Etame, Arnold B.; Diaz, Roberto J.; O’Reilly, Meaghan A.; Smith, Christian A.; Mainprize, Todd G.; Hynynen, Kullervo; Rutka, James T.
2014-01-01
The blood brain barrier (BBB) is a major impediment to the delivery of therapeutics into the central nervous system (CNS). Gold nanoparticles (AuNPs) have been successfully employed in multiple potential therapeutic and diagnostic applications outside the CNS. However, AuNPs have very limited biodistribution within the CNS following intravenous administration. Magnetic resonance imaging guided focused ultrasound (MRgFUS) is a novel technique that can transiently increase BBB permeability allowing delivery of therapeutics into the CNS. MRgFUS has not been previously employed for delivery of AuNPs into the CNS. This work represents the first demonstration of focal enhanced delivery of AuNPs into the CNS using MRgFUS in a rat model both safely and effectively. Histologic visualization and analytical quantification of AuNPs within the brain parenchyma suggest BBB transgression. These results suggest a role for MRgFUS in the delivery of AuNPs with therapeutic potential into the CNS for targeting neurological diseases. PMID:22349099
USDA-ARS?s Scientific Manuscript database
This work aims to extract and characterize fibrous, rod-like and spherical cellulose nanoparticles (CNs) from cottonseed hull and to investigate the structure-morphology-rheology relationships. The rheological behavior of poly(vinyl alcohol) (PVA)/CNs suspensions was also examined to guide the solve...
A patterned recombinant human IgM guides neurite outgrowth of CNS neurons
Xu, Xiaohua; Wittenberg, Nathan J.; Jordan, Luke R.; Kumar, Shailabh; Watzlawik, Jens O.; Warrington, Arthur E.; Oh, Sang-Hyun; Rodriguez, Moses
2013-01-01
Matrix molecules convey biochemical and physical guiding signals to neurons in the central nervous system (CNS) and shape the trajectory of neuronal fibers that constitute neural networks. We have developed recombinant human IgMs that bind to epitopes on neural cells, with the aim of treating neurological diseases. Here we test the hypothesis that recombinant human IgMs (rHIgM) can guide neurite outgrowth of CNS neurons. Microcontact printing was employed to pattern rHIgM12 and rHIgM22, antibodies that were bioengineered to have variable regions capable of binding to neurons or oligodendrocytes, respectively. rHIgM12 promoted neuronal attachment and guided outgrowth of neurites from hippocampal neurons. Processes from spinal neurons followed grid patterns of rHIgM12 and formed a physical network. Comparison between rHIgM12 and rHIgM22 suggested the biochemistry that facilitates anchoring the neuronal surfaces is a prerequisite for the function of IgM, and spatial properties cooperate in guiding the assembly of neuronal networks. PMID:23881231
NASA Astrophysics Data System (ADS)
Wan, Xing; Wang, Hongjuan; Yu, Hao; Peng, Feng
2017-04-01
Uniform cobalt and nitrogen co-doped carbon nanospheres (CoN-CNS) with high specific surface area (865 m2 g-1) have been prepared by a simple but efficient method. The prepared CoN-CNS catalyst exhibits outstanding catalytic performance for the oxygen reduction reaction (ORR) in both alkaline and acidic electrolytes. In alkaline electrolyte, the prepared CoN-CNS has more positive half-wave potential and larger kinetic current density than commercial Pt/C. In acidic electrolyte, CoN-CNS also shows good ORR activity with high electron transfer number, its onset and half-wave potentials are all close to those of commercial carbon supported platinum catalyst (Pt/C). CoN-CNS catalyst shows more superior stability and higher methanol-tolerance than commercial Pt/C both in alkaline and in acidic electrolytes. The potassium thiocyanate-poisoning test further confirms that the cobalt-nitrogen active sites exist in CoN-CNS, which are dominating to endow high ORR catalytic activity in acidic electrolyte. This study develops a new method to prepare non-precious metal catalyst with excellent ORR performances for direct methanol fuel cells.
Requirements for an Integrated UAS CNS Architecture
NASA Technical Reports Server (NTRS)
Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Ballesteros, Pedro; Ponchak, Denise
2017-01-01
Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation and APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.
Hanke, Wolfgang; de Lima, Vera Maura Fernandes
2008-02-13
According to its physicochemical properties, neuronal tissue, including the central nervous system (CNS) and thus the human brain, is an excitable medium, which consequently exhibits, among other things, self-organization, pattern formation and propagating waves. Furthermore, such systems can be controlled by weak external forces. The spreading depression (SD), a propagating wave of excitation-depression, is such an event, which is additionally linked to a variety of medically important situations, classical migraine being just one example. Especially in retinal tissue, a true part of the CNS, the SD can be observed very easily with the naked eye and by video imaging techniques due to its big intrinsic optical signal. We have investigated the retinal SD and its control by external physical parameters such as gravity and temperature. Beyond this, especially due to its medical relevance, the control of CNS excitability by pharmacological tools is of specific interest, and we have studied this question in detail using the retinal SD as an experimental tool to collect information about the control of CNS tissue excitability.
Medicinal Chemical Properties of Successful Central Nervous System Drugs
Pajouhesh, Hassan; Lenz, George R.
2005-01-01
Summary: Fundamental physiochemical features of CNS drugs are related to their ability to penetrate the blood-brain barrier affinity and exhibit CNS activity. Factors relevant to the success of CNS drugs are reviewed. CNS drugs show values of molecular weight, lipophilicity, and hydrogen bond donor and acceptor that in general have a smaller range than general therapeutics. Pharmacokinetic properties can be manipulated by the medicinal chemist to a significant extent. The solubility, permeability, metabolic stability, protein binding, and human ether-ago-go-related gene inhibition of CNS compounds need to be optimized simultaneously with potency, selectivity, and other biological parameters. The balance between optimizing the physiochemical and pharmacokinetic properties to make the best compromises in properties is critical for designing new drugs likely to penetrate the blood brain barrier and affect relevant biological systems. This review is intended as a guide to designing CNS therapeutic agents with better drug-like properties. PMID:16489364
Kara, Tomas; Leinveber, Pavel; Vlasin, Michal; Jurak, Pavel; Novak, Miroslav; Novak, Zdenek; Chrastina, Jan; Czechowicz, Krzysztof; Belehrad, Milos; Asirvatham, Samuel J
2014-06-01
Despite the substantial progress that has been achieved in interventional cardiology and cardiac electrophysiology, endovascular intervention for the diagnosis and treatment of central nervous system (CNS) disorders such as stroke, epilepsy and CNS malignancy is still limited, particularly due to highly tortuous nature of the cerebral arterial and venous system. Existing interventional devices and techniques enable only limited and complicated access especially into intra-cerebral vessels. The aim of this study was to develop a micro-catheter magnetically-guided technology specifically designed for endovascular intervention and mapping in deep CNS vascular structures. Mapping of electrical brain activity was performed via the venous system on an animal dog model with the support of the NIOBE II system. A novel micro-catheter specially designed for endovascular interventions in the CNS, with the support of the NIOBE II technology, was able to reach safely deep intra-cerebral venous structures and map the electrical activity there. Such structures are not currently accessible using standard catheters. This is the first study demonstrating successful use of a new micro-catheter in combination with NIOBE II technology for endovascular intervention in the brain.
Easton, Curtis R.; Weir, Keiko; Scott, Adina; Moen, Samantha P.; Barger, Zeke; Folch, Albert; Hevner, Robert F.
2014-01-01
Many structures of the mammalian CNS generate propagating waves of electrical activity early in development. These waves are essential to CNS development, mediating a variety of developmental processes, such as axonal outgrowth and pathfinding, synaptogenesis, and the maturation of ion channel and receptor properties. In the mouse cerebral cortex, waves of activity occur between embryonic day 18 and postnatal day 8 and originate in pacemaker circuits in the septal nucleus and the piriform cortex. Here we show that genetic knock-out of the major synthetic enzyme for GABA, GAD67, selectively eliminates the picrotoxin-sensitive fraction of these waves. The waves that remain in the GAD67 knock-out have a much higher probability of propagating into the dorsal neocortex, as do the picrotoxin-resistant fraction of waves in controls. Field potential recordings at the point of wave initiation reveal different electrical signatures for GABAergic and glutamatergic waves. These data indicate that: (1) there are separate GABAergic and glutamatergic pacemaker circuits within the piriform cortex, each of which can initiate waves of activity; (2) the glutamatergic pacemaker initiates waves that preferentially propagate into the neocortex; and (3) the initial appearance of the glutamatergic pacemaker does not require preceding GABAergic waves. In the absence of GAD67, the electrical activity underlying glutamatergic waves shows greatly increased tendency to burst, indicating that GABAergic inputs inhibit the glutamatergic pacemaker, even at stages when GABAergic pacemaker circuitry can itself initiate waves. PMID:24623764
WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES
Robertson-Shersby-Harvie, R.B.; Dain, J.
1956-11-13
This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength does in wave-guides loaded by means of corrugations.
CNS Anticancer Drug Discovery and Development Conference White Paper
Levin, Victor A.; Tonge, Peter J.; Gallo, James M.; Birtwistle, Marc R.; Dar, Arvin C.; Iavarone, Antonio; Paddison, Patrick J.; Heffron, Timothy P.; Elmquist, William F.; Lachowicz, Jean E.; Johnson, Ted W.; White, Forest M.; Sul, Joohee; Smith, Quentin R.; Shen, Wang; Sarkaria, Jann N.; Samala, Ramakrishna; Wen, Patrick Y.; Berry, Donald A.; Petter, Russell C.
2015-01-01
Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric “Accelerating Drug Discovery and Development for Brain Tumors,” further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward. PMID:26403167
WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson-Shersby-Harvie, R.B.; Dain, J.
1956-11-13
This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength doesmore » in wave-guides loaded by means of corrugations.« less
Sayed, Blayne A; Christy, Alison L; Walker, Margaret E; Brown, Melissa A
2010-06-15
Mast cells contribute to the pathogenesis of experimental autoimmune encephalomyelitis, a rodent model of the human demyelinating disease multiple sclerosis. Yet their site and mode of action is unknown. In both diseases, myelin-specific T cells are initially activated in peripheral lymphoid organs. However, for disease to occur, these cells must enter the immunologically privileged CNS through a breach in the relatively impermeable blood-brain barrier. In this study, we demonstrate that a dense population of resident mast cells in the meninges, structures surrounding the brain and spinal cord, regulate basal CNS barrier function, facilitating initial T cell CNS entry. Through the expression of TNF, mast cells recruit an early wave of neutrophils to the CNS. We propose that neutrophils in turn promote the blood-brain barrier breach and together with T cells lead to further inflammatory cell influx and myelin damage. These findings provide specific targets for intervention in multiple sclerosis as well as other immune-mediated CNS diseases.
Vogel, Adam P; Fletcher, Janet; Snyder, Peter J; Fredrickson, Amy; Maruff, Paul
2011-03-01
Assessment of the voice for supporting classifications of central nervous system (CNS) impairment requires a different practical, methodological, and statistical framework compared with assessment of the voice to guide decisions about change in the CNS. In experimental terms, an understanding of the stability and sensitivity to change of an assessment protocol is required to guide decisions about CNS change. Five experiments (N = 70) were conducted using a set of commonly used stimuli (eg, sustained vowel, reading, extemporaneous speech) and easily acquired measures (eg, f₀-f₄, percent pause). Stability of these measures was examined through their repeated application in healthy adults over brief and intermediate retest intervals (ie, 30 seconds, 2 hours, and 1 week). Those measures found to be stable were then challenged using an experimental model that reliably changes voice acoustic properties (ie, the Lombard effect). Finally, adults with an established CNS-related motor speech disorder (dysarthria) were compared with healthy controls. Of the 61 acoustic variables studied, 36 showed good stability over all three stability experiments (eg, number of pauses, total speech time, speech rate, f₀-f₄. Of the measures with good stability, a number of frequency measures showed a change in response to increased vocal effort resulting from the Lombard effect challenge. Furthermore, several timing measures significantly separated the control and motor speech impairment groups. Measures with high levels of stability within healthy adults, and those that show sensitivity to change and impairment may prove effective for monitoring changes in CNS functioning. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Kinzel, Silke; Lehmann-Horn, Klaus; Torke, Sebastian; Häusler, Darius; Winkler, Anne; Stadelmann, Christine; Payne, Natalie; Feldmann, Linda; Saiz, Albert; Reindl, Markus; Lalive, Patrice H; Bernard, Claude C; Brück, Wolfgang; Weber, Martin S
2016-07-01
In the pathogenesis of central nervous system (CNS) demyelinating disorders, antigen-specific B cells are implicated to act as potent antigen-presenting cells (APC), eliciting waves of inflammatory CNS infiltration. Here, we provide the first evidence that CNS-reactive antibodies (Ab) are similarly capable of initiating an encephalitogenic immune response by targeting endogenous CNS antigen to otherwise inert myeloid APC. In a transgenic mouse model, constitutive production of Ab against myelin oligodendrocyte glycoprotein (MOG) was sufficient to promote spontaneous experimental autoimmune encephalomyelitis (EAE) in the absence of B cells, when mice endogenously contained MOG-recognizing T cells. Adoptive transfer studies corroborated that anti-MOG Ab triggered activation and expansion of peripheral MOG-specific T cells in an Fc-dependent manner, subsequently causing EAE. To evaluate the underlying mechanism, anti-MOG Ab were added to a co-culture of myeloid APC and MOG-specific T cells. At otherwise undetected concentrations, anti-MOG Ab enabled Fc-mediated APC recognition of intact MOG; internalized, processed and presented MOG activated naïve T cells to differentiate in an encephalitogenic manner. In a series of translational experiments, anti-MOG Ab from two patients with an acute flare of CNS inflammation likewise facilitated detection of human MOG. Jointly, these observations highlight Ab-mediated opsonization of endogenous CNS auto-antigen as a novel disease- and/or relapse-triggering mechanism in CNS demyelinating disorders.
Cheng, Yuan; Koh, Leng-Duei; Wang, Fan; Li, Dechang; Ji, Baohua; Yeo, Jingjie; Guan, Guijian; Han, Ming-Yong; Zhang, Yong-Wei
2017-07-06
Hybrid structures of nanomaterials (e.g. tubes, scrolls, threads, cages) and biomaterials (e.g. proteins) hold tremendous potential for applications as drug carriers, biosensors, tissue scaffolds, cancer therapeutic agents, etc. However, in many cases, the interacting forces at the nano-bio interfaces and their roles in controlling the structures and dynamics of nano-bio-hybrid systems are very complicated but poorly understood. In this study, we investigate the structure and mechanical behavior of a protein-based hybrid structure, i.e., a carbon nanoscroll (CNS)-silk crystallite with a hydration level controllable by an interlayer interaction in CNS. Our findings demonstrate that CNS with a reduced core size not only shields the crystallite from a weakening effect of water, but also markedly strengthens the crystallite. Besides water shielding, the enhanced strength arises from an enhanced interaction between the crystallite and CNS due to the enhanced interlayer interaction in CNS. In addition, the interfacial strength for pulling the crystallite out of the CNS-silk structure is found to be dependent on both the interlayer interaction energy in CNS as well as the sequence of protein at the CNS-silk interface. The present study is of significant value in designing drugs or protein delivery vehicles for biomedical applications, and serves as a general guide in designing novel devices based on rolled-up configurations of two-dimensional (2D) materials.
Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Zhenhua; Yu, Lingyu
The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region nearmore » the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Furthermore, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.« less
Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates
Tian, Zhenhua; Yu, Lingyu
2017-01-05
The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region nearmore » the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Furthermore, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.« less
Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates.
Tian, Zhenhua; Yu, Lingyu
2017-01-05
The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region near the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Moreover, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.
A guided wave dispersion compensation method based on compressed sensing
NASA Astrophysics Data System (ADS)
Xu, Cai-bin; Yang, Zhi-bo; Chen, Xue-feng; Tian, Shao-hua; Xie, Yong
2018-03-01
The ultrasonic guided wave has emerged as a promising tool for structural health monitoring (SHM) and nondestructive testing (NDT) due to their capability to propagate over long distances with minimal loss and sensitivity to both surface and subsurface defects. The dispersion effect degrades the temporal and spatial resolution of guided waves. A novel ultrasonic guided wave processing method for both single mode and multi-mode guided waves dispersion compensation is proposed in this work based on compressed sensing, in which a dispersion signal dictionary is built by utilizing the dispersion curves of the guided wave modes in order to sparsely decompose the recorded dispersive guided waves. Dispersion-compensated guided waves are obtained by utilizing a non-dispersion signal dictionary and the results of sparse decomposition. Numerical simulations and experiments are implemented to verify the effectiveness of the developed method for both single mode and multi-mode guided waves.
Li, Y.-G.; Ellsworth, W.L.; Thurber, C.H.; Malin, P.E.; Aki, K.
1997-01-01
Fault-zone guided waves were successfully excited by near-surface explosions in the San Andreas fault zone both at Parkfield and Cienega Valley, central California. The guided waves were observed on linear, three-component seismic arrays deployed across the fault trace. These waves were not excited by explosions located outside the fault zone. The amplitude spectra of guided waves show a maximum peak at 2 Hz at Parkfield and 3 Hz at Cienega Valley. The guided wave amplitude decays sharply with observation distance from the fault trace. The explosion-excited fault-zone guided waves are similar to those generated by earthquakes at Parkfield but have lower frequencies and travel more slowly. These observations suggest that the fault-zone wave guide has lower seismic velocities as it approaches the surface at Parkfield. We have modeled the waveforms as S waves trapped in a low-velocity wave guide sandwiched between high-velocity wall rocks, resulting in Love-type fault-zone guided waves. While the results are nonunique, the Parkfield data are adequately fit by a shallow wave guide 170 m wide with an S velocity 0.85 km/sec and an apparent Q ??? 30 to 40. At Cienega Valley, the fault-zone wave guide appears to be about 120 m wide with an S velocity 0.7 km/sec and a Q ??? 30.
The Role of Direct Current Electric Field-Guided Stem Cell Migration in Neural Regeneration.
Yao, Li; Li, Yongchao
2016-06-01
Effective directional axonal growth and neural cell migration are crucial in the neural regeneration of the central nervous system (CNS). Endogenous currents have been detected in many developing nervous systems. Experiments have demonstrated that applied direct current (DC) electric fields (EFs) can guide axonal growth in vitro, and attempts have been made to enhance the regrowth of damaged spinal cord axons using DC EFs in in vivo experiments. Recent work has revealed that the migration of stem cells and stem cell-derived neural cells can be guided by DC EFs. These studies have raised the possibility that endogenous and applied DC EFs can be used to direct neural tissue regeneration. Although the mechanism of EF-directed axonal growth and cell migration has not been fully understood, studies have shown that the polarization of cell membrane proteins and the activation of intracellular signaling molecules are involved in the process. The application of EFs is a promising biotechnology for regeneration of the CNS.
High-frequency plasma-heating apparatus
Brambilla, Marco; Lallia, Pascal
1978-01-01
An array of adjacent wave guides feed high-frequency energy into a vacuum chamber in which a toroidal plasma is confined by a magnetic field, the wave guide array being located between two toroidal current windings. Waves are excited in the wave guide at a frequency substantially equal to the lower frequency hybrid wave of the plasma and a substantially equal phase shift is provided from one guide to the next between the waves therein. For plasmas of low peripheral density gradient, the guides are excited in the TE.sub.01 mode and the output electric field is parallel to the direction of the toroidal magnetic field. For exciting waves in plasmas of high peripheral density gradient, the guides are excited in the TM.sub.01 mode and the magnetic field at the wave guide outlets is parallel to the direction of the toroidal magnetic field. The wave excited at the outlet of the wave guide array is a progressive wave propagating in the direction opposite to that of the toroidal current and is, therefore, not absorbed by so-called "runaway" electrons.
Reaction-diffusion waves in neuronal tissue and the window of cortical excitability
NASA Astrophysics Data System (ADS)
Dahlem, M. A.; Müller, S. C.
2004-07-01
Spreading depression (SD) is a dynamic wave phenomenon occurring in all gray matter regions of the central nervous systems (CNS). It is characterized by a sudden breakdown of neuronal activity and accompanied by a massive influx and efflux of ions across the membrane of neurons. The retina is a constituent of the CNS in which one can easily observe the dynamic behavior of the SD wave fronts, because SD changes the optical properties of the tissue. There is ample evidence that SD belongs to the self-organization processes due to the coupling of reaction with diffusion in excitable medium. It is assumed that the occurrence of SD is associated with some neurological symptoms of migraine with aura. A frequently reported aura symptom is a traveling visual blind region (scotoma) with a preceding figure of scintillating line segments. The characteristic form and development of the scotoma suggests that the underlying phenomenon is a wave propagating through the primary visual cortex, most likely the cortical spreading depression. In this article we discuss similarities between SD waves and the migraine aura on the basis of properties of reaction-diffusion waves known from other excitable media. In particular, the propagation velocities, the shape and the dynamics of the waves are compared with each other. We find that the assumption of the neuronal tissue to be in a state of only weak excitability explains some properties of the migraine aura, such as the confined appearance and its propagation with a stable velocity.
Wave envelope technique for multimode wave guide problems
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Sudharsanan, S. I.
1986-01-01
A fast method for solving wave guide problems is proposed. In particular, the guide is considered to be inhomogeneous allowing propagation of waves of higher order modes. Such problems have been handled successfully for acoustic wave propagation problems with single mode and finite length. This paper extends this concept to electromagnetic wave guides with several modes and infinite length. The method is described and results of computations are presented.
Lemma, Siria A; Pasanen, Anna Kaisa; Haapasaari, Kirsi-Maria; Sippola, Antti; Sormunen, Raija; Soini, Ylermi; Jantunen, Esa; Koivunen, Petri; Salokorpi, Niina; Bloigu, Risto; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi
2016-05-01
Central nervous system (CNS) relapse occurs in around 5% of diffuse large B-cell lymphoma (DLBCL) cases. No biomarkers to identify high-risk patients have been discovered. We evaluated the expression of lymphocyte-guiding chemokine receptors in systemic and CNS lymphomas. Immunohistochemical staining for CXCR4, CXCR5, CCR7, CXCL12, and CXCL13 was performed on 89 tissue samples, including cases of primary central nervous system lymphoma (PCNSL), secondary CNS lymphoma (sCNSL), and systemic DLBCL. Also, 10 reactive lymph node samples were included. Immunoelectron microscopy was performed on two PCNSLs, one sCNSL, one systemic DLBCL, and one reactive lymph node samples, and staining was performed for CXCR4, CXCR5, CXCL12, and CXCL13. Chi-square test was used to determine correlations between clinical parameters, diagnostic groups, and chemokine receptor expression. Strong nuclear CXCR4 positivity correlated with systemic DLBCL, whereas strong cytoplasmic CXCR5 positivity correlated with CNS involvement (P = 0.003 and P = 0.039). Immunoelectron microscopy revealed a nuclear CXCR4 staining in reactive lymph node, compared with cytoplasmic and membranous localization seen in CNS lymphomas. We found that CNS lymphoma presented a chemokine receptor profile different from systemic disease. Our findings give new information on the CNS tropism of DLBCL and, if confirmed, may contribute to more effective targeting of CNS prophylaxis among patients with DLBCL. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Numerical study of electromagnetic waves generated by a prototype dielectric logging tool
Ellefsen, K.J.; Abraham, J.D.; Wright, D.L.; Mazzella, A.T.
2004-01-01
To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency-wavenumber method. When the propagation velocity in the borehole was greater than that in the formation (e.g., an air-filled borehole in the unsaturated zone), only a guided wave propagated along the borehole. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave radiated electromagnetic energy into the formation, causing its amplitude to decrease. When the propagation velocity in the borehole was less than that in the formation (e.g., a water-filled borehole in the saturated zone), both a refracted wave and a guided wave propagated along the borehole. The velocity of the refracted wave equaled the phase velocity of a plane wave in the formation, and the refracted wave preceded the guided wave. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave did not radiate electromagnetic energy into the formation. To analyze traces recorded by the prototype tool during laboratory tests, they were compared to traces calculated with the finite-difference method. The first parts of both the recorded and the calculated traces were similar, indicating that guided and refracted waves indeed propagated along the prototype tool. ?? 2004 Society of Exploration Geophysicists. All rights reserved.
Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves
NASA Astrophysics Data System (ADS)
Hasanian, Mostafa; Lissenden, Cliff J.
2018-04-01
While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.
Jiang, Ludi; Chen, Jiahua; He, Yusu; Zhang, Yanling; Li, Gongyu
2016-02-01
The blood-brain barrier (BBB), a highly selective barrier between central nervous system (CNS) and the blood stream, restricts and regulates the penetration of compounds from the blood into the brain. Drugs that affect the CNS interact with the BBB prior to their target site, so the prediction research on BBB permeability is a fundamental and significant research direction in neuropharmacology. In this study, we combed through the available data and then with the help of support vector machine (SVM), we established an experiment process for discovering potential CNS compounds and investigating the mechanisms of BBB permeability of them to advance the research in this field four types of prediction models, referring to CNS activity, BBB permeability, passive diffusion and efflux transport, were obtained in the experiment process. The first two models were used to discover compounds which may have CNS activity and also cross the BBB at the same time; the latter two were used to elucidate the mechanism of BBB permeability of those compounds. Three optimization parameter methods, Grid Search, Genetic Algorithm (GA), and Particle Swarm Optimization (PSO), were used to optimize the SVM models. Then, four optimal models were selected with excellent evaluation indexes (the accuracy, sensitivity and specificity of each model were all above 85%). Furthermore, discrimination models were utilized to study the BBB properties of the known CNS activity compounds in Chinese herbs and this may guide the CNS drug development. With the relatively systematic and quick approach, the application rationality of traditional Chinese medicines for treating nervous system disease in the clinical practice will be improved.
NASA Astrophysics Data System (ADS)
Raphael, Itay; Mahesula, Swetha; Purkar, Anjali; Black, David; Catala, Alexis; Gelfond, Jonathon A. L.; Forsthuber, Thomas G.; Haskins, William E.
2014-09-01
Central nervous system-specific proteins (CSPs), transported across the damaged blood-brain-barrier (BBB) to cerebrospinal fluid (CSF) and blood (serum), might be promising diagnostic, prognostic and predictive protein biomarkers of disease in individual multiple sclerosis (MS) patients because they are not expected to be present at appreciable levels in the circulation of healthy subjects. We hypothesized that microwave & magnetic (M2) proteomics of CSPs in brain tissue might be an effective means to prioritize putative CSP biomarkers for future immunoassays in serum. To test this hypothesis, we used M2 proteomics to longitudinally assess CSP expression in brain tissue from mice during experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Confirmation of central nervous system (CNS)-infiltrating inflammatory cell response and CSP expression in serum was achieved with cytokine ELISPOT and ELISA immunoassays, respectively, for selected CSPs. M2 proteomics (and ELISA) revealed characteristic CSP expression waves, including synapsin-1 and α-II-spectrin, which peaked at day 7 in brain tissue (and serum) and preceded clinical EAE symptoms that began at day 10 and peaked at day 20. Moreover, M2 proteomics supports the concept that relatively few CNS-infiltrating inflammatory cells can have a disproportionally large impact on CSP expression prior to clinical manifestation of EAE.
... CT scan may be done at the same time. This is called a PET-CT. MRI (magnetic resonance imaging) : A procedure that uses a magnet, radio waves , and a computer to make a series of detailed pictures of areas inside the body. ...
Guided wave and damage detection in composite laminates using different fiber optic sensors.
Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Shirai, Takehiro
2009-01-01
Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG) and Doppler effect-based fiber optic (FOD) sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber reinforced plastic (CFRP) laminate and acquired by these fiber optic sensors. Characteristics of these fiber optic sensors in ultrasonic guided wave detection were systematically compared. Results demonstrated that both the FBG and FOD sensors can be applied in guided wave and damage detection for the CFRP laminates. The signal-to-noise ratio (SNR) of guided wave signal captured by an FOD sensor is relatively high in comparison with that of the FBG sensor because of their different physical principles in ultrasonic detection. Further, the FOD sensor is sensitive to the damage-induced fundamental shear horizontal (SH(0)) guided wave that, however, cannot be detected by using the FBG sensor, because the FOD sensor is omnidirectional in ultrasound detection and, in contrast, the FBG sensor is severely direction dependent.
NASA Astrophysics Data System (ADS)
Mi, Binbin; Xia, Jianghai; Shen, Chao; Wang, Limin
2018-03-01
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ``jumping'' appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P-SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg; Zhou, Yu
2016-07-15
Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonantmore » frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.« less
NASA Technical Reports Server (NTRS)
Roth, D. J.; Cosgriff, L. M.; Martin, R. E.; Verrilli, M. J.; Bhatt, R. T.
2003-01-01
In this study, an ultrasonic guided wave scan system was used to characterize various microstructural and flaw conditions in two types of ceramic matrix composites, SiC/SiC and C/SiC. Rather than attempting to isolate specific lamb wave modes to use for characterization (as is desired for many types of guided wave inspection problems), the guided wave scan system utilizes the total (multi-mode) ultrasonic response in its inspection analysis. Several time and frequency-domain parameters are calculated from the ultrasonic guided wave signal at each scan location to form images. Microstructural and defect conditions examined include delamination, density variation, cracking, and pre/ post-infiltration. Results are compared with thermographic imaging methods. Although the guided wave technique is commonly used so scanning can be eliminated, applying the technique in the scanning mode allows a more precise characterization of defect conditions.
Requirements for an Integrated UAS CNS Architecture
NASA Technical Reports Server (NTRS)
Templin, Fred; Jain, Raj; Sheffield, Greg; Taboso, Pedro; Ponchak, Denise
2017-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service. Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.
Samaitis, Vykintas; Mažeika, Liudas
2017-08-08
Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain and predict the response spectrum of guided waves throughout the development of any structural health monitoring system.
Samaitis, Vykintas; Mažeika, Liudas
2017-01-01
Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain and predict the response spectrum of guided waves throughout the development of any structural health monitoring system. PMID:28786924
Treatment Option Overview (Primary CNS Lymphoma)
... CT scan may be done at the same time. This is called a PET-CT. MRI (magnetic resonance imaging) : A procedure that uses a magnet, radio waves , and a computer to make a series of detailed pictures of areas inside the body. ...
Treatment Options for Primary CNS Lymphoma
... CT scan may be done at the same time. This is called a PET-CT. MRI (magnetic resonance imaging) : A procedure that uses a magnet, radio waves , and a computer to make a series of detailed pictures of areas inside the body. ...
Integrating RNA sequencing into neuro-oncology practice.
Rogawski, David S; Vitanza, Nicholas A; Gauthier, Angela C; Ramaswamy, Vijay; Koschmann, Carl
2017-11-01
Malignant tumors of the central nervous system (CNS) cause substantial morbidity and mortality, yet efforts to optimize chemo- and radiotherapy have largely failed to improve dismal prognoses. Over the past decade, RNA sequencing (RNA-seq) has emerged as a powerful tool to comprehensively characterize the transcriptome of CNS tumor cells in one high-throughput step, leading to improved understanding of CNS tumor biology and suggesting new routes for targeted therapies. RNA-seq has been instrumental in improving the diagnostic classification of brain tumors, characterizing oncogenic fusion genes, and shedding light on intratumor heterogeneity. Currently, RNA-seq is beginning to be incorporated into regular neuro-oncology practice in the form of precision neuro-oncology programs, which use information from tumor sequencing to guide implementation of personalized targeted therapies. These programs show great promise in improving patient outcomes for tumors where single agent trials have been ineffective. As RNA-seq is a relatively new technique, many further applications yielding new advances in CNS tumor research and management are expected in the coming years. Copyright © 2017 Elsevier Inc. All rights reserved.
Guided acoustic wave inspection system
Chinn, Diane J.
2004-10-05
A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.
NASA Astrophysics Data System (ADS)
Sun, Hu; Zhang, Aijia; Wang, Yishou; Qing, Xinlin P.
2017-04-01
Guided wave-based structural health monitoring (SHM) has been given considerable attention and widely studied for large-scale aircraft structures. Nevertheless, it is difficult to apply SHM systems on board or online, for which one of the most serious reasons is the environmental influence. Load is one fact that affects not only the host structure, in which guided wave propagates, but also the PZT, by which guided wave is transmitted and received. In this paper, numerical analysis using finite element method is used to study the load effect on guided wave acquired by PZT. The static loads with different grades are considered to analyze its effect on guided wave signals that PZT transmits and receives. Based on the variation trend of guided waves versus load, a load compensation method is developed to eliminate effects of load in the process of damage detection. The probabilistic reconstruction algorithm based on the signal variation of transmitter-receiver path is employed to identify the damage. Numerical tests is conducted to verify the feasibility and effectiveness of the given method.
Miyamoto, Yuki; Yamauchi, Junji; Tanoue, Akito
2008-08-13
Myelin formation of the CNS is a complex and dynamic process. Before the onset of myelination, oligodendrocytes (OLs), the myelin-forming glia of the CNS, proliferate and migrate along axons. Little is known about the molecular mechanisms underlying the early myelination processes. Here, we show that platelet-derived growth factor (PDGF), the crucial physiological ligand in early OL development, controls the migration of oligodendrocyte precursor cells (OPCs) through cyclin-dependent kinase 5 (Cdk5). PDGF stimulates Cdk5 activity in a time-dependent manner, whereas suppression of Cdk5 by the specific inhibitor roscovitine or by the retrovirus encoding short-hairpin RNA for Cdk5 impairs PDGF-dependent OPC migration. The activation of Cdk5 by PDGF is mediated by the phosphorylation of the nonreceptor tyrosine kinase, Fyn, whose inhibition reduces PDGF-dependent OPC migration. Furthermore, Cdk5 regulates PDGF-dependent OPC migration through the direct phosphorylation of WASP (Wiskott-Aldrich syndrome protein)-family verprolin-homologous protein 2 (WAVE2). Cdk5 phosphorylates WAVE2 at Ser-137 in vitro. Infection of the WAVE2 construct harboring the Ser-137-to-Ala reduces PDGF-dependent migration. Together, PDGF regulates OPC migration through an as-yet-unidentified signaling cascade coupling Fyn kinase to Cdk5 phosphorylation of WAVE2. These results provide new insights into both the role of Cdk5 in glial cells and the molecular mechanisms controlling the early developmental stage of OLs.
Application of interface waves for near surface damage detection in hybrid structures
NASA Astrophysics Data System (ADS)
Jahanbin, M.; Santhanam, S.; Ihn, J.-B.; Cox, A.
2017-04-01
Guided waves are acoustic waves that are guided by boundaries. Depending on the structural geometry, guided waves can either propagate between boundaries, known as plate waves, or propagate on the surface of the objects. Many different types of surface waves exist based on the material property of the boundary. For example Rayleigh wave in solid - air, Scholte wave in solid - liquid, Stoneley in solid - solid interface and many other different forms like Love wave on inhomogeneous surfaces, creeping waves, etc. This research work is demonstrating the application of surface and interface waves for detection of interfacial damages in hybrid bonded structures.
On the Piezoelectric Detection of Guided Ultrasonic Waves
2017-01-01
In order to quantify the wave motion of guided ultrasonic waves, the characteristics of piezoelectric detectors, or ultrasonic transducers and acoustic emission sensors, have been evaluated systematically. Such guided waves are widely used in structural health monitoring and nondestructive evaluation, but methods of calibrating piezoelectric detectors have been inadequate. This study relied on laser interferometry for the base displacement measurement of bar waves, from which eight different guided wave test set-ups are developed with known wave motion using piezoelectric transmitters. Both plates and bars of 12.7 and 6.4 mm thickness were used as wave propagation media. The upper frequency limit was 2 MHz. Output of guided wave detectors were obtained on the test set-ups and their receiving sensitivities were characterized and averaged. While each sensitivity spectrum was noisy for a detector, the averaged spectrum showed a good convergence to a unique receiving sensitivity. Twelve detectors were evaluated and their sensitivity spectra determined in absolute units. Generally, these showed rapidly dropping sensitivity with increasing frequency due to waveform cancellation on their sensing areas. This effect contributed to vastly different sensitivities to guided wave and to normally incident wave for each one of the 12 detectors tested. Various other effects are discussed and recommendations on methods of implementing the approach developed are provided. PMID:29156579
Defect induced guided waves mode conversion
NASA Astrophysics Data System (ADS)
Wandowski, Tomasz; Kudela, Pawel; Malinowski, Pawel; Ostachowicz, Wieslaw
2016-04-01
This paper deals with analysis of guided waves mode conversion phenomenon in fiber reinforced composite materials. Mode conversion phenomenon may take place when propagating elastic guided waves interact with discontinuities in the composite waveguide. The examples of such discontinuities are sudden thickness change or delamination between layers in composite material. In this paper, analysis of mode conversion phenomenon is based on full wave-field signals. In the full wave-field approach signals representing propagation of elastic waves are gathered from dense mesh of points that span over investigated area of composite part. This allow to animate the guided wave propagation. The reported analysis is based on signals resulting from numerical calculations and experimental measurements. In both cases defect in the form of delamination is considered. In the case of numerical research, Spectral Element Method (SEM) is utilized, in which a mesh is composed of 3D elements. Numerical model includes also piezoelectric transducer. Full wave-field experimental measurements are conducted by using piezoelectric transducer for guided wave excitation and Scanning Laser Doppler Vibrometer (SLDV) for sensing.
PROGRESS AND PROBLEMS IN THE APPLICATION OF FOCUSED ULTRASOUND FOR BLOOD-BRAIN BARRIER DISRUPTION
Vykhodtseva, Natalia; McDannold, Nathan; Hynynen, Kullervo
2008-01-01
Advances in neuroscience have resulted in the development of new diagnostic and therapeutic agents for potential use in the central nervous system (CNS). However, the ability to deliver the majority of these agents to the brain is limited by the blood–brain barrier (BBB), a specialized structure of the blood vessel wall that hampers transport and diffusion from the blood to the brain. Many CNS disorders could be treated with drugs, enzymes, genes, or large-molecule biotechnological products such as recombinant proteins, if they could cross the BBB. This article reviews the problems of the BBB presence in treating the vast majority of CNS diseases and the efforts to circumvent the BBB through the design of new drugs and the development of more sophisticated delivery methods. Recent advances in the development of noninvasive, targeted drug delivery by MRI-guided ultrasound-induced BBB disruption are also summarized. PMID:18511095
Ultrasonic guided waves in eccentric annular pipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu
2014-02-18
This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modesmore » in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection.« less
Electron wind in strong wave guide fields
NASA Astrophysics Data System (ADS)
Krienen, F.
1985-03-01
The X-ray activity observed near highly powered waveguide structures is usually caused by local electric discharges originating from discontinuities such as couplers, tuners or bends. In traveling waves electrons move in the direction of the power flow. Seed electrons can multipactor in a traveling wave, the moving charge pattern is different from the multipactor in a resonant structure and is self-extinguishing. The charge density in the wave guide will modify impedance and propagation constant of the wave guide. The radiation level inside the output wave guide of the SLAC, 50 MW, S-band, klystron is estimated. Possible contributions of radiation to window failure are discussed.
Finite element analysis of electromagnetic propagation in an absorbing wave guide
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1986-01-01
Wave guides play a significant role in microwave space communication systems. The attenuation per unit length of the guide depends on its construction and design frequency range. A finite element Galerkin formulation has been developed to study TM electromagnetic propagation in complex two-dimensional absorbing wave guides. The analysis models the electromagnetic absorptive characteristics of a general wave guide which could be used to determine wall losses or simulate resistive terminations fitted into the ends of a guide. It is believed that the general conclusions drawn by using this simpler two-dimensional geometry will be fundamentally the same for other geometries.
On possible plume-guided seismic waves
Julian, B.R.; Evans, J.R.
2010-01-01
Hypothetical thermal plumes in the Earth's mantle are expected to have low seismic-wave speeds and thus would support the propagation of guided elastic waves analogous to fault-zone guided seismic waves, fiber-optic waves, and acoustic waves in the oceanic SOund Fixing And Ranging channel. Plume-guided waves would be insensitive to geometric complexities in the wave guide, and their dispersion would make them distinctive on seismograms and would provide information about wave-guide structure that would complement seismic tomography. Detecting such waves would constitute strong evidence of a new kind for the existence of plumes. A cylindrical channel embedded in an infinite medium supports two classes of axially symmetric elastic-wave modes, torsional and longitudinal-radial. Torsional modes have rectilinear particle motion tangent to the cylinder surface. Longitudinal-radial modes have elliptical particle motion in planes that include the cylinder axis, with retrograde motion near the axis. The direction of elliptical particle motion reverses with distance from the axis: once for the fundamental mode, twice for the first overtone, and so on. Each mode exists only above its cut-off frequency, where the phase and group speeds equal the shear-wave speed in the infinite medium. At high frequencies, both speeds approach the shear-wave speed in the channel. All modes have minima in their group speeds, which produce Airy phases on seismograms. For shear wave-speed contrasts of a few percent, thought to be realistic for thermal plumes in the Earth, the largest signals are inversely dispersed and have dominant frequencies of about 0.1-1 Hz and durations of 15-30 sec. There are at least two possible sources of observable plume waves: (1) the intersection of mantle plumes with high-amplitude core-phase caustics in the deep mantle; and (2) ScS-like reflection at the core-mantle boundary of downward-propagating guided waves. The widespread recent deployment of broadband seismometers makes searching for these waves possible.
Ultrasonic guided wave for monitoring corrosion of steel bar
NASA Astrophysics Data System (ADS)
Liu, Xi; Qin, Lei; Huang, Bosheng
2018-01-01
Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.
Simulation tools for guided wave based structural health monitoring
NASA Astrophysics Data System (ADS)
Mesnil, Olivier; Imperiale, Alexandre; Demaldent, Edouard; Baronian, Vahan; Chapuis, Bastien
2018-04-01
Structural Health Monitoring (SHM) is a thematic derived from Non Destructive Evaluation (NDE) based on the integration of sensors onto or into a structure in order to monitor its health without disturbing its regular operating cycle. Guided wave based SHM relies on the propagation of guided waves in plate-like or extruded structures. Using piezoelectric transducers to generate and receive guided waves is one of the most widely accepted paradigms due to the low cost and low weight of those sensors. A wide range of techniques for flaw detection based on the aforementioned setup is available in the literature but very few of these techniques have found industrial applications yet. A major difficulty comes from the sensitivity of guided waves to a substantial number of parameters such as the temperature or geometrical singularities, making guided wave measurement difficult to analyze. In order to apply guided wave based SHM techniques to a wider spectrum of applications and to transfer those techniques to the industry, the CEA LIST develops novel numerical methods. These methods facilitate the evaluation of the robustness of SHM techniques for multiple applicative cases and ease the analysis of the influence of various parameters, such as sensors positioning or environmental conditions. The first numerical tool is the guided wave module integrated to the commercial software CIVA, relying on a hybrid modal-finite element formulation to compute the guided wave response of perturbations (cavities, flaws…) in extruded structures of arbitrary cross section such as rails or pipes. The second numerical tool is based on the spectral element method [2] and simulates guided waves in both isotropic (metals) and orthotropic (composites) plate like-structures. This tool is designed to match the widely accepted sparse piezoelectric transducer array SHM configuration in which each embedded sensor acts as both emitter and receiver of guided waves. This tool is under development and will be adapted to simulate complex real-life structures such as curved composite panels with stiffeners. This communication will present these numerical tools and their main functionalities.
Allegri, Pia; Rissotto, Roberto; Herbort, Carl P.; Murialdo, Ugo
2011-01-01
A number of inflammatory, infectious, neoplastic and idiopathic disorders affect the eye and the central nervous system (CNS) concurrently or at different time frames. These conditions pose a diagnostic challenge to the clinician since they may present with similar ocular and neurological manifestations. The purpose of this review is to describe major neurological syndromes including multiple sclerosis, Vogt-Koyanagi-Harada disease, other autoimmune syndromes, and several infectious diseases which may affect the eye. This article may serve as a guide for the diagnosis and treatment of such disorders. It should be noted that these conditions have been viewed from a neurologist’s perspective thereby neurologic involvement is stressed. PMID:22454751
Ultrasonic Guided Waves for Aging Wire Insulation Assessment
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2001-01-01
Environmentally aged wire insulation can become brittle and crack and thus expose the underlying conductive wire to the potential for short circuits and fire. The feasibility of using ultrasonic guided waves to measure insulation condition was examined. First a simple model to study guided wave propagation in a bare and thin plastic coated wire was examined and then some aviation grade wire samples that had been heat-damaged. Initial measurements indicate that ultrasonic guided wave velocity can be used to monitor insulation stiffness.
NASA Astrophysics Data System (ADS)
Bostron, Jason
Ultrasonic guided waves are becoming more widely used in nondestructive evaluation applications due to their efficiency in defect detection, ability to inspect hidden areas, and other reasons. This dissertation addresses two main topics: ultrasonic guided wave bond evaluation of thin and thick coatings on thick metallic structures, and the use of a novel phased array technique for optimal guided wave mode and frequency selection. (Abstract shortened by UMI.).
Elastic guided waves in a layered plate with rectangular cross section.
Mukdadi, O M; Desai, Y M; Datta, S K; Shah, A H; Niklasson, A J
2002-11-01
Guided waves in a layered elastic plate of rectangular cross section (finite width and thickness) has been studied in this paper. A semianalytical finite element method in which the deformation of the cross section is modeled by two-dimensional finite elements and analytical representation of propagating waves along the length of the plate has been used. The method is applicable to arbitrary number of layers and general anisotropic material properties of each layer, and is similar to the stiffness method used earlier to study guided waves in a laminated composite plate of infinite width. Numerical results showing the effect of varying the width of the plate on the dispersion of guided waves are presented and are compared with those for an infinite plate. In addition, effect of thin anisotropic coating or interface layers on the guided waves is investigated.
Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes.
Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore
2017-03-01
The effect of pressurization stresses on helical guided waves in a thin-walled fluid-filled pipe is studied by modeling leaky Lamb waves in a stressed plate bordered by fluid. Fluid pressurization produces hoop and longitudinal stresses in a thin-walled pipe, which corresponds to biaxial in-plane stress in a plate waveguide model. The effect of stress on guided wave propagation is accounted for through nonlinear elasticity and finite deformation theory. Emphasis is placed on the stress dependence of the energy velocity of the guided wave modes. For this purpose, an expression for the energy velocity of leaky Lamb waves in a stressed plate is derived. Theoretical results are presented for the mode, frequency, and directional dependent variations in energy velocity with respect to stress. An experimental setup is designed for measuring variations in helical wave energy velocity in a thin-walled water-filled steel pipe at different levels of pressure. Good agreement is achieved between the experimental variations in energy velocity for the helical guided waves and the theoretical leaky Lamb wave solutions. Copyright © 2016 Elsevier B.V. All rights reserved.
Structural and Process Factors That Influence Clinical Nurse Specialist Role Implementation.
Kilpatrick, Kelley; Tchouaket, Eric; Carter, Nancy; Bryant-Lukosius, Denise; DiCenso, Alba
2016-01-01
The aim of this study was to examine the influence of structure and process on clinical nurse specialist (CNS) role implementation. We conducted a secondary analysis of cross-sectional survey data. The study was performed in Canada. The authors included 445 of 471 questionnaires (94.5%) of graduate-prepared CNSs. Based on Donabedian's framework, we conducted a secondary analysis of CNS responses using hierarchical regression. The internal consistency of the 6 CNS role dimensions and team dynamics subscales was excellent. The use of a framework to guide CNS role implementation influences all the role dimensions. Employer understanding of the CNS role, working in an urban catchment area, specialty certification, and more years in a CNS role had a direct positive influence on team dynamics. Full-time employment exerted a direct negative influence on this dimension. Furthermore, team dynamics (as a mediator variable), seeing patients in practice, and having an office in the clinical unit exerted a direct positive influence on the clinical dimension. Having an annual performance appraisal and a job description exerted a direct negative influence on the clinical dimension. Employer understanding, working in an urban area, full-time employment, and specialty certification had an indirect effect on the clinical dimension. Accountability to a nonnurse manager exerted a direct negative influence on the education dimension. The research and scholarly/professional development dimensions were influenced by more years in a CNS role. Accountability to a nurse manager exerted a direct positive influence on the organizational leadership dimension; unionization and seeing patients in practice had a direct negative influence on this dimension. Seeing patients in practice and full-time employment exerted a direct positive influence on the consultation dimension. The identification of structures and processes that influence CNS role implementation may inform strategies used by providers and decision makers to optimize these roles across healthcare settings and support the delivery of high-quality care.
Guided ultrasonic wave beam skew in silicon wafers
NASA Astrophysics Data System (ADS)
Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul
2018-04-01
In the photovoltaic industry, monocrystalline silicon wafers are employed for solar cells with high conversion efficiency. Micro-cracks induced by the cutting process in the thin wafers can lead to brittle wafer fracture. Guided ultrasonic waves would offer an efficient methodology for the in-process non-destructive testing of wafers to assess micro-crack density. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the propagation direction relative to the crystal orientation. Selective guided ultrasonic wave excitation was achieved using a contact piezoelectric transducer with custom-made wedges for the A0 and S0 Lamb wave modes and a transducer holder to achieve controlled contact pressure and orientation. The out-of-plane component of the guided wave propagation was measured using a non-contact laser interferometer. The phase slowness (velocity) of the two fundamental Lamb wave modes was measured experimentally for varying propagation directions relative to the crystal orientation and found to match theoretical predictions. Significant wave beam skew was observed experimentally, especially for the S0 mode, and investigated from 3D finite element simulations. Good agreement was found with the theoretical predictions based on nominal material properties of the silicon wafer. The important contribution of guided wave beam skewing effects for the non-destructive testing of silicon wafers was demonstrated.
Delamination Defect Detection Using Ultrasonic Guided Waves in Advanced Hybrid Structural Elements
NASA Astrophysics Data System (ADS)
Yan, Fei; Qi, Kevin ``Xue''; Rose, Joseph L.; Weiland, Hasso
2010-02-01
Nondestructive testing for multilayered structures is challenging because of increased numbers of layers and plate thicknesses. In this paper, ultrasonic guided waves are applied to detect delamination defects inside a 23-layer Alcoa Advanced Hybrid Structural plate. A semi-analytical finite element (SAFE) method generates dispersion curves and wave structures in order to select appropriate wave structures to detect certain defects. One guided wave mode and frequency is chosen to achieve large in-plane displacements at regions of interest. The interactions of the selected mode with defects are simulated using finite element models. Experiments are conducted and compared with bulk wave measurements. It is shown that guided waves can detect deeply embedded damages inside thick multilayer fiber-metal laminates with suitable mode and frequency selection.
Applications of Genomic Sequencing in Pediatric CNS Tumors.
Bavle, Abhishek A; Lin, Frank Y; Parsons, D Williams
2016-05-01
Recent advances in genome-scale sequencing methods have resulted in a significant increase in our understanding of the biology of human cancers. When applied to pediatric central nervous system (CNS) tumors, these remarkable technological breakthroughs have facilitated the molecular characterization of multiple tumor types, provided new insights into the genetic basis of these cancers, and prompted innovative strategies that are changing the management paradigm in pediatric neuro-oncology. Genomic tests have begun to affect medical decision making in a number of ways, from delineating histopathologically similar tumor types into distinct molecular subgroups that correlate with clinical characteristics, to guiding the addition of novel therapeutic agents for patients with high-risk or poor-prognosis tumors, or alternatively, reducing treatment intensity for those with a favorable prognosis. Genomic sequencing has also had a significant impact on translational research strategies in pediatric CNS tumors, resulting in wide-ranging applications that have the potential to direct the rational preclinical screening of novel therapeutic agents, shed light on tumor heterogeneity and evolution, and highlight differences (or similarities) between pediatric and adult CNS tumors. Finally, in addition to allowing the identification of somatic (tumor-specific) mutations, the analysis of patient-matched constitutional (germline) DNA has facilitated the detection of pathogenic germline alterations in cancer genes in patients with CNS tumors, with critical implications for genetic counseling and tumor surveillance strategies for children with familial predisposition syndromes. As our understanding of the molecular landscape of pediatric CNS tumors continues to advance, innovative applications of genomic sequencing hold significant promise for further improving the care of children with these cancers.
Pelletier, René; Higgins, Johanne; Bourbonnais, Daniel
2015-02-12
Musculoskeletal rehabilitative care and research have traditionally been guided by a structural pathology paradigm and directed their resources towards the structural, functional, and biological abnormalities located locally within the musculoskeletal system to understand and treat Musculoskeletal Disorders (MSD). However the structural pathology model does not adequately explain many of the clinical and experimental findings in subjects with chronic MSD and, more importantly, treatment guided by this paradigm fails to effectively treat many of these conditions. Increasing evidence reveals structural and functional changes within the Central Nervous System (CNS) of people with chronic MSD that appear to play a prominent role in the pathophysiology of these disorders. These neuroplastic changes are reflective of adaptive neurophysiological processes occurring as the result of altered afferent stimuli including nociceptive and neuropathic transmission to spinal, subcortical and cortical areas with MSD that are initially beneficial but may persist in a chronic state, may be part and parcel in the pathophysiology of the condition and the development and maintenance of chronic signs and symptoms. Neuroplastic changes within different areas of the CNS may help to explain the transition from acute to chronic conditions, sensory-motor findings, perceptual disturbances, why some individuals continue to experience pain when no structural cause can be discerned, and why some fail to respond to conservative interventions in subjects with chronic MSD. We argue that a change in paradigm is necessary that integrates CNS changes associated with chronic MSD and that these findings are highly relevant for the design and implementation of rehabilitative interventions for this population. Recent findings suggest that a change in model and approach is required in the rehabilitation of chronic MSD that integrate the findings of neuroplastic changes across the CNS and are targeted by rehabilitative interventions. Effects of current interventions may be mediated through peripheral and central changes but may not specifically address all underlying neuroplastic changes in the CNS potentially associated with chronic MSD. Novel approaches to address these neuroplastic changes show promise and require further investigation to improve efficacy of currents approaches.
Rostami, Javad; Chen, Jingming; Tse, Peter W
2017-02-07
Ultrasonic guided waves have been extensively applied for non-destructive testing of plate-like structures particularly pipes in past two decades. In this regard, if a structure has a simple geometry, obtained guided waves' signals are easy to explain. However, any small degree of complexity in the geometry such as contacting with other materials may cause an extra amount of complication in the interpretation of guided wave signals. The problem deepens if defects have irregular shapes such as natural corrosion. Signal processing techniques that have been proposed for guided wave signals' analysis are generally good for simple signals obtained in a highly controlled experimental environment. In fact, guided wave signals in a real situation such as the existence of natural corrosion in wall-covered pipes are much more complicated. Considering pipes in residential buildings that pass through concrete walls, in this paper we introduced Smooth Empirical Mode Decomposition (SEMD) to efficiently separate overlapped guided waves. As empirical mode decomposition (EMD) which is a good candidate for analyzing non-stationary signals, suffers from some shortcomings, wavelet transform was adopted in the sifting stage of EMD to improve its outcome in SEMD. However, selection of mother wavelet that suits best for our purpose plays an important role. Since in guided wave inspection, the incident waves are well known and are usually tone-burst signals, we tailored a complex tone-burst signal to be used as our mother wavelet. In the sifting stage of EMD, wavelet de-noising was applied to eliminate unwanted frequency components from each IMF. SEMD greatly enhances the performance of EMD in guided wave analysis for highly contaminated signals. In our experiment on concrete covered pipes with natural corrosion, this method not only separates the concrete wall indication clearly in time domain signal, a natural corrosion with complex geometry that was hidden and located inside the concrete section was successfully exposed.
Theoretical, Experimental, and Computational Evaluation of Disk-Loaded Circular Wave Guides
NASA Technical Reports Server (NTRS)
Wallett, Thomas M.; Qureshi, A. Haq
1994-01-01
A disk-loaded circular wave guide structure and test fixture were fabricated. The dispersion characteristics were found by theoretical analysis, experimental testing, and computer simulation using the codes ARGUS and SOS. Interaction impedances were computed based on the corresponding dispersion characteristics. Finally, an equivalent circuit model for one period of the structure was chosen using equivalent circuit models for cylindrical wave guides of different radii. Optimum values for the discrete capacitors and inductors describing discontinuities between cylindrical wave guides were found using the computer code TOUCHSTONE.
Guided waves by axisymmetric and non-axisymmetric surface loading on hollow cylinders
Shin; Rose
1999-06-01
Guided waves generated by axisymmetric and non-axisymmetric surface loading on a hollow cylinder are studied. For the theoretical analysis of the superposed guided waves, a normal mode concept is employed. The amplitude factors of individual guided wave modes are studied with respect to varying surface pressure loading profiles. Both theoretical and experimental focus is given to the guided waves generated by both axisymmetric and non-axisymmetric excitation. For the experiments, a comb transducer and high power tone burst function generator system are used on a sample Inconel tube. Surface loading conditions, such as circumferential loading angles and axial loading lengths, are used with the frequency and phase velocity to control the axisymmetric and non-axisymmetric mode excitations. The experimental study demonstrates the use of a practical non-axisymmetric partial loading technique in generating axisymmetric modes, particularly useful in the inspection of tubing and piping with limited circumferential access. From both theoretical and experimental studies, it also could be said that the amount of flexural modes reflected from a defect contains information on the reflector's circumferential angle, as well as potentially other classification and sizing feature information. The axisymmetric and non-axisymmetric guided wave modes should both be carefully considered for improvement of the overall analysis of guided waves generated in hollow cylinders.
Guided Seismic Waves: Possible Diagnostics for Hot Plumes in the Mantle
NASA Astrophysics Data System (ADS)
Evans, J. R.; Julian, B. R.; Foulger, G. R.
2005-12-01
Seismic waves potentially provide by far the highest resolution view of the three-dimensional structure of the mantle, and the hope of detecting wave-speed anomalies caused by hot or compositionally buoyant mantle plumes has been a major incentive to the development of tomographic seismic techniques. Seismic tomography is limited, however, by the uneven geographical distribution of earthquakes and seismometers, which can produce artificial tomographic wave-speed anomalies that are difficult to distinguish from real structures in the mantle. An alternate approach may be possible, because hot plumes and possibly some compositional upwellings would have low seismic-wave speeds and would act as efficient waveguides over great depth ranges in the mantle. Plume-guided waves would be little affected by bends or other geometric complexities in the waveguides (analogously to French horns and fiber-optic cables), and their dispersion would make them distinctive on seismograms and would provide information on the size and structure of the waveguide. The main unanswered question is whether guided waves in plumes could be excited sufficiently to be observable. Earthquakes do not occur in the deep mantle, but at least two other possible sources of excitation can be imagined: (1) shallow earthquakes at or near plume-fed hotspots; and (2) coupling of plume-guided waves to seismic body waves near the bottom of the mantle. In the first case, downward-traveling guided waves transformed to seismic body waves at the bottom of the waveguide would have to be detected at teleseismic distances. In the second case, upward-traveling guided waves generated by teleseismic body waves would be detected on seismometers at hotspots. Qualitative reasoning based on considerations of reciprocity suggests that the signals in these two situations should be similar in size and appearance. The focusing of seismic core phases at caustics would amplify plume waves excited by either mechanism (1) or (2) at particular epicentral distances. A failure to find such guided waves experimentally could mean either that the waveguides (plumes) do not exist or that the excitation mechanisms and/or seismometer networks are inadequate. Distinguishing these two possibilities would require careful analysis. Anticipated major improvements in seismic instrumentation, such as the EarthScope initiative, make this a propitious time to undertake a search for plume-guided waves in the mantle.
Ultrasonic nonlinear guided wave inspection of microscopic damage in a composite structure
NASA Astrophysics Data System (ADS)
Zhang, Li; Borigo, Cody; Owens, Steven; Lissenden, Clifford; Rose, Joseph; Hakoda, Chris
2017-02-01
Sudden structural failure is a severe safety threat to many types of military and industrial composite structures. Because sudden structural failure may occur in a composite structure shortly after macroscale damage initiates, reliable early diagnosis of microdamage formation in the composite structure is critical to ensure safe operation and to reduce maintenance costs. Ultrasonic guided waves have been widely used for long-range defect detection in various structures. When guided waves are generated under certain excitation conditions, in addition to the traditional linear wave mode (known as the fundamental harmonic wave mode), a number of nonlinear higher-order harmonic wave modes are also be generated. Research shows that the nonlinear parameters of a higher-order harmonic wave mode could have excellent sensitivity to microstructural changes in a material. In this work, we successfully employed a nonlinear guided wave structural health monitoring (SHM) method to detect microscopic impact damage in a 32-layer carbon/epoxy fiber-reinforced composite plate. Our effort has demonstrated that, utilizing appropriate transducer design, equipment, excitation signals, and signal processing techniques, nonlinear guided wave parameter measurements can be reliably used to monitor microdamage initiation and growth in composite structures.
3D Guided Wave Motion Analysis on Laminated Composites
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Leckey, Cara; Yu, Lingyu
2013-01-01
Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.
Optical fiber having wave-guiding rings
Messerly, Michael J [Danville, CA; Dawson, Jay W [Livermore, CA; Beach, Raymond J [Livermore, CA; Barty, Christopher P. J. [Hayward, CA
2011-03-15
A waveguide includes a cladding region that has a refractive index that is substantially uniform and surrounds a wave-guiding region that has an average index that is close to the index of the cladding. The wave-guiding region also contains a thin ring or series of rings that have an index or indices that differ significantly from the index of the cladding. The ring or rings enable the structure to guide light.
A study on the prenatal zone of ultrasonic guided waves in plates
NASA Astrophysics Data System (ADS)
Thomas, Tibin; Balasubramaniam, Krishnan
2017-02-01
Low frequency guided wave based inspection is an extensively used method for asset management with the advantage of wide area coverage from a single location at the cost of spatial resolution. With the advent of high frequency guided waves, short range inspections with high spatial resolution for monitoring corrosion under pipe supports and tank annular plates has gained widespread interest and acceptance. One of the major challenges in the application of high frequency guided waves in a short range inspection is to attain the desired modal displacements with respect to the application. In this paper, an investigation on the generation and formation of fundamental S0 mode is carried out through numerical simulation and experiments to establish a prenatal zone for guided waves. The effect of frequency, thickness of the plate and frequency-thickness (f*d) is studied. The investigation reveals the existence of a rudimentary form with similar modal features to the fully developed mode. This study helps in the design and development of a high frequency guided wave generator for particular applications which demands waves with very less sensitivity to the surface and loading during the initial phase which immediately evolves to a more sensitive wave towards the surface on propagation for the detection of shallow defects.
Miller, G. Wilson; Song, Ji; Louttit, Cameron; Klibanov, Alexander L; Shih, Ting-Yu; Swaminathan, Ganesh; Tamargo, Rafael J.; Woodworth, Graeme F.; Hanes, Justin; Price, Richard J.
2014-01-01
The blood-brain barrier (BBB) presents a significant obstacle for the treatment of many central nervous system (CNS) disorders, including invasive brain tumors, Alzheimer’s, Parkinson’s and stroke. Therapeutics must be capable of bypassing the BBB and also penetrate the brain parenchyma to achieve a desired effect within the brain. In this study, we test the unique combination of a noninvasive approach to BBB permeabilization with a therapeutically relevant polymeric nanoparticle platform capable of rapidly penetrating within the brain microenvironment. MR-guided focused ultrasound (FUS) with intravascular microbubbles (MBs) is able to locally and reversibly disrupt the BBB with submillimeter spatial accuracy. Densely poly(ethylene-co-glycol) (PEG) coated, brain-penetrating nanoparticles (BPNs) are long-circulating and diffuse 10-fold slower in normal rat brain tissue compared to diffusion in water. Following intravenous administration of model and biodegradable BPN in normal healthy rats, we demonstrate safe, pressure-dependent delivery of 60 nm BPNs to the brain parenchyma in regions where the BBB is disrupted by FUS and MBs. Delivery of BPNs with MR-guided FUS has the potential to improve efficacy of treatments for many CNS diseases, while reducing systemic side effects by providing sustained, well-dispersed drug delivery into select regions of the brain. PMID:24979210
Ultrasonic guided wave interpretation for structural health inspections
NASA Astrophysics Data System (ADS)
Bingham, Jill Paisley
Structural Health Management (SHM) combines the use of onboard sensors with artificial intelligence algorithms to automatically identify and monitor structural health issues. A fully integrated approach to SHM systems demands an understanding of the sensor output relative to the structure, along with sophisticated prognostic systems that automatically draw conclusions about structural integrity issues. Ultrasonic guided wave methods allow us to examine the interaction of multimode signals within key structural components. Since they propagate relatively long distances within plate- and shell-like structures, guided waves allow inspection of greater areas with fewer sensors, making this technique attractive for a variety of applications. This dissertation describes the experimental development of automatic guided wave interpretation for three real world applications. Using the guided wave theories for idealized plates we have systematically developed techniques for identifying the mass loading of underwater limpet mines on US Navy ship hulls, characterizing type and bonding of protective coatings on large diameter pipelines, and detecting the thinning effects of corrosion on aluminum aircraft structural stringers. In each of these circumstances the signals received are too complex for interpretation without knowledge of the guided wave physics. We employ a signal processing technique called the Dynamic Wavelet Fingerprint Technique (DFWT) in order to render the guided wave mode information in two-dimensional binary images. The use of wavelets allows us to keep track of both time and scale features from the original signals. With simple image processing we have developed automatic extraction algorithms for features that correspond to the arrival times of the guided wave modes of interest for each of the applications. Due to the dispersive nature of the guided wave modes, the mode arrival times give details of the structure in the propagation path. For further understanding of how the guided wave modes propagate through the real structures, we have developed parallel processing, 3D elastic wave simulations using the finite integration technique (EFIT). This full field, numeric simulation technique easily examines models too complex for analytical solutions. We have developed the algorithm to handle built up 3D structures as well as layers with different material properties and surface detail. The simulations produce informative visualizations of the guided wave modes in the structures as well as the output from sensors placed in the simulation space to mimic the placement from experiment. Using the previously developed mode extraction algorithms we were then able to compare our 3D EFIT data to their experimental counterparts with consistency.
Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran
2012-01-01
Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables.
Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran
2012-01-01
Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables. PMID:22368483
Singh, Nisha; Sharpley, Ann L; Emir, Uzay E; Masaki, Charles; Herzallah, Mohammad M; Gluck, Mark A; Sharp, Trevor; Harmer, Catherine J; Vasudevan, Sridhar R; Cowen, Philip J; Churchill, Grant C
2016-06-01
Lithium remains the gold standard in treating bipolar disorder but has unwanted toxicity and side effects. We previously reported that ebselen inhibits inositol monophosphatase (IMPase) and exhibits lithium-like effects in animal models through lowering of inositol. Ebselen has been tested in clinical trials for other disorders, enabling us to determine for the first time the effect of a blood-brain barrier-penetrant IMPase inhibitor on human central nervous system (CNS) function. We now report that in a double-blind, placebo-controlled trial with healthy participants, acute oral ebselen reduced brain myo-inositol in the anterior cingulate cortex, consistent with CNS target engagement. Ebselen decreased slow-wave sleep and affected emotional processing by increasing recognition of some emotions, decreasing latency time in the acoustic startle paradigm, and decreasing the reinforcement of rewarding stimuli. In summary, ebselen affects the phosphoinositide cycle and has CNS effects on surrogate markers that may be relevant to the treatment of bipolar disorder that can be tested in future clinical trials.
Guided wave crack detection and size estimation in stiffened structures
NASA Astrophysics Data System (ADS)
Bhuiyan, Md Yeasin; Faisal Haider, Mohammad; Poddar, Banibrata; Giurgiutiu, Victor
2018-03-01
Structural health monitoring (SHM) and nondestructive evaluation (NDE) deals with the nondestructive inspection of defects, corrosion, leaks in engineering structures by using ultrasonic guided waves. In the past, simplistic structures were often considered for analyzing the guided wave interaction with the defects. In this study, we focused on more realistic and relatively complicated structure for detecting any defect by using a non-contact sensing approach. A plate with a stiffener was considered for analyzing the guided wave interactions. Piezoelectric wafer active transducers were used to produce excitation in the structures. The excitation generated the multimodal guided waves (aka Lamb waves) that propagate in the plate with stiffener. The presence of stiffener in the plate generated scattered waves. The direct wave and the additional scattered waves from the stiffener were experimentally recorded and studied. These waves were considered as a pristine case in this research. A fine horizontal semi-circular crack was manufactured by using electric discharge machining in the same stiffener. The presence of crack in the stiffener produces additional scattered waves as well as trapped waves. These scattered waves and trapped wave modes from the cracked stiffener were experimentally measured by using a scanning laser Doppler vibrometer (SLDV). These waves were analyzed and compared with that from the pristine case. The analyses suggested that both size and shape of the horizontal crack may be predicted from the pattern of the scattered waves. Different features (reflection, transmission, and mode-conversion) of the scattered wave signals are analyzed. We found direct transmission feature for incident A0 wave mode and modeconversion feature for incident S0 mode are most suitable for detecting the crack in the stiffener. The reflection feature may give a better idea of sizing the crack.
Synaptogenesis in the CNS: An Odyssey from Wiring Together to Firing Together
Munno, David W; Syed, Naweed I
2003-01-01
To acquire a better comprehension of nervous system function, it is imperative to understand how synapses are assembled during development and subsequently altered throughout life. Despite recent advances in the fields of neurodevelopment and synaptic plasticity, relatively little is known about the mechanisms that guide synapse formation in the central nervous system (CNS). Although many structural components of the synaptic machinery are pre-assembled prior to the arrival of growth cones at the site of their potential targets, innumerable changes, central to the proper wiring of the brain, must subsequently take place through contact-mediated cell-cell communications. Identification of such signalling molecules and a characterization of various events underlying synaptogenesis are pivotal to our understanding of how a brain cell completes its odyssey from ‘wiring together to firing together’. Here we attempt to provide a comprehensive overview that pertains directly to the cellular and molecular mechanisms of selection, formation and refinement of synapses during the development of the CNS in both vertebrates and invertebrates. PMID:12897180
Spath, Sabine; Komuczki, Juliana; Hermann, Mario; Pelczar, Pawel; Mair, Florian; Schreiner, Bettina; Becher, Burkhard
2017-02-21
Chronic inflammatory diseases are influenced by dysregulation of cytokines. Among them, granulocyte macrophage colony stimulating factor (GM-CSF) is crucial for the pathogenic function of T cells in preclinical models of autoimmunity. To study the impact of dysregulated GM-CSF expression in vivo, we generated a transgenic mouse line allowing the induction of GM-CSF expression in mature, peripheral helper T (Th) cells. Antigen-independent GM-CSF release led to the invasion of inflammatory myeloid cells into the central nervous system (CNS), which was accompanied by the spontaneous development of severe neurological deficits. CNS-invading phagocytes produced reactive oxygen species and exhibited a distinct genetic signature compared to myeloid cells invading other organs. We propose that the CNS is particularly vulnerable to the attack of monocyte-derived phagocytes and that the effector functions of GM-CSF-expanded myeloid cells are in turn guided by the tissue microenvironment. Copyright © 2017 Elsevier Inc. All rights reserved.
Rostami, Javad; Chen, Jingming; Tse, Peter W.
2017-01-01
Ultrasonic guided waves have been extensively applied for non-destructive testing of plate-like structures particularly pipes in past two decades. In this regard, if a structure has a simple geometry, obtained guided waves’ signals are easy to explain. However, any small degree of complexity in the geometry such as contacting with other materials may cause an extra amount of complication in the interpretation of guided wave signals. The problem deepens if defects have irregular shapes such as natural corrosion. Signal processing techniques that have been proposed for guided wave signals’ analysis are generally good for simple signals obtained in a highly controlled experimental environment. In fact, guided wave signals in a real situation such as the existence of natural corrosion in wall-covered pipes are much more complicated. Considering pipes in residential buildings that pass through concrete walls, in this paper we introduced Smooth Empirical Mode Decomposition (SEMD) to efficiently separate overlapped guided waves. As empirical mode decomposition (EMD) which is a good candidate for analyzing non-stationary signals, suffers from some shortcomings, wavelet transform was adopted in the sifting stage of EMD to improve its outcome in SEMD. However, selection of mother wavelet that suits best for our purpose plays an important role. Since in guided wave inspection, the incident waves are well known and are usually tone-burst signals, we tailored a complex tone-burst signal to be used as our mother wavelet. In the sifting stage of EMD, wavelet de-noising was applied to eliminate unwanted frequency components from each IMF. SEMD greatly enhances the performance of EMD in guided wave analysis for highly contaminated signals. In our experiment on concrete covered pipes with natural corrosion, this method not only separates the concrete wall indication clearly in time domain signal, a natural corrosion with complex geometry that was hidden and located inside the concrete section was successfully exposed. PMID:28178220
Wide band cryogenic ultra-high vacuum microwave absorber
Campisi, Isidoro E.
1992-01-01
An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.
A high-performance wave guide cryogenic thermal break
NASA Astrophysics Data System (ADS)
Melhuish, S. J.; McCulloch, M. A.; Piccirillo, L.; Stott, C.
2016-10-01
We describe a high-performance wave guide cryogenic thermal break. This has been constructed both for Ka band, using WR28 wave guide, and Q band, using WR22 wave guide. The mechanical structure consists of a hexapod (Stewart platform) made from pultruded carbon fibre tubing. We present a tentative examination of the cryogenic Young's modulus of this material. The thermal conductivity is measured at temperatures above the range explored by Runyan and Jones, resulting in predicted conductive loads through our thermal breaks of 3.7 mW to 3 K and 17 μK to 1 K.
Corrosion monitoring using high-frequency guided waves
NASA Astrophysics Data System (ADS)
Fromme, P.
2016-04-01
Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.
Corrosion monitoring using high-frequency guided ultrasonic waves
NASA Astrophysics Data System (ADS)
Fromme, Paul
2014-02-01
Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.
Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu
2016-01-01
This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.
Structural damage detection using deep learning of ultrasonic guided waves
NASA Astrophysics Data System (ADS)
Melville, Joseph; Alguri, K. Supreet; Deemer, Chris; Harley, Joel B.
2018-04-01
Structural health monitoring using ultrasonic guided waves relies on accurate interpretation of guided wave propagation to distinguish damage state indicators. However, traditional physics based models do not provide an accurate representation, and classic data driven techniques, such as a support vector machine, are too simplistic to capture the complex nature of ultrasonic guide waves. To address this challenge, this paper uses a deep learning interpretation of ultrasonic guided waves to achieve fast, accurate, and automated structural damaged detection. To achieve this, full wavefield scans of thin metal plates are used, half from the undamaged state and half from the damaged state. This data is used to train our deep network to predict the damage state of a plate with 99.98% accuracy given signals from just 10 spatial locations on the plate, as compared to that of a support vector machine (SVM), which achieved a 62% accuracy.
2006-07-01
characterization of more subtle associated CNS injuries. Treatment of nonacute subdural hematoma may involve craniotomy -guided hematoma evacuation...nature of this process. Note the ventricular shunt (arrow) in place for drainage of hydrocephalus, caused by significant mass effect on the...collections may require craniotomy . Because SDH may be under high intracranial pressure resultant from associated injuries, patients with the acute form
Temperature-controlled optical stimulation of the rat prostate cavernous nerves
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Hutchens, Thomas C.; McClain, Michael A.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2013-06-01
Optical nerve stimulation (ONS) may be useful as a diagnostic tool for intraoperative identification and preservation of the prostate cavernous nerves (CN), responsible for erectile function, during prostate cancer surgery. Successful ONS requires elevating the nerve temperature to within a narrow range (˜42 to 47°C) for nerve activation without thermal damage to the nerve. This preliminary study explores a prototype temperature-controlled optical nerve stimulation (TC-ONS) system for maintaining a constant (±1°C) nerve temperature during short-term ONS of the rat prostate CNs. A 150-mW, 1455-nm diode laser was operated in continuous-wave mode, with and without temperature control, during stimulation of the rat CNs for 15 to 30 s through a fiber optic probe with a 1-mm-diameter spot. A microcontroller opened and closed an in-line mechanical shutter in response to an infrared sensor, with a predetermined temperature set point. With TC-ONS, higher laser power settings were used to rapidly and safely elevate the CNs to a temperature necessary for a fast intracavernous pressure response, while also preventing excessive temperatures that would otherwise cause thermal damage to the nerve. With further development, TC-ONS may provide a rapid, stable, and safe method for intraoperative identification and preservation of the prostate CNs.
Investigation of guided waves propagation in pipe buried in sand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.
The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand usingmore » a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.« less
Calculation of Wave Packet Trajectories and Wave Heights for Variable Water Depths and Currents.
1982-09-01
S3 S3 rosso — TCNPO«T -co • <r -T -PO -^- -CN -üT -co ro—pvov©*- — »rpom©CNs30v — m rv -S3 -S3 -m -^ -^ »«r -S3 • •HO—o-^i>T-.co... toro m minmininin^^-^-m ma in © «©©©©©©©©© ©ui © •oi »oi^,iC3iOKiinieoirK.:cNipni-oi>oi z>o i >oujrv.ujcoujcoujcoujcaujivuj
Numerical Simulation of Monitoring Corrosion in Reinforced Concrete Based on Ultrasonic Guided Waves
Zheng, Zhupeng; Lei, Ying; Xue, Xin
2014-01-01
Numerical simulation based on finite element method is conducted to predict the location of pitting corrosion in reinforced concrete. Simulation results show that it is feasible to predict corrosion monitoring based on ultrasonic guided wave in reinforced concrete, and wavelet analysis can be used for the extremely weak signal of guided waves due to energy leaking into concrete. The characteristic of time-frequency localization of wavelet transform is adopted in the corrosion monitoring of reinforced concrete. Guided waves can be successfully used to identify corrosion defects in reinforced concrete with the analysis of suitable wavelet-based function and its scale. PMID:25013865
NASA Astrophysics Data System (ADS)
Chang, Yong; Zi, Yanyang; Zhao, Jiyuan; Yang, Zhe; He, Wangpeng; Sun, Hailiang
2017-03-01
In guided wave pipeline inspection, echoes reflected from closely spaced reflectors generally overlap, meaning useful information is lost. To solve the overlapping problem, sparse deconvolution methods have been developed in the past decade. However, conventional sparse deconvolution methods have limitations in handling guided wave signals, because the input signal is directly used as the prototype of the convolution matrix, without considering the waveform change caused by the dispersion properties of the guided wave. In this paper, an adaptive sparse deconvolution (ASD) method is proposed to overcome these limitations. First, the Gaussian echo model is employed to adaptively estimate the column prototype of the convolution matrix instead of directly using the input signal as the prototype. Then, the convolution matrix is constructed upon the estimated results. Third, the split augmented Lagrangian shrinkage (SALSA) algorithm is introduced to solve the deconvolution problem with high computational efficiency. To verify the effectiveness of the proposed method, guided wave signals obtained from pipeline inspection are investigated numerically and experimentally. Compared to conventional sparse deconvolution methods, e.g. the {{l}1} -norm deconvolution method, the proposed method shows better performance in handling the echo overlap problem in the guided wave signal.
Loizzo, Joseph J
2016-06-01
Meditation research has begun to clarify the brain effects and mechanisms of contemplative practices while generating a range of typologies and explanatory models to guide further study. This comparative review explores a neglected area relevant to current research: the validity of a traditional central nervous system (CNS) model that coevolved with the practices most studied today and that provides the first comprehensive neural-based typology and mechanistic framework of contemplative practices. The subtle body model, popularly known as the chakra system from Indian yoga, was and is used as a map of CNS function in traditional Indian and Tibetan medicine, neuropsychiatry, and neuropsychology. The study presented here, based on the Nalanda tradition, shows that the subtle body model can be cross-referenced with modern CNS maps and challenges modern brain maps with its embodied network model of CNS function. It also challenges meditation research by: (1) presenting a more rigorous, neural-based typology of contemplative practices; (2) offering a more refined and complete network model of the mechanisms of contemplative practices; and (3) serving as an embodied, interoceptive neurofeedback aid that is more user friendly and complete than current teaching aids for clinical and practical applications of contemplative practice. © 2016 New York Academy of Sciences.
Kaushik, Ajeet; Jayant, Rahul D; Nikkhah-Moshaie, Roozbeh; Bhardwaj, Vinay; Roy, Upal; Huang, Zaohua; Ruiz, Ariel; Yndart, Adriana; Atluri, Venkata; El-Hage, Nazira; Khalili, Kamel; Nair, Madhavan
2016-05-04
Least component-based delivery of drug-tagged-nanocarriers across blood-brain-barriers (BBB) will allow site-specific and on-demand release of therapeutics to prevent CNS diseases. We developed a non-invasive magnetically guided delivery of magneto-electric nanocarriers (MENCs), ~20 nm, 10 mg/kg, across BBB in C57Bl/J mice. Delivered MENCs were uniformly distributed inside the brain, and were non-toxic to brain and other major organs, such as kidney, lung, liver, and spleen, and did not affect hepatic, kidney and neurobehavioral functioning.
Wave guide impedance matching method and apparatus
Kronberg, James W.
1990-01-01
A technique for modifying the end portion of a wave guide, whether hollow or solid, carrying electromagnetic, acoustic or optical energy, to produce a gradual impedance change over the length of the end portion, comprising the cutting of longitudinal, V-shaped grooves that increase in width and depth from beginning of the end portion of the wave guide to the end of the guide so that, at the end of the guide, no guide material remains and no surfaces of the guide as modified are perpendicular to the direction of energy flow. For hollow guides, the grooves are cut beginning on the interior surface; for solid guides, the grooves are cut beginning on the exterior surface. One or more resistive, partially conductive or nonconductive sleeves can be placed over the exterior of the guide and through which the grooves are cut to smooth the transition to free space.
Rabani, Amir
2016-01-01
The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications. PMID:27754324
Rabani, Amir
2016-10-12
The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications.
Elastic solitons in delaminated bars: splitting leads to fission
NASA Astrophysics Data System (ADS)
Samsonov, A. M.; Dreiden, G. V.; Khusnutdinova, K. R.; Semenova, I. V.
2008-06-01
Recent theoretical and successful experimental studies confirmed existence and demonstrated main properties of bulk strain solitary waves in nonlinearly elastic solid wave guides. Our current research is devoted to nonlinear wave processes in layered elastic wave guides with inhomogeneities modelling delamination. We present first theoretical and experimental results showing the influence of delamination on the parameters of the longitudinal strain solitary wave.
Mode Conversion Behavior of Guided Wave in a Pipe Inspection System Based on a Long Waveguide.
Sun, Feiran; Sun, Zhenguo; Chen, Qiang; Murayama, Riichi; Nishino, Hideo
2016-10-19
To make clear the mode conversion behavior of S0-mode lamb wave and SH0-plate wave converting to the longitudinal mode guided wave and torsional mode guided wave in a pipe, respectively, the experiments were performed based on a previous built pipe inspection system. The pipe was wound with an L-shaped plate or a T-shaped plate as the waveguide, and the S0-wave and SH0-wave were excited separately in the waveguide. To carry out the objective, a meander-line coil electromagnetic acoustic transducer (EMAT) for S0-wave and a periodic permanent magnet (PPM) EMAT for SH0-wave were developed and optimized. Then, several comparison experiments were conducted to compare the efficiency of mode conversion. Experimental results showed that the T(0,1) mode, L(0,1) mode, and L(0,2) mode guided waves can be successfully detected when converted from the S0-wave or SH0-wave with different shaped waveguides. It can also be inferred that the S0-wave has a better ability to convert to the T(0,1) mode, while the SH0-wave is easier to convert to the L(0,1) mode and L(0,2) mode, and the L-shaped waveguide has a better efficiency than T-shaped waveguide.
A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr; Cho, Younho
2015-03-31
Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actualmore » defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.« less
Cell therapy for spinal cord injury informed by electromagnetic waves.
Finnegan, Jack; Ye, Hui
2016-10-01
Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.
Lamb wave detection of limpet mines on ship hulls.
Bingham, Jill; Hinders, Mark; Friedman, Adam
2009-12-01
This paper describes the use of ultrasonic guided waves for identifying the mass loading due to underwater limpet mines on ship hulls. The Dynamic Wavelet Fingerprint Technique (DFWT) is used to render the guided wave mode information in two-dimensional binary images because the waveform features of interest are too subtle to identify in time domain. The use of wavelets allows both time and scale features from the original signals to be retained, and image processing can be used to automatically extract features that correspond to the arrival times of the guided wave modes. For further understanding of how the guided wave modes propagate through the real structures, a parallel processing, 3D elastic wave simulation is developed using the finite integration technique (EFIT). This full field, technique models situations that are too complex for analytical solutions, such as built up 3D structures. The simulations have produced informative visualizations of the guided wave modes in the structures as well as mimicking directly the output from sensors placed in the simulation space for direct comparison to experiments. Results from both drydock and in-water experiments with dummy mines are also shown.
Fatigue Crack Detection via Load-Differential Guided Wave Methods (Preprint)
2011-11-01
AFRL-RX-WP-TP-2011-4362 FATIGUE CRACK DETECTION VIA LOAD- DIFFERENTIAL GUIDED WAVE METHODS (PREPRINT) Jennifer E. Michaels, Sang Jun Lee...November 2011 Technical Paper 1 November 2011 – 1 November 2011 4. TITLE AND SUBTITLE FATIGUE CRACK DETECTION VIA LOAD-DIFFERENTIAL GUIDED WAVE...document contains color. 14. ABSTRACT Detection of fatigue cracks originating from fastener holes is an important application for structural health
Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).
Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P
2014-01-01
The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented. Copyright © 2013 Elsevier B.V. All rights reserved.
High-frequency guided ultrasonic waves to monitor corrosion thickness loss
NASA Astrophysics Data System (ADS)
Fromme, Paul; Bernhard, Fabian; Masserey, Bernard
2017-02-01
Corrosion due to adverse environmental conditions can occur for a range of industrial structures, e.g., ships and offshore oil platforms. Pitting corrosion and generalized corrosion can lead to the reduction of the strength and thus degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided ultrasonic waves propagating along the structure. Using standard ultrasonic transducers with single sided access to the structure, the two fundamental Lamb wave modes were selectively generated simultaneously, penetrating through the complete thickness of the structure. The wave propagation and interference of the guided wave modes depends on the thickness of the structure. Numerical simulations were performed using a 2D Finite Difference Method (FDM) algorithm in order to visualize the guided wave propagation and energy transfer across the plate thickness. Laboratory experiments were conducted and the wall thickness reduced initially uniformly by milling of the steel structure. Further measurements were conducted using accelerated corrosion in salt water. From the measured signal change due to the wave mode interference, the wall thickness reduction was monitored and good agreement with theoretical predictions was achieved. Corrosion can lead to non-uniform thickness reduction and the influence of this on the propagation of the high frequency guided ultrasonic waves was investigated. The wave propagation in a steel specimen with varying thickness was measured experimentally and the influence on the wave propagation characteristics quantified.
Leckey, Cara A C; Rogge, Matthew D; Raymond Parker, F
2014-01-01
Three-dimensional (3D) elastic wave simulations can be used to investigate and optimize nondestructive evaluation (NDE) and structural health monitoring (SHM) ultrasonic damage detection techniques for aerospace materials. 3D anisotropic elastodynamic finite integration technique (EFIT) has been implemented for ultrasonic waves in carbon fiber reinforced polymer (CFRP) composite laminates. This paper describes 3D EFIT simulations of guided wave propagation in undamaged and damaged anisotropic and quasi-isotropic composite plates. Comparisons are made between simulations of guided waves in undamaged anisotropic composite plates and both experimental laser Doppler vibrometer (LDV) wavefield data and dispersion curves. Time domain and wavenumber domain comparisons are described. Wave interaction with complex geometry delamination damage is then simulated to investigate how simulation tools incorporating realistic damage geometries can aid in the understanding of wave interaction with CFRP damage. In order to move beyond simplistic assumptions of damage geometry, volumetric delamination data acquired via X-ray microfocus computed tomography is directly incorporated into the simulation. Simulated guided wave interaction with the complex geometry delamination is compared to experimental LDV time domain data and 3D wave interaction with the volumetric damage is discussed. Published by Elsevier B.V.
Study of guided wave transmission through complex junction in sodium cooled reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elie, Q.; Le Bourdais, F.; Jezzine, K.
2015-07-01
Ultrasonic guided wave techniques are seen as suitable candidates for the inspection of welded structures within sodium cooled fast reactors (SFR), as the long range propagation of guided waves without amplitude attenuation can overcome the accessibility problem due to the liquid sodium. In the context of the development of the Advanced Sodium Test Reactor for Industrial Demonstration (ASTRID), the French Atomic Commission (CEA) investigates non-destructive testing techniques based on guided wave propagation. In this work, guided wave NDT methods are applied to control the integrity of welds located in a junction-type structure welded to the main vessel. The method presentedmore » in this paper is based on the analysis of scattering matrices peculiar to each expected defect, and takes advantage of the multi-modal and dispersive characteristics of guided wave generation. In a simulation study, an algorithm developed using the CIVA software is presented. It permits selecting appropriate incident modes to optimize detection and identification of expected flawed configurations. In the second part of this paper, experimental results corresponding to a first validation step of the simulation results are presented. The goal of the experiments is to estimate the effectiveness of the incident mode selection in plates. The results show good agreement between experience and simulation. (authors)« less
Talking back: Development of the olivocochlear efferent system.
Frank, Michelle M; Goodrich, Lisa V
2018-06-26
Developing sensory systems must coordinate the growth of neural circuitry spanning from receptors in the peripheral nervous system (PNS) to multilayered networks within the central nervous system (CNS). This breadth presents particular challenges, as nascent processes must navigate across the CNS-PNS boundary and coalesce into a tightly intermingled wiring pattern, thereby enabling reliable integration from the PNS to the CNS and back. In the auditory system, feedforward spiral ganglion neurons (SGNs) from the periphery collect sound information via tonotopically organized connections in the cochlea and transmit this information to the brainstem for processing via the VIII cranial nerve. In turn, feedback olivocochlear neurons (OCNs) housed in the auditory brainstem send projections into the periphery, also through the VIII nerve. OCNs are motor neuron-like efferent cells that influence auditory processing within the cochlea and protect against noise damage in adult animals. These aligned feedforward and feedback systems develop in parallel, with SGN central axons reaching the developing auditory brainstem around the same time that the OCN axons extend out toward the developing inner ear. Recent findings have begun to unravel the genetic and molecular mechanisms that guide OCN development, from their origins in a generic pool of motor neuron precursors to their specialized roles as modulators of cochlear activity. One recurrent theme is the importance of efferent-afferent interactions, as afferent SGNs guide OCNs to their final locations within the sensory epithelium, and efferent OCNs shape the activity of the developing auditory system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development. © 2018 Wiley Periodicals, Inc.
Meninges-derived cues control axon guidance.
Suter, Tracey A C S; DeLoughery, Zachary J; Jaworski, Alexander
2017-10-01
The axons of developing neurons travel long distances along stereotyped pathways under the direction of extracellular cues sensed by the axonal growth cone. Guidance cues are either secreted proteins that diffuse freely or bind the extracellular matrix, or membrane-anchored proteins. Different populations of axons express distinct sets of receptors for guidance cues, which results in differential responses to specific ligands. The full repertoire of axon guidance cues and receptors and the identity of the tissues producing these cues remain to be elucidated. The meninges are connective tissue layers enveloping the vertebrate brain and spinal cord that serve to protect the central nervous system (CNS). The meninges also instruct nervous system development by regulating the generation and migration of neural progenitors, but it has not been determined whether they help guide axons to their targets. Here, we investigate a possible role for the meninges in neuronal wiring. Using mouse neural tissue explants, we show that developing spinal cord meninges produce secreted attractive and repulsive cues that can guide multiple types of axons in vitro. We find that motor and sensory neurons, which project axons across the CNS-peripheral nervous system (PNS) boundary, are attracted by meninges. Conversely, axons of both ipsi- and contralaterally projecting dorsal spinal cord interneurons are repelled by meninges. The responses of these axonal populations to the meninges are consistent with their trajectories relative to meninges in vivo, suggesting that meningeal guidance factors contribute to nervous system wiring and control which axons are able to traverse the CNS-PNS boundary. Copyright © 2017 Elsevier Inc. All rights reserved.
Influence of Guided Waves in Tibia on Non-linear Scattering of Contrast Agents.
Wang, Diya; Zhong, Hui; Zhai, Yu; Hu, Hong; Jin, Bowen; Wan, Mingxi
2016-02-01
The aim of this study was to elucidate the linear and non-linear responses of ultrasound contrast agent (UCA) to frequency-dispersive guided waves from the tibia cortex, particularly two individual modes, S0 (1.23 MHz) and A1 (2.06 MHz). The UCA responses to guided waves were illustrated through the Marmottant model derived from measured guided waves, and then verified by continuous infusion experiments in a vessel-tibia flow phantom. These UCA responses were further evaluated by the enhanced ratio of peak values and the resolutions of UCA backscattered echoes. Because of the individual modes S0 and A1 in the tibia, the peak values of the UCA backscattered echoes were enhanced by 83.57 ± 7.35% (p < 0.05) and 80.77 ± 6.60% (p < 0.01) in the UCA subharmonic frequency and subharmonic imaging, respectively. However, corresponding resolutions were 0.78 ± 0.07 (p < 0.05) and 0.72 ± 0.12 (p < 0.01) times those without guided wave disturbances, respectively. Even though the resolution was partly degenerated, the subharmonic detection sensitivity of UCA was improved by the guided waves. Thus, UCA responses to the double-frequency guided waves should be further explored to benefit the detection of capillary perfusion in tissue layers near the bone cortex, particularly for perfusion imaging in the free flaps and skeletal muscles. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Singh, Nisha; Sharpley, Ann L; Emir, Uzay E; Masaki, Charles; Herzallah, Mohammad M; Gluck, Mark A; Sharp, Trevor; Harmer, Catherine J; Vasudevan, Sridhar R; Cowen, Philip J; Churchill, Grant C
2016-01-01
Lithium remains the gold standard in treating bipolar disorder but has unwanted toxicity and side effects. We previously reported that ebselen inhibits inositol monophosphatase (IMPase) and exhibits lithium-like effects in animal models through lowering of inositol. Ebselen has been tested in clinical trials for other disorders, enabling us to determine for the first time the effect of a blood–brain barrier-penetrant IMPase inhibitor on human central nervous system (CNS) function. We now report that in a double-blind, placebo-controlled trial with healthy participants, acute oral ebselen reduced brain myo-inositol in the anterior cingulate cortex, consistent with CNS target engagement. Ebselen decreased slow-wave sleep and affected emotional processing by increasing recognition of some emotions, decreasing latency time in the acoustic startle paradigm, and decreasing the reinforcement of rewarding stimuli. In summary, ebselen affects the phosphoinositide cycle and has CNS effects on surrogate markers that may be relevant to the treatment of bipolar disorder that can be tested in future clinical trials. PMID:26593266
Guided Acoustic and Optical Waves in Silicon-on-Insulator for Brillouin Scattering and Optomechanics
2016-08-01
APL PHOTONICS 1, 071301 (2016) Guided acoustic and optical waves in silicon-on- insulator for Brillouin scattering and optomechanics Christopher J...is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin...mechanism on which to base on-chip nonlinear optical devices compatible with a rapidly growing silicon photonics toolbox.3–9 While silicon on insulator
Load-Differential Features for Automated Detection of Fatigue Cracks Using Guided Waves (Preprint)
2011-11-01
AFRL-RX-WP-TP-2011-4363 LOAD-DIFFERENTIAL FEATURES FOR AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) Jennifer E...AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) 5a. CONTRACT NUMBER FA8650-09-C-5206 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...tensile loads open fatigue cracks and thus enhance their detectability using ultrasonic methods. Here we introduce a class of load-differential methods
Load Measurement in Structural Members Using Guided Acoustic Waves
NASA Astrophysics Data System (ADS)
Chen, Feng; Wilcox, Paul D.
2006-03-01
A non-destructive technique to measure load in structures such as rails and bridge cables by using guided acoustic waves is investigated both theoretically and experimentally. Robust finite element models for predicting the effect of load on guided wave propagation are developed and example results are presented for rods. Reasonably good agreement of experimental results with modelling prediction is obtained. The measurement technique has been developed to perform tests on larger specimens.
Guided wave phased array sensor tuning for improved defect detection and characterization
NASA Astrophysics Data System (ADS)
Philtron, Jason H.; Rose, Joseph L.
2014-03-01
Ultrasonic guided waves are finding increased use in a variety of Nondestructive Evaluation and Structural Health Monitoring applications due to their efficiency in defect detection using a sensor at a single location to inspect a large area of a structure and an ability to inspect hidden and coated areas for example. With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. For example, in a sample problem presented here to access bond integrity, researchers may choose to use a guided wave mode which has high in-plane displacement, stress, or other feature at the interface. However, since material properties used for modeling work may not be precise for the development of dispersion curves, in many cases guided wave mode and frequency selection should be adjusted for increased inspection efficiency in the field. In this work, a phased array comb transducer is used to sweep over phase velocity - frequency space to tune mode excitation for improved defect characterization performance. A thin polycarbonate layer bonded to a thick metal plate is considered with a contaminated surface prior to bonding. Physicallybased features are used to correlate wave signals with defect detection. Features assessed include arrival time and the frequency of maximum amplitude. A pseudo C-scan plot is presented which can be used to simplify data analysis. Excellent results are obtained.
Time-localized frequency analysis of ultrasonic guided waves for nondestructive testing
NASA Astrophysics Data System (ADS)
Shin, Hyeon Jae; Song, Sung-Jin
2000-05-01
A time-localized frequency (TLF) analysis is employed for the guided wave mode identification and improved guided wave applications. For the analysis of time-localized frequency contents of digitized ultrasonic signals, TLF analysis consists of splitting the time domain signal into overlapping segments, weighting each with the hanning window, and forming the columns of discrete Fourier transforms. The result is presented by a frequency versus time domain diagram showing frequency variation along the signal arrival time. For the demonstration of the utility of TLF analysis, an experimental group velocity dispersion pattern obtained by TLF analysis is compared with the dispersion diagram obtained by theory of elasticity. Sample piping is carbon steel piping that is used for the transportation of natural gas underground. Guided wave propagation characteristic on the piping is considered with TLF analysis and wave structure concepts. TLF analysis is used for the detection of simulated corrosion defects and the assessment of weld joint using ultrasonic guided waves. TLF analysis has revealed that the difficulty of mode identification in multi-mode propagation could be overcome. Group velocity dispersion pattern obtained by TLF analysis agrees well with theoretical results.
Mode perturbation method for optimal guided wave mode and frequency selection.
Philtron, J H; Rose, J L
2014-09-01
With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. However, work continues to find optimal mode and frequency selection for a given application. This "optimal" mode could give the highest sensitivity to defects or the greatest penetration power, increasing inspection efficiency. Since material properties used for modeling work may be estimates, in many cases guided wave mode and frequency selection can be adjusted for increased inspection efficiency in the field. In this paper, a novel mode and frequency perturbation method is described and used to identify optimal mode points based on quantifiable wave characteristics. The technique uses an ultrasonic phased array comb transducer to sweep in phase velocity and frequency space. It is demonstrated using guided interface waves for bond evaluation. After searching nearby mode points, an optimal mode and frequency can be selected which has the highest sensitivity to a defect, or gives the greatest penetration power. The optimal mode choice for a given application depends on the requirements of the inspection. Copyright © 2014 Elsevier B.V. All rights reserved.
Quantification of thickness loss in a liquid-loaded plate using ultrasonic guided wave tomography
NASA Astrophysics Data System (ADS)
Rao, Jing; Ratassepp, Madis; Fan, Zheng
2017-12-01
Ultrasonic guided wave tomography (GWT) provides an attractive solution to map thickness changes from remote locations. It is based on the velocity-to-thickness mapping employing the dispersive characteristics of selected guided modes. This study extends the application of GWT on a liquid-loaded plate. It is a more challenging case than the application on a free plate, due to energy of the guided waves leaking into the liquid. In order to ensure the accuracy of thickness reconstruction, advanced forward models are developed to consider attenuation effects using complex velocities. The reconstruction of the thickness map is based on the frequency-domain full waveform inversion (FWI) method, and its accuracy is discussed using different frequencies and defect dimensions. Validation experiments are carried out on a water-loaded plate with an irregularly shaped defect using S0 guided waves, showing excellent performance of the reconstruction algorithm.
Slab anisotropy from subduction zone guided waves in Taiwan
NASA Astrophysics Data System (ADS)
Chen, K. H.; Tseng, Y. L.; Hu, J. C.
2014-12-01
Frozen-in anisotropic structure in the oceanic lithosphere and faulting/hydration in the upper layer of the slab are expected to play an important role in anisotropic signature of the subducted slab. Over the past several decades, despite the advances in characterizing anisotropy using shear wave splitting method and its developments, the character of slab anisotropy remains poorly understood. In this study we investigate the slab anisotropy using subduction zone guided waves characterized by long path length in the slab. In the southernmost Ryukyu subduction zone, seismic waves from events deeper than 100 km offshore northern Taiwan reveal wave guide behavior: (1) a low-frequency (< 1 Hz) first arrival recognized on vertical and radial components but not transverse component (2) large, sustained high-frequency (3-10 Hz) signal in P and S wave trains. The depth dependent high-frequency content (3-10Hz) confirms the association with a waveguide effect in the subducting slab rather than localized site amplification effects. Using the selected subduction zone guided wave events, we further analyzed the shear wave splitting for intermediate-depth earthquakes in different frequency bands, to provide the statistically meaningful shear wave splitting parameters. We determine shear wave splitting parameters from the 34 PSP guided events that are deeper than 100 km with ray path traveling along the subducted slab. From shear wave splitting analysis, the slab and crust effects reveal consistent polarization pattern of fast directions of EN-WS and delay time of 0.13 - 0.27 sec. This implies that slab anisotropy is stronger than the crust effect (<0.1 s) but weaker than the mantle wedge and sub-slab mantle effect (0.3-1.3 s) in Taiwan.
Robertson-Shersby-Harvie, R.B.; Mullett, L.B.
1957-04-23
This patent presents a particular arrangement for delectric loading of a wave-guide carrying an electromagnetic wave in the E or TM mode of at least the second order, to reduce the power dissipated as the result of conduction loss in the wave-guide walls. To achieve this desirabie result, the effective dielectric constants in the radial direction of adjacent coaxial tubular regions bounded approximateiy by successive nodai surfaces within the electromagnetic field are of two different values alternating in the radial direction, the intermost and outermost regions being of the lower value, and the dielectric constants between nodes are uniform.
Study of guided modes in three-dimensional composites
NASA Astrophysics Data System (ADS)
Baste, S.; Gerard, A.
The propagation of elastic waves in a three-dimensional carbon-carbon composite is modeled with a mixed variational method, using the Bloch or Floquet theories and the Hellinger-Reissner function for two independent fields. The model of the equivalent homogeneous material only exists below a cut-off frequency of about 600 kHz. The existence below the cut-off frequency of two guided waves can account for the presence of a slow guided wave on either side of the cut-off frequency. Optical modes are generated at low frequencies, and can attain high velocites (rapid guided modes of 15,000 m/sec).
Kaushik, Ajeet; Jayant, Rahul D.; Nikkhah-Moshaie, Roozbeh; Bhardwaj, Vinay; Roy, Upal; Huang, Zaohua; Ruiz, Ariel; Yndart, Adriana; Atluri, Venkata; El-Hage, Nazira; Khalili, Kamel; Nair, Madhavan
2016-01-01
Least component-based delivery of drug-tagged-nanocarriers across blood-brain-barriers (BBB) will allow site-specific and on-demand release of therapeutics to prevent CNS diseases. We developed a non-invasive magnetically guided delivery of magneto-electric nanocarriers (MENCs), ~20 nm, 10 mg/kg, across BBB in C57Bl/J mice. Delivered MENCs were uniformly distributed inside the brain, and were non-toxic to brain and other major organs, such as kidney, lung, liver, and spleen, and did not affect hepatic, kidney and neurobehavioral functioning. PMID:27143580
Zwicker, Jeffery D; Diaz, Nicolas A; Guerra, Alfredo J; Kirchhoff, Paul D; Wen, Bo; Sun, Duxin; Carruthers, Vern B; Larsen, Scott D
2018-06-01
The neurotropic protozoan Toxoplasma gondii is the second leading cause of death due to foodborne illness in the US, and has been designated as one of five neglected parasitic infections by the Center for Disease Control and Prevention. Currently, no treatment options exist for the chronic dormant-phase Toxoplasma infection in the central nervous system (CNS). T. gondii cathepsin L (TgCPL) has recently been implicated as a novel viable target for the treatment of chronic toxoplasmosis. In this study, we report the first body of SAR work aimed at developing potent inhibitors of TgCPL with selectivity vs the human cathepsin L. Starting from a known inhibitor of human cathepsin L, and guided by structure-based design, we were able to modulate the selectivity for Toxoplasma vs human CPL by nearly 50-fold while modifying physiochemical properties to be more favorable for metabolic stability and CNS penetrance. The overall potency of our inhibitors towards TgCPL was improved from 2 μM to as low as 110 nM and we successfully demonstrated that an optimized analog 18b is capable of crossing the BBB (0.5 brain/plasma). This work is an important first step toward development of a CNS-penetrant probe to validate TgCPL as a feasible target for the treatment of chronic toxoplasmosis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Heebner, John E [Livermore, CA
2010-08-03
In one general embodiment, a method for ultrafast optical signal detecting is provided. In operation, a first optical input signal is propagated through a first wave guiding layer of a waveguide. Additionally, a second optical input signal is propagated through a second wave guiding layer of the waveguide. Furthermore, an optical control signal is applied to a top of the waveguide, the optical control signal being oriented diagonally relative to the top of the waveguide such that the application is used to influence at least a portion of the first optical input signal propagating through the first wave guiding layer of the waveguide. In addition, the first and the second optical input signals output from the waveguide are combined. Further, the combined optical signals output from the waveguide are detected. In another general embodiment, a system for ultrafast optical signal recording is provided comprising a waveguide including a plurality of wave guiding layers, an optical control source positioned to propagate an optical control signal towards the waveguide in a diagonal orientation relative to a top of the waveguide, at least one optical input source positioned to input an optical input signal into at least a first and a second wave guiding layer of the waveguide, and a detector for detecting at least one interference pattern output from the waveguide, where at least one of the interference patterns results from a combination of the optical input signals input into the first and the second wave guiding layer. Furthermore, propagation of the optical control signal is used to influence at least a portion of the optical input signal propagating through the first wave guiding layer of the waveguide.
NASA Astrophysics Data System (ADS)
Ladpli, Purim; Kopsaftopoulos, Fotis; Chang, Fu-Kuo
2018-04-01
This work presents the feasibility of monitoring state of charge (SoC) and state of health (SoH) of lithium-ion pouch batteries with acousto-ultrasonic guided waves. The guided waves are propagated and sensed using low-profile, built-in piezoelectric disc transducers that can be retrofitted onto off-the-shelf batteries. Both experimental and analytical studies are performed to understand the relationship between guided waves generated in a pitch-catch mode and battery SoC/SoH. The preliminary experiments on representative pouch cells show that the changes in time of flight (ToF) and signal amplitude (SA) resulting from shifts in the guided wave signals correlate strongly with the electrochemical charge-discharge cycling and aging. An analytical acoustic model is developed to simulate the variations in electrode moduli and densities during cycling, which correctly validates the absolute values and range of experimental ToF. It is further illustrated via a statistical study that ToF and SA can be used in a prediction model to accurately estimate SoC/SoH. Additionally, by using multiple sensors in a network configuration on the same battery, a significantly more reliable and accurate SoC/SoH prediction is achieved. The indicative results from this study can be extended to develop a unified guided-wave-based framework for SoC/SoH monitoring of many lithium-ion battery applications.
Guided wave imaging of oblique reflecting interfaces in pipes using common-source synthetic focusing
NASA Astrophysics Data System (ADS)
Sun, Zeqing; Sun, Anyu; Ju, Bing-Feng
2018-04-01
Cross-mode-family mode conversion and secondary reflection of guided waves in pipes complicate the processing of guided waves signals, and can cause false detection. In this paper, filters operating in the spectral domain of wavenumber, circumferential order and frequency are designed to suppress the signal components of unwanted mode-family and unwanted traveling direction. Common-source synthetic focusing is used to reconstruct defect images from the guided wave signals. Simulations of the reflections from linear oblique defects and a semicircle defect are separately implemented. Defect images, which are reconstructed from the simulation results under different excitation conditions, are comparatively studied in terms of axial resolution, reflection amplitude, detectable oblique angle and so on. Further, the proposed method is experimentally validated by detecting linear cracks with various oblique angles (10-40°). The proposed method relies on the guided wave signals that are captured during 2-D scanning of a cylindrical area on the pipe. The redundancy of the signals is analyzed to reduce the time-consumption of the scanning process and to enhance the practicability of the proposed method.
Excitation condition analysis of guided wave on PFA tubes for ultrasonic flow meter.
Li, Xuan; Xiao, Xufeng; Cao, Li
2016-12-01
Impurity accumulation, which decreases the accuracy of flow measurement, is a critical problem when applying Z-shaped or U-shaped ultrasonic flow meters on straight PFA tubes. It can be expected that the guided wave can be used to implement flow measurement on straight PFA tubes. In this paper, the propagation of guided wave is explained by finite element simulations for the flow meter design. Conditions of guided wave generation, including the excitation frequency and the wedge structure, are studied in the simulations. The wedge is designed as a cone which is friendly to be manufactured and installed. The cone angle, the piezoelectric wafer's resonant frequency and the vibration directions are studied in the simulations. The simulations shows that the propagation of guided wave in thin PFA tubes is influenced by the piezoelectric wafers' resonant frequency and the vibration direction when the mode is on the 'water line'. Based on the results of the simulations, an experiment is conducted to verify the principles of excitation conditions, which performs flow measurement on a straight PFA tube well. Copyright © 2016 Elsevier B.V. All rights reserved.
Xiping Wang; Ferenc Divos; Crystal Pilon; Brian K. Brashaw; Robert J. Ross; Roy F. Pellerin
2004-01-01
This guide was prepared to assist field foresters in the use of stress wave timing instruments to locate and define areas of decay in standing timber. The first three sections provide background information, the principles of stress wave nondestructive testing, and measurement techniques for stress wave nondestructive testing. The last section is a detailed description...
Guided-Wave TeO2 Acousto-Optic Devices
1991-01-12
In this research program, Guided-wave TeO2 Acousto - Optic Devices, the properties of surface acoustic waves on tellurium dioxide single crystal...surfaces has been studied for its potential applications as acousto - optic signal processing devices. Personal computer based numerical method has been...interaction with laser beams. Use of the acousto - optic probe, the surface acoustic wave velocity and field distribution have been obtained and compared
Polyhedral integrated and free space optical interconnection
Erteza, I.A.
1998-01-06
An optical communication system uses holographic optical elements to provide guided wave and non-guided communication, resulting in high bandwidth, high connectivity optical communications. Holograms within holographic optical elements route optical signals between elements and between nodes connected to elements. Angular and wavelength multiplexing allow the elements to provide high connectivity. The combination of guided and non-guided communication allows compact polyhedral system geometries. Guided wave communications provided by multiplexed substrate-mode holographic optical elements eases system alignment. 7 figs.
Polyhedral integrated and free space optical interconnection
Erteza, Ireena A.
1998-01-01
An optical communication system uses holographic optical elements to provide guided wave and non-guided communication, resulting in high bandwidth, high connectivity optical communications. Holograms within holographic optical elements route optical signals between elements and between nodes connected to elements. Angular and wavelength multiplexing allow the elements to provide high connectivity. The combination of guided and non-guided communication allows compact polyhedral system geometries. Guided wave communications provided by multiplexed substrate-mode holographic optical elements eases system alignment.
Noncontact measurement of guided ultrasonic wave scattering for fatigue crack characterization
NASA Astrophysics Data System (ADS)
Fromme, P.
2013-04-01
Fatigue cracks can develop in aerospace structures at locations of stress concentration such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of fatigue cracks in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducers were developed for the specific excitation of the A0 Lamb mode. Based on the induced eddy currents in the plate a simple theoretical model was developed and reasonably good agreement with the measurements was achieved. However, the detection sensitivity for fatigue cracks depends on the location and orientation of the crack relative to the measurement locations. Crack-like defects have a directionality pattern of the scattered field depending on the angle of the incident wave relative to the defect orientation and on the ratio of the characteristic defect size to wavelength. The detailed angular dependency of the guided wave field scattered at crack-like defects in plate structures has been measured using a noncontact laser interferometer. Good agreement with 3D Finite Element simulation predictions was achieved for machined part-through and through-thickness notches. The amplitude of the scattered wave was quantified for a variation of angle of the incident wave relative to the defect orientation and the defect depth. These results provide the basis for the defect characterization in aerospace structures using guided wave sensors.
Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves
Ellsworth, William L.; Malin, Peter E.
2011-01-01
Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This laterally extensive channel extends downwards to at least half way through the seismogenic crust, more than about 7 km. The channel supports not only the previously recognized Love-type- (FL) and Rayleigh-type- (FR) guided waves, but also a new fault-guided wave, which we name FF. As recorded 2.7 km underground, FF is normally dispersed, ends in an Airy phase, and arrives between the P- and S-waves. Modelling shows that FF travels as a leaky mode within the core of the fault zone. Combined with the drill core samples, well logs and the two other types of guided waves, FF at SAFOD reveals a zone of profound, deep, rock damage. Originating from damage accumulated over the recent history of fault movement, we suggest it is maintained either by fracturing near the slip surface of earthquakes, such as the 1857 Fort Tejon M 7.9, or is an unexplained part of the fault-creep process known to be active at this site.
Guided-Wave Optical Biosensors
Passaro, Vittorio M. N.; Dell'Olio, Francesco; Casamassima, Biagio; De Leonardis, Francesco
2007-01-01
Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.
Luo, Mingzhang; Li, Weijie; Wang, Junming; Chen, Xuemin; Song, Gangbing
2018-01-01
As a common approach to nondestructive testing and evaluation, guided wave-based methods have attracted much attention because of their wide detection range and high detection efficiency. It is highly desirable to develop a portable guided wave testing system with high actuating energy and variable frequency. In this paper, a novel giant magnetostrictive actuator with high actuation power is designed and implemented, based on the giant magnetostrictive (GMS) effect. The novel GMS actuator design involves a conical energy-focusing head that can focus the amplified mechanical energy generated by the GMS actuator. This design enables the generation of stress waves with high energy, and the focusing of the generated stress waves on the test object. The guided wave generation system enables two kinds of output modes: the coded pulse signal and the sweep signal. The functionality and the advantages of the developed system are validated through laboratory testing in the quality assessment of rock bolt-reinforced structures. In addition, the developed GMS actuator and the supporting system are successfully implemented and applied in field tests. The device can also be used in other nondestructive testing and evaluation applications that require high-power stress wave generation. PMID:29510540
Damage Detection in Composite Structures with Wavenumber Array Data Processing
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Leckey, Cara; Yu, Lingyu
2013-01-01
Guided ultrasonic waves (GUW) have the potential to be an efficient and cost-effective method for rapid damage detection and quantification of large structures. Attractive features include sensitivity to a variety of damage types and the capability of traveling relatively long distances. They have proven to be an efficient approach for crack detection and localization in isotropic materials. However, techniques must be pushed beyond isotropic materials in order to be valid for composite aircraft components. This paper presents our study on GUW propagation and interaction with delamination damage in composite structures using wavenumber array data processing, together with advanced wave propagation simulations. Parallel elastodynamic finite integration technique (EFIT) is used for the example simulations. Multi-dimensional Fourier transform is used to convert time-space wavefield data into frequency-wavenumber domain. Wave propagation in the wavenumber-frequency domain shows clear distinction among the guided wave modes that are present. This allows for extracting a guided wave mode through filtering and reconstruction techniques. Presence of delamination causes spectral change accordingly. Results from 3D CFRP guided wave simulations with delamination damage in flat-plate specimens are used for wave interaction with structural defect study.
Luo, Mingzhang; Li, Weijie; Wang, Junming; Wang, Ning; Chen, Xuemin; Song, Gangbing
2018-03-04
As a common approach to nondestructive testing and evaluation, guided wave-based methods have attracted much attention because of their wide detection range and high detection efficiency. It is highly desirable to develop a portable guided wave testing system with high actuating energy and variable frequency. In this paper, a novel giant magnetostrictive actuator with high actuation power is designed and implemented, based on the giant magnetostrictive (GMS) effect. The novel GMS actuator design involves a conical energy-focusing head that can focus the amplified mechanical energy generated by the GMS actuator. This design enables the generation of stress waves with high energy, and the focusing of the generated stress waves on the test object. The guided wave generation system enables two kinds of output modes: the coded pulse signal and the sweep signal. The functionality and the advantages of the developed system are validated through laboratory testing in the quality assessment of rock bolt-reinforced structures. In addition, the developed GMS actuator and the supporting system are successfully implemented and applied in field tests. The device can also be used in other nondestructive testing and evaluation applications that require high-power stress wave generation.
Distributed temperature sensors development using an stepped-helical ultrasonic waveguide
NASA Astrophysics Data System (ADS)
Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan
2018-04-01
This paper presents the design and development of the distributed ultrasonic waveguide temperature sensors using some stepped-helical structures. Distributed sensing has several applications in various industries (oil, glass, steel) for measurement of physical parameters such as level, temperature, viscosity, etc. This waveguide incorporates a special notch or bend for obtaining ultrasonic wave reflections from the desired locations (Gage-lengths) where local measurements are desired. In this paper, a multi-location measurement wave-guide, with a measurement capability of 18 locations in a single wire, has been fabricated. The distribution of these sensors is both in the axial as well as radial directions using a stepped-helical spring configuration. Also, different high temperature materials have been chosen for the wave-guide. Both lower order axi-symmetric guided ultrasonic modes (L(0,1) and T(0,1)) were employed. These wave modes were generated/received (pulse-echo approach) using conventional longitudinal and shear transducers, respectively. Also, both the wave modes were simultaneously generated/received and compared using shear transducer for developing the distributed helical wave-guide sensors. The effect of dispersion of the wave modes due to curvature effects will also be discussed.
Halliday, Gail C; Junckerstorff, Reimar C; Bentel, Jacqueline M; Miles, Andrew; Jones, David T W; Hovestadt, Volker; Capper, David; Endersby, Raelene; Cole, Catherine H; van Hagen, Tom; Gottardo, Nicholas G
2018-01-01
Central nervous system primitive neuro-ectodermal tumors (CNS-PNETs), have recently been re-classified in the most recent 2016 WHO Classification into a standby catch all category, "CNS Embryonal Tumor, not otherwise specified" (CNS embryonal tumor, NOS) based on epigenetic, biologic and histopathologic criteria. CNS embryonal tumors (NOS) are a rare, histologically and molecularly heterogeneous group of tumors that predominantly affect children, and occasionally adults. Diagnosis of this entity continues to be challenging and the ramifications of misdiagnosis of this aggressive class of brain tumors are significant. We report the case of a 45-year-old woman who was diagnosed with a central nervous system embryonal tumor (NOS) based on immunohistochemical analysis of the patient's tumor at diagnosis. However, later genome-wide methylation profiling of the diagnostic tumor undertaken to guide treatment, revealed characteristics most consistent with IDH-mutant astrocytoma. DNA sequencing and immunohistochemistry confirmed the presence of IDH1 and ATRX mutations resulting in a revised diagnosis of high-grade small cell astrocytoma, and the implementation of a less aggressive treatment regime tailored more appropriately to the patient's tumor type. This case highlights the inadequacy of histology alone for the diagnosis of brain tumours and the utility of methylation profiling and integrated genomic analysis for the diagnostic verification of adults with suspected CNS embryonal tumor (NOS), and is consistent with the increasing realization in the field that a combined diagnostic approach based on clinical, histopathological and molecular data is required to more accurately distinguish brain tumor subtypes and inform more effective therapy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
The use of peripheral vision to guide perturbation-evoked reach-to-grasp balance-recovery reactions
King, Emily C.; McKay, Sandra M.; Cheng, Kenneth C.
2016-01-01
For a reach-to-grasp reaction to prevent a fall, it must be executed very rapidly, but with sufficient accuracy to achieve a functional grip. Recent findings suggest that the CNS may avoid potential time delays associated with saccade-guided arm movements by instead relying on peripheral vision (PV). However, studies of volitional arm movements have shown that reaching is slower and/or less accurate when guided by PV, rather than central vision (CV). The present study investigated how the CNS resolves speed-accuracy trade-offs when forced to use PV to guide perturbation-evoked reach-to-grasp balance-recovery reactions. These reactions were evoked, in 12 healthy young adults, via sudden unpredictable anteroposterior platform translation (barriers deterred stepping reactions). In PV trials, subjects were required to look straight-ahead at a visual target while a small cylindrical handhold (length 25%> hand-width) moved intermittently and unpredictably along a transverse axis before stopping at a visual angle of 20°, 30°, or 40°. The perturbation was then delivered after a random delay. In CV trials, subjects fixated on the handhold throughout the trial. A concurrent visuo-cognitive task was performed in 50% of PV trials but had little impact on reach-to-grasp timing or accuracy. Forced reliance on PV did not significantly affect response initiation times, but did lead to longer movement times, longer time-after-peak-velocity and less direct trajectories (compared to CV trials) at the larger visual angles. Despite these effects, forced reliance on PV did not compromise ability to achieve a functional grasp and recover equilibrium, for the moderately large perturbations and healthy young adults tested in this initial study. PMID:20957351
Patra, Subir; Banerjee, Sourav
2017-12-16
Detection of precursor damage followed by the quantification of the degraded material properties could lead to more accurate progressive failure models for composite materials. However, such information is not readily available. In composite materials, the precursor damages-for example matrix cracking, microcracks, voids, interlaminar pre-delamination crack joining matrix cracks, fiber micro-buckling, local fiber breakage, local debonding, etc.-are insensitive to the low-frequency ultrasonic guided-wave-based online nondestructive evaluation (NDE) or Structural Health Monitoring (SHM) (~100-~500 kHz) systems. Overcoming this barrier, in this article, an online ultrasonic technique is proposed using the coda part of the guided wave signal, which is often neglected. Although the first-arrival wave packets that contain the fundamental guided Lamb wave modes are unaltered, the coda wave packets however carry significant information about the precursor events with predictable phase shifts. The Taylor-series-based modified Coda Wave Interferometry (CWI) technique is proposed to quantify the stretch parameter to compensate the phase shifts in the coda wave as a result of precursor damage in composites. The CWI analysis was performed on five woven composite-fiber-reinforced-laminate specimens, and the precursor events were identified. Next, the precursor damage states were verified using high-frequency Scanning Acoustic Microscopy (SAM) and optical microscopy imaging.
Guided wave propagation in single and double layer hollow cylinders embedded in infinite media.
Jia, Hua; Jing, Mu; Joseph, L Rose
2011-02-01
Millions of miles of pipes are being used for the transportation, distribution, and local use of petroleum products, gas, water, and chemicals. Most of the pipes are buried in soil, leading to the significance of the study on the subject of guided wave propagation in pipes with soil influence. Previous investigations of ultrasonic guided wave propagation in an elastic hollow cylinder and in an elastic hollow cylinder coated with a viscoelastic material have led to the development of inspection techniques for bare and coated pipes. However, the lack of investigation on guided wave propagation in hollow cylinders embedded in infinite media like soil has hindered the development of pipe inspection methods. Therefore the influence of infinite media on wave propagation is explored in this paper. Dispersion curves and wave structures of both axisymmetric and nonaxisymmetric wave modes are developed. Due to the importance of the convergence of numerical calculations, the requirements of thickness and element number of the finite soil layer between hollow cylinder and infinite element layer are discussed, and an optimal combination is obtained in this paper. Wave structures are used for the mode identification in the non-monotonic region caused by the viscoelastic properties of coating and infinite media.
Quasi-Rayleigh waves in butt-welded thick steel plate
NASA Astrophysics Data System (ADS)
Kamas, Tuncay; Giurgiutiu, Victor; Lin, Bin
2015-03-01
This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.
NASA Astrophysics Data System (ADS)
Verisokin, Andrey Yu.; Postnov, Dmitry E.; Verveyko, Darya V.; Brazhe, Alexey R.
2018-04-01
The most abundant non-neuronal cells in the brain, astrocytes, populate all parts of the central nervous system (CNS). Astrocytic calcium activity ranging from subcellular sparkles to intercellular waves is believed to be the key to a plethora of regulatory pathways in the central nervous system from synaptic plasticity to blood flow regulation. Modeling of the calcium wave initiation and transmission and their spatiotemporal dynamics is therefore an important step stone in understanding the crucial cogs of cognition. Astrocytes are active sensors of ongoing neuronal and synaptic activity, and neurotransmitters diffusing from the synaptic cleft make a strong impact on the astrocytic activity. Here we propose a model describing the patterns of calcium wave formation at a single cell level and discuss the interplay between astrocyte shape the calcium waves dynamics driven by local stochastic surges of glutamate simulating synaptic activity.
Integrated coherent matter wave circuits
Ryu, C.; Boshier, M. G.
2015-09-21
An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less
Tietze, Sabrina; Singer, Ferdinand; Lasota, Sandra; Ebert, Sandra; Landskron, Johannes; Schwuchow, Katrin; Drese, Klaus Stefan; Lindner, Gerhard
2018-02-09
The monitoring of liquid-filled tubes with respect to the formation of soft deposition layers such as biofilms on the inner walls calls for non-invasive and long-term stable sensors, which can be attached to existing pipe structures. For this task a method is developed, which uses an ultrasonic clamp-on device. This method is based on the impact of such deposition layers on the propagation of circumferential guided waves on the pipe wall. Such waves are partly converted into longitudinal compressional waves in the liquid, which are back-converted to guided waves in a circular cross section of the pipe. Validating this approach, laboratory experiments with gelatin deposition layers on steel tubes exhibited a distinguishable sensitivity of both wave branches with respect to the thickness of such layers. This allows the monitoring of the layer growth.
Guided Wave Propagation Study on Laminated Composites by Frequency-Wavenumber Technique
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Yu, Lingyu; Leckey, Cara A. C.
2014-01-01
Toward the goal of delamination detection and quantification in laminated composites, this paper examines guided wave propagation and wave interaction with delamination damage in laminated carbon fiber reinforced polymer (CFRP) composites using frequency-wavenumber (f-kappa) analysis. Three-dimensional elastodynamic finite integration technique (EFIT) is used to acquire simulated time-space wavefields for a CFRP composite. The time-space wavefields show trapped waves in the delamination region. To unveil the wave propagation physics, the time-space wavefields are further analyzed by using two-dimensional (2D) Fourier transforms (FT). In the analysis results, new f-k components are observed when the incident guided waves interact with the delamination damage. These new f-kappa components in the simulations are experimentally verified through data obtained from scanning laser Doppler vibrometer (SLDV) tests. By filtering the new f-kappa components, delamination damage is detected and quantified.
Ice detection and classification on an aircraft wing with ultrasonic shear horizontal guided waves.
Gao, Huidong; Rose, Joseph L
2009-02-01
Ice accumulation on airfoils has been identified as a primary cause of many accidents in commercial and military aircraft. To improve aviation safety as well as reduce cost and environmental threats related to aircraft icing, sensitive, reliable, and aerodynamically compatible ice detection techniques are in great demand. Ultrasonic guided-wave-based techniques have been proved reliable for "go" and "no go" types of ice detection in some systems including the HALO system, in which the second author of this paper is a primary contributor. In this paper, we propose a new model that takes the ice layer into guided-wave modeling. Using this model, the thickness and type of ice formation can be determined from guided-wave signals. Five experimental schemes are also proposed in this paper based on some unique features identified from the guided- wave dispersion curves. A sample experiment is also presented in this paper, where a 1 mm thick glaze ice on a 2 mm aluminum plate is clearly detected. Quantitative match of the experiment data to theoretical prediction serves as a strong support for future implementation of other testing schemes proposed in this paper.
Ultrasonic guided wave sensing characteristics of large area thin piezo coating
NASA Astrophysics Data System (ADS)
Rathod, V. T.; Jeyaseelan, A. Antony; Dutta, Soma; Mahapatra, D. Roy
2017-10-01
This paper reports on the characterization method and performance enhancement of thin piezo coating for ultrasonic guided wave sensing applications. We deposited the coatings by an in situ slurry coating method and studied their guided wave sensing properties on a one-dimensional metallic beam as a substrate waveguide. The developed piezo coatings show good sensitivity to the longitudinal and flexural modes of guided waves. Sensing voltage due to the guided waves at various different ultrasonic frequencies shows a linear dependence on the thickness of the coating. The coatings also exhibit linear sensor output voltage with respect to the induced dynamic strain magnitude. Diameter/size of the piezo coatings strongly influences the voltage response in relation to the wavelength. The proposed method used a characterization set-up involving coated sensors, reference transducers and an analytical model to estimate the piezoelectric coefficient of the piezo coating. The method eliminates the size dependent effect on the piezo property accurately and gives further insight to design better sensors/filters with respect to frequency/wavelength of interest. The developed coatings will have interesting applications in structural health monitoring (SHM) and internet of things (IOT).
NASA Astrophysics Data System (ADS)
Hedayatrasa, Saeid; Kersemans, Mathias; Abhary, Kazem; Uddin, Mohammad; Van Paepegem, Wim
2018-01-01
Phononic crystal plates (PhPs) have promising application in manipulation of guided waves for design of low-loss acoustic devices and built-in acoustic metamaterial lenses in plate structures. The prominent feature of phononic crystals is the existence of frequency bandgaps over which the waves are stopped, or are resonated and guided within appropriate defects. Therefore, maximized bandgaps of PhPs are desirable to enhance their phononic controllability. Porous PhPs produced through perforation of a uniform background plate, in which the porous interfaces act as strong reflectors of wave energy, are relatively easy to produce. However, the research in optimization of porous PhPs and experimental validation of achieved topologies has been very limited and particularly focused on bandgaps of flexural (asymmetric) wave modes. In this paper, porous PhPs are optimized through an efficient multiobjective genetic algorithm for widest complete bandgap of mixed fundamental guided wave modes (symmetric and asymmetric) and maximized stiffness. The Pareto front of optimization is analyzed and variation of bandgap efficiency with respect to stiffness is presented for various optimized topologies. Selected optimized topologies from the stiff and compliant regimes of Pareto front are manufactured by water-jetting an aluminum plate and their promising bandgap efficiency is experimentally observed. An optimized Pareto topology is also chosen and manufactured by laser cutting a Plexiglas (PMMA) plate, and its performance in self-collimation and focusing of guided waves is verified as compared to calculated dispersion properties.
A functional genomics screen in planarians reveals regulators of whole-brain regeneration.
Roberts-Galbraith, Rachel H; Brubacher, John L; Newmark, Phillip A
2016-09-09
Planarians regenerate all body parts after injury, including the central nervous system (CNS). We capitalized on this distinctive trait and completed a gene expression-guided functional screen to identify factors that regulate diverse aspects of neural regeneration in Schmidtea mediterranea . Our screen revealed molecules that influence neural cell fates, support the formation of a major connective hub, and promote reestablishment of chemosensory behavior. We also identified genes that encode signaling molecules with roles in head regeneration, including some that are produced in a previously uncharacterized parenchymal population of cells. Finally, we explored genes downregulated during planarian regeneration and characterized, for the first time, glial cells in the planarian CNS that respond to injury by repressing several transcripts. Collectively, our studies revealed diverse molecules and cell types that underlie an animal's ability to regenerate its brain.
Wave energy transfer in elastic half-spaces with soft interlayers.
Glushkov, Evgeny; Glushkova, Natalia; Fomenko, Sergey
2015-04-01
The paper deals with guided waves generated by a surface load in a coated elastic half-space. The analysis is based on the explicit integral and asymptotic expressions derived in terms of Green's matrix and given loads for both laminate and functionally graded substrates. To perform the energy analysis, explicit expressions for the time-averaged amount of energy transferred in the time-harmonic wave field by every excited guided or body wave through horizontal planes and lateral cylindrical surfaces have been also derived. The study is focused on the peculiarities of wave energy transmission in substrates with soft interlayers that serve as internal channels for the excited guided waves. The notable features of the source energy partitioning in such media are the domination of a single emerging mode in each consecutive frequency subrange and the appearance of reverse energy fluxes at certain frequencies. These effects as well as modal and spatial distribution of the wave energy coming from the source into the substructure are numerically analyzed and discussed.
Waveguiding by a locally resonant metasurface
NASA Astrophysics Data System (ADS)
Maznev, A. A.; Gusev, V. E.
2015-09-01
Dispersion relations for acoustic and electromagnetic waves guided by resonant inclusions located at the surface of an elastic solid or an interface between two media are analyzed theoretically within the effective medium approximation. Oscillators on the surface of an elastic half-space are shown to give rise to a Love-type surface acoustic wave only existing below the oscillator frequency. A simple dispersion relation governing this system is shown to also hold for electromagnetic waves guided by Lorentz oscillators at an interface between two media with equal dielectric constants. Different kinds of behavior of the dispersion of the resonantly guided mode are identified, depending on whether the bulk wave in the absence of oscillators can propagate along the surface or interface.
Longitudinal axons are guided by Slit/Robo signals from the floor plate.
Mastick, Grant S; Farmer, W Todd; Altick, Amy L; Nural, Hikmet Feyza; Dugan, James P; Kidd, Thomas; Charron, Frederic
2010-01-01
Longitudinal axons grow long distances along precise pathways to connect major CNS regions. However, during embryonic development, it remains largely undefined how the first longitudinal axons choose specific positions and grow along them. Here, we review recent evidence identifying a critical role for Slit/Robo signals to guide pioneer longitudinal axons in the embryonic brain stem. These studies indicate that Slit/Robo signals from the floor plate have dual functions: to repel longitudinal axons away from the ventral midline, and also to maintain straight longitudinal growth. These dual functions likely cooperate with other guidance cues to establish the major longitudinal tracts in the brain.
Butler, Emily E; Saville, Christopher W N; Ward, Robert; Ramsey, Richard
2017-01-01
The human face cues a range of important fitness information, which guides mate selection towards desirable others. Given humans' high investment in the central nervous system (CNS), cues to CNS function should be especially important in social selection. We tested if facial attractiveness preferences are sensitive to the reliability of human nervous system function. Several decades of research suggest an operational measure for CNS reliability is reaction time variability, which is measured by standard deviation of reaction times across trials. Across two experiments, we show that low reaction time variability is associated with facial attractiveness. Moreover, variability in performance made a unique contribution to attractiveness judgements above and beyond both physical health and sex-typicality judgements, which have previously been associated with perceptions of attractiveness. In a third experiment, we empirically estimated the distribution of attractiveness preferences expected by chance and show that the size and direction of our results in Experiments 1 and 2 are statistically unlikely without reference to reaction time variability. We conclude that an operating characteristic of the human nervous system, reliability of information processing, is signalled to others through facial appearance. Copyright © 2016 Elsevier B.V. All rights reserved.
Lamb wave propagation in monocrystalline silicon wafers.
Fromme, Paul; Pizzolato, Marco; Robyr, Jean-Luc; Masserey, Bernard
2018-01-01
Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness and beam skewing of the two fundamental Lamb wave modes A 0 and S 0 were investigated. Experimental measurements using contact wedge transducer excitation and laser measurement were conducted. Good agreement was found between the theoretically calculated angular dependency of the phase slowness and measurements for different propagation directions relative to the crystal orientation. Significant wave skew and beam widening was observed experimentally due to the anisotropy, especially for the S 0 mode. Explicit finite element simulations were conducted to visualize and quantify the guided wave beam skew. Good agreement was found for the A 0 mode, but a systematic discrepancy was observed for the S 0 mode. These effects need to be considered for the non-destructive testing of wafers using guided waves.
Wheat, Joseph; Myint, Thein; Guo, Ying; Kemmer, Phebe; Hage, Chadi; Terry, Colin; Azar, Marwan M; Riddell, James; Ender, Peter; Chen, Sharon; Shehab, Kareem; Cleveland, Kerry; Esguerra, Eden; Johnson, James; Wright, Patty; Douglas, Vanja; Vergidis, Pascalis; Ooi, Winnie; Baddley, John; Bamberger, David; Khairy, Raed; Vikram, Holenarasipur R; Jenny-Avital, Elizabeth; Sivasubramanian, Geetha; Bowlware, Karen; Pahud, Barbara; Sarria, Juan; Tsai, Townson; Assi, Maha; Mocherla, Satish; Prakash, Vidhya; Allen, David; Passaretti, Catherine; Huprikar, Shirish; Anderson, Albert
2018-03-01
Central nervous system (CNS) involvement occurs in 5 to 10% of individuals with disseminated histoplasmosis. Most experience has been derived from small single center case series, or case report literature reviews. Therefore, a larger study of central nervous system (CNS) histoplasmosis is needed in order to guide the approach to diagnosis, and treatment.A convenience sample of 77 patients with histoplasmosis infection of the CNS was evaluated. Data was collected that focused on recognition of infection, diagnostic techniques, and outcomes of treatment.Twenty nine percent of patients were not immunosuppressed. Histoplasma antigen, or anti-Histoplasma antibodies were detected in the cerebrospinal fluid (CSF) in 75% of patients. One year survival was 75% among patients treated initially with amphotericin B, and was highest with liposomal, or deoxycholate formulations. Mortality was higher in immunocompromised patients, and patients 54 years of age, or older. Six percent of patients relapsed, all of whom had the acquired immunodeficiency syndrome (AIDS), and were poorly adherent with treatment.While CNS histoplasmosis occurred most often in immunocompromised individuals, a significant proportion of patients were previously, healthy. The diagnosis can be established by antigen, and antibody testing of the CSF, and serum, and antigen testing of the urine in most patients. Treatment with liposomal amphotericin B (AMB-L) for at least 1 month; followed by itraconazole for at least 1 year, results in survival among the majority of individuals. Patients should be followed for relapse for at least 1 year, after stopping therapy.
Central nervous system histoplasmosis
Wheat, Joseph; Myint, Thein; Guo, Ying; Kemmer, Phebe; Hage, Chadi; Terry, Colin; Azar, Marwan M.; Riddell, James; Ender, Peter; Chen, Sharon; Shehab, Kareem; Cleveland, Kerry; Esguerra, Eden; Johnson, James; Wright, Patty; Douglas, Vanja; Vergidis, Pascalis; Ooi, Winnie; Baddley, John; Bamberger, David; Khairy, Raed; Vikram, Holenarasipur; Jenny-Avital, Elizabeth; Sivasubramanian, Geetha; Bowlware, Karen; Pahud, Barbara; Sarria, Juan; Tsai, Townson; Assi, Maha; Mocherla, Satish; Prakash, Vidhya; Allen, David; Passaretti, Catherine; Huprikar, Shirish; Anderson, Albert
2018-01-01
Abstract Central nervous system (CNS) involvement occurs in 5 to 10% of individuals with disseminated histoplasmosis. Most experience has been derived from small single center case series, or case report literature reviews. Therefore, a larger study of central nervous system (CNS) histoplasmosis is needed in order to guide the approach to diagnosis, and treatment. A convenience sample of 77 patients with histoplasmosis infection of the CNS was evaluated. Data was collected that focused on recognition of infection, diagnostic techniques, and outcomes of treatment. Twenty nine percent of patients were not immunosuppressed. Histoplasma antigen, or anti-Histoplasma antibodies were detected in the cerebrospinal fluid (CSF) in 75% of patients. One year survival was 75% among patients treated initially with amphotericin B, and was highest with liposomal, or deoxycholate formulations. Mortality was higher in immunocompromised patients, and patients 54 years of age, or older. Six percent of patients relapsed, all of whom had the acquired immunodeficiency syndrome (AIDS), and were poorly adherent with treatment. While CNS histoplasmosis occurred most often in immunocompromised individuals, a significant proportion of patients were previously, healthy. The diagnosis can be established by antigen, and antibody testing of the CSF, and serum, and antigen testing of the urine in most patients. Treatment with liposomal amphotericin B (AMB-L) for at least 1 month; followed by itraconazole for at least 1 year, results in survival among the majority of individuals. Patients should be followed for relapse for at least 1 year, after stopping therapy. PMID:29595679
Development of a simple, rapid, and robust intrathecal catheterization method in the rat.
Mazur, Curt; Fitzsimmons, Bethany; Kamme, Fredrik; Nichols, Brandon; Powers, Berit; Wancewicz, Ed
2017-03-15
The blood brain barrier (BBB) is an impediment to the development of large and highly charged molecules as therapeutics for diseases and injuries of the central nervous system (CNS). Antisense oligonucleotides (ASOs) are large (6000-8000MW) and highly charged and therefore do not cross the BBB. A method of circumventing the blood brain barrier to test ASOs, and other non-BBB penetrant molecules, as CNS therapeutics is the direct administration of these molecules to the CNS tissue or cerebral spinal fluid. We developed a rapid, simple and robust method for the intrathecal catheterization of rats to test putatively therapeutic antisense oligonucleotides. This method utilizes 23-gauge needles, simply constructed ½in. long 19-gauge guide cannulas and 8cm long plastic PE-10 sized catheters. Unlike the cisterna magna approach, this method uses a lumbar approach for intrathecal catheterization with the catheter residing entirely in the cauda equina space minimizing spinal cord compression. Readily available materials and only a few specialized pieces of equipment, which are easily manufactured, are used for this intrathecal catheterization method. This method is easy to learn and has been taught to multiple in house surgeons, collaborators and contract laboratories. Greater than 90% catheterization success is routinely achieved with this method and as many as 100 catheters can be placed and test substance administered in one 6-h period. This method has allowed the pre-clinical testing of hundreds of ASOs as therapeutics for CNS indications. Copyright © 2017 Elsevier B.V. All rights reserved.
Damage evaluation by a guided wave-hidden Markov model based method
NASA Astrophysics Data System (ADS)
Mei, Hanfei; Yuan, Shenfang; Qiu, Lei; Zhang, Jinjin
2016-02-01
Guided wave based structural health monitoring has shown great potential in aerospace applications. However, one of the key challenges of practical engineering applications is the accurate interpretation of the guided wave signals under time-varying environmental and operational conditions. This paper presents a guided wave-hidden Markov model based method to improve the damage evaluation reliability of real aircraft structures under time-varying conditions. In the proposed approach, an HMM based unweighted moving average trend estimation method, which can capture the trend of damage propagation from the posterior probability obtained by HMM modeling is used to achieve a probabilistic evaluation of the structural damage. To validate the developed method, experiments are performed on a hole-edge crack specimen under fatigue loading condition and a real aircraft wing spar under changing structural boundary conditions. Experimental results show the advantage of the proposed method.
NASA Astrophysics Data System (ADS)
Ervin, Benjamin L.; Reis, Henrique; Bernhard, Jennifer T.; Kuchma, Daniel A.
2008-03-01
High-frequency guided longitudinal waves have been used in a through-transmission arrangement to monitor reinforced mortar specimens undergoing both accelerated uniform and localized corrosion. High-frequency guided longitudinal waves were chosen because they have the fastest propagation velocity and lowest theoretical attenuation for the rebar/mortar system. This makes the modes easily discernible and gives them the ability to travel over long distances. The energy of the high-frequency longitudinal waves is located primarily in the center of the rebar, leading to less leakage into the surrounding mortar. The results indicate that the guided mechanical waves are sensitive to both forms of corrosion attack in the form of attenuation, with less sensitivity at higher frequencies. Also promising is the ability to discern uniform corrosion from localized corrosion in a through-transmission arrangement by examination of the frequency domain.
Masserey, Bernard; Raemy, Christian; Fromme, Paul
2014-09-01
Aerospace structures often contain multi-layered metallic components where hidden defects such as fatigue cracks and localized disbonds can develop, necessitating non-destructive testing. Employing standard wedge transducers, high frequency guided ultrasonic waves that penetrate through the complete thickness were generated in a model structure consisting of two adhesively bonded aluminium plates. Interference occurs between the wave modes during propagation along the structure, resulting in a frequency dependent variation of the energy through the thickness with distance. The wave propagation along the specimen was measured experimentally using a laser interferometer. Good agreement with theoretical predictions and two-dimensional finite element simulations was found. Significant propagation distance with a strong, non-dispersive main wave pulse was achieved. The interaction of the high frequency guided ultrasonic waves with small notches in the aluminium layer facing the sealant and on the bottom surface of the multilayer structure was investigated. Standard pulse-echo measurements were conducted to verify the detection sensitivity and the influence of the stand-off distance predicted from the finite element simulations. The results demonstrated the potential of high frequency guided waves for hidden defect detection at critical and difficult to access locations in aerospace structures from a stand-off distance. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Balakin, A. A.; Mironov, V. A.; Skobelev, S. A.
2017-01-01
The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the "kaleidoscopic" picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.
NASA Astrophysics Data System (ADS)
Shen, Yanfeng
2017-04-01
This paper presents a numerical investigation of the nonlinear interactions between multimodal guided waves and delamination in composite structures. The elastodynamic wave equations for anisotropic composite laminate were formulated using an explicit Local Interaction Simulation Approach (LISA). The contact dynamics was modeled using the penalty method. In order to capture the stick-slip contact motion, a Coulomb friction law was integrated into the computation procedure. A random gap function was defined for the contact pairs to model distributed initial closures or openings to approximate the nature of rough delamination interfaces. The LISA procedure was coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized computation on powerful graphic cards. Several guided wave modes centered at various frequencies were investigated as the incident wave. Numerical case studies of different delamination locations across the thickness were carried out. The capability of different wave modes at various frequencies to trigger the Contact Acoustic Nonlinearity (CAN) was studied. The correlation between the delamination size and the signal nonlinearity was also investigated. Furthermore, the influence from the roughness of the delamination interfaces was discussed as well. The numerical investigation shows that the nonlinear features of wave delamination interactions can enhance the evaluation capability of guided wave Structural Health Monitoring (SHM) system. This paper finishes with discussion, concluding remarks, and suggestions for future work.
NASA Astrophysics Data System (ADS)
Ren, Baiyang; Lissenden, Cliff J.
2018-04-01
Guided waves have been extensively studied and widely used for structural health monitoring because of their large volumetric coverage and good sensitivity to defects. Effectively and preferentially exciting a desired wave mode having good sensitivity to a certain defect is of great practical importance. Piezoelectric discs and plates are the most common types of surface-mounted transducers for guided wave excitation and reception. Their geometry strongly influences the proportioning between excited modes as well as the total power of the excited modes. It is highly desirable to predominantly excite the selected mode while the total transduction power is maximized. In this work, a fully coupled multi-physics finite element analysis, which incorporates the driving circuit, the piezoelectric element and the wave guide, is combined with the normal mode expansion method to study both the mode tuning and total wave power. The excitation of circular crested waves in an aluminum plate with circular piezoelectric discs is numerically studied for different disc and adhesive thicknesses. Additionally, the excitation of plane waves in an aluminum plate, using a stripe piezoelectric element is studied both numerically and experimentally. It is difficult to achieve predominant single mode excitation as well as maximum power transmission simultaneously, especially for higher order modes. However, guidelines for designing the geometry of piezoelectric elements for optimal mode excitation are recommended.
Acoustic Wave Guiding by Reconfigurable Tessellated Arrays
NASA Astrophysics Data System (ADS)
Zou, Chengzhe; Lynd, Danielle T.; Harne, Ryan L.
2018-01-01
The reconfiguration of origami tessellations is a prime vehicle to harness for adapting system properties governed by a structural form. While the knowledge of mechanical property changes associated with origami tessellation folding has been extensively built up, the opportunities to integrate other physics into a framework of tessellated, adaptive structures remain to be fully exploited. Acoustics appears to be a prime domain to marry with origami science. Specifically, deep technical analogies are revealed between wave-guiding properties achieved via digital methods that virtually reposition array elements and the actual repositioning of facets by folding origami-inspired tessellations. Here we capitalize on this analogy to investigate acoustic arrays established upon facet layouts of origami-inspired tessellations. We show that a concept of reconfigurable tessellated arrays may guide waves more effectively than traditional digitally phased arrays using fewer transducer elements. Moreover, we show that the refinement of tessellated arrays trends to the ideal case of classical wave radiators or receivers grounded in principles of geometrical acoustics. By linear wave physics shared among myriad scientific disciplines and across orders of magnitude in length scale, these discoveries may cultivate numerous opportunities for wave-guiding adaptive structures inspired by low-dimensional origami tessellations.
High frequency guided wave propagation in monocrystalline silicon wafers
NASA Astrophysics Data System (ADS)
Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul
2017-04-01
Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.
Monitoring of corrosion damage using high-frequency guided ultrasonic waves
NASA Astrophysics Data System (ADS)
Chew, D.; Fromme, P.
2014-03-01
Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.
Monitoring of corrosion damage using high-frequency guided ultrasonic waves
NASA Astrophysics Data System (ADS)
Chew, D.; Fromme, P.
2015-03-01
Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.
Monitoring corrosion of rebar embedded in mortar using guided ultrasonic waves
NASA Astrophysics Data System (ADS)
Ervin, Benjamin Lee
This thesis investigates the use of guided mechanical waves for monitoring uniform and localized corrosion in steel reinforcing bars embedded in concrete. The main forms of structural deterioration from uniform corrosion in reinforced concrete are the destruction of the bond between steel and concrete, the loss of steel cross-sectional area, and the loss of concrete cross-sectional area from cracking and spalling. Localized corrosion, or pitting, leads to severe loss of steel cross-sectional area, creating a high risk of bar tensile failure and unintended transfer of loads to the surrounding concrete. Reinforcing bars were used to guide the waves, rather than bulk concrete, allowing for longer inspection distances due to lower material absorption, scattering, and divergence. Guided mechanical waves in low frequency ranges (50-200 kHz) and higher frequency ranges (2-8 MHz) were monitored in reinforced mortar specimens undergoing accelerated uniform corrosion. The frequency ranges chosen contain wave modes with varying amounts of interaction, i.e. displacement profile, at the material interface. Lower frequency modes were shown to be sensitive to the accumulation of corrosion product and the level of bond between the surrounding mortar and rebar. This allows for the onset of corrosion and bond deterioration to be monitored. Higher frequency modes were shown to be sensitive to changes in the bar profile surface, allowing for the loss of cross-sectional area to be monitored. Guided mechanical waves in the higher frequency range were also used to monitor reinforced mortar specimens undergoing accelerated localized corrosion. The high frequency modes were sensitive to the localized attack. Also promising was the unique frequency spectrum response for both uniform and localized corrosion, allowing the two corrosion types to be differentiated from through-transmission evaluation. The isolated effects of the reinforcing ribs, simulated debonding, simulated pitting, water surrounding, and mortar surrounding were also investigated using guided mechanical waves. Results are presented and discussed within the framework of a corrosion process degradation model and service life. A thorough review and discussion of the corrosion process, modeling the propagation of corrosion, nondestructive methods for monitoring corrosion in reinforced concrete, and guided mechanical waves have also been presented.
Towards improved NDE and SHM methodologies incorporating nonlinear structural features
NASA Astrophysics Data System (ADS)
Chillara, Vamshi Krishna
Ultrasound is widely employed in Nondestructive Evaluation (NDE) and Structural Health Monitoring (SHM) applications to detect and characterize damage/defects in materials. In particular, ultrasonic guided waves are considered a foremost candidate for in-situ monitoring applications. Conventional ultrasonic techniques rely on changes/discontinuities in linear elastic material properties, namely the Young's modulus and shear modulus to detect damage. On the other hand, nonlinear ultrasonic techniques that rely on micro-scale nonlinear material/structural behavior are proven to be sensitive to damage induced microstructural changes that precede macro-scale damage and are hence capable of early damage detection. The goal of this thesis is to investigate the capabilities of nonlinear guided waves --- a fusion of nonlinear ultrasonic techniques with the guided wave methodologies for early damage detection. To that end, the thesis focuses on two important aspects of the problem: 1. Wavemechanics - deals with ultrasonic guided wave propagation in nonlinear waveguides; 2. Micromechanics - deals with correlating ultrasonic response with micro-scale nonlinear material behavior. For the development of efficient NDE and SHM methodologies that incorporate nonlinear structural features, a detailed understanding of the above aspects is indispensable. In this thesis, the wavemechanics aspect of the problem is dealt with from both theoretical and numerical standpoints. A generalized theoretical framework is developed to study higher harmonic guided waves in plates. This was employed to study second harmonic guided waves in pipes using a large-radius asymptotic approximation. Second harmonic guided waves in plates are studied from a numerical standpoint. Theoretical predictions are validated and some key aspects of higher harmonic generation in waveguides are outlined. Finally, second harmonic guided waves in plates with inhomogeneous and localized nonlinearities are studied and some important aspects of guided wave mode selection are addressed. The other part of the work focused on developing a micromechanics based understanding of ultrasonic higher harmonic generation. Three important aspects of micro-scale material behavior, namely tension-compression asymmetry, shearnormal coupling and deformation induced asymmetry are identified and their role in ultrasonic higher harmonic generation is discussed. Tension-compression asymmetry is identified to cause second (even) harmonic generation in materials. Then, shearnormal coupling is identified to cause generation of secondary waves of different polarity than the primary waves. In addition, deformation induced anisotropy due to the presence of residual stress/strain and its contribution to ultrasonic higher harmonic generation is qualitatively discussed. Also, the tension-compression asymmetry in the material is quantified using an energy based measure. The above measure is employed to develop a homogenization based approach amenable to multi-scale analysis to correlate microstructure with ultrasonic higher harmonic generation. Finally, experimental investigations concerning third harmonic SH wave generation in plates are carried out and the effect of load and temperature changes on nonlinear ultrasonic measurements are discussed in the context of SHM. It was found that while nonlinear ultrasound is sensitive to micro-scale damage, the relative nonlinearity parameter may not always be the best measure to quantify the nonlinearity as it is subject to spurious effects from changes in environmental factors such as loads and temperature.
Malo, Sergio; Fateri, Sina; Livadas, Makis; Mares, Cristinel; Gan, Tat-Hean
2017-07-01
Ultrasonic guided waves testing is a technique successfully used in many industrial scenarios worldwide. For many complex applications, the dispersive nature and multimode behavior of the technique still poses a challenge for correct defect detection capabilities. In order to improve the performance of the guided waves, a 2-D compressed pulse analysis is presented in this paper. This novel technique combines the use of pulse compression and dispersion compensation in order to improve the signal-to-noise ratio (SNR) and temporal-spatial resolution of the signals. The ability of the technique to discriminate different wave modes is also highlighted. In addition, an iterative algorithm is developed to identify the wave modes of interest using adaptive peak detection to enable automatic wave mode discrimination. The employed algorithm is developed in order to pave the way for further in situ applications. The performance of Barker-coded and chirp waveforms is studied in a multimodal scenario where longitudinal and flexural wave packets are superposed. The technique is tested in both synthetic and experimental conditions. The enhancements in SNR and temporal resolution are quantified as well as their ability to accurately calculate the propagation distance for different wave modes.
Prediction and near-field observation of skull-guided acoustic waves
NASA Astrophysics Data System (ADS)
Estrada, Héctor; Rebling, Johannes; Razansky, Daniel
2017-06-01
Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.
Prediction and near-field observation of skull-guided acoustic waves.
Estrada, Héctor; Rebling, Johannes; Razansky, Daniel
2017-06-21
Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovsky, J.E.
1995-02-20
The return-stroke breakdown pulse and the dart leader are treated as electric waves guided by conducting lightning channels; such waves are launched when current is injected into a conducting channel (producing the dart leader) or when charge on a channel begins to drain to Earth (producing the return stroke). The guided waves are self-consistent solutions to the full set of Maxwell`s equations, obeying the physical boundary conditions for cylindrical channels. These waves are shown (1) to move with velocities substantially slower than c along the channel, (2) to push current inside the lightning channel, (3) to move charge and voltagemore » along the channel, and (4) to transport energy along and into the channel via Poynting flux. The velocity of a guided wave is a function of only three parameters: the channel radius r{sub ch}, the channel temperature T, and the risetime {triangle}t of the wave front. These velocities are found to fall in the range of velocities of return strokes and of dart leaders. The dart leader and the return stroke are caused by the same type of guided electromagnetic waves: the difference in velocity is owed mostly to the difference in channel temperature. In the case of the dart leader the waves deliver Poynting flux along the outside of the channel down from a thundercloud generator to the downward-propagating wave front. At the wave front of the dart leader the delivered energy goes into heating the channel and into storage in the form of E{sup 2}/8{pi} around the newly charged channel. In the case of the return stroke the Poynting flux is localized to the vicinity of the wave front where stored energy E{sup 2}/8{pi} is delivered radially inward onto the channel to heat the channel in the propagating front. The net result of a dart leader and return stroke is that charge is moved from the cloud to the ground and that energy is moved from the cloud onto the channel. 123 refs., 11 figs., 5 tabs.« less
Guided elastic waves in a pre-stressed compressible interlayer
Sotiropoulos
2000-03-01
The propagation of guided elastic waves in a pre-stressed elastic compressible layer embedded in a different compressible material is examined. The waves propagate parallel to the planar layer interfaces as a superposed dynamic stress state on the statically pre-stressed layer and host material. The underlying stress condition in the two materials is characterized by equibiaxial in-plane deformations with common principal axes of strain, one of the axes being perpendicular to the layering. Both materials have arbitrary strain energy functions. The dispersion equation is derived in explicit form. Analysis of the dispersion equation reveals the propagation characteristics and their dependence on frequency, material parameters and stress parameters. Combinations of these parameters are also defined for which guided waves cannot propagate.
Polarization switching of sodium guide star laser for brightness enhancement
NASA Astrophysics Data System (ADS)
Fan, Tingwei; Zhou, Tianhua; Feng, Yan
2016-07-01
The efficiency of optical pumping that enhances the brightness of sodium laser guide star with circularly polarized light is reduced substantially due to the precession of sodium atoms in geomagnetic field. Switching the laser between left and right circular polarization at the Larmor frequency is proposed to improve the photon return. With ESO's cw laser guide star system at Paranal as example, numerical simulation for both square-wave and sine-wave polarization modulation is conducted. For the square-wave switching case, the return flux is increased when the angle between geomagnetic field and laser beam is larger than 60°, as much as 40% at 90°. The method can also be applied for remote measurement of magnetic field with available cw guide star laser.
Resonance scattering in quantum wave guides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arsen'ev, A A
2003-02-28
The interaction of a quantum wave guide with a resonator is studied within the frame of the Birman-Kato scattering theory. The existence of poles of the scattering matrix is proved and the jump of the scattering amplitude near a resonance is calculated.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Verrilli, Michael J.; Martin, Richard E.; Cosgriff, Laura M.
2004-01-01
An ultrasonic guided wave scan system was used to nondestructively monitor damage over time and position in a C/enhanced SiC sample that was creep tested to failure at 1200 C in air at a stress of 69 MPa (10 ksi). The use of the guided wave scan system for mapping evolving oxidation profiles (via porosity gradients resulting from oxidation) along the sample length and predicting failure location was explored. The creep-rupture tests were interrupted for ultrasonic evaluation every two hours until failure at approx. 17.5 cumulative hours.
Puthillath, Padmakumar; Galan, Jose M; Ren, Baiyang; Lissenden, Cliff J; Rose, Joseph L
2013-05-01
Ultrasonic guided wave inspection of structures containing adhesively bonded joints requires an understanding of the interaction of guided waves with geometric and material discontinuities or transitions in the waveguide. Such interactions result in mode conversion with energy being partitioned among the reflected and transmitted modes. The step transition between an aluminum layer and an aluminum-adhesive-aluminum multi-layer waveguide is analyzed as a model structure. Dispersion analysis enables assessment of (i) synchronism through dispersion curve overlap and (ii) wavestructure correlation. Mode-pairs in the multi-layer waveguide are defined relative to a prescribed mode in a single layer as being synchronized and having nearly perfect wavestructure matching. Only a limited number of mode-pairs exist, and each has a unique frequency range. A hybrid model based on semi-analytical finite elements and the normal mode expansion is implemented to assess mode conversion at a step transition in a waveguide. The model results indicate that synchronism and wavestructure matching is associated with energy transfer through the step transition, and that the energy of an incident wave mode in a single layer is transmitted almost entirely to the associated mode-pair, where one exists. This analysis guides the selection of incident modes that convert into transmitted modes and improve adhesive joint inspection with ultrasonic guided waves.
Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J
2017-03-01
Guided waves in plate-like structures have been widely investigated for structural health monitoring. Lamb waves and shear horizontal (SH) waves, two commonly used types of waves in plates, provide different benefits for the detection of various types of defects and material degradation. However, there are few sensors that can detect both Lamb and SH waves and also resolve their modal content, namely the wavenumber-frequency spectrum. A sensor that can detect both waves is desirable to take full advantage of both types of waves in order to improve sensitivity to different discontinuity geometries. We demonstrate that polyvinylidene difluoride (PVDF) film provides the basis for a multi-element array sensor that detects both Lamb and SH waves and also measures their modal content, i.e., the wavenumber-frequency spectrum.
Robert J. Ross; Roy F. Pellerin; Norbert Volny; William W. Salsig; Robert H. Falk
1999-01-01
This guide was prepared to assist inspectors in the use of stress wave timing instruments and the various methods of locating and defining areas of decay in timber bridge members. The first two sections provide (a) background information regarding conventional methods to locate and measure decay in timber bridges and (b) the principles of stress wave nondestructive...
Robert Ross; Roy F. Pellerin; Norbert Volny; William W. Salsig; Robert H. Falk
2000-01-01
This guide was prepared to assist inspectors in the use of stress wave timing instruments and various methods of locating and defining areas of decay in timber members in historic structures. The first two sections provide (a) background information regarding conventional methods to locate and measure decay in historic structures and (b) the principles of stress wave...
Surface and guided waves on structured surfaces and inhomogeneous media
NASA Astrophysics Data System (ADS)
Polanco, Javier
Surface and guided waves on structured surfaces and inhomogeneous media studies the propagation of waves in systems with spatially varying parameters. In the rainbow case (chapter 1), the dielectric constant changes with coordinates. In the cylinder case: boundary and the metal (chapter 2), it is a curved surface. Finally, in the last case (chapter 3), the dielectric constant changes in z-direction.
Quasi-Rayleigh waves in butt-welded thick steel plate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamas, Tuncay, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Giurgiutiu, Victor, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Lin, Bin, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu
2015-03-31
This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as wellmore » as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.« less
Method for Ultrasonic Imaging and Device for Performing the Method
NASA Technical Reports Server (NTRS)
Madaras, Eric I. (Inventor)
1997-01-01
A method for ultrasonic imaging of interior structures and flaws in a test specimen with a smooth or irregular contact surfaces, in which an ultrasonic transducer is coupled acoustically to the contact surface via a plurality of ultrasonic wave guides with equal delay times. The wave guides are thin and bendable, so they adapt to variations in the distance between the transducer and different parts of the contact surface by bending more or less. All parts of the irregular contact surface accordingly receive sound waves that are in phase, even when the contact surface is irregular, so a coherent sound wave is infused in the test specimen. The wave guides can be arranged in the form of an ultrasonic brush, with a flat head for coupling to a flat transducer, and free bristles that can be pressed against the test specimen. By bevelling the bristle ends at a suitable angle, shear mode waves can be infused into the test specimen from a longitudinal mode transducer.
NASA Astrophysics Data System (ADS)
Nishino, Hideo; Tateishi, Kohei; Ishikawa, Masashi; Furukawa, Takashi; Goka, Motoki
2018-07-01
Guided wave inspection is expected especially for buried piping because it can be applied easily to such piping requiring only its partial digging from the ground. However, in buried piping, the attenuation coefficient is extremely large compared with that in above-ground piping because the leaky \\text{T}(0,1) mode guided wave (LTGW) propagates in buried piping and its energy leaks into the adjacent surrounding material as a bulk shear wave. Petrolatum anticorrosion grease (PAG) is the most widely used as the coating material on the pipe surface before burying piping in sand or soil, which is a viscous material with a temperature-dependent shear wave velocity. In this paper, attenuation characteristics of the LTGW are shown theoretically and experimentally. The theoretical calculations explain very well the experimental results measured. The temperature dependence of the attenuation coefficient is discussed with the theoretical outcomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, C.; Boshier, M. G.
An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less
Anomalous Refraction of Acoustic Guided Waves in Solids with Geometrically Tapered Metasurfaces.
Zhu, Hongfei; Semperlotti, Fabio
2016-07-15
The concept of a metasurface opens new exciting directions to engineer the refraction properties in both optical and acoustic media. Metasurfaces are typically designed by assembling arrays of subwavelength anisotropic scatterers able to mold incoming wave fronts in rather unconventional ways. The concept of a metasurface was pioneered in photonics and later extended to acoustics while its application to the propagation of elastic waves in solids is still relatively unexplored. We investigate the design of acoustic metasurfaces to control elastic guided waves in thin-walled structural elements. These engineered discontinuities enable the anomalous refraction of guided wave modes according to the generalized Snell's law. The metasurfaces are made out of locally resonant toruslike tapers enabling an accurate phase shift of the incoming wave, which ultimately affects the refraction properties. We show that anomalous refraction can be achieved on transmitted antisymmetric modes (A_{0}) either when using a symmetric (S_{0}) or antisymmetric (A_{0}) incident wave, the former clearly involving mode conversion. The same metasurface design also allows achieving structure embedded planar focal lenses and phase masks for nonparaxial propagation.
A functional genomics screen in planarians reveals regulators of whole-brain regeneration
Roberts-Galbraith, Rachel H; Brubacher, John L; Newmark, Phillip A
2016-01-01
Planarians regenerate all body parts after injury, including the central nervous system (CNS). We capitalized on this distinctive trait and completed a gene expression-guided functional screen to identify factors that regulate diverse aspects of neural regeneration in Schmidtea mediterranea. Our screen revealed molecules that influence neural cell fates, support the formation of a major connective hub, and promote reestablishment of chemosensory behavior. We also identified genes that encode signaling molecules with roles in head regeneration, including some that are produced in a previously uncharacterized parenchymal population of cells. Finally, we explored genes downregulated during planarian regeneration and characterized, for the first time, glial cells in the planarian CNS that respond to injury by repressing several transcripts. Collectively, our studies revealed diverse molecules and cell types that underlie an animal’s ability to regenerate its brain. DOI: http://dx.doi.org/10.7554/eLife.17002.001 PMID:27612384
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakin, A. A., E-mail: balakin.alexey@yandex.ru; Mironov, V. A.; Skobelev, S. A., E-mail: sk.sa1981@gmail.com
The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wavemore » packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.« less
ERIC Educational Resources Information Center
Portland Project Committee, OR.
The third year of the Portland Project, a three-year secondary school curriculum in integrated science, consists of four parts, the first two of which are covered in this student guide. The reading assignments for part one, "Waves and Particles," are listed in the student guide and are to be read in the Harvard Project Physics textbook.…
Subduction zone guided waves in Northern Chile
NASA Astrophysics Data System (ADS)
Garth, Thomas; Rietbrock, Andreas
2016-04-01
Guided wave dispersion is observed in subduction zones as high frequency energy is retained and delayed by low velocity structure in the subducting slab, while lower frequency energy is able to travel at the faster velocities associated with the surrounding mantle material. As subduction zone guided waves spend longer interacting with the low velocity structure of the slab than any other seismic phase, they have a unique capability to resolve these low velocity structures. In Northern Chile, guided wave arrivals are clearly observed on two stations in the Chilean fore-arc on permanent stations of the IPOC network. High frequency (> 5 Hz) P-wave arrivals are delayed by approximately 2 seconds compared to the low frequency (< 2 Hz) P-wave arrivals. Full waveform finite difference modelling is used to test the low velocity slab structure that cause this P-wave dispersion. The synthetic waveforms produced by these models are compared to the recorded waveforms. Spectrograms are used to compare the relative arrival times of different frequencies, while the velocity spectra is used to constrain the relative amplitude of the arrivals. Constraining the waveform in these two ways means that the full waveform is also matched, and the low pass filtered observed and synthetic waveforms can be compared. A combined misfit between synthetic and observed waveforms is then calculated following Garth & Rietbrock (2014). Based on this misfit criterion we constrain the velocity model by using a grid search approach. Modelling the guided wave arrivals suggest that the observed dispersion cannot be solely accounted for by a single low velocity layer as suggested by previous guided wave studies. Including dipping low velocity normal fault structures in the synthetic model not only accounts for the observed strong P-wave coda, but also produces a clear first motion dispersion. We therefore propose that the lithospheric mantle of the subducting Nazca plate is highly hydrated at intermediate depths by dipping low velocity normal faults. Additionally, we show that the low velocity oceanic crust persists to depths of up to 200 km, well beyond the depth range where the eclogite transition is expected to have occurred. Our results suggest that young subducting lithosphere also has the potential to carry much larger amounts of water to the mantle than has previously been appreciated.
NASA Astrophysics Data System (ADS)
Hasanian, Mostafa; Lissenden, Cliff J.
2017-08-01
The extraordinary sensitivity of nonlinear ultrasonic waves to the early stages of material degradation makes them excellent candidates for nondestructive material characterization. However, distinguishing weak material nonlinearity from instrumentation nonlinearity remains problematic for second harmonic generation approaches. A solution to this problem is to mix waves having different frequencies and to let their mutual interaction generate sum and difference harmonics at frequencies far from those of the instrumentation. Mixing of bulk waves and surface waves has been researched for some time, but mixing of guided waves has not yet been investigated in depth. A unique aspect of guided waves is their dispersive nature, which means we need to assure that a wave can propagate at the sum or difference frequency. A wave vector analysis is conducted that enables selection of primary waves traveling in any direction that generate phase matched secondary waves. We have tabulated many sets of primary waves and phase matched sum and difference harmonics. An example wave mode triplet of two counter-propagating collinear shear horizontal waves that interact to generate a symmetric Lamb wave at the sum frequency is simulated using finite element analysis and then laboratory experiments are conducted. The finite element simulation eliminates issues associated with instrumentation nonlinearities and signal-to-noise ratio. A straightforward subtraction method is used in the experiments to identify the material nonlinearity induced mutual interaction and show that the generated Lamb wave propagates on its own and is large enough to measure. Since the Lamb wave has different polarity than the shear horizontal waves the material nonlinearity is clearly identifiable. Thus, the mutual interactions of shear horizontal waves in plates could enable volumetric characterization of material in remote regions from transducers mounted on just one side of the plate.
Direct and Inverse Techniques of Guided-Mode Resonance Filters Designs
NASA Technical Reports Server (NTRS)
Tibuleac, Sorin; Magnusson, Robert; Maldonado, Theresa A.; Zuffada, Cinzia
1997-01-01
Guided-mode resonances arise in single or multilayer waveguides where one or more homogeneous layers are replaced by diffraction gratings (Fig. 1.) The diffractive element enables an electromagnetic wave incident on a waveguide grating to be coupled to the waveguide modes supportable by the structure in the absence of the modulation (i.e. the difference between the high and low dielectric constants of the grating) at specific values of the wavelength and incident angle. The periodic modulation of the guide makes the structure leaky, preventing sustained propagation of modes in the waveguide and coupling the waves out into the substrate and cover. As the wavelength is varied around resonance a rapid variation in the intensities of the external propagating waves occurs. By selecting a grating period small enough to eliminate the higher-order propagating waves, an increase in the zero-order intensities up to 100% can result. The pronounced frequency selectivity of guided-mode resonances in dielectric waveguide gratings can be applied to design high-efficiency reflection and transmission filters [1-3].
NASA Technical Reports Server (NTRS)
Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.; Yaun, Fuh-Gwo
2016-01-01
A guided wave-based in-process cure monitoring technique for carbon fiber reinforced polymer (CFRP) composites was investigated at NASA Langley Research Center. A key cure transition point (vitrification) was identified and the degree of cure was monitored using metrics such as amplitude and time of arrival (TOA) of guided waves. Using an automated system preliminarily developed in this work, high-temperature piezoelectric transducers were utilized to interrogate a twenty-four ply unidirectional composite panel fabricated from Hexcel (Registered Trademark) IM7/8552 prepreg during cure. It was shown that the amplitude of the guided wave increased sharply around vitrification and the TOA curve possessed an inverse relationship with degree of cure. The work is a first step in demonstrating the feasibility of transitioning the technique to perform in-process cure monitoring in an autoclave, defect detection during cure, and ultimately a closed-loop process control to maximize composite part quality and consistency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J.
Guided waves in plate-like structures have been widely investigated for structural health monitoring. Lamb waves and shear horizontal (SH) waves, two commonly used types of waves in plates, provide different benefits for the detection of various types of defects and material degradation. However, there are few sensors that can detect both Lamb and SH waves and also resolve their modal content, namely the wavenumber-frequency spectrum. A sensor that can detect both waves is desirable to take full advantage of both types of waves in order to improve sensitivity to different discontinuity geometries. As a result, we demonstrate that polyvinylidene difluoridemore » (PVDF) film provides the basis for a multi-element array sensor that detects both Lamb and SH waves and also measures their modal content, i.e., the wavenumber-frequency spectrum.« less
Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J.
2017-03-01
Guided waves in plate-like structures have been widely investigated for structural health monitoring. Lamb waves and shear horizontal (SH) waves, two commonly used types of waves in plates, provide different benefits for the detection of various types of defects and material degradation. However, there are few sensors that can detect both Lamb and SH waves and also resolve their modal content, namely the wavenumber-frequency spectrum. A sensor that can detect both waves is desirable to take full advantage of both types of waves in order to improve sensitivity to different discontinuity geometries. As a result, we demonstrate that polyvinylidene difluoridemore » (PVDF) film provides the basis for a multi-element array sensor that detects both Lamb and SH waves and also measures their modal content, i.e., the wavenumber-frequency spectrum.« less
Guided waves and defect scattering in metal matrix composite plates
NASA Technical Reports Server (NTRS)
Datta, Subhendu K.; Bratton, Robert L.; Shah, Arvind H.
1989-01-01
Guided Rayleigh-Lamb waves in a continuous graphite fiber reinforced magnesium plate has been studied. The interest in this material arises from its high thermal stability and because it provides high strength-to-weight ratio. Previous studies have shown that for wavelengths much larger than the fiber diameters and spacing, the material can be characterized as transversely isotropic with the symmetry axis aligned with the fiber direction. Because of the high longitudinal stiffness of the graphite fibers, the material shows strong anisotropy, with very high modulus in the fiber direction. For this reason, dispersion of guided waves is strongly influenced by the deviation of the direction of propagation from the symmetry axis. Results are given for propagation in different directions and for scattering of antiplane shear waves by surface-breaking cracks and delaminations.
A behavioral framework to guide research on central auditory development and plasticity
Sanes, Dan H.; Woolley, Sarah M. N.
2011-01-01
The auditory CNS is influenced profoundly by sounds heard during development. Auditory deprivation and augmented sound exposure can each perturb the maturation of neural computations as well as their underlying synaptic properties. However, we have learned little about the emergence of perceptual skills in these same model systems, and especially how perception is influenced by early acoustic experience. Here, we argue that developmental studies must take greater advantage of behavioral benchmarks. We discuss quantitative measures of perceptual development, and suggest how they can play a much larger role in guiding experimental design. Most importantly, including behavioral measures will allow us to establish empirical connections among environment, neural development, and perception. PMID:22196328
Modelling guided waves in the Alaskan-Aleutian subduction zone
NASA Astrophysics Data System (ADS)
Coulson, Sophie; Garth, Thomas; Reitbrock, Andreas
2016-04-01
Subduction zone guided wave arrivals from intermediate depth earthquakes (70-300 km depth) have a huge potential to tell us about the velocity structure of the subducting oceanic crust as it dehydrates at these depths. We see guided waves as the oceanic crust has a slower seismic velocity than the surrounding material, and so high frequency energy is retained and delayed in the crustal material. Lower frequency energy is not retained in this crustal waveguide and so travels at faster velocities of the surrounding material. This gives a unique observation at the surface with low frequency energy arriving before the higher frequencies. We constrain this guided wave dispersion by comparing the waveforms recorded in real subduction zones with simulated waveforms, produced using finite difference full waveform modelling techniques. This method has been used to show that hydrated minerals in the oceanic crust persist to much greater depths than accepted thermal petrological subduction zone models would suggest in Northern Japan (Garth & Rietbrock, 2014a), and South America (Garth & Rietbrock, in prep). These observations also suggest that the subducting oceanic mantle may be highly hydrated at intermediate depth by dipping normal faults (Garth & Rietbrock 2014b). We use this guided wave analysis technique to constrain the velocity structure of the down going ~45 Ma Pacific plate beneath Alaska. Dispersion analysis is primarily carried out on guided wave arrivals recorded on the Alaskan regional seismic network. Earthquake locations from global earthquake catalogues (ISC and PDE) and regional earthquake locations from the AEIC (Alaskan Earthquake Information Centre) catalogue are used to constrain the slab geometry and to identify potentially dispersive events. Dispersed arrivals are seen at stations close to the trench, with high frequency (>2 Hz) arrivals delayed by 2 - 4 seconds. This dispersion is analysed to constrain the velocity and width of the proposed waveguide. The velocity structure of this relatively young subducting plate is compared to the velocity structure resolved in the older oceanic lithosphere subducted beneath Northern Japan. We also use guided wave observations to investigate the thickness and low velocity structure of the subducting Yakutat terrain. Additionally we discuss the dependence of the inferred slab geometry on the earthquake catalogues that are used.
Approach to Cerebrospinal Fluid (CSF) Biomarker Discovery and Evaluation in HIV Infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Richard W.; Peterson, Julia; Fuchs, Dietmar
2013-12-13
Central nervous system (CNS) infection is a nearly universal facet of systemic HIV infection that varies in character and neurological consequences. While clinical staging and neuropsychological test performance have been helpful in evaluating patients, cerebrospinal fluid (CSF) biomarkers present a valuable and objective approach to more accurate diagnosis, assessment of treatment effects and understanding of evolving pathobiology. We review some lessons from our recent experience with CSF biomarker studies. We have used two approaches to biomarker analysis: targeted, hypothesis-driven and non-targeted exploratory discovery methods. We illustrate the first with data from a cross-sectional study of defined subject groups across themore » spectrum of systemic and CNS disease progression and the second with a longitudinal study of the CSF proteome in subjects initiating antiretroviral treatment. Both approaches can be useful and, indeed, complementary. The first is helpful in assessing known or hypothesized biomarkers while the second can identify novel biomarkers and point to broad interactions in pathogenesis. Common to both is the need for well-defined samples and subjects that span a spectrum of biological activity and biomarker concentrations. Previouslydefined guide biomarkers of CNS infection, inflammation and neural injury are useful in categorizing samples for analysis and providing critical biological context for biomarker discovery studies. CSF biomarkers represent an underutilized but valuable approach to understanding the interactions of HIV and the CNS and to more objective diagnosis and assessment of disease activity. Both hypothesis-based and discovery methods can be useful in advancing the definition and use of these biomarkers.« less
Approach to cerebrospinal fluid (CSF) biomarker discovery and evaluation in HIV infection.
Price, Richard W; Peterson, Julia; Fuchs, Dietmar; Angel, Thomas E; Zetterberg, Henrik; Hagberg, Lars; Spudich, Serena; Smith, Richard D; Jacobs, Jon M; Brown, Joseph N; Gisslen, Magnus
2013-12-01
Central nervous system (CNS) infection is a nearly universal facet of systemic HIV infection that varies in character and neurological consequences. While clinical staging and neuropsychological test performance have been helpful in evaluating patients, cerebrospinal fluid (CSF) biomarkers present a valuable and objective approach to more accurate diagnosis, assessment of treatment effects and understanding of evolving pathobiology. We review some lessons from our recent experience with CSF biomarker studies. We have used two approaches to biomarker analysis: targeted, hypothesis-driven and non-targeted exploratory discovery methods. We illustrate the first with data from a cross-sectional study of defined subject groups across the spectrum of systemic and CNS disease progression and the second with a longitudinal study of the CSF proteome in subjects initiating antiretroviral treatment. Both approaches can be useful and, indeed, complementary. The first is helpful in assessing known or hypothesized biomarkers while the second can identify novel biomarkers and point to broad interactions in pathogenesis. Common to both is the need for well-defined samples and subjects that span a spectrum of biological activity and biomarker concentrations. Previously-defined guide biomarkers of CNS infection, inflammation and neural injury are useful in categorizing samples for analysis and providing critical biological context for biomarker discovery studies. CSF biomarkers represent an underutilized but valuable approach to understanding the interactions of HIV and the CNS and to more objective diagnosis and assessment of disease activity. Both hypothesis-based and discovery methods can be useful in advancing the definition and use of these biomarkers.
Focusing guided waves using surface bonded elastic metamaterials
NASA Astrophysics Data System (ADS)
Yan, Xiang; Zhu, Rui; Huang, Guoliang; Yuan, Fuh-Gwo
2013-09-01
Bonding a two-dimensional planar array of small lead discs on an aluminum plate with silicone rubber is shown numerically to focus low-frequency flexural guided waves. The "effective mass density profile" of this type of elastic metamaterials (EMMs), perpendicular to wave propagation direction, is carefully tailored and designed, which allows rays of flexural A0 mode Lamb waves to bend in succession and then focus through a 7 × 9 planar array. Numerical simulations show that Lamb waves can be focused beyond EMMs region with amplified displacement and yet largely retained narrow banded waveform, which may have potential application in structural health monitoring.
Studies on the influence of axial bends on ultrasonic guided waves in hollow cylinders (pipes)
NASA Astrophysics Data System (ADS)
Verma, Bhupesh; Balasubramaniam, Krishnan; Rajagopal, Prabhu
2013-01-01
Ultrasonic guided waves in hollow cylinders (pipes) are today widely applied as rapid screening tools in the inspection of straight pipe segments in oil, power generation and petrochemical processing industries. However, the characteristics of guided wave propagation across features such as bends in the pipe network are complicated, hampering a wider application of the developed techniques. Although a growing number of studies in recent years have considered guided wave propagation across elbows and U-type bends, the topic is still not very well understood for a general bend angle φ, mean bend radius R and pipe thickness b. Here we use 3D Finite Element (FE) simulation to illumine the propagation of fundamental guided pipe modes across bends of several different angles φ. Two different bend radius regimes, R/λ ≈ 1 and 10 (where λ denotes the wavelength of the mode studied) are considered, exemplifying 'sharp' and gradual or 'slow' bends. Different typical pipe thicknesses b within these regimes are also studied. The results confirm the expectation that different bend radius regimes affect the waves differently. Further, while as observed in earlier studies, at moderate bend radii, fundamental modes travel almost unaffected by an elbow (bend angle φ = 90 degrees), we find that as the bend angle is reduced, there is a progressively larger extent of mode-conversion. These trends and results are validated using experiments.
A reprogrammable multifunctional chalcogenide guided-wave lens.
Cao, Tun; Wei, Chen-Wei; Cen, Meng-Jia; Guo, Bao; Kim, Yong-June; Zhang, Shuang; Qiu, Cheng-Wei
2018-06-05
The transformation optics (TO) technique, which establishes an equivalence between a curved space and a spatial distribution of inhomogeneous constitutive parameters, has enabled an extraordinary paradigm for manipulating wave propagation. However, extreme constitutive parameters, as well as a static nature, inherently limit the simultaneous achievement of broadband performance, ultrafast reconfigurability and versatile reprogrammable functions. Here, we integrate the TO technique with an active phase-change chalcogenide to achieve a reconfigurable multi-mode guided-wave lens. The lens is made of a Rinehart-shaped curved waveguide with an effective refractive index gradient profile through partially crystallizing Ge2Sb2Te5. Upon changing the bias time of the external voltage imparted to the Ge2Sb2Te5 segments, the refractive index gradient profile can be tuned with a transformative platform for various functions for visible light. The electrically reprogrammable multi-mode guided-wave lens is capable of dynamically acquiring various functionalities with an ultrafast response time. Our findings may offer a significant step forward by providing a universal method to obtain ultrafast and highly versatile guided-wave manipulation, such as in Einstein rings, cloaking, Maxwell fish-eye lenses and Luneburg lenses.
An EMAT-based shear horizontal (SH) wave technique for adhesive bond inspection
NASA Astrophysics Data System (ADS)
Arun, K.; Dhayalan, R.; Balasubramaniam, Krishnan; Maxfield, Bruce; Peres, Patrick; Barnoncel, David
2012-05-01
The evaluation of adhesively bonded structures has been a challenge over the several decades that these structures have been used. Applications within the aerospace industry often call for particularly high performance adhesive bonds. Several techniques have been proposed for the detection of disbonds and cohesive weakness but a reliable NDE method for detecting interfacial weakness (also sometimes called a kissing bond) has been elusive. Different techniques, including ultrasonic, thermal imaging and shearographic methods, have been proposed; all have had some degree of success. In particular, ultrasonic methods, including those based upon shear and guided waves, have been explored for the assessment of interfacial bond quality. Since 3-D guided shear horizontal (SH) waves in plates have predominantly shear displacement at the plate surfaces, we conjectured that SH guided waves should be influenced by interfacial conditions when they propagate between adhesively bonded plates of comparable thickness. This paper describes a new technique based on SH guided waves that propagate within and through a lap joint. Through mechanisms we have yet to fully understand, the propagation of an SH wave through a lap joint gives rise to a reverberation signal that is due to one or more reflections of an SH guided wave mode within that lap joint. Based upon a combination of numerical simulations and measurements, this method shows promise for detecting and classifying interfacial bonds. It is also apparent from our measurements that the SH wave modes can discriminate between adhesive and cohesive bond weakness in both Aluminum-Epoxy-Aluminum and Composite-Epoxy-Composite lap joints. All measurements reported here used periodic permanent magnet (PPM) Electro-Magnetic Acoustic Transducers (EMATs) to generate either or both of the two lowest order SH modes in the plates that comprise the lap joint. This exact configuration has been simulated using finite element (FE) models to describe the SH mode generation, propagation and reception. Of particular interest is that one SH guided wave mode (probably SH0) reverberates within the lap joint. Moreover, in both simulations and measurements, features of this so-called reverberation signal appear to be related to interfacial weakness between the plate (substrate) and the epoxy bond. The results of a hybrid numerical (FE) approach based on using COMSOL to calculate the driving forces within an elastic solid and ABAQUS to propagate the resulting elastic disturbances (waves) within the plates and lap joint are compared with measurements of SH wave generation and reception in lap joint specimens having different interfacial and cohesive bonding conditions.
Spin wave filtering and guiding in Permalloy/iron nanowires
NASA Astrophysics Data System (ADS)
Silvani, R.; Kostylev, M.; Adeyeye, A. O.; Gubbiotti, G.
2018-03-01
We have investigated the spin wave filtering and guiding properties of periodic array of single (Permalloy and Fe) and bi-layer (Py/Fe) nanowires (NWs) by means of Brillouin light scattering measurements and micromagnetic simulations. For all the nanowire arrays, the thickness of the layers is 10 nm while all NWs have the same width of 340 nm and edge-to-edge separation of 100 nm. Spin wave dispersion has been measured in the Damon-Eshbach configuration for wave vector either parallel or perpendicular to the nanowire length. This study reveals the filtering property of the spin waves when the wave vector is perpendicular to the NW length, with frequency ranges where the spin wave propagation is permitted separated by frequency band gaps, and the guiding property of NW when the wave vector is oriented parallel to the NW, with spin wave modes propagating in parallel channels in the central and edge regions of the NW. The measured dispersions were well reproduced by micromagnetic simulations, which also deliver the spatial profiles for the modes at zero wave vector. To reproduce the dispersion of the modes localized close to the NW edges, uniaxial anisotropy has been introduced. In the case of Permalloy/iron NWs, the obtained results have been compared with those for a 20 nm thick effective NW having average magnetic properties of the two materials.
Zhou, Wensong; Li, Hui; Yuan, Fuh-Gwo
2015-03-01
A new piezoelectric wafer made from a PMN-PT single crystal with dominant piezoelectric coefficient d36 is proposed to generate and detect guided waves on isotropic plates. The in-plane shear coupled with electric field arising from the piezoelectric coefficient is not usually present for conventional piezoelectric wafers, such as lead zirconate titanate (PZT). The direct piezoelectric effect of coefficient d36 indicates that under external in-plane shear stress the charge is induced on a face perpendicular to the poled z-direction. On thin plates, this type of piezoelectric wafer will generate shear horizontal (SH) waves in two orthogonal wave propagation directions as well as two Lamb wave modes in other wave propagation directions. Finite element analyses are employed to explore the wave disturbance in terms of time-varying displacements excited by the d36 wafer in different directions of wave propagation to understand all the guided wave modes accurately. Experiments are conducted to examine the voltage responses received by this type of wafer, and also investigate results of tuning frequency and effects of d31 piezoelectric coefficient, which is intentionally ignored in the finite element analysis. All results demonstrate the main features and utility of proposed d36 piezoelectric wafer for guided wave generation and detection in structural health monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ham, Suyun; Popovics, John S.
2015-03-01
Ultrasonic techniques provide an effective non-destructive evaluation (NDE) method to monitor concrete structures, but the need to perform rapid and accurate structural assessment requires evaluation of hundreds, or even thousands, of measurement datasets. Use of a fully contactless ultrasonic system can save time and labor through rapid implementation, and can enable automated and controlled data acquisition, for example through robotic scanning. Here we present results using a fully contactless ultrasonic system. This paper describes our efforts to develop a contactless ultrasonic guided wave NDE approach to detect and characterize delamination defects in concrete structures. The developed contactless sensors, controlled scanning system, and employed Multi-channel Analysis of Surface Waves (MASW) signal processing scheme are reviewed. Then a guided wave interpretation approach for MASW data is described. The presence of delamination is interpreted by guided plate wave (Lamb wave) behavior, where a shift in excited Lamb mode phase velocity, is monitored. Numerically simulated and experimental ultrasonic data collected from a concrete sample with simulated delamination defects are presented, where the occurrence of delamination is shown to be associated with a mode shift in Lamb wave energy.
Behavior of piezoelectric wafer active sensor in various media
NASA Astrophysics Data System (ADS)
Kamas, Tuncay
The dissertation addresses structural health monitoring (SHM) techniques using ultrasonic waves generated by piezoelectric wafer active sensors (PWAS) with an emphasis on the development of theoretical models of standing harmonic waves and guided waves. The focal objective of the research is to extend the theoretical study of electro-mechanical coupled PWAS as a resonator/transducer that interacts with standing and traveling waves in various media through electro-mechanical impedance spectroscopy (EMIS) method and guided wave propagation. The analytical models are developed and the coupled field finite element analysis (CF-FEA) models are simulated and verified with experiments. The dissertation is divided into two parts with respect to the developments in EMIS methods and GWP methods. In the first part, analytical and finite element models have been developed for the simulation of PWAS-EMIS in in-plane (longitudinal) and out-of-plane (thickness) mode. Temperature effects on free PWAS-EMIS are also discussed with respect to the in-plane mode. Piezoelectric material degradation on certain electrical and mechanical properties as the temperature increases is simulated by our analytical model for in-plane circular PWAS-EMIS that agrees well with the sets of experiments. Then the thickness mode PWAS-EMIS model was further developed for a PWAS resonator bonded on a plate-like structure. The latter analytical model was to determine the resonance frequencies for the normal mode expansion method through the global matrix method by considering PWAS-substrate and proof mass-PWAS-substrate models. The proof mass concept was adapted to shift the systems resonance frequencies in thickness mode. PWAS in contact with liquid medium on one of its surface has been analytically modeled and simulated the electro-mechanical response of PWAS with various liquids with different material properties such as the density and the viscosity. The second part discusses the guided wave propagation in elastic structures. The feature guided waves in thick structures and in high frequency range are discussed considering weld guided quasi-Rayleigh waves. Furthermore, the weld guided quasi Rayleigh waves and their interaction with damages in thick plates and thick walled pipes are examined by the finite element models and experiments. The dissertation finishes with a summary of contributions followed by conclusions, and suggestions for future work.
Vien, Benjamin Steven; Rose, Louis Raymond Francis; Chiu, Wing Kong
2017-07-01
Reliable and quantitative non-destructive evaluation for small fatigue cracks, in particular those in hard-to-inspect locations, is a challenging problem. Guided waves are advantageous for structural health monitoring due to their slow geometrical decay of amplitude with propagating distance, which is ideal for rapid wide-area inspection. This paper presents a 3D laser vibrometry experimental and finite element analysis of the interaction between an edge-guided wave and a small through-thickness hidden edge crack on a racecourse shaped hole that occurs, in practice, as a fuel vent hole. A piezoelectric transducer is bonded on the straight edge of the hole to generate the incident wave. The excitation signal consists of a 5.5 cycle Hann-windowed tone burst of centre frequency 220 kHz, which is below the cut-off frequency for the first order Lamb wave modes (SH1). Two-dimensional fast Fourier transformation (2D FFT) is applied to the incident and scattered wave field along radial lines emanating from the crack mouth, so as to identify the wave modes and determine their angular variation and amplitude. It is shown experimentally and computationally that mid-plane symmetric edge waves can travel around the hole's edge to detect a hidden crack. Furthermore, the scattered wave field due to a small crack length, a , (compared to the wavelength λ of the incident wave) is shown to be equivalent to a point source consisting of a particular combination of body-force doublets. It is found that the amplitude of the scattered field increases quadratically as a function of a/λ , whereas the scattered wave pattern is independent of crack length for small cracks a < λ . This study of the forward scattering problem from a known crack size provides a useful guide for the inverse problem of hidden crack detection and sizing.
Propagation characteristics of ultrasonic guided waves in continuously welded rail
NASA Astrophysics Data System (ADS)
Yao, Wenqing; Sheng, Fuwei; Wei, Xiaoyuan; Zhang, Lei; Yang, Yuan
2017-07-01
Rail defects cause numerous railway accidents. Trains are derailed and serious consequences often occur. Compared to traditional bulk wave testing, ultrasonic guided waves (UGWs) can provide larger monitoring ranges and complete coverage of the waveguide cross-section. These advantages are of significant importance for the non-destructive testing (NDT) of the continuously welded rail, and the technique is therefore widely used in high-speed railways. UGWs in continuous welded rail (CWR) and their propagation characteristics have been discussed in this paper. Finite element methods (FEMs) were used to accomplish a vibration modal analysis, which is extended by a subsequent dispersion analysis. Wave structure features were illustrated by displacement profiles. It was concluded that guided waves have the ability to detect defects in the rail via choice of proper mode and frequency. Additionally, thermal conduction that is caused by temperature variation in the rail is added into modeling and simulation. The results indicated that unbalanced thermal distribution may lead to the attenuation of UGWs in the rail.
Implication of changing loading conditions on structural health monitoring utilising guided waves
NASA Astrophysics Data System (ADS)
Mohabuth, Munawwar; Kotousov, Andrei; Ng, Ching-Tai; Rose, L. R. Francis
2018-02-01
Structural health monitoring systems based on guided waves typically utilise a network of embedded or permanently attached sensors, allowing for the continuous detection of damage remote from a sensor location. The presence of damage is often diagnosed by analysing the residual signals from the structure after subtracting damage-free reference data. However, variations in environmental and operational conditions such as temperature, humidity, applied or thermally-induced stresses affect the measured residuals. A previously developed acoustoelastic formulation is here extended and employed as the basis for a simplified analytical model to estimate the effect of applied or thermally-induced stresses on the propagation characteristics of the fundamental Lamb wave modes. It is noted that there are special combinations of frequency, biaxial stress ratio and direction of wave propagation for which there is no change in the phase velocity of the fundamental anti-symmetric mode. The implication of these results in devising effective strategies to mitigate the effect of stress induced variations in guided-wave damage diagnostics is briefly discussed.
NASA Astrophysics Data System (ADS)
Mustapha, Samir; Ye, Lin; Dong, Xingjian; Alamdari, Mehrisadat Makki
2016-08-01
Barely visible indentation damage after quasi-static indentation in sandwich CF/EP composites was assessed using ultrasonic guided wave signals. Finite element analyses were conducted to investigate the interaction between guided waves and damage, further to assist in the selection process of the Lamb wave sensitive modes for debonding identification. Composite sandwich beams and panels structures were investigated. Using the beam structure, a damage index was defined based on the change in the peak magnitude of the captured wave signals before and after the indentation, and the damage index was correlated with the residual deformation (defined as the depth of the dent), that was further correlated with the amount of crushing within the core. Both A0 and S0 Lamb wave modes showed high sensitivity to the presence of barely visible indentation damage with residual deformation of 0.2 mm. Furthermore, barely visible indentation damage was assessed in composite sandwich panels after indenting to 3 and 5 mm, and the damage index was defined, based on (a) the peak magnitude of the wave signals before and after indentation or (b) the mismatch between the original and reconstructed wave signals based on a time-reversal algorithm, and was subsequently applied to locate the position of indentation.
Aanes, Magne; Kippersund, Remi Andre; Lohne, Kjetil Daae; Frøysa, Kjell-Eivind; Lunde, Per
2017-08-01
Transit-time flow meters based on guided ultrasonic wave propagation in the pipe spool have several advantages compared to traditional inline ultrasonic flow metering. The extended interrogation field, obtained by continuous leakage from guided waves traveling in the pipe wall, increases robustness toward entrained particles or gas in the flow. In reflective-path guided-wave ultrasonic flow meters (GW-UFMs), the flow equations are derived from signals propagating solely in the pipe wall and from signals passing twice through the fluid. In addition to the time-of-flight (TOF) through the fluid, the fluid path experiences an additional time delay upon reflection at the opposite pipe wall due to specular and non-specular reflections. The present work investigates the influence of these reflections on the TOF in a reflective-path GW-UFM as a function of transducer separation distance at zero flow conditions. Two models are used to describe the signal propagation through the system: (i) a transient full-wave finite element model, and (ii) a combined plane-wave and ray-tracing model. The study shows that a range-dependent time delay is associated with the reflection of the fluid path, introducing transmitter-receiver distance dependence. Based on these results, the applicability of the flow equations derived using model (ii) is discussed.
Impact Induced Delamination Detection and Quantification With Guided Wavefield Analysis
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu; Seebo, Jeffrey P.
2015-01-01
This paper studies impact induced delamination detection and quantification by using guided wavefield data and spatial wavenumber imaging. The complex geometry impact-like delamination is created through a quasi-static indentation on a CFRP plate. To detect and quantify the impact delamination in the CFRP plate, PZT-SLDV sensing and spatial wavenumber imaging are performed. In the PZT-SLDV sensing, the guided waves are generated from the PZT, and the high spatial resolution guided wavefields are measured by the SLDV. The guided wavefield data acquired from the PZT-SLDV sensing represent guided wave propagation in the composite laminate and include guided wave interaction with the delamination damage. The measured guided wavefields are analyzed through the spatial wavenumber imaging method, which generates an image containing the dominant local wavenumber at each spatial location. The spatial wavenumber imaging result for the simple single layer Teflon insert delamination provided quantitative information on delamination damage size and location. The location of delamination damage is indicated by the area with larger wavenumbers in the spatial wavenumber image. The impact-like delamination results only partially agreed with the damage size and shape. The results also demonstrated the dependence on excitation frequency. Future work will further investigate the accuracy of the wavenumber imaging method for real composite damage and the dependence on frequency of excitation.
Hosten, Bernard; Moreau, Ludovic; Castaings, Michel
2007-06-01
The paper presents a Fourier transform-based signal processing procedure for quantifying the reflection and transmission coefficients and mode conversion of guided waves diffracted by defects in plates made of viscoelastic materials. The case of the S(0) Lamb wave mode incident on a notch in a Perspex plate is considered. The procedure is applied to numerical data produced by a finite element code that simulates the propagation of attenuated guided modes and their diffraction by the notch, including mode conversion. Its validity and precision are checked by the way of the energy balance computation and by comparison with results obtained using an orthogonality relation-based processing method.
Guided waves in a monopile of an offshore wind turbine.
Zernov, V; Fradkin, L; Mudge, P
2011-01-01
We study the guided waves in a structure which consists of two overlapping steel plates, with the overlapping section grouted. This geometry is often encountered in support structures of large industrial offshore constructions, such as wind turbine monopiles. It has been recognized for some time that the guided wave technology offers distinctive advantages for the ultrasonic inspections and health monitoring of structures of this extent. It is demonstrated that there exist advantageous operational regimes of ultrasonic transducers guaranteeing a good inspection range, even when the structures are totally submerged in water, which is a consideration when the wind turbines are deployed off shore. Copyright © 2010 Elsevier B.V. All rights reserved.
CRE-Mediated Transcription and COX-2 Expression in the Pilocarpine Model of Status Epilepticus
Lee, Boyoung; Dziema, Heather; Lee, Kyu Hyun; Choi, Yun-Sik; Obrietan, Karl
2007-01-01
Status epilepticus (SE) triggers neuronal death, reactive gliosis and remodeling of synaptic circuitry, thus leading to profound pathological alterations in CNS physiology. These processes are, in part, regulated by the rapid upregulation of both cytotoxic and cytoprotective genes. One pathway that may couple SE to transcriptionally-dependent alterations in CNS physiology is the CREB (cAMP response element-binding protein)/CRE (cAMP response element) cascade. Here, we utilized the pilocarpine model of SE on a mouse strain transgenic for a CRE-reporter construct (β-galactosidase) to begin to characterize how seizure activity regulates the activation state of the CREB/CRE pathway in both glia and neurons of the hippocampus. SE triggered a rapid (4–8 hrs post SE) but transient increase in CRE-mediated gene expression in the neuronal sublayers. In contrast to neurons, SE induced a lasting increase (up to 20 days) in CRE-mediated transcription in both reactive astrocytes and microglia. CRE-mediated gene expression correlated with expression of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2). To examine the role of CREB in SE-induced COX-2 expression, we generated a transgenic mouse strain that expresses A-CREB, a potent repressor of CREB-dependent transcription. In these animals, the capacity of SE to stimulate COX-2 expression was markedly attenuated, indicating that CREB is a key intermediate in SE-induced COX-2 expression. Collectively these data show that SE triggers two waves of CREB-mediated gene expression, a transient wave in neurons and a long-lasting wave in reactive glial cells, and that CREB couples SE to COX-2 expression. PMID:17029965
Electrophysiological CNS-processes related to associative learning in humans.
Christoffersen, Gert R J; Schachtman, Todd R
2016-01-01
The neurophysiology of human associative memory has been studied with electroencephalographic techniques since the 1930s. This research has revealed that different types of electrophysiological processes in the human brain can be modified by conditioning: sensory evoked potentials, sensory induced gamma-band activity, periods of frequency-specific waves (alpha and beta waves, the sensorimotor rhythm and the mu-rhythm) and slow cortical potentials. Conditioning of these processes has been studied in experiments that either use operant conditioning or repeated contingent pairings of conditioned and unconditioned stimuli (classical conditioning). In operant conditioning, the appearance of a specific brain process is paired with an external stimulus (neurofeedback) and the feedback enables subjects to obtain varying degrees of control of the CNS-process. Such acquired self-regulation of brain activity has found practical uses for instance in the amelioration of epileptic seizures, Autism Spectrum Disorders (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). It has also provided communicative means of assistance for tetraplegic patients through the use of brain computer interfaces. Both extra and intracortically recorded signals have been coupled with contingent external feedback. It is the aim for this review to summarize essential results on all types of electromagnetic brain processes that have been modified by classical or operant conditioning. The results are organized according to type of conditioned EEG-process, type of conditioning, and sensory modalities of the conditioning stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.
Laser vibrometry for guided wave propagation phenomena visualisation and damage detection
NASA Astrophysics Data System (ADS)
Malinowski, Pawel; Wandowski, Tomasz; Kudela, Pawel; Ostachowicz, Wieslaw
2010-05-01
This paper presents research on the damage localization method. The method is based on guided wave propagation phenomena. The investigation was focused on application of this method to monitor the condition of structural elements such as aluminium or composite panels. These elements are commonly used in aerospace industry and it is crucial to provide a methodology to determine their condition, in order to prevent from unexpected and dangerous collapse of a structure. Propagating waves interact with cracks, notches, rivets, thickness changes, stiffeners and other discontinuities present in structural elements. It means that registering these waves one can obtain information about the structure condition—whether it is damaged or not. Furthermore these methods can be applied not only to aerospace structures but also to wind turbine blades and pipelines. In reported investigation piezoelectric transducer was used to excite guided waves in considered panel. Measurement of the wave field was realized using laser scanning vibrometer that registered the velocity responses at a defined points belonging to a defined mesh. Mesh spacing was investigated in order to ensure fine wave propagation visualisation. Firstly, wave propagation in pristine specimen was investigated. Secondly, artificial damage was introduced to the specimen. Finally, wave interaction with damage was visualised and conclusions regarding potentials of application of laser vibrometer for damage detection were drawn. All the processing was made with the developed MATLAB procedures.
A Fiber Optic Doppler Sensor and Its Application in Debonding Detection for Composite Structures
Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Meng, Guang; Ohsawa, Isamu; Shirai, Takehiro
2010-01-01
Debonding is one of the most important damage forms in fiber-reinforced composite structures. This work was devoted to the debonding damage detection of lap splice joints in carbon fiber reinforced plastic (CFRP) structures, which is based on guided ultrasonic wave signals captured by using fiber optic Doppler (FOD) sensor with spiral shape. Interferometers based on two types of laser sources, namely the He-Ne laser and the infrared semiconductor laser, are proposed and compared in this study for the purpose of measuring Doppler frequency shift of the FOD sensor. Locations of the FOD sensors are optimized based on mechanical characteristics of lap splice joint. The FOD sensors are subsequently used to detect the guided ultrasonic waves propagating in the CFRP structures. By taking advantage of signal processing approaches, features of the guided wave signals can be revealed. The results demonstrate that debonding in the lap splice joint results in arrival time delay of the first package in the guided wave signals, which can be the characteristic for debonding damage inspection and damage extent estimation. PMID:22219698
A fiber optic Doppler sensor and its application in debonding detection for composite structures.
Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Meng, Guang; Ohsawa, Isamu; Shirai, Takehiro
2010-01-01
Debonding is one of the most important damage forms in fiber-reinforced composite structures. This work was devoted to the debonding damage detection of lap splice joints in carbon fiber reinforced plastic (CFRP) structures, which is based on guided ultrasonic wave signals captured by using fiber optic Doppler (FOD) sensor with spiral shape. Interferometers based on two types of laser sources, namely the He-Ne laser and the infrared semiconductor laser, are proposed and compared in this study for the purpose of measuring Doppler frequency shift of the FOD sensor. Locations of the FOD sensors are optimized based on mechanical characteristics of lap splice joint. The FOD sensors are subsequently used to detect the guided ultrasonic waves propagating in the CFRP structures. By taking advantage of signal processing approaches, features of the guided wave signals can be revealed. The results demonstrate that debonding in the lap splice joint results in arrival time delay of the first package in the guided wave signals, which can be the characteristic for debonding damage inspection and damage extent estimation.
Investigation of the reconstruction accuracy of guided wave tomography using full waveform inversion
NASA Astrophysics Data System (ADS)
Rao, Jing; Ratassepp, Madis; Fan, Zheng
2017-07-01
Guided wave tomography is a promising tool to accurately determine the remaining wall thicknesses of corrosion damages, which are among the major concerns for many industries. Full Waveform Inversion (FWI) algorithm is an attractive guided wave tomography method, which uses a numerical forward model to predict the waveform of guided waves when propagating through corrosion defects, and an inverse model to reconstruct the thickness map from the ultrasonic signals captured by transducers around the defect. This paper discusses the reconstruction accuracy of the FWI algorithm on plate-like structures by using simulations as well as experiments. It was shown that this algorithm can obtain a resolution of around 0.7 wavelengths for defects with smooth depth variations from the acoustic modeling data, and about 1.5-2 wavelengths from the elastic modeling data. Further analysis showed that the reconstruction accuracy is also dependent on the shape of the defect. It was demonstrated that the algorithm maintains the accuracy in the case of multiple defects compared to conventional algorithms based on Born approximation.
Application of RMS for damage detection by guided elastic waves
NASA Astrophysics Data System (ADS)
Radzieński, M.; Doliński, Ł.; Krawczuk, M.; dot Zak, A.; Ostachowicz, W.
2011-07-01
This paper presents certain results of an experimental study related with a damage detection in structural elements based on deviations in guided elastic wave propagation patterns. In order to excite guided elastic waves within specimens tested piezoelectric transducers have been applied. As excitation signals 5 sine cycles modulated by Hanning window have been used. Propagation of guided elastic waves has been monitored by a scanning Doppler laser vibrometer. The time signals recorded during measurement have been utilised to calculate the values of RMS. It has turned out that the values of RMS differed significantly in damaged areas from the values calculated for the healthy ones. In this way it has become possible to pinpoint precisely the locations of damage over the entire measured surface. All experimental investigations have been carried out for thin aluminium or composite plates. Damage has been simulated by a small additional mass attached on the plate surface or by a narrow notch cut. It has been shown that proposed method allows one to localise damage of various shapes and sizes within structural elements over the whole area under investigation.
Simulation of Guided Wave Interaction with In-Plane Fiber Waviness
NASA Technical Reports Server (NTRS)
Leckey, Cara A. C.; Juarez, Peter D.
2016-01-01
Reducing the timeline for certification of composite materials and enabling the expanded use of advanced composite materials for aerospace applications are two primary goals of NASA's Advanced Composites Project (ACP). A key a technical challenge area for accomplishing these goals is the development of rapid composite inspection methods with improved defect characterization capabilities. Ongoing work at NASA Langley is focused on expanding ultrasonic simulation capabilities for composite materials. Simulation tools can be used to guide the development of optimal inspection methods. Custom code based on elastodynamic finite integration technique is currently being developed and implemented to study ultrasonic wave interaction with manufacturing defects, such as in-plane fiber waviness (marcelling). This paper describes details of validation comparisons performed to enable simulation of guided wave propagation in composites containing fiber waviness. Simulation results for guided wave interaction with in-plane fiber waviness are also discussed. The results show that the wavefield is affected by the presence of waviness on both the surface containing fiber waviness, as well as the opposite surface to the location of waviness.
Simulation of guided wave interaction with in-plane fiber waviness
NASA Astrophysics Data System (ADS)
Leckey, Cara A. C.; Juarez, Peter D.
2017-02-01
Reducing the timeline for certification of composite materials and enabling the expanded use of advanced composite materials for aerospace applications are two primary goals of NASA's Advanced Composites Project (ACP). A key a technical challenge area for accomplishing these goals is the development of rapid composite inspection methods with improved defect characterization capabilities. Ongoing work at NASA Langley is focused on expanding ultrasonic simulation capabilities for composite materials. Simulation tools can be used to guide the development of optimal inspection methods. Custom code based on elastodynamic finite integration technique is currently being developed and implemented to study ultrasonic wave interaction with manufacturing defects, such as in-plane fiber waviness (marcelling). This paper describes details of validation comparisons performed to enable simulation of guided wave propagation in composites containing fiber waviness. Simulation results for guided wave interaction with in-plane fiber waviness are also discussed. The results show that the wavefield is affected by the presence of waviness on both the surface containing fiber waviness, as well as the opposite surface to the location of waviness.
Tiwari, Kumar Anubhav; Raisutis, Renaldas; Mazeika, Liudas; Samaitis, Vykintas
2018-03-26
In this paper, a novel 2D analytical model based on the Huygens's principle of wave propagation is proposed in order to predict the directivity patterns of contact type ultrasonic transducers in the generation of guided waves (GWs). The developed model is able to estimate the directivity patterns at any distance, at any excitation frequency and for any configuration and shape of the transducers with prior information of phase dispersive characteristics of the guided wave modes and the behavior of transducer. This, in turn, facilitates to choose the appropriate transducer or arrays of transducers, suitable guided wave modes and excitation frequency for the nondestructive testing (NDT) and structural health monitoring (SHM) applications. The model is demonstrated for P1-type macro-fiber composite (MFC) transducer glued on a 2 mm thick aluminum (Al) alloy plate. The directivity patterns of MFC transducer in the generation of fundamental guided Lamb modes (the S0 and A0) and shear horizontal mode (the SH0) are successfully obtained at 80 kHz, 5-period excitation signal. The results are verified using 3D finite element (FE) modelling and experimental investigation. The results obtained using the proposed model shows the good agreement with those obtained using numerical simulations and experimental analysis. The calculation time using the analytical model was significantly shorter as compared to the time spent in experimental analysis and FE numerical modelling.
Investigation of guided wave propagation and attenuation in pipe buried in sand
NASA Astrophysics Data System (ADS)
Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter
2015-07-01
Long-range guided wave testing is a well-established method for detection of corrosion defects in pipelines. The method is currently used routinely for above ground pipelines in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised and unpredictable due to attenuation of the guided wave resulting from energy leakage into the embedding soil. The attenuation characteristics of guided wave propagation in an 8 in. pipe buried in sand are investigated using a laboratory full-scale experimental rig and model predictions. We report measurements of attenuation of the T(0,1) and L(0,2) guided wave modes over a range of sand conditions, including loose, compacted, mechanically compacted, water saturated and drained. Attenuation values are found to be in the range of 1.65-5.5 dB/m and 0.98-3.2 dB/m for the torsional and longitudinal modes, respectively, over the frequency of 11-34 kHz. The application of overburden pressure modifies the compaction of the sand and increases the attenuation. Mechanical compaction of the sand yields similar attenuation values to those obtained with applied overburden pressure. The attenuation decreases in the fully water-saturated sand, and increases in drained sand to values comparable with those obtained for compacted sand. Attenuation measurements are compared with Disperse software model predictions and confirm that the attenuation phenomenon in buried pipes is essentially governed by the bulk shear velocity in the sand. The attenuation behaviour of the torsional guided wave mode is found not to be captured by a uniform soil model; comparison with predictions obtained with the Disperse software suggest that this is likely to be due to a layer of sand adhering to the surface of the pipe.
NASA Astrophysics Data System (ADS)
Cheng, Yazhou; Jia, Yuechen; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng
2014-11-01
We report on the guided-wave second-harmonic generation in a KTiOPO4 nonlinear optical waveguide fabricated by a 17 MeV O5+ ion irradiation at a fluence of 1.5×1015 ions/cm2. The waveguide guides light along both TE and TM polarizations, which is suitable for phase-matching frequency doubling. Second harmonics of green light at a wavelength of 532 nm have been generated through the KTiOPO4 waveguide platform under an optical pump of fundamental wave at 1064 nm in both continuous-wave and pulsed regimes, reaching optical conversion efficiencies of 5.36%/W and 11.5%, respectively. The propagation losses have been determined to be ˜3.1 and ˜5.7 dB/cm for the TE and TM polarizations at a wavelength of 632.8 nm, respectively.
NASA Astrophysics Data System (ADS)
Heiss, Walter Dieter; Wunner, Günter
2017-12-01
A matrix model that has been used to describe essential features of a parity-time symmetric set-up of three coupled wave guides is investigated. The emphasis of the study lies on the occurrence of an exceptional point of third order. It is demonstrated that the eigenfunctions in close vicinity of the exceptional point have a distinctive chiral behaviour. Using data describing realistic situations it is argued that such chiral behaviour can be tested experimentally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jaesun; Cho, Younho; Park, Jun-Pil
Guided wave was widely studied for plate and pipe due to the great application area. Guided wave has advantage on long distance inspection for an inaccessible area and apart from transducer. Quite often shrink fit structures were found in nuclear power facilities. In this paper, two pipes were designed with perfect shrink fit condition for Stainless Steel 316. The displacement distribution was calculated with boundary condition. The interface wave propagation pattern was analyzed by the numerical modeling. The experimental results show a possibility of weld delamination and defect detection.
Air- coupled ultrasonic testing of CFRP rods by means of guided waves
NASA Astrophysics Data System (ADS)
Kažys, Rymantas; Raišutis, Renaldas; Žukauskas, Egidijus; Mažeika, Liudas; Vladišauskas, Alfonsas
2010-01-01
One of the most important parts of the gliders is a lightweight longeron reinforcement made of carbon fibre reinforced plastics (CFRP) rods. These small diameter (a few millimetres) rods during manufacturing are glued together in epoxy filled matrix in order to build the arbitrary spar profile. However, the defects presenting in the rods such as brake of fibres, lack of bonding, reduction of density affect essentially the strength of the construction and are very complicated in repairing. Therefore, appropriate non-destructive testing techniques of carbon fibber rods should be applied before gluing them together. The objective of the presented work was development of NDT technique of CFRP rods used for aerospace applications, which is based on air- coupled excitation/reception of guided waves. The regularities of ultrasonic guided waves propagating in both circular and rectangular cross-section CFRP rods immersed into water were investigated and it was shown that the guided waves propagating along sample of the rod create leaky waves which are radiated into a surrounding medium. The ultrasonic receiver scanned over the rod enables to pick-up the leaky waves and to determine the non-uniformities of propagation caused by the defects. Theoretical investigations were carried out by means of numerical simulations based on a 2D and 3D finite differences method. By modelling and experimental investigations it was demonstrated that presence of any type of the defect disturbs the leaky wave and enables to detect them. So, the spatial position of defects can be determined also. It was shown that such important defects as a disbond of the plies essentially reduce or even completely suppress the leaky wave, so they can be detected quit easily.
Self-compression of spatially limited laser pulses in a system of coupled light-guides
NASA Astrophysics Data System (ADS)
Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.
2018-04-01
The self-action features of wave packets propagating in a 2D system of equidistantly arranged fibers are studied analytically and numerically on the basis of the discrete nonlinear Schrödinger equation. Self-consistent equations for the characteristic scales of a Gaussian wave packet are derived on the basis of the variational approach, which are proved numerically for powers P < 10 P_cr , slightly exceeding the critical one for self-focusing. At higher powers, the wave beams become filamented, and their amplitude is limited due to the nonlinear breaking of the interaction between neighboring light-guides. This makes it impossible to collect a powerful wave beam in a single light-guide. Variational analysis shows the possibility of the adiabatic self-compression of soliton-like laser pulses in the process of 3D self-focusing on the central light-guide. However, further increase of the field amplitude during self-compression leads to the development of longitudinal modulation instability and the formation of a set of light bullets in the central fiber. In the regime of hollow wave beams, filamentation instability becomes predominant. As a result, it becomes possible to form a set of light bullets in optical fibers located on the ring.
Wasser, Beatrice; Pramanik, Gautam; Hess, Moritz; Klein, Matthias; Luessi, Felix; Dornmair, Klaus; Bopp, Tobias; Zipp, Frauke; Witsch, Esther
2016-12-01
The importance of CD11c + antigen-presenting cells (APCs) in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) is well accepted and the gate keeper function of perivascular CD11c + APCs has been demonstrated. CD11c can be expressed by APCs from external sources or by central nervous system (CNS) resident APCs such as microglia. Yet, changes in the gene expression pattern of CNS CD11c + APCs during disease are still unclear and differentially expressed genes might play a decisive role in EAE progression. Due to their low numbers in the diseased brain and due to the absence of considerable numbers in the healthy CNS, analysis of CNS CD11c + cells is technically difficult. To ask whether the CD11c + APC population contributes to remission of EAE disease, we used Illumina deep mRNA sequencing (RNA-Seq) and quantitative real time polymerase chain reaction (qRT-PCR) analyses to identify the transcriptome of CD11c + APCs during disease course. We identified a battery of genes that were significantly regulated during the exacerbation of the disease compared to remission and relapse. Three of these genes, Arginase-1, Chi3l3 and Ms4a8a, showed a higher expression at the exacerbation than at later time points during the disease, both in SJL/J and in C57BL/6 mice, and could be attributed to alternatively activated APCs. Expression of Arginase-1, Chi3l3 and Ms4a8a genes was linked to the disease phase of EAE rather than to disease score. Expression of these genes suggested that APCs resembling alternatively activated macrophages are involved during the first wave of neuroinflammation and can be directly associated with the disease progress.
Automated Guided-Wave Scanning Developed to Characterize Materials and Detect Defects
NASA Technical Reports Server (NTRS)
Martin, Richard E.; Gyekenyeski, Andrew L.; Roth, Don J.
2004-01-01
The Nondestructive Evaluation (NDE) Group of the Optical Instrumentation Technology Branch at the NASA Glenn Research Center has developed a scanning system that uses guided waves to characterize materials and detect defects. The technique uses two ultrasonic transducers to interrogate the condition of a material. The sending transducer introduces an ultrasonic pulse at a point on the surface of the specimen, and the receiving transducer detects the signal after it has passed through the material. The aim of the method is to correlate certain parameters in both the time and frequency domains of the detected waveform to characteristics of the material between the two transducers. The scanning system is shown. The waveform parameters of interest include the attenuation due to internal damping, waveform shape parameters, and frequency shifts due to material changes. For the most part, guided waves are used to gauge the damage state and defect growth of materials subjected to various mechanical or environmental loads. The technique has been applied to polymer matrix composites, ceramic matrix composites, and metal matrix composites as well as metallic alloys. Historically, guided wave analysis has been a point-by-point, manual technique with waveforms collected at discrete locations and postprocessed. Data collection and analysis of this type limits the amount of detail that can be obtained. Also, the manual movement of the sensors is prone to user error and is time consuming. The development of an automated guided-wave scanning system has allowed the method to be applied to a wide variety of materials in a consistent, repeatable manner. Experimental studies have been conducted to determine the repeatability of the system as well as compare the results obtained using more traditional NDE methods. The following screen capture shows guided-wave scan results for a ceramic matrix composite plate, including images for each of nine calculated parameters. The system can display up to 18 different wave parameters. Multiple scans of the test specimen demonstrated excellent repeatability in the measurement of all the guided-wave parameters, far exceeding the traditional point-by-point technique. In addition, the scan was able to detect a subsurface defect that was confirmed using flash thermography This technology is being further refined to provide a more robust and efficient software environment. Future hardware upgrades will allow for multiple receiving transducers and the ability to scan more complex surfaces. This work supports composite materials development and testing under the Ultra-Efficient Engine Technology (UEET) Project, but it also will be applied to other material systems under development for a wide range of applications.
Blaschke, Anne J; Holmberg, Kristen M; Daly, Judy A; Leber, Amy L; Dien Bard, Jennifer; Korgenski, Ernest K; Bourzac, Kevin M; Kanack, Kristen J
2018-04-18
In pediatric practice it is common for infants under 2 months of age to undergo evaluation for sepsis when they are ill, often including lumbar puncture (LP) to assess for central nervous system (CNS) infection. The FilmArray® Meningitis/Encephalitis (ME) Panel is a newly approved test for rapid identification of CNS pathogens. Our objective was to study the epidemiology of CNS infection in young infants and the potential impact of rapid multiplex PCR on their care.A performance evaluation of the FilmArray ME Panel was conducted from 2/2014-9/2014 at 11 sites. FilmArray ME Panel results were compared to reference standards but not shared with providers. In our study, medical records for infants (aged 1-60 days) enrolled at 3 sites were reviewed for clinical, laboratory and outcome data.145 infants were reviewed. Median age was 25 days. Most were hospitalized [134/145 (92%)], received antibiotics [123/145 (85%)] and almost half [71/145 (49%)] received acyclovir. One infant had a bacterial pathogen, likely false-positive, identified by the FilmArray ME Panel. Thirty-six infants (25%) had a viral pathogen detected, including 21 enteroviruses. All infants with enteroviral meningitis detected by the FilmArray ME Panel and conventional PCR were hospitalized, but 20% were discharged in less than 24 hours when conventional PCR results became available.The FilmArray ME Panel may play a role in the evaluation of young infants for CNS infection. Results may be used to guide management, possibly resulting in decreased length of stay and antimicrobial exposure for infants with low-risk viral infection detected. Copyright © 2018 Blaschke et al.
2013-03-08
crystals with tunable band gaps possible Refractive index N is imaginary - Bulk Electromagnetic waves cannot propogate But surface plasmons...Directional wave radiation through plasmon resonances Directional wave guiding through mid-band defect wave localization Distribution A: Approved for... acoustic damping, shear- layer instability (PERTURBATION EXPANSION EXAMPLE) classical wave equation for combustion instability: model
Propagation Characteristics Of Weakly Guiding Optical Fibers
NASA Technical Reports Server (NTRS)
Manshadi, Farzin
1992-01-01
Report discusses electromagnetic propagation characteristics of weakly guiding optical-fiber structures having complicated shapes with cross-sectional dimensions of order of wavelength. Coupling, power-dividing, and transition dielectric-waveguide structures analyzed. Basic data computed by scalar-wave, fast-Fourier-transform (SW-FFT) technique, based on numerical solution of scalar version of wave equation by forward-marching fast-Fourier-transform method.
NASA Astrophysics Data System (ADS)
Othmani, Cherif; Takali, Farid; Njeh, Anouar
2017-12-01
Guided wave devices have recently become one of the most important applications in the industry because such waves are directly related to applications in sensor technology, chemical sensing, agricultural science, fields of bio-sensing and surface acoustic wave (SAW) devices that are used in electronic filters and signal processing. On that account, this numerical investigation aims to study the propagation behavior of guided Lamb waves in a (1-x)Pb(Mg1/3Nb2/3)O3- x PbTiO3 [PMN- x PT] ( x=0.29 or 0.33) piezoelectric single crystal plate. In fact, the PMN- xPT ( x=0.29 or 0.33) piezoelectric crystals are being polarized along [001]c, [011]c and [111]c of the cubic reference directions so that the macroscopic symmetries are tetragonal 4 mm, orthogonal mm2 and rhombohedral 3 m, respectively. Both open- and short-circuit conditions are considered. Here, the Legendre polynomial method is proposed to solve the guided Lamb waves equations. The validity of the proposed method is illustrated by comparison with the ordinary differential equation (ODE). The convergence of this method is discussed. Consequently, the converged results are obtained with very low truncation order M . This constitutes a major advantage of the present method when compared with the other matrix methods. There is cross-crossings among multiple modes for both symmetric ( Sn) and the anti-symmetric ( An) guided Lamb waves propagation. A displacement field has been illustrated to judge whether Sn and An modes cross with each other. Moreover, electric displacement, stress field and electric potential for the open-circuit case were presented for both S0 and A0 Lamb modes.
NASA Astrophysics Data System (ADS)
Wu, Bin; Su, Yipin; Chen, Weiqiu; Zhang, Chuanzeng
2017-02-01
Soft electroactive (EA) tube actuators and many other cylindrical devices have been proposed recently in literature, which show great advantages over those made from conventional hard solid materials. However, their practical applications may be limited because these soft EA devices are prone to various failure modes. In this paper, we present an analysis of the guided circumferential elastic waves in soft EA tube actuators, which has potential applications in the in-situ nondestructive evaluation (NDE) or online structural health monitoring (SHM) to detect structural defects or fatigue cracks in soft EA tube actuators and in the self-sensing of soft EA tube actuators based on the concept of guided circumferential elastic waves. Both circumferential SH and Lamb-type waves in an incompressible soft EA cylindrical tube under inhomogeneous biasing fields are considered. The biasing fields, induced by the application of an electric voltage difference to the electrodes on the inner and outer cylindrical surfaces of the EA tube in addition to an axial pre-stretch, are inhomogeneous in the radial direction. Dorfmann and Ogden's theory of nonlinear electroelasticity and the associated linear theory for small incremental motion constitute the basis of our analysis. By means of the state-space formalism for the incremental wave motion along with the approximate laminate technique, dispersion relations are derived in a particularly efficient way. For a neo-Hookean ideal dielectric model, the proposed approach is first validated numerically. Numerical examples are then given to show that the guided circumferential wave propagation characteristics are significantly affected by the inhomogeneous biasing fields and the geometrical parameters. Some particular phenomena such as the frequency veering and the nonlinear dependence of the phase velocity on the radial electric voltage are discussed. Our numerical findings demonstrate that it is feasible to use guided circumferential elastic waves for the ultrasonic non-destructive online SHM to detect interior structural defects or fatigue cracks and for the self-sensing of the actual state of the soft EA tube actuator.
NASA Astrophysics Data System (ADS)
Dean, Cleon E.; Braselton, James P.
2004-05-01
Color-coded and vector-arrow grid representations of the Poynting vector field are used to show the energy flow in and around a fluid-loaded elastic cylindrical shell for both forward- and backward-propagating waves. The present work uses a method adapted from a simpler technique due to Kaduchak and Marston [G. Kaduchak and P. L. Marston, ``Traveling-wave decomposition of surface displacements associated with scattering by a cylindrical shell: Numerical evaluation displaying guided forward and backward wave properties,'' J. Acoust. Soc. Am. 98, 3501-3507 (1995)] to isolate unidirectional energy flows.
Precision Laser Development for Gravitational Wave Space Mission
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2011-01-01
Optical fiber and semiconductor laser technologies have evolved dramatically over the last decade due to the increased demands from optical communications. We are developing a laser (master oscillator) and optical amplifier based on those technologies for interferometric space missions, such as the gravitational-wave mission LISA, and GRACE follow-on, by fully utilizing the mature wave-guided optics technologies. In space, where a simple and reliable system is preferred, the wave-guided components are advantageous over bulk, crystal-based, free-space laser, such as NPRO (Non-planar Ring Oscillator) and bulk-crystal amplifier, which are widely used for sensitive laser applications on the ground.
Effect of skew angle on second harmonic guided wave measurement in composite plates
NASA Astrophysics Data System (ADS)
Cho, Hwanjeong; Choi, Sungho; Lissenden, Cliff J.
2017-02-01
Waves propagating in anisotropic media are subject to skewing effects due to the media having directional wave speed dependence, which is characterized by slowness curves. Likewise, the generation of second harmonics is sensitive to micro-scale damage that is generally not detectable from linear features of ultrasonic waves. Here, the effect of skew angle on second harmonic guided wave measurement in a transversely isotropic lamina and a quasi-isotropic laminate are numerically studied. The strain energy density function for a nonlinear transversely isotropic material is formulated in terms of the Green-Lagrange strain invariants. The guided wave mode pairs for cumulative second harmonic generation in the plate are selected in accordance with the internal resonance criteria - i.e., phase matching and non-zero power flux. Moreover, the skew angle dispersion curves for the mode pairs are obtained from the semi-analytical finite element method using the derivative of the slowness curve. The skew angles of the primary and secondary wave modes are calculated and wave propagation simulations are carried out using COMSOL. Numerical simulations revealed that the effect of skew angle mismatch can be significant for second harmonic generation in anisotropic media. The importance of skew angle matching on cumulative second harmonic generation is emphasized and the accompanying issue of the selection of internally resonant mode pairs for both a unidirectional transversely isotropic lamina and a quasi-isotropic laminate is demonstrated.
Molecular Signatures and Diagnostic Biomarkers of Cumulative, Blast-Graded Mild TBI
2012-10-01
These results are in agreement with data obtained using non-blast TBI models (Diet- rich et al., 2004; Maegele et al., 2007). Moreover, CX3CL1 chemokine...the shoulder at Figure 1A), substantially contaminating the blast wave in the direction of shock tube axis (Figure 1A). In addition, the exhaust...highly spe- cific for the CNS and is present in platelets and red blood cells (see Svetlov et al., 2009 for review). In previous studies, we reported a
Barrett, Jeffrey S; McGuire, Jennifer; Vezina, Heather; Spitsin, Serguei; Douglas, Steven D
2013-12-01
Receptor occupancy studies are becoming commonplace for verifying drug mechanism of action and selecting early development candidates. Positron emission tomography (PET) has been applied to pharmacodynamic (PD) studies in several therapeutic areas including neurology, cardiology, and oncology. Prospective use of PET to define dosing requirements has been proposed particularly for central nervous system (CNS)-targeted drugs; however, correlations with clinical outcomes have been mostly anecdotal and not causally established.
Experimental Validation of a Fast Forward Model for Guided Wave Tomography of Pipe Elbows.
Brath, Alex J; Simonetti, Francesco; Nagy, Peter B; Instanes, Geir
2017-05-01
Ultrasonic guided wave tomography (GWT) methods for the detection of corrosion and erosion damage in straight pipe sections are now well advanced. However, successful application of GWT to pipe bends has not yet been demonstrated due to the computational burden associated with the complex forward model required to simulate guided wave propagation through the bend. In a previous paper [Brath et al., IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 61, pp. 815-829, 2014], we have shown that the speed of the forward model can be increased by replacing the 3-D pipe bend with a 2-D rectangular domain in which guided wave propagation is formulated based on an artificially inhomogeneous and elliptically anisotropic (INELAN) acoustic model. This paper provides further experimental validation of the INLEAN model by studying the traveltime shifts caused by the introduction of shallow defects on the elbow of a pipe bend. Comparison between experiments and simulations confirms that a defect can be modeled as a phase velocity perturbation to the INLEAN velocity field with accuracy that is within the experimental error of the measurements. In addition, it is found that the sensitivity of traveltime measurements to the presence of damage decreases as the damage position moves from the interior side of the bend (intrados) to the exterior one (extrados). This effect is due to the nonuniform ray coverage obtainable when transmitting the guided wave signals with one ring array of sources on one side of the elbow and receiving with a second array on the other side.
Studies of nonlinear interactions between counter-propagating Alfv'en waves in the LAPD
NASA Astrophysics Data System (ADS)
Auerbach, D. W.; Perez, J. C.; Carter, T. A.; Boldyrev, S.
2007-11-01
From a weak turbulence point of view, nonlinear interactions between shear Alfv'en waves are fundamental to the energy cascade in low-frequency magnetic turbulence. We report here on an experimental study of counter-propagating Alfv'en wave interactions in the Large Plasma Device (LAPD) at UCLA. Colliding, orthogonally polarized kinetic Alfv'en waves are generated by two antennae, separated by 5m along the guide magnetic field. Magnetic field and langmuir probes record plasma behavior between the antennae. When each antenna is operated separately, linearly polarized Alfv'en waves propagate in opposite directions along the guide field. When two antennae simultaneously excite counter propagating waves, we observe multiple side bands in the frequency domain, whose amplitude scales quadratically with wave amplitude. In the spatial domain we observe non-linear superposition in the 2D structure of the waves and spectral broadening in the perpendicular wave-number spectrum. This indicates the presence of nonlinear interaction of the counter propagating Alfv'en waves, and opens the possiblity to investigate Alfv'enic plasma turbulence in controlled and reproducible laboratory experiments.
Blewett, J.P.; Kiesling, J.D.
1963-06-11
A wave-guide resonator structure is designed for use in separating particles of equal momentum but differing in mass, having energies exceeding one billion eiectron volts. The particles referred to are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high energy accelerator. In the resonator a travelling electric wave is produced which travels at the same rate of speed as the unwanted particle which is thus deflected continuously over the length of the resonator. The wanted particle is slightly out of phase with the travelling wave so that over the whole length of the resonator it has a net deflection of substantially zero. The travelling wave is established in a wave guide of rectangular cross section in which stubs are provided to store magnetic wave energy leaving the electric wave energy in the main structure to obtain the desired travelling wave and deflection. The stubs are of such shape and spacing to establish a critical mathemitical relationship. (AEC)
ERIC Educational Resources Information Center
Portland Project Committee, OR.
This teacher's guide includes parts one and two of the four-part third year Portland Project, a three-year integrated secondary science curriculum sequence. The Harvard Project Physics textbook is used for reading assignments for part one. Assignments relate to waves, light, electricity, magnetic fields, Faraday and the electrical age,…
Portable Ultrasonic Guided Wave Inspection with MACRO Fiber Composite Actuators
NASA Astrophysics Data System (ADS)
Haig, A.; Mudge, P.; Catton, P.; Balachandran, W.
2010-02-01
The development of portable ultrasonic guided wave transducer arrays that utilize Macro Fiber Composite actuators (MFCs) is described. Portable inspection equipment can make use of ultrasonic guided waves to rapidly screen large areas of many types of engineering structures for defects. The defect finding performance combined with the difficulty of application determines how much the engineering industry makes use of this non-destructive, non-disruptive technology. The developments with MFCs have the potential to make considerable improvements in both these aspects. MFCs are highly efficient because they use interdigital electrodes to facilitate the extensional, d33 displacement mode. Their fiber composite design allows them to be thin, lightweight, flexible and durable. The flexibility affords them conformance with curved surfaces, which can facilitate good mechanical coupling. The suitability of a given transducer for Long Range Ultrasonic Testing is governed by the nature and amplitude of the displacement that it excites/senses in the contact area of the target structure. This nature is explored for MFCs through directional sensitivity analysis and empirical testing. Housing methods that facilitate non-permanent coupling techniques are discussed. Finally, arrangements of arrays of MFCs for the guided wave inspection of plates and pipes are considered and some broad design criteria are given.
Ultrasonic guided wave inspection of Inconel 625 brazed lap joints
NASA Astrophysics Data System (ADS)
Comot, Pierre; Bocher, Philippe; Belanger, Pierre
2016-04-01
The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.
NASA Astrophysics Data System (ADS)
Temkin, Richard J.
Recent advances in IR and mm-wave (MMW) technology and applications are discussed in reviews and reports. Sections are devoted to MMW sources, high-Tc superconductors, atmospheric physics, FEL technology, astronomical instrumentation, MMW systems, measurement techniques, MMW guides, and MMW detectors and mixers. Also discussed are material properties, gyrotrons, guided propagation, semiconductors, submm detectors and devices, material characterization methods, ICs, MMW guides and plasma diagnostics, lasers, and MMW antennas. Diagrams, drawings, graphs, photographs, and tables of numerical data are provided.
Central nervous system involvement in AIDS-related lymphomas.
Barta, Stefan K; Joshi, Jitesh; Mounier, Nicolas; Xue, Xiaonan; Wang, Dan; Ribera, Josep-Maria; Navarro, Jose-Tomas; Hoffmann, Christian; Dunleavy, Kieron; Little, Richard F; Wilson, Wyndham H; Spina, Michele; Galicier, Lionel; Noy, Ariela; Sparano, Joseph A
2016-06-01
Central nervous system (CNS) involvement is reportedly more common in acquired immunodeficiency syndrome (AIDS)-related lymphomas (ARL). We describe factors and outcomes associated with CNS involvement at baseline (CNS(B) ) and relapse (CNS(R) ) in 886 patients with newly diagnosed ARL. Of 886 patients, 800 received either intrathecal (IT) therapy for CNS(B) or IT prophylaxis. CNS(B) was found in 13%. CNS(B) was not associated with reduced overall survival (OS). There was no difference in the prevalence of CNS(B) between the pre-combination antiretroviral therapy (cART) and cART eras. 5·3% of patients experienced CNS(R) at a median of 4·2 months after diagnosis (12% if CNS(B) ; 4% if not). Median OS after CNS(R) was 1·6 months. On multivariate analysis, only CNS(B) [hazard ratio (HR) 3·68, P = 0·005] and complete response to initial therapy (HR 0·14, P < 0·0001) were significantly associated with CNS(R) . When restricted to patients without CNS(B) , IT CNS prophylaxis with 3 vs. 1 agent did not significantly impact the risk of CNS(R) . Despite IT CNS prophylaxis, 5% of patients experienced CNS(R) . Our data confirms that CNS(R) in ARL occurs early and has a poor outcome. Complete response to initial therapy was associated with a reduced frequency of CNS(R) . Although CNS(B) conferred an increased risk for CNS(R) , it did not impact OS. © 2016 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayadev, Jyoti S.; Department of Radiation Oncology University of California-Davis Medical Center, Davis, CA; Douglas, James G., E-mail: drjay@u.washington.ed
Purpose: Neither the prognostic importance nor the appropriate management of central nervous system (CNS) involvement is known for patients with acute myeloid leukemia (AML) undergoing hematopoietic cell transplantation (HCT). We examined the impact of a CNS irradiation boost to standard intrathecal chemotherapy (ITC). Methods and Materials: From 1995 to 2005, a total of 648 adult AML patients received a myeloablative HCT: 577 patients were CNS negative (CNS-), and 71 were CNS positive (CNS+). Of the 71 CNS+ patients, 52 received intrathecal chemotherapy alone (CNS+ITC), and 19 received ITC plus an irradiation boost (CNS+RT). Results: The CNS-, CNS+ITC, and CNS+RT patientsmore » had 1- and 5-year relapse-free survivals (RFS) of 43% and 35%, 15% and 6%, and 37% and 32%, respectively. CNS+ITC patients had a statistically significant worse RFS compared with CNS- patients (hazard ratio [HR], 2.65; 95% confidence interval [CI], 2.0-3.6; p < 0.0001). CNS+RT patients had improved relapse free survival over that of CNS+ITC patients (HR, 0.45; 95% CI, 0.2-0.8; p = 0.01). The 1- and 5-year overall survivals (OS) of patients with CNS-, CNS+ITC, and CNS+RT, were 50% and 38%, 21% and 6%, and 53% and 42%, respectively. The survival of CNS+RT were significantly better than CNS+ITC patients (p = 0.004). After adjusting for known risk factors, CNS+RT patients had a trend toward lower relapse rates and reduced nonrelapse mortality. Conclusions: CNS+ AML is associated with a poor prognosis. The role of a cranial irradiation boost to intrathecal chemotherapy appears to mitigate the risk of CNS disease, and needs to be further investigated to define optimal treatment strategies.« less
Modeling of field-aligned guided echoes in the plasmasphere
NASA Astrophysics Data System (ADS)
Fung, Shing F.; Green, James L.
2005-01-01
Ray tracing modeling is used to investigate the plasma conditions under which high-frequency (f ≫ fuh) extraordinary mode waves can be guided along geomagnetic field lines. These guided signals have often been observed as long-range discrete echoes in the plasmasphere by the Radio Plasma Imager (RPI) onboard the Imager for Magnetopause-to-Aurora Global Exploration satellite. Field-aligned discrete echoes are most commonly observed by RPI in the plasmasphere, although they are also observed over the polar cap region. The plasmasphere field-aligned echoes appearing as multiple echo traces at different virtual ranges are attributed to signals reflected successively between conjugate hemispheres that propagate along or nearly along closed geomagnetic field lines. The ray tracing simulations show that field-aligned ducts with as little as 1% density perturbations (depletions) and <10 wavelengths wide can guide nearly field-aligned propagating high-frequency X mode waves. Effective guidance of a wave at a given frequency and wave normal angle (Ψ) depends on the cross-field density scale of the duct, such that ducts with stronger density depletions need to be wider in order to maintain the same gradient of refractive index across the magnetic field. While signal guidance by field aligned density gradient without ducting is possible only over the polar region, conjugate field-aligned echoes that have traversed through the equatorial region are most likely guided by ducting.
NASA Astrophysics Data System (ADS)
Othmani, Cherif; Takali, Farid; Njeh, Anouar
2017-11-01
Modeling of guided Lamb waves propagation in piezoelectric-semiconductor multilayered structures made of AlAs and GaAs is evaluated in this paper. Here, the Legendre polynomial method is used to calculate dispersion curves, frequency spectrum and field distributions of guided Lamb waves propagation modes in AlAs, GaAs, AlAs/GaAs and AlAs/GaAs/AlAs-1/2/1 structures. In fact, formulations are given for open-circuit surface. Consequently, the polynomial method is numerically stable according to the total number of layers and the frequency range. This analysis is meaningful for the applications of the piezoelectric-semiconductor multilayered structures made of AlAs and GaAs such as in novel acoustic devices.
Propogation loss with frequency of ultrasound guided waves in a composite metal-honeycomb structure
NASA Astrophysics Data System (ADS)
Saxena, Indu F.; Baid, Harsh K.; Guzman, Narciso; Kempen, Lothar U.; Mal, Ajit
2009-05-01
Non-destructive testing of critical structural components is time consuming, while necessary for maintaining safe operation. Large aerospace structures, such as the vertical stabilizers of aircraft undergo inspection at regular intervals for damage diagnostics. However, conventional techniques for damage detection and identification before repair can be scheduled are conducted off-line and therefore can take weeks. The use of guided ultrasound waves is being investigated to expedite damage detection in composites. We measure the frequency dependent loss of ultrasonic guided waves for a structure comprising a boron-nitride composite skin sandwiching an aluminum honeycomb. A wide range of ultrasound frequencies propagate as measured using PZTs, with the lowest attenuation observed about 200-250 kHz. These measurements are confirmed using optical fiber Bragg grating arrays used as ultrasound transducers.
Rao, Jing; Ratassepp, Madis; Lisevych, Danylo; Hamzah Caffoor, Mahadhir; Fan, Zheng
2017-12-12
Corrosion is a major safety and economic concern to various industries. In this paper, a novel ultrasonic guided wave tomography (GWT) system based on self-designed piezoelectric sensors is presented for on-line corrosion monitoring of large plate-like structures. Accurate thickness reconstruction of corrosion damages is achieved by using the dispersive regimes of selected guided waves and a reconstruction algorithm based on full waveform inversion (FWI). The system makes use of an array of miniaturised piezoelectric transducers that are capable of exciting and receiving highly dispersive A0 Lamb wave mode at low frequencies. The scattering from transducer array has been found to have a small effect on the thickness reconstruction. The efficiency and the accuracy of the new system have been demonstrated through continuous forced corrosion experiments. The FWI reconstructed thicknesses show good agreement with analytical predictions obtained by Faraday's law and laser measurements, and more importantly, the thickness images closely resemble the actual corrosion sites.
A mass filter based on an accelerating traveling wave.
Wiedenbeck, Michael; Kasemset, Bodin; Kasper, Manfred
2008-01-01
We describe a novel mass filtering concept based on the acceleration of a pulsed ion beam through a stack of electrostatic plates. A precisely controlled traveling wave generated within such an ion guide will induce a mass-selective ion acceleration, with mass separation ultimately accomplished via a simple energy-filtering system. Crucial for successful filtering is that the velocity with which the traveling wave passes through the ion guide must be dynamically controlled in order to accommodate the acceleration of the target ion species. Mass selection is determined by the velocity and acceleration with which the wave traverses the ion guide, whereby the target species will acquire a higher kinetic energy than all other lighter as well as heaver species. Finite element simulations of this design demonstrate that for small masses a mass resolution M/DeltaM approximately 1000 can be achieved within an electrode stack containing as few as 20 plates. Some of the possible advantages and drawbacks which distinguish this concept from established mass spectrometric technologies are discussed.
Statistical lamb wave localization based on extreme value theory
NASA Astrophysics Data System (ADS)
Harley, Joel B.
2018-04-01
Guided wave localization methods based on delay-and-sum imaging, matched field processing, and other techniques have been designed and researched to create images that locate and describe structural damage. The maximum value of these images typically represent an estimated damage location. Yet, it is often unclear if this maximum value, or any other value in the image, is a statistically significant indicator of damage. Furthermore, there are currently few, if any, approaches to assess the statistical significance of guided wave localization images. As a result, we present statistical delay-and-sum and statistical matched field processing localization methods to create statistically significant images of damage. Our framework uses constant rate of false alarm statistics and extreme value theory to detect damage with little prior information. We demonstrate our methods with in situ guided wave data from an aluminum plate to detect two 0.75 cm diameter holes. Our results show an expected improvement in statistical significance as the number of sensors increase. With seventeen sensors, both methods successfully detect damage with statistical significance.
NASA Astrophysics Data System (ADS)
Xu, G. D.; Xu, B. Q.; Xu, C. G.; Luo, Y.
2017-05-01
A spectral finite element method (SFEM) is developed to analyze guided ultrasonic waves in a delaminated composite beam excited and received by a pair of surface-bonded piezoelectric wafers. The displacements of the composite beam and the piezoelectric wafer are represented by Timoshenko beam and Euler Bernoulli theory respectively. The linear piezoelectricity is used to model the electrical-mechanical coupling between the piezoelectric wafer and the beam. The coupled governing equations and the boundary conditions in time domain are obtained by using the Hamilton's principle, and then the SFEM are formulated by transforming the coupled governing equations into frequency domain via the discrete Fourier transform. The guided waves are analyzed while the interaction of waves with delamination is also discussed. The elements needed in SFEM is far fewer than those for finite element method (FEM), which result in a much faster solution speed in this study. The high accuracy of the present SFEM is verified by comparing with the finite element results.
Modeling guided wave propagation in curved thick composites with ply drops and marcelling
NASA Astrophysics Data System (ADS)
Hakoda, Christopher; Choi, Gloria; Lissenden, Clifford
2018-04-01
Setting the process parameters for fabrication of thick composites having complex geometries is a challenging endeavor, with the best result being a high-quality part and less desirable results being parts that contain voids or fiber marcelling. An equal challenge is the nondestructive testing of these parts. Consider a U-shaped portion of a more complex part. The straight segments of the U-shape are approximately 10-mm thick, but a series of ply-drops reduce the thickness by one half at the center portion. Ultrasonic guided waves that have the potential to nondestructively test this part can be actuated by coupling transducers to the straight segments if and only if wave modes that are sensitive to the defects of interest can propagate through the ply drops, the curve, and the attenuation due to internal damping. A frequency domain finite element approach proposed in recent years for guided wave analysis is applied to this inhomogeneous waveguide problem in order to select modes and frequencies that are sensitive to marcelling.
NASA Astrophysics Data System (ADS)
Mackay, Tom G.; Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh
2017-08-01
Three numerical studies were undertaken involving the interactions of plane waves with topological insulators. In each study, the topologically insulating surface states of the topological insulator were represented through a surface admittance. Canonical boundary-value problems were solved for the following cases: (i) Dyakonov surface-wave propagation guided by the planar interface of a columnar thin film and an isotropic dielectric topological insulator; (ii) Dyakonov-Tamm surface-wave propagation guided by the planar interface of a structurally chiral material and an isotropic dielectric topological insulator; and (iii) reflection and transmission due to the planar interface of a topologically insulating columnar thin film and vacuum. The nonzero surface admittance resulted in asymmetries in the wave speeds and decay constants of the surface waves in studies (i) and (ii). The nonzero surface admittance resulted in asymmetries in the reflectances and transmittances in study (iii).
New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.
Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel
2016-02-25
Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors. Copyright © 2016 Elsevier Inc. All rights reserved.
Interaction of Lamb Waves with Fatigue Cracks in Aluminum
2011-09-01
Interaction of Lamb Waves with Fatigue Cracks in Aluminum E. D. SWENSON, C. T. OWENS and C. ALLEN ABSTRACT Elastic waves can travel across...the interaction of Lamb waves with both open and closed low-cycle fatigue cracks in aluminum plates using a three-dimensional laser Doppler vibrometer...and antisymmetric Lamb wave modes differ upon encountering fatigue cracks. INTRODUCTION The use of guided elastic waves (Lamb waves) has shown
Impact damage imaging in a curved composite panel with wavenumber index via Riesz transform
NASA Astrophysics Data System (ADS)
Chang, Huan-Yu; Yuan, Fuh-Gwo
2018-03-01
The barely visible impact damages reduce the strength of composite structures significantly; however, they are difficult to be detected during regular visual inspection. A guided wave based damage imaging condition method is developed and applied on a curved composite panel, which is a part of an aileron from a retired Boeing C-17 Globemaster III. Ultrasonic guided waves are excited by a piezoelectric transducer (PZT) and then captured by a laser Doppler vibrometer (LDV). The wavefield images are constructed by measuring the out-of-plane velocity point by point within interrogation region, and the anomalies at the damage area can be observed with naked eye. The discontinuities of material properties leads to the change of wavenumber while the wave propagating through the damaged area. These differences in wavenumber can be observed by deriving instantaneous wave vector via Riesz transform (RT), and then be shown and highlighted with the proposed imaging condition named wavenumber index (WI). RT can be introduced as a two-dimensional (2-D) generalization of Hilbert transform (HT) to derive instantaneous phases, amplitudes, orientations of a guided-wave field. WI employs the instantaneous wave vector and weighted instantaneous wave energy computed from the instantaneous amplitudes, yielding high sensitivity and sharp damage image with computational efficiency. The BVID of the composite structure becomes therefore "visible" with the developed technique.
FIBER OPTICS: Method of calculation of the propagation constant for guided modes
NASA Astrophysics Data System (ADS)
Ardasheva, L. I.; Sadykov, Nail R.; Chernyakov, V. E.
1992-09-01
A new method of calculating the propagation constants and wave eigenfunctions of guided modes is proposed for axisymmetric translationally invariant fiber-optic waveguides with arbitrary refractive index profiles. The method is based on solving a parabolic scalar wave equation. A comparison is made between the numerical solution under steady-state conditions and the eigenfunctions of single-mode and multimode waveguides.
Investigation of the phase velocities of guided acoustic waves in soft porous layers.
Boeckx, L; Leclaire, P; Khurana, P; Glorieux, C; Lauriks, W; Allard, J F
2005-02-01
A new experimental method for measuring the phase velocities of guided acoustic waves in soft poroelastic or poroviscoelastic plates is proposed. The method is based on the generation of standing waves in the material and on the spatial Fourier transform of the displacement profile of the upper surface. The plate is glued on a rigid substrate so that it has a free upper surface and a nonmoving lower surface. The displacement is measured with a laser Doppler vibrometer along a line corresponding to the direction of propagation of plane surface waves. A continuous sine with varying frequencies was chosen as excitation signal to maximize the precision of the measurements. The spatial Fourier transform provides the wave numbers, and the phase velocities are obtained from the relationship between wave number and frequency. The phase velocities of several guided modes could be measured in a highly porous foam saturated by air. The modes were also studied theoretically and, from the theoretical results, the experimental results, and a fitting procedure, it was possible to determine the frequency behavior of the complex shear modulus and of the complex Poisson ratio from 200 Hz to 1.4 kHz, in a frequency range higher than the traditional methods.
Huo, Xiu-Lin; Wang, Ke-Tao; Zhang, Xiao-Ying; Yang, Yi-Tian; Cao, Fu-Yang; Yang, Jing; Yuan, Wei-Xiu; Mi, Wei-Dong
2018-02-20
To compare the medium- and long-term effect of pneumatic ballistic extracorporeal shock wave versus ultrasound-guided hormone injection in the treatment of plantar fasciitis. The clinical data were collected from patients with plantar fasciitis admitted to PLA General Hospital pain department from September, 2015 to February, 2017. The patients were randomly divided into ultrasound-guided drug injection group and shock wave group. The therapeutic parameters including the numerical rating scale (NRS) scores in the first step pain in the morning, American Orthopedic Foot and Ankle Society (AOFAS) Ankle Hindfoot Scale, and thickness of the plantar fascia were monitored before and at 1 week, 1 month, 3 months, and 6 months after the treatment. The recurrence rate, effectiveness, and patient satisfaction were compared between the two groups at 6 months after the treatment. Thirty-nine patients were enrolled in shock wave group and 38 patients in ultrasound group. The NRS scores in the first step pain in the morning were lowered after treatment in both groups (P<0.05), and the scores were significantly lower in ultrasound group than in shock wave group at 1 week and 1 month (P<0.01), but significantly higher in ultrasound group than in shock wave group at 3 and 6 months after treatment (P<0.05). The AOFAS functional scores were increased in both groups (P<0.05) at 6 months after treatment, was significantly lower in ultrasound group than in shock wave group than group B (90.44∓13.27 vs 75.76∓21.40; P<0.05). The effective rates in shock wave group and ultrasound group were 92.31% and 76.32%, respectively (P<0.05). Recurrence was found in 1 patient (2.56%) in shock wave group and in 8 (21.05%) in ultrasound group (P<0.05). The patient satisfaction scores were significantly higher in shock wave group than in ultrasound group (8.13∓2.67 vs 6.63∓3.75, P=0.048). Pneumatic ballistic extracorporeal shock achieves better medium- and long-term outcomes than ultrasound-guided hormone injection in the treatment of plantar fasciitis.
Xie, Min-Jue; Yagi, Hideshi; Kuroda, Kazuki; Wang, Chen-Chi; Komada, Munekazu; Zhao, Hong; Sakakibara, Akira; Miyata, Takaki; Nagata, Koh-Ichi; Oka, Yuichiro; Iguchi, Tokuichi; Sato, Makoto
2013-06-01
Glia-guided migration (glia-guided locomotion) during radial migration is a characteristic yet unique mode of migration. In this process, the directionality of migration is predetermined by glial processes and not by growth cones. Prior to the initiation of glia-guided migration, migrating neurons transform from multipolar to bipolar, but the molecular mechanisms underlying this multipolar-bipolar transition and the commencement of glia-guided migration are not fully understood. Here, we demonstrate that the multipolar-bipolar transition is not solely a cell autonomous event; instead, the interaction of growth cones with glial processes plays an essential role. Time-lapse imaging with lattice assays reveals the importance of vigorously active growth cones in searching for appropriate glial scaffolds, completing the transition, and initiating glia-guided migration. These growth cone activities are regulated by Abl kinase and Cdk5 via WAVE2-Abi2 through the phosphorylation of tyrosine 150 and serine 137 of WAVE2. Neurons that do not display such growth cone activities are mispositioned in a more superficial location in the neocortex, suggesting the significance of growth cones for the final location of the neurons. This process occurs in spite of the "inside-out" principle in which later-born neurons are situated more superficially.
NASA Astrophysics Data System (ADS)
Chao, Gabriel; Smeulders, D. M. J.; van Dongen, M. E. H.
2006-05-01
Acoustic experiments on the propagation of guided waves along water-filled boreholes in water-saturated porous materials are reported. The experiments were conducted using a shock tube technique. An acoustic funnel structure was placed inside the tube just above the sample in order to enhance the excitation of the surface modes. A fast Fourier transform-Prony-spectral ratio method is implemented to transform the data from the time-space domain to the frequency-wave-number domain. Frequency-dependent phase velocities and attenuation coefficients were measured using this technique. The results for a Berea sandstone material show a clear excitation of the fundamental surface mode, the pseudo-Stoneley wave. The comparison of the experimental results with numerical predictions based on Biot's theory of poromechanics [J. Acoust. Soc. Am. 28, 168 (1956)], shows that the oscillating fluid flow at the borehole wall is the dominant loss mechanism governing the pseudo-Stoneley wave and it is properly described by the Biot's model at frequencies below 40 kHz. At higher frequencies, a systematic underestimation of the theoretical predictions is found, which can be attributed to the existence of other losses mechanisms neglected in the Biot formulation. Higher-order guided modes associated with the compressional wave in the porous formation and the cylindrical geometry of the shock tube were excited, and detailed information was obtained on the frequency-dependent phase velocity and attenuation in highly porous and permeable materials. The measured attenuation of the guided wave associated with the compressional wave reveals the presence of regular oscillatory patterns that can be attributed to radial resonances. This oscillatory behavior is also numerically predicted, although the measured attenuation values are one order of magnitude higher than the corresponding theoretical values. The phase velocities of the higher-order modes are generally well predicted by theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solecki, Dr. David; Trivedi, Dr. Niraj; Govek, Eve-Ellen
2009-01-01
Lamination of cortical regions of the vertebrate brain depends on glial-guided neuronal migration. The conserved polarity protein Par6{alpha} localizes to the centrosome and coordinates forward movement of the centrosome and soma in migrating neurons. The cytoskeletal components that produce this unique form of cell polarity and their relationship to polarity signaling cascades are unknown. We show that F-actin and Myosin II motors are enriched in the neuronal leading process and that Myosin II activity is necessary for leading process actin dynamics. Inhibition of Myosin II decreased the speed of centrosome and somal movement, whereas Myosin II activation increased coordinated movement.more » Ectopic expression or silencing of Par6{alpha} inhibited Myosin II motors by decreasing Myosin light-chain phosphorylation. These findings suggest leading-process Myosin II may function to 'pull' the centrosome and soma forward during glial-guided migration by a mechanism involving the conserved polarity protein Par6{alpha}.« less
Lowe, Premesh S; Duan, Wenbo; Kanfoud, Jamil; Gan, Tat-Hean
2017-11-04
There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers.
Kanfoud, Jamil; Gan, Tat-Hean
2017-01-01
There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers. PMID:29113058
Rand, Kasper D; Pringle, Steven D; Morris, Michael; Engen, John R; Brown, Jeffery M
2011-10-01
The recent application of electron transfer dissociation (ETD) to measure the hydrogen exchange of proteins in solution at single-residue resolution (HX-ETD) paves the way for mass spectrometry-based analyses of biomolecular structure at an unprecedented level of detail. The approach requires that activation of polypeptide ions prior to ETD is minimal so as to prevent undesirable gas-phase randomization of the deuterium label from solution (i.e., hydrogen scrambling). Here we explore the use of ETD in a traveling wave ion guide of a quadrupole-time-of-flight (Q-TOF) mass spectrometer with a "Z-spray" type ion source, to measure the deuterium content of individual residues in peptides. We systematically identify key parameters of the Z-spray ion source that contribute to collisional activation and define conditions that allow ETD experiments to be performed in the traveling wave ion guide without gas-phase hydrogen scrambling. We show that ETD and supplemental collisional activation in a subsequent traveling wave ion guide allows for improved extraction of residue-specific deuterium contents in peptides with low charge. Our results demonstrate the feasibility, and illustrate the advantages of performing HX-ETD experiments on a high-resolution Q-TOF instrument equipped with traveling wave ion guides. Determination of parameters of the Z-spray ion source that contribute to ion heating are similarly pertinent to a growing number of MS applications that also rely on an energetically gentle transfer of ions into the gas-phase, such as the analysis of biomolecular structure by native mass spectrometry in combination with gas-phase ion-ion/ion-neutral reactions or ion mobility spectrometry. © American Society for Mass Spectrometry, 2011
Development of Leaky Wave Antennas for Layered Ridge Dielectric Waveguide
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Katehi, Linda P. B.
1993-01-01
The millimeter wave, especially above 100 GHz, and the submillimeter wave frequency spectrum offers the possibility for narrow-beam, high-resolution antennas which are critical for high definition radars required for space debris tracking, airport ground avoidance radars, and missile tracking. In addition, the frequency which most atmospheric constituents may be detected lie in this part of the frequency spectrum. Therefore, the development of electronic components for millimeter/submillimeter wave passive sensors is required for environmental monitoring of the Earth's atmosphere. Typical microwave transmission lines such as microstrip and coplanar waveguide rely on two or more electrical conductors to concentrate and guide the electromagnetic energy. Unfortunately, the surface resistance of the conductors increases as the square root of frequency. In addition, the circuit dimensions must be decreased with increasing frequency to maintain a single mode transmission line which further increases the conductor loss. An alternative family of transmission lines are formed from two or more insulating materials and rely on the differences in the permittivities between the two materials to guide the wave. No metal conductors are required although some dielectric waveguides do utilize a metallic ground plane to facilitate the interconnections of active electrical elements or to reduce the transmission line size. Examples of such transmission lines are image guides, insulated image guides, trapped image guides, ridge guide, and layered ridge dielectric waveguide (LRDW). Although most dielectric waveguides have dimensions on the order of lambda to provide sufficient field confinement, the LRDW has been shown to provide good field confinement for electrically small lines. This offers an advantage in circuit integration. It has been shown that a periodic array of metallic strips placed either along or on top of a dielectric waveguide forms an effective radiator. This antenna is easy to fabricate and there is good background of microstrip type antenna design information in the literature. This paper reports the development of the first frequency scanning antenna fed by a LRDW.
Layering, interface and edge effects in multi-layered composite medium
NASA Technical Reports Server (NTRS)
Datta, S. K.; Shah, A. H.; Karunesena, W.
1990-01-01
Guided waves in a cross-ply laminated plate are studied. Because of the complexity of the exact dispersion equation that governs the wave propagation in a multi-layered fiber-reinforced plate, a stiffness method that can be applied to any number of layers is presented. It is shown that, for a sufficiently large number of layers, the plate can be modeled as a homogeneous anisotropic plate. Also studied is the reflection of guided waves from the edge of a multilayered plate. These results are quite different than in the case of a single homogeneous plate.
Precision Laser Development for Interferometric Space Missions NGO, SGO, and GRACE Follow-On
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2011-01-01
Optical fiber and semiconductor laser technologies have evolved dramatically over the last decade due to the increased demands from optical communications. We are developing a laser (master oscillator) and optical amplifier based on those technologies for interferometric space missions, including the gravitational-wave missions NGO/SGO (formerly LISA) and the climate monitoring mission GRACE Follow-On, by fully utilizing the matured wave-guided optics technologies. In space, where simpler and more reliable system is preferred, the wave-guided components are advantageous over bulk, crystal-based, free-space laser, such as NPRO (Nonplanar Ring Oscillator) and bulk-crystal amplifier.
2007-06-20
qz/qx) 2]1/2 is the mode dispersion relation, and ωc = qxc/ √ ε is the angular cutoff frequency. The guided mode wavelength is written as λ = λc/[(ωq...the guided modes corresponding to standing waves with respect to the X and Y axes designated by an integer pair m ,n, and propagating waves along...the angular cutoff frequency determined by the waveguide geometry. The guided mode wavelength is written as =c / q /c2−11/2, where c=2Lx is
Localized Oscillatory Energy Conversion in Magnetopause Reconnection
NASA Astrophysics Data System (ADS)
Burch, J. L.; Ergun, R. E.; Cassak, P. A.; Webster, J. M.; Torbert, R. B.; Giles, B. L.; Dorelli, J. C.; Rager, A. C.; Hwang, K.-J.; Phan, T. D.; Genestreti, K. J.; Allen, R. C.; Chen, L.-J.; Wang, S.; Gershman, D.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Wilder, F. D.; Graham, D. B.; Hesse, M.; Drake, J. F.; Swisdak, M.; Price, L. M.; Shay, M. A.; Lindqvist, P.-A.; Pollock, C. J.; Denton, R. E.; Newman, D. L.
2018-02-01
Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized ( 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J · E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).
Model-Based IN SITU Parameter Estimation of Ultrasonic Guided Waves in AN Isotropic Plate
NASA Astrophysics Data System (ADS)
Hall, James S.; Michaels, Jennifer E.
2010-02-01
Most ultrasonic systems employing guided waves for flaw detection require information such as dispersion curves, transducer locations, and expected propagation loss. Degraded system performance may result if assumed parameter values do not accurately reflect the actual environment. By characterizing the propagating environment in situ at the time of test, potentially erroneous a priori estimates are avoided and performance of ultrasonic guided wave systems can be improved. A four-part model-based algorithm is described in the context of previous work that estimates model parameters whereby an assumed propagation model is used to describe the received signals. This approach builds upon previous work by demonstrating the ability to estimate parameters for the case of single mode propagation. Performance is demonstrated on signals obtained from theoretical dispersion curves, finite element modeling, and experimental data.
Chillara, Vamshi Krishna; Ren, Baiyang; Lissenden, Cliff J
2016-04-01
This article describes the use of the frequency domain finite element (FDFE) technique for guided wave mode selection in inhomogeneous waveguides. Problems with Rayleigh-Lamb and Shear-Horizontal mode excitation in isotropic homogeneous plates are first studied to demonstrate the application of the approach. Then, two specific cases of inhomogeneous waveguides are studied using FDFE. Finally, an example of guided wave mode selection for inspecting disbonds in composites is presented. Identification of sensitive and insensitive modes for defect inspection is demonstrated. As the discretization parameters affect the accuracy of the results obtained from FDFE, effect of spatial discretization and the length of the domain used for the spatial fast Fourier transform are studied. Some recommendations with regard to the choice of the above parameters are provided. Copyright © 2015 Elsevier B.V. All rights reserved.
Optical fibers and Fluorosensors having improved power efficiency and methods of producing same
NASA Technical Reports Server (NTRS)
Egalon, Claudio O. (Inventor); Rogowski, Robert S. (Inventor)
1993-01-01
Optical fibers may have applications including fluorosensors which sense the concentration of an analyte. Like communication fibers, these fluorosensors are modeled using a weakly guiding approximation which is only effective when the difference between the respective refractive indices of the fiber core and surrounding cladding are minimal. An optical fiber fluorosensor is provided having a portion of a fiber core which is surrounded by an active cladding which is permeable by the analyte to be sensed and containing substances which emit light waves upon excitation. A remaining portion of the fiber core is surrounded by a guide cladding which guides these light waves to a sensor which detects the intensity of waves, which is a function of the analyte concentration. Contrary to conventional weakly guiding principles, the difference between the respective indices of refraction of the fiber core is surrounded by an active cladding which is thin enough such that its index of refraction is effectively that of the surrounding atmosphere, thereby the atmosphere guides the injective indices of the fiber core and the cladding results in an unexpected increase in the power efficiency of the fiber core.
The response of pile-guided floats subjected to dynamic loading.
DOT National Transportation Integrated Search
2014-08-01
Pile-Guided floats can be a desirable alternative to stationary berthing structures. Both floats and guide piles are subjected to dynamic : forces such as wind generated waves and impacts from vessels. This project developed a rational basis for esti...
Resonant circuit which provides dual frequency excitation for rapid cycling of an electromagnet
Praeg, Walter F.
1984-01-01
Disclosed is a ring magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the cosinusoidal guide field of the ring magnet during particle acceleration. the control circuit generates cosinusoidal excitation currents of different frequencies in the half waves. During radio frequency acceleration of the particles in the synchrotron, the control circuit operates with a lower frequency cosine wave and thereafter the electromagnets are reset with a higher frequency half cosine wave. Flat-bottom and flat-top wave shaping circuits maintain the magnetic guide field in a relatively time-invariant mode during times when the particles are being injected into the ring magnets and when the particles are being ejected from the ring magnets.
Comparison of a piezoceramic transducer and an EMAT for the omnidirectional transduction of SH0
NASA Astrophysics Data System (ADS)
Gauthier, Baptiste; Thon, Aurelien; Belanger, Pierre
2018-04-01
The fundamental shear horizontal ultrasonic guided wave mode has unique properties for non-destructive testing as well as structural health monitoring applications. It is the only non-dispersive guided wave mode and it is not attenuated by fluid loading. Moreover, shear horizontal waves do not convert to other guided wave modes when interacting with a boundary or defect parallel to the direction of polarization. In many applications, omnidirectional transduction is preferred so as to maximize the inspection coverage. The omnidirectional transduction of the fundamental shear horizontal ultrasonic guided wave mode is, however, challenging because a torsional surface stress is required. This paper compares the performances of two concepts recently proposed in the literature: 1- a piezoceramic transducer and 2- an electromagnetic-acoustic transducer. The piezoceramic transducer uses 6 trapezoidal shear piezoelectric elements arranged on a discretized circle. The electromagnetic acoustic transducer concept consists of a pair of ring-type permanent magnets and a coil wrapped in the radial direction. In this paper, both transducers were designed to have a 150 kHz centre frequency. Experimental results were performed on a thin aluminum plate using both transducers. A 3D laser Doppler vibrometer was used to verify the omnidirectional nature, the mode selectivity and the frequency response of the transducers. The EMAT has undeniable advantages in terms of omnidirectionality and mode selectivity. However it has a larger footprint than the piezoceramic concept and is only suitable for the inspection of metallic structures.
PPM-based System for Guided Waves Communication Through Corrosion Resistant Multi-wire Cables
NASA Astrophysics Data System (ADS)
Trane, G.; Mijarez, R.; Guevara, R.; Pascacio, D.
Novel wireless communication channels are a necessity in applications surrounded by harsh environments, for instance down-hole oil reservoirs. Traditional radio frequency (RF) communication schemes are not capable of transmitting signals through metal enclosures surrounded by corrosive gases and liquids. As an alternative to RF, a pulse position modulation (PPM) guided waves communication system has been developed and evaluated using a corrosion resistant 4H18 multi-wire cable, commonly used to descend electronic gauges in down-hole oil applications, as the communication medium. The system consists of a transmitter and a receiver that utilizes a PZT crystal, for electrical/mechanical coupling, attached to each extreme of the multi-wire cable. The modulator is based on a microcontroller, which transmits60 kHz guided wave pulses, and the demodulator is based on a commercial digital signal processor (DSP) module that performs real time DSP algorithms. Experimental results are presented, which were obtained using a 1m corrosion resistant 4H18multi-wire cable, commonly used with downhole electronic gauges in the oil sector. Although there was significant dispersion and multiple mode excitations of the transmitted guided wave energy pulses, the results show that data rates on the order of 500 bits per second are readily available employing PPM and simple communications techniques.
Two classes of capillary optical fibers: refractive and photonic
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2008-11-01
This paper is a digest tutorial on some properties of capillary optical fibers (COF). Two basic types of capillary optical fibers are clearly distinguished. The classification is based on propagation mechanism of optical wave. The refractive, singlemode COF guides a dark hollow beam of light (DHB) with zero intensity on fiber axis. The photonic, singlemode COF carries nearly a perfect axial Gaussian beam with maximum intensity on fiber axis. A subject of the paper are these two basic kinds of capillary optical fibers of pure refractive and pure photonic mechanism of guided wave transmission. In a real capillary the wave may be transmitted by a mixed mechanism, refractive and photonic, with strong interaction of photonic and refractive guided wave modes. Refractive capillary optical fibers are used widely for photonic instrumentation applications, while photonic capillary optical fibers are considered for trunk optical communications. Replacement of classical, single mode, dispersion shifted, 1550nm optimized optical fibers for communications with photonic capillaries would potentially cause a next serious revolution in optical communications. The predictions say that such a revolution may happen within this decade. This dream is however not fulfilled yet. The paper compares guided modes in both kinds of optical fiber capillaries: refractive and photonic. The differences are emphasized indicating prospective application areas of these fibers.
Li, Ying; Liu, Dan; Xu, Kailiang; Le, Lawrence H.; Wang, Weiqi
2017-01-01
Ultrasonic guided waves have recently been used in fracture evaluation and fracture healing monitoring. An axial transmission technique has been used to quantify the impact of the gap breakage width and fracture angle on the amplitudes of low order guided wave modes S0 and A0 under a 100 kHz narrowband excitation. In our two dimensional finite-difference time-domain (2D-FDTD) simulation, the long bones are modeled as three layers with a soft tissue overlay and marrow underlay. The simulations of the transversely and obliquely fractured long bones show that the amplitudes of both S0 and A0 decrease as the gap breakage widens. Fixing the crack width, the increase of the fracture angle relative to the cross section perpendicular to the long axis enhances the amplitude of A0, while the amplitude of S0 shows a nonmonotonic trend with the decrease of the fracture angle. The amplitude ratio between the S0 and A0 modes is used to quantitatively evaluate the fracture width and angles. The study suggests that the low order guided wave modes S0 and A0 have potentials for transverse and oblique bone fracture evaluation and fracture healing monitoring. PMID:28182135
Li, Ying; Liu, Dan; Xu, Kailiang; Ta, Dean; Le, Lawrence H; Wang, Weiqi
2017-01-01
Ultrasonic guided waves have recently been used in fracture evaluation and fracture healing monitoring. An axial transmission technique has been used to quantify the impact of the gap breakage width and fracture angle on the amplitudes of low order guided wave modes S 0 and A 0 under a 100 kHz narrowband excitation. In our two dimensional finite-difference time-domain (2D-FDTD) simulation, the long bones are modeled as three layers with a soft tissue overlay and marrow underlay. The simulations of the transversely and obliquely fractured long bones show that the amplitudes of both S 0 and A 0 decrease as the gap breakage widens. Fixing the crack width, the increase of the fracture angle relative to the cross section perpendicular to the long axis enhances the amplitude of A 0, while the amplitude of S 0 shows a nonmonotonic trend with the decrease of the fracture angle. The amplitude ratio between the S 0 and A 0 modes is used to quantitatively evaluate the fracture width and angles. The study suggests that the low order guided wave modes S 0 and A 0 have potentials for transverse and oblique bone fracture evaluation and fracture healing monitoring.
NASA Astrophysics Data System (ADS)
Marston, Philip L.
2003-04-01
The coupling of sound to buried targets can be associated with acoustic evanescent waves when the sea bottom is smooth. To understand the excitation of guided waves on buried fluid cylinders and shells by acoustic evanescent waves and the associated target resonances, the two-dimensional partial wave series for the scattering is found for normal incidence in an unbounded medium. The shell formulation uses the simplifications of thin-shell dynamics. The expansion of the incident wave becomes a double summation with products of modified and ordinary Bessel functions [P. L. Marston, J. Acoust. Soc. Am. 111, 2378 (2002)]. Unlike the case of an ordinary incident wave, the counterpropagating partial waves of the same angular order have unequal magnitudes when the incident wave is evanescent. This is a consequence of the exponential dependence of the incident wave amplitude on depth. Some consequences of this imbalance of partial-wave amplitudes are given by modifying previous ray theory for the scattering [P. L. Marston and N. H. Sun, J. Acoust. Soc. Am. 97, 777-783 (1995)]. The exponential dependence of the scattering on the location of a scatterer was previously demonstrated in air [T. J. Matula and P. L. Marston, J. Acoust. Soc. Am. 93, 1192-1195 (1993)].
The Object Coordination Class Applied to Wave Pulses: Analyzing Student Reasoning in Wave Physics.
ERIC Educational Resources Information Center
Wittmann, Michael C.
2002-01-01
Analyzes student responses to interview and written questions on wave physics using diSessa and Sherin's coordination class model which suggests that student use of specific reasoning resources is guided by possibly unconscious cues. (Author/MM)
Lathe, Richard
2016-01-01
The central nervous system (CNS) evolved from a chemosensory epithelium, but a simple epithelium has limited means to resolve conflicts between early drives (e.g., approach vs. avoid). Understanding the role of "consciousness" as a resolution device, with specific focus on chemosensation and the olfactory system, is of appeal. I argue that consciousness is not the adjudicator, but is instead the forum that brings conflicting (conscious) inputs into a form that allows them to be (unconsciously) compared/contrasted, guiding rational action.
2000-08-01
12345678901234567890123456789012345678901234567890123456789012345678901234567890 WAVL WAVE1 WAVE2 MULDV Name Units Typically Description WAVE1 µm 1.06 Wavelength used for...the calculation. Alternatively, one can specify either frequency or wavenumber by using a FREQ or WVNUM record instead of WAVL. If WAVE2 is not...specified, WAVE1 is the single wave- length used; if WAVE2 is specified, the modules will attempt to do their calculation for a range of wavelengths. There
A study of electric field components in shallow water and water half-space models in seabed logging
NASA Astrophysics Data System (ADS)
Rostami, Amir; Soleimani, Hassan; Yahya, Noorhana; Nyamasvisva, Tadiwa Elisha; Rauf, Muhammad
2016-11-01
Seabed logging (SBL) is an electromagnetic (EM) method to detect hydrocarbon (HC) laid beneath the seafloor, which is a development of marine controlled source electromagnetic (CSEM) method. CSEM is a method to show resistivity log of geological layers, transmitting ultra-low frequency EM wave. In SBL a net of receivers, placed on the seafloor, detect reflected and refracted EM wave by layers with different resistivity. Contrast of electrical resistivity of layers impacts on amplitude and phase of the EM wave response. The most indispensable concern in SBL is to detect guided wave via high resistive layer under the seafloor that can be an HC reservoir. Guided wave by HC creates a remarkable difference in received signal when HC reservoir does not exist. While the major contribution of received EM wave in large offset, especially in shallow water environment, is airwave, which is refracted by sea surface due to extremely high resistivity of atmosphere, airwave can affect received guided wave, dramatically. Our objective for this work is to compare HC delineation of tangential and normal components of electric field in shallow water area, using finite element method simulation. Will be reported that, in shallow water environment, minor contribution of air wave in normal component of E field (Ey) versus its major contribution in the tangential component (Ex), causes a considerable contrast on HC delineation of Ey for deeply buried reservoirs (more than 3000 m), while Ex is unable to show different contrasts of received data for with and without HC media at the same condition.
Chacko, Ann-Marie; Li, Chunsheng; Pryma, Daniel A.; Brem, Steven; Coukos, George; Muzykantov, Vladimir R.
2014-01-01
Introduction Brain tumors are inherently difficult to treat in large part due to the cellular blood-brain barriers (BBB) that limit the delivery of therapeutics to the tumor tissue from the systemic circulation. Virtually no large-molecules, including antibody-based proteins, can penetrate the BBB. With antibodies fast becoming attractive ligands for highly specific molecular targeting to tumor antigens, a variety of methods are being investigated to enhance the access of these agents to intracranial tumors for imaging or therapeutic applications. Areas covered This review describes the characteristics of the BBB and the vasculature in brain tumors, described as the blood-brain tumor barrier (BBTB). Antibodies targeted to molecular markers of CNS tumors will be highlighted, and current strategies for enhancing the delivery of antibodies across these cellular barriers into the brain parenchyma to the tumor will be discussed. Non-invasive imaging approaches to assess BBB/BBTB permeability and/or antibody targeting will be presented as a means of guiding the optimal delivery of targeted agents to brain tumors. Expert Opinion Pre-clinical and clinical studies highlight the potential of several approaches in increasing brain tumor delivery across the blood-brain barrier divide. However, each carries its own risks and challenges. There is tremendous potential in using neuroimaging strategies to assist in understanding and defining the challenges to translating and optimizing molecularly-targeted antibody delivery to CNS tumors to improve clinical outcomes. PMID:23751126
Shigematsu, Akio; Kako, Shinichi; Mitsuhashi, Kenjiro; Iwato, Koji; Uchida, Naoyuki; Kanda, Yoshinobu; Fukuda, Takahiro; Sawa, Masashi; Senoo, Yasushi; Ogawa, Hiroyasu; Miyamura, Koichi; Takada, Satoru; Nagamura-Inoue, Tokiko; Morishima, Yasuo; Ichinohe, Tatsuo; Atsuta, Yoshiko; Mizuta, Shuichi; Tanaka, Junji
2017-06-01
The prognosis for adult acute lymphoblastic leukemia (ALL) patients with central nervous system (CNS) involvement (CNS+) who received allogeneic hematopoietic stem cell transplantation (allo-SCT) remains unclear. We retrospectively compared the outcomes of allo-SCT for patients with CNS involvement and for patients without CNS involvement (CNS-) using a database in Japan. The eligibility criteria for this study were as follows: diagnosis of ALL, aged more than 16 years, allo-SCT between 2005 and 2012, and first SCT. Data for 2582 patients including 136 CNS+ patients and 2446 CNS- patients were used for analyses. As compared with CNS- patients, CNS+ patients were younger, had worse disease status at SCT and had poorer performance status (PS) at SCT (P < 0.01). Incidence of relapse was higher in CNS+ patients (P = 0.02), and incidence of CNS relapse was also higher (P < 0.01). The probability of 3-year overall survival (OS) was better in CNS- patients (P < 0.01) by univariate analysis. However, in patients who received SCT in CR, there was no difference in the probability of OS between CNS+ and CNS- patients (P = 0.38) and CNS involvement did not have an unfavorable effect on OS by multivariate analysis. CNS+ patients who achieved CR showed OS comparable to that of CNS- patients.
NASA Astrophysics Data System (ADS)
Zhou, M.; Berchem, J.; Walker, R. J.; El-Alaoui, M.; Goldstein, M. L.; Lapenta, G.; Deng, X.; Li, J.; Le Contel, O.; Graham, D. B.; Lavraud, B.; Paterson, W. R.; Giles, B. L.; Burch, J. L.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.; Zhao, C.; Ergun, R. E.; Lindqvist, P.-A.; Marklund, G.
2018-03-01
We report Magnetospheric Multiscale (MMS) observations of a reconnecting current sheet in the presence of a weak density asymmetry with large guide field at the dayside magnetopause. An ion diffusion region (IDR) was detected associated with this current sheet. Parallel current dominated over the perpendicular current in the IDR, as found in previous studies of component reconnection. Electrons were preferentially heated parallel to the magnetic field within the IDR. The heating was manifested as a flattop distribution below 400 eV. Two types of electromagnetic electron whistler waves were observed within the regions where electrons were heated. One type of whistler wave was associated with nonlinear structures in E|| with amplitudes up to 20 mV/m. The other type was not associated with any structures in E||. Poynting fluxes of these two types of whistler waves were directed away from the X-line. We suggest that the nonlinear evolution of the oblique whistler waves gave rise to the solitary structures in E||. There was a perpendicular super-Alfvénic outflow jet that was carried by magnetized electrons. Intense electrostatic lower hybrid drift waves were localized in the current sheet center and were probably driven by the super-Alfvénic electron jet, the velocity of which was approximately equal to the diamagnetic drift of demagnetized ions. Our observations suggest that the guide field significantly modified the structures (Hall electromagnetic fields and current system) and wave properties in the IDR.
NASA Astrophysics Data System (ADS)
Ren, Baiyang
Composite materials, especially carbon fiber reinforced polymers (CFRP), have been widely used in the aircraft industry because of their high specific strength and stiffness, resistance to corrosion and good fatigue life. Due to their highly anisotropic material properties and laminated structures, joining methods like bolting and riveting are no longer appropriate for joining CFRP since they initiate defects during the assembly and severely compromise the integrity of the structure; thus new techniques for joining CFRP are highly demanded. Adhesive bonding is a promising method because it relieves stress concentration, reduces weight and provides smooth surfaces. Additionally, it is a low-cost alternative to the co-cured method which is currently used to manufacture components of aircraft fuselage. Adhesive defects, disbonds at the interface between adherend and adhesive layer, are focused on in this thesis because they can be initialized by either poor surface preparation during the manufacturing or fatigue loads during service. Aircraft need structural health monitoring (SHM) systems to increase safety and reduce loss, and adhesive bonds usually represent the hotspots of the assembled structure. There are many nondestructive evaluation (NDE) methods for bond inspection. However, these methods cannot be readily integrated into an SHM system because of the bulk size and weight of the equipment and requirement of accessibility to one side of the bonded joint. The first objective of this work is to develop instruments, actuators, sensors and a data acquisition system for SHM of bond lines using ultrasonic guided waves which are well known to be able to cover large volume of the structure and inaccessible regions. Different from widely used guided wave sensors like PZT disks, the new actuators, piezoelectric fiber composite (PFC) phased array transducers0 (PAT), can control the modal content of the excited waves and the new sensors, polyvinylidene fluoride (PVDF) arrays, which can extract modal information from the received waves. Also, the PATs and array sensors have broad frequency bandwidth and can easily excite and receive high order guided wave modes which are not possible using PZT disks. Currently, many guided wave SHM techniques employ the fundamental guided wave modes below the first cut-off frequency because of their low dispersion in this frequency range. Such a practice ignores the possibility of using higher order modes which sometimes have much better sensitivity to defects. A frequency domain finite element model is created in this work to study the behavior of the interaction between guided waves and a disbond. The sensitivities of modes are classified into three levels, namely, good sensitivity, intermediate sensitivity and no sensitivity. The novel damage indicators, wave modal amplitude and wave modal composition, are proposed to increase the sensitivity to disbonds. The effects of environmental operational conditions (EOC) are presenting great challenges to reliable SHM practice because they may influence the wave amplitude and time of flight. The use of fundamental modes shows poor sensitivity to the disbond; but the use of higher order modes shows good sensitivity. The experiments demonstrate that the new damage indicators have excellent sensitivity to disbonds even with elevated temperatures and have the capability to characterize the size of a disbond. Additionally, the detection of other types of defects like notches on aluminum plates and disbonds in adhesively bonded aluminum plate are also demonstrated using the proposed damage indicators. The use of the new damage indicators for SHM applications relies on the capability of resolving the modal content of wave signals which is enabled only by using PFC PATs and polyvinylidene fluoride (PVDF) array sensors.
Zhang, Xiaowei; Tang, Zhifeng; Lv, Fuzai; Pan, Xiaohong
2017-02-01
A wavefront analysis indicates that a flexural wave propagates at a helix angle with respect to the pipe axis. The expression for calculation of the helix angle for each flexural mode is given, and the helix angle dispersion curves for flexural modes are calculated. According to the new understanding of flexural guided waves, a helical comb magnetostrictive patch transducer (HCMPT) is proposed for selectively exciting a single predominant flexural torsional guided wave in a pipe and inspecting spiral welded pipes using flexural waves. A HCMPT contains a pre-magnetized magnetostrictive patch that is helically coupled with the outer surface of a pipe, and a novel compound comb coil that is wrapped around the helical magnetostrictive patch. The proposed wideband HCMPT possesses the direction control ability. A verification experiment indicates that flexural torsional mode T(3,1) at center frequency f=64kHz is effectively actuated by a HCMPT with 13-degree helix angle. Flexural torsional modes T(N,1) with circumferential order N equals 1-5 are selected to inspect a seamless steel pipe, artificial defects are effectively detected by the proposed HCMPT. A 20-degree HCMPT is adopted to inspect a spiral welded pipe, an artificial notch with cross section loss CSL=2.7% is effectively detected by using flexural waves. Copyright © 2016 Elsevier B.V. All rights reserved.
Efthimion, Philip C.; Helfritch, Dennis J.
1989-11-28
An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.
Lamb mode selection for accurate wall loss estimation via guided wave tomography
NASA Astrophysics Data System (ADS)
Huthwaite, P.; Ribichini, R.; Lowe, M. J. S.; Cawley, P.
2014-02-01
Guided wave tomography offers a method to accurately quantify wall thickness losses in pipes and vessels caused by corrosion. This is achieved using ultrasonic waves transmitted over distances of approximately 1-2m, which are measured by an array of transducers and then used to reconstruct a map of wall thickness throughout the inspected region. To achieve accurate estimations of remnant wall thickness, it is vital that a suitable Lamb mode is chosen. This paper presents a detailed evaluation of the fundamental modes, S0 and A0, which are of primary interest in guided wave tomography thickness estimates since the higher order modes do not exist at all thicknesses, to compare their performance using both numerical and experimental data while considering a range of challenging phenomena. The sensitivity of A0 to thickness variations was shown to be superior to S0, however, the attenuation from A0 when a liquid loading was present was much higher than S0. A0 was less sensitive to the presence of coatings on the surface of than S0.
Application of guided acoustic waves to delamination detection
NASA Technical Reports Server (NTRS)
Sun, Keun J.
1992-01-01
Guided plate waves are able to interact with structural flaws such as delaminations and cracks due to their propagation properties highly sensitive to the thickness change in materials. A technique which employs an acoustic damper to probe the results of this interaction and then to locate flaws in a relatively short period of time is developed. With its technical advantages, this technique shows its potential application to large area structural integrity assessment.
NASA Astrophysics Data System (ADS)
Kwon, Do-Hoon; Tretyakov, Sergei A.
2018-01-01
For passive, lossless impenetrable metasurfaces, a design technique for arbitrary beam control of receiving, guiding, and launching is presented. Arbitrary control is enabled by a custom surface wave in an orthogonal polarization such that its addition to the incident (input) and the desired scattered (output) fields is supported by a reactive surface impedance everywhere on the reflecting surface. Such a custom surface wave (SW) takes the form of an evanescent wave propagating along the surface with a spatially varying envelope. A growing SW appears when an illuminating beam is received. The SW amplitude stays constant when power is guided along the surface. The amplitude diminishes as a propagating wave (PW) is launched from the surface as a leaky wave. The resulting reactive tensor impedance profile may be realized as an array of anisotropic metallic resonators printed on a grounded dielectric substrate. Illustrative design examples of a Gaussian beam translator-reflector, a probe-fed beam launcher, and a near-field focusing lens are provided.
NASA Astrophysics Data System (ADS)
Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh
2016-03-01
Multiple compound surface plasmon-polariton (SPP) waves can be guided by a structure consisting of a sufficiently thick layer of metal sandwiched between a homogeneous isotropic dielectric (HID) material and a dielectric structurally chiral material (SCM). The compound SPP waves are strongly bound to both metal/dielectric interfaces when the thickness of the metal layer is comparable to the skin depth but just to one of the two interfaces when the thickness is much larger. The compound SPP waves differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. Some compound SPP waves are not greatly affected by the choice of the direction of propagation in the transverse plane but others are, depending on metal thickness. For fixed metal thickness, the number of compound SPP waves depends on the relative permittivity of the HID material, which can be useful for sensing applications.
The response of pile-guided floats subjected to dynamic loading : volume I final report.
DOT National Transportation Integrated Search
2014-08-01
Pile : - : Guided floats can be a desirable alternative to stationary berthing structures. Both floats and guide piles are subjected to dynamic : forces such as wind generated waves and impacts from vessels. This project developed a rational basis fo...
The response of pile-guided floats subjected to dynamic loading : volume II annex.
DOT National Transportation Integrated Search
2014-08-01
Pile-Guided floats can be a desirable alternative to stationary berthing structures. Both floats and guide piles are subjected to dynamic : forces such as wind generated waves and impacts from vessels. This project developed a rational basis for esti...
NASA Astrophysics Data System (ADS)
Leonard, Kevin Raymond
This dissertation concentrates on the development of two new tomographic techniques that enable wide-area inspection of pipe-like structures. By envisioning a pipe as a plate wrapped around upon itself, the previous Lamb Wave Tomography (LWT) techniques are adapted to cylindrical structures. Helical Ultrasound Tomography (HUT) uses Lamb-like guided wave modes transmitted and received by two circumferential arrays in a single crosshole geometry. Meridional Ultrasound Tomography (MUT) creates the same crosshole geometry with a linear array of transducers along the axis of the cylinder. However, even though these new scanning geometries are similar to plates, additional complexities arise because they are cylindrical structures. First, because it is a single crosshole geometry, the wave vector coverage is poorer than in the full LWT system. Second, since waves can travel in both directions around the circumference of the pipe, modes can also constructively and destructively interfere with each other. These complexities necessitate improved signal processing algorithms to produce accurate and unambiguous tomographic reconstructions. Consequently, this work also describes a new algorithm for improving the extraction of multi-mode arrivals from guided wave signals. Previous work has relied solely on the first arriving mode for the time-of-flight measurements. In order to improve the LWT, HUT and MUT systems reconstructions, improved signal processing methods are needed to extract information about the arrival times of the later arriving modes. Because each mode has different through-thickness displacement values, they are sensitive to different types of flaws, and the information gained from the multi-mode analysis improves understanding of the structural integrity of the inspected material. Both tomographic frequency compounding and mode sorting algorithms are introduced. It is also shown that each of these methods improve the reconstructed images both qualitatively and quantitatively.
Acoustic Guided Wave Testing of Pipes of Small Diameters
NASA Astrophysics Data System (ADS)
Muravev, V. V.; Muraveva, O. V.; Strizhak, V. A.; Myshkin, Y. V.
2017-10-01
Acoustic path is analyzed and main parameters of guided wave testing are substanti- ated applied to pipes of small diameters. The method is implemented using longitudinal L(0,1) and torsional T(0,1) waves based on electromagnetic-acoustic (EMA) transducers. The method of multiple reflections (MMR) combines echo-through, amplitude-shadow and time-shadow methods. Due to the effect of coherent amplification of echo-pulses from defects the sensitivity to the defects of small sizes at the signal analysis on the far reflections is increased. An oppor- tunity of detection of both local defects (dents, corrosion damages, rolling features, pitting, cracks) and defects extended along the pipe is shown.
Felix, Arthur; Leblanc, Thierry; Petit, Arnaud; Nelkem, Brigitte; Bertrand, Yves; Gandemer, Virginie; Sirvent, Anne; Paillard, Catherine; Schmitt, Claudine; Rohrlich, Pierre Simon; Fenneteau, Odile; Ragu, Christine; Michel, Gerard; Auvrignon, Anne; Baruchel, André; Leverger, Guy
2018-01-01
Central nervous system (CNS) involvement at diagnosis of pediatric acute myeloid leukemia (AML) is not considered as an independent prognostic factor. This study describes the prognostic value of pediatric AML with CNS involvement at diagnosis. Pediatric patients were treated for de novo AML in the French multicenter trial ELAM02. Lumbar puncture was carried out in the first week, and the treatment was adapted to the CNS status. No patient received CNS radiotherapy. The patients were classified into 2 groups: CNS+ and CNS-. Of the 438 patients, 16% (n=70) had CNS involvement at diagnosis, and 29% showed clinical signs. The patients with CNS disease were younger (40% were below 2 y old), had a higher white blood cell count (median of 45 vs. 13 G/L), and had M4 and M5 morphologies. The complete remission rate was similar at 92.8% for CNS+ and 88.5% for CNS-. There was no significant difference between the CNS+ and the CNS- group in overall survival (76% and 71%, respectively) and event-free survival (57% and 52%, respectively). Regarding the occurrence of first relapse, the CNS+ group had a higher combined relapse rate of 26.1% compared with 10% for the CNS- group. The results indicate that CNS involvement at diagnosis of pediatric AML is not an independent prognostic factor. Triple intrathecal chemotherapy combined with high-dose intravenous cytarabine should be the first-line treatment for CNS disease.
Xia, Bing; Huang, Liangliang; Zhu, Lei; Liu, Zhongyang; Ma, Teng; Zhu, Shu; Huang, Jinghui; Luo, Zhuojing
2016-01-01
Schwann cell (SC) transplantation is an attractive strategy for spinal cord injury (SCI). However, the efficacy of SC transplantation has been limited by the poor migratory ability of SCs in the astrocyte-rich central nervous system (CNS) environment and the inability to intermingle with the host astrocyte. In this study, we first magnetofected SCs by polysialyltransferase-functionalized superparamagnetic iron oxide nanoparticles (PST/SPIONs) to induce overexpression of polysialylation of neural cell adhesion molecule (PSA-NCAM) to enhance SC migration ability, before manipulating the direction of SC migration with the assistance of an applied magnetic field (MF). It was found that magnetofection with PST/SPIONs significantly upregulated the expression of PSA-NCAM in SCs, which significantly enhanced the migration ability of SCs, but without preferential direction in the absence of MF. The number and averaged maximum distance of SCs with PST/SPIONs migrating into the astrocyte domain were significantly enhanced by an applied MF. In a 300 μm row along the astrocyte boundary, the number of SCs with PST/SPIONs migrating into the astrocyte domain under an MF was 2.95 and 6.71 times higher than that in the absence of MF and the intact control SCs, respectively. More interestingly, a confrontation assay demonstrated that SCs with PST/SPIONs were in close contact with astrocytes and no longer formed boundaries in the presence of MF. In conclusion, SCs with PST/SPIONs showed enhanced preferential migration along the axis of a magnetic force, which might be beneficial for the formation of Büngner bands in the CNS. These findings raise the possibilities of enhancing the migration of transplanted SCs in astrocyte-rich CNS regions in a specific direction and creating an SC bridge in the CNS environment to guide regenerated axons to their distal destination in the treatment of SCI. PMID:28003748
Guided wave propagation and spectral element method for debonding damage assessment in RC structures
NASA Astrophysics Data System (ADS)
Wang, Ying; Zhu, Xinqun; Hao, Hong; Ou, Jinping
2009-07-01
A concrete-steel interface spectral element is developed to study the guided wave propagation along the steel rebar in the concrete. Scalar damage parameters characterizing changes in the interface (debonding damage) are incorporated into the formulation of the spectral finite element that is used for damage detection of reinforced concrete structures. Experimental tests are carried out on a reinforced concrete beam with embedded piezoelectric elements to verify the performance of the proposed model and algorithm. Parametric studies are performed to evaluate the effect of different damage scenarios on wave propagation in the reinforced concrete structures. Numerical simulations and experimental results show that the method is effective to model wave propagation along the steel rebar in concrete and promising to detect damage in the concrete-steel interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amri, Hassan Ehsani; Mohsenpour, Taghi, E-mail: mohsenpour@umz.ac.ir
2016-02-15
In this paper, an analysis of equilibrium orbits for electrons by a simultaneous solution of the equation of motion and the dispersion relation for electromagnetic wave wiggler in a free-electron laser (FEL) with ion-channel guiding has been presented. A fluid model has been used to investigate interactions among all possible waves. The dispersion relation has been derived for electrostatic and electromagnetic waves with all relativistic effects included. This dispersion relation has been solved numerically. For group I and II orbits, when the transverse velocity is small, only the FEL instability is found. In group I and II orbits with relativelymore » large transverse velocity, new couplings between other modes are found.« less
Millimeter wave transmission systems and related devices
NASA Technical Reports Server (NTRS)
Hebert, L. M.
1984-01-01
A survey was made of the state-of-the-art in millimeter (20 GHz to 300 GHz) wave transmission systems and related devices. The survey includes summaries of analytical studies and theoretical results that were obtained for various transmission line structures. This material was supplemented by further analysis where appropriate. The transmission line structures are evaluated in terms of electrical performance, ease of manufacture, usefulness for building other devices and compatibility with solid state devices. Descriptions of waveguide transmission lines which have commonly been used in the microwave frequency range are provided along with special attention given to the problems that these guides face when their use is extended into the millimeter wave range. Also, guides which have been introduced specifically to satisfy the requirements of millimeter wave transmission are discussed in detail.
Transformation of Elastic Wave Energy to the Energy of Motion of Bodies
NASA Astrophysics Data System (ADS)
Vesnitskiĭ, A. I.; Lisenkova, E. E.
2002-01-01
The motion of a body along an elastic guide under the effect of an incident wave is considered. An equation describing the longitudinal motion of a body along an arbitrary guide is derived from the laws governing the energy and momentum variations for the case when the incident wave generates a single reflected wave. The equations that describe the motion of a body along a string and along a beam corresponding to the Bernoulli-Euler model are considered as examples. The process of the body acceleration along a beam of the aforementioned type is investigated. For the subcritical velocities, the law governing the motion of the body and the ratio of the kinetic energy variation to the energy supplied to the body are determined.
Marston, Philip L
2014-03-01
The phase and group velocities of elastic guided waves are important in the physical interpretation of high frequency scattering by fluid-loaded elastic shells. Outside the context of scattering, those properties are also important for understanding the energy flow in acoustic metamaterials. In a recent investigation of acoustic metamaterials exhibiting anomalous wave propagation [J. Acoust. Soc. Am. 132, 2887-2895 (2012)] criticism of negative group velocity terminology was generalized to elastic waves guided on ordinary materials. Some context and justification for retaining the identification of negative group velocities associated with a type of backscattering enhancement for shells are explained here. The phase evolution direction is determined by the boundary conditions.
Goss, G; Tsai, C-M; Shepherd, F A; Ahn, M-J; Bazhenova, L; Crinò, L; de Marinis, F; Felip, E; Morabito, A; Hodge, R; Cantarini, M; Johnson, M; Mitsudomi, T; Jänne, P A; Yang, J C-H
2018-03-01
Central nervous system (CNS) metastases are common in patients with non-small-cell lung cancer (NSCLC). Osimertinib has shown systemic efficacy in patients with CNS metastases, and early clinical evidence shows efficacy in the CNS. To evaluate osimertinib activity further, we present a pre-specified subgroup analysis of CNS response using pooled data from two phase II studies: AURA extension (NCT01802632) and AURA2 (NCT02094261). Patients with T790M-positive advanced NSCLC, who had progressed following prior epidermal growth factor receptor-tyrosine kinase inhibitor treatment, received osimertinib 80 mg od (n = 411). Patients with stable, asymptomatic CNS metastases were eligible for enrolment; prior CNS treatment was allowed. Patients with ≥1 measurable CNS lesion (per RECIST 1.1) on baseline brain scan by blinded independent central neuroradiology review (BICR) were included in the evaluable for CNS response set (cEFR). The primary outcome for this CNS analysis was CNS objective response rate (ORR) by BICR; secondary outcomes included CNS duration of response, disease control rate (DCR) and progression-free survival (PFS). Of 128 patients with CNS metastases on baseline brain scans, 50 were included in the cEFR. Confirmed CNS ORR and DCR were 54% [27/50; 95% confidence interval (CI) 39-68] and 92% (46/50; 95% CI 81-98), respectively. CNS response was observed regardless of prior radiotherapy to the brain. Median CNS duration of response (22% maturity) was not reached (range, 1-15 months); at 9 months, 75% (95% CI 53-88) of patients were estimated to remain in response. Median follow-up for CNS PFS was 11 months; median CNS PFS was not reached (95% CI, 7, not calculable). The safety profile observed in the cEFR was consistent with the overall patient population. Osimertinib demonstrated clinically meaningful efficacy against CNS metastases, with a high DCR, encouraging ORR, and safety profile consistent with that reported previously. NCT01802632; NCT02094261.
Laser Generated Leaky Acoustic Waves for Needle Visualization.
Wu, Kai-Wen; Wang, Yi-An; Li, Pai-Chi
2018-04-01
Ultrasound (US)-guided needle operation is usually used to visualize both tissue and needle position such as tissue biopsy and localized drug delivery. However, the transducer-needle orientation is limited due to reflection of the acoustic waves. We proposed a leaky acoustic wave method to visualize the needle position and orientation. Laser pulses are emitted on top of the needle to generate acoustic waves; then, these acoustic waves propagate along the needle surface. Leaky wave signals are detected by the US array transducer. The needle position can be calculated by phase velocities of two different wave modes and their corresponding emission angles. In our experiments, a series of needles was inserted into a tissue mimicking phantom and porcine tissue to evaluate the accuracy of the proposed method. The results show that the detection depth is up to 51 mm and the insertion angle is up to 40° with needles of different diameters. It is demonstrated that the proposed approach outperforms the conventional B-mode US-guided needle operation in terms of the detection range while achieving similar accuracy. The proposed method reveals the potentials for further clinical applications.
Experimental Characterization of Guided Waves by Their Surface Displacement Vector Field
NASA Astrophysics Data System (ADS)
Barth, M.; Köhler, B.; Schubert, L.
2009-03-01
The development new nondestructive evaluation (NDE) and structural health monitoring (SHM) methods utilizing guided elastic waves needs a good understanding of wave propagation properties and the interaction of the waves with structures and defects. If the geometrical and stiffness properties of the components are well known, these effects can be studied very efficiently by numerical modeling. But very often there is a lack of precise knowledge of all necessary elastic properties; accurate and non-disturbing measurements are without alternative in these cases. The mapping of wave fields can be done by scanning laser vibrometers as demonstrated in a number of cases. Originally, a laser vibrometer provides only information from one displacement component. To get all three displacement components, the simultaneous measurement with three vibrometers is offered commercially. This is a very expensive approach. The paper describes a method which uses only one vibrometer sequentially for getting all three vector components. It allows determining additional parameters for characterizing wave modes as e.g. the ellipticity. The capability of this approach is demonstrated for the characterization of Lamb waves.
NASA Astrophysics Data System (ADS)
Hudson, Tyler Blake
An in-process, in-situ cure monitoring technique utilizing a guided wave-based concept for carbon fiber reinforced polymer (CFRP) composites was investigated. Two automated cure monitoring systems using guided-wave ultrasonics were developed for characterizing the state of the cure. In the first system, surface mounted high-temperature piezoelectric transducer arrays were employed for actuation and sensing. The second system motivated by the success of the first system includes a single piezoelectric disc, bonded onto the surface of the composite for excitation; fiber Bragg gratings (FBGs) and/or phase-shifted fiber Bragg gratings (PSFBGs) were embedded in the composite for distributed cure sensing. Composite material properties (viscosity and degree of cure) evolved during cure of the panels fabricated from HexcelRTM IM7/8552 prepreg correlated well to the amplitude, time of arrival, and group velocity of the guided wave-based measurements during the cure cycle. In addition, key phase transitions (gelation and vitrification) were clearly identified from the experimental data during the same cure cycle. The material properties and phase transitions were validated using cure process modeling software (e.g., RAVENRTM). The high-temperature piezoelectric transducer array system demonstrated the feasibility of a guided wave-based, in-process, cure monitoring and provided the framework for defect detection during cure. Ultimately, this system could provide a traceable data stream for non-compliance investigations during serial production and perform closed-loop process control to maximize composite panel quality and consistency. In addition, this system could be deployed as a "smart" caul/tool plate to existing production lines without changing the design of the aircraft/structure. With the second system, strain in low frequency (quasi-static) and the guided wavebased signals in several hundred kilohertz range were measured almost simultaneously using the same FBG or PS-FBG throughout the cure cycle. Also, the residual strain can be readily determined at the end of the cure. This system demonstrated a real-time, in-situ, cure monitoring system using embedded multiplexed FBG/PS-FBG sensors to record both guided wave-based signals and strain. The distinct advantages of a fiber optic-based system include multiplexing, small size, embedding, utilization in harsh environments, electrically passive operation, and electromagnetic interference (EMI) immunity. The embedded multiplexed FBG/PS-FBG fiber optic sensor can monitor the entire life-cycle of the composite structure from curing, post-cure/assembly, and in-service for creating "smart structures".
Local numerical modelling of ultrasonic guided waves in linear and nonlinear media
NASA Astrophysics Data System (ADS)
Packo, Pawel; Radecki, Rafal; Kijanka, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2017-04-01
Nonlinear ultrasonic techniques provide improved damage sensitivity compared to linear approaches. The combination of attractive properties of guided waves, such as Lamb waves, with unique features of higher harmonic generation provides great potential for characterization of incipient damage, particularly in plate-like structures. Nonlinear ultrasonic structural health monitoring techniques use interrogation signals at frequencies other than the excitation frequency to detect changes in structural integrity. Signal processing techniques used in non-destructive evaluation are frequently supported by modeling and numerical simulations in order to facilitate problem solution. This paper discusses known and newly-developed local computational strategies for simulating elastic waves, and attempts characterization of their numerical properties in the context of linear and nonlinear media. A hybrid numerical approach combining advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE) is proposed for unique treatment of arbitrary strain-stress relations. The iteration equations of the method are derived directly from physical principles employing stress and displacement continuity, leading to an accurate description of the propagation in arbitrarily complex media. Numerical analysis of guided wave propagation, based on the newly developed hybrid approach, is presented and discussed in the paper for linear and nonlinear media. Comparisons to Finite Elements (FE) are also discussed.
The symmetry and coupling properties of solutions in general anisotropic multilayer waveguides.
Hernando Quintanilla, F; Lowe, M J S; Craster, R V
2017-01-01
Multilayered plate and shell structures play an important role in many engineering settings where, for instance, coated pipes are commonplace such as in the petrochemical, aerospace, and power generation industries. There are numerous demands, and indeed requirements, on nondestructive evaluation (NDE) to detect defects or to measure material properties using guided waves; to choose the most suitable inspection approach, it is essential to know the properties of the guided wave solutions for any given multilayered system and this requires dispersion curves computed reliably, robustly, and accurately. Here, the circumstances are elucidated, and possible layer combinations, under which guided wave solutions, in multilayered systems composed of generally anisotropic layers in flat and cylindrical geometries, have specific properties of coupling and parity; the partial wave decomposition of the wave field is utilised to unravel the behaviour. A classification into five families is introduced and the authors claim that this is the fundamental way to approach generally anisotropic waveguides. This coupling and parity provides information to be used in the design of more efficient and robust dispersion curve tracing algorithms. A critical benefit is that the analysis enables the separation of solutions into categories for which dispersion curves do not cross; this allows the curves to be calculated simply and without ambiguity.
Cario, Gunnar; Izraeli, Shai; Teichert, Anja; Rhein, Peter; Skokowa, Julia; Möricke, Anja; Zimmermann, Martin; Schrauder, Andre; Karawajew, Leonid; Ludwig, Wolf-Dieter; Welte, Karl; Schünemann, Holger J; Schlegelberger, Brigitte; Schrappe, Martin; Stanulla, Martin
2007-10-20
Applying current diagnostic methods, overt CNS involvement is a rare event in childhood acute lymphoblastic leukemia (ALL). In contrast, CNS-directed therapy is essential for all patients with ALL because without it, the majority of patients eventually will experience relapse. To approach this discrepancy and to explore potential distinct biologic properties of leukemic cells that migrate into the CNS, we compared gene expression profiles of childhood ALL patients with initial CNS involvement with the profiles of CNS-negative patients. We evaluated leukemic gene expression profiles from the bone marrow of 17 CNS-positive patients and 26 CNS-negative patients who were frequency matched for risk factors associated with CNS involvement. Results were confirmed by real-time quantitative polymerase chain reaction analysis and validated using independent patient samples. Interleukin-15 (IL-15) expression was consistently upregulated in leukemic cells of CNS-positive patients compared with CNS-negative patients. In multivariate analysis, IL-15 expression levels greater than the median were associated with CNS involvement compared with expression equal to or less than the median (odds ratio [OR] = 10.70; 95% CI, 2.95 to 38.81). Diagnostic likelihood ratios for CNS positivity were 0.09 (95% CI, 0.01 to 0.65) for the first and 6.93 (95% CI, 2.55 to 18.83) for the fourth IL-15 expression quartiles. In patients who were CNS negative at diagnosis, IL-15 levels greater than the median were associated with subsequent CNS relapse compared with expression equal to or less than the median (OR = 13.80; 95% CI, 3.38 to 56.31). Quantification of leukemic IL-15 expression at diagnosis predicts CNS status and could be a new tool to further tailor CNS-directed therapy in childhood ALL.
Gadgeel, Shirish; Shaw, Alice T; Barlesi, Fabrice; Crinò, Lucio; Yang, James Chih-Hsin; Dingemans, Anne-Marie C; Kim, Dong-Wan; de Marinis, Filippo; Schulz, Mathias; Liu, Shiyao; Gupta, Ravindra; Kotb, Ahmed; Ou, Sai-Hong Ignatius
2018-01-01
We evaluated the cumulative incidence rate (CIR) of central nervous system (CNS) and non-CNS progression in alectinib-treated patients with anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer (NSCLC) to determine the extent to which alectinib may treat or control CNS disease. Patients with crizotinib-pretreated locally advanced or metastatic disease received alectinib 600 mg orally twice daily in two phase II trials. All patients underwent baseline imaging and regular centrally reviewed scans. At 24 months, the CIR for CNS progression was lower in patients without vs with baseline CNS metastases (8.0 vs 43.9%). Patients with baseline CNS disease and prior radiotherapy had a higher CIR of CNS progression than radiotherapy-naive patients (50.5 vs 27.4%) and a lower CIR of non-CNS progression (25.8 vs 42.5%). Adverse events leading to withdrawal occurred in 5.9% and 6.7% of patients with and without baseline CNS metastases, respectively. This analysis indicates a potential role for alectinib in controlling and preventing CNS metastases.
Application of scanning laser Doppler vibrometry for delamination detection in composite structures
NASA Astrophysics Data System (ADS)
Kudela, Pawel; Wandowski, Tomasz; Malinowski, Pawel; Ostachowicz, Wieslaw
2017-12-01
In this paper application of scanning laser Doppler vibrometry for delamination detection in composite structures was presented. Delamination detection was based on a guided wave propagation method. In this papers results from numerical and experimental research were presented. In the case of numerical research, the Spectral Element Method (SEM) was utilized, in which a mesh was composed of 3D spectral elements. SEM model included also a piezoelectric transducer. In the experimental research guided waves were excited using the piezoelectric transducer whereas the sensing process was conducted using scanning laser Doppler vibrometer (SLDV). Analysis of guided wave propagation and its interaction with delamination was based on a full wavefield approach. Attention was focused on interactions of guided waves with delamination manifested by A0 mode reflection, A0 mode entrapment, and S0/A0 mode conversion. Delamination was simulated by a teflon insert located between plies of composite material. Results of interaction with symmetrically and nonsymmetrical placed delamination (in respect to the composite sample thickness) were presented. Moreover, the authors investigated different size of delaminations. Damage detection was based on a new signal processing algorithm proposed by the authors. In this approach the weighted RMS was utilized selectively. It means that the summation in RMS formula was performed only for a specially selected time instances. Results for simple composite panels, panel with honeycomb core, and real stiffened composite panel from the aircraft were presented.
Design and performance of optimal detectors for guided wave structural health monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dib, G.; Udpa, L.
2016-01-01
Ultrasonic guided wave measurements in a long term structural health monitoring system are affected by measurement noise, environmental conditions, transducer aging and malfunction. This results in measurement variability which affects detection performance, especially in complex structures where baseline data comparison is required. This paper derives the optimal detector structure, within the framework of detection theory, where a guided wave signal at the sensor is represented by a single feature value that can be used for comparison with a threshold. Three different types of detectors are derived depending on the underlying structure’s complexity: (i) Simple structures where defect reflections can bemore » identified without the need for baseline data; (ii) Simple structures that require baseline data due to overlap of defect scatter with scatter from structural features; (iii) Complex structure with dense structural features that require baseline data. The detectors are derived by modeling the effects of variabilities and uncertainties as random processes. Analytical solutions for the performance of detectors in terms of the probability of detection and false alarm are derived. A finite element model is used to generate guided wave signals and the performance results of a Monte-Carlo simulation are compared with the theoretical performance. initial results demonstrate that the problems of signal complexity and environmental variability can in fact be exploited to improve detection performance.« less
Sun, Zeqing; Sun, Anyu; Ju, Bing-Feng
2017-02-01
Guided-wave echoes from weak reflective pipe defects are usually interfered by coherent noise and difficult to interpret. In this paper, a deconvolution imaging method is proposed to reconstruct defect images from synthetically focused guided-wave signals, with enhanced axial resolution. A compact transducer, circumferentially scanning around the pipe, is used to receive guided-wave echoes from discontinuities at a distance. This method achieves a higher circumferential sampling density than arrayed transducers-up to 72 sampling spots per lap for a pipe with a diameter of 180 mm. A noise suppression technique is used to enhance the signal-to-noise ratio. The enhancement in both signal-to-noise ratio and axial resolution of the method is experimentally validated by the detection of two kinds of artificial defects: a pitting defect of 5 mm in diameter and 0.9 mm in maximum depth, and iron pieces attached to the pipe surface. A reconstructed image of the pitting defect is obtained with a 5.87 dB signal-to-noise ratio. It is revealed that a high circumferential sampling density is important for the enhancement of the inspection sensitivity, by comparing the images reconstructed with different down-sampling ratios. A modified full width at half maximum is used as the criterion to evaluate the circumferential extent of the region where iron pieces are attached, which is applicable for defects with inhomogeneous reflection intensity.
Mead, Brian P.; Mastorakos, Panagiotis; Suk, Jung Soo; Klibanov, Alexander L.; Hanes, Justin; Price, Richard J.
2016-01-01
Gene therapy holds promise for the treatment of many pathologies of the central nervous system (CNS), including brain tumors and neurodegenerative diseases. However, the delivery of systemically administered gene carriers to the CNS is hindered by both the blood-brain barrier (BBB) and the nanoporous and electrostatically charged brain extracelluar matrix (ECM), which acts as a steric and adhesive barrier. We have previously shown that these physiological barriers may be overcome by, respectively, opening the BBB with MR image-guided focused ultrasound (FUS) and microbubbles and using highly compact “brain penetrating” nanoparticles (BPN) coated with a dense polyethylene glycol corona that prevents adhesion to ECM components. Here, we tested whether this combined approach could be utilized to deliver systemically administered DNA-bearing BPN (DNA-BPN) across the BBB and mediate localized, robust, and sustained transgene expression in the rat brain. Systemically administered DNA-BPN delivered through the BBB with FUS led to dose-dependent transgene expression only in the FUS-treated region that was evident as early as 24 h post administration and lasted for at least 28 days. In the FUS-treated region ~42% of all cells, including neurons and astrocytes, were transfected, while less than 6% were transfected in the contralateral non-FUS treated hemisphere. Importantly, this was achieved without any sign of toxicity or astrocyte activation. We conclude that the image-guided delivery of DNA-BPN with FUS and microbubbles constitutes a safe and non-invasive strategy for targeted gene therapy to the brain. PMID:26732553
Sirvent, Nicolas; Suciu, Stefan; Rialland, Xavier; Millot, Frédéric; Benoit, Yves; Plantaz, Dominique; Ferster, Alice; Robert, Alain; Lutz, Patrick; Nelken, Brigitte; Plouvier, Emmanuel; Norton, Lucilia; Bertrand, Yves; Otten, Jacques
2011-01-01
To evaluate the prognostic significance of the initial cerebro-spinal fluid (CSF) involvement of children with ALL enrolled from 1989 to 1996 in the EORTC 58881 trial. Patients (2025) were categorised according to initial central nervous system (CNS) status: CNS-1 (CNS negative, n=1866), CNS-2 (<5 leucocytes/mm(3), CSF with blasts, n=50), CNS-3 (CNS positive, n=49), TLP+ (TLP with blasts, n=60). CNS-directed therapy consisted in intravenous (i.v.) methotrexate (5 g/sqm) in 4-10 courses, and intrathecal methotrexate injections (10-20), according to CNS status. Cranial irradiation was omitted in all patients. In the CNS1, TLP+, CNS2 and CNS3 group the 8-year EFS rate (SE%) was 69.7% (1.1%), 68.8% (6.2%), 71.3% (6.5%) and 68.3% (6.2%), respectively. The 8-year incidence of isolated CNS relapse (SE%) was 3.4% (0.4%), 1.7% (1.7%), 6.1% (3.5%) and 9.4% (4.5%), respectively, whereas the 8-year isolated or combined CNS relapse incidence was 7.6% (0.6%), 3.5% (2.4%), 10.2% (4.4%) and 11.7% (5.0%), respectively. Patients with CSF blasts had a higher rate of initial bad risk features. Multivariate analysis indicated that presence of blasts in the CSF had no prognostic value: (i) for EFS and OS; (ii) for isolated and isolated or combined CNS relapse; WBC count<25 × 10(9)/L and Medac E-coli asparaginase treatment were each related to a lower CNS relapse risk. The presence of initial CNS involvement has no prognostic significance in EORTC 58881. Intensification of CNS-directed chemotherapy, without CNS radiation, is an effective treatment of initial meningeal leukaemic involvement. Copyright © 2010 Elsevier Ltd. All rights reserved.
Nishio, Makoto; Nakagawa, Kazuhiko; Mitsudomi, Tetsuya; Yamamoto, Nobuyuki; Tanaka, Tomohiro; Kuriki, Hiroshi; Zeaiter, Ali; Tamura, Tomohide
2018-07-01
We determined the central nervous system (CNS) efficacy of alectinib by calculating time to CNS progression and cumulative incidence rates (CIRs) of CNS progression, non-CNS progression and death in patients with anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer (NSCLC) enrolled in the J-ALEX phase III study. Japanese patients aged ≥20 years with ALK-positive NSCLC who were ALK inhibitor-naïve and chemotherapy-naïve, or who had received one previous chemotherapy regimen, were enrolled. Patients with treated or untreated asymptomatic CNS metastases were eligible. Treatment comprised oral alectinib 300 mg twice daily or crizotinib 250 mg twice daily until progressive disease, unacceptable toxicity, death or withdrawal. Imaging scans (computed tomography/magnetic resonance imaging) were taken at baseline and at regular intervals throughout the study. The CIRs for CNS progression, non-CNS progression and death were calculated for patients with and without baseline CNS metastases using a competing risks method. The hazard ratio for time to CNS progression in patients with and without baseline CNS metastases was 0.51 (95% confidence interval [CI]: 0.16-1.64; P = 0.2502) and 0.19 (95% CI: 0.07-0.53; P = 0.0004), respectively. The CIRs of CNS progression and non-CNS progression were lower in the alectinib group than in the crizotinib group at all time points. The 1-year CIRs of CNS progression were 16.8% and 5.9% with crizotinib and alectinib, respectively, and the 1-year CIRs of non-CNS progression were 38.4% and 17.5%, respectively. Comparable findings were obtained in patients with or without baseline CNS metastases. Alectinib appears to avert the progression of CNS metastases in patients with ALK-positive NSCLC and baseline CNS metastases, and to prevent the development of new CNS lesions in patients without baseline CNS disease. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Lounder, Dana T; Khandelwal, Pooja; Chandra, Sharat; Jordan, Michael B; Kumar, Ashish R; Grimley, Michael S; Davies, Stella M; Bleesing, Jack J; Marsh, Rebecca A
2017-05-01
Hemophagocytic lymphohistiocytosis (HLH) is an immune regulatory disorder that commonly presents with central nervous system (CNS) involvement. The only cure for genetic HLH is hematopoietic stem cell transplantation (HSCT), typically treated with reduced-intensity conditioning (RIC) regimens. We sought to estimate the incidence of CNS relapse after RIC HSCT, determine risk factors, and evaluate outcomes. We performed a retrospective chart review of 94 consecutive children and young adults with primary HLH who received RIC HSCT. CNS relapse within 1 year after transplantation was diagnosed by review of clinical symptoms, cerebral spinal fluid (CSF), and radiologic findings. Four (4.25%) patients developed symptoms of possible CNS HLH after HSCT and 3 patients were diagnosed. Eight patients underwent screening lumbar puncture because of history of active CNS disease at the onset of the conditioning regimen and 4 had evidence of continued disease. The overall incidence of CNS relapse and continued CNS disease after RIC HSCT was 8%. All patients with CNS disease after HSCT responded to CNS-directed therapy. Whole blood donor chimerism at the time of CNS relapse was low at 1% to 34%, but it remained high at 88% to 100% for patients with continued CNS disease. Overall survival for patients with CNS relapse was 50%, compared with 75% for patients without CNS disease (P = .079). Our data suggest that a low level of donor chimerism or active CNS disease at the time of transplantation increase the risk of CNS HLH after HSCT. Surveillance CSF evaluation after allogeneic RIC HSCT should be considered in patients with risk factors and CNS-directed treatment should be initiated if appropriate. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Guided wave attenuation in coated pipes buried in sand
NASA Astrophysics Data System (ADS)
Leinov, Eli; Cawley, Peter; Lowe, Michael J. S.
2016-02-01
Long-range guided wave testing (GWT) is routinely used for the monitoring and detection of corrosion defects in above ground pipelines in various industries. The GWT test range in buried, coated pipelines is greatly reduced compared to aboveground pipelines due to energy leakage into the embedding soil. In this study, we aim to increase test ranges for buried pipelines. The effect of pipe coatings on the T(0,1) and L(0,2) guided wave attenuation is investigated using a full-scale experimental apparatus and model predictions. Tests are performed on a fusion-bonded epoxy (FBE)-coated 8" pipe, buried in loose and compacted sand over a frequency range of 10-35 kHz. The application of a low impedance coating is shown to effectively decouple the influence of the sand on the ultrasound leakage from the buried pipe. We demonstrate ultrasonic isolation of a buried pipe by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both pipe and sand and the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is substantially reduced, in the range of 0.3-1.2 dBm-1 for loose and compacted sand conditions, compared to buried FBE-coated pipe without the PE-foam, where the measured attenuation is in the range of 1.7-4.7 dBm-1. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry technique and used in model predictions of guided wave propagation in a buried coated pipe. Good agreement is found between the attenuation measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges, so such coatings would be attractive for new pipeline installations.
Coordinate cytokine regulatory sequences
Frazer, Kelly A.; Rubin, Edward M.; Loots, Gabriela G.
2005-05-10
The present invention provides CNS sequences that regulate the cytokine gene expression, expression cassettes and vectors comprising or lacking the CNS sequences, host cells and non-human transgenic animals comprising the CNS sequences or lacking the CNS sequences. The present invention also provides methods for identifying compounds that modulate the functions of CNS sequences as well as methods for diagnosing defects in the CNS sequences of patients.
Comparative study of topological indices of macro/supramolecular RNA complex networks.
Agüero-Chapín, Guillermín; Antunes, Agostinho; Ubeira, Florencio M; Chou, Kuo-Chen; González-Díaz, Humberto
2008-11-01
RNA function annotation is often based on alignment to a previously studied template. In contrast to the study of proteins, there are not many alignment-free methods to predict RNA functions if alignment fails. The use of topological indices (TIs) of RNA complex networks (CNs) to find quantitative structure-activity relationships (QSAR) may be an alternative to incorporate secondary structure or sequence-to-sequence similarity. Here, we introduce new QSAR-like techniques using RNA macromolecular CNs (mmCNs), where nodes are nucleotides, or RNA supramolecular CNs (smCNs), where nodes are RNA sequences. We studied a data set of 198 sequences including 18S-rRNAs (important phylogenetic molecular biomarkers). We constructed three types of RNA mmCNs: sequence-linear (SL), Cartesian-lattice (CL), and sequence-folding CNs (SF-CNs) and two smCNs: sequence-sequence disagreement CN (SSD) and sequence-sequence similarity (SSS-smCN). We reported the first comparative QSAR study with all these CIs and CNs, which includes: (i) spectral moments ( ( i )micro d ( w)) of SL-mmCNs (accuracy = 75.3%), (ii) electrostatic CIs (xi d ) of CL-mmCNs (>90%), (iii) thermodynamic parameters (Delta G, Delta H, Delta S, and T m) of SF-mmCNs (64.7%), (iv) disagreement-distribution moments ( M k ) of the SSD-smCN (79.3%), and (v) node centralities of the SSD-smCN (78.0%). Furthermore, we reported the experimental isolation of a new RNA sequence from Psidum guajava leaf tissue and its QSAR and BLAST prediction to illustrate the practical use of these methods. We also investigated the use of these CNs to explore rRNA diversity on bacteria, plants, and parasites from the Dactylogyrus genus. The HPL-mmCNs model was the best of all found. All the CNs and TIs, except SF-mmCNs, were introduced here by the first time for the QSAR study of RNA, which allowed a comparative study for RNA classification.
Benchmarking of Computational Models for NDE and SHM of Composites
NASA Technical Reports Server (NTRS)
Wheeler, Kevin; Leckey, Cara; Hafiychuk, Vasyl; Juarez, Peter; Timucin, Dogan; Schuet, Stefan; Hafiychuk, Halyna
2016-01-01
Ultrasonic wave phenomena constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials such as carbon-fiber-reinforced polymer (CFRP) laminates. Computational models of ultrasonic guided-wave excitation, propagation, scattering, and detection in quasi-isotropic laminates can be extremely valuable in designing practically realizable NDE and SHM hardware and software with desired accuracy, reliability, efficiency, and coverage. This paper presents comparisons of guided-wave simulations for CFRP composites implemented using three different simulation codes: two commercial finite-element analysis packages, COMSOL and ABAQUS, and a custom code implementing the Elastodynamic Finite Integration Technique (EFIT). Comparisons are also made to experimental laser Doppler vibrometry data and theoretical dispersion curves.
NASA Astrophysics Data System (ADS)
Mentzer, Mark A.; Sriram, S.
The design and implementation of integrated optical circuits are discussed in reviews and reports. Topics addressed include lithium niobate devices, silicon integrated optics, waveguide phenomena, coupling considerations, processing technology, nonlinear guided-wave optics, integrated optics for fiber systems, and systems considerations and applications. Also included are eight papers and a panel discussion from an SPIE conference on the processing of guided-wave optoelectronic materials (held in Los Angeles, CA, on January 21-22, 1986).
Nelson, Melvin A.; Davies, Terence J.; Morton, III, John R.
1976-01-01
A radiation detection system which utilizes the generation of Cerenkov light in and the transmission of that light longitudinally through fiber optic wave guides in order to transmit intelligence relating to the radiation to a remote location. The wave guides are aligned with respect to charged particle radiation so that the Cerenkov light, which is generated at an angle to the radiation, is accepted by the fiber for transmission therethrough. The Cerenkov radiation is detected, recorded, and analyzed at the other end of the fiber.
Defense Small Business Innovation Research (SBIR) Program. Program Solicitation 90.1. FY-1990
1989-10-01
Electronics Assemble and Test A90-125 Guided-Wave TeO2 Optical Devices A90-126 Acceleration Sensing Module for Munition Safety Systems A90-127 Electromagnetic...package containing all drawings and process information, complete operating manuals. A90-125 Guided-Wave TeO2 Optical Devices OBJECTIVE: This exploratory...bandwidth and efficiency of these devices. PHASE I: Phase one would consist of the design of several breadboard TeO2 AO devices each having TBWP of
NASA Astrophysics Data System (ADS)
Balmashnov, A. A.; Kalashnikov, A. V.; Kalashnikov, V. V.; Stepina, S. P.; Umnov, A. M.
2018-01-01
The formation of a spatially localized plasma with a high brightness has been experimentally observed in a dielectric plasma guide under the electron cyclotron resonance discharge at the excitation of a standing ion-acoustic wave. The results obtained show the possibility of designing compact high-intensity radiation sources with a spectrum determined by the working gas or gas mixture type, high-intensity chemically active particle flow sources, and plasma thrusters for correcting orbits of light spacecraft.
Nanomedicines for the Treatment of CNS Diseases.
Reynolds, Jessica L; Mahato, Ram I
2017-03-01
Targeting and delivering macromolecular therapeutics to the central nervous system (CNS) has been a major challenge. The blood-brain barrier (BBB) is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Therefore, much effort has been channelled into improving transport of therapeutics across the BBB and into the CNS including the use of nanoparticles. In this thematic issue, several reviews and original research are presented that address "Nanomedicines for CNS Diseases." The articles in this issue are concentrated on either CNS-HIV disease or CNS tumors. In regards to CNS-HIV disease, there are two reviews that discuss the role of nanoparticles for improving the delivery of HIV therapeutics to the CNS. In addition, there are two original articles focusing on therapies for CNS-HIV, one of them uses nanoparticles for delivery of siRNA specific to a key protein in autophagy to microglia, and another discusses nanoparticle delivery of a soluble mediator to suppress neuroinflammation. Furthermore, a comprehensive review about gene therapy for CNS neurological diseases is also included. Finally, this issue also includes review articles on enhanced drug targeting to CNS tumors. These articles include a review on the use of nanoparticles for CNS tumors, a review on functionalization (ligands) of nanoparticles for drug targeting to the brain tumor by overcoming BBB, and the final review discusses the use of macrophages as a delivery vehicle to CNS tumors. This thematic issue provides a wealth of knowledge on using nanomedicines for CNS diseases.
2011-01-01
The central nervous system (CNS) is the major area that is affected by aging. Alzheimer’s disease (AD), Parkinson’s disease (PD), brain cancer, and stroke are the CNS diseases that will cost trillions of dollars for their treatment. Achievement of appropriate blood–brain barrier (BBB) penetration is often considered a significant hurdle in the CNS drug discovery process. On the other hand, BBB penetration may be a liability for many of the non-CNS drug targets, and a clear understanding of the physicochemical and structural differences between CNS and non-CNS drugs may assist both research areas. Because of the numerous and challenging issues in CNS drug discovery and the low success rates, pharmaceutical companies are beginning to deprioritize their drug discovery efforts in the CNS arena. Prompted by these challenges and to aid in the design of high-quality, efficacious CNS compounds, we analyzed the physicochemical property and the chemical structural profiles of 317 CNS and 626 non-CNS oral drugs. The conclusions derived provide an ideal property profile for lead selection and the property modification strategy during the lead optimization process. A list of substructural units that may be useful for CNS drug design was also provided here. A classification tree was also developed to differentiate between CNS drugs and non-CNS oral drugs. The combined analysis provided the following guidelines for designing high-quality CNS drugs: (i) topological molecular polar surface area of <76 Å2 (25–60 Å2), (ii) at least one (one or two, including one aliphatic amine) nitrogen, (iii) fewer than seven (two to four) linear chains outside of rings, (iv) fewer than three (zero or one) polar hydrogen atoms, (v) volume of 740–970 Å3, (vi) solvent accessible surface area of 460–580 Å2, and (vii) positive QikProp parameter CNS. The ranges within parentheses may be used during lead optimization. One violation to this proposed profile may be acceptable. The chemoinformatics approaches for graphically analyzing multiple properties efficiently are presented. PMID:22267984
Orienting and Onboarding Clinical Nurse Specialists: A Process Improvement Project.
Garcia, Mayra G; Watt, Jennifer L; Falder-Saeed, Karie; Lewis, Brennan; Patton, Lindsey
Clinical nurse specialists (CNSs) have a unique advanced practice role. This article describes a process useful in establishing a comprehensive orientation and onboarding program for a newly hired CNS. The project team used the National Association of Clinical Nurse Specialists core competencies as a guide to construct a process for effectively onboarding and orienting newly hired CNSs. Standardized documents were created for the orientation process including a competency checklist, needs assessment template, and professional evaluation goals. In addition, other documents were revised to streamline the orientation process. Standardizing the onboarding and orientation process has demonstrated favorable results. As of 2016, 3 CNSs have successfully been oriented and onboarded using the new process. Unique healthcare roles require special focus when onboarding and orienting into a healthcare system. The use of the National Association of Clinical Nurse Specialists core competencies guided the project in establishing a successful orientation and onboarding process for newly hired CNSs.
NASA Astrophysics Data System (ADS)
London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi
2017-04-01
An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.
PCA Based Stress Monitoring of Cylindrical Specimens Using PZTs and Guided Waves
Mujica, Luis; Ruiz, Magda; Camacho, Johanatan
2017-01-01
Since mechanical stress in structures affects issues such as strength, expected operational life and dimensional stability, a continuous stress monitoring scheme is necessary for a complete integrity assessment. Consequently, this paper proposes a stress monitoring scheme for cylindrical specimens, which are widely used in structures such as pipelines, wind turbines or bridges. The approach consists of tracking guided wave variations due to load changes, by comparing wave statistical patterns via Principal Component Analysis (PCA). Each load scenario is projected to the PCA space by means of a baseline model and represented using the Q-statistical indices. Experimental validation of the proposed methodology is conducted on two specimens: (i) a 12.7 mm (1/2″) diameter, 0.4 m length, AISI 1020 steel rod, and (ii) a 25.4 mm (1″) diameter, 6m length, schedule 40, A-106, hollow cylinder. Specimen 1 was subjected to axial loads, meanwhile specimen 2 to flexion. In both cases, simultaneous longitudinal and flexural guided waves were generated via piezoelectric devices (PZTs) in a pitch-catch configuration. Experimental results show the feasibility of the approach and its potential use as in-situ continuous stress monitoring application. PMID:29194384
Time Reversal Method for Pipe Inspection with Guided Wave
NASA Astrophysics Data System (ADS)
Deng, Fei; He, Cunfu; Wu, Bin
2008-02-01
The temporal-spatial focusing effect of the time reversal method on the guided wave inspection in pipes is investigated. A steel pipe model with outer diameter of 70 mm and wall thickness of 3.5 mm is numerically built to analyse the reflection coefficient of L(0,2) mode when the time reversal method is applied in the model. According to the calculated results, it is shown that a synthetic time reversal array method is effective to improve the signal-to-noise ratio of a guided wave inspection system. As an intercepting window is widened, more energy can be included in a re-emitted signal, which leads to a large reflection coefficient of L(0,2) mode. It is also shown that when a time reversed signal is reapplied in the pipe model, by analysing the motion of the time reversed wave propagating along the pipe model, a defect can be identified. Therefore, it is demonstrated that the time reversal method can be used to locate the circumferential position of a defect in a pipe. Finally, through an experiment corresponding with the pipe model, the experimental result shows that the above-mentioned method can be valid in the inspection of a pipe.
Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhang, Xianting; Mei, Chao; Zhou, Guiyao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Zhong, Kangping; Wang, Kuiru; Yu, Chongxiu; Farrell, Gerald; Lu, Chao; Tam, Hwa Yaw; Wai, P K A
2017-09-15
In this Letter, we demonstrate experimentally for the first time, to the best of our knowledge, discrete ultraviolet (UV) wavelength generation by cascaded intermodal FWM when femtosecond pump pulses at 800 nm are launched into the deeply normal dispersion region of the fundamental guided mode of a multimode photonic crystal fiber (MPCF). For pump pulses at average input powers of P av =450, 550, and 650 mW, the first anti-Stokes waves are generated at the visible wavelength of 538.1 nm through intermodal phase matching between the fundamental and second-order guided mode of the MPCF. The first anti-Stokes waves generated then serve as the secondary pump for the next intermodal FWM process. The second anti-Stokes waves in the form of the third-order guided mode are generated at the UV wavelength of 375.8 nm. The maximum output power is above 10 mW for P av =650 mW. We also confirm that the influences of fiber bending and intermodal walk-offs on the cascaded intermodal FWM-based frequency conversion process are negligible.
Walker, Melissa J; Xu, Xiao-Ming
2018-06-13
Following an initial mechanical insult, traumatic spinal cord injury (SCI) induces a secondary wave of injury, resulting in a toxic lesion environment inhibitory to axonal regeneration. This review focuses on the glial cell line-derived neurotrophic factor (GDNF) and its application, in combination with other factors and cell transplantations, for repairing the injured spinal cord. As studies of recent decades strongly suggest that combinational treatment approaches hold the greatest therapeutic potential for the central nervous system (CNS) trauma, future directions of combinational therapies will also be discussed.
3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy
NASA Astrophysics Data System (ADS)
Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna
2016-03-01
This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.
Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets.
Fuxe, Kjell; Agnati, Luigi F; Marcoli, Manuela; Borroto-Escuela, Dasiel O
2015-12-01
Already in the 1960s the architecture and pharmacology of the brainstem dopamine (DA) and noradrenaline (NA) neurons with formation of vast numbers of DA and NA terminal plexa of the central nervous system (CNS) indicated that they may not only communicate via synaptic transmission. In the 1980s the theory of volume transmission (VT) was introduced as a major communication together with synaptic transmission in the CNS. VT is an extracellular and cerebrospinal fluid transmission of chemical signals like transmitters, modulators etc. moving along energy gradients making diffusion and flow of VT signals possible. VT interacts with synaptic transmission mainly through direct receptor-receptor interactions in synaptic and extrasynaptic heteroreceptor complexes and their signaling cascades. The DA and NA neurons are specialized for extrasynaptic VT at the soma-dendrtitic and terminal level. The catecholamines released target multiple DA and adrenergic subtypes on nerve cells, astroglia and microglia which are the major cell components of the trophic units building up the neural-glial networks of the CNS. DA and NA VT can modulate not only the strength of synaptic transmission but also the VT signaling of the astroglia and microglia of high relevance for neuron-glia interactions. The catecholamine VT targeting astroglia can modulate the fundamental functions of astroglia observed in neuroenergetics, in the Glymphatic system, in the central renin-angiotensin system and in the production of long-distance calcium waves. Also the astrocytic and microglial DA and adrenergic receptor subtypes mediating DA and NA VT can be significant drug targets in neurological and psychiatric disease.
ERIC Educational Resources Information Center
Rojas, R.; Robles, P.
2011-01-01
We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…
Arterial waveguide model for shear wave elastography: implementation and in vitro validation
NASA Astrophysics Data System (ADS)
Vaziri Astaneh, Ali; Urban, Matthew W.; Aquino, Wilkins; Greenleaf, James F.; Guddati, Murthy N.
2017-07-01
Arterial stiffness is found to be an early indicator of many cardiovascular diseases. Among various techniques, shear wave elastography has emerged as a promising tool for estimating local arterial stiffness through the observed dispersion of guided waves. In this paper, we develop efficient models for the computational simulation of guided wave dispersion in arterial walls. The models are capable of considering fluid-loaded tubes, immersed in fluid or embedded in a solid, which are encountered in in vitro/ex vivo, and in vivo experiments. The proposed methods are based on judiciously combining Fourier transformation and finite element discretization, leading to a significant reduction in computational cost while fully capturing complex 3D wave propagation. The developed methods are implemented in open-source code, and verified by comparing them with significantly more expensive, fully 3D finite element models. We also validate the models using the shear wave elastography of tissue-mimicking phantoms. The computational efficiency of the developed methods indicates the possibility of being able to estimate arterial stiffness in real time, which would be beneficial in clinical settings.
NASA Astrophysics Data System (ADS)
Estrada, Héctor; Rebling, Johannes; Razansky, Daniel
2017-02-01
The skull bone, a curved solid multilayered plate protecting the brain, constitutes a big challenge for the use of ultrasound-mediated techniques in neuroscience. Ultrasound waves incident from water or soft biological tissue are mostly reflected when impinging on the skull. To this end, skull properties have been characterized for both high-intensity focused ultrasound (HIFU) operating in the narrowband far-field regime and optoacoustic imaging applications. Yet, no study has been conducted to characterize the near-field of water immersed skulls. We used the thermoelastic effect with a 532 nm pulsed laser to trigger a wide range of broad-band ultrasound modes in a mouse skull. In order to capture the waves propagating in the near-field, a thin hydrophone was scanned in close proximity to the skull's surface. While Leaky pseudo-Lamb waves and grazing-angle bulk water waves are clearly visible in the spatio-temporal data, we were only able to identify skull-guided acoustic waves after dispersion analysis in the wavenumber-frequency space. The experimental data was found to be in a reasonable agreement with a flat multilayered plate model.
Zhao, Jing; Ye, Xin; Xu, Yan; Chen, Minjiang; Zhong, Wei; Sun, Yun; Yang, Zhenfan; Zhu, Guanshan; Gu, Yi; Wang, Mengzhao
2016-12-01
Central nervous system (CNS) is the prevalent site for metastases in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-relapsed NSCLC patients. To understand the EGFR mutation status in paired cerebrospinal fluid (CSF) and plasma samples after EGFR-TKI treatment failure might be useful to guide the treatment of intra- and extracranial tumors in those patients. Paired CSF and plasma samples were collected from seven NSCLC patients with CNS metastases after EGFR-TKI failure. EGFR mutations were tested by amplification refractory mutation system (ARMS) and droplet digital PCR (ddPCR) methods. Gefitinib concentrations were evaluated by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS). EGFR mutations were detected in all seven CSF samples, including three of E19-Del, three of L858R and one of E19-Del&T790M by both methods. On the other hand, majority of the matched plasma samples (5/7) were negative for EGFR mutations by both methods. The other two plasma samples were positive for E19-Del&T790M by ddPCR, and one of them had undetectable T790M by ARMS. Gefitinib concentration in CSF was much lower than that in plasma (mean CSF/plasma ratio: 1.8 %). After EGFR-TKI failure, majority of the NSCLC patients with CNS metastases remained positive detection of EGFR sensitive mutations in CSF, but much less detection in the matched plasma. Significantly low exposure of gefitinib in CSF might explain the intracranial protection of the EGFR sensitive mutation positive tumor cells.
Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain
Murlidharan, Giridhar; Crowther, Andrew; Reardon, Rebecca A.; Song, Juan
2016-01-01
Adeno-associated viruses (AAV) are currently being evaluated in clinical trials for gene therapy of CNS disorders. However, host factors that influence the spread, clearance, and transduction efficiency of AAV vectors in the brain are not well understood. Recent studies have demonstrated that fluid flow mediated by aquaporin-4 (AQP4) channels located on astroglial end feet is essential for exchange of solutes between interstitial and cerebrospinal fluid. This phenomenon, which is essential for interstitial clearance of solutes from the CNS, has been termed glial-associated lymphatic transport or glymphatic transport. In the current study, we demonstrate that glymphatic transport profoundly affects various aspects of AAV gene transfer in the CNS. Altered localization of AQP4 in aged mouse brains correlated with significantly increased retention of AAV vectors in the parenchyma and reduced systemic leakage following ventricular administration. We observed a similar increase in AAV retention and transgene expression upon i.c.v. administration in AQP4–/– mice. Consistent with this observation, fluorophore-labeled AAV vectors showed markedly reduced flux from the ventricles of AQP4–/– mice compared with WT mice. These results were further corroborated by reduced AAV clearance from the AQP4-null brain, as demonstrated by reduced transgene expression and vector genome accumulation in systemic organs. We postulate that deregulation of glymphatic transport in aged and diseased brains could markedly affect the parenchymal spread, clearance, and gene transfer efficiency of AAV vectors. Assessment of biomarkers that report the kinetics of CSF flux in prospective gene therapy patients might inform variable treatment outcomes and guide future clinical trial design. PMID:27699236
Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.
Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong
2015-10-05
Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.
Patra, Subir; Ahmed, Hossain; Banerjee, Sourav
2018-01-18
Peridynamic based elastodynamic computation tool named Peri-elastodynamics is proposed herein to simulate the three-dimensional (3D) Lamb wave modes in materials for the first time. Peri-elastodynamics is a nonlocal meshless approach which is a scale-independent generalized technique to visualize the acoustic and ultrasonic waves in plate-like structure, micro-electro-mechanical systems (MEMS) and nanodevices for their respective characterization. In this article, the characteristics of the fundamental Lamb wave modes are simulated in a sample plate-like structure. Lamb wave modes are generated using a surface mounted piezoelectric (PZT) transducer which is actuated from the top surface. The proposed generalized Peri-elastodynamics method is not only capable of simulating two dimensional (2D) in plane wave under plane strain condition formulated previously but also capable of accurately simulating the out of plane Symmetric and Antisymmetric Lamb wave modes in plate like structures in 3D. For structural health monitoring (SHM) of plate-like structures and nondestructive evaluation (NDE) of MEMS devices, it is necessary to simulate the 3D wave-damage interaction scenarios and visualize the different wave features due to damages. Hence, in addition, to simulating the guided ultrasonic wave modes in pristine material, Lamb waves were also simulated in a damaged plate. The accuracy of the proposed technique is verified by comparing the modes generated in the plate and the mode shapes across the thickness of the plate with theoretical wave analysis.
NASA Astrophysics Data System (ADS)
De Marchi, Luca; Marzani, Alessandro; Moll, Jochen; Kudela, Paweł; Radzieński, Maciej; Ostachowicz, Wiesław
2017-07-01
The performance of Lamb wave based monitoring systems, both in terms of diagnosis time and data complexity, can be enhanced by increasing the number of transducers used to actuate simultaneously the guided waves in the inspected medium. However, in case of multiple simultaneously-operated actuators the interference among the excited wave modes within the acquired signals has to be considered for the further processing. To this aim, in this work a code division strategy based on the Warped Frequency Transform is presented. At first, the proposed procedure encodes actuation pulses using Gold sequences. Next, for each considered actuator the acquired signals are compensated from dispersion by cross correlating the warped version of the actuated and received signals. Compensated signals form the base for a final wavenumber imaging meant at emphasizing defects and or anomalies by removing incident wavefield and edge reflections. The proposed strategy is tested numerically, and validated through an experiment in which guided waves are actuated in a plate by four piezoelectric transducers operating simultaneously.
In Situ Guided Wave Structural Health Monitoring System
NASA Technical Reports Server (NTRS)
Zhao, George; Tittmann, Bernhard R.
2011-01-01
Aircraft engine rotating equipment operates at high temperatures and stresses. Noninvasive inspection of microcracks in those components poses a challenge for nondestructive evaluation. A low-cost, low-profile, high-temperature ultrasonic guided wave sensor was developed that detects cracks in situ. The transducer design provides nondestructive evaluation of structures and materials. A key feature of the sensor is that it withstands high temperatures and excites strong surface wave energy to inspect surface and subsurface cracks. The sol-gel bismuth titanate-based surface acoustic wave (SAW) sensor can generate efficient SAWs for crack inspection. The sensor is very thin (submillimeter) and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. The sensor can be implemented on structures of various shapes. With a spray-coating process, the sensor can be applied to the surface of large curvatures. It has minimal effect on airflow or rotating equipment imbalance, and provides good sensitivity.
Preventing microbial biofilms on catheter tubes using ultrasonic guided waves.
Wang, Huanlei; Teng, Fengmeng; Yang, Xin; Guo, Xiasheng; Tu, Juan; Zhang, Chunbing; Zhang, Dong
2017-04-04
Biofilms on indwelling tubes and medical prosthetic devices are among the leading causes of antibiotic-resistant bacterial infections. In this work, a new anti-biofilm catheter prototype was proposed. By combining an endotracheal tube (ET) with a group of ultrasonic guided wave (UGW) transducers, the general idea was to prevent bacteria aggregation with UGW vibrations. Based on quantitative analysis of UGW propagation, detailed approach was achieved through (a) selection of ultrasonic frequency, wave modes and vibration amplitude; and (b) adoption of wave coupling and 45° wave incidence technique. Performance of the proposed UGW-ET prototype was demonstrated via in vitro experiments, during which it deterred deposition of Pseudomonas aeruginosa (P. aeruginosa) biofilms successfully. With current configuration, UGW amplitudes ranged from 0.05-5 nm could be optimal to achieve biofilm prevention. This work sheds a light in the underlying mechanism of ultrasound-mediated biofilm prevention, and will inspire the development of new catheters of better antibacterial capability.
Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.
Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H
2014-11-01
Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Multi-scale structures of turbulent magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, T. K. M., E-mail: takuma.nakamura@oeaw.ac.at; Nakamura, R.; Narita, Y.
2016-05-15
We have analyzed data from a series of 3D fully kinetic simulations of turbulent magnetic reconnection with a guide field. A new concept of the guide filed reconnection process has recently been proposed, in which the secondary tearing instability and the resulting formation of oblique, small scale flux ropes largely disturb the structure of the primary reconnection layer and lead to 3D turbulent features [W. Daughton et al., Nat. Phys. 7, 539 (2011)]. In this paper, we further investigate the multi-scale physics in this turbulent, guide field reconnection process by introducing a wave number band-pass filter (k-BPF) technique in whichmore » modes for the small scale (less than ion scale) fluctuations and the background large scale (more than ion scale) variations are separately reconstructed from the wave number domain to the spatial domain in the inverse Fourier transform process. Combining with the Fourier based analyses in the wave number domain, we successfully identify spatial and temporal development of the multi-scale structures in the turbulent reconnection process. When considering a strong guide field, the small scale tearing mode and the resulting flux ropes develop over a specific range of oblique angles mainly along the edge of the primary ion scale flux ropes and reconnection separatrix. The rapid merging of these small scale modes leads to a smooth energy spectrum connecting ion and electron scales. When the guide field is sufficiently weak, the background current sheet is strongly kinked and oblique angles for the small scale modes are widely scattered at the kinked regions. Similar approaches handling both the wave number and spatial domains will be applicable to the data from multipoint, high-resolution spacecraft observations such as the NASA magnetospheric multiscale (MMS) mission.« less
Multi-scale structures of turbulent magnetic reconnection
NASA Astrophysics Data System (ADS)
Nakamura, T. K. M.; Nakamura, R.; Narita, Y.; Baumjohann, W.; Daughton, W.
2016-05-01
We have analyzed data from a series of 3D fully kinetic simulations of turbulent magnetic reconnection with a guide field. A new concept of the guide filed reconnection process has recently been proposed, in which the secondary tearing instability and the resulting formation of oblique, small scale flux ropes largely disturb the structure of the primary reconnection layer and lead to 3D turbulent features [W. Daughton et al., Nat. Phys. 7, 539 (2011)]. In this paper, we further investigate the multi-scale physics in this turbulent, guide field reconnection process by introducing a wave number band-pass filter (k-BPF) technique in which modes for the small scale (less than ion scale) fluctuations and the background large scale (more than ion scale) variations are separately reconstructed from the wave number domain to the spatial domain in the inverse Fourier transform process. Combining with the Fourier based analyses in the wave number domain, we successfully identify spatial and temporal development of the multi-scale structures in the turbulent reconnection process. When considering a strong guide field, the small scale tearing mode and the resulting flux ropes develop over a specific range of oblique angles mainly along the edge of the primary ion scale flux ropes and reconnection separatrix. The rapid merging of these small scale modes leads to a smooth energy spectrum connecting ion and electron scales. When the guide field is sufficiently weak, the background current sheet is strongly kinked and oblique angles for the small scale modes are widely scattered at the kinked regions. Similar approaches handling both the wave number and spatial domains will be applicable to the data from multipoint, high-resolution spacecraft observations such as the NASA magnetospheric multiscale (MMS) mission.
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Gao, Qingshan; Zhou, Bing; Bhargava, Gaurang
2017-08-01
Hollow graphitized carbon nanosphere (CNS) materials with inner diameter of 20 to 50 nm and shell thickness of 10 15 nm were synthesized from the polymerization of resorcinol (R) and formaldehyde (F) in the presence of a well-characterized iron polymeric complex (IPC). The CNS with unique nanostructures was used to fabricate CNS-polymer composites by dispersing CNS as fillers in the polymer matrix. Aggregation of CNS in polymer composites is usually a challenging issue. In this work, we employed in situ polymerization method and melt-mixing method to fabricate CNS-polymethylmethacrylate (PMMA) composites and compared their difference in terms of CNS dispersion in the composites and surface electrical conductivity. Four probes technique was utilized to measure the surface electrical conductivity of the CNS-PMMA composites. The measurements on four points and four silver painted lines on the thin film of CNS-PMMA composites were compared. The in situ polymerization method was found more efficient for better CNS dispersion in PMMA matrix and lower percolation conductivity threshold compared to the melt-mixing method. The enhanced electrical conductivity for CNS-PMMA composites may be attributed to the stronger covalent CNS-PMMA bonding between the surface functional groups and the MMA moieties.
Concrete filled steel pipe inspection using electro magnetic acoustic transducer (EMAT)
NASA Astrophysics Data System (ADS)
Na, Won-Bae; Kundu, Tribikram; Ryu, Yeon-Sun; Kim, Jeong-Tae
2005-05-01
Concrete-filled steel pipes are usually exposed in hostile environments such as seawater and deicing materials. The outside corrosion of the steel pipe can reduce the wall thickness and the corrosion-induced delamination of internal concrete can increase internal volume or pressure. In addition, the void that can possibly exist in the pipe reduces the bending resistance. To avoid structural failure due to this type of deterioration, appropriate inspection and repair techniques are to be developed. Guided wave techniques have strong potentials for this kind of inspection because of long-distance inspection capability. Among different transducer-coupling mechanism, electro-magnetic acoustic transducers (EMATs) give relatively consistent results in comparison to piezoelectric transducers since they do not need any couplant. In this study EMATs are used for transmitting and receiving cylindrical guided waves through concrete-filled steel pipes. Through time history curves and wavelet transform, it is shown that EMAT-generated cylindrical guided wave techniques have good potential for the interface inspection of concrete-filled steel pipes.
Aldoss, Ibrahim; Al Malki, Monzr M; Stiller, Tracey; Cao, Thai; Sanchez, James F; Palmer, Joycelynne; Forman, Stephen J; Pullarkat, Vinod
2016-03-01
Acute lymphoblastic leukemia (ALL) with a history of central nervous system (CNS) involvement, either at diagnosis or relapse, poses challenges when the decision is made to proceed with allogeneic hematopoietic cell transplantation (alloHCT), as there is no evidence-based consensus on the best peri-transplantation approach to reduce subsequent CNS relapse risk. Here, we retrospectively analyzed outcomes of 87 patients with ALL and a history of CNS involvement who later underwent alloHCT. Patients with pretransplantation CNS involvement had higher risk of CNS relapse after transplantation (2-year CNS relapse: 9.6% versus 1.4%, P < .0001), inferior event-free survival (EFS) (hazard ratio [HR], 1.52; P = .003), and worse overall survival (OS) (HR, 1.55; P = .003) compared with patients without pretransplantation CNS involvement (n = 543). There was no difference in post-transplantation CNS relapse, EFS, or OS among patients presenting with CNS involvement at diagnosis, those with isolated CNS relapse, and those with combined bone marrow and CNS relapse before HCT. Interestingly, neither pretransplantation cranial irradiation, use of total body irradiation-based conditioning, nor post-transplantation prophylactic intrathecal chemotherapy were associated with a reduction of CNS relapse risk after transplantation. Thus, among the patients in the cohort studied, there was no clear benefit of CNS-directed therapy in the peri-transplantation period among patients who had prior CNS involvement and underwent subsequent alloHCT. Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nauleau, Pierre; Minonzio, Jean-Gabriel; Chekroun, Mathieu; Cassereau, Didier; Laugier, Pascal; Prada, Claire; Grimal, Quentin
2016-07-01
Our long-term goal is to develop an ultrasonic method to characterize the thickness, stiffness and porosity of the cortical shell of the femoral neck, which could enhance hip fracture risk prediction. To this purpose, we proposed to adapt a technique based on the measurement of guided waves. We previously evidenced the feasibility of measuring circumferential guided waves in a bone-mimicking phantom of a circular cross-section of even thickness. The goal of this study is to investigate the impact of the complex geometry of the femoral neck on the measurement of guided waves. Two phantoms of an elliptical cross-section and one phantom of a realistic cross-section were investigated. A 128-element array was used to record the inter-element response matrix of these waveguides. This experiment was simulated using a custom-made hybrid code. The response matrices were analyzed using a technique based on the physics of wave propagation. This method yields portions of dispersion curves of the waveguides which were compared to reference dispersion curves. For the elliptical phantoms, three portions of dispersion curves were determined with a good agreement between experiment, simulation and theory. The method was thus validated. The characteristic dimensions of the shell were found to influence the identification of the circumferential wave signals. The method was then applied to the signals backscattered by the superior half of constant thickness of the realistic phantom. A cut-off frequency and some portions of modes were measured, with a good agreement with the theoretical curves of a plate waveguide. We also observed that the method cannot be applied directly to the signals backscattered by the lower half of varying thicknesses of the phantom. The proposed approach could then be considered to evaluate the properties of the superior part of the femoral neck, which is known to be a clinically relevant site.
Detection of CFRP Composite Manufacturing Defects Using a Guided Wave Approach
NASA Technical Reports Server (NTRS)
Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.; Yuan, Fuh-Gwo
2015-01-01
NASA Langley Research Center is investigating a guided-wave based defect detection technique for as-fabricated carbon fiber reinforced polymer (CFRP) composites. This technique will be extended to perform in-process cure monitoring, defect detection and size determination, and ultimately a closed-loop process control to maximize composite part quality and consistency. The overall objective of this work is to determine the capability and limitations of the proposed defect detection technique, as well as the number and types of sensors needed to identify the size, type, and location of the predominant types of manufacturing defects associated with laminate layup and cure. This includes, porosity, gaps, overlaps, through-the-thickness fiber waviness, and in-plane fiber waviness. The present study focuses on detection of the porosity formed from variations in the matrix curing process, and on local overlaps intentionally introduced during layup of the prepreg. By terminating the cycle prematurely, three 24-ply unidirectional composite panels were manufactured such that each subsequent panel had a higher final degree of cure, and lower level of porosity. It was demonstrated that the group velocity, normal to the fiber direction, of a guided wave mode increased by 5.52 percent from the first panel to the second panel and 1.26 percent from the second panel to the third panel. Therefore, group velocity was utilized as a metric for degree of cure and porosity measurements. A fully non-contact guided wave hybrid system composed of an air-coupled transducer and a laser Doppler vibrometer (LDV) was used for the detection and size determination of an overlap By transforming the plate response from the time-space domain to the frequency-wavenumber domain, the total wavefield was then separated into the incident and backscatter waves. The overlap region was accurately imaged by using a zero-lag cross-correlation (ZLCC) imaging condition, implying the incident and backscattered waves are in phase over the overlap boundaries.
Chang, C Y; Yuan, F G
2018-05-16
Guided wave dispersion curves in isotropic and anisotropic materials are extracted automatically from measured data by Matrix Pencil (MP) method investigating through k-t or x-ω domain with a broadband signal. A piezoelectric wafer emits a broadband excitation, linear chirp signal to generate guided waves in the plate. The propagating waves are measured at discrete locations along the lines for one-dimensional laser Doppler vibrometer (1-D LDV). Measurements are first Fourier transformed into either wavenumber-time k-t domain or space-frequency x-ω domain. MP method is then employed to extract the dispersion curves explicitly associated with different wave modes. In addition, the phase and group velocity are deduced by the relations between wavenumbers and frequencies. In this research, the inspections for dispersion relations on an aluminum plate by MP method from k-t or x-ω domain are demonstrated and compared with two-dimensional Fourier transform (2-D FFT). Other experiments on a thicker aluminum plate for higher modes and a composite plate are analyzed by MP method. Extracted relations of composite plate are confirmed by three-dimensional (3-D) theoretical curves computed numerically. The results explain that the MP method not only shows more accuracy for distinguishing the dispersion curves on isotropic material, but also obtains good agreements with theoretical curves on anisotropic and laminated materials. Copyright © 2018 Elsevier B.V. All rights reserved.
Guided Wave Delamination Detection and Quantification With Wavefield Data Analysis
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Campbell Leckey, Cara A.; Seebo, Jeffrey P.; Yu, Lingyu
2014-01-01
Unexpected damage can occur in aerospace composites due to impact events or material stress during off-nominal loading events. In particular, laminated composites are susceptible to delamination damage due to weak transverse tensile and inter-laminar shear strengths. Developments of reliable and quantitative techniques to detect delamination damage in laminated composites are imperative for safe and functional optimally-designed next-generation composite structures. In this paper, we investigate guided wave interactions with delamination damage and develop quantification algorithms by using wavefield data analysis. The trapped guided waves in the delamination region are observed from the wavefield data and further quantitatively interpreted by using different wavenumber analysis methods. The frequency-wavenumber representation of the wavefield shows that new wavenumbers are present and correlate to trapped waves in the damage region. These new wavenumbers are used to detect and quantify the delamination damage through the wavenumber analysis, which can show how the wavenumber changes as a function of wave propagation distance. The location and spatial duration of the new wavenumbers can be identified, providing a useful means not only for detecting the presence of delamination damage but also allowing for estimation of the delamination size. Our method has been applied to detect and quantify real delamination damage with complex geometry (grown using a quasi-static indentation technique). The detection and quantification results show the location, size, and shape of the delamination damage.
Non-destructive evaluation of coating thickness using guided waves
NASA Astrophysics Data System (ADS)
Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice
2015-04-01
Among existing strategies for non-destructive evaluation of coating thickness, ultrasonic methods based on the measurement of the Time-of-Flight (ToF) of high frequency bulk waves propagating through the thickness of a structure are widespread. However, these methods only provide a very localized measurement of the coating thickness and the precision on the results is largely affected by the surface roughness, porosity or multi-layered nature of the host structure. Moreover, since the measurement is very local, inspection of large surfaces can be time consuming. This article presents a robust methodology for coating thickness estimation based on the generation and measurement of guided waves. Guided waves have the advantage over ultrasonic bulk waves of being less sensitive to surface roughness, and of measuring an average thickness over a wider area, thus reducing the time required to inspect large surfaces. The approach is based on an analytical multi-layer model and intercorrelation of reference and measured signals. The method is first assessed numerically for an aluminum plate, where it is demonstrated that coating thickness can be measured within a precision of 5 micrometers using the S0 mode at frequencies below 500 kHz. Then, an experimental validation is conducted and results show that coating thicknesses in the range of 10 to 200 micrometers can be estimated within a precision of 10 micrometers of the exact coating thickness on this type of structure.
Saletu, B; Grünberger, J; Linzmayer, L
1977-10-01
Utilizing computerized quantitative analysis of the human scalp recorded electroencephalogram (EEG), it is possible to classify psychotropic drugs. While neuroleptic compounds produce an increase of slow and decrease of fast activities, anxiolytic substances induce an augmentation of fast waves, decrease of alpha waves and--according to the sedative properties of the drug--an increase or decrease of slow waves. Antidepressants produce a concomitant augmentation of slow and fast activities as well as an attenuation of alpha waves. Nootropic substances attenuate slow activities, augment alpha and slow beta waves and decrease fast beta waves. The latter alterations are quite opposite to age-related changes. Since the main psychopharmacological classes seem to have characteristic pharmaco-EEG profiles, the method proved to be useful for determination of psychoactivity and cerebral bioavailability of newly developed substances as for instance AX-A411-BS, a new benzodiazepine. The latter substance was found to be CNS-active and was classified as anxiolytic. It induced dosedependent changes, which were barely visible in the 2nd hour post-drug, became quite obvious in the 4th hour and increased until the 8th hour after oral administration of one single dose. In the higher dosage range, slow activities came to the fore, indicating aoditional sedative properties. Psychometric tests measuring attention, psychomotor activity. mood, vigilance, extroversion, concentration aith a long-lasting effect. The implications of these methods are discussed.
Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors
NASA Astrophysics Data System (ADS)
Karpenko, Oleksii; Khomenko, Anton; Koricho, Ermias; Haq, Mahmoodul; Udpa, Lalita
2016-02-01
Adhesive bonding is being increasingly employed in many applications as it offers possibility of light-weighting and efficient multi-material joining along with reduction in time and cost of manufacturing. However, failure initiation and progression in critical components like joints, specifically in fatigue loading is not well understood, which necessitates reliable NDE and SHM techniques to ensure structural integrity. In this work, concurrent guided wave (GW) and fiber Bragg grating (FBG) sensor measurements were used to monitor fatigue damage in adhesively bonded composite lap-joints. In the present set-up, one FBG sensor was strategically embedded in the adhesive bond-line of a lap-joint, while two other FBGs were bonded on the surface of the adherends. Full spectral responses of FBG sensors were collected and compared at specific intervals of fatigue loading. In parallel, guided waves were actuated and sensed using PZT wafers mounted on the composite adherends. Experimental results demonstrated that time-of-flight (ToF) of the fundamental modes transmitted through the bond-line and spectral response of FBG sensors were sensitive to fatigue loading and damage. Combination of guided wave and FBG measurements provided the desired redundancy and synergy in the data to evaluate the degradation in bond-line properties. Measurements taken in the presence of continuously applied load replicated the in-situ/service conditions. The approach shows promise in understanding the behavior of bonded joints subjected to complex loading.
Miniature high-resolution guided-wave spectrometer for atmospheric remote sensing
NASA Astrophysics Data System (ADS)
Sloan, James; Kruzelecky, Roman; Wong, Brian; Zou, Jing; Jamroz, Wes; Haddad, Emile; Poirier, Michel
This paper describes the design and application of an innovative spectrometer in which a guided-wave integrated optical spectrometer (IOSPEC) has been coupled with a Fabry-Perot (FP) interferometer. This miniature spectrometer has a net mass under 3 kg, but is capable of broadband operation at spectral resolutions below 0.03 nm full width half maximum (FWHM). The tuneable FP filter provides very high spectral resolution combined with a large input aper-ture. The solid state guided-wave spectrometer is currently configured for a 512-channel array detector, which provides sub-nm coarse resolution. The ultimate resolution is determined by the FP filter, which is tuned across the desired spectral bands, thereby providing a signal-to-noise ratio (SNR) advantage over scanned spectrometer systems of the square root of the number of detector channels. The guided-wave optics provides robust, long-term optical alignment, while minimising the mechanical complexity. The miniaturisation of the FP-IOSPEC spectrometer allows multiple spectrometers to be accommodated on a single MicroSat. Each of these can be optimised for selected measurement tasks and views, thereby enabling more flexible data acquisition strategies with enhanced information content, while minimizing the mission cost. The application of this innovative technology in the proposed Miniature Earth Observation Satellite (MEOS) mission will also be discussed. The MEOS mission, which is designed for the investigation of the carbon and water cycles, relies on multiple IO-SPEC instruments for the simultaneous measurement of a range of atmospheric and surface properties important to climate change.
Aging Wire Insulation Assessment by Phase Spectrum Examination of Ultrasonic Guided Waves
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2003-01-01
Wire integrity has become an area of concern to the aerospace community including DoD, NASA, FAA, and Industry. Over time and changing environmental conditions, wire insulation can become brittle and crack. The cracks expose the wire conductor and can be a source of equipment failure, short circuits, smoke, and fire. The technique of using the ultrasonic phase spectrum to extract material properties of the insulation is being examined. Ultrasonic guided waves will propagate in both the wire conductor and insulation. Assuming the condition of the conductor remains constant then the stiffness of the insulator can be determined by measuring the ultrasonic guided wave velocity. In the phase spectrum method the guided wave velocity is obtained by transforming the time base waveform to the frequency domain and taking the phase difference between two waveforms. The result can then be correlated with a database, derived by numerical model calculations, to extract material properties of the wire insulator. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. For each sample the flexural mode waveform was identified. That waveform was then transformed to the frequency domain and a phase spectrum was calculated from a pair of waveforms. Experimental results on the simple model compared well to numerical calculations. Further tests were conducted on aircraft or mil-spec wire samples, to see if changes in wire insulation stiffness can be extracted using the phase spectrum technique.
Central nervous system event in patients with diffuse large B-cell lymphoma in the rituximab era.
Tomita, Naoto; Yokoyama, Masahiro; Yamamoto, Wataru; Watanabe, Reina; Shimazu, Yutaka; Masaki, Yasufumi; Tsunoda, Saburo; Hashimoto, Chizuko; Murayama, Kayoko; Yano, Takahiro; Okamoto, Rumiko; Kikuchi, Ako; Tamura, Kazuo; Sato, Kazuya; Sunami, Kazutaka; Shibayama, Hirohiko; Takimoto, Rishu; Ohshima, Rika; Hatta, Yoshihiro; Moriuchi, Yukiyoshi; Kinoshita, Tomohiro; Yamamoto, Masahide; Numata, Ayumi; Ishigatsubo, Yoshiaki; Takeuchi, Kengo
2012-02-01
Central nervous system (CNS) events, including CNS relapse and progression to CNS, are known to be serious complications in the clinical course of patients with lymphoma. This study aimed to evaluate the risk of CNS events in patients with diffuse large B-cell lymphoma in the rituximab era. We performed a retrospective survey of Japanese patients diagnosed with diffuse large B-cell lymphoma who underwent primary therapy with R-CHOP chemoimmunotherapy between September 2003 and December 2006. Patients who had received any prophylactic CNS treatment were excluded. Clinical data from 1221 patients were collected from 47 institutions. The median age of patients was 64 years (range, 15-91 years). We noted 82 CNS events (6.7%) and the cumulative 5-year probability of CNS events was 8.4%. Patients with a CNS event demonstrated significantly worse overall survival (P < 0.001). The 2-year overall survival rate after a CNS event was 27.1%. In a multivariate analysis, involvement of breast (relative risk [RR] 10.5), adrenal gland (RR 4.6) and bone (RR 2.0) were identified as independent risk factors for CNS events. We conclude that patients with these risk factors, in addition to patients with testicular involvement in whom CNS prophylaxis has been already justified, are at high risk for CNS events in the rituximab era. The efficacy and manner of CNS prophylaxis in patients for each involvement site should be evaluated further. © 2011 Japanese Cancer Association.
NASA Astrophysics Data System (ADS)
Liu, Hao-Li; Tsai, Hong-Chieh; Lu, Yu-Jen; Wei, Kuo-Chen
2012-11-01
FUS-induced BBB opening is a promising technique for noninvasive and local delivery of drugs into the brain. Here we propose the novel use of a neuronavigation system to guide the FUS-induced BBB opening procedure, and investigate its feasibility in vivo in large animals. We developed an interface between the neuronavigator and FUS to allow guidance of the focal energy produced by the FUS transducer. The system was tested in 29 pigs by more than 40 sonication procedures and evaluated by MRI. Gd-DTPA concentration was quantitated in vivo by MRI R1 relaxometry and compared by ICP-OES assay. Brain histology after FUS exposure was investigated by HE and TUNEL staining. Neuronavigation could successfully guide the focal beam with comparable precision to neurosurgical stereotactic procedures (2.3 ± 0.9 mm). FUS pressure of 0.43 MPa resulted in consistent BBB-opening. Neuronavigation-guided BBB-opening increased Gd-DTPA deposition by up to 1.83 mM (140% increase). MR relaxometry demonstrated high correlation to ICP-OES measurements (r2 = 0.822), suggesting that Gd-DTPA deposition can be directly measured by imaging. Neuronavigation could provide sufficient precision for guiding FUS to temporally and locally open the BBB. Gd-DTPA deposition in the brain could be quantified by MR relaxometry, providing a potential tool for the in vivo quantification of therapeutic agents in CNS disease treatment.
GenCade Version 1 Model Theory and User’s Guide
2012-12-01
summer, severe waves associated with extratropical storms frequent during winter and spring, and severe waves associated with tropical storms during...that the majority of waves are from the southeast and the more severe waves associated with extratropical storms are from the east- southeast. This...decades to centuries. However, these tools should also resolve processes that occur at the scale of individual storms and tidal cycles to calculate
Time Reversal Methods for Structural Health Monitoring of Metallic Structures Using Guided Waves
2011-09-01
measure elastic properties of thin isotropic materials and laminated composite plates. Two types of waves propagate a symmetric wave and antisymmetric...compare it to the original signal. In this time reversal procedure wave propagation from point-A to point-B and can be modeled as a convolution ...where * is the convolution operator and transducer transmit and receive transfer function are neglected for simplification. In the frequency
Breakthroughs in Low-Profile Leaky-Wave HPM Antennas
2016-09-21
information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and... traveling , fast-wave, leaky-wave class. 1.1. Overview of Previous Activities (1st thru 11th Quarter) During the first quarter, we prepared and...theory to guide the design of high-gain configurations (again, limited to 2D, H-plane representations) for linear, forward traveling -wave, leaky
Koyama, Daisuke; Ide, Takeshi; Friend, James R; Nakamura, Kentaro; Ueha, Sadayuki
2007-03-01
This paper presents a noncontact sliding table design and measurements of its performance via ultrasonic levitation. A slider placed atop two vibrating guide rails is levitated by an acoustic radiation force emitted from the rails. A flexural traveling wave propagating along the guide rails allows noncontact transportation of the slider. Permitting a transport mechanism that reduces abrasion and dust generation with an inexpensive and simple structure. The profile of the sliding table was designed using the finite-element analysis (FEA) for high levitation and transportation efficiency. The prototype sliding table was made of alumina ceramic (Al2O3) to increase machining accuracy and rigidity using a structure composed of a pair of guide rails with a triangular cross section and piezoelectric transducers. Two types of transducers were used: bolt-clamped Langevin transducers and bimorph transducers. A 40-mm long slider was designed to fit atop the two rail guides. Flexural standing waves and torsional standing waves were observed along the guide rails at resonance, and the levitation of the slider was obtained using the flexural mode even while the levitation distance was less than 10 microm. The levitation distance of the slider was measured while increasing the slider's weight. The levitation pressure, rigidity, and vertical displacement amplitude of the levitating slider thus were measured to be 6.7 kN/m2, 3.0 kN/microm/m2, and less than 1 microm, respectively. Noncontact transport of the slider was achieved using phased drive of the two transducers at either end of the vibrating guide rail. By controlling the phase difference, the slider transportation direction could be switched, and a maximum thrust of 13 mN was obtained.
NASA Astrophysics Data System (ADS)
Shiina, T.; Nakajima, J.; Toyokuni, G.; Kita, S.; Matsuzawa, T.
2014-12-01
A subducting crust contains a large amount of water as a form of hydrous minerals (e.g., Hacker et al., 2003), and the crust plays important roles for water transportation and seismogenesis in subduction zones at intermediate depths (e.g., Kirby et al., 1996; Iwamori, 2007). Therefore, the investigation of seismic structure in the crust is important to understand ongoing physical processes with subduction of oceanic lithosphere. A guided wave which propagates in the subducting crust is recorded in seismograms at Hokkaido, northern Japan (Shiina et al., 2014). Here, we estimated P- and S-wave velocity in the crust with guided waves, and obtained P-wave velocity of 6.6-7.3 km/s and S-wave velocity of 3.6-4.2 km/s at depths of 50-90 km. Moreover, Vp/Vs ratio in the crust is calculated to be 1.80-1.85 in that depth range. The obtained P-wave velocity about 6.6km/s at depths of 50-70 km is consistent with those estimated in Tohoku, northeast Japan (Shiina et al., 2013), and this the P-wave velocity is lower than those expected from models of subducting crustal compositions, such as metamorphosed MORB model (Hacker et al., 2003). In contrast, at greater depths (>80 km), the P-wave velocity marks higher velocity than the case of NE Japan and the velocity is roughly comparable to those of the MORB model. The obtained S-wave velocity distribution also shows characteristics similar to P waves. This regional variation may be caused by a small variation in thermal regime of the Pacific slab beneath the two regions as a result of the normal subduction in Tohoku and oblique subduction in Hokkaido. In addition, the effect of seismic anisotropy in the subducting crust would not be ruled out because rays used in the analysis in Hokkaido propagate mostly in the trench-parallel direction, while those in Tohoku are sufficiently criss-crossed.
Guided Wave Sensing In a Carbon Steel Pipe Using a Laser Vibrometer System
NASA Astrophysics Data System (ADS)
Ruíz Toledo, Abelardo; Salazar Soler, Jordi; Chávez Domínguez, Juan Antonio; García Hernández, Miguel Jesús; Turó Peroy, Antoni
2010-05-01
Non-Destructive Evaluation (NDE) techniques have achieved a great development during the last decades as a valuable tool for material characterization, manufacturing control and structural integrity tests. Among these tools, the guided wave technology has been rapidly extended because it reduces inspection time and costs compared to the ordinary point by point testing in large structures, as well as because of the possibility of inspecting under insulation and coating conditions. This fast development has motivated the creation of several inspection and material characterization systems including different technologies which can be combined with this technique. Different measurements systems based on laser techniques have been presented in order to inspect pipes, plates and diverse structures. Many of them are experimental systems of high cost and complexity which combine the employment of a laser for generation of waves in the structure and an interferometer for detection. Some of them employ air-coupled ultrasound generation transducers, with high losses in air and which demand high energy for exciting waves in materials of high stiffness. The combined employment of a commercial vibrometer system for Lamb wave sensing in plates has been successfully shown in the literature. In this paper we present a measurement system based on the combined employment of a piezoelectric wedge transducer and a laser vibrometer to sense guided acoustic waves in carbon steel pipes. The measurement system here presented is mainly compounded of an angular wedge transducer, employed to generate the guided wave and a commercial laser vibrometer used in the detection process. The wedge transducer is excited by means of a signal function generator whose output signal has been amplified with a power signal amplifier. A high precision positioning system is employed to place the laser beam at different points through the pipe surface. The signal detected by the laser vibrometer system is amplified with a signal amplifier and then it is displayed in a digital storage oscilloscope. This set-up offers the possibility of analyzing in a simpler way the wave propagation and the material evaluation in pipes of certain wall thickness. The material characterization considering distinct wave propagation modes can be easily achieved, changing the different incident angles of the wedge piezoelectric probe and their combined employment with several driving signals. Moreover, this experimental sensing system offers other possibilities of inspecting and analyzing the wave propagation in some features (bends, flange joints, welds,…) of the pipe surface which cause very large reflections and mode conversions and which in practice limits the inspection range when are inspected with conventional receiving transducer arrangements.
Acousto-optical assessment of skin viscoelasticity
NASA Astrophysics Data System (ADS)
Kirkpatrick, Sean J.; Duncan, Donald D.
2003-07-01
A multiphysics approach, combining acoustics, optics, and mechanics can be used to detect regions of skin with distinct mechanical behavior that may indicate a pathology, such as a cancerous skin lesion. Herein, an acousto-optical approach to evaluating the viscoelastic behavior of superficial skin layers will be presented. The method relies upon inducing low frequency guided surface waves in the skin and detecting these waves by monitoring the shift in the backscattered laser speckle pattern created by illuminating a small region of the skin with coherent light. Artificial lesions in the form of chemical cross-linking and chemical softening were induced in superficial porcine skin layers and detected based upon variations in local mechanical behavior. The lesions affect not only the time-of-flight of the guided surface waves, but also change the relative phase of the acoustic waves as determined optically. The method may be applicable in the study and diagnosis of superficial skin lesions.
Optical assessment of tissue mechanics: acousto-optical elastography of skin
NASA Astrophysics Data System (ADS)
Kirkpatrick, Sean J.
2003-10-01
A multiphysics approach, combining acoustics, optics, and mechanics can be used to detect regions of skin with distinct mechanical behavior that may indicate a pathology, such as a cancerous skin lesion. Herein, an acousto - optical approach to evaluating the viscoelastic behavior of superficial skin layers will be presented. The method relies upon inducing low frequency guided surface waves in the skin and detecting these waves by monitoring the shift in the backscattered laser speckle pattern created by illuminating a small region of the skin with coherent light. Artificial lesions in the form of chemical cross-linking and chemical softening were induced in superficial porcine skin layers and detected based upon variations in local mechanical behavior. The lesions affect not only the time-of-flight of the guided surface waves, but also change the relative phase of the acoustic waves as determined optically. The method may be applicable in the study and diagnosis of superficial skin lesions.
Gandhi, Leena; Ou, Sai-Hong Ignatius; Shaw, Alice T; Barlesi, Fabrice; Dingemans, Anne-Marie C; Kim, Dong-Wan; Camidge, D Ross; Hughes, Brett G M; Yang, James C-H; de Castro, Javier; Crino, Lucio; Léna, Hervé; Do, Pascal; Golding, Sophie; Bordogna, Walter; Zeaiter, Ali; Kotb, Ahmed; Gadgeel, Shirish
2017-09-01
Central nervous system (CNS) progression is common in patients with anaplastic lymphoma kinase-positive (ALK+) non-small-cell lung cancer (NSCLC) receiving crizotinib. Next-generation ALK inhibitors have shown activity against CNS metastases, but accurate assessment of response and progression is vital. Data from two phase II studies in crizotinib-refractory ALK+ NSCLC were pooled to examine the CNS efficacy of alectinib, a CNS-active ALK inhibitor, using Response Evaluation Criteria in Solid Tumours (RECIST version 1.1) and Response Assessment in Neuro-Oncology high-grade glioma (RANO-HGG) criteria. Both studies enrolled patients aged ≥18 years who had previously received crizotinib. NP28761 was conducted in North America and NP28673 was a global study. All patients received 600 mg oral alectinib twice daily and had baseline CNS imaging. CNS response for those with baseline CNS metastases was determined by an independent review committee. Baseline measurable CNS disease was identified in 50 patients by RECIST and 43 by RANO-HGG. CNS objective response rate was 64.0% by RECIST (95% confidence interval [CI]: 49.2-77.1; 11 CNS complete responses [CCRs]) and 53.5% by RANO-HGG (95% CI: 37.7-68.8; eight CCRs). CNS responses were durable, with consistent estimates of median duration of 10.8 months with RECIST and 11.1 months with RANO-HGG. Of the 39 patients with measurable CNS disease by both RECIST and RANO-HGG, only three (8%) had CNS progression according to one criteria but not the other (92% concordance rate). Alectinib demonstrated promising efficacy in the CNS for ALK+ NSCLC patients pretreated with crizotinib, regardless of the assessment criteria used. Copyright © 2017 Elsevier Ltd. All rights reserved.
FAST MAGNETOACOUSTIC WAVE TRAINS OF SAUSAGE SYMMETRY IN CYLINDRICAL WAVEGUIDES OF THE SOLAR CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shestov, S.; Kuzin, S.; Nakariakov, V. M., E-mail: sshestov@gmail.com
2015-12-01
Fast magnetoacoustic waves guided along the magnetic field by plasma non-uniformities, in particular coronal loops, fibrils, and plumes, are known to be highly dispersive, which lead to the formation of quasi-periodic wave trains excited by a broadband impulsive driver, e.g., a solar flare. We investigated the effects of cylindrical geometry on the fast sausage wave train formation. We performed magnetohydrodynamic numerical simulations of fast magnetoacoustic perturbations of a sausage symmetry, propagating from a localized impulsive source along a field-aligned plasma cylinder with a smooth radial profile of the fast speed. The wave trains are found to have pronounced period modulation,more » with the longer instant period seen in the beginning of the wave train. The wave trains also have a pronounced amplitude modulation. Wavelet spectra of the wave trains have characteristic tadpole features, with the broadband large-amplitude heads preceding low-amplitude quasi-monochromatic tails. The mean period of the wave train is about the transverse fast magnetoacoustic transit time across the cylinder. The mean parallel wavelength is about the diameter of the wave-guiding plasma cylinder. Instant periods are longer than the sausage wave cutoff period. The wave train characteristics depend on the fast magnetoacoustic speed in both the internal and external media, the smoothness of the transverse profile of the equilibrium quantities, and also the spatial size of the initial perturbation. If the initial perturbation is localized at the axis of the cylinder, the wave trains contain higher radial harmonics that have shorter periods.« less
NASA Technical Reports Server (NTRS)
Kubat, Greg; Vandrei, Don
2006-01-01
Project Objectives include: a) CNS Model Development; b Design/Integration of baseline set of CNS Models into ACES; c) Implement Enhanced Simulation Capabilities in ACES; d) Design and Integration of Enhanced (2nd set) CNS Models; and e) Continue with CNS Model Integration/Concept evaluations.
High Temperature Shear Horizontal Electromagnetic Acoustic Transducer for Guided Wave Inspection
Kogia, Maria; Gan, Tat-Hean; Balachandran, Wamadeva; Livadas, Makis; Kappatos, Vassilios; Szabo, Istvan; Mohimi, Abbas; Round, Andrew
2016-01-01
Guided Wave Testing (GWT) using novel Electromagnetic Acoustic Transducers (EMATs) is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH0) waves for GWT with optimal high temperature properties (up to 500 °C) has been developed. Thermal and Computational Fluid Dynamic (CFD) simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C. PMID:27110792
Near-field interference for the unidirectional excitation of electromagnetic guided modes.
Rodríguez-Fortuño, Francisco J; Marino, Giuseppe; Ginzburg, Pavel; O'Connor, Daniel; Martínez, Alejandro; Wurtz, Gregory A; Zayats, Anatoly V
2013-04-19
Wave interference is a fundamental manifestation of the superposition principle with numerous applications. Although in conventional optics, interference occurs between waves undergoing different phase advances during propagation, we show that the vectorial structure of the near field of an emitter is essential for controlling its radiation as it interferes with itself on interaction with a mediating object. We demonstrate that the near-field interference of a circularly polarized dipole results in the unidirectional excitation of guided electromagnetic modes in the near field, with no preferred far-field radiation direction. By mimicking the dipole with a single illuminated slit in a gold film, we measured unidirectional surface-plasmon excitation in a spatially symmetric structure. The surface wave direction is switchable with the polarization.
Niklasson; Datta; Dunn
2000-09-01
In this paper, effective boundary conditions for elastic wave propagation in plates with thin coatings are derived. These effective boundary conditions are used to obtain an approximate dispersion relation for guided waves in an isotropic plate with thin anisotropic coating layers. The accuracy of the effective boundary conditions is investigated numerically by comparison with exact solutions for two different material systems. The systems considered consist of a metallic core with thin superconducting coatings. It is shown that for wavelengths long compared to the coating thickness there is excellent agreement between the approximate and exact solutions for both systems. Furthermore, numerical results presented might be used to characterize coating properties by ultrasonic techniques.
Miles, J
1980-04-01
Transversely periodic solitary-wave solutions of the Boussinesq equations (which govern wave propagation in a weakly dispersive, weakly nonlinear physical system) are determined. The solutions for negative dispersion (e.g., gravity waves) are singular and therefore physically unacceptable. The solutions for positive dispersion (e.g., capillary waves or magnetosonic waves in a plasma) are physically acceptable except in a limited parametric interval, in which they are complex. The two end points of this interval are associated with (two different) resonant interactions among three basic solitary waves, two of which are two-dimensional complex conjugates and the third of which is one-dimensional and real.
Signal Processing with Degenrate Four-Wave Mixing.
1987-03-17
warth [71 and Au Yueng er al. 1181 in CS, filled fibers. The first authors achieved high-fidelity conjugation with In the weakly guiding case, that...waves with. of course, taneously as its own pump wave. Au Yueng er al. [181 K 12, given by the "overlap integrals." In the absence of used single-mode
NASA Astrophysics Data System (ADS)
Liu, Yang; D'Angelo, Ralph M.; Sinha, Bikash K.; Zeroug, Smaine
2017-02-01
Modeling and understanding the complex elastic-wave physics prevalent in solid-fluid cylindrically-layered structures is of importance in many NDE fields, and most pertinently in the domain of well integrity evaluation of cased holes in the oil and gas industry. Current sonic measurements provide viable techniques for well integrity evaluation yet their practical effectiveness is hampered by the current lack of knowledge of acoustic wave fields particularly in complicated cased-hole geometry where for instance two or more nested steel strings are present in the borehole. In this article, we propose and implement a Sweeping Frequency Finite Element Method (SFFEM) for acoustic guided waves simulation in complex geometries that include double steel strings cemented to each other and to the formation and where the strings may be non-concentric. Transient dynamic finite element models are constructed with sweeping frequency signals being applied as the excitation sources. The sources and receivers disposition simulate current sonic measurement tools deployed in the oilfield. Synthetic wavetrains are recorded and processed with modified matrix pencil method to isolate both the dispersive and non-dispersive propagating guided wave modes. Scaled experiments of fluid-filled double strings with dimensions mimicking the real ones encountered in the field have also been carried out to generate reference data. A comparison of the experimental and numerical results indicates that the SFFEM is capable of accurately reproducing the rich and intricate higher-order multiple wave fields observed experimentally in the fluid-filled double string geometries.
Vascular, glial, and lymphatic immune gateways of the central nervous system.
Engelhardt, Britta; Carare, Roxana O; Bechmann, Ingo; Flügel, Alexander; Laman, Jon D; Weller, Roy O
2016-09-01
Immune privilege of the central nervous system (CNS) has been ascribed to the presence of a blood-brain barrier and the lack of lymphatic vessels within the CNS parenchyma. However, immune reactions occur within the CNS and it is clear that the CNS has a unique relationship with the immune system. Recent developments in high-resolution imaging techniques have prompted a reassessment of the relationships between the CNS and the immune system. This review will take these developments into account in describing our present understanding of the anatomical connections of the CNS fluid drainage pathways towards regional lymph nodes and our current concept of immune cell trafficking into the CNS during immunosurveillance and neuroinflammation. Cerebrospinal fluid (CSF) and interstitial fluid are the two major components that drain from the CNS to regional lymph nodes. CSF drains via lymphatic vessels and appears to carry antigen-presenting cells. Interstitial fluid from the CNS parenchyma, on the other hand, drains to lymph nodes via narrow and restricted basement membrane pathways within the walls of cerebral capillaries and arteries that do not allow traffic of antigen-presenting cells. Lymphocytes targeting the CNS enter by a two-step process entailing receptor-mediated crossing of vascular endothelium and enzyme-mediated penetration of the glia limitans that covers the CNS. The contribution of the pathways into and out of the CNS as initiators or contributors to neurological disorders, such as multiple sclerosis and Alzheimer's disease, will be discussed. Furthermore, we propose a clear nomenclature allowing improved precision when describing the CNS-specific communication pathways with the immune system.
Chen, Yuan; Ding, Yun; Zhang, Zuming; Wang, Wen; Chen, Jun-Yuan; Ueno, Naoto; Mao, Bingyu
2011-12-20
The evolution of the central nervous system (CNS) is one of the most striking changes during the transition from invertebrates to vertebrates. As a major source of genetic novelties, gene duplication might play an important role in the functional innovation of vertebrate CNS. In this study, we focused on a group of CNS-biased genes that duplicated during early vertebrate evolution. We investigated the tempo-spatial expression patterns of 33 duplicate gene families and their orthologs during the embryonic development of the vertebrate Xenopus laevis and the cephalochordate Brachiostoma belcheri. Almost all the identified duplicate genes are differentially expressed in the CNS in Xenopus embryos, and more than 50% and 30% duplicate genes are expressed in the telencephalon and mid-hindbrain boundary, respectively, which are mostly considered as two innovations in the vertebrate CNS. Interestingly, more than 50% of the amphioxus orthologs do not show apparent expression in the CNS in amphioxus embryos as detected by in situ hybridization, indicating that some of the vertebrate CNS-biased duplicate genes might arise from non-CNS genes in invertebrates. Our data accentuate the functional contribution of gene duplication in the CNS evolution of vertebrate and uncover an invertebrate non-CNS history for some vertebrate CNS-biased duplicate genes. Copyright © 2011. Published by Elsevier Ltd.
Analysis of Electro-Optic Materials Properties on Guided Wave Devices
1992-12-16
AD-A262 787 APPLIED RESEARCH, INC, ANALYSIS OF ELECTRO - OPTIC MATERIALS PROPERTIES ON GUIDED WAVE DEVICES FINAL REPORT DTI 6700 ODYSSEY DR HUNTSVILLE...ALABAMA 35814-1220 s IMAR1893 APPROVED FOR PUKIC RE’.EASE DISTRIBUTION UNLIMlITED Applied Research Inc. ARI/92iR-048Z ANALYSIS OF ELECTRO - OPTIC MATERIALS...uNiT ATTN: Dr. 2aul Ashley-AMSMI-RD-~WS--CM ELEMENT NO 4 NO IAr SSiON No t1I TI TLE iciup SeawIfy 0Mft*G’I Analysis of Electro - optic Materials
Implementation of customized health information technology in diabetes self management programs.
Alexander, Susan; Frith, Karen H; O'Keefe, Louise; Hennigan, Michael A
2011-01-01
The project was a nurse-led implementation of a software application, designed to combine clinical and demographic records for a diabetes education program, which would result in secure, long-term record storage. Clinical information systems may be prohibitively expensive for small practices and require extensive training for implementation. A review of the literature suggests that the use of simple, practice-based registries offer an economical method of monitoring the outcomes of diabetic patients. The database was designed using a common software application, Microsoft Access. The theory used to guide implementation and staff training was Rogers' Diffusion of Innovations theory (1995). Outcomes after a 3-month period included incorporation of 100% of new clinical and demographic patient records into the database and positive changes in staff attitudes regarding software applications used in diabetes self-management training. These objectives were met while keeping project costs under budgeted amounts. As a function of the clinical nurse specialist (CNS) researcher role, there is a need for CNSs to identify innovative and economical methods of data collection. The success of this nurse-led project reinforces suggestions in the literature for less costly methods of data maintenance in small practice settings. Ongoing utilization and enhancement have resulted in the creation of a robust database that could aid in the research of multiple clinical issues. Clinical nurse specialists can use existing evidence to guide and improve both their own practice and outcomes for patients and organizations. Further research regarding specific factors that predict efficient transition of informatics applications, how these factors vary according to practice settings, and the role of the CNS in implementation of such applications is needed.
Scoffings, Daniel; Ajithkumar, Thankamma; Williams, Michael V; Jefferies, Sarah J
2016-01-01
Objective: There is no consensus approach to covering skull base meningeal reflections—and cerebrospinal fluid (CSF) therein—of the posterior fossa cranial nerves (CNs VII–XII) when planning radiotherapy (RT) for medulloblastoma and ependymoma. We sought to determine whether MRI and specifically fast imaging employing steady-state acquisition (FIESTA) sequences can answer this anatomical question and guide RT planning. Methods: 96 posterior fossa FIESTA sequences were reviewed. Following exclusions, measurements were made on the following scans for each foramen respectively (left, right); internal acoustic meatus (IAM) (86, 84), jugular foramen (JF) (83, 85) and hypoglossal canal (HC) (42, 45). A protocol describes measurement procedure. Two observers measured distances for five cases and agreement was assessed. One observer measured all the remaining cases. Results: IAM and JF measurement interobserver variability was compared. Mean measurement difference between observers was −0.275 mm (standard deviation 0.557). IAM and JF measurements were normally distributed. Mean IAM distance was 12.2 mm [95% confidence interval (CI) 8.8–15.6]; JF was 7.3 mm (95% CI 4.0–10.6). The HC was difficult to visualize on many images and data followed a bimodal distribution. Conclusion: Dural reflections of posterior fossa CNs are well demonstrated by FIESTA MRI. Measuring CSF extension into these structures is feasible and robust; mean CSF extension into IAM and JF was measured. We plan further work to assess coverage of these structures with photon and proton RT plans. Advances in knowledge: We have described CSF extension beyond the internal table of the skull into the IAM, JF and HC. Oncologists planning RT for patients with medulloblastoma and ependymoma may use these data to guide contouring. PMID:27636022
Noble, David J; Scoffings, Daniel; Ajithkumar, Thankamma; Williams, Michael V; Jefferies, Sarah J
2016-11-01
There is no consensus approach to covering skull base meningeal reflections-and cerebrospinal fluid (CSF) therein-of the posterior fossa cranial nerves (CNs VII-XII) when planning radiotherapy (RT) for medulloblastoma and ependymoma. We sought to determine whether MRI and specifically fast imaging employing steady-state acquisition (FIESTA) sequences can answer this anatomical question and guide RT planning. 96 posterior fossa FIESTA sequences were reviewed. Following exclusions, measurements were made on the following scans for each foramen respectively (left, right); internal acoustic meatus (IAM) (86, 84), jugular foramen (JF) (83, 85) and hypoglossal canal (HC) (42, 45). A protocol describes measurement procedure. Two observers measured distances for five cases and agreement was assessed. One observer measured all the remaining cases. IAM and JF measurement interobserver variability was compared. Mean measurement difference between observers was -0.275 mm (standard deviation 0.557). IAM and JF measurements were normally distributed. Mean IAM distance was 12.2 mm [95% confidence interval (CI) 8.8-15.6]; JF was 7.3 mm (95% CI 4.0-10.6). The HC was difficult to visualize on many images and data followed a bimodal distribution. Dural reflections of posterior fossa CNs are well demonstrated by FIESTA MRI. Measuring CSF extension into these structures is feasible and robust; mean CSF extension into IAM and JF was measured. We plan further work to assess coverage of these structures with photon and proton RT plans. Advances in knowledge: We have described CSF extension beyond the internal table of the skull into the IAM, JF and HC. Oncologists planning RT for patients with medulloblastoma and ependymoma may use these data to guide contouring.
Whole-central nervous system functional imaging in larval Drosophila
Lemon, William C.; Pulver, Stefan R.; Höckendorf, Burkhard; McDole, Katie; Branson, Kristin; Freeman, Jeremy; Keller, Philipp J.
2015-01-01
Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord. PMID:26263051
Microwaves and Alzheimer's disease
Zhang, Xia; Huang, Wen-Juan; Chen, Wei-Wei
2016-01-01
Alzheimer's diseases (AD) is the most common type of dementia and a neurodegenerative disease that occurs when the nerve cells in the brain die. The cause and treatment of AD remain unknown. However, AD is a disease that affects the brain, an organ that controls behavior. Accordingly, anything that can interact with the brain may affect this organ positively or negatively, thereby protecting or encouraging AD. In this regard, modern life encompasses microwaves for all issues including industrial, communications, medical and domestic tenders, and among all applications, the cell phone wave, which directly exposes the brain, continues to be the most used. Evidence suggests that microwaves may produce various biological effects on the central nervous system (CNS) and many arguments relay the possibility that microwaves may be involved in the pathophysiology of CNS disease, including AD. By contrast, previous studies have reported some beneficial cognitive effects and that microwaves may protect against cognitive impairment in AD. However, although many of the beneficial effects of microwaves are derived from animal models, but can easily be extrapolated to humans, whether microwaves cause AD is an important issue that is to be addressed in the current review. PMID:27698682
Heat Waves and Morbidity: Current Knowledge and Further Direction-A Comprehensive Literature Review
Li, Mengmeng; Gu, Shaohua; Bi, Peng; Yang, Jun; Liu, Qiyong
2015-01-01
In the past few decades, several devastating heat wave events have significantly challenged public health. As these events are projected to increase in both severity and frequency in the future, it is important to assess the relationship between heat waves and the health indicators that can be used in the early warning systems to guide the public health response. Yet there is a knowledge gap in the impact of heat waves on morbidity. In this study, a comprehensive review was conducted to assess the relationship between heat waves and different morbidity indicators, and to identify the vulnerable populations. The PubMed and ScienceDirect database were used to retrieve published literature in English from 1985 to 2014 on the relationship between heat waves and morbidity, and the following MeSH terms and keywords were used: heat wave, heat wave, morbidity, hospital admission, hospitalization, emergency call, emergency medical services, and outpatient visit. Thirty-three studies were included in the final analysis. Most studies found a short-term negative health impact of heat waves on morbidity. The elderly, children, and males were more vulnerable during heat waves, and the medical care demand increased for those with existing chronic diseases. Some social factors, such as lower socioeconomic status, can contribute to heat-susceptibility. In terms of study methods and heat wave definitions, there remain inconsistencies and uncertainties. Relevant policies and guidelines need to be developed to protect vulnerable populations. Morbidity indicators should be adopted in heat wave early warning systems in order to guide the effective implementation of public health actions. PMID:25993103
Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.
Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo
2013-03-22
Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Conduction block in the peripheral nervous system in experimental allergic encephalomyelitis
NASA Astrophysics Data System (ADS)
Pender, M. P.; Sears, T. A.
1982-04-01
Experimental allergic encephalomyelitis (EAE) has been widely studied as a model of multiple sclerosis, a central nervous system (CNS) disease of unknown aetiology. The clinical features of both EAE and multiple sclerosis provide the only guide to the progress and severity of these diseases, and are used to assess the response to treatment. In such comparisons the clinical features of EAE are assumed to be due to lesions in the CNS, but in this disease there is also histological evidence of damage to the peripheral nervous system1-8. However, the functional consequences of such peripheral lesions have been entirely ignored. To examine this we have studied nerve conduction in rabbits with EAE. We report here that most of the large diameter afferent fibres are blocked in the region of the dorsal root ganglion and at the dorsal root entry zone, thus accounting for the loss of tendon jerks and also, through the severe loss of proprioceptive information, the ataxia of these animals. We conclude that whenever clinical comparisons are made between EAE and multiple sclerosis, the pathophysiology associated with the histological damage of the peripheral nervous system must be taken into account.
Overview and diagnosis of multiple sclerosis.
Hunter, Samuel F
2016-06-01
Multiple sclerosis (MS), a chronic inflammatory disease of unknown etiology, involves an immunemediated attack of the central nervous system (CNS) that produces demyelination and axonal/neuronal damage, resulting in characteristic multifocal lesions apparent on magnetic resonance imaging and a variety of neurologic manifestations. The disease pathology is characterized by multifocal lesions within the CNS, in both the white matter and gray matter, with perivenular inflammatory cell infiltrates, demyelination, axonal transection, neuronal degeneration, and gliosis. MS pathogenesis is complex, as it involves both T- and B-cell mechanisms and is heterogeneous in presentation. Relatively recently, the historical 4 core clinical categories of MS were revised in an effort to improve characterization of the clinical course, better identify where a given patient is positioned in the disease spectrum, and to guide clinical studies. In young and middle-aged adults, MS is one of the most common contributors to neurologic disability, and it exerts detrimental effects on a patient's productivity and health-related quality of life. Typically, patients with MS have a long life span, although healthcare utilization increases over time. As a consequence, the disease places a substantial burden on patients and their caregivers/families, as well as employers, the healthcare system, and society.
Vareed, Shaiju K; Schutzki, Robert E; Nair, Muraleedharan G
2007-10-01
The genus Cornus is well known for its medicinal properties. Bioassay-guided isolation and characterization of C. kousa fruits afforded kaempferol 3-O-rhamnoside (1), myricetin 3-O-rhamnoside (2), kaempferol 3-O-glucoside (3), cornin (4) and stenophyllin (5) in addition to ursolic acid and beta-sitosterol. These compounds are isolated for the first time from C. kousa. Compounds 1-5 inhibited Fe(2+) catalyzed lipid peroxidation by 63%, 57%, 61%, 53%, and 51%, at 23, 22, 23, 129, and 108 microM, respectively. Similarly, they inhibited COX-1 and -2 enzymes activities by 24% and 47%, 40% and 37%, 20% and 37%, 52% and 63%, and 48% and 55% respectively, at 231, 215, 226, 258, and 217 microM, respectively. At 129 microM, compound 4 displayed growth inhibition of HCT-116 (colon), MCF-7 (breast), NCI-H460 (lung), SF-268 (central nervous system CNS), and AGS (stomach) human tumor cell lines by 31%, 29%, 40%, 9%, and 28%, respectively. Similarly, compound 5 inhibited the growth of colon, breast, lung, CNS, and stomach tumor cell lines by 0%, 27%, 35%, 16%, and 27%, respectively, at 108 microM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahajan, Mani, E-mail: manimahajan86@gmail.com; Singla, Gourav, E-mail: gsinghla@gmail.com; Singh, K., E-mail: kusingh@thapar.edu
Carbon nanospheres of grape-like structure (CNS) with diameter ranging from 40 to 50 nm and wall thickness of 6–8 nm were synthesized by solvothermal route. The phase structure, morphology, microstructure, thermal stability, disorder and optical properties of synthesized CNS were investigated by various characterization techniques. The possible formation and growth mechanism for CNS were discussed on the basis of the in-build reaction conditions. The degradation study of organic pollutants (methylene blue) in UV light in the presence of synthesized CNS was done. The stability of the CNS in electrochemical performance was also discussed at the different potential window and comparedmore » its electrocatalytic activity with platinum supported on CNS which shows the better response for oxygen reduction reactions (ORR) at an optimized potential window (–0.2 to 1.0 V vs SCE). - Graphical abstract: A representative synthesis mechanism of carbon nano sphere (CNS) showing spherical morphology with its photo as well as electrocatalyst properties. - Highlights: • Carbon nanospheres (CNS) have been synthesized using in situ chemical-reduction route. • The bare CNS shows good luminescence and photocatalytic applications. • The Pt/CNS shows better electrochemical performance than the reported Pt/C.« less
In-line inspection of unpiggable buried live gas pipes using circumferential EMAT guided waves
NASA Astrophysics Data System (ADS)
Ren, Baiyang; Xin, Junjun
2018-04-01
Unpiggable buried gas pipes need to be inspected to ensure their structural integrity and safe operation. The CIRRIS XITM robot, developed and operated by ULC Robotics, conducts in-line nondestructive inspection of live gas pipes. With the no-blow launching system, the inspection operation has reduced disruption to the public and by eliminating the need to dig trenches, has minimized the site footprint. This provides a highly time and cost effective solution for gas pipe maintenance. However, the current sensor on the robot performs a point-by-point measurement of the pipe wall thickness which cannot cover the whole volume of the pipe in a reasonable timeframe. The study of ultrasonic guided wave technique is discussed to improve the volume coverage as well as the scanning speed. Circumferential guided wave is employed to perform axial scanning. Mode selection is discussed in terms of sensitivity to different defects and defect characterization capability. To assist with the mode selection, finite element analysis is performed to evaluate the wave-defect interaction and to identify potential defect features. Pulse-echo and through-transmission mode are evaluated and compared for their pros and cons in axial scanning. Experiments are also conducted to verify the mode selection and detect and characterize artificial defects introduced into pipe samples.
NASA Astrophysics Data System (ADS)
Siegrist, M. R.; Tran, T. M.; Tran, M. Q.
1991-10-01
Consideration is given to millimeter waves (MMW), submillimeter waves, materials properties, and gyrotrons/FEL. Particular attention is given to MMW sources, detectors and mixers; MMW systems, devices and antennas; guided propagation; high Tc superconductors; semiconductors; MMW astronomy and atmospheric physics; lasers, submillimeter devices, and plasma diagnostics; and submillimeter detectors.
The document reports the results of the experimental and theoretical investigation of acousto - optic interactions in guided wave structure for optical...waves and acoustic surface waves and experimental results of isotropic and anisotropic diffraction in LiNbO3 and quartz. A simple acousto - optic plate...CVD ZnO films on sapphire, which may be needed for the acousto - optic devices in thin films are also included. (Author)
Millimeter Wave Radar Clutter Program
1989-10-30
conduct experimental measurments and develop theoretical models to Improve our understanding of electromagnetic wave interaction with terrain at...various types of terrain under a variety of conditions. The experimental data servos to guide the development of the models as well as to verify their... experimental measurement. Task 4 - Examination of Bistatic Scattering from Surfaces and Volumes: Prior to this program, no millimeter-wave bistatic
Guided waves and ultrasonic characterization of three-dimensional composites
NASA Astrophysics Data System (ADS)
Leymarie, Nicolas; Baste, Stéphane
2000-05-01
Ultrasonic NDE of anisotropic media appears nowadays as one of the best experimental approaches in studying mechanical properties. A complete identification of stiffness tensor can be performed with phase velocity measurements of obliquely incidence ultrasonic bulk waves from water onto a plate. The medium considered, however, has to be homogeneous with respect to wavelength used. In the case of 3D-composites, textures scales may reach one millimeter and their cut-off frequency is less than MHz. The dispersion curves observed in the considered range of frequencies are often very close and sometimes may be overlapped. Experimental studies show complex signals, which are due to a combination of both bulk and guided waves. Wave-speed measurements of the bulk wave and its detection become unreliable with classical techniques of signal processing (simple time or spectral analysis). Moreover, even if the coupled time-frequency analysis with wavelet transforms allows a better interpretation of the signal, the time delay estimation for the bulk wave and so the characterization of the material remains uncertain. To understand blended signals more accurately, different analytical and numerical models are proposed to show the advantages and disadvantages of methods used in NDE.
Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo
2014-01-01
Standing wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30 cm diameter with 15 cm radius of curvature, low frequency (230 kHz), hemispherical transcranial Magnetic Resonance guided Focused Ultrasound (MRgFUS) phased-array. Experimental and simulation studies were conducted with changing aperture size and f-number configurations of the phased array, and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and anti-nodes of standing wave produced by the small aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number. PMID:22049360
Ultrasonic isolation of buried pipes
NASA Astrophysics Data System (ADS)
Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter
2016-02-01
Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such coatings would be attractive for new pipeline installations.
Finite element simulation of core inspection in helicopter rotor blades using guided waves.
Chakrapani, Sunil Kishore; Barnard, Daniel; Dayal, Vinay
2015-09-01
This paper extends the work presented earlier on inspection of helicopter rotor blades using guided Lamb modes by focusing on inspecting the spar-core bond. In particular, this research focuses on structures which employ high stiffness, high density core materials. Wave propagation in such structures deviate from the generic Lamb wave propagation in sandwich panels. To understand the various mode conversions, finite element models of a generalized helicopter rotor blade were created and subjected to transient analysis using a commercial finite element code; ANSYS. Numerical simulations showed that a Lamb wave excited in the spar section of the blade gets converted into Rayleigh wave which travels across the spar-core section and mode converts back into Lamb wave. Dispersion of Rayleigh waves in multi-layered half-space was also explored. Damage was modeled in the form of a notch in the core section to simulate a cracked core, and delamination was modeled between the spar and core material to simulate spar-core disbond. Mode conversions under these damaged conditions were examined numerically. The numerical models help in assessing the difficulty of using nondestructive evaluation for complex structures and also highlight the physics behind the mode conversions which occur at various discontinuities. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kryjevskaia, Lioudmila N.
This dissertation reports on an in-depth investigation of student understanding of wave phenomena at a boundary. The research and curriculum development were conducted in the contexts of the introductory calculus-based physics course and special courses for preservice and inservice teachers. Research methods included pretests, post-tests, and informal observations and discussions with students. Several student difficulties with wave behavior at a boundary and the cause and effect relationship between wavelength, frequency, and propagation speed were identified. The results from this investigation have guided the development of two sets of instructional materials designed to address the conceptual and reasoning difficulties that were identified. The first is a sequence of tutorials intended to supplement standard lecture and laboratory instruction on mechanical waves in a traditional introductory course. The second consists of a module on mechanical waves designed for use in inquiry-oriented courses for preservice and inservice teachers. Ongoing assessment of both sets of materials indicates that they are effective in addressing many of the student difficulties that were found to be persistent. Such difficulties, when not addressed, may hinder student understanding of more advanced topics such as interference and diffraction of waves.
Biomaterial Scaffolds in Regenerative Therapy of the Central Nervous System
Tan, Hong
2018-01-01
The central nervous system (CNS) is the most important section of the nervous system as it regulates the function of various organs. Injury to the CNS causes impairment of neurological functions in corresponding sites and further leads to long-term patient disability. CNS regeneration is difficult because of its poor response to treatment and, to date, no effective therapies have been found to rectify CNS injuries. Biomaterial scaffolds have been applied with promising results in regeneration medicine. They also show great potential in CNS regeneration for tissue repair and functional recovery. Biomaterial scaffolds are applied in CNS regeneration predominantly as hydrogels and biodegradable scaffolds. They can act as cellular supportive scaffolds to facilitate cell infiltration and proliferation. They can also be combined with cell therapy to repair CNS injury. This review discusses the categories and progression of the biomaterial scaffolds that are applied in CNS regeneration. PMID:29805977
Nonlinear guided wave propagation in prestressed plates.
Pau, Annamaria; Lanza di Scalea, Francesco
2015-03-01
The measurement of stress in a structure presents considerable interest in many fields of engineering. In this paper, the diagnostic potential of nonlinear elastic guided waves in a prestressed plate is investigated. To do so, an analytical model is formulated accounting for different aspects involved in the phenomenon. The fact that the initial strains can be finite is considered using the Green Lagrange strain tensor, and initial and final configurations are not merged, as it would be assumed in the infinitesimal strain theory. Moreover, an appropriate third-order expression of the strain energy of the hyperelastic body is adopted to account for the material nonlinearities. The model obtained enables to investigate both the linearized case, which gives the variation of phase and group velocity as a function of the initial stress, and the nonlinear case, involving second-harmonic generation as a function of the initial state of stress. The analysis is limited to Rayleigh-Lamb waves propagating in a plate. Three cases of initial prestress are considered, including prestress in the direction of the wave propagation, prestress orthogonal to the direction of wave propagation, and plane isotropic stress.
Khambhla, Ekta; Shah, Viral; Baviskar, Kalpesh
2016-01-01
The current epoch has witnessed a lifestyle impregnated with stress, which is a major cause of several neurological disorders. High morbidity and mortality rate due to neurological diseases and disorders have generated a huge social impact. Despite voluminous research, patients suffering from fatal and/or debilitating CNS diseases such as brain tumors, HIV, encephalopathy, Alzheimer's, epilepsy, Parkinson's, migraine and multiple sclerosis outnumbered those suffering from systemic cancer or heart diseases. The brain being a highly sensitive neuronal organ, has evolved with vasculature barriers, which regulates the efflux and influx of substances to CNS. Treatment of CNS diseases/disorders is challenging because of physiologic, metabolic and biochemical obstacles created by these barriers which comprise mainly of BBB and BCFB. The inability of achieving therapeutically active concentration has become the bottleneck level difficulty, hampering the therapeutic efficiency of several promising drug candidates for CNS related disorders. Parallel maturation of an effective CNS drug delivery strategy with CNS drug discovery is the need of the hour. Recently, the focus of the pharmaceutical community has aggravated in the direction of developing novel and more efficient drug delivery systems, giving the potential of more effective and safer CNS therapies. The present review outlines several hurdles in drug delivery to the CNS along with ideal physicochemical properties desired in drug substance/formulation for CNS delivery. The review also focuses on different conventional and novel strategies for drug delivery to the CNS. The article also assesses and emphasizes on possible benefits of biomaterial based formulations for drug delivery to the CNS.
Bortezomib-related neuropathy may mask CNS relapse in multiple myeloma: A call for diligence.
Abid, Muhammad Bilal; De Mel, Sanjay; Abid, Muhammad Abbas; Tan, Kong Bing; Chng, Wee Joo
2016-07-02
Neuropathy is a common adverse effect of bortezomib. Isolated central nervous system (CNS) relapse in MM remains exceedingly rare and carries a dismal prognosis. We present an unusual case of bortezomib related neuropathy masking a CNS relapse of MM. A 57-year-old female was diagnosed with standard-risk MM with clinical and cytogenetic features not typically associated with CNS involvement. She was treated with 4 cycles of bortezomib/cyclophosphamide/dexamethasone (VCD) and achieved a VGPR, after which she underwent an autologous stem cell transplant (ASCT) followed by bortezomib maintenance. Six months after ASCT she developed symptoms suggestive of peripheral neuropathy which was attributed to bortezomib. However the symptoms persisted despite discontinuation of bortezomib. Imaging and cerebrospinal fluid analysis subsequently confirmed a CNS relapse. CNS involvement in MM (CNS-MM) is uncommon and is considered an aggressive disease. Recently published literature has reported biomarkers with prognostic potential. However, isolated CNS relapse is even less common; an event which carries a very poor prognosis. Given the heterogeneous neurologic manifestations associated with MM, clinical suspicion may be masked by confounding factors such as bortezomib-based therapy. The disease may further remain incognito if the patient does not exhibit any of the high risk features and biomarkers associated with CNS involvement. In the era of proteasome inhibitor (PtdIns)/immunomodulator (IMID)-based therapy for MM which carries neurologic adverse effects, it is prudent to consider CNS relapse early. This case further highlights the need for more robust biomarkers to predict CNS relapse and use of newer novel agents which demonstrate potential for CNS penetration.
Magnetic domain walls as reconfigurable spin-wave nano-channels
NASA Astrophysics Data System (ADS)
Wagner, Kai
Research efforts to utilize spin waves as information carriers for wave based logic in micro- and nano-structured ferromagnetic materials have increased tremendously over the recent years. However, finding efficient means of tailoring and downscaling guided spin-wave propagation in two dimensions, while maintaining energy efficiency and reconfigurability, still remains a delicate challenge. Here we target these challenges by spin-wave transport inside nanometer-scaled potential wells formed along magnetic domain walls. For this, we investigate the magnetization dynamics of a rectangular-like element in a Landau state exhibiting a so called 180° Néel wall along its center. By microwave antennae the rf-excitation is constricted to one end of the domain wall and the spin-wave intensities are recorded by means of Brillouin-Light Scattering microscopy revealing channeled transport. Additional micromagnetic simulations with pulsed as well as cw-excitation are performed to yield further insight into this class of modes. We find several spin-wave modes quantized along the width of the domain wall yet with well defined wave vectors along the wall, exhibiting positive dispersion. In a final step, we demonstrate the flexibility of these spin-wave nano-channels based on domain walls. In contrast to wave guides realised by fixed geometries, domain walls can be easily manipulated. Here we utilize small external fields to control its position with nanometer precision over a micrometer range, while still enabling transport. Domain walls thus, open the perspective for reprogrammable and yet non-volatile spin-wave waveguides of nanometer width. Financial support by the Deutsche Forschungsgemeinschaft within project SCHU2922/1-1 is gratefully acknowledged.
Propagation of time-reversed Lamb waves in bovine cortical bone in vitro.
Lee, Kang Il; Yoon, Suk Wang
2015-01-01
The present study aims to investigate the propagation of time-reversed Lamb waves in bovine cortical bone in vitro. The time-reversed Lamb waves were successfully launched at 200 kHz in 18 bovine tibiae through a time reversal process of Lamb waves. The group velocities of the time-reversed Lamb waves in the bovine tibiae were measured using the axial transmission technique. They showed a significant correlation with the cortical thickness and tended to follow the theoretical group velocity of the lowest order antisymmetrical Lamb wave fairly well, consistent with the behavior of the slow guided wave in long cortical bones.
Excitation of parasitic waves in forward-wave amplifiers with weak guiding fields.
Nusinovich, G S; Romero-Talamás, C A; Han, Y
2012-12-01
To produce high-power coherent electromagnetic radiation at frequencies from microwaves up to terahertz, the radiation sources should have interaction circuits of large cross sections, i.e., the sources should operate in high-order modes. In such devices, the excitation of higher-order parasitic modes near cutoff where the group velocity is small and, hence, start currents are low can be a serious problem. The problem is especially severe in the sources of coherent, phase-controlled radiation, i.e., the amplifiers or phase-locked oscillators. This problem was studied earlier [Nusinovich, Sinitsyn, and Antonsen, Phys. Rev. E 82, 046404 (2010)] for the case of electron focusing by strong guiding magnetic fields. For many applications it is desirable to minimize these focusing fields. Therefore in this paper we analyze the problem of excitation of parasitic modes near cutoff in forward-wave amplifiers with weak focusing fields. First, we study the large-signal operation of such a device with a signal wave only. Then, we analyze the self-excitation conditions of parasitic waves near cutoff in the presence of the signal wave. It is shown that the main effect is the suppression of the parasitic wave in large-signal regimes. At the same time, there is a region of device parameters where the presence of signal waves can enhance excitation of parasitic modes. The role of focusing fields in such effects is studied.
Research of centroiding algorithms for extended and elongated spot of sodium laser guide star
NASA Astrophysics Data System (ADS)
Shao, Yayun; Zhang, Yudong; Wei, Kai
2016-10-01
Laser guide stars (LGSs) increase the sky coverage of astronomical adaptive optics systems. But spot array obtained by Shack-Hartmann wave front sensors (WFSs) turns extended and elongated, due to the thickness and size limitation of sodium LGS, which affects the accuracy of the wave front reconstruction algorithm. In this paper, we compared three different centroiding algorithms , the Center-of-Gravity (CoG), weighted CoG (WCoG) and Intensity Weighted Centroid (IWC), as well as those accuracies for various extended and elongated spots. In addition, we compared the reconstructed image data from those three algorithms with theoretical results, and proved that WCoG and IWC are the best wave front reconstruction algorithms for extended and elongated spot among all the algorithms.
Lithium niobate guided-wave beam former for steering phased-array antennas.
Armenise, M N; Passaro, V M; Noviello, G
1994-09-10
We present the theoretical investigation, design, and simulation of a novel guided-wave optical processor for L-band-transmission beam forming in a linear array of phased active antennas. The proposed configuration includes two contradirectional surface acoustic-wave transducers, and it is based on a Y-cut, X-propagating Ti:LiNbO(3) planar waveguide supporting the lowest-order modes of both polarizations (TE(0) and TM(0)) at the free-space wavelength λ = 0.85 µm. A detailed comparison between the processor we propose and other optical and electronic architectures reported in the literature is carried out, exhibiting a number of significant advantages in terms of weight, total chip size, and power consumption, when the number of antenna elements is greater than 50.
Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xingwei; Hsu, Chia Wei; Zhen, Bo
2016-08-25
We develop a formalism, based on the mode expansion method, to describe the guided resonances and bound states in the continuum (BICs) in photonic crystal slabs with one-dimensional periodicity. This approach provides analytic insights to the formation mechanisms of these states: the guided resonances arise from the transverse Fabry–Pérot condition, and the divergence of the resonance lifetimes at the BICs is explained by a destructive interference of radiation from different propagating components inside the slab. As a result, we show BICs at the center and on the edge of the Brillouin zone protected by symmetry, BICs at generic wave vectorsmore » not protected by symmetry, and the annihilation of BICs at low-symmetry wave vectors.« less
Parametric study of guided waves dispersion curves for composite plates
NASA Astrophysics Data System (ADS)
Predoi, Mihai Valentin; Petre, Cristian Cǎtǎlin; Kettani, Mounsif Ech Cherif El; Leduc, Damien
2018-02-01
Nondestructive testing of composite panels benefit from the relatively long range propagation of guided waves in sandwich structures. The guided waves are sensitive to delamination, air bubbles inclusions and cracks and can thus bring information about hidden defects in the composite panel. The preliminary data in all such inspections is represented by the dispersion curves, representing the dependency of the phase/group velocity on the frequency for the propagating modes. In fact, all modes are more or less attenuated, so it is even more important to compute the dispersion curves, which provide also the modal attenuation as function of frequency. Another important aspect is the sensitivity of the dispersion curves on each of the elastic constant of the composite, which are orthotropic in most cases. All these aspects are investigated in the present work, based on our specially developed finite element numerical model implemented in Comsol, which has several advantages over existing methods. The dispersion curves and modal displacements are computed for an example of composite plate. Comparison with literature data validates the accuracy of our results.
1D profiling using highly dispersive guided waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volker, Arno; Zon, Tim van; Enthoven, Daniel
2015-03-31
Corrosion is one of the industries major issues regarding the integrity of assets. Currently inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Guided wave tomography has been developed to reconstruct the wall thickness. In case of bottom of the line corrosion, i.e., a single corrosion pit, a simpler approach may be followed. Data is collectedmore » in a pit-catch configuration at the 12 o'clock position using highly dispersive guided waves. The phase spectrum is used to invert for a wall thickness profile in the circumferential direction, assuming a Gaussian defect profile. An EMAT sensor design has been made to measure at the 12 o'clock position of a pipe. The concept is evaluated on measured data, showing good sizing capabilities on a variety simple defect profiles.« less
Recent developments in guided wave travel time tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zon, Tim van; Volker, Arno
The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography had been developed to create a map of the wall thickness using the travel times of guided waves. It can be used for both monitoring and for inspection of pipe-segments that are difficult to access, for instance at the location of pipe-supports. An important outcome of the tomography is the minimum remaining wall thickness, as this is critical in the scheduling of a replacement of the pipe-segment. In order to improvemore » the sizing accuracy we have improved the tomography scheme. A number of major improvements have been realized allowing to extend the application envelope to pipes with a larger wall thickness and to larger distances between the transducer rings. Simulation results indicate that the sizing accuracy has improved and that is now possible to have a spacing of 8 meter between the source-ring and the receiver-ring. Additionally a reduction of the number of sensors required might be possible as well.« less
Full-field drift Hamiltonian particle orbits in 3D geometry
NASA Astrophysics Data System (ADS)
Cooper, W. A.; Graves, J. P.; Brunner, S.; Isaev, M. Yu
2011-02-01
A Hamiltonian/Lagrangian theory to describe guiding centre orbit drift motion which is canonical in the Boozer coordinate frame has been extended to include full electromagnetic perturbed fields in anisotropic pressure 3D equilibria with nested magnetic flux surfaces. A redefinition of the guiding centre velocity to eliminate the motion due to finite equilibrium radial magnetic fields and the choice of a gauge condition that sets the radial component of the electromagnetic vector potential to zero are invoked to guarantee that the Boozer angular coordinates retain the canonical structure. The canonical momenta are identified and the guiding centre particle radial drift motion and parallel gyroradius evolution are derived. The particle coordinate position is linearly modified by wave-particle interactions. All the nonlinear wave-wave interactions appear explicitly only in the evolution of the parallel gyroradius. The radial variation of the electrostatic potential is related to the binormal component of the displacement vector for MHD-type perturbations. The electromagnetic vector potential projections can then be determined from the electrostatic potential and the radial component of the MHD displacement vector.
Long range guided wave defect monitoring in rail track
NASA Astrophysics Data System (ADS)
Loveday, Philip W.; Long, Craig S.
2014-02-01
A guided wave ultrasound system was previously developed for monitoring rail track used on heavy duty freight lines. This system operates by transmitting guided waves between permanently installed transmit and receive transducers spaced approximately 1km apart. The system has been proven to reliably detect rail breaks without false alarms. While cracks are sometimes detected there is a trade - off between detecting cracks and the possibility of false alarms. Adding a pulse-echo mode of operation to the system could provide increased functionality by detecting, locating and possibly monitoring cracks. This would require an array of transducers to control the direction and mode of propagation and it would be necessary to detect cracks up to a range of approximately 500 m in either direction along the rail. A four transducer array was designed and full matrix capture was used for field measurements. Post processing of the signals showed that a thermite weld could be detected at a range of 790m from the transducer array. It was concluded that the required range can be achieved in new rail while it would be extremely difficult in very old rail.
Fiber optic device for sensing the presence of a gas
Benson, David K.; Bechinger, Clemens S.; Tracy, C. Edwin
1998-01-01
A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material's optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment.
A Business Case Framework for Planning Clinical Nurse Specialist-Led Interventions.
Bartlett Ellis, Rebecca J; Embree, Jennifer L; Ellis, Kurt G
2015-01-01
The purpose of this article is to describe a business case framework that can guide clinical nurse specialists (CNS) in clinical intervention development. Increased emphasis on cost-effective interventions in healthcare requires skills in analyzing the need to make the business case, especially for resource-intensive interventions. This framework assists the CNS to anticipate resource use and then consider if the intervention makes good business sense. We describe a business case framework that can assist the CNS to fully explore the problem and determine if developing an intervention is a good investment. We describe several analyses that facilitate making the business case to include the following: problem identification and alignment with strategic priorities, needs assessment, stakeholder analysis, market analysis, intervention implementation planning, financial analysis, and outcome evaluation. The findings from these analyses can be used to develop a formal proposal to present to hospital leaders in a position to make decisions. By aligning intervention planning with organizational priorities and engaging patients in the process, interventions will be more likely to be implemented in practice and produce robust outcomes. The business case framework can be used to justify to organization decision makers the need to invest resources in new interventions that will make a difference for quality outcomes as well as the financial bottom line. This framework can be used to plan interventions that align with organizational strategic priorities, plan for associated costs and benefits, and outcome evaluation. Clinical nurse specialists are well positioned to lead clinical intervention projects that will improve the quality of patient care and be cost-effective. To do so requires skill development in making the business case.
Putting reins on the brain. How the body and environment use it
Dotov, Dobromir G.
2014-01-01
Radical embodied cognitive neuroscience (RECN) will probably rely on dynamical systems theory (DST) and complex systems theory for methods and formalism. Yet, there have been plenty of non-radical neurodynamicists out there for quite some time. How much of their work fits with radical embodied cognitive science, what do they need RECN for, and what are the inconsistencies between RECN and established neurodynamics that would have to be resolved? This paper is both theoretical hypothesis and review. First, it provides a brief overview of the typical, purely structural considerations why the central nervous systems (CNS) should be treated as a nonlinear dynamical system and what this entails. The reader will learn about the circular causality enclosing brain and behavior and different attempts to formalize this circularity. Then, three different attempts at linking dynamics and theory of brain function are described in more detail and criticized. A fourth method based on ecological psychology could fix some of the issues that the others encounter. It is argued that studying self-organization of the brain without taking its ecological embedding into account is insufficient. Finally, based on existing theoretical work we propose two roles that the CNS has to be fulfilling in order to allow an animal to behave adequately in its niche. In its first role the CNS has to be enslaved easily by patterns of behavior that guide the animal through its environment. In the second role the brain has to flexibly switch among patterns, what can be called the metastable circuit breaker. The relevance of this idea is supported using certain motor symptoms of Parkinson’s disease (PD). These symptoms can be explained as consequent to an excessive stability of the (metastable) circuit breaker. PMID:25346675
Barber/Cosmetologist Curriculum. Program Information.
ERIC Educational Resources Information Center
Moraine Park Technical Coll., Fond du Lac, WI.
This guide provides the instructor with materials for a barber/cosmetologist program. Seventeen study guides are provided: anatomy and physiology; applied chemistry; chemical straightening/relaxing; chemical waving; electricity and light therapy; facial services; hair coloring and lightening (bleach); hair cutting; hair, skin, and nail disorders;…
Observing the work of the Clinical Nurse Specialist: a pilot study.
Darmody, Julie V
2005-01-01
The Clinical Nurse Specialist (CNS) is an advanced practice nurse (APN) with graduate preparation as a clinical expert within a specialty area of nursing practice. There is a need for information about the work of the CNS in order to link CNS activities to outcomes and costs of care. To describe the work of the CNS in the acute care setting using the National Association of Clinical Nurse Specialists (NACNS) model as an organizing framework. Descriptive pilot study of the work of the CNS in acute care. A 500-bed academic medical center located in the Midwestern United States. Five masters-prepared APNs in a unit-based CNS role. Direct observation and time study were used to record activities and time for 4 hours with each CNS (n = 5) for a total of 20 hours of observation. CNS activity and time within each practice domain included patient/client (30%), nursing (44%), organization/system (10%), and other activities (16%). Specific activities observed were linked to possible outcomes in the NACNS framework. The NACNS model provided a useful framework for developing a data collection tool that can be used in a larger study that analyzes the work of the acute care CNS. Describing the work of the CNS is an important preliminary step to measuring outcomes and costs of care.
Development of a novel omnidirectional magnetostrictive transducer for plate applications
NASA Astrophysics Data System (ADS)
Vinogradov, Sergey; Cobb, Adam; Bartlett, Jonathan; Udagawa, Youichi
2018-04-01
The application of guided waves for the testing of plate-type structures has been recently investigated by a number of research groups due to the ability of guided waves to detect corrosion in remote and hidden areas. Guided wave sensors for plate applications can be either directed (i.e., the waves propagate in a single direction) or omnidirectional. Each type has certain advantages and disadvantages. Omnidirectional sensors can inspect large areas from a single location, but it is challenging to define where a feature is located. Conversely, directed sensors can be used to precisely locate an indication, but have no sensitivity to flaws away from the wave propagation direction. This work describes a newly developed sensor that combines the strengths of both sensor types to create a novel omnidirectional transducer. The sensor transduction is based on a custom magnetostrictive transducer (MsT). In this new probe design, a directed, plate-application MsT with known characteristics was incorporated into an automated scanner. This scanner rotates the directed MsT for data collection at regular intervals. Coupling of the transducer to the plate is accomplished using a shear wave couplant. The array of data that is received is used for compiling B-scans and imaging, utilizing a synthetic aperture focusing algorithm (SAFT). The performance of the probe was evaluated on a 0.5-inch thick carbon steel plate mockup with a surface area of over 100 square feet. The mockup had a variety of known anomalies representing localized and distributed pitting corrosion, gradual wall thinning, and notches of different depths. Experimental data was also acquired using the new probe on a retired storage tank with known corrosion damage. The performance of the new sensor and its limitations are discussed together with general directions in technology development.
Neuroinfections caused by fungi.
Góralska, Katarzyna; Blaszkowska, Joanna; Dzikowiec, Magdalena
2018-05-21
Fungal infections of the central nervous system (FIs-CNS) have become significantly more common over the past 2 decades. Invasion of the CNS largely depends on the immune status of the host and the virulence of the fungal strain. Infections with fungi cause a significant morbidity in immunocompromised hosts, and the involvement of the CNS may lead to fatal consequences. One hundred and thirty-five articles on fungal neuroinfection in PubMed, Google Scholar, and Cochrane databases were selected for review using the following search words: "fungi and CNS mycoses", CNS fungal infections", "fungal brain infections", " fungal cerebritis", fungal meningitis", "diagnostics of fungal infections", and "treatment of CNS fungal infections". All were published in English with the majority in the period 2000-2018. This review focuses on the current knowledge of the epidemiology, clinical presentations, diagnosis, and treatment of selected FIs-CNS. The FIs-CNS can have various clinical presentations, mainly meningitis, encephalitis, hydrocephalus, cerebral abscesses, and stroke syndromes. The etiologic factors of neuroinfections are yeasts (Cryptococcus neoformans, Candida spp., Trichosporon spp.), moniliaceous moulds (Aspergillus spp., Fusarium spp.), Mucoromycetes (Mucor spp., Rhizopus spp.), dimorphic fungi (Blastomyces dermatitidis, Coccidioides spp., Histoplasma capsulatum), and dematiaceous fungi (Cladophialophora bantiana, Exophiala dermatitidis). Their common route of transmission is inhalation or inoculation from trauma or surgery, with subsequent hematogenous or contiguous spread. As the manifestations of FIs-CNS are often non-specific, their diagnosis is very difficult. A fast identification of the etiological factor of neuroinfection and the application of appropriate therapy are crucial in preventing an often fatal outcome. The choice of effective drug depends on its extent of CNS penetration and spectrum of activity. Pharmaceutical formulations of amphotericin B (AmB) (among others, deoxycholate-AmBd and liposomal L-AmB) have relatively limited distribution in the cerebrospinal fluid (CSF); however, their detectable therapeutic concentrations in the CNS makes them recommended drugs for the treatment of cryptococcal meningoencephalitis (AmBd with flucytosine) and CNS candidiasis (L-AmB) and mucormycosis (L-AmB). Voriconazole, a moderately lipophilic molecule with good CNS penetration, is recommended in the first-line therapy of CNS aspergillosis. Other triazoles, such as posaconazole and itraconazole, with negligible concentrations in the CSF are not considered effective drugs for therapy of CNS fungal neuroinfections. In contrast, clinical data have shown that a novel triazole, isavuconazole, achieved considerable efficacy for the treatment of some fungal neuroinfections. Echinocandins with relatively low or undetectable concentrations in the CSF do not play meaningful role in the treatment of FIs-CNS. Although the number of fungal species causing CNS mycosis is increasing, only some possess well-defined treatment standards (e.g., cryptococcal meningitis and CNS aspergillosis). The early diagnosis of fungal infection, accompanied by identification of the etiological factor, is needed to allow the selection of effective therapy in patients with FIs-CNS and limit their high mortality.
Formation and propagation of Love waves in a surface layer with a P-wave source. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florence, A.L.; Miller, S.A.
The objective of this research is to investigate experimentally, and support with theoretical calculations, the formation and propagation of Love waves from a P-wave source due to scattering at material heterogeneities. The P-wave source is a spherical piezoelectric crystal cast in a surface layer of rock simulant overlaying a higher impedance granite substrate. Excitation of the piezoelectric crystal with a known voltage applies a spherical compressional pulse of known amplitude to the surrounding medium. Lateral heterogeneities cast in the surface layer convert incident P-wave energy into shear waves. The horizontally polarized shear waves (SH waves) trapped in the surface layermore » wave guide are the Love waves we will measure at the surface.« less
Sasakura, Yasunori; Mita, Kaoru; Ogura, Yosuke; Horie, Takeo
2012-04-01
The swimming larvae of the chordate ascidians possess a dorsal hollowed central nervous system (CNS), which is homologous to that of vertebrates. Despite the homology, the ascidian CNS consists of a countable number of cells. The simple nervous system of ascidians provides an excellent experimental system to study the developmental mechanisms of the chordate nervous system. The neural fate of the cells consisting of the ascidian CNS is determined in both autonomous and non-autonomous fashion during the cleavage stage. The ascidian neural plate performs the morphogenetic movement of neural tube closure that resembles that in vertebrate neural tube formation. Following neurulation, the CNS is separated into five distinct regions, whose homology with the regions of vertebrate CNS has been discussed. Following their larval stage, ascidians undergo a metamorphosis and become sessile adults. The metamorphosis is completed quickly, and therefore the metamorphosis of ascidians is a good experimental system to observe the reorganization of the CNS during metamorphosis. A recent study has shown that the major parts of the larval CNS remain after the metamorphosis to form the adult CNS. In contrast to such a conserved manner of CNS reorganization, most larval neurons disappear during metamorphosis. The larval glial cells in the CNS are the major source for the formation of the adult CNS, and some of the glial cells produce adult neurons. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.
Zheng, Changcheng; Liu, Xin; Zhu, Weibo; Cai, Xiaoyan; Wu, Jingsheng; Sun, Zimin
2014-06-01
The aim of this report was to investigate the tailored treatment strategies for isolated central nervous system (CNS) recurrence in adult patients with acute myeloid leukemia (AML). Isolated CNS recurrence was documented in 34 patients: there were 18, 6, and 10 patients with meningeal involvement type (type A), cranial nerve palsy type (type B), and myeloid sarcoma type (type C), respectively. For patients with type A, intrathecal chemotherapy was the predominant strategy. For type B, systemic HD-Ara-C with four cycles was the main treatment. For type C, cranial irradiation or craniospinal irradiation was adopted and two cycles of HD-Ara-C were given after the irradiation. The 5-year cumulative incidence of CNS recurrence was 12.8%. There was a significantly higher WBC count (32.6∼60.8 × 10(9)/l) in patients at first diagnosis who developed CNS recurrence (all of the three types) compared with patients with no CNS recurrence (10.1 × 10(9)/l) (P = 0.005). We found that a significantly more patients with AML-M5 and 11q23 abnormalities developed CNS recurrence in type A (P < 0.001, 0.005). Twenty-four out of 34 patients (70.6%) with CNS recurrence achieved CNS complete remission at a median of 58 days (range, 30-120). The 3-year disease-free survival and overall survival estimates for all CNS recurrence patients were 21.6 and 25.3%, respectively. This report indicates that the tailored CNS-directed strategy is an effective modality to treat CNS recurrence in adult AML, but further studies are needed to improve the long-term survival.
Bortezomib-related neuropathy may mask CNS relapse in multiple myeloma: A call for diligence
Abid, Muhammad Bilal; De Mel, Sanjay; Abid, Muhammad Abbas; Tan, Kong Bing; Chng, Wee Joo
2016-01-01
ABSTRACT Background: Neuropathy is a common adverse effect of bortezomib. Isolated central nervous system (CNS) relapse in MM remains exceedingly rare and carries a dismal prognosis. We present an unusual case of bortezomib related neuropathy masking a CNS relapse of MM. Case presentation: A 57-year-old female was diagnosed with standard-risk MM with clinical and cytogenetic features not typically associated with CNS involvement. She was treated with 4 cycles of bortezomib/cyclophosphamide/dexamethasone (VCD) and achieved a VGPR, after which she underwent an autologous stem cell transplant (ASCT) followed by bortezomib maintenance. Six months after ASCT she developed symptoms suggestive of peripheral neuropathy which was attributed to bortezomib. However the symptoms persisted despite discontinuation of bortezomib. Imaging and cerebrospinal fluid analysis subsequently confirmed a CNS relapse. Discussion: CNS involvement in MM (CNS-MM) is uncommon and is considered an aggressive disease. Recently published literature has reported biomarkers with prognostic potential. However, isolated CNS relapse is even less common; an event which carries a very poor prognosis. Given the heterogeneous neurologic manifestations associated with MM, clinical suspicion may be masked by confounding factors such as bortezomib-based therapy. The disease may further remain incognito if the patient does not exhibit any of the high risk features and biomarkers associated with CNS involvement. Conclusion: In the era of proteasome inhibitor (PtdIns)/immunomodulator (IMID)-based therapy for MM which carries neurologic adverse effects, it is prudent to consider CNS relapse early. This case further highlights the need for more robust biomarkers to predict CNS relapse and use of newer novel agents which demonstrate potential for CNS penetration. PMID:27105248
Jeserich, G; Waehneldt, T V
1986-02-01
Peripheral nervous system (PNS) myelin from the rainbow trout (Salmo gairdneri) banded at a density of 0.38 M sucrose. The main myelin proteins consisted of (1) two basic proteins, BPa and BPb (11,500 and 13,000 MW, similar to those of trout central nervous system (CNS) myelin proteins BP1 and BP2), and (2) two glycosylated components, IPb (24,400 MW) and IPc (26,200 MW). IPc comigrated with trout CNS myelin protein IP2 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, whereas trout CNS myelin protein IP1 had a lower molecular weight (23,000). Following two-dimensional separation, however, both IPb and IPc from PNS showed two components; the more acidic component of IPc comigrated with IP2 from CNS. PNS tissue autolysis led to the formation of IPa (20,000 MW), consisting of two components in isoelectric focusing of which again the more acidic one comigrated with the CNS autolysis product IP0. Limited enzymatic digestion of isolated IP proteins from PNS and CNS led to closely similar degradation patterns, being most pronounced in the case of IP2 and IPc. Immunoblotting revealed that all IP components from trout PNS and CNS myelins reacted with antibodies to trout IP1 (CNS) and bovine P0 protein (PNS) whereas antibodies to rat PLP (CNS) were entirely unreactive. All BP components from trout PNS and CNS myelins bound to antibodies against human myelin basic protein. On the basis of these studies trout PNS and CNS myelins contain at least one common IP glycoprotein, whereas other members of the IP myelin protein family appear closely related. In the CNS myelin of trout the IP components appear to replace PLP.(ABSTRACT TRUNCATED AT 250 WORDS)
Guided wave propagation in metallic and resin plates loaded with water on single surface
NASA Astrophysics Data System (ADS)
Hayashi, Takahiro; Inoue, Daisuke
2016-02-01
Our previous papers reported dispersion curves for leaky Lamb waves in a water-loaded plate and wave structures for several typical modes including quasi-Scholte waves [1,2]. The calculations were carried out with a semi-analytical finite element (SAFE) method developed for leaky Lamb waves. This study presents SAFE calculations for transient guided waves including time-domain waveforms and animations of wave propagation in metallic and resin water-loaded plates. The results show that non-dispersive and non-attenuated waves propagating along the interface between the fluid and the plate are expected for effective non-destructive evaluation of such fluid-loaded plates as storage tanks and transportation pipes. We calculated transient waves in both steel and polyvinyl chloride (PVC) plates loaded with water on a single side and input dynamic loading from a point source on the other water-free surface as typical examples of metallic and resin plates. For a steel plate, there exists a non-dispersive and non-attenuated mode, called the quasi-Scholte wave, having an almost identical phase velocity to that of water. The quasi-Scholte wave has superior generation efficiency in the low frequency range due to its broad energy distribution across the plate, whereas it is localized near the plate-water interface at higher frequencies. This means that it has superior detectability of inner defects. For a PVC plate, plural non-attenuated modes exist. One of the non-attenuated modes similar to the A0 mode of the Lamb wave in the form of a group velocity dispersion curve is promising for the non-destructive evaluation of the PVC plate because it provides prominent characteristics of generation efficiency and low dispersion.
a Continuous Health Monitoring Guided Wave Fmd System for Retrofit to Existing Offshore Oilrigs
NASA Astrophysics Data System (ADS)
Mijarez, R.; Solis, L.; Martinez, F.
2010-02-01
An automatic health monitoring guided wave flood member detection (FMD) system, for retrofit to existing offshore oilrigs is presented. The system employs a microcontroller piezoelectric (PZT) based transmitter and a receiver instrumentation package composed of a PZT 40 kHz ultrasound transducer and a digital signal processor (DSP) module connected to a PC via USB for monitoring purposes. The transmitter and receiver were attached, non-intrusively, to the external wall of a steel tube; 1 m×27 cm×2 mm. Experiments performed in the laboratory have successfully identified automatically flooded tubes.
Quantitative diagnostics of multilayered composite structures with ultrasonic guided waves
NASA Astrophysics Data System (ADS)
Bunget, Gheorghe; Friedersdorf, Fritz; Na, Jeong K.
2015-03-01
The main objective of the current work is to develop a practical nondestructive inspection methodology for a highly sound absorbing composite structural system consisting of polymeric and metallic materials. Due to constraints in geometrical shapes and thicknesses of the composite system used in this work, ultrasonic guided wave approach has been chosen. Since the polymer coatings have high damping properties, less energy is dissipated into the adjacent media in the presence of interface delaminations. Experimental measurements performed on a targeted composite system, whether it has an aluminum, carbon-fiber-composite, or steel outer casing, show promising results.
Ultrasonic guided wave tomography for wall thickness mapping in pipes
NASA Astrophysics Data System (ADS)
Willey, Carson L.
Corrosion and erosion damage pose fundamental challenges to operation of oil and gas infrastructure. In order to manage the life of critical assets, plant operators must implement inspection programs aimed at assessing the severity of wall thickness loss (WTL) in pipelines, vessels, and other structures. Maximum defect depth determines the residual life of these structures and therefore represents one of the key parameters for robust damage mitigation strategies. In this context, continuous monitoring with permanently installed sensors has attracted significant interest and currently is the subject of extensive research worldwide. Among the different monitoring approaches being considered, significant promise is offered by the combination of guided ultrasonic wave technology with the principles of model based inversion under the paradigm of what is now referred to as guided wave tomography (GWT). Guided waves are attractive because they propagate inside the wall of a structure over a large distance. This can yield significant advantages over conventional pulse-echo thickness gage sensors that provide insufficient area coverage -- typically limited to the sensor footprint. While significant progress has been made in the application of GWT to plate-like structures, extension of these methods to pipes poses a number of fundamental challenges that have prevented the development of sensitive GWT methods. This thesis focuses on these challenges to address the complex guided wave propagation in pipes and to account for parametric uncertainties that are known to affect model based inversion and which are unavoidable in real field applications. The main contribution of this work is the first demonstration of a sensitive GWT method for accurately mapping the depth of defects in pipes. This is achieved by introducing a novel forward model that can extract information related to damage from the complex waveforms measured by pairs of guided wave transducers mounted on the pipe. An inversion method that iteratively uses the forward model is then developed to form a map of wall thickness for the entire pipe section comprised between two ring arrays of ultrasonic transducers that encircle the pipe. It is shown that time independent parametric uncertainties relative to the pipe manufacturing tolerances, transducers position, and ultrasonic properties of the material of the pipe can be minimized through a differential approach that is aimed at determining the change in state of the pipe relative to a reference condition. On the other hand, time dependent parametric uncertainties, such as those caused by temperature variations, can be addressed by exploiting the spatial diversity of array measurements and the non-contact nature of electromagnetic acoustic transducers (EMATs). The range of possible applications of GWT to pipes is investigated through theoretical and numerical studies aimed at developing an understanding of how the performance of GWT varies depending on damage morphology, pipe geometry, and array configuration.
ERIC Educational Resources Information Center
Hutchins, Sally, Ed.
1997-01-01
These four issues of "Trustee Quarterly" focus on current topics affecting community college trustees. Issue 1 focuses on the learning revolution and serves as a guide for community college trustees. It offers the following feature articles by Terry O'Banion: "Education Reform: Two Waves,""The Second Wave and the Community…
Dial-in Topological Metamaterials Based on Bistable Stewart Platform.
Wu, Ying; Chaunsali, Rajesh; Yasuda, Hiromi; Yu, Kaiping; Yang, Jinkyu
2018-01-08
Recently, there have been significant efforts to guide mechanical energy in structures by relying on a novel topological framework popularized by the discovery of topological insulators. Here, we propose a topological metamaterial system based on the design of the Stewart Platform, which can not only guide mechanical waves robustly in a desired path, but also can be tuned in situ to change this wave path at will. Without resorting to any active materials, the current system harnesses bistablilty in its unit cells, such that tuning can be performed simply by a dial-in action. Consequently, a topological transition mechanism inspired by the quantum valley Hall effect can be achieved. We show the possibility of tuning in a variety of topological and traditional waveguides in the same system, and numerically investigate key qualitative and quantitative differences between them. We observe that even though both types of waveguides can lead to significant wave transmission for a certain frequency range, topological waveguides are distinctive as they support robust, back scattering immune, one-way wave propagation.
Guided wave tomography in anisotropic media using recursive extrapolation operators
NASA Astrophysics Data System (ADS)
Volker, Arno
2018-04-01
Guided wave tomography is an advanced technology for quantitative wall thickness mapping to image wall loss due to corrosion or erosion. An inversion approach is used to match the measured phase (time) at a specific frequency to a model. The accuracy of the model determines the sizing accuracy. Particularly for seam welded pipes there is a measurable amount of anisotropy. Moreover, for small defects a ray-tracing based modelling approach is no longer accurate. Both issues are solved by applying a recursive wave field extrapolation operator assuming vertical transverse anisotropy. The inversion scheme is extended by not only estimating the wall loss profile but also the anisotropy, local material changes and transducer ring alignment errors. This makes the approach more robust. The approach will be demonstrated experimentally on different defect sizes, and a comparison will be made between this new approach and an isotropic ray-tracing approach. An example is given in Fig. 1 for a 75 mm wide, 5 mm deep defect. The wave field extrapolation based tomography clearly provides superior results.
Solar tomography adaptive optics.
Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang
2014-03-10
Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.
NASA Astrophysics Data System (ADS)
Zhang, Hao; Koper, Keith D.; Pankow, Kristine; Ge, Zengxi
2017-05-01
The 13 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake was investigated using teleseismic P waves. Backprojection of high-frequency P waves from two regional arrays shows unilateral rupture of at least two southwest-northeast striking faults with an average rupture speed of 1.4-1.6 km/s and total duration of 100 s. Guided by these backprojection results, 33 globally distributed low-frequency P waves were inverted for a finite fault model (FFM) of slip. The FFM showed evidence of several subevents; however, it lacked significant moment release near the epicenter, where a large burst of high-frequency energy was observed. A local strong-motion network recorded strong shaking near the epicenter; hence, for this earthquake the distribution of backprojection energy is superior to the FFM as a guide of strong shaking. For future large earthquakes that occur in regions without strong-motion networks, initial shaking estimates could benefit from backprojection constraints.
Scattering of circumferential waves in a cracked annulus
NASA Astrophysics Data System (ADS)
Valle, Christine; Qu, Jianmin; Jacobs, Laurence J.
2000-05-01
This paper considers guided waves propagating in the circumferential direction of an annulus with a radial crack, with the objective of developing an ultrasonic technique that can detect and characterize these cracks. Specifically, the finite element method is used to simulate the propagation and scattering of guided circumferential waves in a cracked annulus. This method fosters a better understanding of the wave fields, so that a transducer configuration used in the field can be optimized for crack detection/characterization. Both a point source (simulating laser generated ultrasound) and a distributed source (simulating a PZT transducer) are modeled and compared to corresponding experimental results. Animations (snapshots at different instants in time) of the strain energy field in the annulus are given for various combinations of load profiles, incident angles, and incident frequencies. Results of this paper provide the necessary design guidelines for developing nondestructive ultrasonic techniques for the detection/characterization of radial cracks in cylindrical pressure vessels, gas/oil pipes, and shaft/bearing systems.
Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method
Madni, Hamza Ahmad; Zheng, Bin; Yang, Yihao; Wang, Huaping; Zhang, Xianmin; Yin, Wenyan; Li, Erping; Chen, Hongsheng
2016-01-01
Compared with conventional radio frequency (RF) shielding methods in which the conductive coating material encloses the circuits design and the leakage problem occurs due to the gap in such conductive material, non-contact RF shielding at a distance is very promising but still impossible to achieve so far. In this paper, a multi-folded transformation optics method is proposed to design a non-contact device for RF shielding. This “open-shielded” device can shield any object at a distance from the electromagnetic waves at the operating frequency, while the object is still physically open to the outer space. Based on this, an open-carpet cloak is proposed and the functionality of the open-carpet cloak is demonstrated. Furthermore, we investigate a scheme of non-contact wave guiding to remotely control the propagation of surface waves over any obstacles. The flexibilities of such multi-folded transformation optics method demonstrate the powerfulness of the method in the design of novel remote devices with impressive new functionalities. PMID:27841358
Guided wave phenomena in millimeter wave integrated circuits and components
NASA Astrophysics Data System (ADS)
Itoh, Tatsuo
1993-01-01
Representative projects from Army Research Office are summarized. Following the narrative descriptions with appropriate illustrations, a complete list of articles published in scientific journals and those presented at national and international conferences is provided. Lists of personnel and advanced degrees are also included. The projects were carried out at The University of Texas at Austin and later at UCLA. Topics covered include: quasi-optical technique; active antenna; active filter; traveling wave transistor; slow wave, planar transmission line; and discontinuities.
[Central nervous system relapse in diffuse large B cell lymphoma: Risk factors].
Sancho, Juan-Manuel; Ribera, Josep-Maria
2016-01-15
Central nervous system (CNS) involvement by lymphoma is a complication associated, almost invariably, with a poor prognosis. The knowledge of the risk factors for CNS relapse is important to determine which patients could benefit from prophylaxis. Thus, patients with very aggressive lymphomas (such as lymphoblastic lymphoma or Burkitt's lymphoma) must systematically receive CNS prophylaxis due to a high CNS relapse rate (25-30%), while in patients with indolent lymphoma (such as follicular lymphoma or marginal lymphoma) prophylaxis is unnecessary. However, the question about CNS prophylaxis in patients with diffuse large B-cell lymphoma (DLBCL), the most common type of lymphoma, remains controversial. The information available is extensive, mainly based on retrospective and heterogeneous studies. There seems that immunochemotherapy based on rituximab reduces the CNS relapse rate. On the other hand, patients with increased serum lactate dehydrogenase plus more than one extranodal involvement seem to have a higher risk of CNS relapse, but a prophylaxis strategy based only on the presence of these 2 factors does not prevent all CNS relapses. Patients with involvement of testes or breast have high risk of CNS relapse and prophylaxis is mandatory. Finally, CNS prophylaxis could be considered in patients with DLBCL and renal or epidural space involvement, as well as in those cases with MYC rearrangements, although additional studies are necessary. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.
Dendrimer advances for the central nervous system delivery of therapeutics.
Xu, Leyuan; Zhang, Hao; Wu, Yue
2014-01-15
The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included.
Dendrimer Advances for the Central Nervous System Delivery of Therapeutics
2013-01-01
The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included. PMID:24274162
Adamson, D Cory; Rasheed, B Ahmed K; McLendon, Roger E; Bigner, Darell D
2010-01-01
Several different types of tumors, benign and malignant, have been identified in the central nervous system (CNS). The prognoses for these tumors are related to several factors, such as the age of the patient and the location and histology of the tumor. In adults, about half of all CNS tumors are malignant, whereas in pediatric patients, more than 75% are malignant. For most benign CNS tumors that require treatment, neurosurgeons can offer curative resections or at least provide significant relief from mass effect. Unfortunately, we still lack effective treatments for most primary and secondary malignant CNS tumors. However, the past decade has witnessed an explosion in the understanding of the early molecular events in malignant primary CNS tumors, and for the first time in history, oncologists are seeing that a plethora of new therapies targeting these molecular events are being tested in clinical trials. There is hope on the horizon for the fight against these deadly tumors. The distribution of CNS tumors by location has remained constant for numerous years. The majority of primary CNS tumors arise in the major cortical lobes. Twenty nine percent of primary CNS tumors arise from the dural meninges that encase the CNS structures. The vast majority of these are meningiomas, of which over 90% are benign. About 10% of primary CNS tumors are found in the sella turcica region, where the pituitary gland resides. Other much less common sites of primary CNS tumors include the pineal region, ventricular system, cerebellum, brain stem, cranial nerves, and spinal cord. The distribution of CNS tumors by histology has seen a slight increase in more malignant tumors over the past decade, possibly due to increased neuroimaging practices or environmental exposures. Arising from glial cells, gliomas represent over 36% of all primary CNS tumors and consist of astrocytomas, oligodendrogliomas, ependymomas, mixed gliomas, and neuroepithelial tumors. The benign meningiomas make up 32% of primary CNS tumors, followed by nerve sheath tumors and pituitary tumors. Primary CNS lymphomas, embryonal tumors, and craniopharyngiomas are uncommon. The most common gliomas are astrocytomas, and these tumors are typically classified by the World Health Organization (WHO) as Grades I through IV. Grade IV, the most malignant grade of astrocytoma, includes glioblastoma multiforme (GBM), the most common malignant primary CNS glioma in adults, which represents 51% of all CNS gliomas. GBM is unfortunately the most challenging to effectively treat and has the worst patient survival. This chapter is therefore primarily devoted to the current understanding of this topic. Here we describe the molecular and cellular events associated with malignant glioma initiation and progression. We also review the importance of glioma stem cell biology and tumor immunology in early gliomagenesis. In addition, we present a brief description of the most common malignant primary CNS glioma in pediatric patients - medulloblastoma, as well as familial cancer syndromes that include gliomas as part of the syndrome.
Malecek, Mary-Kate; Petrich, Adam M; Rozell, Shaina; Chu, Benjamin; Trifilio, Steven; Galanina, Natalie; Maurer, Matthew; Farooq, Umar; Link, Brian K; Nowakowski, Grzegorz S; Nabhan, Chadi; Ayed, Ayed O
2017-11-01
Central nervous system (CNS) relapse in non-Hodgkin lymphoma (NHL) is a rare but serious complication that carries a poor prognosis. The use of infusional etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab (EPOCH-R) for frontline treatment of diffuse large B cell lymphoma (DLBCL) is increasing, though little is known about incidence of and risk factors for CNS relapse with this regimen PATIENTS AND METHODS: We completed a chart review of patients with NHL who received EPOCH-R as front line therapy. Data obtained included baseline and treatment characteristics including if patients received CNS directed therapy. We measured overall survival (OS), progression free survival (PFS), and progression to CNS involvement. We identified 223 patients who met the inclusion criteria, 72% had DLBCL. Of all the patients, 5.8% experienced CNS relapse, and 38.6% were treated with CNS prophylaxis. There was no difference in rate of CNS relapse, OS, or PFS between patients who had and had not received CNS prophylaxis. Patients whose serum lactate dehydrogenase was greater than twice the upper limit of normal at diagnosis and those with extranodal disease were significantly more likely to have CNS relapse (P = .0247 and 0.022, respectively) than their counterparts. The rate of CNS relapse in this patient population approaches 6%, not significantly different from reports on those receiving R-CHOP. The results of this study suggest that CNS prophylaxis might be more selectively used among patients treated with EPOCH-R with certain high-risk features. © 2017 Wiley Periodicals, Inc.
Non-local features of a hydrodynamic pilot-wave system
NASA Astrophysics Data System (ADS)
Nachbin, Andre; Couchman, Miles; Bush, John
2016-11-01
A droplet walking on the surface of a vibrating fluid bath constitutes a pilot-wave system of the form envisaged for quantum dynamics by Louis de Broglie: a particle moves in resonance with its guiding wave field. We here present an examination of pilot-wave hydrodynamics in a confined domain. Specifically, we present a one-dimensional water wave model that describes droplets walking in single and multiple cavities. The cavities are separated by a submerged barrier, and so allow for the study of tunneling. They also highlight the non-local dynamical features arising due to the spatially-extended wave field. Results from computational simulations are complemented by laboratory experiments.
Lee, Kang Yeol; Hwang, Hayoung; Kim, Tae Ho; Choi, Wonjoon
2016-02-10
The development of an efficient method for manipulating phase and surface transformations would facilitate the improvement of catalytic materials for use in a diverse range of applications. Herein, we present the first instance of a submicrosecond time frame direct phase and surface transformation of Bi(NO3)3 rods to nanoporous β-Bi2O3 rods via structure-guided combustion waves. Hybrid composites of the prepared Bi(NO3)3·H2O rods and organic fuel were fabricated by a facile preparation method. The anisotropic propagation of combustion waves along the interfacial boundaries of Bi(NO3)3·H2O rods induced direct phase transformation to β-Bi2O3 rods in the original structure due to the rapid pyrolysis, while the release of gas molecules enabled the formation of nanoporous structures on the surfaces of rods. The developed β-Bi2O3 rods showed improved photocatalytic activity for the photodegradation of rhodamine B in comparison with Bi(NO3)3·H2O rods and α-Bi2O3 rods due to the more suitable interdistance and the large contact areas of the porous surfaces. This new method of using structure-guided combustion waves for phase and surface transformation may contribute to the development of new catalysts as well as the precise manipulation of diverse micronanostructured materials.
NASA Astrophysics Data System (ADS)
Zerdali, M.; Bechiri, F.; Hamzaoui, S.; Teherani, F. H.; Rogers, D. J.; Sandana, V. E.; Bove, P.; Djemia, P.; Roussigné, Y.
2017-03-01
Brillouin light scattering (BLS) was conducted on melt-grown ZnO bulk crystals and ZnO thin films grown by pulsed laser deposition. The bulk ZnO crystals presented both longitudinal and transverse bulk acoustic waves. Theoretical calculations agreed well with there being one piezoelectric longitudinal branch and two transverse branches. BLS measurements conducted on ZnO thin films also revealed Rayleigh surface acoustic waves (R-SAW) guided by only the surface of the layer and Sezawa modes, guided by the film thickness. Measurements were conducted for three incidence angles in order to investigate different SAW wave numbers. Higher frequency features were identified as being related to a new class of guided longitudinal (LG) SAW modes which are not usually detected for ZnO thin films. The LG-SAW modes were observed for two incidence angles (θ=45° and 55°) corresponding to frequencies of 17.88 and 20.75 GHz, respectively. BLS measurements enable us to estimate the LG-SAW velocity as 6500 m/s. This value is three times higher than that of the currently used R-SAW. Theoretical simulations were coherent with the presence of LG modes in the ZnO layers. Such LG-SAW modes are promising for the development of novel, higher-speed SAW devices operating in the GHz-band and which could be readily incorporated in Si-based integrated circuitry.
Transforming guided waves with metamaterial waveguide cores
NASA Astrophysics Data System (ADS)
Viaene, S.; Ginis, V.; Danckaert, J.; Tassin, P.
2016-04-01
Metamaterials make use of subwavelength building blocks to enhance our control on the propagation of light. To determine the required material properties for a given functionality, i.e., a set of desired light flows inside a metamaterial device, metamaterial designs often rely on a geometrical design tool known as transformation optics. In recent years, applications in integrated photonics motivated several research groups to develop two-dimensional versions of transformation optics capable of routing surface waves along graphene-dielectric and metal-dielectric interfaces. Although guided electromagnetic waves are highly relevant to applications in integrated optics, no consistent transformation-optical framework has so far been developed for slab waveguides. Indeed, the conventional application of transformation optics to dielectric slab waveguides leads to bulky three-dimensional devices with metamaterial implementations both inside and outside of the waveguide's core. In this contribution, we develop a transformationoptical framework that still results in thin metamaterial waveguide devices consisting of a nonmagnetic metamaterial core of varying thickness [Phys. Rev. B 93.8, 085429 (2016)]. We numerically demonstrate the effectiveness and versatility of our equivalence relations with three crucial functionalities: a beam bender, a beam splitter and a conformal lens. Our devices perform well on a qualitative (comparison of fields) and quantitative (comparison of transmitted power) level compared to their bulky counterparts. As a result, the geometrical toolbox of transformation optics may lead to a plethora of integrated metamaterial devices to route guided waves along optical chips.
Diffusion region in magnetopause reconnection observed by the MMS mission
NASA Astrophysics Data System (ADS)
Chen, Li-Jen
2017-10-01
The diffusion region is the primary location where the plasmas are energized to dissipate the magnetic energy in reconnection. The NASA Magnetospheric Multiscale (MMS) mission, capable of resolving sub-gyroscales of both electrons and ions, has created new frontiers in the state-of-the-art understanding of the diffusion region. The MMS detection of reconnection at Earth's magnetopause will be discussed to highlight the roles of demagnetized particle orbits and wave fluctuations in the reconnection dynamics. When the guide field is significantly weaker than the reconnecting magnetic field, the reconnection current layer is gyro-resistive and the electron distribution functions exhibit strong finite-gyroradius effects with crescent and counterstreaming characteristics. When the guide field is comparable to the reconnecting component, the electron jets are mainly the E cross B drift due to the polarization electric field and the guide magnetic field, and the energy conversion at the jet reversal is dominated by the wave electric field near the lower hybrid frequency. Insensitive to the guide-field, the dense magnetosheath electrons in the reconnection exhaust are transported, by wave turbulence, across the magnetospheric separatrix to modify the plasma properties and field structures in the magnetosphere. The MMS results will be compared with available laboratory measurements from the Magnetic Reconnection Experiment in Princeton, and challenges in diffusion region physics will be discussed. The MMS and MRX teams are acknowledged. Work is supported by NASA, DOE, and NSF.
On the measurement of guided wavefields via air-coupled ultrasonic transducers
NASA Astrophysics Data System (ADS)
Michaels, Jennifer E.; Michaels, Thomas E.
2015-03-01
Guided wavefields are now routinely measured with scanning laser vibrometers for both characterization of guided wave propagation and damage assessment. However, these measurements are usually time-consuming, particularly for imaging of large areas, primarily because of the degree of signal averaging required to reduce incoherent noise. A scanned air-coupled transducer is an alternative wavefield acquisition method that is based upon recording the very small amplitude pressure waves that leak into air from the out-of-plane motion of the guided wavefield. Air-coupled methods are attractive because they are not sensitive to small variations in surface optical reflectivity and special surface preparations are thus not necessary. In addition, not as much averaging is needed, making the acquisition process much faster. Unlike laser vibrometry, the recorded signals are not a direct measure of the wave motion, but experiments have shown that the acquired wavefields resemble those obtained from laser-based systems. For the work presented here, wavefield data were recorded with both methods for the same aluminum plate and composite panel specimens. Data are qualitatively compared in several domains to assess differences in temporal characteristics and modal content. Although signals are not identical, it is shown that the air-coupled transducer data exhibits similar modal content to that of the laser vibrometry data and may provide a reasonable alternative for some applications.
Lan, Chengming; Zhou, Wensong; Xie, Yawen
2018-04-16
This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range.
Xie, Yawen
2018-01-01
This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range. PMID:29659540
Antiretroviral drug treatment of CNS HIV-1 infection.
Yilmaz, Aylin; Price, Richard W; Gisslén, Magnus
2012-02-01
The advent of combination antiretroviral treatment has had a profound impact on CNS HIV infection and its clinical complications, but neurological impairment still occurs in patients on systemically effective combination therapy, and in some patients it may be important to consider antiretroviral drug entry and effects within the CNS. There are now data on the CNS exposure for most antiretroviral drugs. This review focuses on the CNS pharmacokinetics and pharmacodynamics of antiretroviral drugs in humans, and also discusses controversies in this field.
Research Performed within the Non-Destructive Evaluation Team at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Burns, Erin A.
2004-01-01
Non-destructive testing is essential in many fields of manufacturing and research in order to perform reliable examination of potentially damaged materials and parts without destroying the inherent structure of the materials. Thus, the Non-Destructive Evaluation (NDE) Team at NASA Glenn Research Center partakes in various projects to improve materials testing equipment as well as analyze materials, material defects, and material deficiencies. Due to the array of projects within the NDE Team at this time, five research aims were supplemental to some current projects. A literature survey of "DE and testing methodologies as related to rocks was performed. Also, Mars Expedition Rover technology was assessed to understand the requirements for instrumentation in harsh space environments (e.g. temperature). Potential instrumentation and technologies were also considered and documented. The literature survey provided background and potential sources for a proposal to acquire funding for ultrasonic instrumentation on board a future Mars expedition. The laboratory uses a Santec Systems AcousticScope AS200 acoustography system. Labview code was written within the current program in order to improve the current performance of the acoustography system. A sample of Reinforced Carbon/Carbon (RCC) material from the leading edge of the space shuttle underwent various non-destructive tests (guided wave scanning, thermography, computed tomography, real time x-ray, etc.) in order to characterize its structure and examine possible defects. Guided wave scan data of a ceramic matrix composite (CMC) panel was reanalyzed utilizing image correlations and signal processing variables. Additional guided wave scans and thermography were also performed on the CMC panel. These reevaluated data and images will be used in future presentations and publications. An additional axis for the guided wave scanner was designed, constructed, and implemented. This additional axis allowed incremental spacing of the previously fixed transducers for ultrasonic velocity measurements.
Defect classification in sparsity-based structural health monitoring
NASA Astrophysics Data System (ADS)
Golato, Andrew; Ahmad, Fauzia; Santhanam, Sridhar; Amin, Moeness G.
2017-05-01
Guided waves have gained popularity in structural health monitoring (SHM) due to their ability to inspect large areas with little attenuation, while providing rich interactions with defects. For thin-walled structures, the propagating waves are Lamb waves, which are a complex but well understood type of guided waves. Recent works have cast the defect localization problem of Lamb wave based SHM within the sparse reconstruction framework. These methods make use of a linear model relating the measurements with the scene reflectivity under the assumption of point-like defects. However, most structural defects are not perfect points but tend to assume specific forms, such as surface cracks or internal cracks. Knowledge of the "type" of defects is useful in the assessment phase of SHM. In this paper, we present a dual purpose sparsity-based imaging scheme which, in addition to accurately localizing defects, properly classifies the defects present simultaneously. The proposed approach takes advantage of the bias exhibited by certain types of defects toward a specific Lamb wave mode. For example, some defects strongly interact with the anti-symmetric modes, while others strongly interact with the symmetric modes. We build model based dictionaries for the fundamental symmetric and anti-symmetric wave modes, which are then utilized in unison to properly localize and classify the defects present. Simulated data of surface and internal defects in a thin Aluminum plate are used to validate the proposed scheme.
Generation of THz Wave with Orbital Angular Momentum by Graphene Patch Reflectarray
2015-07-01
potential to significantly increase spectral efficiency and channel capacity for wireless communication [1]. A few techniques have been reported to...plane wave. The graphene-based OAM generation is very promising for future applications in THz wireless communication . ACKNOWLEDGEMENT This work is... Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” Journal of Applied Physics, vol. 103, no. 6, pp
Nd:YAG Pulsed Laser based flaw imaging techniques for noncontact NDE of an aluminum plate
NASA Astrophysics Data System (ADS)
Park, Woong-Ki; Lee, Changgil; Park, Seunghee
2012-04-01
Recently, the longitudinal, shear and surface waves have been very widely used as a kind of ultrasonic wave exploration methods to identify internal defects of metallic structures. The ultrasonic wave-based non-destructive testing (NDT) is one of main non-destructive inspection techniques for a health assessment about nuclear power plant, aircraft, ships, and/or automobile manufacturing. In this study, a noncontact pulsed laser-based flaw imaging NDT technique is implemented to detect the damage of a plate-like structure and to identify the location of the damage. To achieve this goal, the Nd:YAG pulsed laser equipment is used to generate a guided wave and scans a specific area to find damage location. The Nd: YAG pulsed laser is used to generate Lamb wave and piezoelectric sensors are installed to measure structural responses. Ann aluminum plate is investigated to verify the effectiveness and the robustness of the proposed NDT approach. A notch is a target to detect, which is inflicted on the surface of an aluminum plate. The damagesensitive features are extracted by comparing the time of flight of the guided wave obtained from an acoustic emission (AE) sensor and make use of the flaw imaging techniques of the aluminum plate.
Using PVDF for wavenumber-frequency analysis and excitation of guided waves
NASA Astrophysics Data System (ADS)
Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J.
2018-04-01
The role of transducers in nondestructive evaluation using ultrasonic guided waves cannot be overstated. Energy conversion from electrical to mechanical for actuation and then back to electrical for signal processing broadly describes transduction, but there are many other aspects of transducers that determine their effectiveness. Recently we have reported on polyvinylidene difluoride (PVDF) array sensors that enable determination of the wavenumber spectrum, which enables modal content in the received signal to be characterized. Modal content is an important damage indicator because, for example, mode conversion is a frequent consequence of wave interaction with defects. Some of the positive attributes of PVDF sensors are: broad frequency bandwidth, compliance for use on curved surfaces, limited influence on the passing wave, minimal cross-talk between elements, low profile, low mass, and inexpensive. The anisotropy of PVDF films also enables them to receive either Lamb waves or shear horizontal waves by proper alignment of the material principal coordinate axes. Placing a patterned set of electrodes on the PVDF film provides data from an array of elements. A linear array of elements is used to enable a 2D fast Fourier transform to determine the wavenumber spectrum of both Lamb waves and shear horizontal waves in an aluminum plate. Moreover, since PVDF film can sustain high voltage excitation, high power pulsers can be used to improve the signal-to-noise ratio. The capability of PVDF as a transmitter has been demonstrated with high voltage excitation.
Advances in Meningeal Immunity.
Rua, Rejane; McGavern, Dorian B
2018-06-01
The central nervous system (CNS) is an immunologically specialized tissue protected by a blood-brain barrier. The CNS parenchyma is enveloped by a series of overlapping membranes that are collectively referred to as the meninges. The meninges provide an additional CNS barrier, harbor a diverse array of resident immune cells, and serve as a crucial interface with the periphery. Recent studies have significantly advanced our understanding of meningeal immunity, demonstrating how a complex immune landscape influences CNS functions under steady-state and inflammatory conditions. The location and activation state of meningeal immune cells can profoundly influence CNS homeostasis and contribute to neurological disorders, but these cells are also well equipped to protect the CNS from pathogens. In this review, we discuss advances in our understanding of the meningeal immune repertoire and provide insights into how this CNS barrier operates immunologically under conditions ranging from neurocognition to inflammatory diseases. Published by Elsevier Ltd.
Communications, Navigation, and Surveillance Models in ACES: Design Implementation and Capabilities
NASA Technical Reports Server (NTRS)
Kubat, Greg; Vandrei, Don; Satapathy, Goutam; Kumar, Anil; Khanna, Manu
2006-01-01
Presentation objectives include: a) Overview of the ACES/CNS System Models Design and Integration; b) Configuration Capabilities available for Models and Simulations using ACES with CNS Modeling; c) Descriptions of recently added, Enhanced CNS Simulation Capabilities; and d) General Concepts Ideas that Utilize CNS Modeling to Enhance Concept Evaluations.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
... an ongoing accounting system that nets each day's Settling Trades with the prior day's Closing... Continuous Net Settlement (``CNS'') system \\5\\ (and for CNS-eligible items that are designated to be... value through the CNS system. Non-CNS eligible items, however, are assigned a market value pursuant to...
Cao, Xiaodong; Xu, Chuanhui; Liu, Yuhong; Chen, Yukun
2013-01-30
A series of carboxylated styrene-butadiene rubber (XSBR)/cellulose nanocrystals (CNs) latex composites were successfully prepared. The vulcanization process, morphology, dynamic viscoelastic behavior, dynamic mechanical property, thermal and mechanical performance of the XSBR/CNs composites were investigated in detail. The results revealed that CNs were dispersed uniformly in the XSBR matrix and formed a strong filler-filler network. The dynamic mechanical analysis (DMA) showed that the glass transition temperature (T(g)) of XSBR matrix was shifted from 48.45 to 50.64 °C with 3 phr CNs, but decreased from 50.64 to 46.28 °C when further increasing CNs content up to 15 phr. The composites exhibited a significant enhancement in tensile strength (from 16.9 to 24.1 MPa) and tear strength (from 43.5 to 65.2 MPa) with loading CNs from 0 to 15 phr. In addition, the thermo-gravimetric analysis (TGA) showed that the temperature at 5% weight loss of the XSBR/CNs composites decreased slightly with an increase of the CNs content. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Ou, Sai-Hong Ignatius; Weitz, Michael; Jalas, John R; Kelly, Daniel F; Wong, Vanessa; Azada, Michele C; Quines, Oliver; Klempner, Samuel J
2016-06-01
Alectinib is a second generation ALK inhibitor that has significant clinical activity in central nervous system (CNS) metastases in anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). Pseudoprogression (PsP) due to radiation necrosis during alecitnib treatment of central nervous system (CNS) metastases from ALK-rearranged NSCLC as been reported. Hence, distinguishing radiation-related PsP from alectinib-induced radiographic changes is important to avoid erroneous early trial discontinuation and abandonment of an effective treatment. However, it remains difficult to assess casuality of radiation necrosis is related to recent direct radiation or induced by alectinib treatment or both. It is also unknown how long from previous radiation can alectinib still induce radiation necrosis. Here we reported a crizotinib-refractory ALK-positive NSCLC patient who develop radiation necrosis in one of his metastatic CNS lesions after approximately 12 months of alectinib treatment who otherwise had on-going CNS response on alectinib. His most recent radiation to his CNS metastases was 7 years prior to the start of alectinib. This case illustrates that in the setting of pror CNS radiation, given the significant clinical activity of alectinib in CNS metastases in ALK-positive NSCLC patients the risk of CNS radiation necrosis remains long after previous radiation to the CNS metastases has been completed and can occur after durable response of treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Thiazole containing Heterocycles with CNS activity.
Kalal, Priyanka; Gandhi, Divyani; Prajapat, Prakash; Agarwal, Shikha
2017-07-24
Thiazoles are promising scaffolds in the area of medicinal and pharmaceutical chemistry and have accounted to show different pharmacophoric properties. For the last years, thiazole derivatives have focused too much attention to develop different new CNS active agents. It has been broadly used to generate diverse therapeutic agents against various CNS targets. Histamine H3 receptors are seriously involved in the pathophysiology of numerous disorders of the central nervous system. The literature survey has been done using different database from peer-reviewed journals. The quality of repossessed papers was evaluated using standard tools. The details of important papers were described to focus on the potency of thiazole containing heterocycles with CNS activity. Eighty nine papers were included in the review indicating thiazole containing heterocycles with CNS activity. (1) to (30) papers included different thiazole derivatives impregnated withCNS activity. Different CNS agents have been shown in references (37) to (56). The remaining papers have been searched for anticonvulsant agents (57) to (78) and other miscellaneous activities from (79) to (89). A detailed investigation has been carried out on thiazoles and its derivatives to judge its efficacy to overcome several CNS disorders. This article covers the recent updates of thiazole and its derivative with CNS activity already present in literature and will definitely provide a better platform for the production and development of potent thiazole based CNS vigorous drugs in near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The Cheapbook: A Compendium of Inexpensive Exhibit Ideas, 1995 Edition.
ERIC Educational Resources Information Center
Orselli, Paul, Ed.
This guide includes complete installation descriptions of 30 exhibits. They include: the adjustable birthday cake, ball-in-tube, Bernoulli Box, chain wave, collapsible truss bridge, double wave device, eddy currents raceway, full-length mirror, geodesic domes, giant magnetic tangrams, harmonic cantilever, hyperboloid of revolution, lifting lever,…
Coastal Awareness: A Resource Guide for Teachers in Junior High Science.
ERIC Educational Resources Information Center
Rasmussen, Frederick A.
Background information, activity suggestions, and recommended resource materials comprise this guide for designing a week-long ecology unit for junior high school students on Coastal Awareness. Discussed is how various physical processes such as waves, currents, and tides affect rocky shores, marshes, sandy beaches, and estuaries. To encourage…
Coastal Awareness: A Resource Guide for Teachers in Elementary Science.
ERIC Educational Resources Information Center
Rasmussen, Frederick A.
Intended to encourage elementary teachers to explore coastal ecology with their students, this guide presents background material, activity suggestions, and recommended resource materials that could be used in designing a week-long unit on Coastal Awareness. Discussed is how various physical processes such as waves, tides, and currents affect…
Lebar, R; Lubetzki, C; Vincent, C; Lombrail, P; Boutry, J M
1986-01-01
Autoantibodies with in-vitro demyelinating capacity induced in Hartley and strain 13 guinea pigs with homologous central nervous system (CNS) tissue were used to characterize the target autoantigen M2. Using the Dot Immunobinding technique, M2 was found to be a component of CNS myelin different from basic protein (BP) and from cerebroside. The expression of M2 on oligodendrocytes, cells known to produce CNS myelin, also confirmed that M2 was a component of CNS myelin. Furthermore, the autoradiography of immunoprecipitates formed with radiolabelled guinea pig myelin and analysed in sodium dodecyl sulphate gels showed that M2 was specific to CNS myelin and absent in peripheral nervous system (PNS) myelin. On electrophoresis M2 appeared as two CNS myelin protein bands at the 27 and 54 KD molecular weight levels, distinct from the major protein bands of proteolipid and BP. M2 bands were of glycoprotein nature, as was demonstrated by affinity chromatography of CNS myelin on wheat germ agglutinin (WGA)-Sepharose. A monoclonal antibody induced by BP-free CNS glycoproteins recognized the same bands as anti-M2 serum in guinea pig CNS myelin. This would imply that both M2 bands share common determinants. M2 bands similar to the above in guinea pig were also shown in rat, rabbit and bovine CNS myelin with guinea pig antibodies. The same type of anti-M2 antibodies were induced in rabbit immunized with homologous CNS tissue. Although only a minor component of myelin, M2 is strongly immunogenic compared to BP. M2 antigen could thus be the target of chronic demyelinating processes such as experimental allergic encephalomyelitis. Images Fig. 1 Figure 2 Fig. 3 Fig. 4 PMID:2434274
High frequency of brain metastases after adjuvant therapy for high-risk melanoma.
Samlowski, Wolfram E; Moon, James; Witter, Merle; Atkins, Michael B; Kirkwood, John M; Othus, Megan; Ribas, Antoni; Sondak, Vernon K; Flaherty, Lawrence E
2017-11-01
The incidence of CNS progression in patients with high-risk regional melanoma (stages IIIAN2a-IIIC) is not well characterized. Data from the S0008 trial provided an opportunity to examine the role of CNS progression in treatment failure and survival. All patients were surgically staged. Following wide excision and full regional lymphadenectomy, patients were randomized to receive adjuvant biochemotherapy (BCT) or high-dose interferon alfa-2B (HDI). CNS progression was retrospectively identified from data forms. Survival was measured from date of CNS progression. A total of 402 eligible patients were included in the analysis (BCT: 199, HDI: 203). Median follow-up (if alive) was over 7 years (range: 1 month to 11 years). The site of initial progression was identifiable in 80% of relapsing patients. CNS progression was a component of systemic melanoma relapse in 59/402 patients (15% overall). In 34/402 patients (9%) CNS progression represented the initial site of treatment failure. CNS progression was a component of initial progression in 27% of all patients whose melanoma relapsed (59/221). The risk of CNS progression was highest within 3 years of randomization. The difference in CNS progression rates between treatment arms was not significant (BCT = 25, HDI = 34, P = 0.24). Lymph node macrometastases strongly associated with CNS progression (P = 0.001), while ulceration and head and neck primaries were not significant predictors. This retrospective analysis of the S0008 trial identified a high brain metastasis rate (15%) in regionally advanced melanoma patients. Further studies are needed to establish whether screening plus earlier treatment would improve survival following CNS progression. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Kegler, Kristel; Imbschweiler, Ilka; Ulrich, Reiner; Kovermann, Peter; Fahlke, Christoph; Deschl, Ulrich; Kalkuhl, Arno; Baumgärnter, Wolfgang; Wewetzer, Konstantin
2014-06-01
Central nervous system (CNS) injury triggers production of myelinating Schwann cells from endogenous oligodendrocyte precursors (OLPs). These CNS Schwann cells may be attractive candidates for novel therapeutic strategies aiming to promote endogenous CNS repair. However, CNS Schwann cells have been so far mainly characterized in situ regarding morphology and marker expression, and it has remained enigmatic whether they display functional properties distinct from peripheral nervous system (PNS) Schwann cells. Potassium channels (K+) have been implicated in progenitor and glial cell proliferation after injury and may, therefore, represent a suitable pharmacological target. In the present study, we focused on the function and expression of voltage-gated K+ channels Kv(1-12) and accessory β-subunits in purified adult canine CNS and PNS Schwann cell cultures using electrophysiology and microarray analysis and characterized their antigenic phenotype. We show here that K+ channels differed significantly in both cell types. While CNS Schwann cells displayed prominent K D-mediated K+ currents, PNS Schwann cells elicited K(D-) and K(A-type) K+ currents. Inhibition of K+ currents by TEA and Ba2+ was more effective in CNS Schwann cells. These functional differences were not paralleled by differential mRNA expression of Kv(1-12) and accessory β-subunits. However, O4/A2B5 and GFAP expressions were significantly higher and lower, respectively, in CNS than in PNS Schwann cells. Taken together, this is the first evidence that CNS Schwann cells display specific properties not shared by their peripheral counterpart. Both Kv currents and increased O4/A2B5 expression were reminiscent of OLPs suggesting that CNS Schwann cells retain OLP features during maturation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, A.L.; Goodsall, A.L.; Sedgwick, J.D.
1995-05-01
Ramified microglia in the adult central nervous system (CNS) are the principal glial element up-regulating MHC class I and II expression in response to inflammatory events or neuronal damage. A proportion of these cells also express MHC class II constitutively in the normal CNS. The role of microglia as APCs for CD4{sup +} cells extravasating into the CNS remains undefined. In this study, using irradiation bone marrow chimeras in CD45-congenic rats, the phenotype CD45{sup low}CD11b/c{sup +} is shown to identify microglial cells specifically within the CNS. Highly purified populations of microglia and nonmicroglial but CNS-associated macrophages (CD45{sup high}CD11b/c{sup +}) havemore » been obtained directly from the adult CNS, by using flow cytometric sorting. Morphologically, freshly isolated microglia vs other CNS macrophages are quite distinct. Of the two populations recovered from the normal CNS, it is the minority CD45{sup high}CD11 b/c{sup +} transitional macrophage population, and not microglia, that is the effective APC for experimental autoimmune encephalomyelitis-inducing CD4{sup +} myelin basic protein (MBP)-reactive T cells. CD45{sup high}CD11b/c{sup +} CNS macrophages also stimulate MBP-reactive T cells without addition of MBP to culture suggesting presentation of endogenous Ag. This is the first study in which microglia vs other CNS macrophages have been analyzed for APC ability directly from the CNS, with substantial cross-contamination between the two populations eliminated. The heterogeneity of these populations in terms of APC function is clearly demonstrated. Evidence is still lacking that adult CNS microglia have the capacity to interact with and stimulate CD4{sup +} T cells to proliferate or secrete IL-2. 60 refs., 6 figs., 1 tab.« less
McCoach, Caroline E; Berge, Eamon M; Lu, Xian; Barón, Anna E; Camidge, D Ross
2016-03-01
Central nervous system (CNS) metastases are common in non-small cell lung cancer (NSCLC), yet clinical trials of new drugs in advanced NSCLC have varying inclusion and exclusion criteria for CNS disease. The true extent of variation in CNS-related enrollment criteria in NSCLC clinical trials has not been documented. We performed a systematic search of the ClinicalTrials.gov website to characterize interventional drug trials enrolling adult patients with advanced NSCLC. Of 413 open trials, 78 (19%) strictly excluded patients with leptomeningeal disease (LMD). Separate from LMD, patients with any history of CNS metastases were strictly excluded in 59 trials (14%), allowed after local treatment in 169 (41%), and allowed with no prior treatment in 106 (26%). No explicit mention of CNS disease was made in 79 trials (19%). In multivariate analysis looking at trial phase, location, sponsor, and treatment type, only sponsor was statistically significant, with pharmaceutical industry-sponsored trials having higher odds of excluding patients with brain metastases than did university or investigator-initiated trials (OR = 2.262, 95% confidence interval: 1.063-4.808, p = 0.0342) CONCLUSIONS: With 14% to 19% of trials excluding any history of LMD or CNS parenchymal metastatic disease and 41% of trials permitting CNS disease only after prior CNS-directed treatment, direct evidence of activity of a treatment on CNS disease cannot be reliably generated in most NSCLC trials. Given the high frequency of CNS disease in NSCLC and only sponsor being associated with specific CNS exclusion criteria, sponsors should consider tailoring trial designs to explore CNS benefit more explicitly. Copyright © 2015 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Pestalozzi, Bernhard C; Holmes, Eileen; de Azambuja, Evandro; Metzger-Filho, Otto; Hogge, Laurence; Scullion, Matt; Láng, István; Wardley, Andrew; Lichinitser, Mikhail; Sanchez, Roberto I Lopez; Müller, Volkmar; Dodwell, David; Gelber, Richard D; Piccart-Gebhart, Martine J; Cameron, David
2013-03-01
Several randomised trials have confirmed the benefit of adjuvant trastuzumab for patients with HER2-positive early breast cancer. However, concern has been expressed that adjuvant trastuzumab might be associated with an increased frequency of CNS relapses. We assessed the frequency and course of CNS relapses, either as first event or at any time, using data from the HERA trial. We estimated the cumulative incidence of first disease-free survival (DFS) events in the CNS versus other sites by competing risks analysis in patients with HER2-positive early breast cancer who had been randomly assigned to receive 1 year of trastuzumab or to observation in the HERA trial after a median follow-up of 4 years (IQR 3·5-4·8). To obtain further information about CNS relapse at any time before death, we circulated a data collection form to investigators to obtain standardised information about CNS events that occurred in all patients who had died before July, 2009. We estimated the cumulative incidence of CNS relapse at any time with a competing risks analysis. Of 3401 patients who had been assigned to receive 1 year of trastuzumab or to observation, 69 (2%) had a CNS relapse as first DFS event and 747 (22%) had a first DFS event not in the CNS. The frequency of CNS relapses as first DFS event did not differ between the group given 1 year of trastuzumab (37 [2%] of 1703 patients) and the observation group (32 [2%] of 1698; p=0·55 [Gray's test]). 481 data collection forms were distributed, of which 413 (86%) were returned. The proportion of patients who had died and experienced a CNS relapse was numerically higher in the observation group (129 [57%] of 227) than in the group given trastuzumab for 1 year (88 [47%] of 186; p=0·06 [Gray's test]). Most CNS relapses were symptomatic (189 [87%] of 217). Adjuvant trastuzumab does not increase the risk of CNS relapse in patients with HER2-positive early breast cancer. None. Copyright © 2013 Elsevier Ltd. All rights reserved.
Collett, Garen A; Song, Kangwon; Jaramillo, Carlos A; Potter, Jennifer S; Finley, Erin P; Pugh, Mary Jo
The increase in the quantities of central nervous system (CNS)-acting medications prescribed has coincided with increases in overdose mortality, suicide-related behaviors, and unintentional deaths in military personnel deployed in support of the wars in Iraq and Afghanistan. Data on the extent and impact of prescribing multiple CNS drugs among Iraq and Afghanistan Veterans (IAVs) are sparse. We sought to identify the characteristics of IAVs with CNS polypharmacy and examine the association of CNS polypharmacy with drug overdose and suicide-related behaviors controlling for known risk factors. This cross-sectional cohort study examined national data of Iraq and Afghanistan Veterans ( N = 311,400) who used the Veterans Health Administration (VHA) during the fiscal year 2011. CNS polypharmacy was defined as five or more CNS-acting medications; drug/alcohol overdose and suicide-related behaviors were identified using ICD-9-CM codes. Demographic and clinical characteristics associated with CNS polypharmacy were identified using a multivariable logistic regression model. We found that 25,546 (8.4 %) of Iraq and Afghanistan Veterans had CNS polypharmacy. Those with only post-traumatic stress disorder (PTSD) (adjusted odds ratio (AOR) 6.50, 99 % confidence interval (CI) 5.96-7.10), only depression (AOR 6.42, 99 % CI 5.86-7.04), co-morbid PTSD and depression (AOR 12.98, 99 % CI 11.97-14.07), and co-morbid traumatic brain injury (TBI), PTSD, and depression (AOR 15.30, 99 % CI 14.00-16.73) had the highest odds of CNS polypharmacy. After controlling for these co-morbid conditions, CNS polypharmacy was significantly associated with drug/alcohol overdose and suicide-related behavior. CNS polypharmacy was most strongly associated with PTSD, depression, and TBI, and independently associated with overdose and suicide-related behavior after controlling for known risk factors. These findings suggest that CNS polypharmacy may be used as an indicator of risk for adverse outcomes. Further research should evaluate whether CNS polypharmacy may be used as a trigger for evaluation of the current care provided to these individuals.
Collett, Garen A; Song, Kangwon; Jaramillo, Carlos A; Potter, Jennifer S; Finley, Erin P; Pugh, Mary Jo
2016-03-01
The increase in the quantities of central nervous system (CNS)-acting medications prescribed has coincided with increases in overdose mortality, suicide-related behaviors, and unintentional deaths in military personnel deployed in support of the wars in Iraq and Afghanistan. Data on the extent and impact of prescribing multiple CNS drugs among Iraq and Afghanistan Veterans (IAVs) are sparse. We sought to identify the characteristics of IAVs with CNS polypharmacy and examine the association of CNS polypharmacy with drug overdose and suicide-related behaviors controlling for known risk factors. This cross-sectional cohort study examined national data of Iraq and Afghanistan Veterans (N = 311,400) who used the Veterans Health Administration (VHA) during the fiscal year 2011. CNS polypharmacy was defined as five or more CNS-acting medications; drug/alcohol overdose and suicide-related behaviors were identified using ICD-9-CM codes. Demographic and clinical characteristics associated with CNS polypharmacy were identified using a multivariable logistic regression model. We found that 25,546 (8.4 %) of Iraq and Afghanistan Veterans had CNS polypharmacy. Those with only post-traumatic stress disorder (PTSD) (adjusted odds ratio (AOR) 6.50, 99 % confidence interval (CI) 5.96-7.10), only depression (AOR 6.42, 99 % CI 5.86-7.04), co-morbid PTSD and depression (AOR 12.98, 99 % CI 11.97-14.07), and co-morbid traumatic brain injury (TBI), PTSD, and depression (AOR 15.30, 99 % CI 14.00-16.73) had the highest odds of CNS polypharmacy. After controlling for these co-morbid conditions, CNS polypharmacy was significantly associated with drug/alcohol overdose and suicide-related behavior. CNS polypharmacy was most strongly associated with PTSD, depression, and TBI, and independently associated with overdose and suicide-related behavior after controlling for known risk factors. These findings suggest that CNS polypharmacy may be used as an indicator of risk for adverse outcomes. Further research should evaluate whether CNS polypharmacy may be used as a trigger for evaluation of the current care provided to these individuals.
Gadgeel, Shirish M; Shaw, Alice T; Govindan, Ramaswamy; Gandhi, Leena; Socinski, Mark A; Camidge, D Ross; De Petris, Luigi; Kim, Dong-Wan; Chiappori, Alberto; Moro-Sibilot, Denis L; Duruisseaux, Michael; Crino, Lucio; De Pas, Tommaso; Dansin, Eric; Tessmer, Antje; Yang, James Chih-Hsin; Han, Ji-Youn; Bordogna, Walter; Golding, Sophie; Zeaiter, Ali; Ou, Sai-Hong Ignatius
2016-12-01
Purpose Alectinib has shown activity in the CNS in phase I and II studies. To further evaluate this activity, we pooled efficacy and safety data from two single-arm phase II studies (NP28761 and NP28673; ClinicalTrials.gov identifiers: NCT01871805 and NCT01801111, respectively) in patients with ALK-positive non-small-cell lung cancer (NSCLC). Patients and Methods Both studies included patients with ALK-positive NSCLC who had previously received crizotinib; all patients received alectinib 600 mg twice per day. The primary end point in both studies was independent review committee (IRC)-assessed objective response rate (ORR; by Response Evaluation Criteria in Solid Tumors [RECIST] version 1.1). Additional end points (all by IRC) included CNS ORR (CORR), CNS disease control rate (CDCR), and CNS duration of response (CDOR). Results One hundred thirty-six patients had baseline CNS metastases (60% of the overall study populations); 50 patients (37%) had measurable CNS disease at baseline. Ninety-five patients (70%) had prior CNS radiotherapy; 55 patients completed the CNS radiotherapy more than 6 months before starting alectinib. Median follow-up time was 12.4 months (range, 0.9 to 19.7 months). For patients with baseline measurable CNS disease, IRC CORR was 64.0% (95% CI, 49.2% to 77.1%), CDCR was 90.0% (95% CI, 78.2% to 96.7%), and median CDOR was 10.8 months (95% CI, 7.6 to 14.1 months). For patients with measurable and/or nonmeasurable baseline CNS disease, IRC CORR was 42.6% (95% CI, 34.2% to 51.4%), CDCR was 85.3% (95% CI, 78.2% to 90.8%), and median CDOR was 11.1 months (95% CI, 10.3 months to not evaluable). CORR was 35.8% (95% CI, 26.2% to 46.3%) for patients with prior radiotherapy (n = 95) and 58.5% (95% CI, 42.1% to 73.7%) for patients without prior radiotherapy (n = 41). As previously reported, alectinib was well tolerated, regardless of baseline CNS disease. Conclusion Alectinib showed good efficacy against CNS metastases, in addition to systemic activity, in crizotinib-refractory ALK-positive NSCLC.
MR-guided adaptive focusing of ultrasound
Larrat, Benoît; Pernot, Mathieu; Montaldo, Gabriel; Fink, Mathias; Tanter, Mickaël
2010-01-01
Adaptive focusing of ultrasonic waves under the guidance of a Magnetic Resonance (MR) system is demonstrated for medical applications. This technique is based on the maximization of the ultrasonic wave intensity at one targeted point in space. The wave intensity is indirectly estimated from the local tissue displacement induced at the chosen focus by the acoustic radiation force of ultrasonic beams. Coded ultrasonic waves are transmitted by an ultrasonic array and an MRI scanner is used to measure the resulting local displacements through a motion sensitive MR sequence. After the transmission of a set of spatially encoded ultrasonic waves, a non iterative inversion process is employed to accurately estimate the spatial-temporal aberration induced by the propagation medium and to maximize the acoustical intensity at the target. Both programmable and physical aberrating layers introducing strong distortions (up to 2π radians) were recovered within acceptable errors (<0.8 rad). This non invasive technique is shown to accurately correct phase aberrations in a phantom gel with negligible heat deposition and limited acquisition time. These refocusing performances demonstrate a major potential in the field of MR-Guided Ultrasound Therapy in particular for transcranial brain HIFU. PMID:20704061
Temperature effects in ultrasonic Lamb wave structural health monitoring systems.
Lanza di Scalea, Francesco; Salamone, Salvatore
2008-07-01
There is a need to better understand the effect of temperature changes on the response of ultrasonic guided-wave pitch-catch systems used for structural health monitoring. A model is proposed to account for all relevant temperature-dependent parameters of a pitch-catch system on an isotropic plate, including the actuator-plate and plate-sensor interactions through shear-lag behavior, the piezoelectric and dielectric permittivity properties of the transducers, and the Lamb wave dispersion properties of the substrate plate. The model is used to predict the S(0) and A(0) response spectra in aluminum plates for the temperature range of -40-+60 degrees C, which accounts for normal aircraft operations. The transducers examined are monolithic PZT-5A [PZT denotes Pb(Zr-Ti)O3] patches and flexible macrofiber composite type P1 patches. The study shows substantial changes in Lamb wave amplitude response caused solely by temperature excursions. It is also shown that, for the transducers considered, the response amplitude changes follow two opposite trends below and above ambient temperature (20 degrees C), respectively. These results can provide a basis for the compensation of temperature effects in guided-wave damage detection systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Hu; Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an Shaanxi 710024
2015-06-15
A V-band overmoded relativistic backward wave oscillator (RBWO) guided by low magnetic field and operating on a TM{sub 03} mode is presented to increase both the power handling capacity and the wave-beam interaction conversion efficiency. Trapezoidal slow wave structures (SWSs) with shallow corrugations and long periods are adopted to make the group velocity of TM{sub 03} mode at the intersection point close to zero. The coupling impedance and diffraction Q-factor of the RBWO increase, while the starting current decreases owing to the reduction of the group velocity of TM{sub 03} mode. In addition, the TM{sub 03} mode dominates over themore » other modes in the startup of the oscillation. Via numerical simulation, the generation of the microwave pulse with an output power of 425 MW and a conversion efficiency of 32% are achieved at 60.5 GHz with an external magnetic field of 1.25 T. This RBWO can provide greater power handling capacity when operating on the TM{sub 03} mode than on the TM{sub 01} mode.« less
Wireless power transmission using ultrasonic guided waves
NASA Astrophysics Data System (ADS)
Kural, A.; Pullin, R.; Featherston, C.; Paget, C.; Holford, K.
2011-07-01
The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.
Integrated optical signal processing with magnetostatic waves
NASA Technical Reports Server (NTRS)
Fisher, A. D.; Lee, J. N.
1984-01-01
Magneto-optical devices based on Bragg diffraction of light by magnetostatic waves (MSW's) offer the potential of large time-bandwidth optical signal processing at microwave frequencies of 1 to 20 GHz and higher. A thin-film integrated-optical configuration, with the interacting MSW and guided-optical wave both propagating in a common ferrite layer, is necessary to avoid shape-factor demagnetization effects. The underlying theory of the MSW-optical interaction is outlined, including the development of expressions for optical diffraction efficiency as a function of MSW power and other relevant parameters. Bradd diffraction of guided-optical waves by transversely-propagating magnetostatic waves and collinear TE/TM mode conversion included by MSW's have been demonstrated in yttrium iron garnet (YIG) thin films. Diffraction levels as large as 4% (7 mm interaction length) and a modulation dynamic range of approx 30 dB have been observed. Advantages of these MSW-based devices over the analogous acousto-optical devices include: much greater operating frequencies, tunability of the MSW dispersion relation by varying either the RF frequency or the applied bias magnetic field, simple broad-band MSW transducer structures (e.g., a single stripline), and the potential for very high diffraction efficiencies.