bounds of natural variability, while another attributed the heat wave to human activity, arguing that anthropogenic warming increased the chance of record-breaking temperatures occurring. Merging the stances of both studies, Otto et al. sought to show that while human contributions to climate change did not necessarily cause the deadly heat wave, they did play a role in setting the stage for its occurrence. Using an ensemble of climate simulations, the authors assessed the expected magnitude and frequency of an event like the 2010 heat wave under both 1960s and 2000s environmental conditions. The authors found that although the average temperature in July 2010 was 5°C higher than the average July temperature from the past half decade, the deadly heat wave was within the natural variability of 1960s, as well as 2000s, climate conditions
NASA Astrophysics Data System (ADS)
Griffiths, L.; Lengliné, O.; Heap, M. J.; Baud, P.; Schmittbuhl, J.
2018-03-01
To monitor both the permanent (thermal microcracking) and the nonpermanent (thermo-elastic) effects of temperature on Westerly Granite, we combine acoustic emission monitoring and ultrasonic velocity measurements at ambient pressure during three heating and cooling cycles to a maximum temperature of 450°C. For the velocity measurements we use both P wave direct traveltime and coda wave interferometry techniques, the latter being more sensitive to changes in S wave velocity. During the first cycle, we observe a high acoustic emission rate and large—and mostly permanent—apparent reductions in velocity with temperature (P wave velocity is reduced by 50% of the initial value at 450°C, and 40% upon cooling). Our measurements are indicative of extensive thermal microcracking during the first cycle, predominantly during the heating phase. During the second cycle we observe further—but reduced—microcracking, and less still during the third cycle, where the apparent decrease in velocity with temperature is near reversible (at 450°C, the P wave velocity is decreased by roughly 10% of the initial velocity). Our results, relevant for thermally dynamic environments such as geothermal reservoirs, highlight the value of performing measurements of rock properties under in situ temperature conditions.
Ash reduction system using electrically heated particulate matter filter
Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI
2011-08-16
A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.
NASA Astrophysics Data System (ADS)
O'Donnell, J. P.; Dunham, C.; Stuart, G. W.; Brisbourne, A.; Nield, G. A.; Whitehouse, P. L.; Hooper, A. J.; Nyblade, A.; Wiens, D.; Aster, R. C.; Anandakrishnan, S.; Huerta, A. D.; Wilson, T. J.; Winberry, J. P.
2017-12-01
Quantifying the geothermal heat flux at the base of ice sheets is necessary to understand their dynamics and evolution. The heat flux is a composite function of concentration of upper crustal radiogenic elements and flow of heat from the mantle into the crust. Radiogenic element concentration varies with tectonothermal age, while heat flow across the crust-mantle boundary depends on crustal and lithospheric thicknesses. Meanwhile, accurately monitoring current ice mass loss via satellite gravimetry or altimetry hinges on knowing the upper mantle viscosity structure needed to account for the superimposed glacial isostatic adjustment (GIA) signal in the satellite data. In early 2016 the UK Antarctic Network (UKANET) of 10 broadband seismometers was deployed for two years across the southern Antarctic Peninsula and Ellsworth Land. Using UKANET data in conjunction with seismic records from our partner US Polar Earth Observing Network (POLENET) and the Antarctic Seismographic Argentinian Italian Network (ASAIN), we have developed a 3D shear wave velocity model of the West Antarctic crust and uppermost mantle based on Rayleigh and Love wave phase velocity dispersion curves extracted from ambient noise cross-correlograms. We combine seismic receiver functions with the shear wave model to help constrain the depth to the crust-mantle boundary across West Antarctica and delineate tectonic domains. The shear wave model is subsequently converted to temperature using a database of densities and elastic properties of minerals common in crustal and mantle rocks, while the various tectonic domains are assigned upper crustal radiogenic element concentrations based on their inferred tectonothermal ages. We combine this information to map the basal geothermal heat flux variation across West Antarctica. Mantle viscosity depends on factors including temperature, grain size, the hydrogen content of olivine and the presence of melt. Using published mantle xenolith and magnetotelluric data to constrain grain size and hydrogen content, respectively, we use the temperature model to estimate the regional upper mantle viscosity structure. The viscosity information will be incorporated in a 3D GIA model that will better constrain estimates of current ice loss from the West Antarctic Ice Sheet.
NASA Astrophysics Data System (ADS)
Palazov, Atanas; Coppini, Giovanni; Ciliberti, Stefania Angela; Gregoire, Marilaure; Staneva, Joanna; Peneva, Elisaveta; Özsoy, Emin; Vandenbulcke, Luc; Storto, Andrea; Lemieux-Dudon, Benedicte; Lovato, Tomas; Masina, Simona; Pinardi, Nadia; Palermo, Francesco; Creti, Sergio; Macchia, Francesca; Lecci, Rita; Behrens, Arno; Marinova, Veselka; Slabakova, Violeta
2017-04-01
The BS-MFC entered the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/) in October 2016, providing regular and systematic information about the ocean state in the Black Sea in operational mode. An expert team constitutes the BS-MFC Consortium: the Institute of Oceanology, Bulgarian Academy of Sciences (IO-BAS, Bulgaria) coordinates the service and the management in collaboration with Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC, Italy), Helmholtz-Zentrum Geesthacht - Institute of Coastal Research (HZG, Germany), the University of Liege (ULG, Belgium), the Sofia University "St. Kliment Ohridski (USOF, Bulgaria) and the Eurasia Earth Sciences Institute - Istanbul Technical University (ITU, Turkey). The system provides a complete data catalogue for the Black Sea ocean variables such as temperature, salinity, sea level, currents, biogeochemistry and waves through a technologically advanced and resilient service, which is fully interconnected with the other Centers in the Copernicus network. The high level BS-MFC architecture is based on 3 Production Units, for Physics, Biogeochemistry and Waves products respectively, a Dissemination/Archiving Unit for the delivery of the products and their archiving/accessibility, a Local Service Desk connected to the CMEMS Service Desk devoted to support all the operational activities, and backup units for all the main service components. Products consist of analysis/hindcast, 10-days forecast and reanalysis, describing the physical (currents, temperature, salinity, sea level, mixed layer depth and bottom temperature), the biogeochemical state and waves. To implement and improve the service, the BS-MFC has detailed an evolution plan, actually under implementation, devoted to establish, assess and improve the systems and their operational functionalities, providing some improvements from the scientific point of view concerning the modeling components (e.g., the fully aligned Physics, Biogeochemistry and Waves systems, the open boundary conditions at the Bosporus, the state-of-the-art core models and increased spatial resolution among the major actions) and high quality products, towards an optimal interface between the Mediterranean and the Black Seas. The contribution will present the main operational and research & development activities at the basis of the systems, given an overview on the future plans for improving the service for the delivery of new products.
Increasing probability of mortality during Indian heat waves.
Mazdiyasni, Omid; AghaKouchak, Amir; Davis, Steven J; Madadgar, Shahrbanou; Mehran, Ali; Ragno, Elisa; Sadegh, Mojtaba; Sengupta, Ashmita; Ghosh, Subimal; Dhanya, C T; Niknejad, Mohsen
2017-06-01
Rising global temperatures are causing increases in the frequency and severity of extreme climatic events, such as floods, droughts, and heat waves. We analyze changes in summer temperatures, the frequency, severity, and duration of heat waves, and heat-related mortality in India between 1960 and 2009 using data from the India Meteorological Department. Mean temperatures across India have risen by more than 0.5°C over this period, with statistically significant increases in heat waves. Using a novel probabilistic model, we further show that the increase in summer mean temperatures in India over this period corresponds to a 146% increase in the probability of heat-related mortality events of more than 100 people. In turn, our results suggest that future climate warming will lead to substantial increases in heat-related mortality, particularly in developing low-latitude countries, such as India, where heat waves will become more frequent and populations are especially vulnerable to these extreme temperatures. Our findings indicate that even moderate increases in mean temperatures may cause great increases in heat-related mortality and support the efforts of governments and international organizations to build up the resilience of these vulnerable regions to more severe heat waves.
NASA Astrophysics Data System (ADS)
Pecho, J.; Výberči, D.; Jarošová, M.; Å¥Astný, P. Å.
2010-09-01
Analysis of long-term changes and temporal variability of heat waves incidence in the region of southern Slovakia within the 1901-2009 periods is a goal of the presented contribution. It is expected that climate change in terms of global warming would amplify temporal frequency and spatial extension of extreme heat wave incidence in region of central Europe in the next few decades. The frequency of occurrence and amplitude of heat waves may be impacted by changes in the temperature regime. Heat waves can cause severe thermal environmental stress leading to higher hospital admission rates, health complications, and increased mortality. These effects arise because of one or more meteorology-related factors such as higher effective temperatures, sunshine, more consecutive hot days and nights, stagnation, increased humidity, increased pollutant emissions, and accelerated photochemical smog and particulate formation. Heat waves bring about higher temperatures, increased solar heating of buildings, inhibited ventilation, and a larger number of consecutive warm days and nights. All of these effects increase the thermal loads on buildings, reduce their ability to cool down, and increase indoor temperatures. The paper is focused to analysis of long-term and inter-decadal temporal variability of heat waves occurrence at meteorological station Hurbanovo (time-series of daily maximum air temperature available from at least 1901). We can characterize the heat waves by its magnitude and duration, hence both of these characteristics need to be investigated together using sophisticated statistical methods developed particularly for the analysis of extreme hydrological events. We investigated particular heat wave periods either from the severity point of view using HWI index. In the paper we also present the results of statistical analysis of daily maximum air temperature within 1901-2009 period. Apart from these investigation efforts we also focused on synoptic causes of heat wave incidence in connection with macro scale circulation patterns in central European region.
Drought and Heat Waves: The Role of SST and Land Surface Feedbacks
NASA Technical Reports Server (NTRS)
Schubert, Siegfried
2011-01-01
Drought occurs on a wide range of time scales, and within a variety of different types of regional climates. At the shortest time scales it is often associated with heat waves that last only several weeks to a few months but nevertheless can have profound detrimental impacts on society (e.g., heat-related impacts on human health, desiccation of croplands, increased fire hazard), while at the longest time scales it can extend over decades and can lead to long term structural changes in many aspects of society (e.g., agriculture, water resources, wetlands, tourism, population shifts). There is now considerable evidence that sea surface temperatures (SSTs) play a leading role in the development of drought world-wide, especially at seasonal and longer time scales, though land-atmosphere feedbacks can also play an important role. At shorter (subseasonal) time scales, SSTs are less important, but land feedbacks can play a critical role in maintaining and amplifying the atmospheric conditions associated with heat waves and short-term droughts. This talk reviews our current understanding of the physical mechanisms that drive precipitation and temperature variations on subseasonal to centennial time scales. This includes an assessment of predictability, prediction skill, and user needs at all time scales.
Joint Services Electronics Program
NASA Astrophysics Data System (ADS)
Tinkham, Michael
1989-07-01
Topics addressed include: Electronic Theory of Semiconductor Alloys and Superlattices; Pressure Dependence of Photo Luminescence Excitation in GaAs/Al(x)Ga(1-x)As Multi-Quantum Wells; X Ray Surface Characterization; High Temperature Superconductivity; Quantum and Charging Phenomena in Mesoscopic Josephson Junctions; Nonlinear Dynamics of Electronic Neural Networks; Structural and Electronic Studies of Semiconductor Interfaces and Surfaces; Interaction of Ultrashort Laser Pulses with Semiconductor Surfaces; Multiphoton Vibrational Excitation of Molecules; Analytical and Numerical Determination of the Fields of Antennas near an Interface Between Two Half-Spaces with Significantly Different Wave Numbers; Theoretical Study of Lateral-Wave Propagation in Horizontally-Layered Media; Lateral Electromagnetic Waves from a Horizontal Antenna for Remote Sensing in the Ocean; Lateral Electromagnetic Pulses Generated by Horizontal and Vertical Dipoles on the Boundary Between Two Dielectrics; Theoretical Study of Isolated and Coupled Strip Antennas; Theoretical Study of Electromagnetic Pulses with a Slow Rate of Decay; Experimental Study of Electromagnetic Pulses with a Slow Rate of Decay; Properties of Closed Loops of Pseudodipoles; Asymptotic Solution for the Charge and Current Near the Open End of a Linear Tubular Antenna; Closed Loops of Parallel Coplanar Dipoles - Electrically Short Elements; Harmonic Generation in High-Temperature Superconductors and Resonant Closed Loops of Dipoles.
Martinez, Gerardo Sanchez; Imai, Chisato; Masumo, Kanako
2011-12-01
The adverse health effects from hot weather and heat waves represent significant public health risks in vulnerable areas worldwide. Rising temperatures due to climate change are aggravating these risks in a context of fast urbanization, population growth and societal ageing. However, environmental heat-related health effects are largely preventable through adequate preparedness and responses. Public health adaptation to climate change will often require the implementation of heat wave warning systems and targeted preventive activities at different levels. While several national governments have established such systems at the country level, municipalities do not generally play a major role in the prevention of heat disorders. This paper analyzes selected examples of locally operated heat-health prevention plans in Japan. The analysis of these plans highlights their strengths, but also the need of local institutions for assistance to make the transition towards an effective public health management of high temperatures and heat waves. It can also provide useful elements for municipal governments in vulnerable areas, both in planning their climate change and health adaptation activities or to better protect their communities against current health effects from heat.
Martinez, Gerardo Sanchez; Imai, Chisato; Masumo, Kanako
2011-01-01
The adverse health effects from hot weather and heat waves represent significant public health risks in vulnerable areas worldwide. Rising temperatures due to climate change are aggravating these risks in a context of fast urbanization, population growth and societal ageing. However, environmental heat-related health effects are largely preventable through adequate preparedness and responses. Public health adaptation to climate change will often require the implementation of heat wave warning systems and targeted preventive activities at different levels. While several national governments have established such systems at the country level, municipalities do not generally play a major role in the prevention of heat disorders. This paper analyzes selected examples of locally operated heat-health prevention plans in Japan. The analysis of these plans highlights their strengths, but also the need of local institutions for assistance to make the transition towards an effective public health management of high temperatures and heat waves. It can also provide useful elements for municipal governments in vulnerable areas, both in planning their climate change and health adaptation activities or to better protect their communities against current health effects from heat. PMID:22408589
NASA Astrophysics Data System (ADS)
Pickett, J. S.; Grison, B.; Omura, Y.; Engebretson, M. J.; Dandouras, I.; Masson, A.; Adrian, M. L.; Santolík, O.; Décréau, P. M. E.; Cornilleau-Wehrlin, N.; Constantinescu, D.
2010-05-01
The Cluster spacecraft were favorably positioned on the nightside near the equatorial plasmapause of Earth at L ˜ 4.3 on 30 March 2002 to observe electromagnetic ion cyclotron (EMIC) rising tone emissions in association with Pc1 waves at 1.5 Hz. The EMIC rising tone emissions were found to be left-hand, circularly polarized, dispersive, and propagating away from the equator. Their burstiness and dispersion of ˜30s/Hz rising out of the 1.5 Hz Pc1 waves are consistent with their identification as EMIC triggered chorus emissions, the first to be reported through in situ observations near the plasmapause. Along with the expected H+ ring current ions seen at higher energies (>300 eV), lower energy ions (300 eV and less) were observed during the most intense EMIC triggered emission events. Nonlinear wave-particle interactions via cyclotron resonance between the ˜2-10 keV H+ ions with temperature anisotropy and the linearly-amplified Pc1 waves are suggested as a possible generation mechanism for the EMIC triggered emissions.
NASA Astrophysics Data System (ADS)
Xie, L.; Pietrafesa, L. J.; Wu, K.
2003-02-01
A three-dimensional wave-current coupled modeling system is used to examine the influence of waves on coastal currents and sea level. This coupled modeling system consists of the wave model-WAM (Cycle 4) and the Princeton Ocean Model (POM). The results from this study show that it is important to incorporate surface wave effects into coastal storm surge and circulation models. Specifically, we find that (1) storm surge models without coupled surface waves generally under estimate not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment, (2) introducing wave-induced surface stress effect into storm surge models can significantly improve storm surge prediction, (3) incorporating wave-induced bottom stress into the coupled wave-current model further improves storm surge prediction, and (4) calibration of the wave module according to minimum error in significant wave height does not necessarily result in an optimum wave module in a wave-current coupled system for current and storm surge prediction.
Thermospheric Extension of the Quasi 6-day Wave Observed by the TIMED Satellite
NASA Astrophysics Data System (ADS)
Gan, Q.; Oberheide, J.
2017-12-01
The quasi 6-day wave is one of the most prevailing planetary waves in the mesosphere and lower thermosphere (MLT) region. Its peak amplitude can attain 20-30 m/s in low-latitude zonal winds at around equinoxes. Consequently, it is anticipated that the 6-day wave can induce not only significantly dynamic effects (via wave-mean flow and wave-wave interactions) in the MLT, but also have significant impacts on the Thermosphere and Ionosphere (T-I). The understanding of the 6-day wave impact on the T-I system has been advanced a lot due to the recent development of whole atmosphere models and new satellite observations. Three pathways were widely proposed to explain the upward coupling due to the 6-day wave: E-region dynamo modulation, dissipation and nonlinear interaction with thermal tides. The current work aims to show a comprehensive pattern of the 6-day wave from the mesosphere up to the thermosphere/ionosphere in neutral fields (temperature, 3-D winds and density) and plasma drifts. To achieve this goal, we carry out the 6-day wave diagnostics by two different means. Firstly, the output of a one-year WACCM+DART run with data assimilation is analyzed to show the global structure of the 6-day wave in the MLT, followed by E-P flux diagnostics to elucidate the 6-day wave source and wave-mean flow interactions. Secondly, we produce observation-based 6-day wave patterns throughout the whole thermosphere by constraining modeled (TIME-GCM) 6-day wave patterns with observed 6-day wave patterns from SABER and TIDI in the MLT region. This allows us to fill the 110-400 km gap between remote sensing and in-situ satellites, and to obtain more realistic 6-day wave plasma drift patterns.
Planetary wave-gravity wave interactions during mesospheric inversion layer events
NASA Astrophysics Data System (ADS)
Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.
2013-07-01
lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion amplitude may get modulated by the interaction between gravity waves and planetary waves. The eddy diffusion associated with gravity wave drag may also cause suppression in the planetary wave activity.
Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying
2012-01-01
The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor'Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor'easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor'Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness-based parameterization (OOST) provided the best results for wind and wave growth prediction. However, the best agreement between the measured (CODAR) and computed surface currents and storm surge values was obtained with the wave steepness-based roughness parameterization (TY2001), although the differences obtained with respect to DGHQ were not significant. The influence of sea surface temperature (SST) fields on the atmospheric boundary layer dynamics was examined; in particular, we evaluated how the SST affects wind wave generation, surface currents and storm surges. The integrated hydrograph and integrated wave height, parameters that are highly correlated with the storm damage potential, were found to be highly sensitive to the ocean surface roughness parameterization.
NASA Astrophysics Data System (ADS)
Bansal, Sona; Aggarwal, Munish; Gill, Tarsem Singh
2018-04-01
Effects of electron temperature on the propagation of electron acoustic solitary waves in plasma with stationary ions, cold and superthermal hot electrons is investigated in non-planar geometry employing reductive perturbation method. Modified Korteweg-de Vries equation is derived in the small amplitude approximation limit. The analytical and numerical calculations of the KdV equation reveal that the phase velocity of the electron acoustic waves increases as one goes from planar to non planar geometry. It is shown that the electron temperature ratio changes the width and amplitude of the solitary waves and when electron temperature is not taken into account,our results completely agree with the results of Javidan & Pakzad (2012). It is found that at small values of τ , solitary wave structures behave differently in cylindrical ( {m} = 1), spherical ( {m} = 2) and planar geometry ( {m} = 0) but looks similar at large values of τ . These results may be useful to understand the solitary wave characteristics in laboratory and space environments where the plasma have multiple temperature electrons.
Theory of superconductivity in a three-orbital model of Sr2RuO4
NASA Astrophysics Data System (ADS)
Wang, Q. H.; Platt, C.; Yang, Y.; Honerkamp, C.; Zhang, F. C.; Hanke, W.; Rice, T. M.; Thomale, R.
2013-10-01
In conventional and high transition temperature copper oxide and iron pnictide superconductors, the Cooper pairs all have even parity. As a rare exception, Sr2RuO4 is the first prime candidate for topological chiral p-wave superconductivity, which has time-reversal breaking odd-parity Cooper pairs known to exist before only in the neutral superfluid 3He. However, there are several key unresolved issues hampering the microscopic description of the unconventional superconductivity. Spin fluctuations at both large and small wave vectors are present in experiments, but how they arise and drive superconductivity is not yet clear. Spontaneous edge current is expected but not observed conclusively. Specific experiments point to highly band- and/or momentum-dependent energy gaps for quasiparticle excitations in the superconducting state. Here, by comprehensive functional renormalization group calculations with all relevant bands, we disentangle the various competing possibilities. In particular, we show the small wave vector spin fluctuations, driven by a single two-dimensional band, trigger p-wave superconductivity with quasi-nodal energy gaps.
New window into stochastic gravitational wave background.
Rotti, Aditya; Souradeep, Tarun
2012-11-30
A stochastic gravitational wave background (SGWB) would gravitationally lens the cosmic microwave background (CMB) photons. We correct the results provided in existing literature for modifications to the CMB polarization power spectra due to lensing by gravitational waves. Weak lensing by gravitational waves distorts all four CMB power spectra; however, its effect is most striking in the mixing of power between the E mode and B mode of CMB polarization. This suggests the possibility of using measurements of the CMB angular power spectra to constrain the energy density (Ω(GW)) of the SGWB. Using current data sets (QUAD, WMAP, and ACT), we find that the most stringent constraints on the present Ω(GW) come from measurements of the angular power spectra of CMB temperature anisotropies. In the near future, more stringent bounds on Ω(GW) can be expected with improved upper limits on the B modes of CMB polarization. Any detection of B modes of CMB polarization above the expected signal from large scale structure lensing could be a signal for a SGWB.
Langasite, langanite, and langatate bulk-wave Y-cut resonators.
Smythe, R C; Helmbold, R C; Hague, G E; Snow, K A
2000-01-01
Materials in the langasite family are of current interest for both bulk wave and surface wave devices. Piano-convex Y-cut bulk wave resonators have been built and tested on overtones 1 through 9 using LGS (langasite; La(3)Ga(5)SiO(14)), LGN (langanite; La(3)Ga(5.5)Nb(0.5)O(14)), and LGT (langatate; La(3)Ga(5.5)Ta(5.5)O(14)). Frequencies and motional inductances are compared with calculated values, with good agreement except for the motional inductance of LGT. For all three materials, frequency variation is an essentially parabolic function of temperature. For LGN and LGT, reported values of the Q-frequency product are significantly above the classical limit for AT-cut quartz. A maximum 4 f value of 25.6x10(6), where frequency is in megahertz;, was observed for an LGT resonator; for an unplated resonator, 29.2x10(6) was measured. Still higher values are believed possible.
The Coordinated Ocean Wave Climate Project
NASA Astrophysics Data System (ADS)
Hemer, Mark; Dobrynin, Mikhail; Erikson, Li; Lionello, Piero; Mori, Nobuhito; Semedo, Alvaro; Wang, Xiaolan
2016-04-01
Future 21st Century changes in wind-wave climate have broad implications for marine and coastal infrastructure and ecosystems. Atmosphere-ocean general circulation models (GCM) are now routinely used for assessing and providing future projections of climatological parameters such as temperature and precipitation, but generally these provide no information on ocean wind-waves. To fill this information gap a growing number of studies are using GCM outputs and independently producing global and regional scale wind-wave climate projections. Furthermore, additional studies are actively coupling wind-wave dependent atmosphere-ocean exchanges into GCMs, to improve physical representation and quantify the impact of waves in the coupled climate system, and can also deliver wave characteristics as another variable in the climate system. To consolidate these efforts, understand the sources of variance between projections generated by different methodologies and International groups, and ultimately provide a robust picture of the role of wind-waves in the climate system and their projected changes, we present outcomes of the JCOMM supported Coordinated Ocean Wave Climate Project (COWCLIP). The objective of COWCLIP is twofold: to make community based ensembles of wave climate projections openly accessible, to provide the necessary information to support diligent marine and coastal impacts of climate change studies; and to understand the effects and feedback influences of wind-waves in the coupled ocean-atmosphere climate system. We will present the current status of COWCLIP, providing an overview of the objectives, analysis and results of the initial phase - now complete - and the progress of ongoing phases of the project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Mei C., E-mail: meizheng@princeton.edu; Gmachl, Claire F.; Liu, Peter Q.
2013-11-18
We report on the experimental demonstration of a widely tunable single mode quantum cascade laser with Asymmetric Mach-Zehnder (AMZ) interferometer type cavities with separately biased arms. Current and, consequently, temperature tuning of the two arms of the AMZ type cavity resulted in a single mode tuning range of 20 cm{sup −1} at 80 K in continuous-wave mode operation, a ten-fold improvement from the lasers under a single bias current. In addition, we also observed a five fold increase in the tuning rate as compared to the AMZ cavities controlled by one bias current.
Explicit wave action conservation for water waves on vertically sheared flows
NASA Astrophysics Data System (ADS)
Quinn, Brenda; Toledo, Yaron; Shrira, Victor
2016-04-01
Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical structure of the currents in wave modelling which is currently universal, might lead to significant errors in wave amplitude and the predicted wave ray paths. An extension of the work toward the more complex case of turbulent currents will also be discussed.
NASA Astrophysics Data System (ADS)
de la Torre, A.; Pessano, H.; Hierro, R.; Santos, J. R.; Llamedo, P.; Alexander, P.
2015-04-01
On the basis of 180 storms which took place between 2004 and 2011 over the province of Mendoza (Argentina) near to the Andes Range at southern mid-latitudes, we consider those registered in the northern and central crop areas (oases). The regions affected by these storms are currently protected by an operational hail mitigation project. Differences with previously reported storms detected in the southern oasis are highlighted. Mendoza is a semiarid region situated roughly between 32S and 37S at the east of the highest Andes top. It forms a natural laboratory where different sources of gravity waves, mainly mountain waves, occur. In this work, we analyze the effects of flow over topography generating mountain waves and favoring deep convection. The joint occurrence of storms with hail production and mountain waves is determined from mesoscale numerical simulations, radar and radiosounding data. In particular, two case studies that properly represent diverse structures observed in the region are considered in detail. A continuous wavelet transform is applied to each variable and profile to detect the main oscillation modes present. Simulated temperature profiles are validated and compared with radiosounding data. Each first radar echo, time and location are determined. The necessary energy to lift a parcel to its level of free convection is tested from the Convective Available Potential Energy and Convection Inhibition. This last parameter is compared against the mountain waves' vertical kinetic energy. The time evolution and vertical structure of vertical velocity and equivalent potential temperature suggest in both cases that the detected mountain wave amplitudes are able to provide the necessary energy to lift the air parcel and trigger convection. A simple conceptual scheme linking the dynamical factors taking place before and during storm development is proposed.
Ionospheric very low frequency transmitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, Spencer P.
2015-02-15
The theme of this paper is to establish a reliable ionospheric very low frequency (VLF) transmitter, which is also broad band. Two approaches are studied that generate VLF waves in the ionosphere. The first, classic approach employs a ground-based HF heater to directly modulate the high latitude ionospheric, or auroral electrojet. In the classic approach, the intensity-modulated HF heater induces an alternating current in the electrojet, which serves as a virtual antenna to transmit VLF waves. The spatial and temporal variations of the electrojet impact the reliability of the classic approach. The second, beat-wave approach also employs a ground-based HFmore » heater; however, in this approach, the heater operates in a continuous wave mode at two HF frequencies separated by the desired VLF frequency. Theories for both approaches are formulated, calculations performed with numerical model simulations, and the calculations are compared to experimental results. Theory for the classic approach shows that an HF heater wave, intensity-modulated at VLF, modulates the electron temperature dependent electrical conductivity of the ionospheric electrojet, which, in turn, induces an ac electrojet current. Thus, the electrojet becomes a virtual VLF antenna. The numerical results show that the radiation intensity of the modulated electrojet decreases with an increase in VLF radiation frequency. Theory for the beat wave approach shows that the VLF radiation intensity depends upon the HF heater intensity rather than the electrojet strength, and yet this approach can also modulate the electrojet when present. HF heater experiments were conducted for both the intensity modulated and beat wave approaches. VLF radiations were generated and the experimental results confirm the numerical simulations. Theory and experimental results both show that in the absence of the electrojet, VLF radiation from the F-region is generated via the beat wave approach. Additionally, the beat wave approach generates VLF radiations over a larger frequency band than by the modulated electrojet.« less
NASA Astrophysics Data System (ADS)
Scherllin-Pirscher, Barbara; Randel, William J.; Kim, Joowan
2017-04-01
We investigate sub-seasonal temperature variability in the tropical upper troposphere and lower stratosphere (UTLS) region using daily gridded fields of GPS radio occultation measurements. The unprecedented vertical resolution (from about 100 m in the troposphere to about 1.5 km in the stratosphere) and high accuracy and precision (0.7 K to 1 K between 8 km and 25 km) make these data ideal for characterizing temperature oscillations with short vertical wavelengths. Long-term behavior of sub-seasonal temperature variability is investigated using the entire RO record from January 2002 to December 2014 (13 years of data). Transient sub-seasonal waves including eastward-propagating Kelvin waves (isolated with space-time spectral analysis) dominate large-scale zonal temperature variability in the tropical tropopause region and in the lower stratosphere. Above 20 km, Kelvin waves are strongly modulated by the quasi-biennial oscillation (QBO). Enhanced wave activity can be found during the westerly shear phase of the QBO. In the tropical tropopause region, however, sub-seasonal waves are highly transient in time. Several peaks of Kelvin-wave activity coincide with short-term fluctuations in tropospheric deep convection, but other episodes are not evidently related. Also, there are no obvious relationships with zonal winds or stability fields near the tropical tropopause. Further investigations of convective forcing and atmospheric background conditions along the waves' trajectories are needed to better understand sub-seasonal temperature variability near the tropopause. For more details, see Scherllin-Pirscher, B., Randel, W. J., and Kim, J.: Tropical temperature variability and Kelvin-wave activity in the UTLS from GPS RO measurements, Atmos. Chem. Phys., 17, 793-806, doi:10.5194/acp-17-793-2017, 2017. http://www.atmos-chem-phys.net/17/793/2017/acp-17-793-2017.html
Bauweraerts, Ingvar; Wertin, Timothy M; Ameye, Maarten; McGuire, Mary Anne; Teskey, Robert O; Steppe, Kathy
2013-02-01
The frequency and intensity of heat waves are predicted to increase. This study investigates whether heat waves would have the same impact as a constant increase in temperature with the same heat sum, and whether there would be any interactive effects of elevated [CO2 ] and soil moisture content. We grew Quercus rubra seedlings in treatment chambers maintained at either ambient or elevated [CO2 ] (380 or 700 μmol CO2 mol(-1) ) with temperature treatments of ambient, ambient +3 °C, moderate heat wave (+6 °C every other week) or severe heat wave (+12 °C every fourth week) temperatures. Averaged over a 4-week period, and the entire growing season, the three elevated temperature treatments had the same average temperature and heat sum. Half the seedlings were watered to a soil water content near field capacity, half to about 50% of this value. Foliar gas exchange measurements were performed morning and afternoon (9:00 and 15:00 hours) before, during and after an applied heat wave in August 2010. Biomass accumulation was measured after five heat wave cycles. Under ambient [CO2 ] and well-watered conditions, biomass accumulation was highest in the +3 °C treatment, intermediate in the +6 °C heat wave and lowest in the +12 °C heat wave treatment. This response was mitigated by elevated [CO2 ]. Low soil moisture significantly decreased net photosynthesis (Anet ) and biomass in all [CO2 ] and temperature treatments. The +12 °C heat wave reduced afternoon Anet by 23% in ambient [CO2 ]. Although this reduction was relatively greater under elevated [CO2 ], Anet values during this heat wave were still 34% higher than under ambient [CO2 ]. We concluded that heat waves affected biomass growth differently than the same amount of heat applied uniformly over the growing season, and that the plant response to heat waves also depends on [CO2 ] and soil moisture conditions. © 2012 Blackwell Publishing Ltd.
Gender differences in the causal direction between workplace harassment and drinking.
Freels, Sally A; Richman, Judith A; Rospenda, Kathleen M
2005-08-01
Data from a longitudinal study of university employees across four waves is used to determine the extent to which workplace harassment predicts drinking or conversely the extent to which drinking predicts workplace harassment, and to address gender differences in these relationships. Mixed effects regression models are used to test the effects of 1) harassment at the previous wave on drinking at the current wave, adjusting for drinking at the previous wave, and 2) drinking at the previous wave on harassment at the current wave, adjusting for harassment at the previous wave. For males, drinking at the previous wave predicts sexual harassment at the current wave, whereas for females, sexual harassment at the previous wave predicts drinking at the current wave.
Heat, heat waves, and out-of-hospital cardiac arrest.
Kang, Si-Hyuck; Oh, Il-Young; Heo, Jongbae; Lee, Hyewon; Kim, Jungeun; Lim, Woo-Hyun; Cho, Youngjin; Choi, Eue-Keun; Yi, Seung-Muk; Sang, Do Shin; Kim, Ho; Youn, Tae-Jin; Chae, In-Ho; Oh, Seil
2016-10-15
Cardiac arrest is one of the common presentations of cardiovascular disorders and a leading cause of death. There are limited data on the relationship between out-of-hospital cardiac arrest (OHCA) and ambient temperatures, specifically extreme heat. This study investigated how heat and heat waves affect the occurrence of OHCA. Seven major cities in Korea with more than 1 million residents were included in this study. A heat wave was defined as a daily mean temperature above the 98th percentile of the yearly distribution for at least two consecutive days. A total of 50,318 OHCAs of presumed cardiac origin were identified from the nationwide emergency medical service database between 2006 and 2013. Ambient temperature and OHCA had a J-shaped relationship with a trough at 28°C. Heat waves were shown to be associated with a 14-% increase in the risk of OHCA. Adverse effects were apparent from the beginning of each heat wave period and slightly increased during its continuation. Excess OHCA events during heat waves occurred between 3PM and 5PM. Subgroup analysis showed that those 65years or older were significantly more susceptible to heat waves. Ambient temperature and OHCA had a J-shaped relationship. The risk of OHCA was significantly increased with heat waves. Excess OHCA events primarily occurred during the afternoon when the temperature was high. We found that the elderly were more susceptible to the deleterious effects of heat waves. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y.J.; Dziura, T.G.; Wang, S.C.
1990-05-07
We report a GaAs mushroom structure surface-emitting laser at 900 nm with submilliampere (0.2--0.5 mA) threshold under room-temperature cw operation for the first time. The very low threshold current was achieved on devices which consisted of a 2--4 {mu}m diameter active region formed by chemical selective etching, and sandwiched between two Al{sub 0.05}Ga{sub 0.95} As/ Al{sub 0.53}Ga{sub 0.47} As distributed Bragg reflectors of very high reflectivity (98--99%) grown by metalorganic chemical vapor deposition.
NASA Astrophysics Data System (ADS)
Yang, Ying Jay; Dziura, Thaddeus G.; Wang, S. C.; Hsin, Wei; Wang, Shyh
1990-05-01
We report a GaAs mushroom structure surface-emitting laser at 900 nm with submilliampere (0.2-0.5 mA) threshold under room-temperature cw operation for the first time. The very low threshold current was achieved on devices which consisted of a 2-4 μm diameter active region formed by chemical selective etching, and sandwiched between two Al0.05Ga0.95 As/ Al0.53Ga0.47 As distributed Bragg reflectors of very high reflectivity (98-99%) grown by metalorganic chemical vapor deposition.
Auroral origin of medium scale gravity waves in neutral composition and temperature
NASA Technical Reports Server (NTRS)
Chandra, S.; Spencer, N. W.; Krankowsky, D.; Laemmerzahl, P.
1979-01-01
The kinetic temperature and neutral composition data obtained from the Aeros B neutral atmosphere temperature experiment and the neutral and ion mass spectrometer show spatial structures characteristic of medium scale gravity waves with a wavelength in the range of several hundred kilometers. These waves are associated with auroral activity, and their spatial structure reflects the time history of the auroral electrojet. The medium scale gravity waves tend to propagate to mid-latitudes on the nightside. On the dayside their range is limited to high latitudes. Gravity waves are carriers of auroral energy to middle and low latitudes where they may cause irreversible changes in temperature via viscous dissipation. Since auroral activity occurs frequently, it is suggested that this energy reaches the mid-latitude region of the thermosphere much more frequently than is indicated by planetary magnetic indices.
Oblique ion-acoustic cnoidal waves in two temperature superthermal electrons magnetized plasma
NASA Astrophysics Data System (ADS)
Panwar, A.; Ryu, C. M.; Bains, A. S.
2014-12-01
A study is presented for the oblique propagation of ion acoustic cnoidal waves in a magnetized plasma consisting of cold ions and two temperature superthermal electrons modelled by kappa-type distributions. Using the reductive perturbation method, the nonlinear Korteweg de-Vries equation is derived, which further gives the solutions with a special type of cnoidal elliptical functions. Both compressive and rarefactive structures are found for these cnoidal waves. Nonlinear periodic cnoidal waves are explained in terms of plasma parameters depicting the Sagdeev potential and the phase curves. It is found that the density ratio of hot electrons to ions μ significantly modifies compressive/refractive wave structures. Furthermore, the combined effects of superthermality of cold and hot electrons κ c , κ h , cold to hot electron temperature ratio σ, angle of propagation and ion cyclotron frequency ωci have been studied in detail to analyze the height and width of compressive/refractive cnoidal waves. The findings in the present study could have important implications in understanding the physics of electrostatic wave structures in the Saturn's magnetosphere where two temperature superthermal electrons are present.
NASA Astrophysics Data System (ADS)
Fawzy, Diaa E.; Stȩpień, K.
2018-03-01
In the current study we present ab initio numerical computations of the generation and propagation of longitudinal waves in magnetic flux tubes embedded in the atmospheres of late-type stars. The interaction between convective turbulence and the magnetic structure is computed and the obtained longitudinal wave energy flux is used in a self-consistent manner to excite the small-scale magnetic flux tubes. In the current study we reduce the number of assumptions made in our previous studies by considering the full magnetic wave energy fluxes and spectra as well as time-dependent ionization (TDI) of hydrogen, employing multi-level Ca II atomic models, and taking into account departures from local thermodynamic equilibrium. Our models employ the recently confirmed value of the mixing-length parameter α=1.8. Regions with strong magnetic fields (magnetic filling factors of up to 50%) are also considered in the current study. The computed Ca II emission fluxes show a strong dependence on the magnetic filling factors, and the effect of time-dependent ionization (TDI) turns out to be very important in the atmospheres of late-type stars heated by acoustic and magnetic waves. The emitted Ca II fluxes with TDI included into the model are decreased by factors that range from 1.4 to 5.5 for G0V and M0V stars, respectively, compared to models that do not consider TDI. The results of our computations are compared with observations. Excellent agreement between the observed and predicted basal flux is obtained. The predicted trend of Ca II emission flux with magnetic filling factor and stellar surface temperature also agrees well with the observations but the calculated maximum fluxes for stars of different spectral types are about two times lower than observations. Though the longitudinal MHD waves considered here are important for chromosphere heating in high activity stars, additional heating mechanism(s) are apparently present.
A Gaussian wave packet phase-space representation of quantum canonical statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughtrie, David J.; Tew, David P.
2015-07-28
We present a mapping of quantum canonical statistical averages onto a phase-space average over thawed Gaussian wave-packet (GWP) parameters, which is exact for harmonic systems at all temperatures. The mapping invokes an effective potential surface, experienced by the wave packets, and a temperature-dependent phase-space integrand, to correctly transition from the GWP average at low temperature to classical statistics at high temperature. Numerical tests on weakly and strongly anharmonic model systems demonstrate that thermal averages of the system energy and geometric properties are accurate to within 1% of the exact quantum values at all temperatures.
Heat waves according to warm spell duration index in Slovakia during 1901-2016
NASA Astrophysics Data System (ADS)
Bochníček, Oliver; Faško, Pavel; Markovič, Ladislav
2017-04-01
A heat wave is a prolonged period of extremely high temperatures for a particular region. However, there exist no universal definitions for a heat wave as it is relative to a specific area and to a certain time of year. In fact, average temperatures in one region may be considered heat wave conditions in another. For instance, an average day in the Mediterranean would be regarded as heat wave conditions in Northern Europe. We have known that World Meteorological Organization definition of a heatwave which is "when the daily maximum temperature of more than five consecutive days exceeds the average maximum temperature by 5 °C, the normal period being 1961-1990". This rule has been accepted in contribution Heat waves and warm periods in Slovakia (Oliver Bochníček - Pavol Fa\\vsko - Ladislav Markovič) published (presented) in EGU 2016. To move on we have tried another criterion for heat waves evaluation (according to warm spell duration index, WSDI) and period since 1901 (1951) to 2016. Important for many sectors (hydrology, agriculture, transportation and tourism) is, that heat waves have been expected during the whole year and period, that is why it can have various impacts. Heat waves occurrence gave us interesting results especially after the 1990.
Temperature effects in ultrasonic Lamb wave structural health monitoring systems.
Lanza di Scalea, Francesco; Salamone, Salvatore
2008-07-01
There is a need to better understand the effect of temperature changes on the response of ultrasonic guided-wave pitch-catch systems used for structural health monitoring. A model is proposed to account for all relevant temperature-dependent parameters of a pitch-catch system on an isotropic plate, including the actuator-plate and plate-sensor interactions through shear-lag behavior, the piezoelectric and dielectric permittivity properties of the transducers, and the Lamb wave dispersion properties of the substrate plate. The model is used to predict the S(0) and A(0) response spectra in aluminum plates for the temperature range of -40-+60 degrees C, which accounts for normal aircraft operations. The transducers examined are monolithic PZT-5A [PZT denotes Pb(Zr-Ti)O3] patches and flexible macrofiber composite type P1 patches. The study shows substantial changes in Lamb wave amplitude response caused solely by temperature excursions. It is also shown that, for the transducers considered, the response amplitude changes follow two opposite trends below and above ambient temperature (20 degrees C), respectively. These results can provide a basis for the compensation of temperature effects in guided-wave damage detection systems.
Wave-induced current considering wave-tide interaction in Haeundae
NASA Astrophysics Data System (ADS)
Lim, Hak Soo
2017-04-01
The Haeundae, located at the south eastern end of the Korean Peninsula, is a famous beach, which has an approximately 1.6 km long and 70 m wide coastline. The beach has been repeatedly eroded by the swell waves caused by typhoons in summer and high waves originating in the East Sea in winter. The Korean government conducted beach restoration projects including beach nourishment (620,000 m3) and construction of two submerged breakwaters near both ends of the beach. To prevent the beach erosion and to support the beach restoration project, the Korean government initiated a R&D project, the development of coastal erosion control technology since 2013. As a part of the project, we have been measuring waves and currents at a water depth of 22 m, 1.8 km away from the beach using an acoustic wave and current meter (AWAC) continuously for more than three years; we have also measured waves and currents intensively near the surf-zone in summer and winter. In this study, a numerical simulation using a wave and current coupled model (ROMS-SWAN) was conducted for determining the wave-induced current considering seasonal swell waves (Hs : 2.5 m, Tp: 12 s) and for better understanding of the coastal process near the surf-zone in Haeundae. By comparing the measured and simulated results, we found that cross-shore current during summer is mainly caused by the eddy produced by the wave-induced current near the beach, which in turn, is generated by the strong waves coming from the SSW and S directions. During other seasons, longshore wave-induced current is produced by the swell waves coming from the E and ESE directions. The longshore current heading west toward Dong-Back Island, west end of the beach, during all the seasons and eddy current toward Mipo-Port, east end of the beach, in summer which is well matched with the observed residual current. The wave-induced current with long-term measurement data is incorporated in simulation of sediment transport modeling for developing coastal erosion control system in Haeundae.
Current drive by helicon waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Manash Kumar; Bora, Dhiraj; ITER Organization, Cadarache Centre-building 519, 131008 St. Paul-Lez-Durance
2009-01-01
Helicity in the dynamo field components of helicon wave is examined during the novel study of wave induced helicity current drive. Strong poloidal asymmetry in the wave magnetic field components is observed during helicon discharges formed in a toroidal vacuum chamber of small aspect ratio. High frequency regime is chosen to increase the phase velocity of helicon waves which in turn minimizes the resonant wave-particle interactions and enhances the contribution of the nonresonant current drive mechanisms. Owing to the strong poloidal asymmetry in the wave magnetic field structures, plasma current is driven mostly by the dynamo-electric-field, which arise due tomore » the wave helicity injection by helicon waves. Small, yet finite contribution from the suppressed wave-particle resonance cannot be ruled out in the operational regime examined. A brief discussion on the parametric dependence of plasma current along with numerical estimations of nonresonant components is presented. A close agreement between the numerical estimation and measured plasma current magnitude is obtained during the present investigation.« less
INSTABILITIES DRIVEN BY THE DRIFT AND TEMPERATURE ANISOTROPY OF ALPHA PARTICLES IN THE SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verscharen, Daniel; Bourouaine, Sofiane; Chandran, Benjamin D. G., E-mail: daniel.verscharen@unh.edu, E-mail: s.bourouaine@unh.edu, E-mail: benjamin.chandran@unh.edu
2013-08-20
We investigate the conditions under which parallel-propagating Alfven/ion-cyclotron (A/IC) waves and fast-magnetosonic/whistler (FM/W) waves are driven unstable by the differential flow and temperature anisotropy of alpha particles in the solar wind. We focus on the limit in which w{sub Parallel-To {alpha}} {approx}> 0.25v{sub A}, where w{sub Parallel-To {alpha}} is the parallel alpha-particle thermal speed and v{sub A} is the Alfven speed. We derive analytic expressions for the instability thresholds of these waves, which show, e.g., how the minimum unstable alpha-particle beam speed depends upon w{sub Parallel-To {alpha}}/v{sub A}, the degree of alpha-particle temperature anisotropy, and the alpha-to-proton temperature ratio. Wemore » validate our analytical results using numerical solutions to the full hot-plasma dispersion relation. Consistent with previous work, we find that temperature anisotropy allows A/IC waves and FM/W waves to become unstable at significantly lower values of the alpha-particle beam speed U{sub {alpha}} than in the isotropic-temperature case. Likewise, differential flow lowers the minimum temperature anisotropy needed to excite A/IC or FM/W waves relative to the case in which U{sub {alpha}} = 0. We discuss the relevance of our results to alpha particles in the solar wind near 1 AU.« less
NASA Astrophysics Data System (ADS)
Yang, Dingge; Wang, Lijun; Jia, Shenli; Huo, Xintao; Zhang, Ling; Liu, Ke; Shi, Zongqian
2009-03-01
Based on a two-dimensional magnetohydrodynamic model, the dynamic process in a high-current vacuum arc (as in a high-power circuit breaker) was simulated and analysed. A half-wave of sinusoidal current was represented as a series of discrete steps, rather than as a continuous wave. The simulation was done at each step, i.e. at each of the discrete current values. In the simulation, the phase delay by which the axial magnetic field lags the current was taken into account. The curves which represent the variation of arc parameters (such as electron temperature) look sinusoidal, but the parameter values at a discrete moment in the second 1/4 cycle are smaller than those at the corresponding moment in the first 1/4 cycle (although the currents are equal at these two moments). This is perhaps mainly due to the magnetic field delay. In order to verify the correctness of the simulation, the simulation results were compared in part with the experimental results. It was seen from the experimental results that the arc column was darker but more uniform in the second 1/4 cycle than in the first 1/4 cycle, in agreement with the simulation results.
The Effect of Ocean Currents on Sea Surface Temperature Anomalies
NASA Technical Reports Server (NTRS)
Stammer, Detlef; Leeuwenburgh, Olwijn
2000-01-01
We investigate regional and global-scale correlations between observed anomalies in sea surface temperature and height. A strong agreement between the two fields is found over a broad range of latitudes for different ocean basins. Both time-longitude plots and wavenumber-frequency spectra suggest an advective forcing of SST anomalies by a first-mode baroclinic wave field on spatial scales down to 400 km and time scales as short as 1 month. Even though the magnitude of the mean background temperature gradient is determining for the effectiveness of the forcing, there is no obvious seasonality that can be detected in the amplitudes of SST anomalies. Instead, individual wave signatures in the SST can in some cases be followed over periods of two years. The phase relationship between SST and SSH anomalies is dependent upon frequency and wavenumber and displays a clear decrease of the phase lag toward higher latitudes where the two fields come into phase at low frequencies. Estimates of the damping coefficient are larger than generally obtained for a purely atmospheric feedback. From a global frequency spectrum a damping time scale of 2-3 month was found. Regionally results are very variable and range from 1 month near strong currents to 10 month at low latitudes and in the sub-polar North Atlantic. Strong agreement is found between the first global EOF modes of 10 day averaged and spatially smoothed SST and SSH grids. The accompanying time series display low frequency oscillations in both fields.
Prediction of Skin Temperature Distribution in Cosmetic Laser Surgery
NASA Astrophysics Data System (ADS)
Ting, Kuen; Chen, Kuen-Tasnn; Cheng, Shih-Feng; Lin, Wen-Shiung; Chang, Cheng-Ren
2008-01-01
The use of lasers in cosmetic surgery has increased dramatically in the past decade. To achieve minimal damage to tissues, the study of the temperature distribution of skin in laser irradiation is very important. The phenomenon of the thermal wave effect is significant due to the highly focused light energy of lasers in very a short time period. The conventional Pennes equation does not take the thermal wave effect into account, which the thermal relaxation time (τ) is neglected, so it is not sufficient to solve instantaneous heating and cooling problem. The purpose of this study is to solve the thermal wave equation to determine the realistic temperature distribution during laser surgery. The analytic solutions of the thermal wave equation are compared with those of the Pennes equation. Moreover, comparisons are made between the results of the above equations and the results of temperature measurement using an infrared thermal image instrument. The thermal wave equation could likely to predict the skin temperature distribution in cosmetic laser surgery.
Modeling deflagration waves out of hot spots
NASA Astrophysics Data System (ADS)
Partom, Yehuda
2017-01-01
It is widely accepted that shock initiation and detonation of heterogeneous explosives comes about by a two-step process known as ignition and growth. In the first step a shock sweeping through an explosive cell (control volume) creates hot spots that become ignition sites. In the second step, deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in the cell depends on the speed of those deflagration waves and on the average distance between neighboring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration waves may depend on both pressure and temperature. It depends on pressure for quasistatic loading near ambient temperature, and on temperature at high temperatures resulting from shock loading. From the simulation we obtain deflagration fronts emanating out of the hot spots. For 8 to 13 GPa shocks, the emanating fronts propagate as deflagration waves to consume the explosive between hot spots. For higher shock levels deflagration waves may interact with the sweeping shock to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds.
Skin Temperature Processes in the Presence of Sea Ice
NASA Astrophysics Data System (ADS)
Brumer, S. E.; Zappa, C. J.; Brown, S.; McGillis, W. R.; Loose, B.
2013-12-01
Monitoring the sea-ice margins of polar oceans and understanding the physical processes at play at the ice-ocean-air interface is essential in the perspective of a changing climate in which we face an accelerated decline of ice caps and sea ice. Remote sensing and in particular InfraRed (IR) imaging offer a unique opportunity not only to observe physical processes at sea-ice margins, but also to measure air-sea exchanges near ice. It permits monitoring ice and ocean temperature variability, and can be used for derivation of surface flow field allowing investigating turbulence and shearing at the ice-ocean interface as well as ocean-atmosphere gas transfer. Here we present experiments conducted with the aim of gaining an insight on how the presence of sea ice affects the momentum exchange between the atmosphere and ocean and investigate turbulence production in the interplay of ice-water shear, convection, waves and wind. A set of over 200 high resolution IR imagery records was taken at the US Army Cold Regions Research and Engineering Laboratory (CRREL, Hanover NH) under varying ice coverage, fan and pump settings. In situ instruments provided air and water temperature, salinity, subsurface currents and wave height. Air side profiling provided environmental parameters such as wind speed, humidity and heat fluxes. The study aims to investigate what can be gained from small-scale high-resolution IR imaging of the ice-ocean-air interface; in particular how sea ice modulates local physics and gas transfer. The relationship between water and ice temperatures with current and wind will be addressed looking at the ocean and ice temperature variance. Various skin temperature and gas transfer parameterizations will be evaluated at ice margins under varying environmental conditions. Furthermore the accuracy of various techniques used to determine surface flow will be assessed from which turbulence statistics will be determined. This will give an insight on how ice presence may affect the dissipation of turbulent kinetic energy.
Temperature maxima in stable two-dimensional shock waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kum, O.; Hoover, W.G.; Hoover, C.G.
1997-07-01
We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy{close_quote}s pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith{close_quote}s model for strong shock waves in dilute three-dimensional gases. {copyright} {ital 1997} {ital The American Physical Society}
Kinetics of oxygen atom formation during the oxidation of methane behind shock waves
NASA Technical Reports Server (NTRS)
Jachimowski, C. J.
1974-01-01
An experimental and analytical study of the formation of oxygen atoms during the oxidation of methane and methane-hydrogen mixtures behind incident shock waves was carried out over the temperature range 1790-2584 K at reaction pressures between 1.2 and 1.7 atm. Oxygen atom levels were determined indirectly by measurement of emission from reaction of O with CO. On the basis of these data and ignition-delay data reported in the literature, a kinetic scheme for methane oxidation was assembled. The proposed kinetic mechanism, in general, predicts higher peak oxygen atom levels than the current oxidation mechanisms proposed by Bowman and Seery and by Skinner and his co-workers.
Monolithic Superconducting Emitter of Tunable Circularly Polarized Terahertz Radiation
NASA Astrophysics Data System (ADS)
Elarabi, A.; Yoshioka, Y.; Tsujimoto, M.; Kakeya, I.
2017-12-01
We propose an approach to controlling the polarization of terahertz (THz) radiation from intrinsic Josephson-junction stacks in a single crystalline high-temperature superconductor Bi2Sr2CaCu2O8 . Monolithic control of the surface high-frequency current distributions in the truncated square mesa structure allows us to modulate the polarization of the emitted terahertz wave as a result of two orthogonal fundamental modes excited inside the mesa. Highly polarized circular terahertz waves with a degree of circular polarization of more than 99% can be generated using an electrically controlled method. The intuitive results obtained from the numerical simulation based on the conventional antenna theory are consistent with the observed emission characteristics.
NASA Astrophysics Data System (ADS)
Griffiths, Luke; Heap, Michael; Lengliné, Olivier; Schmittbuhl, Jean; Baud, Patrick
2017-04-01
Rock undergoes fluctuations in temperature in various settings in Earth's crust, including areas of volcanic or geothermal activity, or industrial environments such as hydrocarbon or geothermal reservoirs. Changes in temperature can cause thermal stresses that can result in the formation of microcracks, which affect the mechanical, physical, and transport properties of rocks. Of the affected physical properties, the elastic wave velocity of rock is particularly sensitive to microcracking. Monitoring the evolution of elastic wave velocity during the thermal stressing of rock therefore provides valuable insight into thermal cracking processes. One monitoring technique is Coda Wave Interferometry (CWI), which infers high-resolution changes in the medium from changes in multiple-scattered elastic waves. We have designed a new experimental setup to perform CWI whilst cyclically heating and cooling samples of granite (cylinders of 20 mm diameter and 40 mm length). In our setup, the samples are held between two pistons within a tube furnace and are heated and cooled at a rate of 1 °C/min to temperatures of up to 300 °C. Two high temperature piezo-transducers are each in contact with an opposing face of the rock sample. The servo-controlled uniaxial press compensates for the thermal expansion and contraction of the pistons and the sample, keeping the coupling between the transducers and the sample, and the axial force acting on the sample, constant throughout. Our setup is designed for simultaneous acoustic emission monitoring (AE is commonly used as a proxy for microcracking), and so we can follow thermal microcracking precisely by combining the AE and CWI techniques. We find that during the first heating/cooling cycle, the onset of thermal microcracking occurs at a relatively low temperature of around 65 °C. The CWI shows that elastic wave velocity decreases with increasing temperature and increases during cooling. Upon cooling, back to room temperature, there is an irreversible relative decrease in velocity of several percent associated with the presence of new thermal microcracks. Our data suggest that few new microcracks were formed when the same sample was subject to subsequent identical heating/cooling cycles as changes in the elastic wave velocity are near-reversible. Our results shed light on the temperature conditions required for thermal microcracking and the influence of temperature on elastic wave velocity with applications to a wide variety of geoscientific disciplines.
HOT PLASMA FROM SOLAR ACTIVE-REGION CORES: CONSTRAINTS FROM THE HINODE X-RAY TELESCOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmelz, J. T.; Christian, G. M.; Matheny, P. O., E-mail: jschmelz@usra.edu
2016-12-20
Mechanisms invoked to heat the solar corona to millions of degrees kelvin involve either magnetic waves or magnetic reconnections. Turbulence in the convection zone produces MHD waves, which travel upward and dissipate. Photospheric motions continuously build up magnetic energy, which is released through magnetic reconnection. In this paper, we concentrate on hot non-flaring plasma with temperatures of 5 MK < T < 10 MK because it is one of the few observables for which wave and reconnection models make different predictions. Wave models predict no (or little) hot plasma, whereas reconnection models predict it, although in amounts that are challenging to detectmore » with current instrumentation. We used data from the X-ray Telescope (XRT) and the Atmospheric Imaging Assembly (AIA). We requested a special XRT observing sequence, which cycled through the thickest XRT filter several times per hour so we could average these images and improve the signal-to-noise. We did differential emission measure (DEM) analysis using the time-averaged thick-filter data as well as all available channels from both the XRT and AIA for regions observed on 2014 December 11. Whereas our earlier work was only able to determine that plasma with a temperature greater than 5 MK was present , we are now able to find a well-constrained DEM distribution. We have therefore added a strong observational constraint that must be explained by any viable coronal heating model. Comparing state-of-the-art wave and reconnection model predictions, we can conclude that reconnection is heating the hot plasma in these active regions.« less
Development of a Sodium Lidar for Space-Borne Missions
NASA Astrophysics Data System (ADS)
Janches, D.; Krainak, M. A.; Yu, A. W.; Jones, S.; Chen, J. R.
2015-12-01
We are currently developing laser and electro-optic technologies to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage to study the composition and dynamics of Earth's mesosphere based on a spaceborne instrument that will measure the mesospheric Na layer. There is a pressing need in the Ionosphere - Thermosphere - Mesosphere (ITM) community for high-resolution measurements that can characterize the effect of small-scale dynamics (i.e. Gravity Waves with wavelengths smaller than a few hundred km) in the Mesosphere-Lower-Termosphere (MLT) on a global basis. This is compelling because they are believed to be the dominant contributors to momentum transport and deposition in the MLT, which largely drive the global circulation and thermal structure and interactions with the tides and planetary waves in this region. A nadir-pointing spaceborne Na Doppler resonance fluorescence LIDAR on board of the International Space Station (ISS) will essentially make high-resolution, in time and space, Na density, temperature and vertical wind measurements, from 75-115 km (MLT region). Our instrument concept consisted of a high-energy laser transmitter at 589 nm and highly sensitive photon counting detector that allows for range-resolved atmospheric-sodium-temperature profiles. The atmospheric temperature is deduced from the linewidth of the resonant fluorescence from the atomic sodium vapor D2 line as measured by our tunable laser. We are currently developing a high power energy laser that allows for some day time sodium lidar observations with the help of a narrow bandpass filter based on etalon or atomic sodium Faraday filter with ~5 to 10 pm optical bandwidth. The current baseline detector for the lidar instrument is a 16-channel Photomultiplier Tube with receiver electronics that has been space-qualified for the ICESat-2/ATLAS mission. Our technique uses the 16-channels as a photon-number-resolving "single" detector to provide the required full-spectroscopic sodium lineshape waveform for recovering Mesospheric temperature profiles. In this paper, we will describe our instrument concept for a future Heliophysics space mission based on board of the ISS as well as show current progress results.
Impacts of auroral current systems on ionospheric upflow/outflow
NASA Astrophysics Data System (ADS)
Burleigh, M.; Zettergren, M. D.; Lynch, K. A.; Lessard, M.; Harrington, M.; Varney, R. H.; Reimer, A.
2017-12-01
The downward current region of an auroral current system often contains large perpendicular DC electric fields. These DC electric fields frictionally heat the local ion population resulting in anisotropic increases in ion temperature that cause large pressure gradients which push the ions outward and upward. These ions may undergo further acceleration from transverse heating by broadband ELF waves and at high altitudes the mirror force can propel ions to escape velocities, resulting in outflow to the magnetosphere. Despite these processes being generally well-known, ion outflow remains difficult to predict due to the myriad of processes acting over a large range of altitudes and physical regimes. The resulting temperature anisotropies, which are known to be able to affect upflow, have an unclear degree of impact in highly variable situations like substorm expansions on the nightside or PMAFs/FTEs on the dayside.In this study we use an anisotropic fluid model, GEMINI-TIA, to examine detailed features of temperature anisotropies and resulting ion downflows/upflows/outflows occurring during the ISINGLASS and RENU2 sounding rocket campaigns. GEMINI-TIA is a 2D ionospheric model is based on a truncated 16-moment description and solves the conservation of mass, momentum, parallel energy, and perpendicular energy for species relevant to the E, F, and topside ionospheric regions. This model encapsulates ionospheric upflow and outflow processes through the inclusion of DC electric fields, and empirical descriptions of heating by soft electron precipitation and BBELF waves. The fluid transport equations are accompanied by an electrostatic current continuity equation to self-consistently describe auroral electric fields. Data used to constrain the model can include perpendicular electric fields, characteristic energy, and total energy flux from incoherent scatter radar, any available neutral density and wind measurements, and precipitating electron fluxes. Results from these constrained simulations are compared against in-situ observations. This allows for the ionospheric temperature anisotropies, which are notoriously difficult to observe, and their impacts on ion upflow response due to auroral drivers to be evaluated by enforcing realistic temporal and spatial dependencies on the drivers.
Distortion of Digital Image Correlation (DIC) Displacements and Strains from Heat Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, E. M. C.; Reu, P. L.
“Heat waves” is a colloquial term used to describe convective currents in air formed when different objects in an area are at different temperatures. In the context of Digital Image Correlation (DIC) and other optical-based image processing techniques, imaging an object of interest through heat waves can significantly distort the apparent location and shape of the object. We present that there are many potential heat sources in DIC experiments, including but not limited to lights, cameras, hot ovens, and sunlight, yet error caused by heat waves is often overlooked. This paper first briefly presents three practical situations in which heatmore » waves contributed significant error to DIC measurements to motivate the investigation of heat waves in more detail. Then the theoretical background of how light is refracted through heat waves is presented, and the effects of heat waves on displacements and strains computed from DIC are characterized in detail. Finally, different filtering methods are investigated to reduce the displacement and strain errors caused by imaging through heat waves. The overarching conclusions from this work are that errors caused by heat waves are significantly higher than typical noise floors for DIC measurements, and that the errors are difficult to filter because the temporal and spatial frequencies of the errors are in the same range as those of typical signals of interest. In conclusion, eliminating or mitigating the effects of heat sources in a DIC experiment is the best solution to minimizing errors caused by heat waves.« less
Distortion of Digital Image Correlation (DIC) Displacements and Strains from Heat Waves
Jones, E. M. C.; Reu, P. L.
2017-11-28
“Heat waves” is a colloquial term used to describe convective currents in air formed when different objects in an area are at different temperatures. In the context of Digital Image Correlation (DIC) and other optical-based image processing techniques, imaging an object of interest through heat waves can significantly distort the apparent location and shape of the object. We present that there are many potential heat sources in DIC experiments, including but not limited to lights, cameras, hot ovens, and sunlight, yet error caused by heat waves is often overlooked. This paper first briefly presents three practical situations in which heatmore » waves contributed significant error to DIC measurements to motivate the investigation of heat waves in more detail. Then the theoretical background of how light is refracted through heat waves is presented, and the effects of heat waves on displacements and strains computed from DIC are characterized in detail. Finally, different filtering methods are investigated to reduce the displacement and strain errors caused by imaging through heat waves. The overarching conclusions from this work are that errors caused by heat waves are significantly higher than typical noise floors for DIC measurements, and that the errors are difficult to filter because the temporal and spatial frequencies of the errors are in the same range as those of typical signals of interest. In conclusion, eliminating or mitigating the effects of heat sources in a DIC experiment is the best solution to minimizing errors caused by heat waves.« less
Anomalous Hall effect in semiconductor quantum wells in proximity to chiral p -wave superconductors
NASA Astrophysics Data System (ADS)
Yang, F.; Yu, T.; Wu, M. W.
2018-05-01
By using the gauge-invariant optical Bloch equation, we perform a microscopic kinetic investigation on the anomalous Hall effect in chiral p -wave superconducting states. Specifically, the intrinsic anomalous Hall conductivity in the absence of the magnetic field is zero as a consequence of Galilean invariance in our description. As for the extrinsic channel, a finite anomalous Hall current is obtained from the impurity scattering with the optically excited normal quasiparticle current even at zero temperature. From our kinetic description, it can be clearly seen that the excited normal quasiparticle current is due to an induced center-of-mass momentum of Cooper pairs through the acceleration driven by ac electric field. For the induced anomalous Hall current, we show that the conventional skew-scattering channel in the linear response makes the dominant contribution in the strong impurity interaction. In this case, our kinetic description as a supplementary viewpoint mostly confirms the results of Kubo formalism in the literature. Nevertheless, in the weak impurity interaction, this skew-scattering channel becomes marginal and we reveal that an induction channel from the Born contribution dominates the anomalous Hall current. This channel, which has long been overlooked in the literature, is due to the particle-hole asymmetry by nonlinear optical excitation. Finally, we study the case in the chiral p -wave superconducting state with a transverse conical magnetization, which breaks the Galilean invariance. In this situation, the intrinsic anomalous Hall conductivity is no longer zero. Comparison of this intrinsic channel with the extrinsic one from impurity scattering is addressed.
NASA Astrophysics Data System (ADS)
Gao, Q. D.; Budny, R. V.
2015-03-01
By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (Ti,e) and toroidal velocity (Vϕ) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.
Waves plus currents at a right angle: The rippled bed case
NASA Astrophysics Data System (ADS)
Faraci, C.; Foti, E.; Musumeci, R. E.
2008-07-01
The present paper deals with wave plus current flow over a fixed rippled bed. More precisely, modifications of the current profiles due to the superimposition of orthogonal cylindrical waves have been investigated experimentally. Since the experimental setup permitted only the wave dominated regime to be investigated (i.e., the regime where orbital velocity is larger than current velocity), also a numerical k-ɛ turbulence closure model has been developed in order to study a wider range of parameters, thus including the current dominated regime (i.e., where current velocity is larger than wave orbital one). In both cases a different response with respect to the flat bed case has been found. Indeed, in the flat bed case laminar wave boundary layers in a wave dominated regime induce a decrease in bottom shear stresses, while the presence of a rippled bed behaves as a macroroughness, which causes the wave boundary layer to become turbulent and therefore the current velocity near the bottom to be smaller than the one in the case of current only, with a consequent increase in the current bottom roughness.
Interharmonic modulation products as a means to quantify nonlinear D-region interactions
NASA Astrophysics Data System (ADS)
Moore, Robert
Experimental observations performed during dual beam ionospheric HF heating experiments at the High frequency Active Auroral Research Program (HAARP) HF transmitter in Gakona, Alaska are used to quantify the relative importance of specific nonlinear interactions that occur within the D region ionosphere. During these experiments, HAARP broadcast two amplitude modulated HF beams whose center frequencies were separated by less than 20 kHz. One beam was sinusoidally modulated at 500 Hz while the second beam was sinusoidally modulated using a 1-7 kHz linear frequency-time chirp. ELF/VLF observations performed at two different locations (3 and 98 km from HAARP) provide clear evidence of strong interactions between all field components of the two HF beams in the form of low and high order interharmonic modulation products. From a theoretical standpoint, the observed interharmonic modulation products could be produced by several different nonlinearities. The two primary nonlinearities take the form of wave-medium interactions (i.e., cross modulation), wherein the ionospheric conductivity modulation produced by one signal crosses onto the other signal via collision frequency modification, and wave-wave interactions, wherein the conduction current associated with one wave mixes with the electric field of the other wave to produce electron temperature oscillations. We are able to separate and quantify these two different nonlinearities, and we conclude that the wave-wave interactions dominate the wave-medium interactions by a factor of two. These results are of great importance for the modeling of transioinospheric radio wave propagation, in that both the wave-wave and the wave-medium interactions could be responsible for a significant amount of anomalous absorption.
Nearshore Current Model Workshop Summary.
1983-09-01
dissipation , and wave-current interaction. b. Incorporation into models of wave-breaking. c. Parameterization of turbulence in models. d. Incorporation...into models of surf zone energy dissipation . e. Methods to specify waves and currents on the boundaries of the grid. f. Incorporation into models of...also recommended. Improvements should include nonlinear and irregular wave effects and improved models of wave-breaking and wave energy dissipation in
Influence of Internal Waves on Transport by a Gravity Current
NASA Astrophysics Data System (ADS)
Koseff, Jeffrey; Hogg, Charlie; Ouillon, Raphael; Ouellette, Nicholas; Meiburg, Eckart
2017-11-01
Gravity currents moving along the continental slope can be influenced by internal waves shoaling on the slope resulting in mixing between the gravity current and the ambient fluid. Whilst some observations of the potential influence of internal waves on gravity currents have been made, the process has not been studied systematically. We present laboratory experiments, and some initial numerical simulations, in which a gravity current descends down a sloped boundary through a pycnocline at the same time as an internal wave at the pycnocline shoals on the slope. Measurements of the downslope mass flux of the gravity current fluid in cases with different amplitudes of the incident internal wave will be discussed. For the parameter regime considered, the mass flux in the head of the gravity current was found to reduce with increasingly larger incident amplitude waves. This reduction was effectively caused by a ``decapitation'' process whereby the breaking internal wave captures and moves fluid from the head of the gravity current back up the slope. The significance of the impact of the internal waves on gravity current transport, strongly suggests that the local internal wave climate may need to be considered when calculating gravity current transport. The Bob and Norma Street Environmental Fluid Mechanics Laboratory.
Ultrasonic liquid-level detector for varying temperature and pressure environments
Anderson, R.L.; Miller, G.N.
1981-10-26
An ultrasonic liquid level detector for use in varying temperature and pressure environments, such as a pressurized water nuclear reactor vessel, is provided. The detector employs ultrasonic extensional and torsional waves launched in a multiplexed alternating sequence into a common sensor. The sensor is a rectangular cross section stainless steel rod which extends into the liquid medium whose level is to be detected. The sensor temperature derived from the extensional wave velocity measurements is used to compensate for the temperature dependence of the torsional wave velocity measurements which are also level dependent. The torsional wave velocity measurements of a multiple reflection sensor then provide a measurement of liquid level over a range of several meters with a small uncertainty over a temperature range of 20 to 250/sup 0/C and pressures up to 15 MPa.
Quasi-linear modeling of lower hybrid current drive in ITER and DEMO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardinali, A., E-mail: alessandro.cardinali@enea.it; Cesario, R.; Panaccione, L.
2015-12-10
First pass absorption of the Lower Hybrid waves in thermonuclear devices like ITER and DEMO is modeled by coupling the ray tracing equations with the quasi-linear evolution of the electron distribution function in 2D velocity space. As usually assumed, the Lower Hybrid Current Drive is not effective in a plasma of a tokamak fusion reactor, owing to the accessibility condition which, depending on the density, restricts the parallel wavenumber to values greater than n{sub ∥crit} and, at the same time, to the high electron temperature that would enhance the wave absorption and then restricts the RF power deposition to themore » very periphery of the plasma column (near the separatrix). In this work, by extensively using the “ray{sup star}” code, a parametric study of the propagation and absorption of the LH wave as function of the coupled wave spectrum (as its width, and peak value), has been performed very accurately. Such a careful investigation aims at controlling the power deposition layer possibly in the external half radius of the plasma, thus providing a valuable aid to the solution of how to control the plasma current profile in a toroidal magnetic configuration, and how to help the suppression of MHD mode that can develop in the outer part of the plasma. This analysis is useful not only for exploring the possibility of profile control of a pulsed operation reactor as well as the tearing mode stabilization, but also in order to reconsider the feasibility of steady state regime for DEMO.« less
NASA Astrophysics Data System (ADS)
Wang, Ximei; Zhu, Liqun; Li, Weiping; Liu, Huicong; Li, Yihong
2009-03-01
Anodic films have been prepared on the AZ91D magnesium alloys in 1 mol/L Na 2SiO 3 with 10 vol.% silica sol addition under the constant voltage of 60 V at room temperature by half-wave and full-wave power sources. The weight of the anodic films has been scaled by analytical balance, and the thickness has been measured by eddy current instrument. The surface morphologies, chemical composition and structure of the anodic films have been characterized by scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the thickness and weight of the anodic films formed by the two power sources both increase with the anodizing time, and the films anodized by full-wave power source grow faster than that by half-wave one. Furthermore, we have fitted polynomial to the scattered data of the weight and thickness in a least-squares sense with MATLAB, which could express the growth process of the anodic films sufficiently. The full-wave power source is inclined to accelerate the growth of the anodic films, and the half-wave one is mainly contributed to the uniformity and fineness of the films. The anodic film consists of crystalline Mg 2SiO 4 and amorphous SiO 2.
Pen, Ue-Li; Turok, Neil
2016-09-23
We point out a surprising consequence of the usually assumed initial conditions for cosmological perturbations. Namely, a spectrum of Gaussian, linear, adiabatic, scalar, growing mode perturbations not only creates acoustic oscillations of the kind observed on very large scales today, it also leads to the production of shocks in the radiation fluid of the very early Universe. Shocks cause departures from local thermal equilibrium as well as create vorticity and gravitational waves. For a scale-invariant spectrum and standard model physics, shocks form for temperatures 1 GeV
Detection of gas atoms with carbon nanotubes
Arash, B.; Wang, Q.
2013-01-01
Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.
Kinetic theory and Vlasov simulation of nonlinear ion-acoustic waves in multi-ion species plasmas.
Chapman, T; Berger, R L; Brunner, S; Williams, E A
2013-05-10
The theory of damping and nonlinear frequency shifts from particles resonant with ion-acoustic waves (IAWs) is presented for multi-ion species plasma and compared to driven wave Vlasov simulations. Two distinct IAW modes may be supported in multi-ion species plasmas, broadly classified as fast and slow by their phase velocity relative to the constituent ion thermal velocities. In current fusion-relevant long pulse experiments, the ion to electron temperature ratio, T(i)/T(e), is expected to reach a level such that the least damped and thus more readily driven mode is the slow mode, with both linear and nonlinear properties that are shown to differ significantly from the fast mode. The lighter ion species of the slow mode is found to make no significant contribution to the IAW frequency shift despite typically being the dominant contributor to the Landau damping.
Molecular dynamics simulation of shock-wave loading of copper and titanium
NASA Astrophysics Data System (ADS)
Bolesta, A. V.; Fomin, V. M.
2017-10-01
At extreme pressures and temperatures common materials form new dense phases with compacted atomic arrangements. By classical molecular dynamics simulation we observe that FCC copper undergo phase transformation to BCC structure. The transition occurs under shock wave loading at the pressures above 80 GPa and corresponding temperatures above 2000 K. We calculate phase diagram, show that at these pressures and low temperature FCC phase of copper is still stable and discuss the thermodynamic reason for phase transformation at high temperature shock wave regime. Titanium forms new hexagonal phase at high pressure as well. We calculate the structure of shock wave in titanium and observe that shock front splits in three parts: elastic, plastic and phase transformation. The possibility of using a phase transition behind a shock wave with further unloading for designing nanocrystalline materials with a reduced grain size is also shown.
Multilayer Piezoelectric Stack Actuator Characterization
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph
2008-01-01
Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.
Surface wave effect on the upper ocean in marine forecast
NASA Astrophysics Data System (ADS)
Wang, Guansuo; Qiao, Fangli; Xia, Changshui; Zhao, Chang
2015-04-01
An Operational Coupled Forecast System for the seas off China and adjacent (OCFS-C) is constructed based on the paralleled wave-circulation coupled model, which is tested with comprehensive experiments and operational since November 1st, 2007. The main feature of the system is that the wave-induced mixing is considered in circulation model. Daily analyses and three day forecasts of three-dimensional temperature, salinity, currents and wave height are produced. Coverage is global at 1/2 degreed resolution with nested models up to 1/24 degree resolution in China Sea. Daily remote sensing sea surface temperatures (SST) are taken to relax to an analytical product as hot restarting fields for OCFS-C by the Nudging techniques. Forecasting-data inter-comparisons are performed to measure the effectiveness of OCFS-C in predicting upper-ocean quantities including SST, mixed layer depth (MLD) and subsurface temperature. The variety of performance with lead time and real-time is discussed as well using the daily statistic results for SST between forecast and satellite data. Several buoy observations and many Argo profiles are used for this validation. Except the conventional statistical metrics, non-dimension skill scores (SS) is taken to estimate forecast skill. Model SST comparisons with more one year-long SST time series from 2 buoys given a large SS value (more than 0.90). And skill in predicting the seasonal variability of SST is confirmed. Model subsurface temperature comparisons with that from a lot of Argo profiles indicated that OCFS-C has low skill in predicting subsurface temperatures between 80m and 120m. Inter-comparisons of MLD reveal that MLD from model is shallower than that from Argo profiles by about 12m. QCFS-C is successful and steady in predicting MLD. The daily statistic results for SST between 1-d, 2-d and 3-d forecast and data is adopted to describe variability of Skill in predicting SST with lead time or real time. In a word QCFS-C shows reasonable accuracy over a series of studies designed to test ability to predict upper ocean conditions.
NASA Astrophysics Data System (ADS)
Takenaga, H.; Ide, S.; Sakamoto, Y.; Fujita, T.; JT-60 Team
2008-07-01
Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.
Undergraduate Research Experience in Ocean/Marine Science (URE-OMS) with African Student Component
2008-01-01
Intergovernmental Panel on Climate Change (IPCC). RESULTS Temporal and Spatial Variations of Sea Surface Temperature and Chlorophyll a in Coastal Waters of...Duck, North Carolina [4] Climate change has affected the North Carolina coastal environments and coastal hazards have already taken place in the area...from geological materials (sands, dead and/or bleached corals ...etc) shifted by waves, tides, and currents moving sediments and eroding shorelines
NASA Astrophysics Data System (ADS)
Liu, Huiqing; Xie, Lian
2009-06-01
The effects of wave-current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave-current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209-1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave-surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave-current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave-current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.
Can gravity waves significantly impact PSC occurrence in the Antarctic?
NASA Astrophysics Data System (ADS)
McDonald, A. J.; George, S. E.; Woollands, R. M.
2009-11-01
A combination of POAM III aerosol extinction and CHAMP RO temperature measurements are used to examine the role of atmospheric gravity waves in the formation of Antarctic Polar Stratospheric Clouds (PSCs). POAM III aerosol extinction observations and quality flag information are used to identify Polar Stratospheric Clouds using an unsupervised clustering algorithm. A PSC proxy, derived by thresholding Met Office temperature analyses with the PSC Type Ia formation temperature (TNAT), shows general agreement with the results of the POAM III analysis. However, in June the POAM III observations of PSC are more abundant than expected from temperature threshold crossings in five out of the eight years examined. In addition, September and October PSC identified using temperature thresholding is often significantly higher than that derived from POAM III; this observation probably being due to dehydration and denitrification. Comparison of the Met Office temperature analyses with corresponding CHAMP observations also suggests a small warm bias in the Met Office data in June. However, this bias cannot fully explain the differences observed. Analysis of CHAMP data indicates that temperature perturbations associated with gravity waves may partially explain the enhanced PSC incidence observed in June (relative to the Met Office analyses). For this month, approximately 40% of the temperature threshold crossings observed using CHAMP RO data are associated with small-scale perturbations. Examination of the distribution of temperatures relative to TNAT shows a large proportion of June data to be close to this threshold, potentially enhancing the importance of gravity wave induced temperature perturbations. Inspection of the longitudinal structure of PSC occurrence in June 2005 also shows that regions of enhancement are geographically associated with the Antarctic Peninsula; a known mountain wave "hotspot". The latitudinal variation of POAM III observations means that we only observe this region in June-July, and thus the true pattern of enhanced PSC production may continue operating into later months. The analysis has shown that early in the Antarctic winter stratospheric background temperatures are close to the TNAT threshold (and PSC formation), and are thus sensitive to temperature perturbations associated with mountain wave activity near the Antarctic peninsula (40% of PSC formation). Later in the season, and at latitudes away from the peninsula, temperature perturbations associated with gravity waves contribute to about 15% of the observed PSC (a value which corresponds well to several previous studies). This lower value is likely to be due to colder background temperatures already achieving the TNAT threshold unaided. Additionally, there is a reduction in the magnitude of gravity waves perturbations observed as POAM III samples poleward of the peninsula.
InGaAs/GaAsSb Type-II superlattice based photodiodes for short wave infrared detection
NASA Astrophysics Data System (ADS)
Uliel, Y.; Cohen-Elias, D.; Sicron, N.; Grimberg, I.; Snapi, N.; Paltiel, Y.; Katz, M.
2017-08-01
Short Wave Infra-Red (SWIR) photodetectors operating above the response cutoff of InGaAs- based detectors (1.7-2.5 μm) are required for both defense and civil applications. Type II Super-Lattices (T2SL) were recently proposed For near- room temperature SWIR detection as a possible system enabling bandgap adjustment in the required range. The work presented here focuses on a T2SL with alternating nano-layers of InGaAs and GaAsSb lattice-matched to an InP substrate. A near room temperature SWIR cutoff of 2.4 μm was measured. Electrical junctions were realized using Zn diffusion p-doping process. We realized and studied both mesa- and selective diffusion- based p-i-n photodiodes. Dark currents of mesa-based devices were 1.5 mA/cm2 and 32 μA/cm2 at 300 and 230 K respectively. Dark currents were reduced to 1.2 mA/cm2 and 12 μA/cm2 respectively by utilizing the selective diffusion process. The effect of operating voltage is discussed. At 300 K the quantum efficiency was up to 40% at 2.18 μm in mesa devices. D∗ was 1.7 ×1010cm ·√{Hz } /W at 2 μm.
Peña Arellano, Fabián Erasmo; Sekiguchi, Takanori; Fujii, Yoshinori; Takahashi, Ryutaro; Barton, Mark; Hirata, Naoatsu; Shoda, Ayaka; van Heijningen, Joris; Flaminio, Raffaele; DeSalvo, Riccardo; Okutumi, Koki; Akutsu, Tomotada; Aso, Yoichi; Ishizaki, Hideharu; Ohishi, Naoko; Yamamoto, Kazuhiro; Uchiyama, Takashi; Miyakawa, Osamu; Kamiizumi, Masahiro; Takamori, Akiteru; Majorana, Ettore; Agatsuma, Kazuhiro; Hennes, Eric; van den Brand, Jo; Bertolini, Alessandro
2016-03-01
KAGRA is a cryogenic interferometric gravitational wave detector currently under construction in the Kamioka mine in Japan. Besides the cryogenic test masses, KAGRA will also rely on room temperature optics which will hang at the bottom of vibration isolation chains. The payload of each chain comprises an optic, a system to align it, and an active feedback system to damp the resonant motion of the suspension itself. This article describes the performance of a payload prototype that was assembled and tested in vacuum at the TAMA300 site at the NAOJ in Mitaka, Tokyo. We describe the mechanical components of the payload prototype and their functionality. A description of the active components of the feedback system and their capabilities is also given. The performance of the active system is illustrated by measuring the quality factors of some of the resonances of the suspension. Finally, the alignment capabilities offered by the payload are reported.
2008-01-30
that will use conventional diode- or hotomultiplier-tube-based optical detectors , which are xtremely sensitive . . HEATING AND FREE-CARRIER IMITATIONS...CONTRACT NUMBER IN-HOUSE Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides 5b. GRANT...B 261Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides T. Baehr-Jones,1,* M. Hochberg,1,3
Effect of temperature degeneracy and Landau quantization on drift solitary waves and double layers
NASA Astrophysics Data System (ADS)
Shan, Shaukat Ali; Haque, Q.
2018-01-01
The linear and nonlinear drift ion acoustic waves have been investigated in an inhomogeneous, magnetized, dense degenerate, and quantized magnetic field plasma. The linear drift ion acoustic wave propagation along with the nonlinear structures like double layers and solitary waves has been found to be strongly dependent on the drift speed, magnetic field quantization parameter β, and the temperature degeneracy. The graphical illustrations show that the frequency of linear waves and the amplitude of the solitary waves increase with the increase in temperature degeneracy and Landau quantization effect, while the amplitude of the double layers decreases with the increase in η and T. The relevance of the present study is pointed out in the plasma environment of fast ignition inertial confinement fusion, the white dwarf stars, and short pulsed petawatt laser technology.
High temperature integrated ultrasonic shear and longitudinal wave probes
NASA Astrophysics Data System (ADS)
Ono, Y.; Jen, C.-K.; Kobayashi, M.
2007-02-01
Integrated ultrasonic shear wave probes have been designed and developed using a mode conversion theory for nondestructive testing and characterization at elevated temperatures. The probes consisted of metallic substrates and high temperature piezoelectric thick (>40μm) films through a paint-on method. Shear waves are generated due to mode conversion from longitudinal to shear waves because of reflection inside the substrate having a specific shape. A novel design scheme is proposed to reduce the machining time of substrates and thick film fabrication difficulty. A probe simultaneously generating and receiving both longitudinal and shear waves is also developed and demonstrated. In addition, a shear wave probe using a clad buffer rod consisting of an aluminum core and stainless steel cladding has been developed. All the probes were tested and successfully operated at 150°C.
NASA Technical Reports Server (NTRS)
Talay, T. A.
1975-01-01
Wave-induced mass-transport current theories with both zero and nonzero net mass (or volume) transport of the water column are reviewed. A relationship based on the Longuet-Higgens theory is derived for wave-induced, nonzero mass-transport currents in intermediate water depths for a viscous fluid. The relationship is in a form useful for experimental applications; therefore, some design criteria for experimental wave-tank tests are also presented. Sample parametric cases for typical wave-tank conditions and a typical ocean swell were assessed by using the relation in conjunction with an equation developed by Unluata and Mei for the maximum wave-induced volume transport. Calculations indicate that substantial changes in the wave-induced mass-transport current profiles may exist dependent upon the assumed net volume transport. A maximum volume transport, corresponding to an infinite channel or idealized ocean condition, produces the largest wave-induced mass-transport currents. These calculations suggest that wave-induced mass-transport currents may have considerable effects on pollution and suspended-sediments transport as well as buoy drift, the surface and midlayer water-column currents caused by waves increasing with increasing net volume transports. Some of these effects are discussed.
Management of Local Stressors Can Improve the Resilience of Marine Canopy Algae to Global Stressors
Strain, Elisabeth M. A.; van Belzen, Jim; van Dalen, Jeroen; Bouma, Tjeerd J.; Airoldi, Laura
2015-01-01
Coastal systems are increasingly threatened by multiple local anthropogenic and global climatic stressors. With the difficulties in remediating global stressors, management requires alternative approaches that focus on local scales. We used manipulative experiments to test whether reducing local stressors (sediment load and nutrient concentrations) can improve the resilience of foundation species (canopy algae along temperate rocky coastlines) to future projected global climate stressors (high wave exposure, increasing sea surface temperature), which are less amenable to management actions. We focused on Fucoids (Cystoseira barbata) along the north-western Adriatic coast in the Mediterranean Sea because of their ecological relevance, sensitivity to a variety of human impacts, and declared conservation priority. At current levels of sediment and nutrients, C. barbata showed negative responses to the simulated future scenarios of high wave exposure and increased sea surface temperature. However, reducing the sediment load increased the survival of C. barbata recruits by 90.24% at high wave exposure while reducing nutrient concentrations resulted in a 20.14% increase in the survival and enhanced the growth of recruited juveniles at high temperature. We conclude that improving water quality by reducing nutrient concentrations, and particularly the sediment load, would significantly increase the resilience of C. barbata populations to projected increases in climate stressors. Developing and applying appropriate targets for specific local anthropogenic stressors could be an effective management action to halt the severe and ongoing loss of key marine habitats. PMID:25807516
Experimental and modeling uncertainties in the validation of lower hybrid current drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poli, F. M.; Bonoli, P. T.; Chilenski, M.
Our work discusses sources of uncertainty in the validation of lower hybrid wave current drive simulations against experiments, by evolving self-consistently the magnetic equilibrium and the heating and current drive profiles, calculated with a combined toroidal ray tracing code and 3D Fokker–Planck solver. The simulations indicate a complex interplay of elements, where uncertainties in the input plasma parameters, in the models and in the transport solver combine and compensate each other, at times. It is concluded that ray-tracing calculations should include a realistic representation of the density and temperature in the region between the confined plasma and the wall, whichmore » is especially important in regimes where the LH waves are weakly damped and undergo multiple reflections from the plasma boundary. Uncertainties introduced in the processing of diagnostic data as well as uncertainties introduced by model approximations are assessed. We show that, by comparing the evolution of the plasma parameters in self-consistent simulations with available data, inconsistencies can be identified and limitations in the models or in the experimental data assessed.« less
Experimental and modeling uncertainties in the validation of lower hybrid current drive
Poli, F. M.; Bonoli, P. T.; Chilenski, M.; ...
2016-07-28
Our work discusses sources of uncertainty in the validation of lower hybrid wave current drive simulations against experiments, by evolving self-consistently the magnetic equilibrium and the heating and current drive profiles, calculated with a combined toroidal ray tracing code and 3D Fokker–Planck solver. The simulations indicate a complex interplay of elements, where uncertainties in the input plasma parameters, in the models and in the transport solver combine and compensate each other, at times. It is concluded that ray-tracing calculations should include a realistic representation of the density and temperature in the region between the confined plasma and the wall, whichmore » is especially important in regimes where the LH waves are weakly damped and undergo multiple reflections from the plasma boundary. Uncertainties introduced in the processing of diagnostic data as well as uncertainties introduced by model approximations are assessed. We show that, by comparing the evolution of the plasma parameters in self-consistent simulations with available data, inconsistencies can be identified and limitations in the models or in the experimental data assessed.« less
NASA Astrophysics Data System (ADS)
Yu, Xiaolong; Pan, Weiran; Zheng, Xiangjing; Zhou, Shenjie; Tao, Xiaoqin
2017-08-01
The effects of wave-current interaction on storm surge are investigated by a two-dimensional wave-current coupling model through simulations of Typhoon Morakot in the Taiwan Strait. The results show that wind wave and slope of sea floor govern wave setup modulations within the nearshore surf zone. Wave setup during Morakot can contribute up to 24% of the total storm surge with a maximum value of 0.28 m. The large wave setup commonly coincides with enhanced radiation stress gradient, which is itself associated with transfer of wave momentum flux. Water levels are to leading order in modulating significant wave height inside the estuary. High water levels due to tidal change and storm surge stabilize the wind wave and decay wave breaking. Outside of the estuary, waves are mainly affected by the current-induced modification of wind energy input to the wave generation. By comparing the observed significant wave height and water level with the results from uncoupled and coupled simulations, the latter shows a better agreement with the observations. It suggests that wave-current interaction plays an important role in determining the extreme storm surge and wave height in the study area and should not be neglected in a typhoon forecast.
Wave-current interactions in megatidal environment
NASA Astrophysics Data System (ADS)
Bennis, A. C.; Pascal, B. D. B.; Feddy, A.; Garnier, V.; Accenti, M.; Dumas, F.; Ardhuin, F.
2016-12-01
The strongest tidal current in western Europe (up to 12 knots) occurs in Raz Blanchard (Normandy, France). High winds occur over six months which generate energetic wave conditions with breaking waves, hence the name of `Blanchard'. However, few studies have been conducted on the wave effects on the tidal current at this location because of the lack of measurements. Studies are now required to aid the creation of tidal farms. For this purpose, the 3D fully-coupled model MARS-WW3 is used with three nested ranks which are forced at boundaries by wave spectra from HOMERE database (Boudière et al., 2013) and by sea level from the French Navy (SHOM). The model is tested against ADCP data of IRSN at three locations near Raz Blanchard. Time series of current velocity and of mean sea level are consistent with ADCP data. A rephasing by waves of the tidal current is observed in comparison with simulations without waves, which fits the ADCP data. A strong dependence of the tidal current on bottom roughness is shown as well as the necessity to take into account its spatial heterogeneity. The simulated mean sea level is close to the measured one while it was underestimated for high tide in simulations without wave effects. The vertical shape of the tidal current is especially modified near the surface by waves as expected. Depending on the tidal cycle and wave direction, acceleration or deceleration of the surface current due to waves is observed. Lastly, several hydrodynamical scenarios for Raz Blanchard are carried out for different tidal and wave conditions pending the HYD2M'17 data (ADCP, ADV, drifting wave buoys, HF and VHF and X-Band radars). First results show the impacts of refractive, shoaling and blocking effects on the flood and ebb currents.
GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating.
Shindo, Takahiko; Okumura, Tadashi; Ito, Hitomi; Koguchi, Takayuki; Takahashi, Daisuke; Atsumi, Yuki; Kang, Joonhyun; Osabe, Ryo; Amemiya, Tomohiro; Nishiyama, Nobuhiko; Arai, Shigehisa
2011-01-31
We fabricated a novel lateral-current-injection-type distributed feedback (DFB) laser with amorphous-Si (a-Si) surface grating as a step to realize membrane lasers. This laser consists of a thin GaInAsP core layer grown on a semi-insulating InP substrate and a 30-nm-thick a-Si surface layer for DFB grating. Under a room-temperature continuous-wave condition, a low threshold current of 7.0 mA and high efficiency of 43% from the front facet were obtained for a 2.0-μm stripe width and 300-μm cavity length. A small-signal modulation bandwidth of 4.8 GHz was obtained at a bias current of 30 mA.
Do gravity waves significantly impact PSC occurrence in the Antarctic?
NASA Astrophysics Data System (ADS)
McDonald, A. J.; George, S. E.; Woollands, R. M.
2009-02-01
This study uses a combination of POAM III aerosol extinction measurements and CHAMP GPS/RO temperature measurements to examine the role of atmospheric gravity waves in Polar Stratospheric Cloud (PSC) formation in the Antarctic. POAM III aerosol extinction observations are used to identify Type I Polar Stratospheric Clouds using an unsupervised clustering algorithm. The seasonal and spatial distribution of PSCs observed by POAM III is examined to determine whether there is a bias towards regions of high wave activity early in the Antarctic winter which may enhance PSC formation. Examination of the probability of temperatures below the Type Ia formation temperature threshold based on UKMO analyses displays a good correspondence to the PSC occurrence derived from POAM III extinction data in general. However, in June the POAM III observations of PSC are more abundant than expected from temperature thresholds. In addition the PSC occurrence based on temperature thresholds in September and October is often significantly higher than the PSC occurrence observed by POAM III, this observation probably being due to dehydration and denitrification. Use of high resolution temperatures from CHAMP GPS/RO observations provide a slightly improved relationship to the POAM III derived values. Analysis of the CHAMP temperature observations indicates that temperature perturbations associated with gravity waves may explain the enhanced PSC incidence observed in June compared to the UKMO analyses. Comparison of the UKMO analyses temperatures relative to corresponding CHAMP observations also suggests a small warm bias in the UKMO analyses during June. Examination of the longitudinal structure PSC occurrence in June 2005 also shows that regions of enhancement are associated with data near the Antarctic peninsula a known Mountain wave "hotspot". The impact of temperature perturbations causing enhanced temperature threshold crossings is shown to be particularly important early in the Antarctic winter while later in the season temperature perturbations associated with gravity waves could contribute to about 15% of the PSC observed, a value which corresponds well to several previous studies.
[Male infertility. Current life style could be responsible for infertility].
Jung, A; Schill, W B
2000-09-14
Optimal spermatogenesis requires the testicles to be at a lower temperature than the body core. This is achieved by the following factors:--Blood in the testicular artery is precooled by the surrounding veins of the plexus pampiniformis; nevertheless, high fever results in substantial warming of the testicles;--Heat loss via the scrotal skin, with tight-fitting, thermally insulating clothing or obesity having an unfavorable effect;--increased circulation of air around the genitals on physical activity;--High temperature gradient to the environment when ambient temperatures are low. If the combination of these factors is unfavorable, disturbed spermatogenesis and fertility may result, which, however, is usually reversible. Likewise, electromagnetic waves may impair spermatogenesis by heat induction in the testicles, but only when exposure is excessive.
Evaluation of single crystal LaB6 cathodes for use in a high frequency backward wave oscillator tube
NASA Technical Reports Server (NTRS)
Swanson, L. W.; Davis, P. R.; Schwind, G. A.
1984-01-01
The results of thermionic emission and evaporation studies of single crystal LaB6 cathodes are given. A comparison between the (100), (210) and (310) crystal planes shows the (310) and (210) planes to possess a work function approx 0.2 eV lower than (100). This translates into a significant increase in current density, J, at a specified temperature. Comparison with a state-of-the-art impregnated dispenser cathode shows that LaB6 (310) is a superior cathode in nearly all respects except operating temperature at j 10 A/sq cm. The 1600 K thermionic and room temperature retarding potential work functions for LaB6 (310) are 2.42 and 2.50 respectively.
Reda, Ibrahim
2013-10-29
Implementations of the present disclosure involve an apparatus and method to measure the long-wave irradiance of the atmosphere or long-wave source. The apparatus may involve a thermopile, a concentrator and temperature controller. The incoming long-wave irradiance may be reflected from the concentrator to a thermopile receiver located at the bottom of the concentrator to receive the reflected long-wave irradiance. In addition, the thermopile may be thermally connected to a temperature controller to control the device temperature. Through use of the apparatus, the long-wave irradiance of the atmosphere may be calculated from several measurements provided by the apparatus. In addition, the apparatus may provide an international standard of pyrgeometers' calibration that is traceable back to the International System of Units (SI) rather than to a blackbody atmospheric simulator.
Characteristics of inertial currents observed in offshore wave records
NASA Astrophysics Data System (ADS)
Gemmrich, J.; Garrett, C.
2012-04-01
It is well known that ambient currents can change the amplitude, direction and frequency of ocean surface waves. Regions with persistent strong currents, such as the Agulhas current off the east coast of South Africa, are known as areas of extreme waves, and wave height modulations of up to 50% observed in the shallow North Sea have been linked to tidal currents. In the open ocean, inertial currents, while intermittent, are typically the most energetic currents with speeds up to 0.5 m/s, and can interact with the surface wave field to create wave modulation, though this has not previously been reported. We use long records of significant wave heights from buoy observations in the northeast Pacific and show evidence of significant modulation at frequencies that are slightly higher than the local inertial frequency. Quite apart from the relevance to surface waves, this result can provide a consistent and independent measurement, over a wide range of latitudes, of the frequency blue-shift, the strength and intermittency of ocean surface inertial currents. Near-inertial waves constitute the most energetic portion of the internal wave band and play a significant role in deep ocean mixing. So far, observational data on near-surface inertial currents has tended to come from short records that do not permit the reliable determination of the frequency blue-shift, though this is an important factor affecting the energy flux from the surface into deeper waters. Long records from routine wave height observations are widely available and could help to shed new light globally on the blue-shift and on the characteristics of inertial currents.
NASA Astrophysics Data System (ADS)
Maxworth, A. S.; Golkowski, M.; Malaspina, D.; Jaynes, A. N.
2017-12-01
Whistler mode waves play a dominant role in the energy dynamics of the Earth's magnetosphere. Trajectory of whistler mode waves can be predicted by raytracing. Raytracing is a numerical method which solves the Haselgrove's equations at each time step taking the background plasma parameters in to account. The majority of previous raytracing work was conducted assuming a cold (0 K) background magnetospheric plasma. Here we perform raytracing in a finite temperature plasma with background electron and ion temperatures of a few eV. When encountered with a high energy (>10 keV) electron distribution, whistler mode waves can undergo a power attenuation and/or growth, depending on resonance conditions which are a function of wave frequency, wave normal angle and particle energy. In this work we present the wave power attenuation and growth analysis of whistler mode waves, during the interaction with a high energy electron distribution. We have numerically modelled the high energy electron distribution as an isotropic velocity distribution, as well as an anisotropic bi-Maxwellian distribution. Both cases were analyzed with and without the temperature effects for the background magnetospheric plasma. Finally we compare our results with the whistler mode energy distribution obtained by the EMFISIS instrument hosted at the Van Allen Probe spacecraft.
Evidence of thermal conduction depression in hot coronal loops
NASA Astrophysics Data System (ADS)
Wang, Tongjiang; Ofman, Leon; Sun, Xudong; Provornikova, Elena; Davila, Joseph
2015-08-01
Slow magnetoacoustic waves were first detected in hot (>6 MK) flare loops by the SOHO/SUMER spectrometer as Doppler shift oscillations in Fe XIX and Fe XXI lines. These oscillations are identified as standing slow-mode waves because the estimated phase speeds are close to the sound speed in the loop and some cases show a quarter period phase shift between velocity and intensity oscillations. The observed very rapid excitation and damping of standing slow mode waves have been studied by many authors using theories and numerical simulations, however, the exact mechanisms remain not well understood. Recently, flare-induced longitudinal intensity oscillations in hot post-flare loops have been detected by SDO/AIA. These oscillations have the similar physical properties as SUMER loop oscillations, and have been interpreted as the slow-mode waves. The multi-wavelength AIA observations with high spatio-temporal resolution and wide temperature coverage allow us to explore the wave excitation and damping mechanisms with an unprecedented detail to develope new coronal seismology. In this paper, we present accurate measurements of the effective adiabatic index (γeff) in the hot plasma from the electron temperature and density wave signals of a flare-induced longitudinal wave event using SDO/AIA data. Our results strikingly and clearly reveal that thermal conduction is highly depressed in hot (˜10 MK) post-flare loops and suggest that the compressive viscosity is the dominant wave damping mechanism which allows determination of the viscosity coefficient from the observables by coronal seismology. This new finding challenges our current understanding of thermal energy transport in solar and stellar flares, and may provide an alternative explanation of long-duration events and enhance our understand of coronal heating mechanism. We will discuss our results based on non-ideal MHD theory and simulations. We will also discuss the flare trigger mechanism based on magnetic topology derived from SDO/HMI vector magnetic fields using nonlinear force-free field extrapolations and discuss the wave excitation mechanism based on 3D MHD modeling of the active region.
Monitoring of thermal therapy based on shear modulus changes: I. shear wave thermometry.
Arnal, Bastien; Pernot, Mathieu; Tanter, Mickael
2011-02-01
The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is today hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to the 2-D mapping of temperature changes during HIFU treatments. This new concept of shear wave thermometry is experimentally implemented here using conventional ultrasonic imaging probes. HIFU treatment and monitoring were, respectively, performed using a confocal setup consisting of a 2.5-MHz single-element transducer focused at 30 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Thermocouple measurements and ultrasound-based thermometry were used as a gold standard technique and were combined with SWI on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created using 100-μs pushing beams at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Elasticity and temperature mapping was achieved every 3 s, leading to realtime monitoring of the treatment. Tissue stiffness was found to decrease in the focal zone for temperatures up to 43°C. Ultrasound-based temperature estimation was highly correlated to stiffness variation maps (r² = 0.91 to 0.97). A reversible calibration phase of the changes of elasticity with temperature can be made locally using sighting shots. This calibration process allows for the derivation of temperature maps from shear wave imaging. Compared with conventional ultrasound-based approaches, shear wave thermometry is found to be much more robust to motion artifacts.
Minority carrier lifetimes in very long-wave infrared InAs/GaInSb superlattices
Olson, Benjamin Varberg; Haugan, Heather J.; Brown, Gail J.; ...
2016-01-01
Here, significantly improved carrier lifetimes in very-long wave infrared InAs/GaInSb superlattice(SL) absorbers are demonstrated by using time-resolved microwave reflectance (TMR) measurements. A nominal 47.0 Å InAs/21.5 Å Ga 0.75In 0.25Sb SLstructure that produces an approximately 25 μm response at 10 K has a minority carrier lifetime of 140 ± 20 ns at 18 K, which is markedly long for SL absorber with such a narrow bandgap. This improvement is attributed to the strain-engineered ternary design. Such SL employs a shorter period with reduced gallium in order to achieve good optical absorption and epitaxial advantages, which ultimately leads to the improvementsmore » in the minority carrier lifetime by reducing Shockley–Read–Hall (SRH) defects. By analyzing the temperature-dependence of TMR decay data, the recombination mechanisms and trap states that currently limit the performance of this SL absorber have been identified. The results show a general decrease in the long-decay lifetime component, which is dominated by the SRH recombination at temperature below ~30 K, and by Auger recombination at temperatures above ~45 K.« less
Kupčić, I; Rukelj, Z; Barišić, S
2014-05-14
The current-dipole Kubo formula for the dynamical conductivity of interacting multiband electronic systems derived in Kupčić et al (2013 J. Phys.: Condens. Matter 25 145602) is illustrated on the Peierls model for quasi-one-dimensional systems with the charge-density-wave (CDW) instability. Using the microscopic representation of the Peierls model, it is shown in which way the scattering of conduction electrons by CDW fluctuations affects the dynamical conductivity at temperatures above and well below the CDW transition temperature. The generalized Drude formula for the intraband conductivity is derived in the ordered CDW state well below the transition temperature. The natural extension of this formula to the case where the intraband memory function is dependent on frequency and wave vectors is also presented. It is shown that the main adventage of such a memory-function conductivity model is that it can be easily extended to study the dynamical conductivity and the electronic Raman scattering in more complicated multiband electronic systems in a way consistent with the law of conservation of energy. The incoherent interband conductivity in the CDW pseudogap state is briefly discussed as well.
Acoustic waves in the solar atmosphere. VII - Non-grey, non-LTE H(-) models
NASA Technical Reports Server (NTRS)
Schmitz, F.; Ulmschneider, P.; Kalkofen, W.
1985-01-01
The propagation and shock formation of radiatively damped acoustic waves in the solar chromosphere are studied under the assumption that H(-) is the only absorber; the opacity is non-grey. Deviations from local thermodynamic equilibrium (LTE) are permitted. The results of numerical simulations show the depth dependence of the heating by the acoustic waves to be insensitive to the mean state of the atmosphere. After the waves have developed into shocks, their energy flux decays exponentially with a constant damping length of about 1.4 times the pressure scale height, independent of initial flux and wave period. Departures from LTE have a strong influence on the mean temperature structure in dynamical chromosphere models; this is even more pronounced in models with reduced particle density - simulating conditions in magnetic flux tubes - which show significantly increased temperatures in response to mechanical heating. When the energy dissipation of the waves is sufficiently large to dissociate most of the H(-) ions, a strong temperature rise is found that is reminiscent of the temperature structure in the transition zone between chromosphere and corona; the energy flux remaining in the waves then drives mass motions.
Distributed temperature sensors development using an stepped-helical ultrasonic waveguide
NASA Astrophysics Data System (ADS)
Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan
2018-04-01
This paper presents the design and development of the distributed ultrasonic waveguide temperature sensors using some stepped-helical structures. Distributed sensing has several applications in various industries (oil, glass, steel) for measurement of physical parameters such as level, temperature, viscosity, etc. This waveguide incorporates a special notch or bend for obtaining ultrasonic wave reflections from the desired locations (Gage-lengths) where local measurements are desired. In this paper, a multi-location measurement wave-guide, with a measurement capability of 18 locations in a single wire, has been fabricated. The distribution of these sensors is both in the axial as well as radial directions using a stepped-helical spring configuration. Also, different high temperature materials have been chosen for the wave-guide. Both lower order axi-symmetric guided ultrasonic modes (L(0,1) and T(0,1)) were employed. These wave modes were generated/received (pulse-echo approach) using conventional longitudinal and shear transducers, respectively. Also, both the wave modes were simultaneously generated/received and compared using shear transducer for developing the distributed helical wave-guide sensors. The effect of dispersion of the wave modes due to curvature effects will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Hanbaly, A. M.; Sallah, M., E-mail: msallahd@mans.edu.eg; El-Shewy, E. K.
2015-10-15
Linear and nonlinear dust-acoustic (DA) waves are studied in a collisionless, unmagnetized and dissipative dusty plasma consisting of negatively charged dust grains, Boltzmann-distributed electrons, and nonthermal ions. The normal mode analysis is used to obtain a linear dispersion relation illustrating the dependence of the wave damping rate on the carrier wave number, the dust viscosity coefficient, the ratio of the ion temperature to the electron temperatures, and the nonthermal parameter. The plasma system is analyzed nonlinearly via the reductive perturbation method that gives the KdV-Burgers equation. Some interesting physical solutions are obtained to study the nonlinear waves. These solutions aremore » related to soliton, a combination between a shock and a soliton, and monotonic and oscillatory shock waves. Their behaviors are illustrated and shown graphically. The characteristics of the DA solitary and shock waves are significantly modified by the presence of nonthermal (fast) ions, the ratio of the ion temperature to the electron temperature, and the dust kinematic viscosity. The topology of the phase portrait and the potential diagram of the KdV-Burgers equation is illustrated, whose advantage is the ability to predict different classes of traveling wave solutions according to different phase orbits. The energy of the soliton wave and the electric field are calculated. The results in this paper can be generalized to analyze the nature of plasma waves in both space and laboratory plasma systems.« less
Approximation of wave action flux velocity in strongly sheared mean flows
NASA Astrophysics Data System (ADS)
Banihashemi, Saeideh; Kirby, James T.; Dong, Zhifei
2017-08-01
Spectral wave models based on the wave action equation typically use a theoretical framework based on depth uniform current to account for current effects on waves. In the real world, however, currents often have variations over depth. Several recent studies have made use of a depth-weighted current U˜ due to [Skop, R. A., 1987. Approximate dispersion relation for wave-current interactions. J. Waterway, Port, Coastal, and Ocean Eng. 113, 187-195.] or [Kirby, J. T., Chen, T., 1989. Surface waves on vertically sheared flows: approximate dispersion relations. J. Geophys. Res. 94, 1013-1027.] in order to account for the effect of vertical current shear. Use of the depth-weighted velocity, which is a function of wavenumber (or frequency and direction) has been further simplified in recent applications by only utilizing a weighted current based on the spectral peak wavenumber. These applications do not typically take into account the dependence of U˜ on wave number k, as well as erroneously identifying U˜ as the proper choice for current velocity in the wave action equation. Here, we derive a corrected expression for the current component of the group velocity. We demonstrate its consistency using analytic results for a current with constant vorticity, and numerical results for a measured, strongly-sheared current profile obtained in the Columbia River. The effect of choosing a single value for current velocity based on the peak wave frequency is examined, and we suggest an alternate strategy, involving a Taylor series expansion about the peak frequency, which should significantly extend the range of accuracy of current estimates available to the wave model with minimal additional programming and data transfer.
An instrument system for long-term sediment transport studies on the continental shelf
Butman, Bradford; Folger, David W.
1979-01-01
A bottom-mounted instrument system has been designed and built to monitor processes of bottom sediment movement on the continental shelf. The system measures bottom current speed and direction, pressure, temperature, and light transmission and photographs the bottom. The system can be deployed for periods of 2–6 months to monitor intermitent processes of sediment movement such as storms and to assess seasonal variability. Deployments of the system on the U.S. east coast continental shelf show sediment resuspension and changes in bottom microtopography due to surface waves, tidal currents, and storms.
Magnon-mediated current drag across a magnetic insulator
NASA Astrophysics Data System (ADS)
Shi, Jing
Electric current transmission can occur in a magnetic insulator via spin current inter-conversions at heavy metal/magnetic insulator interfaces. In magnetic insulators, spin current is carried by spin wave excitations or their quanta, magnons. This marvelous phenomenon was first theoretically predicted and dubbed as the magnon-mediated current drag in 2012 by Zhang et al.. Following a breakthrough in materials growth, i.e. yttrium iron garnet films or YIG ranging from 30 to 80 nm in thickness sandwiched between two heavy metal films, we successfully showed the nonlocal DC current transmission in such sandwich structures via spin current rather than charge current. To exclude the leakage effect, the experiments are conducted at temperatures below 250 K where the resistance between the metal layers exceeds 20 Gohms. In addition, by replacing the top Pt electrode with beta-Ta which is known to reverse the sign in the spin Hall angle, we found that the nonlocal signal reverses the polarity, which is a direct demonstration of the spin current nature. Furthermore, the temperature dependence of the nonlocal signal confirms the role of magnons in this effect. The work was supported as part of the SHINES, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award No. SC0012670.
NASA Technical Reports Server (NTRS)
Grotjahn, Richard; Black, Robert; Leung, Ruby; Wehner, Michael F.; Barlow, Mathew; Bosilovich, Michael G.; Gershunov, Alexander; Gutowski, William J., Jr.; Gyakum, John R.; Katz, Richard W.;
2015-01-01
The objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and landatmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions.
NASA Astrophysics Data System (ADS)
Villas Boas, A. B.; Gille, S. T.; Mazloff, M. R.
2016-02-01
Surface gravity waves play a crucial role in upper-ocean dynamics, and they are an important mechanism by which the ocean exchanges energy with the overlying atmosphere. Surface waves are largely wind forced and can also be modulated by ocean currents via nonlinear wave-current interactions, leading to either an amplification or attenuation of the wave amplitude. Even though individual waves cannot be detected by present satellite altimeters, surface waves have the potential to produce a sea-state bias in altimeter measurements and can impact the sea-surface-height spectrum at high wavenumbers or frequencies. Knowing the wave climatology is relevant for the success of future altimeter missions, such as the Surface Water and Ocean Topography (SWOT). We analyse the seasonal, intra-annual and interannual variability of significant wave heights retrieved from over two decades of satellite altimeter data and assess the extent to which the variability of the surface wave field in the California Current region is modulated by the local wind and current fields.
Current-drive by lower hybrid waves in the presence of energetic alpha-particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisch, N.J.; Rax, J.M.
1991-10-01
Many experiments have now proved the effectiveness of lower hybrid waves for driving toroidal current in tokamaks. The use of these waves, however, to provide all the current in a reactor is thought to be uncertain because the waves may not penetrate the center of the more energetic reactor plasma, and, if they did, the wave power may be absorbed by alpha particles rather than by electrons. This paper explores the conditions under which lower-hybrid waves might actually drive all the current. 26 refs.
Dense Gravity Currents with Breaking Internal Waves
NASA Astrophysics Data System (ADS)
Tanimoto, Yukinobu; Hogg, Charlie; Ouellette, Nicholas; Koseff, Jeffrey
2017-11-01
Shoaling and breaking internal waves along a pycnocline may lead to mixing and dilution of dense gravity currents, such as cold river inflows into lakes or brine effluent from desalination plants in near-coastal environments. In order to explore the interaction between gravity currents and breaking interfacial waves a series of laboratory experiments was performed in which a sequence of internal waves impinge upon a shelf-slope gravity current. The waves are generated in a two-layer thin-interface ambient water column under a variety of conditions characterizing both the waves and the gravity currents. The mixing of the gravity current is measured through both intrusive (CTD probe) and nonintrusive (Planar-laser inducted fluorescence) techniques. We will present results over a full range of Froude number (characterizing the waves) and Richardson number (characterizing the gravity current) conditions, and will discuss the mechanisms by which the gravity current is mixed into the ambient environment including the role of turbulence in the process. National Science Foundation.
Sensitivity of Rogue Waves Predictions to the Oceanic Stratification
NASA Astrophysics Data System (ADS)
Guo, Qiuchen; Alam, Mohammad-Reza
2014-11-01
Oceanic rogue waves are short-lived very large amplitude waves (a giant crest typically followed or preceded by a deep trough) that appear and disappear suddenly in the ocean causing damages to ships and offshore structures. Assuming that the state of the ocean at the present time is perfectly known, then the upcoming rogue waves can be predicted via numerically solving the equations that govern the evolution of the waves. The state of the art radar technology can now provide accurate wave height measurement over large spatial domains and when combined with advanced wave-field reconstruction techniques together render deterministic details of the current state of the ocean (i.e. surface elevation and velocity field) at any given moment of the time with a very high accuracy. The ocean water density is, however, stratified (mainly due to the salinity and temperature differences). This density stratification, with today's technology, is very difficult to be measured accurately. As a result in most predictive schemes these density variations are neglected. While the overall effect of the stratification on the average state of the ocean may not be significant, here we show that these density variations can strongly affect the prediction of oceanic rogue waves. Specifically, we consider a broadband oceanic spectrum in a two-layer density stratified fluid, and study via extensive statistical analysis the effects of strength of the stratification (difference between densities) and the depth of the thermocline on the prediction of upcoming rogue waves.
NASA Technical Reports Server (NTRS)
Schafer, Julia; Lyons, Wendy; Tong, WIlliam G.; Danehy, Paul M.
2008-01-01
Laser wave mixing is presented as an effective technique for spatially resolved kinetic temperature measurements in an atmospheric-pressure radio-frequency inductively-coupled plasma. Measurements are performed in a 1 kW, 27 MHz RF plasma using a continuous-wave, tunable 811.5-nm diode laser to excite the 4s(sup 3)P2 approaches 4p(sup 3)D3 argon transition. Kinetic temperature measurements are made at five radial steps from the center of the torch and at four different torch heights. The kinetic temperature is determined by measuring simultaneously the line shape of the sub-Doppler backward phase-conjugate degenerate four-wave mixing and the Doppler-broadened forward-scattering degenerate four-wave mixing. The temperature measurements result in a range of 3,500 to 14,000 K+/-150 K. Electron densities measured range from 6.1 (+/-0.3) x 10(exp 15)/cu cm to 10.1 (+/-0.3) x 10(exp 15)/cu cm. The experimental spectra are analyzed using a perturbative treatment of the backward phase-conjugate and forward-geometry wave-mixing theory. Stark width is determined from the collisional broadening measured in the phase-conjugate geometry. Electron density measurements are made based on the Stark width. The kinetic temperature of the plasma was found to be more than halved by adding deionized water through the nebulizer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikin, S. A., E-mail: pikin@ns.crys.ras.ru
2016-05-15
It is shown that the electric polarization and wave number of incommensurate modulations, proportional to each other, increase according to the Landau law in spin multiferroic cycloids near the Néel temperature. In this case, the constant magnetization component (including the one for a conical spiral) is oriented perpendicular to the spin incommensurability wave vector. A similar temperature behavior should manifest itself for spin helicoids, the axes of which are oriented parallel to the polarization vector but their spin rotation planes are oriented perpendicular to the antiferromagnetic order plane. When the directions of axes of the magnetization helicoid and polarization vectormore » coincide, the latter is quadratic with respect to magnetization and linearly depends on temperature, whereas the incommensurate-modulation wave number barely depends on temperature. Structural distortions of unit cells for multiferroics of different types determine their axial behavior.« less
The Formation and Early Evolution of a CME and the Associated Shock on 2014 January 8
NASA Astrophysics Data System (ADS)
Wan, Linfeng; Cheng, Xin; Shi, Tong; Su, Wei; Ding, Mingde
2017-08-01
We study the formation and early evolution of a limb coronal mass ejection (CME) and its associated shock wave that occurred on 2014 January 8. The extreme ultraviolet (EUV) images provided by AIA on board \\textit{Solar Dynamics Observatory} disclose that the CME first appears as a bubble-like structure. Subsequently, its expansion forms the CME and causes a quasi-circular EUV wave. Both the CME and the wave front are clearly visible at all of the AIA EUV passbands. Through a detailed kinematical analysis, it is found that the expansion of the CME undergoes two phases: a first phase with a strong but transient lateral over-expansion followed by a second phase with a self-similar expansion. The temporal evolution of the expansion velocity coincides very well with the variation of the 25--50 keV hard X-ray (HXR) flux of the associated flare, which indicates that magnetic reconnection most likely plays an important role in driving the expansion. Moreover, we find that, when the velocity of the CME reaches $\\sim$600 km s$^{-1}$, the EUV wave starts to evolve into a shock wave, which is evidenced by the appearance of a type II radio burst. Interestingly, we also notice an unusual solar radio signal at $\\sim$4 GHz that is similar to the pattern of a type II radio burst but drifts to higher frequencies at a rate of $\\sim$0.3 MHz per second during about 7 minutes. Its derived density is $\\sim$5$\\times$10$^{10}$ cm$^{-3}$ and increases slowly with time. Joint imaging observations of HXR and EUV help to locate the loop-top region and calculate its thermal proprieties, including slowly increasing densities ($\\sim$5$\\times$10$^{10}$ cm$^{-3}$) and temperatures ($\\sim$14 MK). The similar results obtained from two different ways above imply the possibility of this scenario: plasma blobs that are ejected along the current sheet via magnetic reconnection collide with underlying flare loops that are undergoing chromospheric evaporation. Finally, we also study the thermal properties of the CME and the EUV wave. We find that the plasma in the CME leading front and the wave front has a temperature of $\\sim$2 MK, while that in the CME core region and the flare region has a much higher temperature of $\\ge$8 MK.
Review of Claims of Interaction Between Gravitation and High-Temperature Superconductors
NASA Astrophysics Data System (ADS)
Woods, R. Clive
2004-02-01
Recent reports have claimed that high-temperature superconductors can interact with gravitation under certain non-relativistic conditions. Only two such reports have been peer-reviewed: the first, describing changes in the weight of test masses, was by Podkletnov and Nieminen (1992) the other, reporting large-amplitude gravitational wave generation in a laboratory, was by Podkletnov and Modanese (2003). Common to these reports is the claim that the observed gravitational field may be modified using YBa2Cu3O7-δ (YBCO) below its superconducting critical temperature, Tc ~ 93K, and in a magnetic field B ~ 1T. Temperatures below 70K gave the largest effects. The first experiment used magnetically levitated YBCO rotated at ~5000 rpm; the second experiment did not spin or levitate the YBCO, but used a 2MV electrical discharge in a vacuum chamber. Several attempts have been made world-wide to replicate the first of these experiments, although no peer-reviewed reports have yet confirmed the observations. No known replications of the second experiment have been completed so far. A number of papers have presented theoretical models for the effects. This paper reviews the current experimental and theoretical scientific evidence regarding these experiments, together with further tests implied by the published explanations. The discussion includes a classical suggestion (due to Landau and Lifshitz) that gravitational waves can modify gravitational fields, Aquino's theory based upon electromagnetic fields, and Desbrandes's calculation to explain the Podkletnov and Nieminen results on the basis of gravity waves emitted from the Cooper pairs inside a superconductor. The conclusions are that these experiments are extremely difficult to replicate and that no complete replication confirming the effects has yet taken place. By contrast, no-one has conclusively disproved the existence of the effects.
Survey of Temperature Measurement Techniques For Studying Underwater Shock Waves
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Alderfer, David W.
2004-01-01
Several optical methods for measuring temperature near underwater shock waves are reviewed and compared. The relative merits of the different techniques are compared, considering accuracy, precision, ease of use, applicable temperature range, maturity, spatial resolution, and whether or not special additives are required.
Dynamics of Intense Currents in the Solar Wind
NASA Astrophysics Data System (ADS)
Artemyev, Anton V.; Angelopoulos, Vassilis; Halekas, Jasper S.; Vinogradov, Alexander A.; Vasko, Ivan Y.; Zelenyi, Lev M.
2018-06-01
Transient currents in the solar wind are carried by various magnetic field discontinuities that contribute significantly to the magnetic field fluctuation spectrum. Internal instabilities and dynamics of these discontinuities are believed to be responsible for magnetic field energy dissipation and corresponding charged particle acceleration and heating. Accurate modeling of these phenomena requires detailed investigation of transient current formation and evolution. By examining such evolution using a unique data set compiled from observations of the same solar wind flow by two spacecraft at Earth’s and Mars’s orbits, we show that it consists of several processes: discontinuity thinning (decrease in thickness normalized by the ion inertial length), intensification of currents normalized to the proton thermal current (i.e., the product of proton charge, density, and thermal velocity), and increase in the compressional component of magnetic field variations across discontinuities. The significant proton temperature variation around most observed discontinuities indicates possible proton heating. Plasma velocity jumps across the discontinuities are well correlated with Alfvén velocity changes. We discuss possible explanations of the observed discontinuity evolution. We also compare the observed evolution with predictions of models describing discontinuity formation due to Alfvén wave steepening. Our results show that discontinuity modeling likely requires taking into account both the effects of nonlinear Alfvén wave dynamics and solar wind expansion.
Effect of double layers on magnetosphere-ionosphere coupling
NASA Technical Reports Server (NTRS)
Lysak, Robert L.; Hudson, Mary K.
1987-01-01
The dynamic aspects of auroral current structures are reviewed with emphasis on consequences for models of microscopic turbulence (MT). A number of models of MT are introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. The effect of a double layer (DL) electric field which scales with the plasma temperature and the Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is shown that the DL model is less diffusive than the resistive model, indicating the possibility of narrow intense current structures.
Magnon cotunneling through a quantum dot
NASA Astrophysics Data System (ADS)
Karwacki, Łukasz
2017-11-01
I consider a single-level quantum dot coupled to two reservoirs of spin waves (magnons). Such systems have been studied recently from the point of view of possible coupling between electronic and magnonic spin currents. However, usually weakly coupled systems were investigated. When coupling between the dot and reservoirs is not weak, then higher order processes play a role and have to be included. Here I consider cotunneling of magnons through a spin-occupied quantum dot, which can be understood as a magnon (spin) leakage current in analogy to leakage currents in charge-based electronics. Particular emphasis has been put on investigating the effect of magnetic field and temperature difference between the magnonic reservoirs.
Noncontacting acoustics-based temperature measurement techniques in rapid thermal processing
NASA Astrophysics Data System (ADS)
Lee, Yong J.; Chou, Ching-Hua; Khuri-Yakub, Butrus T.; Saraswat, Krishna C.
1991-04-01
Temperature measurement of silicon wafers based on the temperature dependence of acoustic waves is studied. The change in the temperature-dependent dispersion relations of the plate modes through the wafer can be exploited to provide a viable temperature monitoring scheme with advantages over both thermocouples and pyrometers. Velocity measurements of acoustic waves through a thin layer of ambient directly above the wafer provides the temperature of the wafer-ambient interface. 1.
NASA Technical Reports Server (NTRS)
Huang, N. E.; Flood, W. A.; Brown, G. S.
1975-01-01
The feasibility of remote sensing of current flows in the ocean and the remote sensing of ocean currents by backscattering cross section techniques was studied. It was established that for capillary waves, small scale currents could be accurately measured through observation of wave kinematics. Drastic modifications of waves by changing currents were noted. The development of new methods for the measurement of capillary waves are discussed. Improvement methods to resolve data processing problems are suggested.
The effects of temperature and magnetic flux on electron transport through a four-channel DNA model
NASA Astrophysics Data System (ADS)
Lee, Sunhee; Hedin, Eric; Joe, Yong
2010-03-01
The temperature dependence of the conductivity of lambda phage DNA has been measured by Tran et al [1] experimentally, where the conductivity displayed strong (weak) temperature dependence above (below) a threshold temperature. In order to understand the temperature effects of electron transport theoretically, we study a two-dimensional and four-channel DNA model using a tight-binding (TB) Hamiltonian. The thermal effects within a TB model are incorporated into the hopping integral and the relative twist angle from its equilibrium value between base-pairs. Since these thermal structural fluctuations localize the electronic wave functions in DNA, we examine a temperature-dependent localization length, a temperature-driven transmission, and current-voltage characteristics in this system. In addition, we incorporate magnetic field effects into the analysis of the transmission through DNA in order to modulate the quantum interference between the electron paths that comprise the 4-channel structure. [1] P. Tran, B. Alavi, and G. Gruner, PRL 85, 1564 (2000).
Storlazzi, C.D.; McManus, M.A.; Logan, J.B.; McLaughlin, B.E.
2006-01-01
A multi-day hydrographic survey cruise was conducted to acquire spatially extensive, but temporally limited, high-resolution, three-dimensional measurements of currents, temperature, salinity and turbidity off West Maui in the summer of 2003 to better understand coastal dynamics along a complex island shoreline with coral reefs. These data complement long-term, high-resolution tide, wave, current, temperature, salinity and turbidity measurements made at a number of fixed locations in the study area starting in 2001. Analyses of these hydrographic data, in conjunction with numerous field observations, evoke the following conceptual model of water and turbidity flux along West Maui. Wave- and wind-driven flows appear to be the primary control on flow over shallower portions of the reefs while tidal and subtidal currents dominate flow over the outer portions of the reefs and insular shelf. When the direction of these flows counter one another, which is quite common, they cause a zone of cross-shore horizontal shear and often form a front, with turbid, lower-salinity water inshore of the front and clear, higher-salinity water offshore of the front. It is not clear whether these zones of high shear and fronts are the cause or the result of the location of the fore reef, but they appear to be correlated alongshore over relatively large horizontal distances (orders of kilometers). When two flows converge or when a single flow is bathymetrically steered, eddies can be generated that, in the absence of large ocean surface waves, tend to accumulate material. Areas of higher turbidity and lower salinity tend to correlate with regions of poor coral health or the absence of well-developed reefs, suggesting that the oceanographic processes that concentrate and/or transport nutrients, contaminants, low-salinity water or suspended sediment might strongly influence coral reef ecosystem health and sustainability.
Forecasting European cold waves based on subsampling strategies of CMIP5 and Euro-CORDEX ensembles
NASA Astrophysics Data System (ADS)
Cordero-Llana, Laura; Braconnot, Pascale; Vautard, Robert; Vrac, Mathieu; Jezequel, Aglae
2016-04-01
Forecasting future extreme events under the present changing climate represents a difficult task. Currently there are a large number of ensembles of simulations for climate projections that take in account different models and scenarios. However, there is a need for reducing the size of the ensemble to make the interpretation of these simulations more manageable for impact studies or climate risk assessment. This can be achieved by developing subsampling strategies to identify a limited number of simulations that best represent the ensemble. In this study, cold waves are chosen to test different approaches for subsampling available simulations. The definition of cold waves depends on the criteria used, but they are generally defined using a minimum temperature threshold, the duration of the cold spell as well as their geographical extend. These climate indicators are not universal, highlighting the difficulty of directly comparing different studies. As part of the of the CLIPC European project, we use daily surface temperature data obtained from CMIP5 outputs as well as Euro-CORDEX simulations to predict future cold waves events in Europe. From these simulations a clustering method is applied to minimise the number of ensembles required. Furthermore, we analyse the different uncertainties that arise from the different model characteristics and definitions of climate indicators. Finally, we will test if the same subsampling strategy can be used for different climate indicators. This will facilitate the use of the subsampling results for a wide number of impact assessment studies.
Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations
NASA Astrophysics Data System (ADS)
Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan
2018-01-01
We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.
Zhang, Jinzhong; Zhou, Luqun; Ouyang, Qi
2007-02-15
We report the temperature effect on the propagation of excitable traveling waves in a quasi-two-dimensional Belousov-Zhabotinsky reaction-diffusion system. The onset of excitable waves as a function of the sulfuric acid concentration and temperature is identified, on which the sulfuric acid concentration exhibits an Arrhenius dependence on temperature. On the basis of this experimental data, the activation energy of the self-catalyzed reaction in the Oregonator model is estimated to be 83-113 kJ/mol, which is further supported by our numerical simulations. The estimation proceeds without analyzing detailed reaction steps but rather through observing the global dynamic behaviors in the BZ reaction. For a supplement, the wave propagation velocities are calculated based on our results and compared with the experimental observations.
On the instability and energy flux of lower hybrid waves in the Venus plasma mantle
NASA Technical Reports Server (NTRS)
Strangeway, R. J.; Crawford, G. K.
1993-01-01
Waves generated near the lower hybrid resonance frequency by the modified two stream instability have been invoked as a possible source of energy flux into the topside ionosphere of Venus. These waves are observed above the ionopause in a region known as the plasma mantle. The plasma within the mantle appears to be a mixture of magnetosheath and ionospheric plasmas. Since the magnetosheath electrons and ions have temperatures of several tens of eV, any instability analysis of the modified two stream instability requires the inclusion of finite electron and ion temperatures. Finite temperature effects are likely to reduce the growth rate of the instability. Furthermore, the lower hybrid waves are only quasi-electrostatic, and the energy flux of the waves is mainly carried by parallel Poynting flux. The magnetic field in the mantle is draped over the ionopause. Lower hybrid waves therefore cannot transport any significant wave energy to lower altitudes, and so do not act as a source of additional heat to the topside ionosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
2012-04-03
Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steadymore » deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.« less
Wireless power transmission using ultrasonic guided waves
NASA Astrophysics Data System (ADS)
Kural, A.; Pullin, R.; Featherston, C.; Paget, C.; Holford, K.
2011-07-01
The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.
Control of tropical instability waves in the Pacific
NASA Astrophysics Data System (ADS)
Allen, M. R.; Lawrence, S. P.; Murray, M. J.; Mutlow, C. T.; Stockdale, T. N.; Llewellyn-Jones, D. T.; Anderson, D. L. T.
Westward-propagating waves with periods of 20-30 days and wavelengths of ˜ 1,100km are a prominent feature of sea-surface temperatures (SSTs) in the equatorial Pacific and Atlantic Oceans. They have been attributed to instabilities due to current shear. We compare SST observations from the spaceborne Along Track Scanning Radiometer (ATSR) and TOGA-TAO moored buoys with SSTs from a model of the tropical Pacific forced with observed daily windstress data. The phases of the strongest “Tropical Instability Waves” (TIWs) in the model are in closer correspondence with those observed than we would expect if these waves simply developed from infinitesimal disturbances (in which case their phases would be arbitrary). If we filter out the intraseasonal component of the windstress, all phase-correspondence is lost. We conclude that the phases of these waves are not arbitrary, but partially determined by the intraseasonal winds. The subsurface evolution of the model suggests a possible control mechanism is through interaction with remotely-forced subsurface Kelvin and Rossby waves. This is supported by an experiment which shows how zonal wind bursts in the west Pacific can modify the TIW field, but other mechanisms, such as local feedbacks, are also possible.
Lyne, V.D.; Butman, B.; Grant, W.D.
1990-01-01
Bottom stress is calculated for several long-term time-series observations, made on the U.S. east coast continental shelf during winter, using the wave-current interaction and moveable bed models of Grant and Madsen (1979, Journal of Geophysical Research, 84, 1797-1808; 1982, Journal of Geophysical Research, 87, 469-482). The wave and current measurements were obtained by means of a bottom tripod system which measured current using a Savonius rotor and vane and waves by means of a pressure sensor. The variables were burst sampled about 10% of the time. Wave energy was reasonably resolved, although aliased by wave groupiness, and wave period was accurate to 1-2 s during large storms. Errors in current speed and direction depend on the speed of the mean current relative to the wave current. In general, errors in bottom stress caused by uncertainties in measured current speed and wave characteristics were 10-20%. During storms, the bottom stress calculated using the Grant-Madsen models exceeded stress computed from conventional drag laws by a factor of about 1.5 on average and 3 or more during storm peaks. Thus, even in water as deep as 80 m, oscillatory near-bottom currents associated with surface gravity waves of period 12 s or longer will contribute substantially to bottom stress. Given that the Grant-Madsen model is correct, parameterizations of bottom stress that do not incorporate wave effects will substantially underestimate stress and sediment transport in this region of the continental shelf.
Emergence of charge density waves and a pseudogap in single-layer TiTe2.
Chen, P; Pai, Woei Wu; Chan, Y-H; Takayama, A; Xu, C-Z; Karn, A; Hasegawa, S; Chou, M Y; Mo, S-K; Fedorov, A-V; Chiang, T-C
2017-09-11
Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermi level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.Due to reduced dimensionality, the properties of 2D materials are often different from their 3D counterparts. Here, the authors identify the emergence of a unique charge density wave (CDW) order in monolayer TiTe 2 that challenges the current understanding of CDW formation.
Hearing the signal of dark sectors with gravitational wave detectors
NASA Astrophysics Data System (ADS)
Jaeckel, Joerg; Khoze, Valentin V.; Spannowsky, Michael
2016-11-01
Motivated by advanced LIGO (aLIGO)'s recent discovery of gravitational waves, we discuss signatures of new physics that could be seen at ground- and space-based interferometers. We show that a first-order phase transition in a dark sector would lead to a detectable gravitational wave signal at future experiments, if the phase transition has occurred at temperatures few orders of magnitude higher than the electroweak scale. The source of gravitational waves in this case is associated with the dynamics of expanding and colliding bubbles in the early universe. At the same time we point out that topological defects, such as dark sector domain walls, may generate a detectable signal already at aLIGO. Both bubble and domain-wall scenarios are sourced by semiclassical configurations of a dark new physics sector. In the first case, the gravitational wave signal originates from bubble wall collisions and subsequent turbulence in hot plasma in the early universe, while the second case corresponds to domain walls passing through the interferometer at present and is not related to gravitational waves. We find that aLIGO at its current sensitivity can detect smoking-gun signatures from domain-wall interactions, while future proposed experiments including the fifth phase of aLIGO at design sensitivity can probe dark sector phase transitions.
What Controls the Temperature of the Arctic Stratosphere during the Spring?
NASA Technical Reports Server (NTRS)
Newman, Paul A.; Nash, Eric R.; Rosenfield, Joan E.; Einaudi, Franco (Technical Monitor)
2000-01-01
Understanding the mechanisms that control the temperature of the polar lower stratosphere during spring is key to understanding ozone loss in the Arctic polar vortex. Spring ozone loss rates are directly tied to polar stratospheric temperatures by the formation of polar stratospheric clouds, and the conversion of chlorine species to reactive forms on these cloud particle surfaces. In this paper, we study those factors that control temperatures in the polar lower stratosphere. We use the National Centers for Environmental Prediction (NCEP)/NCAR reanalysis data covering the last two decades to investigate how planetary wave driving of the stratosphere is connected to polar temperatures. In particular, we show that planetary waves forced in the troposphere in mid- to late winter (January-February) are principally responsible for the mean polar temperature during the March period. These planetary waves are forced by both thermal and orographic processes in the troposphere, and propagate into the stratosphere in the mid and high latitudes. Strong mid-winter planetary wave forcing leads to a warmer Arctic lower stratosphere in early spring, while weak mid-winter forcing leads to cooler Arctic temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayne, Patrick; Cooper, Sean; Simons, Dylan
Dalton's and Amagat's laws (also known as the law of partial pressures and the law of partial volumes respectively) are two well-known thermodynamic models describing gas mixtures. We focus our current research on determining the suitability of these models in predicting effects of shock propagation through gas mixtures. Experiments are conducted at the Shock Tube Facility at the University of New Mexico (UNM). The gas mixture used in these experiments consists of approximately 50% sulfur hexafluoride (SF6) and 50% helium (He) by mass. Fast response pressure transducers are used to obtain pressure readings both before and after the shock wave;more » these data are then used to determine the velocity of the shock wave. Temperature readings are obtained using an ultra-fast mercury cadmium telluride (MCT) infrared (IR) detector, with a response time on the order of nanoseconds. Coupled with a stabilized broadband infrared light source (operating at 1500 K), the detector provides pre- and post-shock line-of-sight readings of average temperature within the shock tube, which are used to determine the speed of sound in the gas mixture. Paired with the velocity of the shock wave, this information allows us to determine the Mach number. Our experimental results are compared with theoretical predictions of Dalton's and Amagat's laws to determine which one is more suitable.« less
Weinberger, Andrea H.; Pilver, Corey E.; Desai, Rani A.; Mazure, Carolyn M.; McKee, Sherry A.
2012-01-01
Aims Although depression and smoking are highly correlated, the relationship of Major Depressive Disorder (MDD) to smoking cessation and relapse remains unclear. This study compared changes in smoking for current and former smokers with and without Current and Lifetime MDD over a three year period. Design Analysis of two waves of longitudinal data from the National Institute on Alcohol Abuse and Alcoholism’s National Epidemiologic Survey on Alcohol and Related Conditions (Wave 1, 2001–2002; Wave 2, 2004–2005). Setting Data were collected through face-to-face interviews from non-institutionalized United States civilians, 18 years and older, in 50 states and the District of Columbia. Participants 11,973 adults (46% female) classified as Current or Former Daily Smokers at Wave 1 and completed Wave 2. Measurements Classification as Current or Former Smokers at Wave 1 and Wave 2. Findings Smoking status remained stable for most participants. Wave 1 Current Daily Smokers with Current MDD (OR=1.38, 95% CI=1.03, 1.85) and Lifetime MDD (OR=1.48, 95% CI=1.18, 1.85) were more likely than those without the respective diagnosis to report continued smoking at Wave 2. Wave 1 Former Daily Smokers with Current MDD (OR=0.44, 95% CI=0.26, 0.76) were less likely to report continued abstinence at Wave 2. None of the gender by MDD diagnosis interactions were significant. Patterns of results remained similar when analyses were limited to smokers with nicotine dependence. Conclusions Current and Lifetime Major Depressive Disorder are associated with a lower likelihood of quitting smoking and Current Major Depressive Disorder is associated with greater likelihood of smoking relapse. PMID:22429388
Assessment of the importance of the current-wave coupling in the shelf ocean forecasts
NASA Astrophysics Data System (ADS)
Jordà, G.; Bolaños, R.; Espino, M.; Sánchez-Arcilla, A.
2006-10-01
The effects of wave-current interactions on shelf ocean forecasts is investigated in the framework of the MFSTEP (Mediterranean Forecasting System Project Towards Enviromental Predictions) project. A one way sequential coupling approach is adopted to link the wave model (WAM) to the circulation model (SYMPHONIE). The coupling of waves and currents has been done considering four main processes: wave refraction due to currents, surface wind drag and bo€ttom drag modifications due to waves, and the wave induced mass flux. The coupled modelling system is implemented in the southern Catalan shelf (NW Mediterranean), a region with characteristics similar to most of the Mediterranean shelves. The sensitivity experiments are run in a typical operational configuration. The wave refraction by currents seems to be not very relevant in a microtidal context such as the western Mediterranean. The main effect of waves on current forecasts is through the modification of the wind drag. The Stokes drift also plays a significant role due to its spatial and temporal characteristics. Finally, the enhanced bottom friction is just noticeable in the inner shelf.
High temperature measurement of water vapor absorption
NASA Technical Reports Server (NTRS)
Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard
1985-01-01
An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.
Current-induced modulation of backward spin-waves in metallic microstructures
NASA Astrophysics Data System (ADS)
Sato, Nana; Lee, Seo-Won; Lee, Kyung-Jin; Sekiguchi, Koji
2017-03-01
We performed a propagating spin-wave spectroscopy for backward spin-waves in ferromagnetic metallic microstructures in the presence of electric-current. Even with the smaller current injection of 5× {{10}10} A m-2 into ferromagnetic microwires, the backward spin-waves exhibit a gigantic 200 MHz frequency shift and a 15% amplitude change, showing 60 times larger modulation compared to previous reports. Systematic experiments by measuring dependences on a film thickness of mirowire, on the wave-vector of spin-wave, and on the magnitude of bias field, we revealed that for the backward spin-waves a distribution of internal magnetic field generated by electric-current efficiently modulates the frequency and amplitude of spin-waves. The gigantic frequency and amplitude changes were reproduced by a micromagnetics simulation, predicting that the current-injection of 5× {{10}11} A m-2 allows 3 GHz frequency shift. The effective coupling between electric-current and backward spin-waves has a potential to build up a logic control method which encodes signals into the phase and amplitude of spin-waves. The metallic magnonics cooperating with electronics could suggest highly integrated magnonic circuits both in Boolean and non-Boolean principles.
Acceleration and heating of two-fluid solar wind by Alfven waves
NASA Technical Reports Server (NTRS)
Sandbaek, Ornulf; Leer, Egil
1994-01-01
Earlier model studies of solar wind driven by thermal pressure and Alfven waves have shown that wave amplitudes of 20-30 km/s at the coronal base are sufficient to accelerate the flow to the high speeds observed in quasi-steady streams emanating from large coronal holes. We focus on the energy balance in the proton gas and show that heat conduction from the region where the waves are dissipated may play an important role in determining the proton temperature at the orbit of Earth. In models with 'classical' heat conduction we find a correlation between high flow speed, high proton temperature, and low electron temperature at 1 AU. The effect of wave heating on the development of anisotropies in the solar wind proton gas pressure is also investigated in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Dae Jung; Lee, Dong-Hun; Kim, Kihong
We study theoretically the linear mode conversion between electromagnetic waves and Langmuir waves in warm, stratified, and unmagnetized plasmas, using a numerically precise calculation based on the invariant imbedding method. We verify that the principle of reciprocity for the forward and backward mode conversion coefficients holds precisely regardless of temperature. We also find that the temperature dependence of the mode conversion coefficient is substantially stronger than that previously reported. Depending on the wave frequency and the incident angle, the mode conversion coefficient is found to increase or decrease with the increase of temperature.
Contactless ultrasonic device to measure surface acoustic wave velocities versus temperature.
Hubert, C; Nadal, M H; Ravel-Chapuis, G; Oltra, R
2007-02-01
A complete optical experimental setup for generating and detecting surface acoustic waves [Rayleigh waves (RWs)] in metals versus temperature up to the melting point is described. The RWs were excited by a pulsed Nd:YAG laser and detected by a high sensitivity subangstrom heterodyne interferometer. A special furnace was used to heat the sample using infrared radiation with a regulation of the sample temperature less than 0.1 K. First measurements on an aluminum alloy sample are presented to validate the setup.
An Investigation of Turbulent Heat Exchange in the Subtropics
2014-09-30
meteorological sensors aboard the research vessel the R/V Revelle during the DYNAMO field program. In situ meteorology and high-rate flux sensors operated...continuously while in the sampling period for DYNAMO Leg 3. This included all sensors operating during Leg 2 with the addition of a closed-path LI...stress; wave data; surface and near surface sea temperatures, salinity and currents; and other key variables specifically requested by DYNAMO /LASP PIs
High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si
NASA Astrophysics Data System (ADS)
Jung, Daehwan; Norman, Justin; Kennedy, M. J.; Shang, Chen; Shin, Bongki; Wan, Yating; Gossard, Arthur C.; Bowers, John E.
2017-09-01
We demonstrate highly efficient, low threshold InAs quantum dot lasers epitaxially grown on on-axis (001) GaP/Si substrates using molecular beam epitaxy. Electron channeling contrast imaging measurements show a threading dislocation density of 7.3 × 106 cm-2 from an optimized GaAs template grown on GaP/Si. The high-quality GaAs templates enable as-cleaved quantum dot lasers to achieve a room-temperature continuous-wave (CW) threshold current of 9.5 mA, a threshold current density as low as 132 A/cm2, a single-side output power of 175 mW, and a wall-plug-efficiency of 38.4% at room temperature. As-cleaved QD lasers show ground-state CW lasing up to 80 °C. The application of a 95% high-reflectivity coating on one laser facet results in a CW threshold current of 6.7 mA, which is a record-low value for any kind of Fabry-Perot laser grown on Si.
Temperature stability of static and dynamic properties of 1.55 µm quantum dot lasers.
Abdollahinia, A; Banyoudeh, S; Rippien, A; Schnabel, F; Eyal, O; Cestier, I; Kalifa, I; Mentovich, E; Eisenstein, G; Reithmaier, J P
2018-03-05
Static and dynamic properties of InP-based 1.55 µm quantum dot (QD) lasers were investigated. Due to the reduced size inhomogeneity and a high dot density of the newest generation of 1.55 µm QD gain materials, ridge waveguide lasers (RWG) exhibit improved temperature stability and record-high modulation characteristics. Detailed results are shown for the temperature dependence of static properties including threshold current, voltage-current characteristics, external differential efficiency and emission wavelength. Similarly, small and large signal modulations were found to have only minor dependences on temperature. Moreover, we show the impact of the active region design and the cavity length on the temperature stability. Measurements were performed in pulsed and continuous wave operation. High characteristic temperatures for the threshold current were obtained with T 0 values of 144 K (15 - 60 °C), 101 K (60 - 110 °C) and 70 K up to 180 °C for a 900-µm-long RWG laser comprising 8 QD layers. The slope efficiency in these lasers is nearly independent of temperature showing a T 1 value of more than 900 K up to 110 °C. Due to the high modal gain, lasers with a cavity length of 340 µm reached new record modulation bandwidths of 17.5 GHz at 20 °C and 9 GHz at 80 °C, respectively. These lasers were modulated at 26 GBit/s in the non-return to zero format at 80 °C and at 25 GBaud using a four-level pulse amplitude format at 21 °C.
Annual Soil Temperature Wave at Four Depths in Southwestern Wisconsin
Richard S. Sartz
1967-01-01
Soil temperature was measured for a year on a southeast-facing slope of 25 percent, latitude 43 degrees 50 minutes N. The spring-summer cover was unmowed alfalfa-bluegrass meadow, the fall-winter cover, meadow stubble. Snow cover was light or absent. The soil was Fayette silt loam, valley phase. The annual temperature wave at all depths followed the air temperature...
NASA Astrophysics Data System (ADS)
Zheng, Yujin; Sekine, Takashi; Kurita, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki
2018-03-01
We demonstrate continuous-wave dual-wavelength operation of a broad-area distributed feedback (DFB) laser diode with a single external-cavity configuration. This high-power DFB laser has a narrow bandwidth (<0.29 nm) and was used as a single-wavelength source. A volume Bragg grating was used as an output coupler for the external-cavity DFB laser to output another stable wavelength beam with a narrow bandwidth of 0.27 nm. A frequency difference for dual-wavelength operation of 0.88 THz was achieved and an output power of up to 415 mW was obtained. The external-cavity DFB laser showed a stable dual-wavelength operation over the practical current and temperature ranges.
NASA Technical Reports Server (NTRS)
Wang, C. R.; Hingst, W. R.; Porro, A. R.
1991-01-01
The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows.
Liauh, Chihng-Tsung; Shih, Tzu-Ching; Huang, Huang-Wen; Lin, Win-Li
2004-02-01
An inverse algorithm with Tikhonov regularization of order zero has been used to estimate the intensity ratios of the reflected longitudinal wave to the incident longitudinal wave and that of the refracted shear wave to the total transmitted wave into bone in calculating the absorbed power field and then to reconstruct the temperature distribution in muscle and bone regions based on a limited number of temperature measurements during simulated ultrasound hyperthermia. The effects of the number of temperature sensors are investigated, as is the amount of noise superimposed on the temperature measurements, and the effects of the optimal sensor location on the performance of the inverse algorithm. Results show that noisy input data degrades the performance of this inverse algorithm, especially when the number of temperature sensors is small. Results are also presented demonstrating an improvement in the accuracy of the temperature estimates by employing an optimal value of the regularization parameter. Based on the analysis of singular-value decomposition, the optimal sensor position in a case utilizing only one temperature sensor can be determined to make the inverse algorithm converge to the true solution.
What Controls the Arctic Lower Stratosphere Temperature?
NASA Technical Reports Server (NTRS)
Newman, Paul A.; Nash, Eric R.; Einaudi, Franco (Technical Monitor)
2001-01-01
The temperature of the Arctic lower stratosphere is critical for understanding polar ozone levels. As temperatures drop below about 195 K, polar stratospheric clouds form, which then convert HCl and ClONO2 into reactive forms that are catalysts for ozone loss reactions. Hence, the lower stratospheric temperature during the March period is a key parameter for understanding polar ozone losses. The temperature is basically understood to be a result of planetary waves which drive the polar temperature away from a cold "radiative equilibrium" state. This is demonstrated using NCEP/NCAR reanalysis calculations of the heat flux and the mean polar temperature. The temperature during the March period is fundamentally driven by the integrated impact of large scale waves moving from the troposphere to the stratosphere during the January through February period. We will further show that the recent cold years in the northern polar vortex are a result of this weakened wave driving of the stratosphere.
Wave Phenomena and Beam-Plasma Interactions at the Magnetopause Reconnection Region
NASA Astrophysics Data System (ADS)
Burch, J. L.; Webster, J. M.; Genestreti, K. J.; Torbert, R. B.; Giles, B. L.; Fuselier, S. A.; Dorelli, J. C.; Rager, A. C.; Phan, T. D.; Allen, R. C.; Chen, L.-J.; Wang, S.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Ergun, R. E.; Jaynes, A. N.; Lindqvist, P.-A.; Graham, D. B.; Wilder, F. D.; Hwang, K.-J.; Goldstein, J.
2018-02-01
This paper reports on Magnetospheric Multiscale observations of whistler mode chorus and higher-frequency electrostatic waves near and within a reconnection diffusion region on 23 November 2016. The diffusion region is bounded by crescent-shaped electron distributions and associated dissipation just upstream of the X-line and by magnetic field-aligned currents and electric fields leading to dissipation near the electron stagnation point. Measurements were made southward of the X-line as determined by southward directed ion and electron jets. We show that electrostatic wave generation is due to magnetosheath electron beams formed by the electron jets as they interact with a cold background plasma and more energetic population of magnetospheric electrons. On the magnetosphere side of the X-line the electron beams are accompanied by a strong perpendicular electron temperature anisotropy, which is shown to be the source of an observed rising-tone whistler mode chorus event. We show that the apex of the chorus event and the onset of electrostatic waves coincide with the opening of magnetic field lines at the electron stagnation point.
Vertical temperature and density patterns in the Arctic mesosphere analyzed as gravity waves
NASA Technical Reports Server (NTRS)
Eberstein, I. J.; Theon, J. S.
1975-01-01
Rocket soundings conducted from high latitude sites in the Arctic mesosphere are described. Temperature and wind profiles and one density profile were observed independently to obtain the thermodynamic structure, the wind structure, and their interdependence in the mesosphere. Temperature profiles from all soundings were averaged, and a smooth curve (or series of smooth curves) drawn through the points. A hydrostatic atmosphere based on the average, measured temperature profile was computed, and deviations from the mean atmosphere were analyzed in terms of gravity wave theory. The vertical wavelengths of the deviations were 10-20 km, and the wave amplitudes slowly increased with height. The experimental data were matched by calculated gravity waves having a period of 15-20 minutes and a horizontal wavelength of 60-80 km. The wind measurements are consistent with the thermodynamic measurements. The results also suggest that gravity waves travel from East to West with a horizontal phase velocity of approximately 60 m sec-1.
NASA Astrophysics Data System (ADS)
Coffel, Ethan D.; Horton, Radley M.; de Sherbinin, Alex
2018-01-01
As a result of global increases in both temperature and specific humidity, heat stress is projected to intensify throughout the 21st century. Some of the regions most susceptible to dangerous heat and humidity combinations are also among the most densely populated. Consequently, there is the potential for widespread exposure to wet bulb temperatures that approach and in some cases exceed postulated theoretical limits of human tolerance by mid- to late-century. We project that by 2080 the relative frequency of present-day extreme wet bulb temperature events could rise by a factor of 100-250 (approximately double the frequency change projected for temperature alone) in the tropics and parts of the mid-latitudes, areas which are projected to contain approximately half the world’s population. In addition, population exposure to wet bulb temperatures that exceed recent deadly heat waves may increase by a factor of five to ten, with 150-750 million person-days of exposure to wet bulb temperatures above those seen in today’s most severe heat waves by 2070-2080. Under RCP 8.5, exposure to wet bulb temperatures above 35 °C—the theoretical limit for human tolerance—could exceed a million person-days per year by 2080. Limiting emissions to follow RCP 4.5 entirely eliminates exposure to that extreme threshold. Some of the most affected regions, especially Northeast India and coastal West Africa, currently have scarce cooling infrastructure, relatively low adaptive capacity, and rapidly growing populations. In the coming decades heat stress may prove to be one of the most widely experienced and directly dangerous aspects of climate change, posing a severe threat to human health, energy infrastructure, and outdoor activities ranging from agricultural production to military training.
Evaluating Temperature Changes of Brain Tissue Due to Induced Heating of Cell Phone Waves.
Forouharmajd, Farhad; Pourabdian, Siamak; Ebrahimi, Hossein
2018-01-01
Worries have recently been increased in the absorption of radiofrequency waves and their destructing effects on human health by increasing use of cell phones (mobile phones). This study performed to determine the thermal changes due to mobile phone radio frequency waves in gray and white brain tissue. This study is an empirical study, where the thermal changes of electromagnetic waves resulted from cell phones (900 MHZ, specific absorption rate for head 1.18 w/kg) on the 15 brain tissue of a cow were analyzed in a compartment with three different thickness of 2 mm, 12 mm, and 22 mm, for 15 min. The Lutron thermometer (model: MT-917) with 0.01°C precision was used for measuring the tissue temperature. For each thickness was measured three times. Data analysis is done by Lutron and MATLAB software packages. In confronting of the tissue with the cell phone, the temperature was increased by 0.53°C in the 2 mm thickness that is the gray matter of the brain, increased by 0.99°C in the 12 mm thickness, and also increased by 0.92°C in the 22 mm thickness. Brain temperature showed higher rates than the base temperature after 15 min of confrontation with cell phone waves in all the three thicknesses. Cell phone radiated radio frequency waves were effective on increasing brain tissue temperature, and this temperature increase has cumulative effect on the tissue, being higher, for some time after the confrontation than the time with no confrontation.
Evaluating Temperature Changes of Brain Tissue Due to Induced Heating of Cell Phone Waves
Forouharmajd, Farhad; Pourabdian, Siamak; Ebrahimi, Hossein
2018-01-01
Background: Worries have recently been increased in the absorption of radiofrequency waves and their destructing effects on human health by increasing use of cell phones (mobile phones). This study performed to determine the thermal changes due to mobile phone radio frequency waves in gray and white brain tissue. Methods: This study is an empirical study, where the thermal changes of electromagnetic waves resulted from cell phones (900 MHZ, specific absorption rate for head 1.18 w/kg) on the 15 brain tissue of a cow were analyzed in a compartment with three different thickness of 2 mm, 12 mm, and 22 mm, for 15 min. The Lutron thermometer (model: MT-917) with 0.01°C precision was used for measuring the tissue temperature. For each thickness was measured three times. Data analysis is done by Lutron and MATLAB software packages. Results: In confronting of the tissue with the cell phone, the temperature was increased by 0.53°C in the 2 mm thickness that is the gray matter of the brain, increased by 0.99°C in the 12 mm thickness, and also increased by 0.92°C in the 22 mm thickness. Brain temperature showed higher rates than the base temperature after 15 min of confrontation with cell phone waves in all the three thicknesses. Conclusions: Cell phone radiated radio frequency waves were effective on increasing brain tissue temperature, and this temperature increase has cumulative effect on the tissue, being higher, for some time after the confrontation than the time with no confrontation. PMID:29861880
Long-Term Global Morphology of Gravity Wave Activity Using UARS Data
NASA Technical Reports Server (NTRS)
Eckermann, Stephen D.; Bacmeister, Julio T.; Wu, Dong L.
1998-01-01
Progress in research into the global morphology of gravity wave activity using UARS data is described for the period March-June, 1998. Highlights this quarter include further progress in the analysis and interpretation of CRISTA temperature variances; model-generated climatologies of mesospheric gravity wave activity using the HWM-93 wind and temperature model; and modeling of gravity wave detection from space-based platforms. Preliminary interpretations and recommended avenues for further analysis are also described.
Continuous two-wave lasing in microchip Nd : YAG lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ievlev, Ivan V; Koryukin, Igor' V; Lebedeva, Yu S
2011-08-31
Simultaneous two-wave lasing was obtained in microchip end-pumped Nd:YAG lasers at the wavelengths of 1061.5 and 1064.17 nm at room temperature. Laser wave intensities were studied as functions of crystal temperature and pump power. The ranges of parameters were determined in which the two-wave lasing occurs and the reasons for such lasing were established. A model is suggested, which adequately describes the experimental results obtained. (control of radiation parameters)
NASA Astrophysics Data System (ADS)
Cremer, Michael; Scholer, Manfred
2000-12-01
The kinetic structure of the reconnection layer in the magnetotail is investigated by two-dimensional hybrid simulations. As a proxy, the solution of the Riemann problem of the collapse of a current sheet with a normal magnetic field component is considered for two cases of the plasma beta (particle to magnetic field pressure): β=0.02 and β=0.002. The collapse results in an expanding layer of compressed and heated plasma, which is accelerated up to the Alfvén speed vA. The boundary layer separating this hot reconnection like layer from the cold lobe plasma is characterized by a beam of back-streaming ions with a field-aligned bulk speed of ~=2vA relative to the cold lobe ion population at rest. As a consequence, obliquely propagating waves are excited via the electromagnetic ion/ion cyclotron instability, which led to perpendicular heating of the ions in the boundary layer as well as further outside the layer in the lobe. In both regions, waves are found which propagate almost parallel to the magnetic field and which are identified as Alfvén ion cyclotron (AIC) waves. These waves are excited by the temperature anisotropy instability. The temperature anisotropy increases with decreasing plasma beta. Thus the anisotropy threshold of the instability is exceeded even in the case of a rather small beta value. The AIC waves, when convected downstream of what can be defined as the the slow shock, make an important contribution to the ion thermalization process. More detailed information on the dissipation process in the slow shocks is gained by analyzing individual ion trajectories.
NASA Astrophysics Data System (ADS)
Jensen, Tommy G.; Shulman, Igor; Wijesekera, Hemantha W.; Anderson, Stephanie; Ladner, Sherwin
2018-03-01
Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.
HeatWave: the next generation of thermography devices
NASA Astrophysics Data System (ADS)
Moghadam, Peyman; Vidas, Stephen
2014-05-01
Energy sustainability is a major challenge of the 21st century. To reduce environmental impact, changes are required not only on the supply side of the energy chain by introducing renewable energy sources, but also on the demand side by reducing energy usage and improving energy efficiency. Currently, 2D thermal imaging is used for energy auditing, which measures the thermal radiation from the surfaces of objects and represents it as a set of color-mapped images that can be analysed for the purpose of energy efficiency monitoring. A limitation of such a method for energy auditing is that it lacks information on the geometry and location of objects with reference to each other, particularly across separate images. Such a limitation prevents any quantitative analysis to be done, for example, detecting any energy performance changes before and after retrofitting. To address these limitations, we have developed a next generation thermography device called Heat Wave. Heat Wave is a hand-held 3D thermography device that consists of a thermal camera, a range sensor and color camera, and can be used to generate precise 3D model of objects with augmented temperature and visible information. As an operator holding the device smoothly waves it around the objects of interest, Heat Wave can continuously track its own pose in space and integrate new information from the range and thermal and color cameras into a single, and precise 3D multi-modal model. Information from multiple viewpoints can be incorporated together to improve the accuracy, reliability and robustness of the global model. The approach also makes it possible to reduce any systematic errors associated with the estimation of surface temperature from the thermal images.
Impurity behavior during ion-Bernstein wave heating in PBX-M
NASA Astrophysics Data System (ADS)
Isler, R. C.; Post-Zwicker, A. P.; Paul, S. F.; Tighe, W.; Ono, M.; Leblanc, B. P.; Bell, R.; Kugel, H. W.; Kaita, R.
1994-07-01
Ion-Bernstein-wave heating (IBWH) has been tested in several tokamaks. In some cases the results have been quite positive, producing temperature increases and also improving both energy and particle confinement times, whereas in others, no distinctive changes were observed. Most recently, IBWH has been utilized in the Princeton Beta Experiment-Modified (PBX-M) where the long-range goal is the achievement of operation in the second stable region by current and pressure profile control. Investigations have been performed in this machine using IBWH as the sole source of auxiliary power or using IBWH in conjunction with neutral-beam injection (NBI) or with lower-hybrid current drive (LHCD). Impurity studies seem particularly important for IBWH since not only have influxes often been observed to increase, but the global impurity confinement time has also been shown to lengthen as the confinement of the working gas improved. The authors present here a set of characteristic experimental results regarding the impurity behavior in PBX-M; in general, these are consonant with previous observations in other tokamaks.
Kallin, Catherine; Berlinsky, John
2016-05-01
Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.
Kinetic instability of electrostatic ion cyclotron waves in inter-penetrating plasmas
NASA Astrophysics Data System (ADS)
Bashir, M. F.; Ilie, R.; Murtaza, G.
2018-05-01
The Electrostatic Ion Cyclotron (EIC) instability that includes the effect of wave-particle interaction is studied owing to the free energy source through the flowing velocity of the inter-penetrating plasmas. It is shown that the origin of this current-less instability is different from the classical current driven EIC instability. The threshold conditions applicable to a wide range of plasma parameters and the estimate of the growth rate are determined as a function of the normalized flowing velocity ( u0/vt f e ), the temperature ( Tf/Ts ) and the density ratios ( nf 0/ns 0 ) of flowing component to static one. The EIC instability is driven by either flowing electrons or flowing ions, depending upon the different Doppler shifted frequency domains. It is found that the growth rate for electron-driven instability is higher than the ion-driven one. However, in both cases, the denser (hotter) is the flowing plasma, the lesser (greater) is the growth rate. The possible applications related to the terrestrial solar plasma environment are also discussed.
Risk and dynamics of unprecedented hot months in South East China
NASA Astrophysics Data System (ADS)
Thompson, Vikki; Dunstone, Nick J.; Scaife, Adam A.; Smith, Doug M.; Hardiman, Steven C.; Ren, Hong-Li; Lu, Bo; Belcher, Stephen E.
2018-06-01
The Yangtze region of South East China has experienced several extreme hot summer months in recent years. Such events can have devastating socio-economic impacts. We use a large ensemble of initialised climate simulations to assess the current chance of unprecedented hot summer months in the Yangtze River region. We find a 10% chance of an unprecedented hot summer month each year. Our simulations suggest that monthly mean temperatures up to 3 °C hotter than the current record are possible. The dynamics of these unprecedented extremes highlights the occurrence of a stationary atmospheric wave, the Silk Road Pattern, in a significant number of extreme hot events. We present evidence that this atmospheric wave is driven by variability in the Indian summer monsoon. Other extreme events are associated with a westward shift in the western North Pacific subtropical high. The most extreme simulated events exhibit combined characteristics of both the Silk Road Pattern and the shifted western North Pacific subtropical high.
NASA Astrophysics Data System (ADS)
Huang, Xian Bin; Ren, Xiao Dong; Dan, Jia Kun; Wang, Kun Lun; Xu, Qiang; Zhou, Shao Tong; Zhang, Si Qun; Cai, Hong Chun; Li, Jing; Wei, Bing; Ji, Ce; Feng, Shu Ping; Wang, Meng; Xie, Wei Ping; Deng, Jian Jun
2017-09-01
The preliminary experimental results of Z-pinch dynamic hohlraums conducted on the Primary Test Stand (PTS) facility are presented herein. Six different types of dynamic hohlraums were used in order to study the influence of load parameters on radiation characteristics and implosion dynamics, including dynamic hohlraums driven by single and nested arrays with different array parameters and different foams. The PTS facility can deliver a current of 6-8 MA in the peak current and 60-70 ns in the 10%-90% rising time to dynamic hohlraum loads. A set of diagnostics monitor the implosion dynamics of plasmas, the evolution of shock waves in the foam and the axial/radial X-ray radiation, giving the key parameters characterizing the features of dynamic hohlraums, such as the trajectory and related velocity of shock waves, radiation temperature, and so on. The experimental results presented here put our future study on Z-pinch dynamic hohlraums on the PTS facility on a firm basis.
The role of internal variability in prolonging the California drought
NASA Astrophysics Data System (ADS)
Buenning, N. H.; Stott, L. D.
2015-12-01
The current drought in California has been one of the driest on record. Using atmospheric general circulation models (AGCMs), recent studies have demonstrated that the low precipitation anomalies observed during the first three winters of the current drought are mostly attributable to changes in sea surface temperature (SST) and sea ice forcing. Here we show through AGCM simulations that the fourth and latest winter of the current drought is not attributable to SST and sea ice forcing, but instead a consequence of higher internal variability. Using the Global Spectral Model (GSM) we demonstrate how the surface forcing reproduces dry conditions over California for the first three winters of the current drought, similar to what other models produced. However, when forced with the SST and sea ice conditions for the winter of 2014-2015, GSM robustly simulates high precipitation conditions over California. This significantly differs with observed precipitation anomalies, which suggests a model deficiency or large influence of internal variability within the climate system during the winter of 2014-2015. Ensemble simulations with 234 realizations reveal that the surface forcing created a broader range of precipitation possibilities over California. Thus, the surface forcing caused a greater degree of internal variations, which was driven by a reduced latitudinal temperature gradient and amplified planetary waves over the Pacific. Similar amplified waves are also seen in 21st century climate projections of upper-level geopotential heights, suggesting that 21st century precipitation over California will become more variable and increasingly difficult to predict on seasonal timescales. When an El Nino pattern is applied to the surface forcing the precipitation further increases and the variance amongst model realizations is reduced, which indicates a strong likelihood of an anomalously wet 2015-2016 winter season.
Arbuthnott, Katherine G; Hajat, Shakoor
2017-12-05
It is widely acknowledged that the climate is warming globally and within the UK. In this paper, studies which assess the direct impact of current increased temperatures and heat-waves on health and those which project future health impacts of heat under different climate change scenarios in the UK are reviewed.This review finds that all UK studies demonstrate an increase in heat-related mortality occurring at temperatures above threshold values, with respiratory deaths being more sensitive to heat than deaths from cardiovascular disease (although the burden from cardiovascular deaths is greater in absolute terms). The relationship between heat and other health outcomes such as hospital admissions, myocardial infarctions and birth outcomes is less consistent. We highlight the main populations who are vulnerable to heat. Within the UK, these are older populations, those with certain co-morbidities and those living in Greater London, the South East and Eastern regions.In all assessments of heat-related impacts using different climate change scenarios, deaths are expected to increase due to hotter temperatures, with some studies demonstrating that an increase in the elderly population will also amplify burdens. However, key gaps in knowledge are found in relation to how urbanisation and population adaptation to heat will affect health impacts, and in relation to current and future strategies for effective, sustainable and equitable adaptation to heat. These and other key gaps in knowledge, both in terms of research needs and knowledge required to make sound public- health policy, are discussed.
Correlations between wave activity and electron temperature in the Martian upper ionosphere
NASA Astrophysics Data System (ADS)
Fowler, Chris; Andersson, Laila; Ergun, Robert; Andrews, David
2017-04-01
Prior to the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, only two electron temperature profiles of the Martian ionosphere existed, made by the Viking landers in the late 70s. Since MAVENs arrival at Mars in late 2014, electron temperature (and density) profiles have been measured every orbit, once every 4.5 hours. Recent analysis of this new dataset has shown that the Martian ionospheric electron temperature is significantly warmer than expected by factors of 2-3 above the exobase and within the upper ionosphere. We present correlations between electron temperature and electric field wave power (also measured by MAVEN), and discuss the possibility that such waves (which are likely produced by the Mars-solar wind interaction) may drive electron heating and contribute to the observed high temperatures.
Thermal responses in a coronal loop maintained by wave heating mechanisms
NASA Astrophysics Data System (ADS)
Matsumoto, Takuma
2018-05-01
A full 3-dimensional compressible magnetohydrodynamic (MHD) simulation is conducted to investigate the thermal responses of a coronal loop to the dynamic dissipation processes of MHD waves. When the foot points of the loop are randomly and continuously forced, the MHD waves become excited and propagate upward. Then, 1-MK temperature corona is produced naturally as the wave energy dissipates. The excited wave packets become non-linear just above the magnetic canopy, and the wave energy cascades into smaller spatial scales. Moreover, collisions between counter-propagating Alfvén wave packets increase the heating rate, resulting in impulsive temperature increases. Our model demonstrates that the heating events in the wave-heated loops can be nanoflare-like in the sense that they are spatially localized and temporally intermittent.
Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa
2010-08-02
A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.
NASA Astrophysics Data System (ADS)
Cifuentes-Lorenzen, A.; O'Donnell, J.; Howard-Strobel, M. M.; Fake, T.; McCardell, G.
2016-12-01
Accurate hydrodynamic-wave coupled coastal circulation models aid the prediction of storm impacts, particularly in areas where data is absent, and can inform mitigation options. They are essential everywhere to account for the effects of climate change. Here, the Finite Volume Community Ocean Model (FVCOM) was used to estimate the residual circulation inside a small urban estuary, Long Island Sound, during three severe weather events of different magnitude (i.e. 1/5, 1/25 and 1/50 year events). The effect of including wave coupling using a log-layer bottom boundary and the bottom wave-current coupling, following the approach of Madsen (1994) on the simulated residual circulation was assessed. Significant differences in the solutions were constrained to the near surface (s>-0.3) region. No significant difference in the depth-averaged residual circulation was detected. When the Madsen (1994) bottom boundary layer model for wave-current interaction was employed, differences in residual circulation resulted. The bottom wave-current interaction also plays an important role in the wave dynamics. Significant wave heights along the northern Connecticut shoreline were enhanced by up to 15% when the bottom wave-current interaction was included in the simulations. The wave-induced bottom drag enhancement has a substantial effect on tides in the Sound, possibly because it is nearly resonant at semidiurnal frequencies. This wave-current interaction current leads to severe tidal dampening ( 40% amplitude reduction) at the Western end of the estuary in the modeled sea surface displacement. The potential magnitude of these effects means that wave current interaction should be included and carefully evaluated in models of estuaries that are useful.
Studies of the linear and nonlinear properties of Alfvén waves in LAPD
NASA Astrophysics Data System (ADS)
Carter, Troy; Dorfman, Seth; Gekelman, Walter; Tripathi, Shreekrishna; van Compernolle, Bart; Vincena, Steve; Rossi, Giovanni; Jenko, Frank
2015-11-01
An overview will be given of recent experimental research into linear and nonlinear properties of Alfvén waves in the Large Plasma Device (LAPD). The nonlinear three-wave interaction process at the heart of the parametric decay instability is studied by launching counter-propagating Alfvén waves from antennas placed at either end of LAPD, producing a damped ion acoustic mode. The decay of a lone, large amplitude Alfvén wave has been observed, producing co-propagating daughter waves with characteristics consistent with kinetic Alfvén waves. The process has an amplitude threshold and the frequency of the daughter modes varies with the amplitude of the pump. A new plasma source based on LaB6 cathode has been added to LAPD, enabling much higher density (x50), electron temperature (x2) and ion temperature (x6). This provides the opportunity to study the physics of waves and instabilities with space and astrophysically relevant β. Topics under investigation include the physics of Alfvén waves in increased β plasmas, electromagnetic effects in drift-Alfvén wave turbulence and the excitation of ion-temperature-anisotropy driven modes such as the mirror and firehose. Supported by NSF and DOE.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.
2002-01-01
Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. These equations for the ion phase space distribution function and for the wave power spectral density were solved on aglobal magnetospheric scale undernonsteady state conditions during the 2-5 May 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the ion cyclotron wave-active zones during extreme geomagnetic disturbances on 4 May 1998 are presented and discussed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Q. D., E-mail: qgao@swip.ac.cn; Budny, R. V.
2015-03-15
By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T{sub i,e}) and toroidal velocity (V{sub ϕ}) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LHmore » driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.« less
Regional Wave Climates along Eastern Boundary Currents
NASA Astrophysics Data System (ADS)
Semedo, Alvaro; Soares, Pedro
2016-04-01
Two types of wind-generated gravity waves coexist at the ocean surface: wind sea and swell. Wind sea waves are waves under growing process. These young growing waves receive energy from the overlaying wind and are strongly coupled to the local wind field. Waves that propagate away from their generation area and no longer receive energy input from the local wind are called swell. Swell waves can travel long distances across entire ocean basins. A qualitative study of the ocean waves from a locally vs. remotely generation perspective is important, since the air sea interaction processes is strongly modulated by waves and vary accordingly to the prevalence of wind sea or swell waves in the area. A detailed climatology of wind sea and swell waves along eastern boundary currents (EBC; California Current, Canary Current, in the Northern Hemisphere, and Humboldt Current, Benguela Current, and Western Australia Current, in the Southern Hemisphere), based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis will be presented. The wind regime along EBC varies significantly from winter to summer. The high summer wind speeds along EBC generate higher locally generated wind sea waves, whereas lower winter wind speeds in these areas, along with stronger winter extratropical storms far away, lead to a predominance of swell waves there. In summer, the coast parallel winds also interact with coastal headlands, increasing the wind speed through a process called "expansion fan", which leads to an increase in the height of locally generated waves downwind of capes and points. Hence the spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean along EBC, due to coastal geometry and fetch dimensions. Swell waves will be shown to be considerably more prevalent and to carry more energy in winter along EBC, while in summer locally generated wind sea waves are either more comparable to swell waves or, particularly in the lee of headlands, or even more prevalent and more energized than swell. This study is part of the WRCP-JCOMM COWCLIP (Coordinated Ocean Wave Climate Project) effort.
Research Performed within the Non-Destructive Evaluation Team at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Burns, Erin A.
2004-01-01
Non-destructive testing is essential in many fields of manufacturing and research in order to perform reliable examination of potentially damaged materials and parts without destroying the inherent structure of the materials. Thus, the Non-Destructive Evaluation (NDE) Team at NASA Glenn Research Center partakes in various projects to improve materials testing equipment as well as analyze materials, material defects, and material deficiencies. Due to the array of projects within the NDE Team at this time, five research aims were supplemental to some current projects. A literature survey of "DE and testing methodologies as related to rocks was performed. Also, Mars Expedition Rover technology was assessed to understand the requirements for instrumentation in harsh space environments (e.g. temperature). Potential instrumentation and technologies were also considered and documented. The literature survey provided background and potential sources for a proposal to acquire funding for ultrasonic instrumentation on board a future Mars expedition. The laboratory uses a Santec Systems AcousticScope AS200 acoustography system. Labview code was written within the current program in order to improve the current performance of the acoustography system. A sample of Reinforced Carbon/Carbon (RCC) material from the leading edge of the space shuttle underwent various non-destructive tests (guided wave scanning, thermography, computed tomography, real time x-ray, etc.) in order to characterize its structure and examine possible defects. Guided wave scan data of a ceramic matrix composite (CMC) panel was reanalyzed utilizing image correlations and signal processing variables. Additional guided wave scans and thermography were also performed on the CMC panel. These reevaluated data and images will be used in future presentations and publications. An additional axis for the guided wave scanner was designed, constructed, and implemented. This additional axis allowed incremental spacing of the previously fixed transducers for ultrasonic velocity measurements.
Observation of spin waves in Pd(1. 5% Fe). Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynn, J.W.; Rhyne, J.J.; Budnick, J.I.
1982-01-01
Inelastic neutron scattering measurements have been carried out on the giant-moment alloy system Pd(1.5% Fe), which is in the dilute ferromagnetic regime. Below the Curie temperature of 67K, relatively well-defined spin-wave excitations have been observed in the small wavevector region (Q < 0.14/A). The dispersion of these excitations is consistent with the quadratic relation E = D(Q/sup 2/) expected for an isotropic ferromagnet, with D = 40 meV-(A/sup 2/) at a temperature of the 40K. With increasing temperature, the spin waves are found to renormalize in energy, and broaden rapidly both with increasing Q and increasing temperature.
On the response to ocean surface currents in synthetic aperture radar imagery
NASA Technical Reports Server (NTRS)
Phillips, O. M.
1984-01-01
The balance of wave action spectral density for a fixed wave-number is expressed in terms of a new dimensionless function, the degree of saturation, b, and is applied to an analysis of the variations of this quantity (and local spectral level) at wave-numbers large compared to that of the spectral peak, that are produced by variations in the ocean surface currents in the presence of wind input and wave breaking. Particular care is taken to provide physically based representations of wind input and loss by wave breaking and a relatively convenient equation is derived that specifies the distribution of the degree of saturation in a current field, relative to its ambient (undisturbed) background in the absence of currents. The magnitude of the variations in b depends on two parameters, U(o)/c, where U/(o) is the velocity scale of the current and c the phase speed of the surface waves at the (fixed) wave-number considered or sampled by SAR, and S = (L/lambda) (u*/c)(2), where L is the length scale of the current distribution, lambda the wavelength of the surface waves the length scale of the current distribution, lambda the wavelength of the surface waves and u* the friction velocity of the wind.
Current driven instabilities of an electromagnetically accelerated plasma
NASA Technical Reports Server (NTRS)
Chouetri, E. Y.; Kelly, A. J.; Jahn, R. G.
1988-01-01
A plasma instability that strongly influences the efficiency and lifetime of electromagnetic plasma accelerators was quantitatively measured. Experimental measurements of dispersion relations (wave phase velocities), spatial growth rates, and stability boundaries are reported. The measured critical wave parameters are in excellent agreement with theoretical instability boundary predictions. The instability is current driven and affects a wide spectrum of longitudinal (electrostatic) oscillations. Current driven instabilities, which are intrinsic to the high-current-carrying magnetized plasma of the magnetoplasmadynmic (MPD) accelerator, were investigated with a kinetic theoretical model based on first principles. Analytical limits of the appropriate dispersion relation yield unstable ion acoustic waves for T(i)/T(e) much less than 1 and electron acoustic waves for T(i)/T(e) much greater than 1. The resulting set of nonlinear equations for the case of T(i)/T(e) = 1, of most interest to the MPD thruster Plasma Wave Experiment, was numerically solved to yield a multiparameter set of stability boundaries. Under certain conditions, marginally stable waves traveling almost perpendicular to the magnetic field would travel at a velocity equal to that of the electron current. Such waves were termed current waves. Unstable current waves near the upper stability boundary were observed experimentally and are in accordance with theoretical predictions. This provides unambiguous proof of the existence of such instabilites in electromagnetic plasma accelerators.
Experimental study on the evolution of Peregrine breather with uniform-depth adverse currents
NASA Astrophysics Data System (ADS)
Liao, B.; Ma, Y.; Ma, X.; Dong, G.
2018-05-01
A series of laboratory experiments were performed to study the evolution of Peregrine breather (PB) in a wave flume in finite depth, and wave trains were initially generated in a region of quiescent water and then propagated into an adverse current region for which the current velocity strength gradually increased from zero to an approximately stable value. The PB is often considered as a prototype of oceanic freak waves that can focus wave energy into a single wave packet. In the experiment, the cases were selected with the relative water depths k0h (k0 is the wave number in quiescent water and h is the water depth) varying from 3.11 through 8.17, and the initial wave steepness k0a0 (a0 is the background wave amplitude) ranges between 0.065 and 0.120. The experimental results show the persistence of the breather evolution dynamics even in the presence of strong opposing currents. We have shown that the characteristic spectrum of the PB persists even on strong currents, thus making it a viable characteristic for prediction of freak waves. It was also found that the adverse currents tend to shift the focusing point upstream compared to the cases without currents. Furthermore, it was found that uniform-depth adverse currents can reduce the breather extension in time domain.
Yang, Yang; He, Jinliang; Wu, Guangning; Hu, Jun
2015-01-01
Insulation performance of the dielectrics under extreme conditions always attracts widespread attention in electrical and electronic field. How to improve the high-temperature dielectric properties of insulation materials is one of the key issues in insulation system design of electrical devices. This paper studies the temperature-dependent corona resistance of polyimide (PI)/Al2O3 nanocomposite films under high-frequency square-wave pulse conditions. Extended corona resistant lifetime under high-temperature conditions is experimentally observed in the 2 wt% nanocomposite samples. The “thermal stabilization effect” is proposed to explain this phenomenon which attributes to a new kind of trap band caused by nanoparticles. This effect brings about superior space charge characteristics and corona resistance under high temperature with certain nano-doping concentration. The proposed theory is experimentally demonstrated by space charge analysis and thermally stimulated current (TSC) tests. This discovered effect is of profound significance on improving high-temperature dielectric properties of nanocomposites towards various applications. PMID:26597981
The 2011 heat wave in Greater Houston: Effects of land use on temperature.
Zhou, Weihe; Ji, Shuang; Chen, Tsun-Hsuan; Hou, Yi; Zhang, Kai
2014-11-01
Effects of land use on temperatures during severe heat waves have been rarely studied. This paper examines land use-temperature associations during the 2011 heat wave in Greater Houston. We obtained high resolution of satellite-derived land use data from the US National Land Cover Database, and temperature observations at 138 weather stations from Weather Underground, Inc (WU) during the August of 2011, which was the hottest month in Houston since 1889. Land use regression and quantile regression methods were applied to the monthly averages of daily maximum/mean/minimum temperatures and 114 land use-related predictors. Although selected variables vary with temperature metric, distance to the coastline consistently appears among all models. Other variables are generally related to high developed intensity, open water or wetlands. In addition, our quantile regression analysis shows that distance to the coastline and high developed intensity areas have larger impacts on daily average temperatures at higher quantiles, and open water area has greater impacts on daily minimum temperatures at lower quantiles. By utilizing both land use regression and quantile regression on a recent heat wave in one of the largest US metropolitan areas, this paper provides a new perspective on the impacts of land use on temperatures. Our models can provide estimates of heat exposures for epidemiological studies, and our findings can be combined with demographic variables, air conditioning and relevant diseases information to identify 'hot spots' of population vulnerability for public health interventions to reduce heat-related health effects during heat waves. Copyright © 2014 Elsevier Inc. All rights reserved.
Spin-wave thermal population as temperature probe in magnetic tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Goff, A., E-mail: adrien.le-goff@u-psud.fr; Devolder, T.; Nikitin, V.
We study whether a direct measurement of the absolute temperature of a Magnetic Tunnel Junction (MTJ) can be performed using the high frequency electrical noise that it delivers under a finite voltage bias. Our method includes quasi-static hysteresis loop measurements of the MTJ, together with the field-dependence of its spin wave noise spectra. We rely on an analytical modeling of the spectra by assuming independent fluctuations of the different sub-systems of the tunnel junction that are described as macrospin fluctuators. We illustrate our method on perpendicularly magnetized MgO-based MTJs patterned in 50 × 100 nm{sup 2} nanopillars. We apply hard axismore » (in-plane) fields to let the magnetic thermal fluctuations yield finite conductance fluctuations of the MTJ. Instead of the free layer fluctuations that are observed to be affected by both spin-torque and temperature, we use the magnetization fluctuations of the sole reference layers. Their much stronger anisotropy and their much heavier damping render them essentially immune to spin-torque. We illustrate our method by determining current-induced heating of the perpendicularly magnetized tunnel junction at voltages similar to those used in spin-torque memory applications. The absolute temperature can be deduced with a precision of ±60 K, and we can exclude any substantial heating at the spin-torque switching voltage.« less
High-Resolution Near Real-Time Drought Monitoring in South Asia
NASA Astrophysics Data System (ADS)
Aadhar, S.; Mishra, V.
2017-12-01
Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning and management of water resources at the sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. Here we develop a high resolution (0.05 degree) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat waves, cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature (maximum and minimum), which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05˚. We find that the bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub- basin levels.
Molecular controlled of quantum nano systems
NASA Astrophysics Data System (ADS)
Paltiel, Yossi
2014-03-01
A century ago quantum mechanics created a conceptual revolution whose fruits are now seen in almost any aspect of our day-to-day life. Lasers, transistors and other solid state and optical devices represent the core technology of current computers, memory devices and communication systems. However, all these examples do not exploit fully the quantum revolution as they do not take advantage of the coherent wave-like properties of the quantum wave function. Controlled coherent system and devices at ambient temperatures are challenging to realize. We are developing a novel nano tool box with control coupling between the quantum states and the environment. This tool box that combines nano particles with organic molecules enables the integration of quantum properties with classical existing devices at ambient temperatures. The nano particles generate the quantum states while the organic molecules control the coupling and therefore the energy, charge, spin, or quasi particle transfer between the layers. Coherent effects at ambient temperatures can be measured in the strong coupling regime. In the talk I will present our nano tool box and show studies of charge transfer, spin transfer and energy transfer in the hybrid layers as well as collective transfer phenomena. These enable the realization of room temperature operating quantum electro optical devices. For example I will present in details, our recent development of a new type of chiral molecules based magnetless universal memory exploiting selective spin transfer.
Piezoelectric shear wave resonator and method of making same
Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.
1988-01-01
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.
Method of making a piezoelectric shear wave resonator
Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.
1987-02-03
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.
High Temperature Shear Horizontal Electromagnetic Acoustic Transducer for Guided Wave Inspection
Kogia, Maria; Gan, Tat-Hean; Balachandran, Wamadeva; Livadas, Makis; Kappatos, Vassilios; Szabo, Istvan; Mohimi, Abbas; Round, Andrew
2016-01-01
Guided Wave Testing (GWT) using novel Electromagnetic Acoustic Transducers (EMATs) is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH0) waves for GWT with optimal high temperature properties (up to 500 °C) has been developed. Thermal and Computational Fluid Dynamic (CFD) simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C. PMID:27110792
NASA Astrophysics Data System (ADS)
He, Xuechao; Sun, Jinhua; Yuen, K. K.; Ding, Yibin; Chen, Sining
2008-11-01
Experiments of flame propagation in a small, closed rectangular duct with a 90° bend were performed for a propane-air mixture. The high speed camera and Schlieren techniques were used to record images of flame propagation process in the combustion pipe. Meanwhile, the fine thermocouples and ion current probes were applied to measure the temperature distribution and reaction intensity of combustion. The characteristics of propane-air flame and its microstructure were analyzed in detail by the experimental results. In the test, the special tulip flame formation was observed. Around the bend, the flame tip proceeded more quickly at the lower side with the flame front elongated toward the axial direction. And transition to turbulent flame occurred. It was suggested that fluctuations of velocity, ion current and temperature were mainly due to the comprehensive effects of multi-wave and the intense of turbulent combustion.
On the estimation of heating effects in the atmosphere because of seismic activities
NASA Astrophysics Data System (ADS)
Meister, Claudia-Veronika; Hoffmann, Dieter H. H.
2014-05-01
The dielectric model for waves in the Earth's ionosphere is further developed and applied to possible electro-magnetic phenomena in seismic regions. In doing so, in comparison to the well-known dielectric wave model by R.O. Dendy [Plasma dynamics, Oxford University Press, 1990] for homogeneous systems, the stratification of the atmosphere is taken into account. Moreover, within the frame of many-fluid magnetohydrodynamics also the momentum transfer between the charged and neutral particles is considered. Discussed are the excitation of Alfvén and magnetoacoustic waves, but also their variations by the neutral gas winds. Further, also other current driven waves like Farley-Buneman ones are studied. In the work, models of the altitudinal scales of the plasma parameters and the electromagnetic wave field are derived. In case of the electric wave field, a method is given to calculate the altitudinal scale based on the Poisson equation for the electric field and the magnetohydrodynamic description of the particles. Further, expressions are derived to estimate density, pressure, and temperatur changes in the E-layer because of the generation of the electromagnetic waves. Last not least, formulas are obtained to determine the dispersion and polarisation of the excited electromagnetic waves. These are applied to find quantitative results for the turbulent heating of the ionospheric E-layer. Concerning the calculation of the dispersion relation, in comparison to a former work by Meister et al. [Contr. Plasma Phys. 53 (4-5), 406-413, 2013], where a numerical double-iteration method was suggested to obtain results for the wave dispersion relations, now further analytical calculations are performed. In doing so, different polynomial dependencies of the wave frequencies from the wave vectors are treated. This helped to restrict the numerical calculations to only one iteration process.
Marginal sea surface temperature variation as a pre-cursor of heat waves over the Korean Peninsula
NASA Astrophysics Data System (ADS)
Ham, Yoo-Geun; Na, Hye-Yun
2017-11-01
This study examines the role of the marginal sea surface temperature (SST) on heat waves over Korea. It is found that sea surface warming in the south sea of Korea/Japan (122-138°E, 24- 33°N) causes heat waves after about a week. Due to the frictional force, the positive geopotential height anomalies associated with the south sea warming induce divergent flows over the boundary layer. This divergent flow induces the southerly in Korea, which leads to a positive temperature advection. On the other hand, over the freeatmosphere, the geostrophic wind around high-pressure anomalies flows in a westerly direction over Korea during the south sea warming, which is not effective in temperature advection. Therefore, the positive temperature advection in Korea due to the south sea warming decreases with height. This reduces the vertical potential temperature gradient, which indicates a negative potential vorticity (PV) tendency over Korea. Therefore, the high-pressure anomaly over the south sea of Korea is propagated northward, which results in heat waves due to more incoming solar radiation.
Shi, F.; Hanes, D.M.; Kirby, J.T.; Erikson, L.; Barnard, P.; Eshleman, J.
2011-01-01
The nearshore circulation induced by a focused pattern of surface gravity waves is studied at a beach adjacent to a major inlet with a large ebb tidal shoal. Using a coupled wave and wave-averaged nearshore circulation model, it is found that the nearshore circulation is significantly affected by the heterogeneous wave patterns caused by wave refraction over the ebb tidal shoal. The model is used to predict waves and currents during field experiments conducted near the mouth of San Francisco Bay and nearby Ocean Beach. The field measurements indicate strong spatial variations in current magnitude and direction and in wave height and direction along Ocean Beach and across the ebb tidal shoal. Numerical simulations suggest that wave refraction over the ebb tidal shoal causes wave focusing toward a narrow region at Ocean Beach. Due to the resulting spatial variation in nearshore wave height, wave-induced setup exhibits a strong alongshore nonuniformity, resulting in a dramatic change in the pressure field compared to a simulation with only tidal forcing. The analysis of momentum balances inside the surf zone shows that, under wave conditions with intensive wave focusing, the alongshore pressure gradient associated with alongshore nonuniform wave setup can be a dominant force driving circulation, inducing heterogeneous alongshore currents. Pressure-gradient- forced alongshore currents can exhibit flow reversals and flow convergence or divergence, in contrast to the uniform alongshore currents typically caused by tides or homogeneous waves.
Wave-current interaction in Willapa Bay
Olabarrieta, Maitane; Warner, John C.; Kumar, Nirnimesh
2011-01-01
This paper describes the importance of wave-current interaction in an inlet-estuary system. The three-dimensional, fully coupled, Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system was applied in Willapa Bay (Washington State) from 22 to 29 October 1998 that included a large storm event. To represent the interaction between waves and currents, the vortex-force method was used. Model results were compared with water elevations, currents, and wave measurements obtained by the U.S. Army Corp of Engineers. In general, a good agreement between field data and computed results was achieved, although some discrepancies were also observed in regard to wave peak directions in the most upstream station. Several numerical experiments that considered different forcing terms were run in order to identify the effects of each wind, tide, and wave-current interaction process. Comparison of the horizontal momentum balances results identified that wave-breaking-induced acceleration is one of the leading terms in the inlet area. The enhancement of the apparent bed roughness caused by waves also affected the values and distribution of the bottom shear stress. The pressure gradient showed significant changes with respect to the pure tidal case. During storm conditions the momentum balance in the inlet shares the characteristics of tidal-dominated and wave-dominated surf zone environments. The changes in the momentum balance caused by waves were manifested both in water level and current variations. The most relevant effect on hydrodynamics was a wave-induced setup in the inner part of the estuary.
The impact of sea surface currents in wave power potential modeling
NASA Astrophysics Data System (ADS)
Zodiatis, George; Galanis, George; Kallos, George; Nikolaidis, Andreas; Kalogeri, Christina; Liakatas, Aristotelis; Stylianou, Stavros
2015-11-01
The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.
NASA Technical Reports Server (NTRS)
Berg, Robert F.
1996-01-01
Near the liquid-vapor critical point, density stratification supports internal gravity waves which affect 1-g viscosity measurements in the CVX (Critical Viscosity of Xenon) experiment. Two internal-wave modes were seen in the horizontal viscometer. The frequencies of the two modes had different temperature dependences: with decreasing temperature, the higher frequency increased monotonically from 0.7 to 2.8 Hz, but the lower frequency varied non-monotonically, with a maximum of 1.0 Hz at 20 mK above the critical temperature. The measured frequencies agree with independently calculated frequencies to within 15%.
NASA Technical Reports Server (NTRS)
Leppert, Kenneth D., II; Petersen, Walter A.; Cecil, Daniel J.
2012-01-01
In this study, we investigate the characteristics of tropical easterly wave convection and the possible implications of convective structure on tropical cyclogenesis and intensification over the Atlantic Ocean and East Pacific using data from the Tropical Rainfall Measurement Mission Microwave Imager, Precipitation Radar (PR), and Lightning Imaging Sensor as well as infrared (IR) brightness temperature data from the NASA global-merged IR brightness temperature dataset. Easterly waves were partitioned into northerly, southerly, trough, and ridge phases based on the 700-hPa meridional wind from the NCEP-NCAR reanalysis dataset. Waves were subsequently divided according to whether they did or did not develop tropical cyclones (i.e., developing and nondeveloping, respectively), and developing waves were further subdivided according to development location. Finally, composites as a function of wave phase and category were created using the various datasets. Results suggest that the convective characteristics that best distinguish developing from nondeveloping waves vary according to where developing waves spawn tropical cyclones. For waves that developed a cyclone in the Atlantic basin, coverage by IR brightness temperatures .240 K and .210 K provide the best distinction between developing and nondeveloping waves. In contrast, several variables provide a significant distinction between nondeveloping waves and waves that develop cyclones over the East Pacific as these waves near their genesis location including IR threshold coverage, lightning flash rates, and low-level (<4.5 km) PR reflectivity. Results of this study may be used to help develop thresholds to better distinguish developing from nondeveloping waves and serve as another aid for tropical cyclogenesis forecasting.
Long-Term Global Morphology of Gravity Wave Activity Using UARS Data
NASA Technical Reports Server (NTRS)
Eckermann, Stephen D.; Bacmeister, Julio T.; Wu, Dong L.
1998-01-01
This is the first quarter's report on research to extract global gravity-wave data from satellite data and to model those observations synoptically. Preliminary analysis of global maps of extracted middle atmospheric temperature variance from the CRISTA instrument is presented, which appear to contain gravity-wave information. Corresponding simulations of global gravity-wave and mountain-wave activity during this mission period are described using global ray-tracing and mountain-wave models, and interesting similarities among simulated data and CRISTA data are noted. Climatological simulations of mesospheric gravity-wave activity using the HWM-03 wind-temperature climatology are also reported, for comparison with UARS MLS data. Preparatory work on modeling of gravity wave observations from space-based platforms and subsequent interpretation of the MLS gravity-wave product are also described. Preliminary interpretation and relation to the research objectives are provided, and further action for the next quarter's research is recommended.
DOE Office of Scientific and Technical Information (OSTI.GOV)
EL-Shamy, E. F., E-mail: emadel-shamy@hotmail.com; Department of Physics, College of Science, King Khalid University, P.O. 9004, Abha; Al-Asbali, A. M., E-mail: aliaa-ma@hotmail.com
A theoretical investigation is carried out to study the propagation and the head-on collision of dust-acoustic (DA) shock waves in a strongly coupled dusty plasma consisting of negative dust fluid, Maxwellian distributed electrons and ions. Applying the extended Poincaré–Lighthill–Kuo method, a couple of Korteweg–deVries–Burgers equations for describing DA shock waves are derived. This study is a first attempt to deduce the analytical phase shifts of DA shock waves after collision. The impacts of physical parameters such as the kinematic viscosity, the unperturbed electron-to-dust density ratio, parameter determining the effect of polarization force, the ion-to-electron temperature ratio, and the effective dustmore » temperature-to-ion temperature ratio on the structure and the collision of DA shock waves are examined. In addition, the results reveal the increase of the strength and the steepness of DA shock waves as the above mentioned parameters increase, which in turn leads to the increase of the phase shifts of DA shock waves after collision. The present model may be useful to describe the structure and the collision of DA shock waves in space and laboratory dusty plasmas.« less
Investigating the thermally induced acoustoelastic effect in isotropic media with Lamb waves
Dodson, Jacob C.; Inman, Daniel J.
2014-01-01
Elastic wave velocities in metallic structures are affected by variations in environmental conditions such as changing temperature. This paper extends the theory of acoustoelasticity by allowing thermally induced strains in unconstrained isotropic media, and it experimentally examines the velocity variation of Lamb waves in aluminum plates (AL-6061) due to isothermal temperature deviations. This paper presents both thermally induced acoustoelastic constants and thermally varying effective Young's modulus and Poisson's ratio which include the third order elastic material constants. The experimental thermal sensitivity of the phase velocity (∂vP/∂θ) for both the symmetric and antisymmetric modes are bounded by two theories, the acoustoelastic Lamb wave theory with thermo-acoustoelastic tensors and the thermoelastic Lamb wave theory using an effective thermo-acoustoelastic moduli. This paper shows the theoretical thermally induced acoustoelastic Lamb wave thermal sensitivity (∂vP/∂θ) is an upper bound approximation of the experimental thermal changes, but the acoustoelastic Lamb wave theory is not valid for predicting the antisymmetric (A0) phase velocity at low frequency-thickness values, <1.55 MHz mm for various temperatures. PMID:25373955
NASA Astrophysics Data System (ADS)
Schoeberl, Mark; Dessler, Andrew; Ye, Hao; Wang, Tao; Avery, Melody; Jensen, Eric
2016-08-01
Using the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and MERRA-2 reanalysis winds, temperatures, and anvil cloud ice, we explore the impact of varying the cloud nucleation threshold relative humidity (RH) and high-frequency gravity waves on stratospheric water vapor (H2O) and upper tropical tropopause cloud fraction (TCF). Our model results are compared to 2008/2009 winter TCF derived from Cloud-Aerosol Lidar with Orthogonal Polarization and H2O observations from the Microwave Limb Sounder (MLS). The RH threshold affects both model H2O and TCF, while high-frequency gravity waves mostly impact TCF. Adjusting the nucleation RH and the amplitude of high-frequency gravity waves allows us to tune the model to observations. Reasonable observational agreement is obtained with a nucleation threshold between 130% and 150% RH consistent with airborne observations. For the MERRA reanalysis, we lower the tropopause temperature by 0.5 K roughly consistent with GPS radio occultation measurements and include ~0.1 K high-frequency gravity wave temperature oscillations in order to match TCF and H2O observations. For MERRA-2 we do not need to adjust the tropopause temperature nor add gravity waves, because there are sufficient high-frequency temperature oscillations already present in the MERRA-2 reanalysis to reproduce the observed TCF.
NASA Astrophysics Data System (ADS)
Kasaba, Y.; Kumamoto, A.; Ono, T.; Misawa, H.; Kojima, H.; Yagitani, S.; Kasahara, Y.; Ishisaka, K.
2009-04-01
The electric field and plasma wave investigation is important for the clarification of global plasma dynamics and energetic processes in the planetary Magnetospheric studies. We have several missions which will contribute those objectives. the small-sized radiation belt mission, ERG (Energization and Radiation in Geospace), the cross-scale formation flight mission, SCOPE, the BepiColombo mission to Mercury, and the small-sized and full-scale Jovian mission in future. Those will prevail the universal plasma mechanism and processes in the space laboratory. The main purposes of electric field and plasma wave observation for those missions are: (1) Examination of the theories of high-energy particle acceleration by plasma waves, (2) identification of the origin of electric fields in the magnetosphere associated with cross-scale coupling processes, (3) diagnosis of plasma density, temperature and composition, and (4) investigation of wave-particle interaction and mode conversion processes. Simultaneous observation of plasma waves and energetic particles with high resolution will enable us to investigate the wave-particle interaction based on quasi-linear theory and non-linear models. In this paper, we will summarize the current plan and efforts for those future activities. In order to achieve those objectives, the instrument including sensitive sensors (the long wire / stem antennae, the search-coil / loop antennae) and integrated receiver systems are now in development, including the direct identification of nonlinear wave-particle interactions associated will be tried by Wave-particle Correlator. And, as applications of those development, we will mention to the space interferometer and the radar sounder technologies.