NASA Astrophysics Data System (ADS)
Pires, Sandrine; Starck, Jean-Luc; Leonard, Adrienne; Réfrégier, Alexandre
2012-03-01
This chapter reviews the data mining methods recently developed to solve standard data problems in weak gravitational lensing. We detail the different steps of the weak lensing data analysis along with the different techniques dedicated to these applications. An overview of the different techniques currently used will be given along with future prospects. Until about 30 years ago, astronomers thought that the Universe was composed almost entirely of ordinary matter: protons, neutrons, electrons, and atoms. The field of weak lensing has been motivated by the observations made in the last decades showing that visible matter represents only about 4-5% of the Universe (see Figure 14.1). Currently, the majority of the Universe is thought to be dark, that is, does not emit electromagnetic radiation. The Universe is thought to be mostly composed of an invisible, pressure less matter - potentially relic from higher energy theories - called "dark matter" (20-21%) and by an even more mysterious term, described in Einstein equations as a vacuum energy density, called "dark energy" (70%). This "dark" Universe is not well described or even understood; its presence is inferred indirectly from its gravitational effects, both on the motions of astronomical objects and on light propagation. So this point could be the next breakthrough in cosmology. Today's cosmology is based on a cosmological model that contains various parameters that need to be determined precisely, such as the matter density parameter Omega_m or the dark energy density parameter Omega_lambda. Weak gravitational lensing is believed to be the most promising tool to understand the nature of dark matter and to constrain the cosmological parameters used to describe the Universe because it provides a method to directly map the distribution of dark matter (see [1,6,60,63,70]). From this dark matter distribution, the nature of dark matter can be better understood and better constraints can be placed on dark energy
Instrumental systematics and weak gravitational lensing
NASA Astrophysics Data System (ADS)
Mandelbaum, R.
2015-05-01
We present a pedagogical review of the weak gravitational lensing measurement process and its connection to major scientific questions such as dark matter and dark energy. Then we describe common ways of parametrizing systematic errors and understanding how they affect weak lensing measurements. Finally, we discuss several instrumental systematics and how they fit into this context, and conclude with some future perspective on how progress can be made in understanding the impact of instrumental systematics on weak lensing measurements.
Baryons, neutrinos, feedback and weak gravitational lensing
NASA Astrophysics Data System (ADS)
Harnois-Déraps, Joachim; van Waerbeke, Ludovic; Viola, Massimo; Heymans, Catherine
2015-06-01
The effect of baryonic feedback on the dark matter mass distribution is generally considered to be a nuisance to weak gravitational lensing. Measurements of cosmological parameters are affected as feedback alters the cosmic shear signal on angular scales smaller than a few arcminutes. Recent progress on the numerical modelling of baryon physics has shown that this effect could be so large that, rather than being a nuisance, the effect can be constrained with current weak lensing surveys, hence providing an alternative astrophysical insight on one of the most challenging questions of galaxy formation. In order to perform our analysis, we construct an analytic fitting formula that describes the effect of the baryons on the mass power spectrum. This fitting formula is based on three scenarios of the OverWhelmingly Large hydrodynamical simulations. It is specifically calibrated for z < 1.5, where it models the simulations to an accuracy that is better than 2 per cent for scales k < 10 h Mpc-1 and better than 5 per cent for 10 < k < 100 h Mpc-1. Equipped with this precise tool, this paper presents the first constraint on baryonic feedback models using gravitational lensing data, from the Canada France Hawaii Telescope Lensing Survey (CFHTLenS). In this analysis, we show that the effect of neutrino mass on the mass power spectrum is degenerate with the baryonic feedback at small angular scales and cannot be ignored. Assuming a cosmology precision fixed by WMAP9, we find that a universe with massless neutrinos is rejected by the CFHTLenS lensing data with 85-98 per cent confidence, depending on the baryon feedback model. Some combinations of feedback and non-zero neutrino masses are also disfavoured by the data, although it is not yet possible to isolate a unique neutrino mass and feedback model. Our study shows that ongoing weak gravitational lensing surveys (KiDS, HSC and DES) will offer a unique opportunity to probe the physics of baryons at galactic scales, in
Atomic Inference from Weak Gravitational Lensing Data
Marshall, Phil; /KIPAC, Menlo Park
2005-12-14
We present a novel approach to reconstructing the projected mass distribution from the sparse and noisy weak gravitational lensing shear data. The reconstructions are regularized via the knowledge gained from numerical simulations of clusters, with trial mass distributions constructed from n NFW profile ellipsoidal components. The parameters of these ''atoms'' are distributed a priori as in the simulated clusters. Sampling the mass distributions from the atom parameter probability density function allows estimates of the properties of the mass distribution to be generated, with error bars. The appropriate number of atoms is inferred from the data itself via the Bayesian evidence, and is typically found to be small, reecting the quality of the data. Ensemble average mass maps are found to be robust to the details of the noise realization, and succeed in recovering the demonstration input mass distribution (from a realistic simulated cluster) over a wide range of scales. As an application of such a reliable mapping algorithm, we comment on the residuals of the reconstruction and the implications for predicting convergence and shear at specific points on the sky.
NASA Astrophysics Data System (ADS)
Tsukamoto, Naoki; Kitamura, Takao; Nakajima, Koki; Asada, Hideki
2014-09-01
The gravitational lensing effects in the weak gravitational field by exotic lenses have been investigated intensively to find nonluminous exotic objects. Gravitational lensing based on 1/rn fall-off metric, as a one-parameter model that can treat by hand both the Schwarzschild lens (n =1) and the Ellis wormhole (n =2) in the weak field, has been recently studied. Only for n=1 case, however, it has been explicitly shown that effects of relativistic lens images by the strong field on the light curve can be neglected. We discuss whether relativistic images by the strong field can be neglected for n>1 in the Tangherlini spacetime which is one of the simplest models for our purpose. We calculate the divergent part of the deflection angle for arbitrary n and the regular part for n=1, 2 and 4 in the strong field limit, the deflection angle for arbitrary n under the weak gravitational approximation. We also compare the radius of the Einstein ring with the radii of the relativistic Einstein rings for arbitrary n. We conclude that the images in the strong gravitational field have little effect on the total light curve and that the time-symmetric demagnification parts in the light curve will appear even after taking account of the images in the strong gravitational field for n>1.
The general theory of secondary weak gravitational lensing
Clarkson, Chris
2015-09-01
Weak gravitational lensing is normally assumed to have only two principle effects: a magnification of a source and a distortion of the sources shape in the form of a shear. However, further distortions are actually present owing to changes in the gravitational field across the scale of the ray bundle of light propagating to us, resulting in the familiar arcs in lensed images. This is normally called the flexion, and is approximated by Taylor expanding the shear and magnification across the image plane. However, the physical origin of this effect arises from higher-order corrections in the geodesic deviation equation governing the gravitational force between neighbouring geodesics— so involves derivatives of the Riemann tensor. We show that integrating the second-order geodesic deviation equation results in a 'Hessian map' for gravitational lensing, which is a higher-order addition to the Jacobi map. We derive the general form of the Hessian map in an arbitrary spacetime paying particular attention to the separate effects of local Ricci versus non-local Weyl curvature. We then specialise to the case of a perturbed FLRW model, and give the general form of the Hessian for the first time. This has a host of new contributions which could in principle be used as tests for modified gravity.
Weak Gravitational Lensing from Regular Bardeen Black Holes
NASA Astrophysics Data System (ADS)
Ghaffarnejad, Hossein; niad, Hassan
2016-03-01
In this article we study weak gravitational lensing of regular Bardeen black hole which has scalar charge g and mass m. We investigate the angular position and magnification of non-relativistic images in two cases depending on the presence or absence of photon sphere. Defining dimensionless charge parameter q= {g}/{2m} we seek to disappear photon sphere in the case of |q|>{24√5}/{125} for which the space time metric encounters strongly with naked singularities. We specify the basic parameters of lensing in terms of scalar charge by using the perturbative method and found that the parity of images is different in two cases: (a) The strongly naked singularities is present in the space time. (b) singularity of space time is weak or is eliminated (the black hole lens).
Karhunen-Loeve Analysis for Weak Gravitational Lensing
NASA Astrophysics Data System (ADS)
Vanderplas, Jacob T.
In the past decade, weak gravitational lensing has become an important tool in the study of the universe at the largest scale, giving insights into the distribution of dark matter, the expansion of the universe, and the nature of dark energy. This thesis research explores several applications of Karhunen-Loève (KL) analysis to speed and improve the comparison of weak lensing shear catalogs to theory in order to constrain cosmological parameters in current and future lensing surveys. This work addresses three related aspects of weak lensing analysis: Three-dimensional Tomographic Mapping: (Based on work published in Vanderplas et al 2011) We explore a new fast approach to three-dimensional mass mapping in weak lensing surveys. The KL approach uses a KL-based filtering of the shear signal to reconstruct mass structures on the line-of-sight, and provides a unified framework to evaluate the efficacy of linear reconstruction techniques. We find that the KL-based filtering leads to near-optimal angular resolution, and computation times which are faster than previous approaches. We also use the KL formalism to show that linear non-parametric reconstruction methods are fundamentally limited in their ability to resolve lens redshifts. Shear Peak Statistics with Incomplete Data: (Based on work published in Vanderplas et al 2012) We explore the use of KL eigenmodes for interpolation across masked regions in observed shear maps. Mass mapping is an inherently non-local calculation, meaning gaps in the data can have a significant effect on the properties of the derived mass map. Our KL mapping procedure leads to improvements in the recovery of detailed statistics of peaks in the mass map, which holds promise of improved cosmological constraints based on such studies. Two-point parameter estimation with KL modes: The power spectrum of the observed shear can yield powerful cosmological constraints. Incomplete survey sky coverage, however, can lead to mixing of power between
Combining Strong and Weak Gravitational Lensing in Abell 1689
NASA Astrophysics Data System (ADS)
Limousin, Marceau; Richard, Johan; Jullo, Eric; Kneib, Jean-Paul; Fort, Bernard; Soucail, Geneviève; Elíasdóttir, Árdís; Natarajan, Priyamvada; Ellis, Richard S.; Smail, Ian; Czoske, Oliver; Smith, Graham P.; Hudelot, Patrick; Bardeau, Sébastien; Ebeling, Harald; Egami, Eiichi; Knudsen, Kirsten K.
2007-10-01
We present a reconstruction of the mass distribution of galaxy cluster Abell 1689 at z=0.18 using detected strong lensing features from deep ACS observations and extensive ground based spectroscopy. Earlier analyses have reported up to 32 multiply imaged systems in this cluster, of which only 3 were spectroscopically confirmed. In this work, we present a parametric strong lensing mass reconstruction using 34 multiply imaged systems of which 24 have newly determined spectroscopic redshifts, which is a major step forward in building a robust mass model. In turn, the new spectroscopic data allows a more secure identification of multiply imaged systems. The resultant mass model enables us to reliably predict the redshifts of additional multiply imaged systems for which no spectra are currently available, and to use the location of these systems to further constrain the mass model. Using our strong lensing mass model, we predict on larger scale a shear signal which is consistent with that inferred from our large scale weak lensing analysis derived using CFH12K wide field images. Thanks to a new method for reliably selecting a well defined background lensed galaxy population, we resolve the discrepancy found between the NFW concentration parameters derived from earlier strong and weak lensing analysis. The derived parameters for the best fit NFW profile is found to be c200=7.6+/-1.6 and r200=2.16+/-0.10 h-170 Mpc (corresponding to a 3D mass equal to M200=[1.32+/-0.2]×1015 h70 Msolar). The large number of new constraints incorporated in this work makes Abell 1689 the most reliably reconstructed cluster to date. This well calibrated mass model, which we here make publicly available, will enable us to exploit Abell 1689 efficiently as a gravitational telescope, as well as to potentially constrain cosmology. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des
Constraining modified gravitational theories by weak lensing with Euclid
Martinelli, Matteo; Calabrese, Erminia; De Bernardis, Francesco; Melchiorri, Alessandro; Pagano, Luca; Scaramella, Roberto
2011-01-15
Future proposed satellite missions such as Euclid can offer the opportunity to test general relativity on cosmic scales through mapping of the galaxy weak-lensing signal. In this paper we forecast the ability of these experiments to constrain modified gravity scenarios such as those predicted by scalar-tensor and f(R) theories. We find that Euclid will improve constraints expected from the Planck satellite on these modified theories of gravity by 2 orders of magnitude. We discuss parameter degeneracies and the possible biases introduced by modifications to gravity.
Gravitational lensing beyond the weak-field approximation
NASA Astrophysics Data System (ADS)
Perlick, Volker
2014-01-01
Gravitational lensing is considered in the full spacetime formalism of general relativity, assuming that the light rays are lightlike geodesics in a Lorentzian manifold. The review consists of three parts. The first part is devoted to spherically symmetric and static spacetimes. In particular, an exact lens map for this situation is discussed. The second part is on axisymmetric and stationary spacetimes. It concentrates on the investigation of the photon region, i.e., the region filled by spherical lightlike geodesics, in the Kerr spacetime. The photon region is of crucial relevance for the formation of a shadow. Finally, the third part briefly addresses two topics that apply to spacetimes without symmetry, namely Fermat's principle and the exact lens map of Frittelli and Newman.
Gravitational lensing beyond the weak-field approximation
Perlick, Volker
2014-01-14
Gravitational lensing is considered in the full spacetime formalism of general relativity, assuming that the light rays are lightlike geodesics in a Lorentzian manifold. The review consists of three parts. The first part is devoted to spherically symmetric and static spacetimes. In particular, an exact lens map for this situation is discussed. The second part is on axisymmetric and stationary spacetimes. It concentrates on the investigation of the photon region, i.e., the region filled by spherical lightlike geodesics, in the Kerr spacetime. The photon region is of crucial relevance for the formation of a shadow. Finally, the third part briefly addresses two topics that apply to spacetimes without symmetry, namely Fermat’s principle and the exact lens map of Frittelli and Newman.
Turner, E.L.
1988-07-01
For several years astronomers have devoted considerable effort to finding and studying a class of celestial phenomena whose very existence depends on rare cosmic accidents. These are gravitational-lens events, which occur when two or more objects at different distances from the earth happen to lie along the same line of sight and so coincide in the sky. The radiation from the more distant object, typically a quasar, is bent by the gravitational field of the foreground object. The bending creates a cosmic mirage: distorted or multiple images of the background object. Such phenomena may reveal many otherwise undetectable features of the image source, of the foreground object and of the space lying between them. Such observations could help to resolve several fundamental questions in cosmology. In the past decade theoretical and observational research on gravitational lenses has grown rapidly and steadily. At this writing at least 17 candidate lens systems have been discussed in the literature. Of the 17 lens candidates reported so far in professional literature, only five are considered to have been reliably established by subsequent observations. Another three are generally regarded as weak or speculative cases with less than 50 percent chance of actually being lens systems. In the remaining nine cases the evidence is mixed or is sparse enough so that the final judgment could swing either way. As might be concluded, little of the scientific promise of gravitational lenses has yet been realized. The work has not yielded a clear value for the proportionality constant or any of the other fundamental cosmological parameter. 7 figs.
Weak Gravitational Lensing by Galaxy Troughs in the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Gruen, Daniel; Dark Energy Survey Collaboration
2016-06-01
The Dark Energy Survey (DES) is in the process of imaging 5000 sq. deg. of the southern sky in five broad-band filters. Its primary purpose is to constrain cosmology and the physics of dark energy using weak gravitational lensing, galaxy clusters, baryonic acoustic oscillations, and supernova distance measurements.I will give an overview of weak gravitational lensing results from early DES data, with a focus on the newly developed galaxy trough statistics. Using the latter, we have made the highest signal-to-noise lensing measurements of the low density Universe to date, probing gravity and structure formation in the underdense regime. Besides these recent results, I will give an outlook on cosmological and astrophysical applications of the trough lensing signal.
Constraining stochastic gravitational wave background from weak lensing of CMB B-modes
NASA Astrophysics Data System (ADS)
Shaikh, Shabbir; Mukherjee, Suvodip; Rotti, Aditya; Souradeep, Tarun
2016-09-01
A stochastic gravitational wave background (SGWB) will affect the CMB anisotropies via weak lensing. Unlike weak lensing due to large scale structure which only deflects photon trajectories, a SGWB has an additional effect of rotating the polarization vector along the trajectory. We study the relative importance of these two effects, deflection & rotation, specifically in the context of E-mode to B-mode power transfer caused by weak lensing due to SGWB. Using weak lensing distortion of the CMB as a probe, we derive constraints on the spectral energy density (ΩGW) of the SGWB, sourced at different redshifts, without assuming any particular model for its origin. We present these bounds on ΩGW for different power-law models characterizing the SGWB, indicating the threshold above which observable imprints of SGWB must be present in CMB.
Lincoln, Don
2016-07-12
In a long line of intellectual triumphs, Einsteinâs theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilabâs Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.
Lincoln, Don
2015-06-24
In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.
NASA Astrophysics Data System (ADS)
Saha, P.; Murdin, P.
2000-11-01
Gravity bends light rays in a way analogous to, but quantitatively different from, the way it bends trajectories of passing particles. If light from some bright object passes close enough to some foreground mass, that object's image will be altered. The effect is more like a piece of bathroom glass in the sky than a precision-ground and well-focused lens, but the terms `gravitational lensing' or ...
Constraining Horava-Lifshitz gravity by weak and strong gravitational lensing
Horvath, Zsolt; Gergely, Laszlo A.; Keresztes, Zoltan; Harko, Tiberiu; Lobo, Francisco S. N.
2011-10-15
We discuss gravitational lensing in the Kehagias-Sfetsos space-time emerging in the framework of Horava-Lifshitz gravity. In weak lensing, we show that there are three regimes, depending on the value of {lambda}=1/{omega}d{sup 2}, where {omega} is the Horava-Lifshitz parameter and d characterizes the lensing geometry. When {lambda} is close to zero, light deflection typically produces two images, as in Schwarzschild lensing. For very large {lambda}, the space-time approaches flatness, therefore there is only one undeflected image. In the intermediate range of {lambda}, only the upper focused image is produced due to the existence of a maximal deflection angle {delta}{sub max}, a feature inexistent in the Schwarzschild weak lensing. We also discuss the location of Einstein rings, and determine the range of the Horava-Lifshitz parameter compatible with present-day lensing observations. Finally, we analyze in the strong lensing regime the first two relativistic Einstein rings and determine the constraints on the parameter range to be imposed by forthcoming experiments.
Initial Results from a Laboratory Emulation of Weak Gravitational Lensing Measurements
NASA Astrophysics Data System (ADS)
Seshadri, S.; Shapiro, C.; Goodsall, T.; Fucik, J.; Hirata, C.; Rhodes, J. D.; Rowe, B. T. P.; Smith, R. M.
2013-09-01
Weak gravitational lensing observations are a key science driver for the NASA Wide Field Infrared Survey Telescope (WFIRST). To validate the performance of the WFIRST infrared detectors, we have performed a laboratory emulation of weak gravitational lensing measurements. Our experiments used a custom precision projector system to image a target mask composed of a grid of pinholes, emulating stellar point sources, onto a 1.7 μm cut-off Teledyne HgCdTe/H2RG detector. We used a 0.88 μm LED illumination source and f/22 pupil stop to produce undersampled point spread functions similar to those expected from WFIRST. We also emulated the WFIRST image reconstruction strategy, using the image combination (IMCOM) algorithm to derive oversampled images from dithered, undersampled input images. We created shear maps for this data and computed shear correlation functions to mimic a real weak lensing analysis. After removing only second-order polynomial fits to the shear maps, we found that the correlation functions could be reduced to O(10-6). This places a conservative upper limit on the detector-induced bias to the correlation function (under our test conditions). This bias is two orders of magnitude lower than the expected weak lensing signal. Restricted to scales relevant to dark energy analyses (sky separations >0.5'), the bias is O(10-7)—comparable to the requirement for future weak lensing missions to avoid biasing cosmological parameter estimates. Our experiment will need to be upgraded and repeated under different configurations to fully characterize the shape measurement performance of WFIRST IR detectors.
Rotation of the cosmic microwave background polarization from weak gravitational lensing.
Dai, Liang
2014-01-31
When a cosmic microwave background (CMB) photon travels from the surface of last scatter through spacetime metric perturbations, the polarization vector may rotate about its direction of propagation. This gravitational rotation is distinct from, and occurs in addition to, the lensing deflection of the photon trajectory. This rotation can be sourced by linear vector or tensor metric perturbations and is fully coherent with the curl deflection field. Therefore, lensing corrections to the CMB polarization power spectra as well as the temperature-polarization cross correlations due to nonscalar perturbations are modified. The rotation does not affect lensing by linear scalar perturbations, but needs to be included when calculations go to higher orders. We present complete results for weak lensing of the full-sky CMB power spectra by general linear metric perturbations, taking into account both deflection of the photon trajectory and rotation of the polarization. For the case of lensing by gravitational waves, we show that the B modes induced by the rotation largely cancel those induced by the curl component of deflection. PMID:24580435
Weyl fluid dark matter model tested on the galactic scale by weak gravitational lensing
NASA Astrophysics Data System (ADS)
Wong, K. C.; Harko, T.; Cheng, K. S.; Gergely, L. Á.
2012-08-01
The higher-dimensional Weyl curvature induces on the brane a new source of gravity. This Weyl fluid of geometrical origin (reducing in the spherically symmetric, static configuration to a dark radiation and dark pressure) modifies spacetime geometry around galaxies and has been shown to explain the flatness of galactic rotation curves. Independent observations for discerning between the Weyl fluid and other dark matter models are necessary. Gravitational lensing could provide such a test. Therefore we study null geodesics and weak gravitational lensing in the dark radiation dominated region of galaxies in a class of spherically symmetric braneworld metrics. We find that the lensing profile in the braneworld scenario is distinguishable from dark matter lensing, despite both the braneworld scenario and dark matter models fitting the rotation curve data. In particular, in the asymptotic regions, light deflection is 18% enhanced as compared to dark matter halo predictions. For a linear equation of state of the Weyl fluid, we further find a critical radius below which braneworld effects reduce, while above it they amplify light deflection. This is in contrast to any dark matter model, the addition of which always increases the deflection angle.
An accurate and practical method for inference of weak gravitational lensing from galaxy images
NASA Astrophysics Data System (ADS)
Bernstein, Gary M.; Armstrong, Robert; Krawiec, Christina; March, Marisa C.
2016-07-01
We demonstrate highly accurate recovery of weak gravitational lensing shear using an implementation of the Bayesian Fourier Domain (BFD) method proposed by Bernstein & Armstrong, extended to correct for selection biases. The BFD formalism is rigorously correct for Nyquist-sampled, background-limited, uncrowded images of background galaxies. BFD does not assign shapes to galaxies, instead compressing the pixel data D into a vector of moments M, such that we have an analytic expression for the probability P(M|g) of obtaining the observations with gravitational lensing distortion g along the line of sight. We implement an algorithm for conducting BFD's integrations over the population of unlensed source galaxies which measures ≈10 galaxies s-1 core-1 with good scaling properties. Initial tests of this code on ≈109 simulated lensed galaxy images recover the simulated shear to a fractional accuracy of m = (2.1 ± 0.4) × 10-3, substantially more accurate than has been demonstrated previously for any generally applicable method. Deep sky exposures generate a sufficiently accurate approximation to the noiseless, unlensed galaxy population distribution assumed as input to BFD. Potential extensions of the method include simultaneous measurement of magnification and shear; multiple-exposure, multiband observations; and joint inference of photometric redshifts and lensing tomography.
WEAK GRAVITATIONAL LENSING AS A PROBE OF PHYSICAL PROPERTIES OF SUBSTRUCTURES IN DARK MATTER HALOS
Shirasaki, Masato
2015-02-01
We propose a novel method to select satellite galaxies in outer regions of galaxy groups or clusters using weak gravitational lensing. The method is based on the theoretical expectation that the tangential shear pattern around satellite galaxies would appear with negative values at an offset distance from the center of the main halo. We can thus locate the satellite galaxies statistically with an offset distance of several lensing smoothing scales by using the standard reconstruction of surface mass density maps from weak lensing observation. We test the idea using high-resolution cosmological simulations. We show that subhalos separated from the center of the host halo are successfully located even without assuming the position of the center. For a number of such subhalos, the characteristic mass and offset length can be also estimated on a statistical basis. We perform a Fisher analysis to show how well upcoming weak lensing surveys can constrain the mass density profile of satellite galaxies. In the case of the Large Synoptic Survey Telescope with a sky coverage of 20,000 deg{sup 2}, the mass of the member galaxies in the outer region of galaxy clusters can be constrained with an accuracy of ∼0.1 dex for galaxy clusters with mass 10{sup 14} h {sup –1} M {sub ☉} at z = 0.15. Finally we explore the detectability of tidal stripping features for subhalos having a wide range of masses of 10{sup 11}-10{sup 13} h {sup –1} M {sub ☉}.
NASA Astrophysics Data System (ADS)
Harnois-Déraps, Joachim; van Waerbeke, Ludovic
2015-07-01
Numerical N-body simulations play a central role in the assessment of weak gravitational lensing statistics, residual systematics and error analysis. In this paper, we investigate and quantify the impact of finite simulation volume on weak lensing two- and four-point statistics. These finite support (FS) effects are modelled for several estimators, simulation box sizes and source redshifts, and validated against a new large suite of 500 N-body simulations. The comparison reveals that our theoretical model is accurate to better than 5 per cent for the shear correlation function ξ+(θ) and its error. We find that the most important quantities for FS modelling are the ratio between the measured angle θ and the angular size of the simulation box at the source redshift, θbox(zs), or the multipole equivalent ℓ/ℓbox(zs). When this ratio reaches 0.1, independently of the source redshift, the shear correlation function ξ+ is suppressed by 5, 10, 20 and 25 per cent for Lbox = 1000, 500, 250 and 147 h-1 Mpc, respectively. The same effect is observed in ξ-(θ), but at much larger angles. This has important consequences for cosmological analyses using N-body simulations and should not be overlooked. We propose simple semi-analytic correction strategies that account for shape noise and survey masks, generalizable to any weak lensing estimator. From the same simulation suite, we revisit the existing non-Gaussian covariance matrix calibration of the shear correlation function, and propose a new one based on the 9-year Wilkinson Microwave Anisotropy Probe)+baryon acoustic oscillations+supernova cosmology. Our calibration matrix is accurate at 20 per cent down to the arcminute scale, for source redshifts in the range 0 < z < 3, even for the far off-diagonal elements. We propose, for the first time, a parametrization for the full ξ- covariance matrix, also 20 per cent accurate for most elements.
NASA Technical Reports Server (NTRS)
Turner, Edwin L.
1989-01-01
Recent observational and theoretical investigations of gravitational-lens phenomena are reviewed, and sample numerical data are presented in tables. Particular attention is given to luminous arcs, radio rings, galaxy-quasar associations, the problem of deriving actually or practically unique models of individual lens systems, and time delays and the Hubble constant.
Probing Dark Energy via Weak Gravitational Lensing with the Supernova Acceleration Probe (SNAP)
Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN
2005-08-08
SNAP is a candidate for the Joint Dark Energy Mission (JDEM) that seeks to place constraints on the dark energy using two distinct methods. The first, Type Ia SN, is discussed in a separate white paper. The second method is weak gravitational lensing, which relies on the coherent distortions in the shapes of background galaxies by foreground mass structures. The excellent spatial resolution and photometric accuracy afforded by a 2-meter space-based observatory are crucial for achieving the high surface density of resolved galaxies, the tight control of systematic errors in the telescope's Point Spread Function (PSF), and the exquisite redshift accuracy and depth required by this project. These are achieved by the elimination of atmospheric distortion and much of the thermal and gravity loads on the telescope. The SN and WL methods for probing dark energy are highly complementary and the error contours from the two methods are largely orthogonal. The nominal SNAP weak lensing survey covers 1000 square degrees per year of operation in six optical and three near infrared filters (NIR) spanning the range 350 nm to 1.7 {micro}m. This survey will reach a depth of 26.6 AB magnitude in each of the nine filters and allow for approximately 100 resolved galaxies per square arcminute, {approx} 3 times that available from the best ground-based surveys. Photometric redshifts will be measured with statistical accuracy that enables scientific applications for even the faint, high redshift end of the sample. Ongoing work aims to meet the requirements on systematics in galaxy shape measurement, photometric redshift biases, and theoretical predictions.
NASA Astrophysics Data System (ADS)
Troxel, M. A.; Ishak, Mustapha
2015-02-01
The wealth of incoming and future cosmological observations will allow us to map out the structure and evolution of the observable universe to an unprecedented level of precision. Among these observations is the weak gravitational lensing of galaxies, e.g., cosmic shear that measures the minute distortions of background galaxy images by intervening cosmic structure. Weak lensing and cosmic shear promise to be a powerful probe of astrophysics and cosmology, constraining models of dark energy, measuring the evolution of structure in the universe, and testing theories of gravity on cosmic scales. However, the intrinsic alignment of galaxies-their shape and orientation before being lensed-may pose a great challenge to the use of weak gravitational lensing as an accurate cosmological probe, and has been identified as one of the primary physical systematic biases in cosmic shear studies. Correlations between this intrinsic alignment and the lensing signal can persist even for large physical separations, and isolating the effect of intrinsic alignment from weak lensing is not trivial. A great deal of work in the last two decades has been devoted to understanding and characterizing this intrinsic alignment, which is also a direct and complementary probe of structure formation and evolution in its own right. In this review, we report in a systematic way the state of our understanding of the intrinsic alignment of galaxies, with a particular emphasis on its large-scale impact on weak lensing measurements and methods for its isolation or mitigation. We begin with an introduction to the use of cosmic shear as a probe for cosmology and describe the various physical contributions by intrinsic alignment to the shear or convergence 2- and 3-point correlations. We then review developments in the modeling of the intrinsic alignment signal, including a trend toward attempting to incorporate more accurate nonlinear and single halo effects. The impact on cosmological constraints by the
NASA Astrophysics Data System (ADS)
Higuchi, Yuichi; Shirasaki, Masato
2016-07-01
We study the effect of f(R) gravity on the statistical properties of various large-scale structures which can be probed in weak gravitational lensing measurements. A set of ray-tracing simulations of gravitational lensing in f(R) gravity enables us to explore cosmological information on (i) stacking analyses of weak lensing observables and (ii) peak statistics in reconstructed lensing mass maps. For the f(R) model proposed by Hu & Sawicki, the measured lensing signals of dark matter haloes in the stacking analysis would show a ≲10 per cent difference between the standard Λcold dark matter and the f(R) model when the additional degree of freedom in f(R) model would be |fR0| ˜ 10-5. Among various large-scale structures to be studied in stacking analysis, troughs, i.e. underdensity regions in projected plane of foreground massive haloes, could be promising to constrain the model with |fR0| ˜ 10-5, while stacking analysis around voids is found to be difficult to improve the constraint of |fR0| even in future lensing surveys with a sky coverage of ˜1000 deg2. On the peak statistics, we confirm the correspondence between local maxima and dark matter haloes along the line of sight, regardless of the modification of gravity in our simulation. Thus, the number count of high significance local maxima would be useful to probe the mass function of dark matter haloes even in the f(R) model with |fR0| ≲ 10-5. We also find that including local minima in lensing mass maps would be helpful to improve the constant on f(R) gravity down to |fR0| = 10-5 in ongoing weak lensing surveys.
Zhang Pengjie
2010-09-10
The galaxy intrinsic alignment is a severe challenge to precision cosmic shear measurement. We propose self-calibrating the induced gravitational shear-galaxy intrinsic ellipticity correlation (the GI correlation) in weak lensing surveys with photometric redshift measurements. (1) We propose a method to extract the intrinsic ellipticity-galaxy density cross-correlation (I-g) from the galaxy ellipticity-density measurement in the same redshift bin. (2) We also find a generic scaling relation to convert the extracted I-g correlation to the necessary GI correlation. We perform a concept study under simplified conditions and demonstrate its capability to significantly reduce GI contamination. We discuss the impact of various complexities on the two key ingredients of the self-calibration technique, namely the method for extracting the I-g correlation and the scaling relation between the I-g and the GI correlation. We expect that none of them will likely be able to completely invalidate the proposed self-calibration technique.
NASA Astrophysics Data System (ADS)
Plazas, A. A.; Shapiro, C.; Kannawadi, A.; Mandelbaum, R.; Rhodes, J.; Smith, R.
2016-10-01
Weak gravitational lensing (WL) is one of the most powerful techniques to learn about the dark sector of the universe. To extract the WL signal from astronomical observations, galaxy shapes must be measured and corrected for the point-spread function (PSF) of the imaging system with extreme accuracy. Future WL missions—such as NASA’s Wide-Field Infrared Survey Telescope (WFIRST)—will use a family of hybrid near-infrared complementary metal-oxide-semiconductor detectors (HAWAII-4RG) that are untested for accurate WL measurements. Like all image sensors, these devices are subject to conversion gain nonlinearities (voltage response to collected photo-charge) that bias the shape and size of bright objects such as reference stars that are used in PSF determination. We study this type of detector nonlinearity (NL) and show how to derive requirements on it from WFIRST PSF size and ellipticity requirements. We simulate the PSF optical profiles expected for WFIRST and measure the fractional error in the PSF size (ΔR/R) and the absolute error in the PSF ellipticity (Δe) as a function of star magnitude and the NL model. For our nominal NL model (a quadratic correction), we find that, uncalibrated, NL can induce an error of ΔR/R = 1 × 10-2 and Δe 2 = 1.75 × 10-3 in the H158 bandpass for the brightest unsaturated stars in WFIRST. In addition, our simulations show that to limit the bias of ΔR/R and Δe in the H158 band to ˜10% of the estimated WFIRST error budget, the quadratic NL model parameter β must be calibrated to ˜1% and ˜2.4%, respectively. We present a fitting formula that can be used to estimate WFIRST detector NL requirements once a true PSF error budget is established.
Inverting Gravitational Lenses
NASA Astrophysics Data System (ADS)
Newbury, P. R.; Spiteri, R. J.
2002-02-01
Gravitational lensing provides a powerful tool to study a number of fundamental questions in astrophysics. Fortuitously, one can begin to explore some non-trivial issues associated with this phenomenon without a lot of very sophisticated mathematics, making an elementary treatment of this topic tractable even to senior undergraduates. In this paper, we give a relatively self-contained outline of the basic concepts and mathematics behind gravitational lensing as a recent and exciting topic for courses in mathematical modeling or scientific computing. To this end, we have designed and made available some interactive software to aid in the simulation and inversion of gravitational lenses in a classroom setting.
Cosmology with weak lensing surveys.
Munshi, Dipak; Valageas, Patrick
2005-12-15
Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening mass. Since the lensing effects arise from deflections of the light rays due to fluctuations of the gravitational potential, they can be directly related to the underlying density field of the large-scale structures. Weak gravitational surveys are complementary to both galaxy surveys and cosmic microwave background observations as they probe unbiased nonlinear matter power spectra at medium redshift. Ongoing CMBR experiments such as WMAP and a future Planck satellite mission will measure the standard cosmological parameters with unprecedented accuracy. The focus of attention will then shift to understanding the nature of dark matter and vacuum energy: several recent studies suggest that lensing is the best method for constraining the dark energy equation of state. During the next 5 year period, ongoing and future weak lensing surveys such as the Joint Dark Energy Mission (JDEM; e.g. SNAP) or the Large-aperture Synoptic Survey Telescope will play a major role in advancing our understanding of the universe in this direction. In this review article, we describe various aspects of probing the matter power spectrum and the bi-spectrum and other related statistics with weak lensing surveys. This can be used to probe the background dynamics of the universe as well as the nature of dark matter and dark energy.
Cosmology with weak lensing surveys.
Munshi, Dipak; Valageas, Patrick
2005-12-15
Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening mass. Since the lensing effects arise from deflections of the light rays due to fluctuations of the gravitational potential, they can be directly related to the underlying density field of the large-scale structures. Weak gravitational surveys are complementary to both galaxy surveys and cosmic microwave background observations as they probe unbiased nonlinear matter power spectra at medium redshift. Ongoing CMBR experiments such as WMAP and a future Planck satellite mission will measure the standard cosmological parameters with unprecedented accuracy. The focus of attention will then shift to understanding the nature of dark matter and vacuum energy: several recent studies suggest that lensing is the best method for constraining the dark energy equation of state. During the next 5 year period, ongoing and future weak lensing surveys such as the Joint Dark Energy Mission (JDEM; e.g. SNAP) or the Large-aperture Synoptic Survey Telescope will play a major role in advancing our understanding of the universe in this direction. In this review article, we describe various aspects of probing the matter power spectrum and the bi-spectrum and other related statistics with weak lensing surveys. This can be used to probe the background dynamics of the universe as well as the nature of dark matter and dark energy. PMID:16286284
CFHTLenS: the relation between galaxy dark matter haloes and baryons from weak gravitational lensing
NASA Astrophysics Data System (ADS)
Velander, Malin; van Uitert, Edo; Hoekstra, Henk; Coupon, Jean; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Kitching, Thomas D.; Mellier, Yannick; Miller, Lance; Van Waerbeke, Ludovic; Bonnett, Christopher; Fu, Liping; Giodini, Stefania; Hudson, Michael J.; Kuijken, Konrad; Rowe, Barnaby; Schrabback, Tim; Semboloni, Elisabetta
2014-01-01
We present a study of the relation between dark matter halo mass and the baryonic content of their host galaxies, quantified through galaxy luminosity and stellar mass. Our investigation uses 154 deg2 of Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) lensing and photometric data, obtained from the CFHT Legacy Survey. To interpret the weak lensing signal around our galaxies, we employ a galaxy-galaxy lensing halo model which allows us to constrain the halo mass and the satellite fraction. Our analysis is limited to lenses at redshifts between 0.2 and 0.4, split into a red and a blue sample. We express the relationship between dark matter halo mass and baryonic observable as a power law with pivot points of 10^{11} h_{70}^{-2} L_{{⊙}} and 2× 10^{11} h_{70}^{-2} M_{{⊙}} for luminosity and stellar mass, respectively. For the luminosity-halo mass relation, we find a slope of 1.32 ± 0.06 and a normalization of 1.19^{+0.06}_{-0.07}× 10^{13} h_{70}^{-1} M_{{⊙}} for red galaxies, while for blue galaxies the best-fitting slope is 1.09^{+0.20}_{-0.13} and the normalization is 0.18^{+0.04}_{-0.05}× 10^{13} h_{70}^{-1} M_{{⊙}}. Similarly, we find a best-fitting slope of 1.36^{+0.06}_{-0.07} and a normalization of 1.43^{+0.11}_{-0.08}× 10^{13} h_{70}^{-1} M_{{⊙}} for the stellar mass-halo mass relation of red galaxies, while for blue galaxies the corresponding values are 0.98^{+0.08}_{-0.07} and 0.84^{+0.20}_{-0.16}× 10^{13} h_{70}^{-1} M_{{⊙ }}. All numbers convey the 68 per cent confidence limit. For red lenses, the fraction which are satellites inside a larger halo tends to decrease with luminosity and stellar mass, with the sample being nearly all satellites for a stellar mass of 2× 109 h_{70}^{-2} M_{{⊙}}. The satellite fractions are generally close to zero for blue lenses, irrespective of luminosity or stellar mass. This, together with the shallower relation between halo mass and baryonic tracer, is a direct confirmation from galaxy
NASA Astrophysics Data System (ADS)
Jee, Myungkook James
2006-06-01
Clusters of galaxies, the largest gravitationally bound objects in the Universe, are useful tracers of cosmic evolution, and particularly detailed studies of still-forming clusters at high-redshifts can considerably enhance our understanding of the structure formation. We use two powerful methods that have become recently available for the study of these distant clusters: spaced- based gravitational weak-lensing and high-resolution X-ray observations. Detailed analyses of five high-redshift (0.8 < z < 1.3) clusters are presented based on the deep Advanced Camera for Surveys (ACS) and Chandra X-ray images. We show that, when the instrumental characteristics are properly understood, the newly installed ACS on the Hubble Space Telescope (HST) can detect subtle shape distortions of background galaxies down to the limiting magnitudes of the observations, which enables the mapping of the cluster dark matter in unprecedented high-resolution. The cluster masses derived from this HST /ACS weak-lensing study have been compared with those from the re-analyses of the archival Chandra X-ray data. We find that there are interesting offsets between the cluster galaxy, intracluster medium (ICM), and dark matter centroids, and possible scenarios are discussed. If the offset is confirmed to be uniquitous in other clusters, the explanation may necessitate major refinements in our current understanding of the nature of dark matter, as well as the cluster galaxy dynamics. CL0848+4452, the highest-redshift ( z = 1.27) cluster yet detected in weak-lensing, has a significant discrepancy between the weak- lensing and X-ray masses. If this trend is found to be severe and common also for other X-ray weak clusters at redshifts beyond the unity, the conventional X-ray determination of cluster mass functions, often inferred from their immediate X-ray properties such as the X-ray luminosity and temperature via the so-called mass-luminosity (M-L) and mass-temperature (M-T) relations, will become
Taylor, James E.; Massey, Richard J.; Leauthaud, Alexie; Tanaka, Masayuki; George, Matthew R.; Rhodes, Jason; Ellis, Richard; Scoville, Nick; Kitching, Thomas D.; Capak, Peter; Finoguenov, Alexis; Ilbert, Olivier; Kneib, Jean-Paul; Jullo, Eric; Koekemoer, Anton M.
2012-04-20
Gravitational lensing can provide pure geometric tests of the structure of spacetime, for instance by determining empirically the angular diameter distance-redshift relation. This geometric test has been demonstrated several times using massive clusters which produce a large lensing signal. In this case, matter at a single redshift dominates the lensing signal, so the analysis is straightforward. It is less clear how weaker signals from multiple sources at different redshifts can be stacked to demonstrate the geometric dependence. We introduce a simple measure of relative shear which for flat cosmologies separates the effect of lens and source positions into multiplicative terms, allowing signals from many different source-lens pairs to be combined. Applying this technique to a sample of groups and low-mass clusters in the COSMOS survey, we detect a clear variation of shear with distance behind the lens. This represents the first detection of the geometric effect using weak lensing by multiple, low-mass groups. The variation of distance with redshift is measured with sufficient precision to constrain the equation of state of the universe under the assumption of flatness, equivalent to a detection of a dark energy component {Omega}{sub X} at greater than 99% confidence for an equation-of-state parameter -2.5 {<=} w {<=} -0.1. For the case w = -1, we find a value for the cosmological constant density parameter {Omega}{sub {Lambda}} = 0.85{sup +0.044}{sub -}0{sub .19} (68% CL) and detect cosmic acceleration (q{sub 0} < 0) at the 98% CL. We consider the systematic uncertainties associated with this technique and discuss the prospects for applying it in forthcoming weak-lensing surveys.
Applications of gravitational lensing
NASA Astrophysics Data System (ADS)
Dalal, Neal
I derive the basic principles of gravitational lensing, and proceed to describe several astrophysical applications. First, invariants in gravitational lensing magnification are derived using techniques of multidimensional residue calculus, and illustrated with example calculations. Then I discuss how these invariant quantities may be useful for measuring the properties of lenses. Next, I discuss the use of astrometric microlensing for studying extrasolar planets. Finally, the use of lensing for the study of substructure in dark matter halos is presented, along with ramifications for the small-scale power spectrum of matter fluctuations. The strongest bounds to date are placed on the mass of the dark matter particle, as well as bounds on the neutrino mass and slope of the primordial power spectrum.
Weak lensing and cosmological investigation
NASA Astrophysics Data System (ADS)
Acquaviva, Viviana
2005-03-01
In the last few years the scientific community has been dealing with the challenging issue of identifying the dark energy component. We regard weak gravitational lensing as a brand new, and extremely important, tool for cosmological investigation in this field. In fact, the features imprinted on the Cosmic Microwave Background radiation by the lensing from the intervening distribution of matter represent a pretty unbiased estimator, and can thus be used for putting constraints on different dark energy models. This is true in particular for the magnetic-type B-modes of CMB polarization, whose unlensed spectrum at large multipoles (l ~= 1000) is very small even in presence of an amount of gravitational waves as large as currently allowed by the experiments: therefore, on these scales the lensing phenomenon is the only responsible for the observed power, and this signal turns out to be a faithful tracer of the dark energy dynamics. We first recall the formal apparatus of the weak lensing in extended theories of gravity, introducing the physical observables suitable to cast the bridge between lensing and cosmology, and then evaluate the amplitude of the expected effect in the particular case of a Non-Minimally-Coupled model, featuring a quadratic coupling between quintessence and Ricci scalar.
NASA Astrophysics Data System (ADS)
Wang, Wenting; White, Simon D. M.; Mandelbaum, Rachel; Henriques, Bruno; Anderson, Michael E.; Han, Jiaxin
2016-03-01
We use weak gravitational lensing to measure mean mass profiles around locally brightest galaxies (LBGs). These are selected from the Seventh Data Release of the Sloan Digital Sky Survey spectroscopic and photometric catalogues to be brighter than any neighbour projected within 1.0 Mpc and differing in redshift by <1000 km s-1. Most (>83 per cent) are expected to be the central galaxies of their dark matter haloes. Previous stacking analyses have used this LBG sample to measure mean Sunyaev-Zeldovich flux and mean X-ray luminosity as a function of LBG stellar mass. In both cases, a simulation of the formation of the galaxy population was used to estimate effective halo mass for LBGs of given stellar mass, allowing the derivation of scaling relations between the gas properties of haloes and their mass. By comparing results from a variety of simulations to our lensing data, we show that this procedure has significant model dependence reflecting: (i) the failure of any given simulation to reproduce observed galaxy abundances exactly; (ii) a dependence on the cosmology underlying the simulation; and (iii) a dependence on the details of how galaxies populate haloes. We use our lensing results to recalibrate the scaling relations, eliminating most of this model dependence and explicitly accounting both for residual modelling uncertainties and for observational uncertainties in the lensing results. The resulting scaling relations link the mean gas properties of dark haloes to their mass over an unprecedentedly wide range, 1012.5 < M500/M⊙ < 1014.5, and should fairly and robustly represent the full halo population.
Gravitational lensing in plasmic medium
Bisnovatyi-Kogan, G. S. Tsupko, O. Yu.
2015-07-15
The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.
Gravitational lensing in plasmic medium
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.
2015-07-01
The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.
Gravitational Lensing: Einstein's unfinished symphony
NASA Astrophysics Data System (ADS)
Treu, Tommaso; Ellis, Richard S.
2015-01-01
Gravitational lensing - the deflection of light rays by gravitating matter - has become a major tool in the armoury of the modern cosmologist. Proposed nearly a hundred years ago as a key feature of Einstein's theory of general relativity, we trace the historical development since its verification at a solar eclipse in 1919. Einstein was apparently cautious about its practical utility and the subject lay dormant observationally for nearly 60 years. Nonetheless there has been rapid progress over the past twenty years. The technique allows astronomers to chart the distribution of dark matter on large and small scales thereby testing predictions of the standard cosmological model which assumes dark matter comprises a massive weakly-interacting particle. By measuring the distances and tracing the growth of dark matter structure over cosmic time, gravitational lensing also holds great promise in determining whether the dark energy, postulated to explain the accelerated cosmic expansion, is a vacuum energy density or a failure of general relativity on large scales. We illustrate the wide range of applications which harness the power of gravitational lensing, from searches for the earliest galaxies magnified by massive clusters to those for extrasolar planets which temporarily brighten a background star. We summarise the future prospects with dedicated ground and space-based facilities designed to exploit this remarkable physical phenomenon.
Galaxies as gravitational lenses.
Barnothy, J; Barnothy, M F
1968-10-18
Of all the galaxies in the visible part of the universe, 500 million are seen through intervening galaxies. In some instances the foreground galaxy will act as a gravitational lens and produce distorted and (in brightness) greatly amplified images of the galaxy behind it; such images may simulate starlike superluminous objects such as quasars (quasi-stellar objects). The number of gravitational lenses is several times greater than the number of quasars yet observed. In other instances the superposition of the image upon a visible foreground galaxy may simulate morphological configurations resembling N-type, dumbbell, spiral, or barred-spiral galaxies. PMID:17836654
Strong Gravitational Lensing with SNAP
NASA Astrophysics Data System (ADS)
Blandford, R. D.; Koopmans, L. V. E.
2001-12-01
As currently configured, SNAP should cover an area of sky to sufficient depth to observe tens of thousands of strong (ie multiple-imaging) gravitational lenses. This could provide an unprecedented database for performing cosmography, studies of large scale structure and galactic structure.and should complement the weak lensing program which will concentrate on larger scales. The challenge will be to recognize multiple imaging efficiently in an unbiased way and to organize effective follow up so as to obtain spectroscopic redshifts and monitor variable sources, when appropriate. Experience with the CLASS radio survey and the CASTLES program will be invaluable as we transition from the detailed study of a few tens of strong lenses through the ACS ultra-deep, deep and wide surveys (which should yield hundreds of examples of multiple imaging) to the larger samples envisaged from SNAP. New approaches to data analysis will be needed and coordinated planning with other proposed large survey instruments, like SKA, will be essential.
Quasars and gravitational lenses.
Turner, E L
1984-03-23
Despite the expenditure of large amounts of telescope time and other resources, most of the fundamental questions concerning quasi-stellar objects (quasars) remain unanswered. A complex phenomenology of radio, infrared, optical, and x-ray properties has accumulated but has not yielded even a satisfactory classification system. The large red shifts (distances) of quasars make them very valuable tools for studying cosmology and the properties of intervening matter in the Universe through observations of absorption lines and gravitational lenses.
Optimizing SNAP for Weak Lensing
NASA Astrophysics Data System (ADS)
High, F. W.; Ellis, R. S.; Massey, R. J.; Rhodes, J. D.; Lamoureux, J. I.; SNAP Collaboration
2004-12-01
The Supernova/Acceleration Probe (SNAP) satellite proposes to measure weak gravitational lensing in addition to type Ia supernovae. Its pixel scale has been set to 0.10 arcsec per pixel as established by the needs of supernova observations. To find the optimal pixel scale for accurate weak lensing measurements we conduct a tradeoff study in which, via simulations, we fix the suvey size in total pixels and vary the pixel scale. Our preliminary results show that with a smaller scale of about 0.08 arcsec per pixel we can minimize the contribution of intrinsic shear variance to the error on the power spectrum of mass density distortion. Currently we are testing the robustness of this figure as well as determining whether dithering yields analogous results.
Gravitational lenses and particle properties
NASA Technical Reports Server (NTRS)
Turner, Edwin L.
1986-01-01
The potential of observations of gravitational lens systems for the determination of cosmological constants and for tests of the nature and distribution of dark matter is illustrated. The advantages and disadvantages of gravitational lenses as cosmological probes are evaluated.
Gravitational lensing by gravastars
NASA Astrophysics Data System (ADS)
Kubo, Tomohiro; Sakai, Nobuyuki
2016-04-01
As a possible method to detect gravastars (gravitational-vacuum-star), which was originally proposed by Mazur and Mottola, we study their gravitational lensing effects. Specifically, we adopt a spherical thin-shell model of a gravastar developed by Visser and Wiltshire, which connects interior de Sitter geometry and exterior Schwarzschild geometry, and assume that its surface is optically transparent. We calculate the image of a companion which rotates around the gravastar; we find that some characteristic images appear, depending on whether the gravastar possess unstable circular orbits of photons (Model 1) or not (Model 2). For Model 2, we calculate the total luminosity change, which is called microlensing effects; the maximal luminosity could be considerably larger than the black hole with the same mass.
NASA Astrophysics Data System (ADS)
Jaroszyński, M.; Skowron, J.
2016-10-01
We investigate the influence of matter along the line of sight and in the strong lens vicinity on the properties of quad-image configurations and on the measurements of the Hubble constant (H0). We use simulations of light propagation in a non-uniform universe model with the distribution of matter in space based on the data from Millennium Simulation. For a given strong lens and haloes in its environment we model the matter distribution along the line of sight many times, using different combinations of pre-computed deflection maps representing subsequent layers of matter on the path of rays. We fit the simulated quad-image configurations with time delays using non-singular isothermal ellipsoids with external shear as lens models, treating the Hubble constant as a free parameter. We get a large artificial catalogue of lenses with derived values of the Hubble constant, Hfit. The average and median of Hfit differ from the true value used in simulations by ≤0.5 km s-1 Mpc-1 which includes the influence of matter along the line of sight and in the lens vicinity, and uncertainty in lens parameters, except the slope of the matter distribution, which is fixed. The characteristic uncertainty of Hfit is ˜3 km s-1 Mpc-1. Substituting the lens shear parameters with values estimated from the simulations reduces the uncertainty to ˜2 km s-1 Mpc-1.
Nbody Simulations and Weak Gravitational Lensing using new HPC-Grid resources: the PI2S2 project
NASA Astrophysics Data System (ADS)
Becciani, U.; Antonuccio-Delogu, V.; Costa, A.; Comparato, M.
2008-08-01
We present the main project of the new grid infrastructure and the researches, that have been already started in Sicily and will be completed by next year. The PI2S2 project of the COMETA consortium is funded by the Italian Ministry of University and Research and will be completed in 2009. Funds are from the European Union Structural Funds for Objective 1 regions. The project, together with a similar project called Trinacria GRID Virtual Laboratory (Trigrid VL), aims to create in Sicily a computational grid for e-science and e-commerce applications with the main goal of increasing the technological innovation of local enterprises and their competition on the global market. PI2S2 project aims to build and develop an e-Infrastructure in Sicily, based on the grid paradigm, mainly for research activity using the grid environment and High Performance Computer systems. As an example we present the first results of a new grid version of FLY a tree Nbody code developed by INAF Astrophysical Observatory of Catania, already published in the CPC program Library, that will be used in the Weak Gravitational Lensing field.
Investigations of Galaxy Clusters Using Gravitational Lensing
Wiesner, Matthew P.
2014-08-01
In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.
Gravitational lensing from compact bodies: Analytical results for strong and weak deflection limits
Amore, Paolo; Cervantes, Mayra; De Pace, Arturo; Fernandez, Francisco M.
2007-04-15
We develop a nonperturbative method that yields analytical expressions for the deflection angle of light in a general static and spherically symmetric metric. The method works by introducing into the problem an artificial parameter, called {delta}, and by performing an expansion in this parameter to a given order. The results obtained are analytical and nonperturbative because they do not correspond to a polynomial expression in the physical parameters. Already to first order in {delta} the analytical formulas obtained using our method provide at the same time accurate approximations both at large distances (weak deflection limit) and at distances close to the photon sphere (strong deflection limit). We have applied our technique to different metrics and verified that the error is at most 0.5% for all regimes. We have also proposed an alternative approach which provides simpler formulas, although with larger errors.
Measuring neutrino masses with weak lensing
Wong, Yvonne Y. Y.
2006-11-17
Weak gravitational lensing of distant galaxies by large scale structure (LSS) provides an unbiased way to map the matter distribution in the low redshift universe. This technique, based on the measurement of small distortions in the images of the source galaxies induced by the intervening LSS, is expected to become a key cosmological probe in the future. We discuss how future lensing surveys can probe the sum of the neutrino masses at the 0 05 eV level.
EDITORIAL: Focus on Gravitational Lensing
NASA Astrophysics Data System (ADS)
Jain, Bhuvnesh
2007-11-01
Gravitational lensing emerged as an observational field following the 1979 discovery of a doubly imaged quasar lensed by a foreground galaxy. In the 1980s and '90s dozens of other multiply imaged systems were observed, as well as time delay measurements, weak and strong lensing by galaxies and galaxy clusters, and the discovery of microlensing in our galaxy. The rapid pace of advances has continued into the new century. Lensing is currently one of best techniques for finding and mapping dark matter over a wide range of scales, and also addresses broader cosmological questions such as understanding the nature of dark energy. This focus issue of New Journal of Physics presents a snapshot of current research in some of the exciting areas of lensing. It provides an occasion to look back at the advances of the last decade and ahead to the potential of the coming years. Just about a decade ago, microlensing was discovered through the magnification of stars in our galaxy by invisible objects with masses between that of Jupiter and a tenth the mass of the Sun. Thus a new component of the mass of our galaxy, dubbed MACHOs, was established (though a diffuse, cold dark matter-like component is still needed to make up most of the galaxy mass). More recently, microlensing led to another exciting discovery—of extra-solar planets with masses ranging from about five times that of Earth to that of Neptune. We can expect many more planets to be discovered through ongoing surveys. Microlensing is the best technique for finding Earth mass planets, though it is not as productive overall as other methods and does not allow for follow up observations. Beyond planet hunting, microlensing has enabled us to observe previously inaccessible systems, ranging from the surfaces of other stars to the accretion disks around the black holes powering distant quasars. Galaxies and galaxy clusters at cosmological distances can produce dramatic lensing effects: multiple images of background galaxies
Roulettes: a weak lensing formalism for strong lensing: I. Overview
NASA Astrophysics Data System (ADS)
Clarkson, Chris
2016-08-01
We present a new perspective on gravitational lensing. We describe a new extension of the weak lensing formalism capable of describing strongly lensed images. By integrating the nonlinear geodesic deviation equation, the amplification matrix of weak lensing is generalised to a sum over independent amplification tensors of increasing rank. We show how an image distorted by a generic lens may be constructed as a sum over ‘roulettes’, which are the natural curves associated with the independent spin modes of the amplification tensors. Highly distorted images can be constructed even for large sources observed near or within the Einstein radius of a lens where the shear and convergence are large. The amplitude of each roulette is formed from a sum over appropriate derivatives of the lensing potential. Consequently, measuring these individual roulettes for images around a lens gives a new way to reconstruct a strong lens mass distribution without requiring a lens model. This formalism generalises the convergence, shear and flexion of weak lensing to arbitrary order, and provides a unified bridge between the strong and weak lensing regimes. This overview paper is accompanied by a much more detailed paper II, arXiv:1603.04652.
NASA Astrophysics Data System (ADS)
Okura, Yuki; Futamase, Toshifumi
2016-08-01
We improve the ellipticity of re-smeared artificial image (ERA) method of point-spread function (PSF) correction in a weak lensing shear analysis in order to treat the realistic shape of galaxies and the PSF. This is done by re-smearing the PSF and the observed galaxy image using a re-smearing function (RSF) and allows us to use a new PSF with a simple shape and to correct the PSF effect without any approximations or assumptions. We perform a numerical test to show that the method applied for galaxies and PSF with some complicated shapes can correct the PSF effect with a systematic error of less than 0.1%. We also apply the ERA method for real data of the Abell 1689 cluster to confirm that it is able to detect the systematic weak lensing shear pattern. The ERA method requires less than 0.1 or 1 s to correct the PSF for each object in a numerical test and a real data analysis, respectively.
Constraining Source Redshift Distributions with Gravitational Lensing
NASA Astrophysics Data System (ADS)
Wittman, D.; Dawson, W. A.
2012-09-01
We introduce a new method for constraining the redshift distribution of a set of galaxies, using weak gravitational lensing shear. Instead of using observed shears and redshifts to constrain cosmological parameters, we ask how well the shears around clusters can constrain the redshifts, assuming fixed cosmological parameters. This provides a check on photometric redshifts, independent of source spectral energy distribution properties and therefore free of confounding factors such as misidentification of spectral breaks. We find that ~40 massive (σ v = 1200 km s-1) cluster lenses are sufficient to determine the fraction of sources in each of six coarse redshift bins to ~11%, given weak (20%) priors on the masses of the highest-redshift lenses, tight (5%) priors on the masses of the lowest-redshift lenses, and only modest (20%-50%) priors on calibration and evolution effects. Additional massive lenses drive down uncertainties as N_lens^{-{1\\over 2}}, but the improvement slows as one is forced to use lenses further down the mass function. Future large surveys contain enough clusters to reach 1% precision in the bin fractions if the tight lens-mass priors can be maintained for large samples of lenses. In practice this will be difficult to achieve, but the method may be valuable as a complement to other more precise methods because it is based on different physics and therefore has different systematic errors.
Gravitational Lenses in the Classroom
ERIC Educational Resources Information Center
Ros, Rosa M.
2008-01-01
It is not common to introduce current astronomy in school lessons. This article presents a set of experiments about gravitational lenses. It is normal to simulate them by means of computers, but it is very simple to simulate similar effects using a drinking glass full of liquid or using only the glass base. These are, of course, cheap and easy…
Simulating Weak Lensing by Large-Scale Structure
NASA Astrophysics Data System (ADS)
Vale, Chris; White, Martin
2003-08-01
We model weak gravitational lensing of light by large-scale structure using ray tracing through N-body simulations. The method is described with particular attention paid to numerical convergence. We investigate some of the key approximations in the multiplane ray-tracing algorithm. Our simulated shear and convergence maps are used to explore how well standard assumptions about weak lensing hold, especially near large peaks in the lensing signal.
HUBBLE'S TOP TEN GRAVITATIONAL LENSES
NASA Technical Reports Server (NTRS)
2002-01-01
The NASA Hubble Space Telescope serendipitous survey of the sky has uncovered exotic patterns, rings, arcs and crosses that are all optical mirages produced by a gravitational lens, nature's equivalent of having giant magnifying glass in space. Shown are the top 10 lens candidates uncovered in the deepest 100 Hubble fields. Hubble's sensitivity and high resolution allow it to see faint and distant lenses that cannot be detected with ground-based telescopes whose images are blurred by Earth's atmosphere. [Top Left] - HST 01248+0351 is a lensed pair on either side of the edge-on disk lensing galaxy. [Top Center] - HST 01247+0352 is another pair of bluer lensed source images around the red spherical elliptical lensing galaxy. Two much fainter images can be seen near the detection limit which might make this a quadruple system. [Top Right] - HST 15433+5352 is a very good lens candidate with a bluer lensed source in the form of an extended arc about the redder elliptical lensing galaxy. [Middle Far Left] - HST 16302+8230 could be an 'Einstein ring' and the most intriguing lens candidate. It has been nicknamed the 'the London Underground' since it resembles that logo. [Middle Near Left] - HST 14176+5226 is the first, and brightest lens system discovered in 1995 with the Hubble telescope. This lens candidate has now been confirmed spectroscopically using large ground-based telescopes. The elliptical lensing galaxy is located 7 billion light-years away, and the lensed quasar is about 11 billion light-years distant. [Middle Near Right] - HST 12531-2914 is the second quadruple lens candidate discovered with Hubble. It is similar to the first, but appears smaller and fainter. [Middle Far Right] - HST 14164+5215 is a pair of bluish lensed images symmetrically placed around a brighter, redder galaxy. [Bottom Left] - HST 16309+8230 is an edge-on disk-like galaxy (blue arc) which has been significantly distorted by the redder lensing elliptical galaxy. [Bottom Center] - HST 12368
Towards noiseless gravitational lensing simulations
NASA Astrophysics Data System (ADS)
Angulo, Raul E.; Chen, Ruizhu; Hilbert, Stefan; Abel, Tom
2014-11-01
The microphysical properties of the dark matter (DM) particle can, in principle, be constrained by the properties and abundance of substructures in galaxy clusters, as measured through strong gravitational lensing. Unfortunately, there is a lack of accurate theoretical predictions for the lensing signal of these substructures, mainly because of the discreteness noise inherent to N-body simulations. Here, we present a method, dubbed as Recursive-TCM, that is able to provide lensing predictions with an arbitrarily low discreteness noise. This solution is based on a novel way of interpreting the results of N-body simulations, where particles simply trace the evolution and distortion of Lagrangian phase-space volume elements. We discuss the advantages and limitations of this method compared to the widely used density estimators based on cloud-in-cells and adaptive-kernel smoothing. Applying the new method to a cluster-sized DM halo simulated in warm and cold DM scenarios, we show how the expected differences in their substructure population translate into differences in convergence and magnification maps. We anticipate that our method will provide the high-precision theoretical predictions required to interpret and fully exploit strong gravitational lensing observations.
Numerical simulation of gravitational lenses
NASA Astrophysics Data System (ADS)
Cherniak, Yakov
Gravitational lens is a massive body or system of bodies with gravitational field that bends directions of light rays propagating nearby. This may cause an observer to see multiple images of a light source, e.g. a star, if there is a gravitational lens between the star and the observer. Light rays that form each individual image may have different distances to travel, which creates time delays between them. In complex gravitational fields generated by the system of stars, analytical calculation of trajectories and light intensities is virtually impossible. Gravitational lens of two massive bodies, one behind another, are able to create four images of a light source. Furthermore, the interaction between the four light beams can form a complicated interference pattern. This article provides a brief theory of light behavior in a gravitational field and describes the algorithm for constructing the trajectories of light rays in a gravitational field, calculating wave fronts and interference pattern of light. If you set gravitational field by any number of transparent and non- transparent objects (stars) and set emitters of radio wave beams, it is possible to calculate the interference pattern in any region of space. The proposed method of calculation can be applied even in the case of the lack of continuity between the position of the emitting stars and position of the resulting image. In this paper we propose methods of optimization, as well as solutions for some problems arising in modeling of gravitational lenses. The simulation of light rays in the sun's gravitational field is taken as an example. Also caustic is constructed for objects with uniform mass distribution.
Galaxies as gravitational lenses.
Sadeh, D
1967-12-01
The probability that a galaxy gathers light from another remote galaxy, and deflects and focuses it toward an observer on Earth, is calculated according to various cosmologic models. I pose the question of whether an object called a quasar is a single, intrinsically luminous entity or the result of accidental alignment, along the line of sight, of two normal galaxies, the more distant of which has its light amplified by the gravitational-lens effect of the nearer galaxy. If galaxies are distributed at random in the universe, the former alternative is true. But, if we assume that most galaxies exist in pairs, we can find about 30 galaxies occurring exactly one behind the other in such a way as to enable amplification of the order of 50. This model explains also the variations in intensity in quasars, but fails to explain others of their observed properties. PMID:17734305
Pixelation Effects in Weak Lensing
NASA Astrophysics Data System (ADS)
High, F. William; Rhodes, Jason; Massey, Richard; Ellis, Richard
2007-11-01
Weak gravitational lensing can be used to investigate both dark matter and dark energy but requires accurate measurements of the shapes of faint, distant galaxies. Such measurements are hindered by the finite resolution and pixel scale of digital cameras. We investigate the optimum choice of pixel scale for a space-based mission, using the engineering model and survey strategy of the proposed Supernova Acceleration Probe as a baseline. We do this by simulating realistic astronomical images containing a known input shear signal and then attempting to recover the signal using the Rhodes, Refregier, & Groth algorithm. We find that the quality of shear measurement is always improved by smaller pixels. However, in practice, telescopes are usually limited to a finite number of pixels and operational life span, so the total area of a survey increases with pixel size. We therefore fix the survey lifetime and the number of pixels in the focal plane while varying the pixel scale, thereby effectively varying the survey size. In a pure trade-off for image resolution versus survey area, we find that measurements of the matter power spectrum would have minimum statistical error with a pixel scale of 0.09" for a 0.14" FWHM point-spread function (PSF). The pixel scale could be increased to ~0.16" if images dithered by exactly half-pixel offsets were always available. Some of our results do depend on our adopted shape measurement method and should be regarded as an upper limit: future pipelines may require smaller pixels to overcome systematic floors not yet accessible, and, in certain circumstances, measuring the shape of the PSF might be more difficult than those of galaxies. However, the relative trends in our analysis are robust, especially those of the surface density of resolved galaxies. Our approach thus provides a snapshot of potential in available technology, and a practical counterpart to analytic studies of pixelation, which necessarily assume an idealized shape
WEAK LENSING MASS RECONSTRUCTION: FLEXION VERSUS SHEAR
Pires, S.
2010-11-10
Weak gravitational lensing has proven to be a powerful tool to map directly the distribution of dark matter in the universe. The technique, currently used, relies on the accurate measurement of the gravitational shear that corresponds to the first-order distortion of the background galaxy images. More recently, a new technique has been introduced that relies on the accurate measurement of the gravitational flexion that corresponds to the second-order distortion of the background galaxy images. This technique should probe structures on smaller scales than that of shear analysis. The goal of this paper is to compare the ability of shear and flexion to reconstruct the dark matter distribution by taking into account the dispersion in shear and flexion measurements. Our results show that the flexion is less sensitive than shear for constructing the convergence maps on scales that are physically feasible for mapping, meaning that flexion alone should not be used to do convergence map reconstruction, even on small scales.
Gravitational Lensing Extends SETI Range
NASA Astrophysics Data System (ADS)
Factor, Richard
Microwave SETI (The Search for Extraterrestrial Intelligence) focuses on two primary strategies, the "Targeted Search" and the "All-Sky Survey." Although the goal of both strategies is the unequivocal discovery of a signal transmitted by intelligent species outside our solar system, they pursue the strategies in very different manners and have vastly different requirements. This chapter introduces Gravitational Lensing SETI (GL-SETI), a third strategy. Its goal is the unequivocal discovery of an extraterrestrial signal, with equipment and data processing requirements that are substantially different from the commonly-used strategies. This strategy is particularly suitable for use with smaller radio telescopes and has budgetary requirements suitable for individual researchers.
LensTools: Weak Lensing computing tools
NASA Astrophysics Data System (ADS)
Petri, A.
2016-02-01
LensTools implements a wide range of routines frequently used in Weak Gravitational Lensing, including tools for image analysis, statistical processing and numerical theory predictions. The package offers many useful features, including complete flexibility and easy customization of input/output formats; efficient measurements of power spectrum, PDF, Minkowski functionals and peak counts of convergence maps; survey masks; artificial noise generation engines; easy to compute parameter statistical inferences; ray tracing simulations; and many others. It requires standard numpy and scipy, and depending on tools used, may require Astropy (ascl:1304.002), emcee (ascl:1303.002), matplotlib, and mpi4py.
A symplectic framework for multiplane gravitational lensing
NASA Astrophysics Data System (ADS)
Izumiya, S.; Janeczko, S.
2003-05-01
We construct a new framework for the study of multiplane gravitational lensing from the view point of symplectic geometry. Symplectic relations are used to compose the systems and weaker Lagrangian equivalence is applied for classifying the caustics of multiplane gravitational lensing.
Weak Gravitatational Lensing by Illustris-1 Galaxies
NASA Astrophysics Data System (ADS)
Brainerd, Tereasa G.; Koh, Patrick H.
2016-06-01
We compute the weak gravitational lensing signal of isolated, central galaxies obtained from the z=0.5 timestep of the ΛCDM Illustris-1 simulation. The galaxies have stellar masses ranging from 9.5 ≤ log10(M*/Msun) ≤ 11.0 and are located outside cluster and rich group environments. Although there is local substructure present in the form of small, luminous satellite galaxies, the central galaxies are the dominant objects within the virial radii (r200), and each central galaxy is at least 5 times brighter than any other luminous galaxy within the friends-of-friends halo. We compute the weak lensing signal within projected radii 0.05 < rp/r200 < 1.5 and investigate the degree to which the weak lensing signal is anisotropic. Since CDM halos are non-spherical, the weak lensing signal is expected to be anisotropic; however, the degree of anisotropy that is observed depends upon the symmetry axes that are used to define the geometry. The anisotropy is expected to be maximized when the major axis of the projected dark matter mass distribution is used to define the geomety. In practice in the observed universe, one must necessarily use the projected distribution of the luminous mass to define the geometry. If mass and light are not well-aligned, this results in a suppression of the weak lensing anistropy. Our initial analysis shows that the ellipticity of the projected dark matter halo is uncorrelated with the ellipticity of the projected stellar mass. That is ɛhalo ≠ f × ɛlight, where f is a constant multiplicative factor. In addition, in projection on the sky, the major axis of the dark matter mass is offset from that of the stellar mass by ˜40o on average. On scales rp ≤ 0.15 r200, the weak lensing anisotropy obtained when using the stellar mass to define the geometry is of order 7% and agrees well with the anisotropy obtained when using the dark matter mass to define the geometry. On scales rp ˜ r200, the anisotropy obtained when using the stellar mass to
Gravitational lensing by rotating naked singularities
Gyulchev, Galin N.; Yazadjiev, Stoytcho S.
2008-10-15
We model massive compact objects in galactic nuclei as stationary, axially symmetric naked singularities in the Einstein-massless scalar field theory and study the resulting gravitational lensing. In the weak deflection limit we study analytically the position of the two weak field images, the corresponding signed and absolute magnifications as well as the centroid up to post-Newtonian order. We show that there are static post-Newtonian corrections to the signed magnification and their sum as well as to the critical curves, which are functions of the scalar charge. The shift of the critical curves as a function of the lens angular momentum is found, and it is shown that they decrease slightly for the weakly naked and vastly for the strongly naked singularities with the increase of the scalar charge. The pointlike caustics drift away from the optical axis and do not depend on the scalar charge. In the strong deflection limit approximation, we compute numerically the position of the relativistic images and their separability for weakly naked singularities. All of the lensing quantities are compared to particular cases as Schwarzschild and Kerr black holes as well as Janis-Newman-Winicour naked singularities.
Weak lensing by galaxy troughs
NASA Astrophysics Data System (ADS)
Gruen, Daniel
2016-06-01
Galaxy troughs, i.e. underdensities in the projected galaxy field, are a weak lensing probe of the low density Universe with high signal-to-noise ratio. I present measurements of the radial distortion of background galaxy images and the de-magnification of the CMB by troughs constructed from Dark Energy Survey and Sloan Digital Sky Survey galaxy catalogs. With high statistical significance and a relatively robust modeling, these probe gravity in regimes of density and scale difficult to access for conventional statistics.
Gravitational lenses and dark matter - Observations
NASA Technical Reports Server (NTRS)
Turner, Edwin L.
1987-01-01
Following a few general comments on gravitational lenses from an observer's perspective, the currently available observations of the six known gravitational lenses are summarized. Attention is called to some regularities and peculiarities of the properties of the known lenses and to how they might be interpreted. The most important conclusions, relevant to the dark matter problem, which can be obtained from current observations are that the distributions of mass and light appear to be quite different in at least some of the lensing objects and that objects with projected mass/brightness values about 10 times larger than those ordinarily associated with galaxies exist and are not too rare.
Gravitational lenses, cosmology, and galaxy structure
NASA Astrophysics Data System (ADS)
Winn, J.
2002-05-01
Gravitational lenses can be used to study dark matter in galaxies and to measure the Hubble constant. The statistics of lensing can be used to measure the cosmological constant. I have been conducting a survey of the southern sky for new lenses at radio wavelengths, which has resulted in 4 confirmed lenses and 3 strong candidates that require further follow-up. I will describe the survey and the scientific results that have been obtained from the new lenses. I will also describe my other life as a science journalist.
Lossy compression of weak lensing data
Vanderveld, R. Ali; Bernstein, Gary M.; Stoughton, Chris; Rhodes, Jason; Massey, Richard; Dobke, Benjamin M.
2011-07-12
Future orbiting observatories will survey large areas of sky in order to constrain the physics of dark matter and dark energy using weak gravitational lensing and other methods. Lossy compression of the resultant data will improve the cost and feasibility of transmitting the images through the space communication network. We evaluate the consequences of the lossy compression algorithm of Bernstein et al. (2010) for the high-precision measurement of weak-lensing galaxy ellipticities. This square-root algorithm compresses each pixel independently, and the information discarded is by construction less than the Poisson error from photon shot noise. For simulated space-based images (without cosmic rays) digitized to the typical 16 bits per pixel, application of the lossy compression followed by image-wise lossless compression yields images with only 2.4 bits per pixel, a factor of 6.7 compression. We demonstrate that this compression introduces no bias in the sky background. The compression introduces a small amount of additional digitization noise to the images, and we demonstrate a corresponding small increase in ellipticity measurement noise. The ellipticity measurement method is biased by the addition of noise, so the additional digitization noise is expected to induce a multiplicative bias on the galaxies measured ellipticities. After correcting for this known noise-induced bias, we find a residual multiplicative ellipticity bias of m {approx} -4 x 10^{-4}. This bias is small when compared to the many other issues that precision weak lensing surveys must confront, and furthermore we expect it to be reduced further with better calibration of ellipticity measurement methods.
Lossy compression of weak lensing data
Vanderveld, R. Ali; Bernstein, Gary M.; Stoughton, Chris; Rhodes, Jason; Massey, Richard; Dobke, Benjamin M.
2011-07-12
Future orbiting observatories will survey large areas of sky in order to constrain the physics of dark matter and dark energy using weak gravitational lensing and other methods. Lossy compression of the resultant data will improve the cost and feasibility of transmitting the images through the space communication network. We evaluate the consequences of the lossy compression algorithm of Bernstein et al. (2010) for the high-precision measurement of weak-lensing galaxy ellipticities. This square-root algorithm compresses each pixel independently, and the information discarded is by construction less than the Poisson error from photon shot noise. For simulated space-based images (without cosmicmore » rays) digitized to the typical 16 bits per pixel, application of the lossy compression followed by image-wise lossless compression yields images with only 2.4 bits per pixel, a factor of 6.7 compression. We demonstrate that this compression introduces no bias in the sky background. The compression introduces a small amount of additional digitization noise to the images, and we demonstrate a corresponding small increase in ellipticity measurement noise. The ellipticity measurement method is biased by the addition of noise, so the additional digitization noise is expected to induce a multiplicative bias on the galaxies measured ellipticities. After correcting for this known noise-induced bias, we find a residual multiplicative ellipticity bias of m {approx} -4 x 10-4. This bias is small when compared to the many other issues that precision weak lensing surveys must confront, and furthermore we expect it to be reduced further with better calibration of ellipticity measurement methods.« less
Combined reconstruction of weak and strong lensing data with WSLAP
NASA Astrophysics Data System (ADS)
Diego, J. M.; Tegmark, M.; Protopapas, P.; Sandvik, H. B.
2007-03-01
We describe a method to estimate the mass distribution of a gravitational lens and the position of the sources from combined strong and weak lensing data. The algorithm combines weak and strong lensing data in a unified way producing a solution which is valid in both the weak and the strong lensing regimes. The method is non-parametric, allowing the mass to be located anywhere in the field of view. We study how the solution depends on the choice of basis used to represent the mass distribution. We find that combining weak and strong lensing information has two major advantages: it alleviates the need for priors and/or regularization schemes for the intrinsic size of the background galaxies (this assumption was needed in previous strong lensing algorithms) and it reduces (although does not remove) biases in the recovered mass in the outer regions where the strong lensing data are less sensitive. The code is implemented into a software package called Weak & Strong Lensing Analysis Package (WSLAP) which is publicly available at http://darwin.cfa.harvard.edu/SLAP/.
Lensing of 21-cm fluctuations by primordial gravitational waves.
Book, Laura; Kamionkowski, Marc; Schmidt, Fabian
2012-05-25
Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed. PMID:23003237
Strong Gravitational Lensing: Relativity in Action
NASA Astrophysics Data System (ADS)
Wambsganss, Joachim
2009-05-01
Deflection of light by gravity was predicted by Einstein's Theory of General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically, among them measuring the Hubble constant from multiple images of a background source, making use of the magnifying effect as a gravitational telescope, or the possibility of a "relativistic eclipse" as a perfect test of GR. Only in 1979, gravitational lensing became an observational science when the first doubly imaged quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole suite of strong lensing phenomena have been investigated since: multiple quasars, giant luminous arcs, Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing application is the detection of extrasolar planets. Lensing has contributed significant new results in areas as different as the cosmological distance scale, mass determination of galaxy clusters, physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar atmospheres and exoplanets. A guided tour through some of these applications -- with both photometric and astrometric signatures of lensing being discussed -- will illustrate how gravitational lensing has established itself as a very useful universal astrophysical tool.
Gravitational lensing of active galactic nuclei.
Hewitt, J N
1995-01-01
Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes. PMID:11607613
Gravitational lenses and dark matter - Theory
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III
1987-01-01
Theoretical models are presented for guiding the application of gravitational lenses to probe the characteristics of dark matter in the universe. Analytical techniques are defined for quantifying the mass associated with lensing galaxies (in terms of the image separation), determining the quantity of dark mass of the lensing bodies, and estimating the mass density of the lenses. The possibility that heavy halos are made of low mass stars is considered, along with the swallowing of central images of black holes or cusps in galactic nuclei and the effects produced on a lensed quasar image by nonbaryonic halos. The observable effects of dense groups and clusters and the characteristics of dark matter strings are discussed, and various types of images which are possible due to lensing phenomena and position are described.
Strong gravitational lensing: relativity in action
NASA Astrophysics Data System (ADS)
Wambsganss, Joachim
2010-01-01
Deflection of light by gravity was predicted by Einstein's Theory of General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically, among them measuring the Hubble constant from multiple images of a background source, making use of the magnifying effect as a gravitational telescope, or the possibility of a “relativistic eclipse” as a perfect test of GR. Only in 1979, gravitational lensing became an observational science when the first doubly imaged quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole suite of strong lensing phenomena have been investigated: multiple quasars, giant luminous arcs, Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing application is the detection of extrasolar planets. Lensing has contributed significant new results in areas as different as the cosmological distance scale, mass determination of galaxy clusters, physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar atmospheres and exoplanets. A guided tour through some of these applications will illustrate how gravitational lensing has established itself as a very useful universal astrophysical tool.
Atmospheric Dispersion Effects in Weak Lensing Measurements
Plazas, Andrés Alejandro; Bernstein, Gary
2012-10-01
The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed the statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.
Atmospheric Dispersion Effects in Weak Lensing Measurements
Plazas, Andrés Alejandro; Bernstein, Gary
2012-10-01
The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed themore » statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.« less
Time delay in Swiss cheese gravitational lensing
Chen, B.; Kantowski, R.; Dai, X.
2010-08-15
We compute time delays for gravitational lensing in a flat {Lambda} dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with {Lambda}) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant's effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach {approx}4% for these large lenses. The differences in predicted delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.
Time delay in Swiss cheese gravitational lensing
NASA Astrophysics Data System (ADS)
Chen, B.; Kantowski, R.; Dai, X.
2010-08-01
We compute time delays for gravitational lensing in a flat Λ dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with Λ) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant’s effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach ˜4% for these large lenses. The differences in predicted delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.
Magnified Weak Lensing Cross Correlation Tomography
Ulmer, Melville P., Clowe, Douglas I.
2010-11-30
nights on 4-m class telescopes, which gives concrete evidence of strong community support for this project. The WLT technique is based on the dependence of the gravitational shear signal on the angular diameter distances between the observer, the lens, and the lensed galaxy to measure cosmological parameters. By taking the ratio of measured shears of galaxies with different redshifts around the same lens, one obtains a measurement of the ratios of the angular diameter distances involved. Making these observations over a large range of lenses and background galaxy redshifts will measure the history of the expansion rate of the universe. Because this is a purely geometric measurement, it is insensitive to any form of evolution of objects or the necessity to understand the physics in the early universe. Thus, WLT was identified by the Dark Energy Task Force as perhaps the best method to measure the evolution of DE. To date, however, the conjecture of the DETF has not been experimentally verified, but will be by the proposed project. The primary reason for the lack of tomography measurements is that one must have an exceptional data-set to attempt the measurement. One needs both extremely good seeing (or space observations) in order to minimize the point spread function smearing corrections on weak lensing shear measurements and deep, multi-color data, from B to z, to measure reliable photometric redshifts of the background galaxies being lensed (which are typically too faint to obtain spectroscopic redshifts). Because the entire process from multi-drizzling the HST images, and then creating shear maps, to gathering the necessary ground based observations, to generating photo-zs and then carrying out the tomography is a complicated task, until the creation of our team, nobody has taken the time to connect all the levels of expertise necessary to carry out this project based on HST archival data. Our data are being used in 2 Ph.D. theses. Kellen Murphy, at Ohio University, is
HST Observations of New Class Gravitational Lenses
NASA Astrophysics Data System (ADS)
Jackson, Neal
1995-07-01
We propose to examine a few of the very best lens candidates from a new gravitational lens survey, the Cosmic Lens All-Sky Survey (CLASS) made with the VLA. We are virtually certain that we have one new lens system (1600+434) and another (1609+655) has a radio configuration which almost invariably indicates gravitational lensing. The other cases are systems which have a high probability of being lenses (statistically we would expect at least 5 of the 10 objects should be lensed, since we have imaged >3000 radio sources and experience shows that 1 in 500 are lensed). All have separations which make them difficult to study from the ground and therefore uniquely suited to the capabilities of the HST. In this investigation we will study 1600+434 and 1609+655 and attempt to image the lensing galaxy. We will image the remainder in an attempt to confirm their lens status (which requires 0.1" resolution imaging typically) and search for lensing galaxies and/or clusters in those found to be lensed systems.
Okura, Yuki; Futamase, Toshifumi E-mail: tof@astr.tohoku.ac.jp
2014-09-10
Highly accurate weak lensing analysis is urgently required for planned cosmic shear observations. For this purpose we have eliminated various systematic noises in the measurement. The point-spread function (PSF) effect is one of them. A perturbative approach for correcting the PSF effect on the observed image ellipticities has been previously employed. Here we propose a new non-perturbative approach for PSF correction that avoids the systematic error associated with the perturbative approach. The new method uses an artificial image for measuring shear which has the same ellipticity as the lensed image. This is done by re-smearing the observed galaxy images and observed star images (PSF) with an additional smearing function to obtain the original lensed galaxy images. We tested the new method with simple simulated objects that have Gaussian or Sérsic profiles smeared by a Gaussian PSF with sufficiently large size to neglect pixelization. Under the condition of no pixel noise, it is confirmed that the new method has no systematic error even if the PSF is large and has a high ellipticity.
The conceptual origins of gravitational lensing
NASA Astrophysics Data System (ADS)
Valls-Gabaud, David
2006-11-01
We critically examine the evidence available of the early ideas on the bending of light due to a gravitational attraction, which led to the concept of gravitational lenses, and attempt to present an undistorted historical perspective. Contrary to a widespread but baseless claim, Newton was not the precursor to the idea, and the first Query in his Opticks is totally unrelated to this phenomenon. We briefly review the roles of Voltaire, Marat, Cavendish, Soldner and Einstein in their attempts to quantify the gravitational deflection of light. The first, but unpublished, calculations of the lensing effect produced by this deflection are found in Einstein's 1912 notebooks, where he derived the lensing equation and the formation of images in a gravitational lens. The brief 1924 paper by Chwolson which presents, without calculations, the formation of double images and rings by a gravitational lens passed mostly unnoticed. The unjustly forgotten and true pioneer of the subject is F. Link, who not only published the first detailed lensing calculations in 1936, nine months prior to Einstein's famous paper in Science, but also extended the theory to include the effects of finite-size sources and lenses, binary sources, and limb darkening that same year. Link correctly predicted that the microlensing effect would be easier to observe in crowded fields or in galaxies, as observations confirmed five decades later. The calculations made by Link are far more detailed than those by Tikhov and Bogorodsky. We discuss briefly some papers of the early 1960s which marked the renaissance of this theoretical subject prior to the first detection of a gravitational lens in 1979, and we conclude with the unpublished chapter of Petrou's 1981 PhD thesis addressing the microlensing of stars in the Magellanic clouds by dark objects in the Galactic halo.
Cosmological constraints from weak lensing non-Gaussian statistics
NASA Astrophysics Data System (ADS)
Liu, Jia; Haiman, Zoltan; Petri, Andrea; Hill, James; Hui, Lam; Kratochvil, Jan Michael; May, Morgan
2016-01-01
Weak gravitational lensing is one of the most promising techniques to probe dark energy. Our work to date suggests that the information in the nonlinear regime exceeds that in the two-point functions. Using the publicly available data from the 154 deg^2 CFHTLenS survey and a large suite of ray-tracing N-body simulations on a grid of 91 cosmological models, we find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined.I will also introduce the utility of cross-correlating weak galaxy lensing maps with CMB lensing maps, a technique that will be useful to probe structures at an intermediate redshift of 0.9, as larger weak lensing surveys such as HSC, DES, KiDS, Euclid, and LSST come online. We cross-correlate the CFHTLenS galaxy lensing convergence maps with Planck CMB lensing maps. Our results show two sigma tension with the constraints obtained from the Planck temperature measurements. I will discuss possible sources of the tension, including intrinsic alignments, photo-z uncertainties, masking of tSZ in the CMB maps, and the multiplicative bias.
Cosmological test using strong gravitational lensing systems
NASA Astrophysics Data System (ADS)
Yuan, C. C.; Wang, F. Y.
2015-09-01
As one of the probes of universe, strong gravitational lensing systems allow us to compare different cosmological models and constrain vital cosmological parameters. This purpose can be reached from the dynamic and geometry properties of strong gravitational lensing systems, for instance, time-delay Δτ of images, the velocity dispersion σ of the lensing galaxies and the combination of these two effects, Δτ/σ2. In this paper, in order to carry out one-on-one comparisons between ΛCDM universe and Rh = ct universe, we use a sample containing 36 strong lensing systems with the measurement of velocity dispersion from the Sloan Lens Advanced Camera for Surveys (SLACS) and Lens Structure and Dynamic survey (LSD) survey. Concerning the time-delay effect, 12 two-image lensing systems with Δτ are also used. In addition, Monte Carlo simulations are used to compare the efficiency of the three methods as mentioned above. From simulations, we estimate the number of lenses required to rule out one model at the 99.7 per cent confidence level. Comparing with constraints from Δτ and the velocity dispersion σ, we find that using Δτ/σ2 can improve the discrimination between cosmological models. Despite the independence tests of these methods reveal a correlation between Δτ/σ2 and σ, Δτ/σ2 could be considered as an improved method of σ if more data samples are available.
Statistics of gravitational lenses - The uncertainties
NASA Technical Reports Server (NTRS)
Mao, Shude
1991-01-01
The assumptions in the analysis of gravitational lensing statistics are examined. Special emphasis is given to the uncertainties in the theoretical predictions. It is shown that a simple redshift cutoff model, which may result from galaxy evolution, can significantly reduce the lensing probability and explain the large mean separation of images in observed gravitational lenses. This effect may affect the constraint on the contribution of the cosmological constant to producing a flat universe from the number counts of the observed lenses. For the Omega(0) = 1 (filled beam) model, the lensing probability of early-type galaxies with finite core radii is reduced roughly by a factor of 2 for high-redshift quasars as compared with the corresponding singular isothermal sphere model. The finite core radius effect is about 20 percent for a lambda-dominated flat universe. It is also shown that the most recent galaxy luminosity function gives lensing probabilities that are smaller than previously estimated roughly by a factor of 3.
Neutrino mass and dark energy from weak lensing.
Abazajian, Kevork N; Dodelson, Scott
2003-07-25
Weak gravitational lensing of background galaxies by intervening matter directly probes the mass distribution in the Universe. This distribution is sensitive to both the dark energy and neutrino mass. We examine the potential of lensing experiments to measure features of both simultaneously. Focusing on the radial information contained in a future deep 4000 deg(2) survey, we find that the expected (1-sigma) error on a neutrino mass is 0.1 eV, if the dark-energy parameters are allowed to vary. The constraints on dark-energy parameters are similarly restrictive, with errors on w of 0.09. PMID:12906650
EFFECT OF MASKED REGIONS ON WEAK-LENSING STATISTICS
Shirasaki, Masato; Yoshida, Naoki; Hamana, Takashi
2013-09-10
Sky masking is unavoidable in wide-field weak-lensing observations. We study how masks affect the measurement of statistics of matter distribution probed by weak gravitational lensing. We first use 1000 cosmological ray-tracing simulations to examine in detail the impact of masked regions on the weak-lensing Minkowski Functionals (MFs). We consider actual sky masks used for a Subaru Suprime-Cam imaging survey. The masks increase the variance of the convergence field and the expected values of the MFs are biased. The bias then compromises the non-Gaussian signals induced by the gravitational growth of structure. We then explore how masks affect cosmological parameter estimation. We calculate the cumulative signal-to-noise ratio (S/N) for masked maps to study the information content of lensing MFs. We show that the degradation of S/N for masked maps is mainly determined by the effective survey area. We also perform simple {chi}{sup 2} analysis to show the impact of lensing MF bias due to masked regions. Finally, we compare ray-tracing simulations with data from a Subaru 2 deg{sup 2} survey in order to address if the observed lensing MFs are consistent with those of the standard cosmology. The resulting {chi}{sup 2}/n{sub dof} = 29.6/30 for three combined MFs, obtained with the mask effects taken into account, suggests that the observational data are indeed consistent with the standard {Lambda}CDM model. We conclude that the lensing MFs are a powerful probe of cosmology only if mask effects are correctly taken into account.
Gravitational Lensing of Supernova Neutrinos
Mena, Olga; Mocioiu, Irina; Quigg, Chris; /Fermilab
2006-10-01
The black hole at the center of the galaxy is a powerful lens for supernova neutrinos. In the very special circumstance of a supernova near the extended line of sight from Earth to the galactic center, lensing could dramatically enhance the neutrino flux at Earth and stretch the neutrino pulse.
Strong gravitational lensing of gravitational waves in Einstein Telescope
Piórkowska, Aleksandra; Biesiada, Marek; Zhu, Zong-Hong E-mail: marek.biesiada@us.edu.pl
2013-10-01
Gravitational wave experiments have entered a new stage which gets us closer to the opening a new observational window on the Universe. In particular, the Einstein Telescope (ET) is designed to have a fantastic sensitivity that will provide with tens or hundreds of thousand NS-NS inspiral events per year up to the redshift z = 2. Some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral NS-NS events in the Einstein telescope. Being conservative we consider the lens population of elliptical galaxies. It turns out that depending on the local insipral rate ET should detect from one per decade detection in the pessimistic case to a tens of detections per year for the most optimistic case. The detection of gravitationally lensed source in gravitational wave detectors would be an invaluable source of information concerning cosmography, complementary to standard ones (like supernovae or BAO) independent of the local cosmic distance ladder calibrations.
Weak lensing in the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Troxel, Michael
2016-03-01
I will present the current status of weak lensing results from the Dark Energy Survey (DES). DES will survey 5000 square degrees in five photometric bands (grizY), and has already provided a competitive weak lensing catalog from Science Verification data covering just 3% of the final survey footprint. I will summarize the status of shear catalog production using observations from the first year of the survey and discuss recent weak lensing science results from DES. Finally, I will report on the outlook for future cosmological analyses in DES including the two-point cosmic shear correlation function and discuss challenges that DES and future surveys will face in achieving a control of systematics that allows us to take full advantage of the available statistical power of our shear catalogs.
The geometry of gravitational lensing magnification
NASA Astrophysics Data System (ADS)
Aazami, Amir Babak; Werner, Marcus C.
2016-02-01
We present a definition of unsigned magnification in gravitational lensing valid on arbitrary convex normal neighborhoods of time oriented Lorentzian manifolds. This definition is a function defined at any two points along a null geodesic that lie in a convex normal neighborhood, and foregoes the usual notions of lens and source planes in gravitational lensing. Rather, it makes essential use of the van Vleck determinant, which we present via the exponential map, and Etherington's definition of luminosity distance for arbitrary spacetimes. We then specialize our definition to spacetimes, like Schwarzschild's, in which the lens is compact and isolated, and show that our magnification function is monotonically increasing along any geodesic contained within a convex normal neighborhood.
Gravitational lensing statistics of amplified supernovae
NASA Technical Reports Server (NTRS)
Linder, Eric V.; Wagoner, Robert V.; Schneider, P.
1988-01-01
Amplification statistics of gravitationally lensed supernovae can provide a valuable probe of the lensing matter in the universe. A general probability distribution for amplification by compact objects is derived which allows calculation of the lensed fraction of supernovae at or greater than an amplification A and at or less than an apparent magnitude. Comparison of the computed fractions with future results from ongoing supernova searches can lead to determination of the mass density of compact dark matter components with masses greater than about 0.001 solar mass, while the time-dependent amplification (and polarization) of the expanding supernovae constrain the individual masses. Type II supernovae are found to give the largest fraction for deep surveys, and the optimum flux-limited search is found to be at approximately 23d magnitude, if evolution of the supernova rate is neglected.
SimpLens: Interactive gravitational lensing simulator
NASA Astrophysics Data System (ADS)
Saha, Prasenjit; Williams, Liliya L. R.
2016-06-01
SimpLens illustrates some of the theoretical ideas important in gravitational lensing in an interactive way. After setting parameters for elliptical mass distribution and external mass, SimpLens displays the mass profile and source position, the lens potential and image locations, and indicate the image magnifications and contours of virtual light-travel time. A lens profile can be made shallower or steeper with little change in the image positions and with only total magnification affected.
Separating weak lensing and intrinsic alignments using radio observations
NASA Astrophysics Data System (ADS)
Whittaker, Lee; Brown, Michael L.; Battye, Richard A.
2015-07-01
We discuss methods for performing weak lensing using radio observations to recover information about the intrinsic structural properties of the source galaxies. Radio surveys provide unique information that can benefit weak lensing studies, such as H I emission, which may be used to construct galaxy velocity maps, and polarized synchrotron radiation; both of which provide information about the unlensed galaxy and can be used to reduce galaxy shape noise and the contribution of intrinsic alignments. Using a proxy for the intrinsic position angle of an observed galaxy, we develop techniques for cleanly separating weak gravitational lensing signals from intrinsic alignment contamination in forthcoming radio surveys. Random errors on the intrinsic orientation estimates introduce biases into the shear and intrinsic alignment estimates. However, we show that these biases can be corrected for if the error distribution is accurately known. We demonstrate our methods using simulations, where we reconstruct the shear and intrinsic alignment auto- and cross-power spectra in three overlapping redshift bins. We find that the intrinsic position angle information can be used to successfully reconstruct both the lensing and intrinsic alignment power spectra with negligible residual bias.
Weak Lensing from Space I: Instrumentation and Survey Strategy
Rhodes, Jason; Refregier, Alexandre; Massey, Richard; Albert, Justin; Bacon, David; Bernstein, Gary; Ellis, Richard; Jain, Bhuvnesh; Kim, Alex; Lampton, Mike; McKay, Tim; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bester, M.; Bonissent, A.; Bower, C.; Carithers, W.; Commins, E.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, A.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Harris, S.; Harvey, P.; Heetderks, H.; Holland, S.; Huterer, D.; Karcher, A.; Kolbe, W.; Kreiger, B.; Lafever, R.; Lamoureux, J.; Levi, M.; Devin, D.; Linder, E.; Loken, S.; Malina, R.; McKee, S.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto, E.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch, A.; von der Lippe, H.; Vincent, D.; Walder, J.-P.; Wang, G.
2003-04-23
A wide field space-based imaging telescope is necessary to fully exploit the technique of observing dark matter via weak gravitational lensing. This first paper in a three part series outlines the survey strategies and relevant instrumental parameters for such a mission. As a concrete example of hardware design, we consider the proposed Supernova/Acceleration Probe (SNAP). Using SNAP engineering models, we quantify the major contributions to this telescope's Point Spread Function (PSF). These PSF contributions are relevant to any similar wide field space telescope. We further show that the PSF of SNAP or a similar telescope will be smaller than current ground-based PSFs, and more isotropic and stable over time than the PSF of the Hubble Space Telescope. We outline survey strategies for two different regimes - a ''wide'' 300 square degree survey and a ''deep'' 15 square degree survey that will accomplish various weak lensing goals including statistical studies and dark matter mapping.
An Application of the Topological Degree to Gravitational Lenses
NASA Astrophysics Data System (ADS)
Lombardi, Marco
In this letter we provide a new proof of a general theorem on gravitational lenses, first proven by Burke (1981) for the special case of thin lenses. The theorem states that a transparent gravitational lens with non-singular mass distribution produces an odd number of images of a point source. Our general proof shows that the topological degree finds natural and interesting applications in the theory of gravitational lenses.
Oguri, Masamune; Hennawi, Joseph F.; Gladders, Michael D.; Dahle, Haakon; Natarajan, Priyamvada; Dalal, Neal; Koester, Benjamin P.; Sharon, Keren; Bayliss, Matthew
2009-01-29
We derive radial mass profiles of four strong lensing selected clusters which show prominent giant arcs (Abell 1703, SDSS J1446+3032, SDSS J1531+3414, and SDSS J2111-0115), by combining detailed strong lens modeling with weak lensing shear measured from deep Subaru Suprime-cam images. Weak lensing signals are detected at high significance for all four clusters, whose redshifts range from z = 0.28 to 0.64. We demonstrate that adding strong lensing information with known arc redshifts significantly improves constraints on the mass density profile, compared to those obtained from weak lensing alone. While the mass profiles are well fitted by the universal form predicted in N-body simulations of the {Lambda}-dominated cold dark matter model, all four clusters appear to be slightly more centrally concentrated (the concentration parameters c{sub vir} {approx} 8) than theoretical predictions, even after accounting for the bias toward higher concentrations inherent in lensing selected samples. Our results are consistent with previous studies which similarly detected a concentration excess, and increases the total number of clusters studied with the combined strong and weak lensing technique to ten. Combining our sample with previous work, we find that clusters with larger Einstein radii are more anomalously concentrated. We also present a detailed model of the lensing cluster Abell 1703 with constraints from multiple image families, and find the dark matter inner density profile to be cuspy with the slope consistent with -1, in agreement with expectations.
The Third Gravitational Lensing Accuracy Testing (GREAT3) Challenge Handbook
NASA Astrophysics Data System (ADS)
Mandelbaum, Rachel; Rowe, Barnaby; Bosch, James; Chang, Chihway; Courbin, Frederic; Gill, Mandeep; Jarvis, Mike; Kannawadi, Arun; Kacprzak, Tomasz; Lackner, Claire; Leauthaud, Alexie; Miyatake, Hironao; Nakajima, Reiko; Rhodes, Jason; Simet, Melanie; Zuntz, Joe; Armstrong, Bob; Bridle, Sarah; Coupon, Jean; Dietrich, Jörg P.; Gentile, Marc; Heymans, Catherine; Jurling, Alden S.; Kent, Stephen M.; Kirkby, David; Margala, Daniel; Massey, Richard; Melchior, Peter; Peterson, John; Roodman, Aaron; Schrabback, Tim
2014-05-01
The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is the third in a series of image analysis challenges, with a goal of testing and facilitating the development of methods for analyzing astronomical images that will be used to measure weak gravitational lensing. This measurement requires extremely precise estimation of very small galaxy shape distortions, in the presence of far larger intrinsic galaxy shapes and distortions due to the blurring kernel caused by the atmosphere, telescope optics, and instrumental effects. The GREAT3 challenge is posed to the astronomy, machine learning, and statistics communities, and includes tests of three specific effects that are of immediate relevance to upcoming weak lensing surveys, two of which have never been tested in a community challenge before. These effects include many novel aspects including realistically complex galaxy models based on high-resolution imaging from space; a spatially varying, physically motivated blurring kernel; and a combination of multiple different exposures. To facilitate entry by people new to the field, and for use as a diagnostic tool, the simulation software for the challenge is publicly available, though the exact parameters used for the challenge are blinded. Sample scripts to analyze the challenge data using existing methods will also be provided. See http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/ for more information.
Gravitational lensing by a rotating massive object in a plasma
NASA Astrophysics Data System (ADS)
Morozova, V. S.; Ahmedov, B. J.; Tursunov, A. A.
2013-08-01
We study gravitational lensing in the vicinity of a slowly rotating massive object surrounded by a plasma. We have studied two effects: (i) the influence of the frame dragging on the deflection angle of the light ray in the presence of plasma (ii) Faraday rotation of the polarization plane of the light. We derive the expression for the lensing angle in a non-diagonal space-time in the weak field regime in the presence of plasma and discuss it for the spacetime metric of the slowly rotating object. The obtained deflection angle depends on (i) the frequency of the electromagnetic wave, due to the dispersion properties of the plasma; (ii) the gravitational mass M; and (iii) the angular momentum J of the gravitational lens. We studied the influence of rotation of the gravitational lens on the magnification of brightness of the source star in the case of microlensing and have shown that it is negligibly small. For the completeness of our study the effect of the Faraday rotation of the polarization plane is considered.
Weak lensing of large scale structure in the presence of screening
Tessore, Nicolas; Metcalf, R. Benton; Giocoli, Carlo E-mail: hans.winther@astro.ox.ac.uk E-mail: pedro.ferreira@physics.ox.ac.uk
2015-10-01
A number of alternatives to general relativity exhibit gravitational screening in the non-linear regime of structure formation. We describe a set of algorithms that can produce weak lensing maps of large scale structure in such theories and can be used to generate mock surveys for cosmological analysis. By analysing a few basic statistics we indicate how these alternatives can be distinguished from general relativity with future weak lensing surveys.
Weak gravitational shear and flexion with polar shapelets
NASA Astrophysics Data System (ADS)
Massey, Richard; Rowe, Barnaby; Refregier, Alexandre; Bacon, David J.; Bergé, Joel
2007-09-01
We derive expressions, in terms of `polar shapelets', for the image distortion operations associated with weak gravitational lensing. Shear causes galaxy shapes to become elongated, and is sensitive to the second derivative of the projected gravitational potential along their line of sight; flexion bends galaxy shapes into arcs, and is sensitive to the third derivative. Polar shapelets provide a natural representation, in which both shear and flexion transformations are compact. Through this tool, we understand progress in several weak lensing methods. We then exploit various symmetries of shapelets to construct a range of shear estimators with useful properties. Through an analogous investigation, we also explore several flexion estimators. In particular, some of the estimators can be measured simultaneously and independently for every galaxy, and will provide unique checks for systematics in future weak lensing analyses. Using simulated images from the Shear TEsting Programme, we show that we can recover input shears with no significant bias. A complete software package to parametrize astronomical images in terms of polar shapelets, and to perform a full weak lensing analysis, is available on the Internet.
Virbhadra, K. S.; Keeton, C. R.
2008-06-15
We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginally strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.
Gravitational lensing of Type Ia supernovae
NASA Astrophysics Data System (ADS)
Goliath, M.; Mörtsell, E.
2000-08-01
Recently, Holz and Wald [Phys. Rev. D 58 (1998) 063501] have presented a method for determining gravitational lensing effects in inhomogeneous universes. Their use of realistic galaxy models has been limited to the singular, truncated isothermal sphere with a fixed mass. In this paper, their method is generalized to allow for matter distributions more accurately describing the actual properties of galaxies, as derived from observations and /N-body simulations. This includes the density profile proposed by Navarro, Frenk and White, as well as a distribution of galaxy masses. As an example of the possible applications of the method, we consider lensing effects on supernova luminosity distributions. We find that results for different mass distributions of smooth dark matter halos are very similar, making lensing effects predictable for a broad range of halo profiles. We also note, in agreement with other investigations, that one should be able to discriminate smooth halos from a dominant component of dark matter in compact objects. For instance, a sample of 100 supernovae at redshift /z=1 can, with 99% certainty, discriminate the case where all matter is in compact objects from the case where matter is in smooth halos.
The CASTLES Imaging Survey of Gravitational Lenses
NASA Astrophysics Data System (ADS)
Peng, C. Y.; Falco, E. E.; Lehar, J.; Impey, C. D.; Kochanek, C. S.; McLeod, B. A.; Rix, H.-W.
1997-12-01
The CASTLES survey (Cfa-Arizona-(H)ST-Lens-Survey) is imaging most known small-separation gravitational lenses (or lens candidates), using the NICMOS camera (mostly H-band) and the WFPC2 (V and I band) on HST. To date nearly half of the IR imaging survey has been completed. The main goals are: (1) to search for lens galaxies where none have been directly detected so far; (2) obtain photometric redshift estimates (VIH) for the lenses where no spectroscopic redshifts exist; (3) study and model the lens galaxies in detail, in part to study the mass distribution within them, in part to identify ``simple" systems that may permit accurate time delay estimates for H_0; (3) measure the M/L evolution of the sample of lens galaxies with look-back time (to z ~ 1); (4) determine directly which fraction of sources are lensed by ellipticals vs. spirals. We will present the survey specifications and the images obtained so far.
Cannon Prize: Weak lensing - Revealing the Dark Side of the Universe
NASA Astrophysics Data System (ADS)
Mandelbaum, Rachel
2012-01-01
Weak gravitational lensing, the deflection of light from distant galaxies due to all intervening mass along the line of sight, is one of the most direct ways to observe dark matter. As a result, in the past decade, weak lensing has become a very important tool both for constraining cosmological parameters and for revealing the connection between galaxies and dark matter. I will begin by reviewing some of the most significant recent observational advances that were made possible by weak lensing. Next, I will outline some of the challenges and opportunities facing the lensing community in existing and upcoming imaging surveys. I will conclude with some perspective on how these challenges will be addressed to do ground-breaking work in the fields of cosmology, galaxy formation, and galaxy cluster formation and evolution with weak lensing observations in the next decade.
3D weak lensing with spin wavelets on the ball
NASA Astrophysics Data System (ADS)
Leistedt, Boris; McEwen, Jason D.; Kitching, Thomas D.; Peiris, Hiranya V.
2015-12-01
We construct the spin flaglet transform, a wavelet transform to analyze spin signals in three dimensions. Spin flaglets can probe signal content localized simultaneously in space and frequency and, moreover, are separable so that their angular and radial properties can be controlled independently. They are particularly suited to analyzing cosmological observations such as the weak gravitational lensing of galaxies. Such observations have a unique 3D geometrical setting since they are natively made on the sky, have spin angular symmetries, and are extended in the radial direction by additional distance or redshift information. Flaglets are constructed in the harmonic space defined by the Fourier-Laguerre transform, previously defined for scalar functions and extended here to signals with spin symmetries. Thanks to various sampling theorems, both the Fourier-Laguerre and flaglet transforms are theoretically exact when applied to bandlimited signals. In other words, in numerical computations the only loss of information is due to the finite representation of floating point numbers. We develop a 3D framework relating the weak lensing power spectrum to covariances of flaglet coefficients. We suggest that the resulting novel flaglet weak lensing estimator offers a powerful alternative to common 2D and 3D approaches to accurately capture cosmological information. While standard weak lensing analyses focus on either real- or harmonic-space representations (i.e., correlation functions or Fourier-Bessel power spectra, respectively), a wavelet approach inherits the advantages of both techniques, where both complicated sky coverage and uncertainties associated with the physical modeling of small scales can be handled effectively. Our codes to compute the Fourier-Laguerre and flaglet transforms are made publicly available.
Fitting gravitational lenses: truth or delusion
NASA Astrophysics Data System (ADS)
Evans, N. Wyn; Witt, Hans J.
2003-11-01
The observables in a strong gravitational lens are usually just the image positions and sometimes the flux ratios. We develop a new and simple algorithm which allows a set of models to be fitted exactly to the observations. Taking our cue from the strong body of evidence that early-type galaxies are close to isothermal, we assume that the lens is scale-free with a flat rotation curve. External shear can be easily included. Our algorithm allows full flexibility regarding the angular structure of the lensing potential. Importantly, all the free parameters enter linearly into the model and so the lens and flux ratio equations can always be solved by straightforward matrix inversion. The models are only restricted by the fact that the surface mass density must be positive. We use this new algorithm to examine some of the claims made for anomalous flux ratios. It has been argued that such anomalies betray the presence of substantial amounts of substructure in the lensing galaxy. We demonstrate by explicit construction that some of the lens systems for which substructure has been claimed can be well fitted by smooth lens models. This is especially the case when the systematic errors in the flux ratios (caused by microlensing or differential extinction) are taken into account. However, there is certainly one system (B1422+231) for which the existing smooth models are definitely inadequate and for which substructure may be implicated. Within a few tens of kpc of the lensing galaxy centre, dynamical friction and tidal disruption are known to be very efficient at dissolving any substructure. Very little substructure is projected within the Einstein radius. The numbers of strong lenses for which substructure is currently being claimed may be so large that this contradicts rather than supports cold dark matter theories.
Disentangling dark sector models using weak lensing statistics
NASA Astrophysics Data System (ADS)
Giocoli, Carlo; Metcalf, R. Benton; Baldi, Marco; Meneghetti, Massimo; Moscardini, Lauro; Petkova, Margarita
2015-09-01
We perform multiplane ray tracing using the GLAMER gravitational lensing code within high-resolution light-cones extracted from the CoDECS simulations: a suite of cosmological runs featuring a coupling between dark energy and cold dark matter (CDM). We show that the presence of the coupling is evident not only in the redshift evolution of the normalization of the convergence power spectrum, but also in differences in non-linear structure formation with respect to ΛCDM. Using a tomographic approach under the assumption of a ΛCDM cosmology, we demonstrate that weak lensing measurements would result in a σ8 value that changes with the source redshift if the true underlying cosmology is a coupled dark energy (cDE) one. This provides a generic null test for these types of models. We also find that different models of cDE can show either an enhanced or a suppressed correlation between convergence maps with differing source redshifts as compared to ΛCDM. This would provide a direct way to discriminate between different possible realizations of the cDE scenario. Finally, we discuss the impact of the coupling on several lensing observables for different source redshifts and angular scales with realistic source redshift distributions for current ground-based and future space-based lensing surveys.
Predicting weak lensing statistics from halo mass reconstructions - Final Paper
Everett, Spencer
2015-08-20
As dark matter does not absorb or emit light, its distribution in the universe must be inferred through indirect effects such as the gravitational lensing of distant galaxies. While most sources are only weakly lensed, the systematic alignment of background galaxies around a foreground lens can constrain the mass of the lens which is largely in the form of dark matter. In this paper, I have implemented a framework to reconstruct all of the mass along lines of sight using a best-case dark matter halo model in which the halo mass is known. This framework is then used to make predictions of the weak lensing of 3,240 generated source galaxies through a 324 arcmin² field of the Millennium Simulation. The lensed source ellipticities are characterized by the ellipticity-ellipticity and galaxy-mass correlation functions and compared to the same statistic for the intrinsic and ray-traced ellipticities. In the ellipticity-ellipticity correlation function, I and that the framework systematically under predicts the shear power by an average factor of 2.2 and fails to capture correlation from dark matter structure at scales larger than 1 arcminute. The model predicted galaxy-mass correlation function is in agreement with the ray-traced statistic from scales 0.2 to 0.7 arcminutes, but systematically underpredicts shear power at scales larger than 0.7 arcminutes by an average factor of 1.2. Optimization of the framework code has reduced the mean CPU time per lensing prediction by 70% to 24 ± 5 ms. Physical and computational shortcomings of the framework are discussed, as well as potential improvements for upcoming work.
Spurious Shear in Weak Lensing with LSST
Chang, C.; Kahn, S.M.; Jernigan, J.G.; Peterson, J.R.; AlSayyad, Y.; Ahmad, Z.; Bankert, J.; Bard, D.; Connolly, A.; Gibson, R.R.; Gilmore, K.; Grace, E.; Hannel, M.; Hodge, M.A.; Jee, M.J.; Jones, L.; Krughoff, S.; Lorenz, S.; Marshall, P.J.; Marshall, S.; Meert, A.
2012-09-19
The complete 10-year survey from the Large Synoptic Survey Telescope (LSST) will image {approx} 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to r {approx} 27.5, with over 4 billion well measured galaxies. To take full advantage of this unprecedented statistical power, the systematic errors associated with weak lensing measurements need to be controlled to a level similar to the statistical errors. This work is the first attempt to quantitatively estimate the absolute level and statistical properties of the systematic errors on weak lensing shear measurements due to the most important physical effects in the LSST system via high fidelity ray-tracing simulations. We identify and isolate the different sources of algorithm-independent, additive systematic errors on shear measurements for LSST and predict their impact on the final cosmic shear measurements using conventional weak lensing analysis techniques. We find that the main source of the errors comes from an inability to adequately characterise the atmospheric point spread function (PSF) due to its high frequency spatial variation on angular scales smaller than {approx} 10{prime} in the single short exposures, which propagates into a spurious shear correlation function at the 10{sup -4}-10{sup -3} level on these scales. With the large multi-epoch dataset that will be acquired by LSST, the stochastic errors average out, bringing the final spurious shear correlation function to a level very close to the statistical errors. Our results imply that the cosmological constraints from LSST will not be severely limited by these algorithm-independent, additive systematic effects.
Modulation of a chirp gravitational wave from a compact binary due to gravitational lensing
Yamamoto, Kazuhiro
2005-05-15
A possible wave effect in the gravitational lensing phenomenon is discussed. We consider the interference of two coherent gravitational waves of slightly different frequencies from a compact binary, due to the gravitational lensing by a galaxy halo. This system shows the modulation of the wave amplitude. The lensing probability of such the phenomenon is of order 10{sup -5} for a high-z source, but it may be advantageous to the observation due to the magnification of the amplitude.
Origin of weak lensing convergence peaks
NASA Astrophysics Data System (ADS)
Liu, Jia; Haiman, Zoltán
2016-08-01
Weak lensing convergence peaks are a promising tool to probe nonlinear structure evolution at late times, providing additional cosmological information beyond second-order statistics. Previous theoretical and observational studies have shown that the cosmological constraints on Ωm and σ8 are improved by a factor of up to ≈2 when peak counts and second-order statistics are combined, compared to using the latter alone. We study the origin of lensing peaks using observational data from the 154 deg2 Canada-France-Hawaii Telescope Lensing Survey. We found that while high peaks (with height κ >3.5 σκ , where σκ is the rms of the convergence κ ) are typically due to one single massive halo of ≈1 015M⊙ , low peaks (κ ≲σκ ) are associated with constellations of 2-8 smaller halos (≲1 013M⊙ ). In addition, halos responsible for forming low peaks are found to be significantly offset from the line of sight towards the peak center (impact parameter ≳ their virial radii), compared with ≈0.25 virial radii for halos linked with high peaks, hinting that low peaks are more immune to baryonic processes whose impact is confined to the inner regions of the dark matter halos. Our findings are in good agreement with results from the simulation work by Yang et al. [Phys. Rev. D 84, 043529 (2011)].
Multiplane gravitational lensing. III. Upper bound on number of images
NASA Astrophysics Data System (ADS)
Petters, A. O.
1997-03-01
The total number of lensed images of a light source undergoing gravitational lensing varies as the source traverses a caustic network. It is rigorously shown that for a pointlike light source not on any caustic, a three-dimensional distribution of g point masses on g lens planes creates at most 2(22(g-1)-1) lensed images of the source (g⩾2). This complements previous work [Paper I, J. Math. Phys. 36, 4263 (1995)] that showed at least 2g lensed images occur. Application of the upper bound to the global geometry of caustics is also presented. Our methods are based on a complex formulation of point-mass gravitational lensing and techniques from the theory of resultants. The latter yields a new approach to studying upper bounds on number of lensed images due to point-mass gravitational lens systems.
Three Gravitationally Lensed Supernovae Behind Clash Galaxy Clusters
NASA Technical Reports Server (NTRS)
Patel, Brandon; McCully, Curtis; Jha, Saurbh W.; Rodney, Steven A.; Jones, David O.; Graur, Or; Merten, Julian; Zitrin, Adi; Riess, Adam G.; Matheson, Thomas; Sako, Masao; Holoien, Thomas W. -S.; Postman, Marc; Coe, Dan; Bartelmann, Matthias; Balestra, Italo; Benitez, Narciso; Bouwens, Rychard; Bradley, Larry; Broadhurst, Tom; Cenko, Stephen Bradley; Donahue, Megan; Filippenko, Alexei V.; Ford, Holland; Garnavich, Peter; Grillo, Claudio; Infante, Leopoldo; Jouvel, Stephanie; Kelson, Daniel; Koekemoer, Anton; Lahav, Ofer; Lemze, Doron; Maoz, Dan; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Molino, Alberto; Moustakas, John; Moustakas, Leonidas A.; Nonino, Mario; Rosati, Piero; Seitz, Stella; Strolger, Louis G.; Umetsu, Keiichi; Zheng, Wei
2014-01-01
We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was approx. 1.0 +/- 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is approx. 0.2 +/- 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log10 µ): 0.83 +/- 0.16 mag for SN CLO12Car, 0.28 +/- 0.08 mag for SN CLN12Did, and 0.43 +/- 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.
GLAMER - II. Multiple-plane gravitational lensing
NASA Astrophysics Data System (ADS)
Petkova, Margarita; Metcalf, R. Benton; Giocoli, Carlo
2014-12-01
We present an extension to multiple planes of the gravitational lensing code GLAMER. The method entails projecting the mass in the observed light-cone on to a discrete number of lens planes and inverse ray-shooting from the image to the source plane. The mass on each plane can be represented as haloes, simulation particles, a projected mass map extracted form a numerical simulation or any combination of these. The image finding is done in a source-oriented fashion, where only regions of interest are iteratively refined on an initially coarse image plane grid. The calculations are performed in parallel on shared memory machines. The code is able to handle different types of analytic haloes (NFW, NSIE, power law, etc.), haloes extracted from numerical simulations and clusters constructed from semi-analytic models (MOKA). Likewise, there are several different options for modelling the source(s) which can be distributed throughout the light-cone. The distribution of matter in the light-cone can be either taken from a pre-existing N-body numerical simulations, from halo catalogues, or are generated from an analytic mass function. We present several tests of the code and demonstrate some of its applications such as generating mock images of galaxy and galaxy cluster lenses.
NASA Astrophysics Data System (ADS)
Kirk, D.; Omori, Y.; Benoit-Lévy, A.; Cawthon, R.; Chang, C.; Larsen, P.; Amara, A.; Bacon, D.; Crawford, T. M.; Dodelson, S.; Fosalba, P.; Giannantonio, T.; Holder, G.; Jain, B.; Kacprzak, T.; Lahav, O.; MacCrann, N.; Nicola, A.; Refregier, A.; Sheldon, E.; Story, K. T.; Troxel, M. A.; Vieira, J. D.; Vikram, V.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Becker, M. R.; Benson, B. A.; Bernstein, G. M.; Bernstein, R. A.; Bleem, L. E.; Bonnett, C.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carlstrom, J. E.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Jarvis, M.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Reichardt, C. L.; Roodman, A.; Rozo, E.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Simard, G.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Wechsler, R. H.; Weller, J.
2016-06-01
We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg2 of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of zmed ˜ 0.7, while the CMB lensing kernel is broad and peaks at z ˜ 2. The resulting cross-correlation is maximally sensitive to mass fluctuations at z ˜ 0.44. Assuming the Planck 2015 best-fitting cosmology, the amplitude of the DES×SPT cross-power is found to be ASPT = 0.88 ± 0.30 and that from DES×Planck to be APlanck = 0.86 ± 0.39, where A = 1 corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of 2.9σ and 2.2σ, respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photo-z uncertainty and CMB lensing systematics. We calculate a value of A = 1.08 ± 0.36 for DES×SPT when we correct the observations with a simple intrinsic alignment model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation. We provide forecasts for the expected signal-to-noise ratio of the combination of the five-year DES survey and SPT-3G.
cluster-lensing: Tools for calculating properties and weak lensing profiles of galaxy clusters
NASA Astrophysics Data System (ADS)
Ford, Jes
2016-05-01
The cluster-lensing package calculates properties and weak lensing profiles of galaxy clusters. Implemented in Python, it includes cluster mass-richness and mass-concentration scaling relations, and NFW halo profiles for weak lensing shear, the differential surface mass density ΔΣ(r), and for magnification, Σ(r). Optionally the calculation will include the effects of cluster miscentering offsets.
Strong field gravitational lensing by a charged Galileon black hole
NASA Astrophysics Data System (ADS)
Zhao, Shan-Shan; Xie, Yi
2016-07-01
Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgr A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.
Weak lensing by voids in modified lensing potentials
Barreira, Alexandre; Cautun, Marius; Li, Baojiu; Baugh, Carlton M.; Pascoli, Silvia E-mail: m.c.cautun@durham.ac.uk E-mail: c.m.baugh@durham.ac.uk
2015-08-01
We study lensing by voids in Cubic Galileon and Nonlocal gravity cosmologies, which are examples of theories of gravity that modify the lensing potential. We find voids in the dark matter and halo density fields of N-body simulations and compute their lensing signal analytically from the void density profiles, which we show are well fit by a simple analytical formula. In the Cubic Galileon model, the modifications to gravity inside voids are not screened and they approximately double the size of the lensing effects compared to GR. The difference is largely determined by the direct effects of the fifth force on lensing and less so by the modified density profiles. For this model, we also discuss the subtle impact on the force and lensing calculations caused by the screening effects of haloes that exist in and around voids. In the Nonlocal model, the impact of the modified density profiles and the direct modifications to lensing are comparable, but they boost the lensing signal by only ≈ 10%, compared with that of GR. Overall, our results suggest that lensing by voids is a promising tool to test models of gravity that modify lensing.
Neutrino halos in clusters of galaxies and their weak lensing signature
Villaescusa-Navarro, Francisco; Peña-Garay, Carlos; Miralda-Escudé, Jordi; Quilis, Vicent E-mail: miralda@icc.ub.es E-mail: vicent.quilis@uv.es
2011-06-01
We study whether non-linear gravitational effects of relic neutrinos on the development of clustering and large-scale structure may be observable by weak gravitational lensing. We compute the density profile of relic massive neutrinos in a spherical model of a cluster of galaxies, for several neutrino mass schemes and cluster masses. Relic neutrinos add a small perturbation to the mass profile, making it more extended in the outer parts. In principle, this non-linear neutrino perturbation is detectable in an all-sky weak lensing survey such as EUCLID by averaging the shear profile of a large fraction of the visible massive clusters in the universe, or from its signature in the general weak lensing power spectrum or its cross-spectrum with galaxies. However, correctly modeling the distribution of mass in baryons and cold dark matter and suppressing any systematic errors to the accuracy required for detecting this neutrino perturbation is severely challenging.
What is Gravitational Lensing? (LBNL Summer Lecture Series)
Leauthaud, Alexie; Nakajima, Reiko
2009-07-28
Summer Lecture Series 2009: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.
What is Gravitational Lensing?(LBNL Summer Lecture Series)
Alexie, Leauthaud; Reiko, Nakajima [Berkeley Center for Cosmological Physics, Berkely, California, United States
2016-07-12
July 28, 2009 Berkeley Lab summer lecture: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.
What is Gravitational Lensing? (LBNL Summer Lecture Series)
Leauthaud, Alexie; Nakajima, Reiko [Berkeley Center for Cosmological Physics
2016-07-12
Summer Lecture Series 2009: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.
Extreme value statistics of weak lensing shear peak counts
NASA Astrophysics Data System (ADS)
Reischke, R.; Maturi, M.; Bartelmann, M.
2016-02-01
The statistics of peaks in weak gravitational lensing maps is a promising technique to constrain cosmological parameters in present and future surveys. Here we investigate its power when using general extreme value statistics which is very sensitive to the exponential tail of the halo mass function. To this end, we use an analytic method to quantify the number of weak lensing peaks caused by galaxy clusters, large-scale structures and observational noise. Doing so, we further improve the method in the regime of high signal-to-noise ratios dominated by non-linear structures by accounting for the embedding of those counts into the surrounding shear caused by large-scale structures. We derive the extreme value and order statistics for both overdensities (positive peaks) and underdensities (negative peaks) and provide an optimized criterion to split a wide field survey into subfields in order to sample the distribution of extreme values such that the expected objects causing the largest signals are mostly due to galaxy clusters. We find good agreement of our model predictions with a ray-tracing N-body simulation. For a Euclid-like survey, we find tight constraints on σ8 and Ωm with relative uncertainties of ˜10-3. In contrast, the equation of state parameter w0 can be constrained only with a 10 per cent level, and wa is out of reach even if we include redshift information.
Optimal Weak-Lensing Skewness Measurements
NASA Astrophysics Data System (ADS)
Zhang, Tong-Jie; Pen, Ue-Li; Zhang, Pengjie; Dubinski, John
2003-12-01
Weak-lensing measurements are starting to provide statistical maps of the distribution of matter in the universe that are increasingly precise and complementary to cosmic microwave background maps. The most common measurement is the correlation in alignments of background galaxies, which can be used to infer the variance of the projected surface density of matter. This measurement of the fluctuations is insensitive to the total mass content and is analogous to using waves on the ocean to measure its depths. However, when the depth is shallow, as happens near a beach, waves become skewed. Similarly, a measurement of skewness in the projected matter distribution directly measures the total matter content of the universe. While skewness has already been convincingly detected, its constraint on cosmology is still weak. We address optimal analyses for the Canada-France-Hawaii Telescope Legacy Survey in the presence of noise. We show that a compensated Gaussian filter with a width of 2.5‧ optimizes the cosmological constraint, yielding ΔΩm/Ωm~10%. This is significantly better than other filters that have been considered in the literature. This can be further improved with tomography and other sophisticated analyses.
Weak lensing goes bananas: what flexion really measures
NASA Astrophysics Data System (ADS)
Schneider, P.; Er, X.
2008-07-01
In weak gravitational lensing, the image distortion caused by shear measures the projected tidal gravitational field of the deflecting mass distribution. To lowest order, the shear is proportional to the mean image ellipticity. If the image sizes are not small compared to the scale over which the shear varies, higher-order distortions occur, called flexion. For ordinary weak lensing, the observable quantity is not the shear, but the reduced shear, owing to the mass-sheet degeneracy. Likewise, the flexion itself is unobservable. Instead, higher-order image distortions measure the reduced flexion, i.e., derivatives of the reduced shear. We derive the corresponding lens equation in terms of the reduced flexion and calculate the resulting relation between brightness moments of source and image. Assuming an isotropic distribution of source orientations, estimates for the reduced shear and flexion are obtained and then tested with simulations. In particular, the presence of flexion affects the determination of the reduced shear. The results of these simulations yield the amount of bias of the estimators as a function of the shear and flexion. We point out and quantify a fundamental limitation of the flexion formalism in terms of the product of reduced flexion and source size. If this product increases above the derived threshold, multiple images of the source are formed locally, and the formalism breaks down. Finally, we show how a general (reduced) flexion field can be decomposed into its four components. Two of them are due to a shear field, carrying an E- and B-mode in general. The other two components do not correspond to a shear field, and they can also be split up into corresponding E- and B-modes.
NASA Astrophysics Data System (ADS)
Mocanu, Laura Monica; South Pole Telescope Collaboration
2016-06-01
Weak gravitational lensing by large-scale structure in the universe causes deflections in the paths of cosmic microwave background (CMB) photons. This effect introduces non-Gaussian correlations in the observed CMB temperature and polarization fields. The signature of lensing can be used to reconstruct the projected gravitational lensing potential with a quadratic estimator technique; this provides a measure of the integrated mass distribution out to the surface of last scattering, sourced primarily from redshifts between 0.1 and 5. The power spectrum of the lensing potential encodes information about the geometry of the universe and the growth of structure and can be used to place constraints on the sum of neutrino masses and dark energy. High signal-to-noise mass maps from CMB lensing are also powerful for cross-correlating with other tracers of large-scale structure and for delensing the CMB in search for primordial gravitational waves. This poster will describe recent progress on measuring the CMB gravitational lensing potential and its power spectrum using data from 500 deg2 of sky observed with the polarization-sensitive receiver installed on the South Pole Telescope, SPTpol.
Probing the dark matter issue in f( R)-gravity via gravitational lensing
NASA Astrophysics Data System (ADS)
Lubini, M.; Tortora, C.; Näf, J.; Jetzer, Ph.; Capozziello, S.
2011-12-01
For a general class of analytic f( R)-gravity theories, we discuss the weak field limit in view of gravitational lensing. Though an additional Yukawa term in the gravitational potential modifies dynamics with respect to the standard Newtonian limit of General Relativity, the motion of massless particles results unaffected thanks to suitable cancellations in the post-Newtonian limit. Thus, all the lensing observables are equal to the ones known from General Relativity. Since f( R)-gravity is claimed, among other things, to be a possible solution to overcome for the need of dark matter in virialized systems, we discuss the impact of our results on the dynamical and gravitational lensing analyses. In this framework, dynamics could, in principle, be able to reproduce the astrophysical observations without recurring to dark matter, but in the case of gravitational lensing we find that dark matter is an unavoidable ingredient. Another important implication is that gravitational lensing, in the post-Newtonian limit, is not able to constrain these extended theories, since their predictions do not differ from General Relativity.
Constraints on cosmological models from strong gravitational lensing systems
Cao, Shuo; Pan, Yu; Zhu, Zong-Hong; Biesiada, Marek; Godlowski, Wlodzimierz E-mail: panyu@cqupt.edu.cn E-mail: godlowski@uni.opole.pl
2012-03-01
Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances D{sub ds}/D{sub s} from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combining stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 70 data points from Sloan Lens ACS (SLACS) and Lens Structure and Dynamics survey (LSD). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully selected from strong gravitational lensing systems with both X-ray satellite observations and optical giant luminous arcs, is also used to constrain three dark energy models (ΛCDM, constant w and CPL) under a flat universe assumption. For the full sample (n = 80) and the restricted sample (n = 46) including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively good fitting values of basic cosmological parameters, which generally agree with the results already known in the literature. This results encourages further development of this method and its use on larger samples obtained in the future.
Gravitational lensing by black holes: The case of Sgr A*
Bozza, V.
2014-01-14
The strong gravitational fields created by black holes dramatically affect the propagation of photons by bending their trajectories. Gravitational lensing thus stands as the main source of information on the space-time structure in such extreme regimes. We will review the theory and phenomenology of gravitational lensing by black holes, with the generation of higher order images and giant caustics by rotating black holes. We will then focus on Sgr A*, the black hole at the center of the Milky Way, for which next-to-come technology will be able to reach resolutions of the order of the Schwarzschild radius and ultimately test the existence of an event horizon.
Data mining for gravitationally lensed quasars
NASA Astrophysics Data System (ADS)
Agnello, Adriano; Kelly, Brandon C.; Treu, Tommaso; Marshall, Philip J.
2015-04-01
Gravitationally lensed quasars are brighter than their unlensed counterparts and produce images with distinctive morphological signatures. Past searches and target-selection algorithms, in particular the Sloan Quasar Lens Search (SQLS), have relied on basic morphological criteria, which were applied to samples of bright, spectroscopically confirmed quasars. The SQLS techniques are not sufficient for searching into new surveys (e.g. DES, PS1, LSST), because spectroscopic information is not readily available and the large data volume requires higher purity in target/candidate selection. We carry out a systematic exploration of machine-learning techniques and demonstrate that a two-step strategy can be highly effective. In the first step, we use catalogue-level information (griz+WISE magnitudes, second moments) to pre-select targets, using artificial neural networks. The accepted targets are then inspected with pixel-by-pixel pattern recognition algorithms (gradient-boosted trees), to form a final set of candidates. The results from this procedure can be used to further refine the simpler SQLS algorithms, with a twofold (or threefold) gain in purity and the same (or 80 per cent) completeness at target-selection stage, or a purity of 70 per cent and a completeness of 60 per cent after the candidate-selection step. Simpler photometric searches in griz+WISE based on colour cuts would provide samples with 7 per cent purity or less. Our technique is extremely fast, as a list of candidates can be obtained from a Stage III experiment (e.g. DES catalogue/data base) in a few CPU hours. The techniques are easily extendable to Stage IV experiments like LSST with the addition of time domain information.
Three gravitationally lensed supernovae behind clash galaxy clusters
Patel, Brandon; McCully, Curtis; Jha, Saurabh W.; Holoien, Thomas W.-S.; Rodney, Steven A.; Jones, David O.; Graur, Or; Riess, Adam G.; Merten, Julian; Zitrin, Adi; Matheson, Thomas; Sako, Masao; Postman, Marc; Coe, Dan; Bradley, Larry; Bartelmann, Matthias; Balestra, Italo; Benítez, Narciso; Bouwens, Rychard; Broadhurst, Tom; and others
2014-05-01
We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was ∼1.0 ± 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is ∼0.2 ± 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log{sub 10}μ): 0.83 ± 0.16 mag for SN CLO12Car, 0.28 ± 0.08 mag for SN CLN12Did, and 0.43 ± 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.
High resolution weak lensing mass mapping combining shear and flexion
NASA Astrophysics Data System (ADS)
Lanusse, F.; Starck, J.-L.; Leonard, A.; Pires, S.
2016-06-01
Aims: We propose a new mass mapping algorithm, specifically designed to recover small-scale information from a combination of gravitational shear and flexion. Including flexion allows us to supplement the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map without relying on strong lensing constraints. Methods: To preserve all available small scale information, we avoid any binning of the irregularly sampled input shear and flexion fields and treat the mass mapping problem as a general ill-posed inverse problem, which is regularised using a robust multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators. Results: We tested our reconstruction method on a set of realistic weak lensing simulations corresponding to typical HST/ACS cluster observations and demonstrate our ability to recover substructures with the inclusion of flexion, which are otherwise lost if only shear information is used. In particular, we can detect substructures on the 15'' scale well outside of the critical region of the clusters. In addition, flexion also helps to constrain the shape of the central regions of the main dark matter halos. Our mass mapping software, called Glimpse2D, is made freely available at http://www.cosmostat.org/software/glimpse
Is There a Quad Problem Among Pptical Gravitational Lenses?
Oguri, Masamune
2007-06-06
Most of optical gravitational lenses recently discovered in the Sloan Digital Sky Survey Quasar Lens Search (SQLS) have two-images rather than four images, in marked contrast to radio lenses for which the fraction of four-image lenses (quad fraction) is quite high. We revisit the quad fraction among optical lenses by taking the selection function of the SQLS into account. We find that the current observed quad fraction in the SQLS is indeed lower than, but consistent with, the prediction of our theoretical model. The low quad fraction among optical lenses, together with the high quad fraction among radio lenses, implies that the quasar optical luminosity function has a relatively shallow faint end slope.
Combining weak-lensing tomography and spectroscopic redshift surveys
Cai, Yan -Chuan; Bernstein, Gary
2012-05-11
Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the same sky area. For sky coverage f_{sky} = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin^{–2} are measured in the lensing survey and all halos with M > M_{min} = 10^{13}h^{–1}M_{⊙} have spectra. For the gravitational growth parameter parameter γ (f = Ω^{γ}_{m}), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 10^{13.5} (10^{14}) h^{–1} M_{⊙}. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 10^{13} -10^{14} h^{–1} M_{⊙}, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is
Combining weak-lensing tomography and spectroscopic redshift surveys
Cai, Yan -Chuan; Bernstein, Gary
2012-05-11
Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the samemore » sky area. For sky coverage fsky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin–2 are measured in the lensing survey and all halos with M > Mmin = 1013h–1M⊙ have spectra. For the gravitational growth parameter parameter γ (f = Ωγm), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 1013.5 (1014) h–1 M⊙. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 1013 -1014 h–1 M⊙, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is uncertain by > 0.5%.« less
PICS: Simulations of Strong Gravitational Lensing in Galaxy Clusters
NASA Astrophysics Data System (ADS)
Li, Nan; Gladders, Michael D.; Rangel, Esteban M.; Florian, Michael K.; Bleem, Lindsey E.; Heitmann, Katrin; Habib, Salman; Fasel, Patricia
2016-09-01
Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that of the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.
Kirk, D.; et al.
2015-12-14
We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg$^{2}$ of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of $z_{\\rm med} {\\sim} 0.7$, while the CMB lensing kernel is broad and peaks at $z{\\sim}2$. The resulting cross-correlation is maximally sensitive to mass fluctuations at $z{\\sim}0.44$. Assuming the Planck 2015 best-fit cosmology, the amplitude of the DES$\\times$SPT cross-power is found to be $A = 0.88 \\pm 0.30$ and that from DES$\\times$Planck to be $A = 0.86 \\pm 0.39$, where $A=1$ corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of $2.9 \\sigma$ and $2.2 \\sigma$ respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photometric redshift uncertainty and CMB lensing systematics. Significant intrinsic alignment of galaxy shapes would increase the cross-correlation signal inferred from the data; we calculate a value of $A = 1.08 \\pm 0.36$ for DES$\\times$SPT when we correct the observations with a simple IA model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation, given the size of the statistical uncertainties and the significant impact of systematic errors, particularly IAs. We provide forecasts for the expected signal-to-noise of the combination of the five-year DES survey and SPT-3G.
Gravitational lensing of massive particles in Schwarzschild gravity
NASA Astrophysics Data System (ADS)
Liu, Xionghui; Yang, Nan; Jia, Junji
2016-09-01
Both massless light ray and objects with nonzero mass experience trajectory bending in a gravitational field. In this work the bending of trajectories of massive objects in a Schwarzschild spacetime and the corresponding gravitational lensing (GL) effects are studied. A particle sphere for Schwarzschild black hole (BH) is found with its radius a simple function of the particle velocity and proportional to the BH mass. A single master formula for both the massless and massive particle bending angle is found, in the form of an elliptic function depending only on the velocity and impact parameter. This bending angle is expanded in both large and small velocity limits and large and small impact parameter limits. The corresponding deflection angle for weak and strong GL of massive particles are analyzed, and their corrections to the light ray deflection angles are obtained. The dependence of the deflection angles on the source angle and the particle speed is investigated. Finally we discuss the potential applications of the results in hypervelocity star observations and in determining mass/mass hierarchy of slow particles/objects.
Planck 2015 results. XV. Gravitational lensing
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40σ), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5σ. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40 ≤ L ≤ 400, and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the ΛCDM model that best fits the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination σ8Ω0.25m = 0.591 ± 0.021. We combine our determination of the lensing potential with the E-mode polarization, also measured by Planck, to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10σ, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3σ level, as expected because of dark energy in the concordance ΛCDM model.
Gravitational lensing by f(R,T) gravity
NASA Astrophysics Data System (ADS)
Alhamzawi, Ahmed; Alhamzawi, Rahim
2016-11-01
A solution for f(R,T) gravity of the type f(R,T) = f1(R) + f2(T) for specific f2(T) functions is derived. It is shown that a slight modification to the Schwarzschild metric can be found for f2(T) = αTn + β, where n > 0, β ≪ 1 and α is some constant. The effects of f(R,T) gravity on gravitational lensing are calculated and the differences with general relativity are compared. Furthermore, it is shown that modified gravity can give a considerable contribution to gravitational lensing.
SHELS: TESTING WEAK-LENSING MAPS WITH REDSHIFT SURVEYS
Geller, Margaret J.; Kurtz, Michael J.; Fabricant, Daniel G.; Dell'Antonio, Ian P.; Ramella, Massimo E-mail: mkurtz@cfa.harvard.ed E-mail: ian@het.brown.ed
2010-02-01
Weak-lensing surveys are emerging as an important tool for the construction of 'mass-selected' clusters of galaxies. We evaluate both the efficiency and completeness of a weak-lensing selection by combining a dense, complete redshift survey, the Smithsonian Hectospec Lensing Survey (SHELS), with a weak-lensing map from the Deep Lens Survey (DLS). SHELS includes 11,692 redshifts for galaxies with R <= 20.6 in the 4 deg{sup 2} DLS field; the survey is a solid basis for identifying massive clusters of galaxies with redshift z approx< 0.55. The range of sensitivity of the redshift survey is similar to the range for the DLS convergence map. Only four of the 12 convergence peaks with signal to noise >=3.5 correspond to clusters of galaxies with M approx> 1.7 x 10{sup 14} M{sub sun}. Four of the eight massive clusters in SHELS are detected in the weak-lensing map yielding a completeness of approx50%. We examine the seven known extended cluster X-ray sources in the DLS field: three can be detected in the weak-lensing map, three should not be detected without boosting from superposed large-scale structure, and one is mysteriously undetected even though its optical properties suggest that it should produce a detectable lensing signal. Taken together, these results underscore the need for more extensive comparisons among different methods of massive cluster identification.
GREAT3: The Third Gravitational Lensing Accuracy Testing Challenge
NASA Astrophysics Data System (ADS)
Simet, Melanie; Mandelbaum, R.; Rowe, B.; Great3 Collaboration
2014-01-01
We describe the ongoing weak lensing community data challenge, GREAT3, and the associated open-source image simulation software, GalSim. The GREAT3 challenge tests the impact on weak lensing measurements of (a) realistic galaxy morphologies, (b) realistic uncertainty in the point-spread function estimation, and (c) the need to combine multiple exposures when estimating the galaxy shape. It includes simulated ground- and space-based data. The tests of realistic galaxy morphologies rely on a training set of galaxies from the Hubble Space Telescope, a subset of which has been publicly released for community use, with the remainder to be released at the end of the challenge. We describe some technical considerations for generating the challenge data and for testing weak lensing measurements with the next generation of weak lensing surveys, such as DES, HSC, KIDS, and Pan-STARRS.
GREAT3: The Third Gravitational Lensing Accuracy Testing Challenge
NASA Astrophysics Data System (ADS)
Mandelbaum, Rachel; Rowe, B.; GREAT3 Collaboration
2013-01-01
We describe the upcoming weak lensing community data challenge, GREAT3, and the associated open-source image simulation software, GalSim. The GREAT3 challenge will test the impact on weak lensing measurements of (a) realistic galaxy morphologies, (b) realistic uncertainty in the point-spread function estimation, and (c) the need to combine multiple exposures when estimating the galaxy shape. It will include simulated ground- and space-based data, and the tests of realistic galaxy morphologies will rely on a training set of galaxies from the Hubble Space Telescope which will be publicly released at the start of the challenge. We describe some technical considerations for generating the challenge data and for testing weak lensing measurements with the next generation of weak lensing surveys, such as DES, HSC, KIDS, and Pan-STARRS.
Strong Gravitational Lensing: Blueprints for Galaxy-Cluster Core Reconstruction
NASA Astrophysics Data System (ADS)
Newbury, Peter Robert
1998-11-01
When rays of light pass by a massive object they are very slightly deflected towards the centre-of-mass of the object. If two or more diverging beams of light re-converge onto an serendipitous observer, this observer may see multiple, magnified images of the source of light. This process is known as gravitational lensing, and has been observed in several dozen spectacular cases. Based on the appearance of the lensed arcs of light, we attempt to 'invert' the lens to find the distribution of mass that will produce just such a configuration of lensed objects. In this thesis, we propose a two-stage inversion scheme. First, the distribution of mass on the deflector plane and the geometry of the source-deflector-observer optical system are established. This is done by numerically simulating the lensing of light past a parametric mass model, and interactively adjusting the handful of model parameters to match the positions of the simulated and observed lensed arcs. At the same time, this determines the magnification of the background source induced by the lensing process. The predicted magnification is then removed from the data to reveal the intrinsic, though still distorted, background distribution of light. After tracing each lensed ray back to the source plane, the data are recombined to produce a surface brightness distribution of the source. This two-stage inversion scheme produces a parametric model of the deflector and a pixelised rendering of the background source which together mimic the observed gravitationally lensed features. We test the viability of scheme itself on a well-studied collection of lensed objects in the galaxy-cluster MS 2137. Confident in the algorithm, we apply it second time to predict the distribution of mass in the galaxy-cluster MS 1455 responsible for an observed triplet of lensed arcs. Our predictions about the lens in MS 1455 make it particularly interesting, for a single background source is responsible for both tangential arcs and a
Scaling the universe: Gravitational lenses and the Hubble constant
Myers, Steven T.
1999-01-01
Gravitational lenses, besides being interesting in their own right, have been demonstrated to be suitable as “gravitational standard rulers” for the measurement of the rate of expansion of the Universe (Ho), as well as to constrain the values of the cosmological parameters such as Ωo and Λo that control the evolution of the volume of the Universe with cosmic time. PMID:10200245
Mass Determination of QSOs Using Gravitational Lensing
NASA Astrophysics Data System (ADS)
Surdej, Jean
1996-07-01
Only four pairs of quasars with different redshifts and angular separations smaller than 5'' are presently known. We propose to directly image with the WFPC2 planetary camera these interesting quasar associations in order to search for the presence of a secondary lensed image of the background source near the foreground quasar. The detection {or non- detection} of these putative secondary images will enable us to weigh {or significantly improve the upper limit on} the mass of the foreground quasars. These QSO mass estimates will take into account the lensing effects due to the host galaxy of the foreground quasar{s} and/or other intervening galaxies, if detected on the high quality PC images. Furthermore, one of these quasars {Q 1009-0252} has recently been reported to be multiply imaged. The WFPC2 CCD frames will also enable us to search for the lensing object{s} and for additional macro- lensed images of the background quasar, and will thus provide essential constraints on the lensing model.
The impact of camera optical alignments on weak lensing measures for the Dark Energy Survey
Antonik, M. L.; Bacon, D. J.; Bridle, S.; Doel, P.; Brooks, D.; Worswick, S.; Bernstein, G.; Bernstein, R.; DePoy, D.; Flaugher, B.; Frieman, J. A.; Gladders, M.; Gutierrez, G.; Jain, B.; Jarvis, M.; Kent, S. M.; Lahav, O.; Parker, S. -. J.; Roodman, A.; Walker, A. R.
2013-04-10
Telescope point spread function (PSF) quality is critical for realizing the potential of cosmic weak lensing observations to constrain dark energy and test general relativity. In this paper, we use quantitative weak gravitational lensing measures to inform the precision of lens optical alignment, with specific reference to the Dark Energy Survey (DES). We compute optics spot diagrams and calculate the shear and flexion of the PSF as a function of position on the focal plane. For perfect optical alignment, we verify the high quality of the DES optical design, finding a maximum PSF contribution to the weak lensing shear of 0.04 near the edge of the focal plane. However, this can be increased by a factor of approximately 3 if the lenses are only just aligned within their maximum specified tolerances. We calculate the E- and B-mode shear and flexion variance as a function of the decentre or tilt of each lens in turn. We find tilt accuracy to be a few times more important than decentre, depending on the lens considered. Finally, we consider the compound effect of decentre and tilt of multiple lenses simultaneously, by sampling from a plausible range of values of each parameter. We find that the compound effect can be around twice as detrimental as when considering any one lens alone. Furthermore, this combined effect changes the conclusions about which lens is most important to align accurately. For DES, the tilt of the first two lenses is the most important.
Sample variance in weak lensing: How many simulations are required?
Petri, Andrea; May, Morgan; Haiman, Zoltan
2016-03-24
Constraining cosmology using weak gravitational lensing consists of comparing a measured feature vector of dimension Nb with its simulated counterpart. An accurate estimate of the Nb × Nb feature covariance matrix C is essential to obtain accurate parameter confidence intervals. When C is measured from a set of simulations, an important question is how large this set should be. To answer this question, we construct different ensembles of Nr realizations of the shear field, using a common randomization procedure that recycles the outputs from a smaller number Ns ≤ Nr of independent ray-tracing N-body simulations. We study parameter confidence intervalsmore » as a function of (Ns, Nr) in the range 1 ≤ Ns ≤ 200 and 1 ≤ Nr ≲ 105. Previous work [S. Dodelson and M. D. Schneider, Phys. Rev. D 88, 063537 (2013)] has shown that Gaussian noise in the feature vectors (from which the covariance is estimated) lead, at quadratic order, to an O(1/Nr) degradation of the parameter confidence intervals. Using a variety of lensing features measured in our simulations, including shear-shear power spectra and peak counts, we show that cubic and quartic covariance fluctuations lead to additional O(1/N2r) error degradation that is not negligible when Nr is only a factor of few larger than Nb. We study the large Nr limit, and find that a single, 240 Mpc/h sized 5123-particle N-body simulation (Ns = 1) can be repeatedly recycled to produce as many as Nr = few × 104 shear maps whose power spectra and high-significance peak counts can be treated as statistically independent. Lastly, a small number of simulations (Ns = 1 or 2) is sufficient to forecast parameter confidence intervals at percent accuracy.« less
Massey, Richard; Hoekstra, Henk; Kitching, Thomas; Rhodes, Jason; Cropper, Mark; Amiaux, Jerome; Harvey, David; Mellier, Yannick; Meneghetti, Massimo; Miller, Lance; Paulin-Henriksson, Stephane; Pires, Sandrine; Scaramella, Roberto; Schrabback, Tim
2012-12-13
The first half of this paper explores the origin of systematic biases in the measurement of weak gravitational lensing. Compared to previous work, we expand the investigation of point spread function instability and fold in for the first time the effects of non-idealities in electronic imaging detectors and imperfect galaxy shape measurement algorithms. In addition, these now explain the additive A(ℓ) and multiplicative M(ℓ) systematics typically reported in current lensing measurements. We find that overall performance is driven by a product of a telescope/camera's absolute performance, and our knowledge about its performance.
Constraining the mass-concentration relation through weak lensing peak function
Mainini, R.; Romano, A. E-mail: anna.romano@oar.inaf.it
2014-08-01
Halo masses and concentrations have been studied extensively, by means of N-body simulations as well as observationally, during the last decade. Nevertheless, the exact form of the mass-concentration relation is still widely debated. One of the most promising method to estimate masses and concentrations relies on gravitational lensing from massive halos. Here we investigate the impact of the mass-concentration relation on halo peak abundance in weak lensing shear maps relying on the aperture mass method for peak detections. After providing a prescription to take into account the concentration dispersion (always neglected in previous works) in peak number counts predictions, we assess their power to constrain the mass-concentration relation by means of Fisher matrix technique. We find that, when combined with different cosmological probes, peak statistics information from near-future weak lensing surveys provides an interesting and complementary alternative method to lessen the long standing controversy about the mass-concentration relation.
Weak lensing generated by vector perturbations and detectability of cosmic strings
Yamauchi, Daisuke; Namikawa, Toshiya; Taruya, Atsushi E-mail: namikawa@utap.phys.s.u-tokyo.ac.jp
2012-10-01
We study the observational signature of vector metric perturbations through the effect of weak gravitational lensing. In the presence of vector perturbations, the non-vanishing signals for B-mode cosmic shear and curl-mode deflection angle, which have never appeared in the case of scalar metric perturbations, naturally arise. Solving the geodesic and geodesic deviation equations, we drive the full-sky formulas for angular power spectra of weak lensing signals, and give the explicit expressions for E-/B-mode cosmic shear and gradient-/curl-mode deflection angle. As a possible source for seeding vector perturbations, we then consider a cosmic string network, and discuss its detectability from upcoming weak lensing and CMB measurements. Based on the formulas and a simple model for cosmic string network, we calculate the angular power spectra and expected signal-to-noise ratios for the B-mode cosmic shear and curl-mode deflection angle. We find that the weak lensing signals are enhanced for a smaller intercommuting probability of the string network, P, and they are potentially detectable from the upcoming cosmic shear and CMB lensing observations. For P ∼ 10{sup −1}, the minimum detectable tension of the cosmic string will be down to Gμ ∼ 5 × 10{sup −8}. With a theoretically inferred smallest value P ∼ 10{sup −3}, we could even detect the string with Gμ ∼ 5 × 10{sup −10}.
Weak Lensing by Galaxy Clusters: from Pixels to Cosmology
Gruen, Daniel
2015-03-11
The story of the origin and evolution of our Universe is told, equivalently, by space-time itself and by the structures that grow inside of it. Clusters of galaxies are the frontier of bottom-up structure formation. They are the most massive objects to have collapsed at the present epoch. By that virtue, their abundance and structural parameters are highly sensitive to the composition and evolution of the Universe. The most common probe of cluster cosmology, abundance, uses samples of clusters selected by some observable. Applying a mass-observable relation (MOR), cosmological parameters can be constrained by comparing the sample to predicted cluster abundances as a function of observable and redshift. Arguably, however, cluster probes have not yet entered the era of per cent level precision cosmology. The primary reason for this is our imperfect understanding of the MORs. The overall normalization, the slope of mass vs. observable, the redshift evolution, and the degree and correlation of intrinsic scatters of observables at fixed mass have to be constrained for interpreting abundances correctly. Mass measurement of clusters by means of the differential deflection of light from background sources in their gravitational field, i.e. weak lensing, is a powerful approach for achieving this. This thesis presents new methods for and scientific results of weak lensing measurements of clusters of galaxies. The former include, on the data reduction side, (i) the correction of CCD images for non-linear effects due to the electric fields of accumulated charges and (ii) a method for masking artifact features in sets of overlapping images of the sky by comparison to the median image. Also, (iii) I develop a method for the selection of background galaxy samples based on their color and apparent magnitude that includes a new correction for contamination with cluster member galaxies. The main scientific results are the following. (i) For the Hubble Frontier Field cluster RXC J
Strong gravitational lensing in a noncommutative black-hole spacetime
Ding Chikun; Kang Shuai; Chen Changyong; Chen Songbai; Jing Jiliang
2011-04-15
Noncommutative geometry may be a starting point to a quantum gravity. We study the influence of the spacetime noncommutative parameter on the strong field gravitational lensing in the noncommutative Schwarzschild black-hole spacetime and obtain the angular position and magnification of the relativistic images. Supposing that the gravitational field of the supermassive central object of the galaxy can be described by this metric, we estimate the numerical values of the coefficients and observables for strong gravitational lensing. In comparison to the Reissner-Norstroem black hole, we find that the influences of the spacetime noncommutative parameter is similar to those of the charge, but these influences are much smaller. This may offer a way to distinguish a noncommutative black hole from a Reissner-Norstroem black hole, and may permit us to probe the spacetime noncommutative constant {theta} by the astronomical instruments in the future.
Weak Lensing PSF Correction of Wide-field CCD Mosaic Images (SULI Paper)
Cevallos, Marissa; /Caltech /SLAC
2006-01-04
Gravitational lensing provides some of the most compelling evidence for the existence of dark matter. Dark matter on galaxy cluster scales can be mapped due to its weak gravitational lensing effect: a cluster mass distribution can be inferred from the net distortion of many thousands of faint background galaxies that it induces. Because atmospheric aberration and defects in the detector distort the apparent shape of celestial objects, it is of great importance to characterize accurately the point spread function (PSF) across an image. In this research, the PSF is studied in images from the Canada-France-Hawaii Telescope (CFHT), whose camera is divided into 12 CCD chips. Traditional weak lensing methodology involves averaging the PSF across the entire image: in this work we investigate the effects of measuring the PSF in each chip independently. This chip-by-chip analysis was found to reduce the strength of the correlation between star and galaxy shapes, and predicted more strongly the presence of known galaxy clusters in mass maps. These results suggest correcting the CFHT PSF on an individual chip basis significantly improves the accuracy of detecting weak lensing.
The Angular Structure of Four-Image Gravitational Lenses
NASA Astrophysics Data System (ADS)
Turner, C. M.; Keeton, C. R.; Kochanek, C. S.
2002-12-01
Using four-image gravitational lenses in the CfA-Arizona Space Telescope Lens Survey, we probe the angular structure of lens galaxy mass distributions. The models show the lens potential is successfully constrained for four-image lenses. The largest contribution to shear perturbations is found outside of the lens' Einstein ring, which suggests a dramatic, outlying mass component. We find strong evidence that most lens galaxies have extended, flattened dark matter halos. CMT acknowledges support from the NSF/REU program at the University of Chicago's Department of Physics. CRK acknowledges support from a Hubble Fellowship grant, awarded through STScI.
Weak lensing mass reconstruction of the galaxy cluster Abell 209
NASA Astrophysics Data System (ADS)
Paulin-Henriksson, S.; Antonuccio-Delogu, V.; Haines, C. P.; Radovich, M.; Mercurio, A.; Becciani, U.
2007-05-01
Context: Weak lensing applied to deep optical images of clusters of galaxies provides a powerful tool to reconstruct the distribution of the gravitating mass associated to these structures. Aims: We use the shear signal extracted by an analysis of deep exposures of a region centered around the galaxy cluster ABCG 209, at redshift z˜ 0.2, to derive both a map of the projected mass distribution and an estimate of the total mass within a characteristic radius. Methods: We use a series of deep archival R-band images from CFHT-12k, covering an area of 0.3 deg^2. We determine the shear of background galaxy images using a new implementation of the modified Kaiser-Squires-Broadhurst KSB+ pipeline for shear determination, which we has been tested against the "Shear TEsting Program 1 and 2'' simulations. We use mass aperture statistics to produce maps of the 2 dimensional density distribution, and parametric fits using both Navarro-Frenk-White and singular-isothermal-sphere profiles to constrain the total mass. Results: The projected mass distribution shows a pronounced asymmetry, with an elongated structure extending from the SE to the NW. This is in general agreement with the optical distribution previously found by other authors. A similar elongation was previously detected in the X-ray emission map, and in the distribution of galaxy colours. The circular NFW mass profile fit gives a total mass of M200 = 7.7+4.3-2.7× 1014 {M}_⊙ inside the virial radius r200 = 1.8± 0.3 Mpc. Conclusions: The weak lensing profile reinforces the evidence for an elongated structure of ABCG 209, as previously suggested by studies of the galaxy distribution and velocities. This project has been partly supported by a Marie Curie Transfer of Knowledge Fellowship of the European Community's Sixth Framework Programme, under contract: MTKD-CT-002995 COSMOCT. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada
A search for closely spaced gravitational lenses
Crampton, D.; Mcclure, R.D.; Fletcher, J.M.; Hutchings, J.B. National Research Council of Canada, Herzberg Institute of Astrophysics, Ottawa )
1989-10-01
A new image-stabilizing camera was used to search for closely spaced images of a sample of 25 intrinsically luminous quasars with z greater than 1.6 and m smaller than 19. Observations of seven similarly selected quasars with the regular CCD camera in good seeing conditions are also reported. Of the 32 quasars, seven are gravitational lens candidates. Two of these have subarcsecond separations. Additional information on all these candidates is required. 22 refs.
SKA Weak Lensing I: Cosmological Forecasts and the Power of Radio-Optical Cross-Correlations
NASA Astrophysics Data System (ADS)
Harrison, Ian; Camera, Stefano; Zuntz, Joe; Brown, L.
2016-09-01
We construct forecasts for cosmological parameter constraints from weak gravitational lensing surveys involving the Square Kilometre Array (SKA). Considering matter content, dark energy and modified gravity parameters, we show that the first phase of the SKA (SKA1) can be competitive with other Stage III experiments such as the Dark Energy Survey (DES) and that the full SKA (SKA2) can potentially form tighter constraints than Stage IV optical weak lensing experiments, such as those that will be conducted with LSST, WFIRST-AFTA or Euclid-like facilities. Using weak lensing alone, going from SKA1 to SKA2 represents improvements by factors of ˜10 in matter, ˜10 in dark energy and ˜5 in modified gravity parameters. We also show, for the first time, the powerful result that comparably tight constraints (within ˜5%) for both Stage III and Stage IV experiments, can be gained from cross-correlating shear maps between the optical and radio wavebands, a process which can also eliminate a number of potential sources of systematic errors which can otherwise limit the utility of weak lensing cosmology.
General requirements on matter power spectrum predictions for cosmology with weak lensing tomography
Hearin, Andrew P.; Zentner, Andrew R.; Ma, Zhaoming E-mail: zentner@pitt.edu
2012-04-01
Forthcoming projects such as DES, LSST, WFIRST, and Euclid aim to measure weak lensing shear correlations with unprecedented precision, constraining the dark energy equation of state at the percent level. Reliance on photometrically-determined redshifts constitutes a major source of uncertainty for these surveys. Additionally, interpreting the weak lensing signal requires a detailed understanding of the nonlinear physics of gravitational collapse. We present a new analysis of the stringent calibration requirements for weak lensing analyses of future imaging surveys that addresses both photo-z uncertainty and errors in the calibration of the matter power spectrum. We find that when photo-z uncertainty is taken into account the requirements on the level of precision in the prediction for the matter power spectrum are more stringent than previously thought. Including degree-scale galaxy clustering statistics in a joint analysis with weak lensing not only strengthens the survey's constraining power by ∼ 20%, but can also have a profound impact on the calibration demands, decreasing the degradation in dark energy constraints with matter power spectrum uncertainty by a factor of 2-5. Similarly, using galaxy clustering information significantly relaxes the demands on photo-z calibration. We compare these calibration requirements to the contemporary state-of-the-art in photometric redshift estimation and predictions of the power spectrum and suggest strategies to utilize forthcoming data optimally.
The effect of weak lensing on distance estimates from supernovae
Smith, Mathew; Maartens, Roy; Bacon, David J.; Nichol, Robert C.; Campbell, Heather; D'Andrea, Chris B.; Clarkson, Chris; Bassett, Bruce A.; Cinabro, David; Finley, David A.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; Olmstead, Matthew D.; Schneider, Donald P.; Shapiro, Charles; Sollerman, Jesper
2014-01-01
Using a sample of 608 Type Ia supernovae from the SDSS-II and BOSS surveys, combined with a sample of foreground galaxies from SDSS-II, we estimate the weak lensing convergence for each supernova line of sight. We find that the correlation between this measurement and the Hubble residuals is consistent with the prediction from lensing (at a significance of 1.7σ). Strong correlations are also found between the residuals and supernova nuisance parameters after a linear correction is applied. When these other correlations are taken into account, the lensing signal is detected at 1.4σ. We show, for the first time, that distance estimates from supernovae can be improved when lensing is incorporated, by including a new parameter in the SALT2 methodology for determining distance moduli. The recovered value of the new parameter is consistent with the lensing prediction. Using cosmic microwave background data from WMAP7, H {sub 0} data from Hubble Space Telescope and Sloan Digital Sky Survey (SDSS) Baryon acoustic oscillations measurements, we find the best-fit value of the new lensing parameter and show that the central values and uncertainties on Ω {sub m} and w are unaffected. The lensing of supernovae, while only seen at marginal significance in this low-redshift sample, will be of vital importance for the next generation of surveys, such as DES and LSST, which will be systematics-dominated.
Higher-order gravitational lensing reconstruction using Feynman diagrams
Jenkins, Elizabeth E.; Manohar, Aneesh V.; Yadav, Amit P.S.; Waalewijn, Wouter J. E-mail: amanohar@ucsd.edu E-mail: ayadav@physics.ucsd.edu
2014-09-01
We develop a method for calculating the correlation structure of the Cosmic Microwave Background (CMB) using Feynman diagrams, when the CMB has been modified by gravitational lensing, Faraday rotation, patchy reionization, or other distorting effects. This method is used to calculate the bias of the Hu-Okamoto quadratic estimator in reconstructing the lensing power spectrum up to O (φ{sup 4}) in the lensing potential φ. We consider both the diagonal noise TT TT, EB EB, etc. and, for the first time, the off-diagonal noise TT TE, TB EB, etc. The previously noted large O (φ{sup 4}) term in the second order noise is identified to come from a particular class of diagrams. It can be significantly reduced by a reorganization of the φ expansion. These improved estimators have almost no bias for the off-diagonal case involving only one B component of the CMB, such as EE EB.
Resolving high energy emission of jets using strong gravitational lensing
NASA Astrophysics Data System (ADS)
Barnacka, Anna
2014-11-01
Chandra observations of M87 in 2004 uncovered an outburst originating in distant knot along the jet hundreds of parsecs from the core. This discovery challenges our understanding of the origin of high energy flares. Current technology is inadequate to resolve jets at distances greater than M87, or observed at higher energies. We propose to use gravitationally lensed jets to investigate the structure of more distant sources. Photons emitted at different sites cross the lens plane at different distances, thus magnification ratios and time delays differ between the mirage images. Monitoring of flares from lensed jets reveals the origin of the emission. With detectors like Chandra, lensed systems are a tool for resolving the structure of the jets and for investigating their cosmic evolution.
Observing cosmic string loops with gravitational lensing surveys
Mack, Katherine J.; Wesley, Daniel H.; King, Lindsay J.
2007-12-15
We show that the existence of cosmic strings can be strongly constrained by the next generation of gravitational lensing surveys at radio frequencies. We focus on cosmic string loops, which simulations suggest would be far more numerous than long (horizon-sized) strings. Using simple models of the loop population and minimal assumptions about the lensing cross section per loop, we estimate the optical depth to lensing and show that extant radio surveys such as CLASS have already ruled out a portion of the cosmic string model parameter space. Future radio interferometers, such as LOFAR and especially SKA, may constrain G{mu}/c{sup 2}<10{sup -9} in some regions of parameter space, outperforming current constraints from pulsar timing and the cosmic microwave backgound by up to two orders of magnitude. This method relies on direct detections of cosmic strings, and so is less sensitive to the theoretical uncertainties in string network evolution that weaken other constraints.
Strong gravitational lensing with Gauss-Bonnet correction
Sadeghi, J.; Vaez, H. E-mail: h.vaez@umz.ac.ir
2014-06-01
In this paper we investigate the strong gravitational lensing in a five dimensional background with Gauss-Bonnet gravity, so that in 4-dimensions the Gauss-Bonnet correction disappears. By considering the logarithmic term for deflection angle, we obtain the deflection angle α-circumflex and corresponding parameters ā and b-bar . Finally, we estimate some properties of relativistic images such as θ{sub ∞}, s and r{sub m}.
Galaxy cluster center detection methods with weak lensing
NASA Astrophysics Data System (ADS)
Simet, Melanie
The precise location of galaxy cluster centers is a persistent problem in weak lensing mass estimates and in interpretations of clusters in a cosmological context. In this work, we test methods of centroid determination from weak lensing data and examine the effects of such self-calibration on the measured masses. Drawing on lensing data from the Sloan Digital Sky Survey Stripe 82, a 275 square degree region of coadded data in the Southern Galactic Cap, together with a catalog of MaxBCG clusters, we show that halo substructure as well as shape noise and stochasticity in galaxy positions limit the precision of such a self-calibration (in the context of Stripe 82, to ˜ 500 h-1 kpc or larger) and bias the mass estimates around these points to a level that is likely unacceptable for the purposes of making cosmological measurements. We also project the usefulness of this technique in future surveys.
Modified gravity: the CMB, weak lensing and general parameterisations
Thomas, Shaun A.; Appleby, Stephen A.; Weller, Jochen E-mail: stephen.appleby@ph.tum.de
2011-03-01
We examine general physical parameterisations for viable gravitational models in the f(R) framework. This is related to the mass of an additional scalar field, called the scalaron, that is introduced by the theories. Using a simple parameterisation for the scalaron mass M(a) we show there is an exact correspondence between the model and popular parameterisations of the modified Poisson equation μ(a,k) and the ratio of the Newtonian potentials η(a,k). We argue that although f(R) models are well described by the general [μ(a,k),η(a,k)] parameterization, specific functional forms of μ,η in the literature do not accurately represent f(R) behaviour, specifically at low redshift. We subsequently construct an improved description for the scalaron mass (and therefore μ(a,k) and η(a,k)) which captures their essential features and has benefits derived from a more physical origin. We study the scalaron's observational signatures and show the modification to the background Friedmann equation and CMB power spectrum to be small. We also investigate its effects in the linear and non linear matter power spectrum-where the signatures are evident-thus giving particular importance to weak lensing as a probe of these models. Using this new form, we demonstrate how the next generation Euclid survey will constrain these theories and its complementarity to current solar system tests. In the most optimistic case Euclid, together with a Planck prior, can constrain a fiducial scalaron mass M{sub 0} = 9.4 × 10{sup −30}eV at the ∼ 20% level. However, the decay rate of the scalaron mass, with fiducial value ν = 1.5, can be constrained to ∼ 3% uncertainty.
Biesiada, Marek; Ding, Xuheng; Zhu, Zong-Hong; Piórkowska, Aleksandra E-mail: dingxuheng@mail.bnu.edu.cn E-mail: zhuzh@bnu.edu.cn
2014-10-01
Gravitational wave (GW) experiments are entering their advanced stage which should soon open a new observational window on the Universe. Looking into this future, the Einstein Telescope (ET) was designed to have a fantastic sensitivity improving significantly over the advanced GW detectors. One of the most important astrophysical GW sources supposed to be detected by the ET in large numbers are double compact objects (DCO) and some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral DCO events in the ET. This analysis is a significant extension of our previous paper [1]. We are using the intrinsic merger rates of the whole class of DCO (NS-NS,BH-NS,BH-BH) located at different redshifts as calculated by [2] by using StarTrack population synthesis evolutionary code. We discuss in details predictions from each evolutionary scenario. Our general conclusion is that ET would register about 50–100 strongly lensed inspiral events per year. Only the scenario in which nascent BHs receive strong kick gives the predictions of a few events per year. Such lensed events would be dominated by the BH-BH merging binary systems. Our results suggest that during a few years of successful operation ET will provide a considerable catalog of strongly lensed events.
Strong gravitational lensing statistics as a test of cosmogonic scenarios
NASA Technical Reports Server (NTRS)
Cen, Renyue; Gott, J. Richard, III; Ostriker, Jeremiah P.; Turner, Edwin L.
1994-01-01
Gravitational lensing statistics can provide a direct and powerful test of cosmic structure formation theories. Since lensing tests, directly, the magnitude of the nonlinear mass density fluctuations on lines of sight to distant objects, no issues of 'bias' (of mass fluctuations with respect to galaxy density fluctuations) exist here, although lensing observations provide their own ambiguities of interpretation. We develop numerical techniques for generating model density distributions with the very large spatial dynamic range required by lensing considerations and for identifying regions of the simulations capable of multiple image lensing in a conservative and computationally efficient way that should be accurate for splittings significantly larger than 3 seconds. Applying these techniques to existing standard Cold dark matter (CDM) (Omega = 1) and Primeval Baryon Isocurvature (PBI) (Omega = 0.2) simulations (normalized to the Cosmic Background Explorer Satellite (COBE) amplitude), we find that the CDM model predicts large splitting (greater than 8 seconds) lensing events roughly an order-of-magnitude more frequently than the PBI model. Under the reasonable but idealized assumption that lensing structrues can be modeled as singular isothermal spheres (SIS), the predictions can be directly compared to observations of lensing events in quasar samples. Several large splitting (Delta Theta is greater than 8 seconds) cases are predicted in the standard CDM model (the exact number being dependent on the treatment of amplification bias), whereas none is observed. In a formal sense, the comparison excludes the CDM model at high confidence (essentially for the same reason that CDM predicts excessive small-scale cosmic velocity dispersions.) A very rough assessment of low-density but flat CDM model (Omega = 0.3, Lambda/3H(sup 2 sub 0) = 0.7) indicates a far lower and probably acceptable level of lensing. The PBI model is consistent with, but not strongly tested by, the
PROBING PRIMORDIAL NON-GAUSSIANITY WITH WEAK-LENSING MINKOWSKI FUNCTIONALS
Shirasaki, Masato; Yoshida, Naoki; Nishimichi, Takahiro; Hamana, Takashi
2012-11-20
We study the cosmological information contained in the Minkowski functionals (MFs) of weak gravitational lensing convergence maps. We show that the MFs provide strong constraints on the local-type primordial non-Gaussianity parameter f {sub NL}. We run a set of cosmological N-body simulations and perform ray-tracing simulations of weak lensing to generate 100 independent convergence maps of a 25 deg{sup 2} field of view for f {sub NL} = -100, 0 and 100. We perform a Fisher analysis to study the degeneracy among other cosmological parameters such as the dark energy equation of state parameter w and the fluctuation amplitude {sigma}{sub 8}. We use fully nonlinear covariance matrices evaluated from 1000 ray-tracing simulations. For upcoming wide-field observations such as those from the Subaru Hyper Suprime-Cam survey with a proposed survey area of 1500 deg{sup 2}, the primordial non-Gaussianity can be constrained with a level of f {sub NL} {approx} 80 and w {approx} 0.036 by weak-lensing MFs. If simply scaled by the effective survey area, a 20,000 deg{sup 2} lensing survey using the Large Synoptic Survey Telescope will yield constraints of f {sub NL} {approx} 25 and w {approx} 0.013. We show that these constraints can be further improved by a tomographic method using source galaxies in multiple redshift bins.
Reducing Systematic Error in Weak Lensing Cluster Surveys
NASA Astrophysics Data System (ADS)
Utsumi, Yousuke; Miyazaki, Satoshi; Geller, Margaret J.; Dell'Antonio, Ian P.; Oguri, Masamune; Kurtz, Michael J.; Hamana, Takashi; Fabricant, Daniel G.
2014-05-01
Weak lensing provides an important route toward collecting samples of clusters of galaxies selected by mass. Subtle systematic errors in image reduction can compromise the power of this technique. We use the B-mode signal to quantify this systematic error and to test methods for reducing this error. We show that two procedures are efficient in suppressing systematic error in the B-mode: (1) refinement of the mosaic CCD warping procedure to conform to absolute celestial coordinates and (2) truncation of the smoothing procedure on a scale of 10'. Application of these procedures reduces the systematic error to 20% of its original amplitude. We provide an analytic expression for the distribution of the highest peaks in noise maps that can be used to estimate the fraction of false peaks in the weak-lensing κ-signal-to-noise ratio (S/N) maps as a function of the detection threshold. Based on this analysis, we select a threshold S/N = 4.56 for identifying an uncontaminated set of weak-lensing peaks in two test fields covering a total area of ~3 deg2. Taken together these fields contain seven peaks above the threshold. Among these, six are probable systems of galaxies and one is a superposition. We confirm the reliability of these peaks with dense redshift surveys, X-ray, and imaging observations. The systematic error reduction procedures we apply are general and can be applied to future large-area weak-lensing surveys. Our high-peak analysis suggests that with an S/N threshold of 4.5, there should be only 2.7 spurious weak-lensing peaks even in an area of 1000 deg2, where we expect ~2000 peaks based on our Subaru fields. Based in part on data collected at Subaru Telescope and obtained from the SMOKA, which is operated by the Astronomy Data Center, National Astronomical Observatory of Japan.
NASA Astrophysics Data System (ADS)
Chen, Bin; Kantowski, R.; Dai, X.
2014-01-01
We have developed an accurate gravitational lens theory for an inhomogeneity embedded in an otherwise homogeneous universe, which to the lowest order is applicable to any mass distribution. We derive the Fermat potential for a spherically symmetric lens embedded in a FLRW cosmology and use it to investigate the late-time integrated Sachs-Wolfe effect (ISW) caused by individual large scale inhomogeneities, in particular, cosmic voids. We present a simple analytical expression for the CMB temperature fluctuation across such a lens as the derivative of the lens Fermat potential. Our formalism is applicable to both linear and nonlinear density evolution scenarios, to arbitrarily large density contrasts, and to all open and closed background cosmologies. Our results are particularly useful for modeling ISW effects extracted through stacking large numbers of cosmic voids and clusters (that is, the aperture photometry method). For structures co-expanding with the background cosmology, i.e., for time-independent density contrasts, we find that the gravitational lensing time delay alone can produce fluctuations of the order of seen in recent observations by WMAP and Planck. We revisit the possibility of explaining the non-Gaussian cold spot on the south hemisphere via the Rees-Sciama effect of a large cosmic void using constraints obtained from the most recent void catalogs and our new void-lensing formalism, and compare it with other explanations such as a collapsing cosmic texture. We also study the remapping of primordial CMB anisotropies, the weak-lensing shear, and magnification caused by void lensing.
Precision photometric redshift calibration for galaxy-galaxy weak lensing
NASA Astrophysics Data System (ADS)
Mandelbaum, R.; Seljak, U.; Hirata, C. M.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Carollo, M.; Contini, T.; Cunha, C. E.; Garilli, B.; Iovino, A.; Kampczyk, P.; Kneib, J.-P.; Knobel, C.; Koo, D. C.; Lamareille, F.; Le Fèvre, O.; Le Borgne, J.-F.; Lilly, S. J.; Maier, C.; Mainieri, V.; Mignoli, M.; Newman, J. A.; Oesch, P. A.; Perez-Montero, E.; Ricciardelli, E.; Scodeggio, M.; Silverman, J.; Tasca, L.
2008-05-01
Accurate photometric redshifts are among the key requirements for precision weak lensing measurements. Both the large size of the Sloan Digital Sky Survey (SDSS) and the existence of large spectroscopic redshift samples that are flux-limited beyond its depth have made it the optimal data source for developing methods to properly calibrate photometric redshifts for lensing. Here, we focus on galaxy-galaxy lensing in a survey with spectroscopic lens redshifts, as in the SDSS. We develop statistics that quantify the effect of source redshift errors on the lensing calibration and on the weighting scheme, and show how they can be used in the presence of redshift failure and sampling variance. We then demonstrate their use with 2838 source galaxies with spectroscopy from DEEP2 and zCOSMOS, evaluating several public photometric redshift algorithms, in two cases including a full p(z) for each object, and find lensing calibration biases as low as <1 per cent (due to fortuitous cancellation of two types of bias) or as high as 20 per cent for methods in active use (despite the small mean photoz bias of these algorithms). Our work demonstrates that lensing-specific statistics must be used to reliably calibrate the lensing signal, due to asymmetric effects of (frequently non-Gaussian) photoz errors. We also demonstrate that large-scale structure (LSS) can strongly impact the photoz calibration and its error estimation, due to a correlation between the LSS and the photoz errors, and argue that at least two independent degree-scale spectroscopic samples are needed to suppress its effects. Given the size of our spectroscopic sample, we can reduce the galaxy-galaxy lensing calibration error well below current SDSS statistical errors. Based in part on observations undertaken at the European Southern Observatory (ESO) Very Large Telescope (VLT) under Large Programme 175.A-0839. E-mail: rmandelb@ias.edu (RM); seljak@itp.uzh.ch (US) ‡ Hubble Fellow.
Gravitationally Lensed X-Ray Sources at the Galactic Center
NASA Astrophysics Data System (ADS)
Castelaz, Michael W.; Rottler, L.
2012-01-01
More than two thousand x-ray sources located within 20 pc of the Galactic Center (GC) have been identified by Muno et al. (2003). If an x-ray source is located behind the Galactic Center and offset by a small angle from the GC projected on the sky, then that x-ray source could be gravitationally lensed. The consequences of finding gravitationally lensed sources at the Galactic Center include the ability to independently measure the mass of the GC as well as provide a new probe of the density distribution of the GC (e.g. Wardle & Yusef-Zadeh 1992). Inspecting x-ray images of the GC we were immediately drawn to a set of four x-ray objects. The identified objects are cataloged as CXOJ 174541.0-290014, 174540.1-290005, 174540.0-290031, and 174538.1-290022. These are the brightest and most obvious variable x-ray objects whose positions suggest patterns of images that may either be an inclined quad or two sets of dual gravitational lens patterns. Based on the image patterns, and image brightnesses and relative variations, we modeled possible lens systems using two algorithms. Both of the algorithms describing gravitational lenses are based on the Fermat potential and its time derivatives. For a lens radius of R = 0.01 pc, the total enclosed mass is 2.6 x 107 M⊙ and for R = 0.001 pc, the total enclosed mass is 2.6 x 105 M⊙. These masses are consistent with other measurements of the mass of the GC, such as 4.5 x 106 M⊙ (Ghez et al. 2008). We will present these results and our plans to further study the nature of these x-ray objects.
Galaxy Cluster Center Detection Methods with Weak Lensing
NASA Astrophysics Data System (ADS)
Simet, Melanie
2013-01-01
The precise location of galaxy cluster centers is a persistent problem in weak lensing mass estimates and in interpretations of clusters in a cosmological context. Misidentification of centers, either because a well-defined center does not exist or because candidate centers are incorrectly identified or ranked, leads to systematic underestimates of cluster masses. Weak lensing provides a potential lever on this issue by directly probing the distribution of dark matter. We test methods of determining cluster centers directly from weak lensing data and examine the effects of such self-calibration on the measured masses. Drawing on lensing data from the Sloan Digital Sky Survey Stripe 82, a 275 square degree region of coadded data in the Southern Galactic Cap, together with a catalog of MaxBCG clusters, we show that halo substructure as well as shape noise and stochasticity in galaxy positions limit the precision of such a self-calibration (in the context of Stripe 82, to ~500 h-1 kpc or larger) and bias the mass estimates around these points to a level that is likely unacceptable for the purposes of making cosmological measurements. In cases where other center identification methods fail, however, the method may still be useful to distinguish between competing options.
Catastrophic photometric redshift errors: Weak-lensing survey requirements
Bernstein, Gary; Huterer, Dragan
2010-01-11
We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number Nspec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of Nspec is ~106 we find that using onlymore » the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in Nspec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the zs – zp distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.« less
Galactic Internet made possible by star gravitational lensing
NASA Astrophysics Data System (ADS)
Maccone, Claudio
2013-02-01
In this paper we study how to create a radio bridge between the Sun and any other star made up by both the gravitational lenses of the Sun and that star. The alignment for this radio bridge to work is very strict, but the power-saving is enormous, due to the huge contributions of the two stars' lenses to the overall antenna gain of the system. In particular, we study in detail: The Sun-Alpha Centauri A radio bridge. The Sun-Barnard's star radio bridge. The Sun-Sirius A radio bridge. The radio bridge between the Sun and any Sun-like star located in the Galactic Bulge. The radio bridge between the Sun and a similar Sun-like star located inside the Andromeda galaxy (M31). Finally, we find the information channel capacity for each of the above radio bridges, putting thus a physical constraint to the maximum information transfer that will be enabled even by exploiting the stars as gravitational lenses. The conclusion is that a Galactic Internet is indeed physically possible. May be the Galactic Internet already is in existence, and was created long ago by civilizations more advanced than ours. But the potential for creating such a system has only recently been realized by Humans.
Non-linear relativistic contributions to the cosmological weak-lensing convergence
Andrianomena, Sambatra; Clarkson, Chris; Patel, Prina; Umeh, Obinna; Uzan, Jean-Philippe E-mail: chris.clarkson@gmail.com E-mail: umeobinna@gmail.com
2014-06-01
Relativistic contributions to the dynamics of structure formation come in a variety of forms, and can potentially give corrections to the standard picture on typical scales of 100 Mpc. These corrections cannot be obtained by Newtonian numerical simulations, so it is important to accurately estimate the magnitude of these relativistic effects. Density fluctuations couple to produce a background of gravitational waves, which is larger than any primordial background. A similar interaction produces a much larger spectrum of vector modes which represent the frame-dragging rotation of spacetime. These can change the metric at the percent level in the concordance model at scales below the equality scale. Vector modes modify the lensing of background galaxies by large-scale structure. This gives in principle the exciting possibility of measuring relativistic frame dragging effects on cosmological scales. The effects of the non-linear tensor and vector modes on the cosmic convergence are computed and compared to first-order lensing contributions from density fluctuations, Doppler lensing, and smaller Sachs-Wolfe effects. The lensing from gravitational waves is negligible so we concentrate on the vector modes. We show the relative importance of this for future surveys such as Euclid and SKA. We find that these non-linear effects only marginally affect the overall weak lensing signal so they can safely be neglected in most analyses, though are still much larger than the linear Sachs-Wolfe terms. The second-order vector contribution can dominate the first-order Doppler lensing term at moderate redshifts and are actually more important for survey geometries like the SKA.
How to Measure Dark Energy with LSST's Strong Gravitational Lenses
NASA Astrophysics Data System (ADS)
Marshall, Philip J.; Treu, T.; Brunner, R. J.; Strong Lensing, LSST; Dark Energy Science Collaborations
2013-01-01
Strong gravitational lensing is sensitive to dark energy (DE) via the combinations of angular diameter distances that appear in model predictions of the lens strength. Lenses with variable sources offer the most promise: the corresponding time delay distance has recently been shown to be measurable to 5% precision. Large samples of lensed quasars and supernovae will allow internal degeneracy-breaking and so enable the most direct access to the DE parameters, while multiple source-plane, compound lens systems may provide an alternative, complementary, H0-free probe. Its wide field survey and high cadence will enable LSST to provide a sample of several thousand measured time delays, two orders of magnitude larger than the current sample, and allow an independent, competitive Stage IV DE parameter measurement to be made. However, practical problems to be solved include: lens detection (which may be very sensitive to image quality and deblender performance); image and lightcurve modelling (which could be both CPU and manual labor-intensive); obtaining and analyzing high resolution spectro-imaging follow-up data; and interpreting the whole sample of lenses in the context of the well-studied subset.
Gravitational lensing analysis of the Kilo-Degree Survey
NASA Astrophysics Data System (ADS)
Kuijken, Konrad; Heymans, Catherine; Hildebrandt, Hendrik; Nakajima, Reiko; Erben, Thomas; de Jong, Jelte T. A.; Viola, Massimo; Choi, Ami; Hoekstra, Henk; Miller, Lance; van Uitert, Edo; Amon, Alexandra; Blake, Chris; Brouwer, Margot; Buddendiek, Axel; Conti, Ian Fenech; Eriksen, Martin; Grado, Aniello; Harnois-Déraps, Joachim; Helmich, Ewout; Herbonnet, Ricardo; Irisarri, Nancy; Kitching, Thomas; Klaes, Dominik; La Barbera, Francesco; Napolitano, Nicola; Radovich, Mario; Schneider, Peter; Sifón, Cristóbal; Sikkema, Gert; Simon, Patrick; Tudorica, Alexandru; Valentijn, Edwin; Verdoes Kleijn, Gijs; van Waerbeke, Ludovic
2015-12-01
The Kilo-Degree Survey (KiDS) is a multi-band imaging survey designed for cosmological studies from weak lensing and photometric redshifts. It uses the European Southern Observatory VLT Survey Telescope with its wide-field camera OmegaCAM. KiDS images are taken in four filters similar to the Sloan Digital Sky Survey ugri bands. The best seeing time is reserved for deep r-band observations. The median 5σ limiting AB magnitude is 24.9 and the median seeing is below 0.7 arcsec. Initial KiDS observations have concentrated on the Galaxy and Mass Assembly (GAMA) regions near the celestial equator, where extensive, highly complete redshift catalogues are available. A total of 109 survey tiles, 1 square degree each, form the basis of the first set of lensing analyses of halo properties of GAMA galaxies. Nine galaxies per square arcminute enter the lensing analysis, for an effective inverse shear variance of 69 arcmin-2. Accounting for the shape measurement weight, the median redshift of the sources is 0.53. KiDS data processing follows two parallel tracks, one optimized for weak lensing measurement and one for accurate matched-aperture photometry (for photometric redshifts). This technical paper describes the lensing and photometric redshift measurements (including a detailed description of the Gaussian aperture and photometry pipeline), summarizes the data quality and presents extensive tests for systematic errors that might affect the lensing analyses. We also provide first demonstrations of the suitability of the data for cosmological measurements, and describe our blinding procedure for preventing confirmation bias in the scientific analyses. The KiDS catalogues presented in this paper are released to the community through http://kids.strw.leidenuniv.nl.
The Weak Lensing Signal and the Clustering of BOSS Galaxies. I. Measurements
NASA Astrophysics Data System (ADS)
Miyatake, Hironao; More, Surhud; Mandelbaum, Rachel; Takada, Masahiro; Spergel, David N.; Kneib, Jean-Paul; Schneider, Donald P.; Brinkmann, J.; Brownstein, Joel R.
2015-06-01
A joint analysis of the clustering of galaxies and their weak gravitational lensing signal is well-suited to simultaneously constrain the galaxy-halo connection as well as the cosmological parameters by breaking the degeneracy between galaxy bias and the amplitude of clustering signal. In a series of two papers, we perform such an analysis at the highest redshift (z˜ 0.53) in the literature using CMASS galaxies in the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Eleventh Data Release (BOSS DR11) catalog spanning 8300 deg2. In this paper, we present details of the clustering and weak lensing measurements of these galaxies. We define a subsample of 400,916 CMASS galaxies based on their redshifts and stellar-mass estimates so that the galaxies constitute an approximately volume-limited and similar population over the redshift range 0.47≤slant z≤slant 0.59. We obtain a signal-to-noise ratio (S/N) ≃ 56 for the galaxy clustering measurement. We also explore the redshift and stellar-mass dependence of the clustering signal. For the weak lensing measurement, we use existing deeper imaging data from the Canada-France-Hawaii Telescope Legacy Survey with publicly available shape and photometric redshift catalogs from CFHTLenS, but only in a 105 deg2 area that overlaps with BOSS. This restricts the lensing measurement to only 5084 CMASS galaxies. After careful systematic tests, we find a highly significant detection of the CMASS weak lensing signal, with total S/N ≃ 26. These measurements form the basis of the halo occupation distribution and cosmology analysis presented in More et al. (Paper II).
SPITZER IMAGING OF HERSCHEL-ATLAS GRAVITATIONALLY LENSED SUBMILLIMETER SOURCES
Hopwood, R.; Negrello, M.; Wardlow, J.; Cooray, A.; Khostovan, A. A.; Kim, S.; Barton, E.; Da Cunha, E.; Cooke, J.; Burgarella, D.; Aretxaga, I.; Auld, R.; Baes, M.; Bertoldi, F.; Bonfield, D. G.; Blundell, R.; Buttiglione, S.; Cava, A.; Dannerbauer, H.
2011-02-10
We present physical properties of two submillimeter selected gravitationally lensed sources, identified in the Herschel Astrophysical Terahertz Large Area Survey. These submillimeter galaxies (SMGs) have flux densities >100 mJy at 500 {mu}m, but are not visible in existing optical imaging. We fit light profiles to each component of the lensing systems in Spitzer IRAC 3.6 and 4.5 {mu}m data and successfully disentangle the foreground lens from the background source in each case, providing important constraints on the spectral energy distributions (SEDs) of the background SMG at rest-frame optical-near-infrared wavelengths. The SED fits show that these two SMGs have high dust obscuration with A{sub V} {approx} 4-5 and star formation rates of {approx}100 M{sub sun} yr{sup -1}. They have low gas fractions and low dynamical masses compared with 850 {mu}m selected galaxies.
Quasar Structure from Microlensing in Gravitationally Lensed Quasars
NASA Astrophysics Data System (ADS)
Morgan, Christopher W.
2007-12-01
I investigate microlensing in gravitationally lensed quasars and discuss the use of its signal to probe quasar structure on small angular scales. I describe our lensed quasar optical monitoring program and RETROCAM, the optical camera I built for the 2.4m Hiltner telescope to monitor lensed quasars. I use the microlensing variability observed in 11 gravitationally lensed quasars to show that the accretion disk size at 2500Å is related to the black hole mass by log(R2500/cm) = (15.70±0.16) + (0.64±0.18)log(MBH/109M⊙). This scaling is consistent with the expectation from thin disk theory (R ∝ MBH2/3), but it implies that black holes radiate with relatively low efficiency, log(η) = -1.54±0.36 + log(L/LE) where η=L/(Mdotc2). With one exception, these sizes are larger by a factor of 4 than the size needed to produce the observed 0.8µm quasar flux by thermal radiation from a thin disk with the same T ∝ R-3/4 temperature profile. More sophisticated disk models are clearly required, particularly as our continuing observations improve the precision of the measurements and yield estimates of the scaling with wavelength and accretion rate. This research made extensive use of a Beowulf computer cluster obtained through the Cluster Ohio program of the Ohio Supercomputer Center. Support for program HST-GO-9744 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS-5-26666.
A Comparison of Cosmological Models Using Strong Gravitational Lensing Galaxies
NASA Astrophysics Data System (ADS)
Melia, Fulvio; Wei, Jun-Jie; Wu, Xue-Feng
2015-01-01
Strongly gravitationally lensed quasar-galaxy systems allow us to compare competing cosmologies as long as one can be reasonably sure of the mass distribution within the intervening lens. In this paper, we assemble a catalog of 69 such systems from the Sloan Lens ACS and Lens Structure and Dynamics surveys suitable for this analysis, and carry out a one-on-one comparison between the standard model, ΛCDM, and the {{R}h}=ct universe, which has thus far been favored by the application of model selection tools to other kinds of data. We find that both models account for the lens observations quite well, though the precision of these measurements does not appear to be good enough to favor one model over the other. Part of the reason is the so-called bulge-halo conspiracy that, on average, results in a baryonic velocity dispersion within a fraction of the optical effective radius virtually identical to that expected for the whole luminous-dark matter distribution modeled as a singular isothermal ellipsoid, though with some scatter among individual sources. Future work can greatly improve the precision of these measurements by focusing on lensing systems with galaxies as close as possible to the background sources. Given the limitations of doing precision cosmological testing using the current sample, we also carry out Monte Carlo simulations based on the current lens measurements to estimate how large the source catalog would have to be in order to rule out either model at a ˜ 99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ˜ 200 strong gravitational lenses would be sufficient to rule out {{R}h}=ct at this level of accuracy, while ˜ 300 strong gravitational lenses would be required to rule out ΛCDM if the real universe were instead {{R}h}=ct. The difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM. We point out that, should the {{R}h}=ct universe eventually emerge as
A comparison of cosmological models using strong gravitational lensing galaxies
Melia, Fulvio; Wei, Jun-Jie; Wu, Xue-Feng E-mail: jjwei@pmo.ac.cn E-mail: fmelia@email.arizona.edu E-mail: xfwu@pmo.ac.cn
2015-01-01
Strongly gravitationally lensed quasar-galaxy systems allow us to compare competing cosmologies as long as one can be reasonably sure of the mass distribution within the intervening lens. In this paper, we assemble a catalog of 69 such systems from the Sloan Lens ACS and Lens Structure and Dynamics surveys suitable for this analysis, and carry out a one-on-one comparison between the standard model, ΛCDM, and the R{sub h}=ct universe, which has thus far been favored by the application of model selection tools to other kinds of data. We find that both models account for the lens observations quite well, though the precision of these measurements does not appear to be good enough to favor one model over the other. Part of the reason is the so-called bulge-halo conspiracy that, on average, results in a baryonic velocity dispersion within a fraction of the optical effective radius virtually identical to that expected for the whole luminous-dark matter distribution modeled as a singular isothermal ellipsoid, though with some scatter among individual sources. Future work can greatly improve the precision of these measurements by focusing on lensing systems with galaxies as close as possible to the background sources. Given the limitations of doing precision cosmological testing using the current sample, we also carry out Monte Carlo simulations based on the current lens measurements to estimate how large the source catalog would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼200 strong gravitational lenses would be sufficient to rule out R{sub h}=ct at this level of accuracy, while ∼300 strong gravitational lenses would be required to rule out ΛCDM if the real universe were instead R{sub h}=ct. The difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM. We point out that, should the R{sub h}=ct universe eventually
NASA Astrophysics Data System (ADS)
Larsen, Patricia; Challinor, Anthony
2016-10-01
Correlations of galaxy ellipticities with large-scale structure, due to galactic tidal interactions, provide a potentially significant contaminant to measurements of cosmic shear. However, these intrinsic alignments are still poorly understood for galaxies at the redshifts typically used in cosmic shear analyses. For spiral galaxies, it is thought that tidal torquing is significant in determining alignments resulting in zero correlation between the intrinsic ellipticity and the gravitational potential in linear theory. Here, we calculate the leading-order correction to this result in the tidal-torque model from non-linear evolution, using second-order perturbation theory, and relate this to the contamination from intrinsic alignments to the recently measured cross-correlation between galaxy ellipticities and the cosmic microwave background (CMB) lensing potential. On the scales relevant for CMB lensing observations, the squeezed limit of the gravitational bispectrum dominates the correlation. Physically, the large-scale mode that sources CMB lensing modulates the small-scale power and hence the intrinsic ellipticity, due to non-linear evolution. We find that the angular cross-correlation from tidal torquing has a very similar scale dependence as in the linear alignment model, believed to be appropriate for elliptical galaxies. The amplitude of the cross-correlation is predicted to depend strongly on the formation redshift, being smaller for galaxies that formed at higher redshift when the bispectrum of the gravitational potential was smaller. Finally, we make simple forecasts for constraints on intrinsic alignments from the correlation of forthcoming cosmic shear measurements with current CMB lensing measurements. We note that cosmic variance can be significantly reduced in measurements of the difference in the intrinsic alignments for elliptical and spiral galaxies if these types can be separated (e.g. using colour).
The DES Science Verification weak lensing shear catalogues
NASA Astrophysics Data System (ADS)
Jarvis, M.; Sheldon, E.; Zuntz, J.; Kacprzak, T.; Bridle, S. L.; Amara, A.; Armstrong, R.; Becker, M. R.; Bernstein, G. M.; Bonnett, C.; Chang, C.; Das, R.; Dietrich, J. P.; Drlica-Wagner, A.; Eifler, T. F.; Gangkofner, C.; Gruen, D.; Hirsch, M.; Huff, E. M.; Jain, B.; Kent, S.; Kirk, D.; MacCrann, N.; Melchior, P.; Plazas, A. A.; Refregier, A.; Rowe, B.; Rykoff, E. S.; Samuroff, S.; Sánchez, C.; Suchyta, E.; Troxel, M. A.; Vikram, V.; Abbott, T.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Clampitt, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Martini, P.; Miquel, R.; Mohr, J. J.; Neilsen, E.; Nord, B.; Ogando, R.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Walker, A. R.; Wechsler, R. H.
2016-08-01
We present weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogues of 2.12 million and 3.44 million galaxies, respectively. We detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. We also discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogues for the full 5-yr DES, which is expected to cover 5000 square degrees.
The DES Science Verification Weak Lensing Shear Catalogs
Jarvis, M.
2016-05-01
We present weak lensing shear catalogs for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogs of 2.12 million and 3.44 million galaxies respectively. We also detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SVmore » data. Furthermore, we discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogs for the full 5-year DES, which is expected to cover 5000 square degrees.« less
DEMNUni: ISW, Rees-Sciama, and weak-lensing in the presence of massive neutrinos
NASA Astrophysics Data System (ADS)
Carbone, Carmelita; Petkova, Margarita; Dolag, Klaus
2016-07-01
We present, for the first time in the literature, a full reconstruction of the total (linear and non-linear) ISW/Rees-Sciama effect in the presence of massive neutrinos, together with its cross-correlations with CMB-lensing and weak-lensing signals. The present analyses make use of all-sky maps extracted via ray-tracing across the gravitational potential distribution provided by the ``Dark Energy and Massive Neutrino Universe'' (DEMNUni) project, a set of large-volume, high-resolution cosmological N-body simulations, where neutrinos are treated as separate collisionless particles. We correctly recover, at 1-2% accuracy, the linear predictions from CAMB. Concerning the CMB-lensing and weak-lensing signals, we also recover, with similar accuracy, the signal predicted by Boltzmann codes, once non-linear neutrino corrections to HALOFIT are accounted for. Interestingly, in the ISW/Rees-Sciama signal, and its cross correlation with lensing, we find an excess of power with respect to the massless case, due to free streaming neutrinos, roughly at the transition scale between the linear and non-linear regimes. The excess is ~ 5 - 10% at l ~ 100 for the ISW/Rees-Sciama auto power spectrum, depending on the total neutrino mass Mν, and becomes a factor of ~ 4 for Mν = 0.3 eV, at l ~ 600, for the ISW/Rees-Sciama cross power with CMB-lensing. This effect should be taken into account for the correct estimation of the CMB temperature bispectrum in the presence of massive neutrinos.
DEMNUni: ISW, Rees-Sciama, and weak-lensing in the presence of massive neutrinos
NASA Astrophysics Data System (ADS)
Carbone, Carmelita; Petkova, Margarita; Dolag, Klaus
2016-07-01
We present, for the first time in the literature, a full reconstruction of the total (linear and non-linear) ISW/Rees-Sciama effect in the presence of massive neutrinos, together with its cross-correlations with CMB-lensing and weak-lensing signals. The present analyses make use of all-sky maps extracted via ray-tracing across the gravitational potential distribution provided by the ``Dark Energy and Massive Neutrino Universe'' (DEMNUni) project, a set of large-volume, high-resolution cosmological N-body simulations, where neutrinos are treated as separate collisionless particles. We correctly recover, at 1–2% accuracy, the linear predictions from CAMB. Concerning the CMB-lensing and weak-lensing signals, we also recover, with similar accuracy, the signal predicted by Boltzmann codes, once non-linear neutrino corrections to HALOFIT are accounted for. Interestingly, in the ISW/Rees-Sciama signal, and its cross correlation with lensing, we find an excess of power with respect to the massless case, due to free streaming neutrinos, roughly at the transition scale between the linear and non-linear regimes. The excess is ~ 5 – 10% at l ~ 100 for the ISW/Rees-Sciama auto power spectrum, depending on the total neutrino mass Mν, and becomes a factor of ~ 4 for Mν = 0.3 eV, at l ~ 600, for the ISW/Rees-Sciama cross power with CMB-lensing. This effect should be taken into account for the correct estimation of the CMB temperature bispectrum in the presence of massive neutrinos.
Optimizing weak lensing mass estimates for cluster profile uncertainty
Gruen, D.; Bernstein, G. M.; Lam, T. Y.; Seitz, S.
2011-09-11
Weak lensing measurements of cluster masses are necessary for calibrating mass-observable relations (MORs) to investigate the growth of structure and the properties of dark energy. However, the measured cluster shear signal varies at fixed mass M200m due to inherent ellipticity of background galaxies, intervening structures along the line of sight, and variations in the cluster structure due to scatter in concentrations, asphericity and substructure. We use N-body simulated halos to derive and evaluate a weak lensing circular aperture mass measurement Map that minimizes the mass estimate variance <(Map - M200m)2> in the presence of all these forms of variability. Dependingmore » on halo mass and observational conditions, the resulting mass estimator improves on Map filters optimized for circular NFW-profile clusters in the presence of uncorrelated large scale structure (LSS) about as much as the latter improve on an estimator that only minimizes the influence of shape noise. Optimizing for uncorrelated LSS while ignoring the variation of internal cluster structure puts too much weight on the profile near the cores of halos, and under some circumstances can even be worse than not accounting for LSS at all. As a result, we discuss the impact of variability in cluster structure and correlated structures on the design and performance of weak lensing surveys intended to calibrate cluster MORs.« less
Optimizing weak lensing mass estimates for cluster profile uncertainty
Gruen, D.; Bernstein, G. M.; Lam, T. Y.; Seitz, S.
2011-09-11
Weak lensing measurements of cluster masses are necessary for calibrating mass-observable relations (MORs) to investigate the growth of structure and the properties of dark energy. However, the measured cluster shear signal varies at fixed mass M_{200m }due to inherent ellipticity of background galaxies, intervening structures along the line of sight, and variations in the cluster structure due to scatter in concentrations, asphericity and substructure. We use N-body simulated halos to derive and evaluate a weak lensing circular aperture mass measurement M_{ap} that minimizes the mass estimate variance <(M_{ap} - M_{200m})^{2}> in the presence of all these forms of variability. Depending on halo mass and observational conditions, the resulting mass estimator improves on M_{ap} filters optimized for circular NFW-profile clusters in the presence of uncorrelated large scale structure (LSS) about as much as the latter improve on an estimator that only minimizes the influence of shape noise. Optimizing for uncorrelated LSS while ignoring the variation of internal cluster structure puts too much weight on the profile near the cores of halos, and under some circumstances can even be worse than not accounting for LSS at all. As a result, we discuss the impact of variability in cluster structure and correlated structures on the design and performance of weak lensing surveys intended to calibrate cluster MORs.
SKA Weak Lensing II: Simulated Performance and Survey Design Considerations
NASA Astrophysics Data System (ADS)
Bonaldi, Anna; Harrison, Ian; Camera, Stefano; Brown, Michael L.
2016-08-01
We construct a pipeline for simulating weak lensing cosmology surveys with the Square Kilometre Array (SKA), taking as inputs telescope sensitivity curves; correlated source flux, size and redshift distributions; a simple ionospheric model; source redshift and ellipticity measurement errors. We then use this simulation pipeline to optimise a 2-year weak lensing survey performed with the first deployment of the SKA (SKA1). Our assessments are based on the total signal-to-noise of the recovered shear power spectra, a metric that we find to correlate very well with a standard dark energy figure of merit. We first consider the choice of frequency band, trading off increases in number counts at lower frequencies against poorer resolution; our analysis strongly prefers the higher frequency Band 2 (950-1760 MHz) channel of the SKA-MID telescope to the lower frequency Band 1 (350-1050 MHz). Best results would be obtained by allowing the centre of Band 2 to shift towards lower frequency, around 1.1 GHz. We then move on to consider survey size, finding that an area of 5,000 square degrees is optimal for most SKA1 instrumental configurations. Finally, we forecast the performance of a weak lensing survey with the second deployment of the SKA. The increased survey size (3π steradian) and sensitivity improves both the signal-to-noise and the dark energy metrics by two orders of magnitude.
GRAVITATIONAL LENSING CORRECTIONS IN FLAT {Lambda}CDM COSMOLOGY
Kantowski, Ronald; Chen Bin; Dai Xinyu E-mail: Bin.Chen-1@ou.ed
2010-08-01
We compute the deflection angle to order (m/r {sub 0}){sup 2} and m/r{sub 0} x {Lambda}r {sup 2}{sub 0} for a light ray traveling in a flat {Lambda}CDM cosmology that encounters a completely condensed mass region. We use a Swiss cheese model for the inhomogeneities and find that the most significant correction to the Einstein angle occurs not because of the nonlinear terms but instead occurs because the condensed mass is embedded in a background cosmology. The Swiss cheese model predicts a decrease in the deflection angle of {approx}2% for weakly lensed galaxies behind the rich cluster A1689 and that the reduction can be as large as {approx}5% for similar rich clusters at z {approx} 1. Weak-lensing deflection angles caused by galaxies can likewise be reduced by as much as {approx}4%. We show that the lowest order correction in which {Lambda} appears is proportional to m/r{sub 0} x {radical}({Lambda}r{sub 0}{sup 2}) and could cause as much as a {approx}0.02% increase in the deflection angle for light that passes through a rich cluster. The lowest order nonlinear correction in the mass is proportional to m/r{sub 0}x{radical}(m/r{sub 0}) and can increase the deflection angle by {approx}0.005% for weak lensing by galaxies.
Weak Lensing by Large-Scale Structure and the Polarization Properties of Distant Radio Sources
NASA Astrophysics Data System (ADS)
Surpi, Gabriela C.; Harari, Diego D.
1999-04-01
We estimate the effects of weak lensing by large-scale density inhomogeneities and long-wavelength gravitational waves on the polarization properties of electromagnetic radiation as it propagates from cosmologically distant sources. Scalar (density) fluctuations do not rotate either the plane of polarization of the electromagnetic radiation or the source image. They do, however, produce an appreciable shear that distorts the image shape, leading to an apparent rotation of the image orientation relative to its plane of polarization. In sources with large ellipticity, the apparent rotation is rather small, of the order (in radians) of the dimensionless shear. The effect is larger at smaller source eccentricities. A shear of 1% can induce apparent rotations of around 5° in radio sources with the smallest eccentricity among those with a significant degree of integrated linear polarization. We discuss the possibility that weak lensing by shear with an rms value around or below 5% may be the cause for the dispersion in the direction of integrated linear polarization of cosmologically distant radio sources away from the perpendicular to their major axis, as expected from models of their magnetic fields. An rms shear larger than 5% would be incompatible with the observed correlation between polarization properties and source orientation in distant radio galaxies and quasars. Gravity waves do rotate both the plane of polarization and the source image. Their weak-lensing effects, however, are negligible.
NASA Astrophysics Data System (ADS)
McCully, Curtis
Type Ia supernovae (SNe Ia) and gravitational lensing are important cosmological probes, but both are limited by theoretical, systematic uncertainties. One key uncertainty in distances derived using SNe Ia is our lack of understanding of the explosion mechanism for normal SNe Ia. We have studied peculiar type Iax supernovae that appear to be related to normal SNe Ia with the goal of understanding white dwarf explosions as a whole. In Chapter 2, using late-time Hubble Space Telescope (HST) observations of SN 2008A and SN 2005hk, both prototypical SNe Iax, we argue that these objects are pure deflagration explosions that do not unbind the white dwarf. In Chapter 3, we present observations of the type Iax SN 2012Z, one of the nearest ever discovered. Fortunately for us, its host galaxy, NGC 1309, was observed extensively with HST/ACS (to measure a Cepheid distance), giving us incredibly deep pre-explosion images of the site of SN 2012Z. We find that there is a source coincident with the position of the SN. We argue that the source is likely a helium star companion to the white dwarf that exploded. In galaxy-scale gravitational lenses, one of the largest systematic uncertainties arises due to other mass in the environment of the lens or along the line of sight (LOS). In Chapter 4, we develop an analytic framework to account for LOS effects. Our framework employs a hybrid approach treating a few perturbing galaxies as strong lenses, making it accurate, while treating the rest in the weak lensing approximation, making it also computationally efficient. In Chapter 5, we test our framework using simulations of realistic mass models. We suggest a method to characterize the strength of the LOS effects allowing us to systematically test when the weak lensing approximation is valid. We show that LOS effects are not equivalent to a single shear, but these non-linear effects are correctly captured by our framework. Our new methodology can be used to constrain cosmological
THE WEIGHT OF EMPTINESS: THE GRAVITATIONAL LENSING SIGNAL OF STACKED VOIDS
Krause, Elisabeth; Dore, Olivier; Chang, Tzu-Ching; Umetsu, Keiichi
2013-01-10
The upcoming new generation of spectroscopic galaxy redshift surveys will provide large samples of cosmic voids, large distinct, underdense structures in the universe. Combining these with future galaxy imaging surveys, we study the prospects of probing the underlying matter distribution in and around cosmic voids via the weak gravitational lensing effects of stacked voids, utilizing both shear and magnification information. The statistical precision is greatly improved by stacking a large number of voids along different lines of sight, even when taking into account the impact of inherent miscentering and projection effects. We show that Dark Energy Task Force Stage IV surveys, such as the Euclid satellite and the Large Synoptic Survey Telescope, should be able to detect the void lensing signal with sufficient precision from stacking abundant medium-sized voids, thus providing direct constraints on the matter density profile of voids independent of assumptions on galaxy bias.
Are some BL Lacs artefacts of gravitational lensing?
Ostriker, J P; Vietri, M
1990-03-01
WE suggested in 1985 that a significant fraction of BL Lacertae objects, a kind of lineless quasar, seen in nearby galaxies are in fact images, gravitationally lensed and substantially amplified by stars in the nearby galaxy, of background objects, optically violent variable (OVV) quasars at redshifts z > 1 (ref. 1). This hypothesis was made on the basis of certain general similarities between BL Lacs and O Ws, but for two recently observed BL Lacs(2,3) a strong case can be made that the accompanying elliptical galaxy is a foreground object. In addition, we argue that the distribution of BL Lac redshifts is hard to understand without gravitational lensing, unless we happen to be at a very local maximum of the spatial cosmic distribution of BL Lacs. Our analysis also indicates that the galaxies whose stars are likely to act as microlenses will be found in two peaks, one nearby, with redshift 0.05-0.10, and the other near the distant quasar.
Are some BL Lacs artefacts of gravitational lensing?
Ostriker, J P; Vietri, M
1990-03-01
WE suggested in 1985 that a significant fraction of BL Lacertae objects, a kind of lineless quasar, seen in nearby galaxies are in fact images, gravitationally lensed and substantially amplified by stars in the nearby galaxy, of background objects, optically violent variable (OVV) quasars at redshifts z > 1 (ref. 1). This hypothesis was made on the basis of certain general similarities between BL Lacs and O Ws, but for two recently observed BL Lacs(2,3) a strong case can be made that the accompanying elliptical galaxy is a foreground object. In addition, we argue that the distribution of BL Lac redshifts is hard to understand without gravitational lensing, unless we happen to be at a very local maximum of the spatial cosmic distribution of BL Lacs. Our analysis also indicates that the galaxies whose stars are likely to act as microlenses will be found in two peaks, one nearby, with redshift 0.05-0.10, and the other near the distant quasar. PMID:18278021
A gravitationally lensed water maser in the early Universe.
Impellizzeri, C M Violette; McKean, John P; Castangia, Paola; Roy, Alan L; Henkel, Christian; Brunthaler, Andreas; Wucknitz, Olaf
2008-12-18
Water masers are found in dense molecular clouds closely associated with supermassive black holes at the centres of active galaxies. On the basis of the understanding of the local water-maser luminosity function, it was expected that masers at intermediate and high redshifts would be extremely rare. However, galaxies at redshifts z > 2 might be quite different from those found locally, not least because of more frequent mergers and interaction events. Here we use gravitational lensing to search for masers at higher redshifts than would otherwise be possible, and find a water maser at redshift 2.64 in the dust- and gas-rich, gravitationally lensed type-1 quasar MG J0414+0534 (refs 6-13). The isotropic luminosity is 10,000 (, solar luminosity), which is twice that of the most powerful local water maser and half that of the most distant maser previously known. Using the locally determined luminosity function, the probability of finding a maser this luminous associated with any single active galaxy is 10(-6). The fact that we see such a maser in the first galaxy we observe must mean that the volume densities and luminosities of masers are higher at redshift 2.64.
Catastrophic photometric redshift errors: Weak-lensing survey requirements
Bernstein, Gary; Huterer, Dragan
2010-01-11
We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number N_{spec} of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of N_{spec} is ~10^{6} we find that using only the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in N_{spec} to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the z_{s} – z_{p} distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.
X-RAY MONITORING OF GRAVITATIONAL LENSES WITH CHANDRA
Chen Bin; Dai Xinyu; Kochanek, Christopher S.; Blackburne, Jeffrey A.; Chartas, George; Morgan, Christopher W.
2012-08-10
We present Chandra monitoring data for six gravitationally lensed quasars: QJ 0158-4325, HE 0435-1223, SDSS 0924+0219, SDSS 1004+4112, HE 1104-1805, and Q 2237+0305. X-ray microlensing variability is detected in all six lenses with high confidence. We furthermore detect energy-dependent microlensing in HE 0435-1223, SDSS 0924+0219, SDSS 1004+4112, and Q 2237+0305. Through a detailed spectral analysis for each lens we find that simple power-law models plus Gaussian emission lines give good fits to the spectra. We detect intrinsic spectral variability in two epochs of Q 2237+0305, and differential absorption between images in QJ 0158-4325 and Q2237+0305. We also detect the Fe K{alpha} emission line in all six lenses, and the Ni XXVII K{alpha} line in two images of Q 2237+0305. The rest-frame equivalent widths of the Fe K{alpha} lines are measured to be 0.4-1.2 keV, significantly higher than those measured in typical active galactic nuclei of similar X-ray luminosities. This suggests that the Fe K{alpha} emission region is more compact or centrally concentrated than the continuum emission region.
Broad Iron Emission from Gravitationally Lensed Quasars Observed by Chandra
NASA Astrophysics Data System (ADS)
Walton, D. J.; Reynolds, M. T.; Miller, J. M.; Reis, R. C.; Stern, D.; Harrison, F. A.
2015-06-01
Recent work has demonstrated the potential of gravitationally lensed quasars to extend measurements of black hole spin out to high redshift with the current generation of X-ray observatories. Here we present an analysis of a large sample of 27 lensed quasars in the redshift range 1.0≲ z≲ 4.5 observed with Chandra, utilizing over 1.6 Ms of total observing time, focusing on the rest-frame iron K emission from these sources. Although the X-ray signal-to-noise ratio (S/N) currently available does not permit the detection of iron emission from the inner accretion disk in individual cases in our sample, we find significant structure in the stacked residuals. In addition to the narrow core, seen almost ubiquitously in local active galactic nuclei (AGNs), we find evidence for an additional underlying broad component from the inner accretion disk, with a clear red wing to the emission profile. Based on simulations, we find the detection of this broader component to be significant at greater than the 3σ level. This implies that iron emission from the inner disk is relatively common in the population of lensed quasars, and in turn further demonstrates that, with additional observations, this population represents an opportunity to significantly extend the sample of AGN spin measurements out to high redshift.
Model-independent characterisation of strong gravitational lenses
NASA Astrophysics Data System (ADS)
Wagner, J.; Bartelmann, M.
2016-05-01
We develop a new approach to extracting model-independent information from observations of strong gravitational lenses. The approach is based on the generic properties of images near the fold and cusp catastrophes in caustics and critical curves. The observables we used are the relative image positions, the magnification ratios and ellipticities of extended images, and time delays between images with temporally varying intensity. We show how these observables constrain derivatives and ratios of derivatives of the lensing potential near a critical curve. Based on these measured properties of the lensing potential, classes of parametric lens models can then easily be restricted to the parameter values that are compatible with the measurements, thus allowing fast scans of a large variety of models. Applying our approach to a representative galaxy (JVAS B1422+231) and a galaxy-cluster lens (MACS J1149.5+2223), we show which model-independent information can be extracted in each case and demonstrate that the parameters obtained by our approach for known parametric lens models agree well with those found by detailed model fitting.
The central image of a gravitationally lensed quasar.
Winn, Joshua N; Rusin, David; Kochanek, Christopher S
2004-02-12
A galaxy can act as a gravitational lens, producing multiple images of a background object. Theory predicts that there should be an odd number of images produced by the lens, but hitherto almost all lensed objects have two or four images. The missing 'central' images, which should be faint and appear near the centre of the lensing galaxy, have long been sought as probes of galactic cores too distant to resolve with ordinary observations. There are five candidates for central images, but in one case the third image is not necessarily the central one, and in the others the putative central images might be foreground sources. Here we report a secure identification of a central image, based on radio observations of one of the candidates. Lens models using the central image reveal that the massive black hole at the centre of the lensing galaxy has a mass of <2 x 10(8) solar masses (M(o)), and the galaxy's surface density at the location of the central image is > 20,000M(o) pc(-2), which is in agreement with expections based on observations of galaxies that are much closer to the Earth.
Weak Lensing by Galaxy Troughs in DES Science Verification Data
Gruen, D.
2015-09-29
We measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. Furthermore, the prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. Finally, the lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.
Weak lensing by galaxy troughs in DES Science Verification data
Gruen, D.; Friedrich, O.; Amara, A.; Bacon, D.; Bonnett, C.; Hartley, W.; Jain, B.; M. Jarvis; Kavprzak, T.; Krause, E.; et al
2015-11-29
In this study, we measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers ofmore » the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.« less
Weak lensing by galaxy troughs in DES Science Verification data
Gruen, D.; Friedrich, O.; Amara, A.; Bacon, D.; Bonnett, C.; Hartley, W.; Jain, B.; M. Jarvis; Kavprzak, T.; Krause, E.; Mana, A.; Rozo, E.; Rykoff, E. S.; Seitz, S.; Sheldon, E.; Troxel, M. A.; Vikram, V.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Armstrong, R.; Banerji, M.; Bauer, A. H.; Becker, M. R.; Benoit-Levy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Rosell, A. Carnero; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Neto, A. Fausti; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miguel, R.; Mohr, J. J.; Nord, B.; Orgando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Zhang, Y.; Zuntz, J.
2015-11-29
In this study, we measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.
Gravitational lens equation for embedded lenses; magnification and ellipticity
Chen, B.; Kantowski, R.; Dai, X.
2011-10-15
We give the lens equation for light deflections caused by point mass condensations in an otherwise spatially homogeneous and flat universe. We assume the signal from a distant source is deflected by a single condensation before it reaches the observer. We call this deflector an embedded lens because the deflecting mass is part of the mean density. The embedded lens equation differs from the conventional lens equation because the deflector mass is not simply an addition to the cosmic mean. We prescribe an iteration scheme to solve this new lens equation and use it to compare our results with standard linear lensing theory. We also compute analytic expressions for the lowest order corrections to image amplifications and distortions caused by incorporating the lensing mass into the mean. We use these results to estimate the effect of embedding on strong lensing magnifications and ellipticities and find only small effects, <1%, contrary to what we have found for time delays and for weak lensing, {approx}5%.
Gravitational lensing by self-dual black holes in loop quantum gravity
NASA Astrophysics Data System (ADS)
Sahu, Satyabrata; Lochan, Kinjalk; Narasimha, D.
2015-03-01
We study gravitational lensing by a recently proposed black hole solution in loop quantum gravity. We highlight the fact that the quantum gravity corrections to the Schwarzschild metric in this model evade the "mass suppression" effects (that the usual quantum gravity corrections are susceptible to) by virtue of one of the parameters in the model being dimensionless, which is unlike any other quantum gravity motivated parameter. Gravitational lensing in the strong and weak deflection regimes is studied, and a sample consistency relation is presented which could serve as a test of this model. We discuss that, though the consistency relation for this model is qualitatively similar to what would have been in Brans-Dicke, in general it can be a good discriminator between many alternative theories. Although the observational prospects do not seem to be very optimistic even for a galactic supermassive black hole case, time delay between relativistic images for a billion solar mass black holes in other galaxies might be within reach of future relativistic lensing observations.
Properties of Galaxy Dark Matter Halos from Weak Lensing
NASA Astrophysics Data System (ADS)
Hoekstra, Henk; Yee, H. K. C.; Gladders, Michael D.
2004-05-01
We present the results of a study of weak lensing by galaxies based on 45.5 deg2 of RC-band imaging data from the Red-Sequence Cluster Survey (RCS). We define a sample of lenses with 19.5
Applegate, D. E; Mantz, A.; Allen, S. W.; von der Linden, A.; Morris, R. G.; Hilbert, S.; Kelly, P. L.; Burke, D. L.; Ebeling, H.; Rapetti, D. A.; et al
2016-02-04
This is the fourth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here, we use measurements of weak gravitational lensing from the Weighing the Giants project to calibrate Chandra X-ray measurements of total mass that rely on the assumption of hydrostatic equilibrium. This comparison of X-ray and lensing masses measures the combined bias of X-ray hydrostatic masses from both astrophysical and instrumental sources. While we cannot disentangle the two sources of bias, only the combined bias is relevant for calibrating cosmological measurements using relaxed clusters. Assuming a fixed cosmology, and within amore » characteristic radius (r2500) determined from the X-ray data, we measure a lensing to X-ray mass ratio of 0.96 ± 9% (stat) ± 9% (sys). We find no significant trends of this ratio with mass, redshift or the morphological indicators used to select the sample. Our results imply that any departures from hydrostatic equilibrium at these radii are offset by calibration errors of comparable magnitude, with large departures of tens-of-percent unlikely. In addition, we find a mean concentration of the sample measured from lensing data of c200 = 3.0+4.4–1.8. In conclusion, anticipated short-term improvements in lensing systematics, and a modest expansion of the relaxed lensing sample, can easily increase the measurement precision by 30–50%, leading to similar improvements in cosmological constraints that employ X-ray hydrostatic mass estimates, such as on Ωm from the cluster gas mass fraction.« less
NASA Astrophysics Data System (ADS)
Applegate, D. E.; Mantz, A.; Allen, S. W.; der Linden, A. von; Morris, R. Glenn; Hilbert, S.; Kelly, Patrick L.; Burke, D. L.; Ebeling, H.; Rapetti, D. A.; Schmidt, R. W.
2016-04-01
This is the fourth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here, we use measurements of weak gravitational lensing from the Weighing the Giants project to calibrate Chandra X-ray measurements of total mass that rely on the assumption of hydrostatic equilibrium. This comparison of X-ray and lensing masses measures the combined bias of X-ray hydrostatic masses from both astrophysical and instrumental sources. While we cannot disentangle the two sources of bias, only the combined bias is relevant for calibrating cosmological measurements using relaxed clusters. Assuming a fixed cosmology, and within a characteristic radius (r2500) determined from the X-ray data, we measure a lensing to X-ray mass ratio of 0.96 ± 9 per cent (stat) ± 9 per cent (sys). We find no significant trends of this ratio with mass, redshift or the morphological indicators used to select the sample. Our results imply that any departures from hydrostatic equilibrium at these radii are offset by calibration errors of comparable magnitude, with large departures of tens-of-percent unlikely. In addition, we find a mean concentration of the sample measured from lensing data of c_{200} = 3.0_{-1.8}^{+4.4}. Anticipated short-term improvements in lensing systematics, and a modest expansion of the relaxed lensing sample, can easily increase the measurement precision by 30-50 per cent, leading to similar improvements in cosmological constraints that employ X-ray hydrostatic mass estimates, such as on Ωm from the cluster gas mass fraction.
Three Gravitational Lenses for the Price of One: Enhanced Strong Lensing Through Galaxy Clustering
Fassnacht, Chris D.; McKean, J.P.; Koopmans, L.V.E.; Treu, T.; Blandford, R.D.; Auger, M.W.; Jeltema, T.E.; Lubin, L.M.; Margoniner, V.E.; Wittman, D.; /UC, Davis /Kapteyn Astron. Inst., Groningen /UC, Santa Barbara /KIPAC, Menlo Park /Carnegie Inst. Observ.
2006-04-03
We report the serendipitous discovery of two strong gravitational lens candidates (ACS J160919+6532 and ACS J160910+6532) in deep images obtained with the Advanced Camera for Surveys on the Hubble Space Telescope, each less than 40'' from the previously known gravitational lens system CLASS B1608+656. The redshifts of both lens galaxies have been measured with Keck and Gemini: one is a member of a small galaxy group at z {approx} 0.63, which also includes the lensing galaxy in the B1608+656 system, and the second is a member of a foreground group at z {approx} 0.43. By measuring the effective radii and surface brightnesses of the two lens galaxies, we infer their velocity dispersions based on the passively evolving Fundamental Plane (FP) relation. Elliptical isothermal lens mass models are able to explain their image configurations within the lens hypothesis, with a velocity dispersion compatible with that estimated from the FP for a reasonable source-redshift range. Based on the large number of massive early-type galaxies in the field and the number-density of faint blue galaxies, the presence of two additional lens systems around CLASS B1608+656 is not unlikely in hindsight. Gravitational lens galaxies are predominantly early-type galaxies, which are clustered, and the lensed quasar host galaxies are also clustered. Therefore, obtaining deep high-resolution images of the fields around known strong lens systems is an excellent method of enhancing the probability of finding additional strong gravitational lens systems.
Relativistic weak lensing from a fully non-linear cosmological density field
Thomas, D.B.; Bruni, M.; Wands, D. E-mail: marco.bruni@port.ac.uk
2015-09-01
In this paper we examine cosmological weak lensing on non-linear scales and show that there are Newtonian and relativistic contributions and that the latter can also be extracted from standard Newtonian simulations. We use the post-Friedmann formalism, a post-Newtonian type framework for cosmology, to derive the full weak-lensing deflection angle valid on non-linear scales for any metric theory of gravity. We show that the only contributing term that is quadratic in the first order deflection is the expected Born correction and lens-lens coupling term. We use this deflection angle to analyse the vector and tensor contributions to the E- and B- mode cosmic shear power spectra. In our approach, once the gravitational theory has been specified, the metric components are related to the matter content in a well-defined manner. Specifying General Relativity, we write down a complete set of equations for a GR+ΛCDM universe for computing all of the possible lensing terms from Newtonian N-body simulations. We illustrate this with the vector potential and show that, in a GR+ΛCDM universe, its contribution to the E-mode is negligible with respect to that of the conventional Newtonian scalar potential, even on non-linear scales. Thus, under the standard assumption that Newtonian N-body simulations give a good approximation of the matter dynamics, we show that the standard ray tracing approach gives a good description for a ΛCDM cosmology.
A generalized method for measuring weak lensing magnification with weighted number counts
NASA Astrophysics Data System (ADS)
Gillis, Bryan R.; Taylor, Andy N.
2016-03-01
We present a derivation of a generalized optimally weighted estimator for the weak lensing magnification signal, including a calculation of errors. With this estimator, we present a local method for optimally estimating the local effects of magnification from weak gravitational lensing, using a comparison of number counts in an arbitrary region of space to the expected unmagnified number counts. We show that when equivalent lens and source samples are used, this estimator is simply related to the optimally weighted correlation function estimator used in past work and vice-versa, but this method has the benefits that it can calculate errors with significantly less computational time, that it can handle overlapping lens and source samples, and that it can easily be extended to mass-mapping. We present a proof-of-principle test of this method on data from the Canada-France-Hawaii Telescope Lensing Survey, showing that its calculated magnification signals agree with predictions from model fits to shear data. Finally, we investigate how magnification data can be used to supplement shear data in determining the best-fitting model mass profiles for galaxy dark matter haloes. We find that at redshifts greater than z ˜ 0.6, the inclusion of magnification can often significantly improve the constraints on the components of the mass profile which relate to galaxies' local environments relative to shear alone, and in high-redshift low- and medium-mass bins, it can have a higher signal-to-noise than the shear signal.
Weak-lensing statistics from the Coyote Universe
NASA Astrophysics Data System (ADS)
Eifler, Tim
2011-11-01
Analysing future weak-lensing data sets from KIDS, Dark Energy Survey (DES), LSST, Euclid and WFIRST requires precise predictions for the weak-lensing measures. In this paper, we present a weak-lensing prediction code based on the Coyote Universe emulator. The Coyote Universe emulator predicts the (non-linear) power spectrum of density fluctuations (Pδ) to high accuracy for k∈[0.002; 3.4] h Mpc-1 within the redshift interval z∈[0; 1]; outside this regime, we extend Pδ using a modified HALOFIT code. This pipeline is used to calculate various second-order cosmic shear statistics, e.g., shear power spectrum, shear-shear correlation function, ring statistics and Complete Orthogonal Set of EB-mode Integrals (COSEBIs), and we examine how the upper limit in k (and z), to which Pδ is known, impacts on these statistics. For example, we find that kmax˜ 8 h Mpc-1 causes a bias in the shear power spectrum at ℓ˜ 4000 that is comparable to the statistical errors (intrinsic shape noise and cosmic variance) of a DES-like survey, whereas for LSST-like errors kmax˜ 15 h Mpc-1 is needed to limit the bias at ℓ˜ 4000. For the most recently developed second-order shear statistics, the COSEBIs, we find that nine modes can be calculated accurately knowing Pδ to kmax= 10 h Mpc-1. The COSEBIs allow for an EB-mode decomposition using a shear-shear correlation function measured over a finite range, thereby avoiding any EB-mode mixing due to finite survey size. We perform a detailed study in a five-dimensional parameter space in order to examine whether all cosmological information is captured by these nine modes with the result that already 7-8 modes are sufficient.
Herschel-ATLAS: modelling the first strong gravitational lenses
NASA Astrophysics Data System (ADS)
Dye, S.; Negrello, M.; Hopwood, R.; Nightingale, J. W.; Bussmann, R. S.; Amber, S.; Bourne, N.; Cooray, A.; Dariush, A.; Dunne, L.; Eales, S. A.; Gonzalez-Nuevo, J.; Ibar, E.; Ivison, R. J.; Maddox, S.; Valiante, E.; Smith, M.
2014-05-01
We have determined the mass density radial profiles of the first five strong gravitational lens systems discovered by the Herschel Astrophysical Terahertz Large Area Survey. We present an enhancement of the semilinear lens inversion method of Warren & Dye which allows simultaneous reconstruction of several different wavebands and apply this to dual-band imaging of the lenses acquired with the Hubble Space Telescope. The five systems analysed here have lens redshifts which span a range 0.22 ≤ z ≤ 0.94. Our findings are consistent with other studies by concluding that: (1) the logarithmic slope of the total mass density profile steepens with decreasing redshift; (2) the slope is positively correlated with the average total projected mass density of the lens contained within half the effective radius and negatively correlated with the effective radius; (3) the fraction of dark matter contained within half the effective radius increases with increasing effective radius and increases with redshift.
Kaluza-Klein magnetized cylindrical wormhole and its gravitational lensing
NASA Astrophysics Data System (ADS)
Hashemi, S. Sedigheh; Riazi, Nematollah
2016-10-01
A new exact vacuum solution in five dimensions, which describes a magnetized cylindrical wormhole in 3+1 dimensions is presented. The magnetic field lines are stretched along the wormhole throat and are concentrated near to it. We study the motion of neutral and charged test particles under the influence of the magnetized wormhole. The effective potential for a neutral test particle around and across the magnetized wormhole has a repulsive character. The gravitational lensing for the magnetized wormhole for various lens parameters are calculated and compared. The total magnetic flux on either side of the wormhole is obtained. We present analytic expressions which show regions in which the null energy condition is violated.
Seeing the Invisible Universe with Gravitational Lensing and SNAP
Bernstein, Gary
2005-11-03
Recent high-precision cosmological measurements provide solid evidence that normal matter comprises only 4% of the content of the Universe. The dominant substances are completely invisible and have never been detected in a laboratory: 23% in some 'dark matter' particles, and 73% in a form of 'dark energy' that is currently accelerating the expansion of the Universe. The dark matter and dark energy do, however, distort our view of the Universe behind them through gravitational lensing, just as the 'obscure glass' on the doors of a shower stall is designed to be transparent but produces a distorted view of its occupant. I will describe how present and future experiments such as the SNAP spacecraft can measure this very subtle distorting effect and use it to infer the properties of the dark matter and dark energy that dominate the Universe.
Multiplane gravitational lensing. I. Morse theory and image counting.
NASA Astrophysics Data System (ADS)
Petters, A. O.
1995-08-01
The image counting problem for gravitational lensing by general matter deflectors distributed over finitely many lens planes is considered. Counting formulas and lower bounds are found via Morse theory for the number of images of a point source not on a caustic. Images are counted within a compact region D not necessarily assumed to properly contain the deflector space. In addition, it is shown that Morse theory is applicable because multiplane time-delay maps Ty generically satisfy the Morse boundary conditions relative to D. All results obtained depend only on the topological properties induced in the lens planes by the deflector potentials and the behavior of grad Ty at boundary points of D.
Gravitational light-bending prevents γγ absorption in gravitational lenses
NASA Astrophysics Data System (ADS)
Böttcher, Markus; Thiersen, Hannes
2016-10-01
The magnification effect that is due to gravitational lensing enhances the chances of detecting moderate-redshift (z ~ 1) sources in very high-energy (VHE; E > 100 GeV) γ-rays by ground-based atmospheric Cherenkov telescope facilities. It has been shown in previous work that this prospect is not hampered by potential γ-γ absorption effects by the intervening (lensing) galaxy, nor by any individual star within the intervening galaxy. In this paper, we expand this study to simulate the light-bending effect of a realistic ensemble of stars. We first demonstrate that for realistic parameters of the galaxy's star field, it is extremely unlikely (probability ≲10-6) that the direct line of sight between the γ-ray source and the observer passes by any star in the field close enough to be subject to significant γγ absorption. Our simulations then focus on the rare cases where γγ absorption by (at least) one individual star might be non-negligible. We show that gravitational light-bending will have the effect of avoiding the γ-γ absorption spheres around massive stars in the intervening galaxy. This confirms previous results and re-inforces arguments in favour of VHE γ-ray observations of lensed moderate-redshift blazars to extend the redshift range of objects detected in VHE γ-rays, and to probe the location of the γ-ray emission region in these blazars.
Measuring angular diameter distances of strong gravitational lenses
NASA Astrophysics Data System (ADS)
Jee, I.; Komatsu, E.; Suyu, S. H.
2015-11-01
The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential (GM/r) and a mass (GM) of the lens, respectively, dividing them gives a physical size (r) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 (zL=0.6304) and RXJ1131-1231 (zL=0.295), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, σ2, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in DA per object. This improves to 13% when we measure σ2 at the so-called sweet-spot radius. Achieving 7% is possible if we can determine σ2 with 5% precision.
Measuring angular diameter distances of strong gravitational lenses
Jee, I.; Komatsu, E.; Suyu, S.H. E-mail: komatsu@mpa-garching.mpg.de
2015-11-01
The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential (GM/r) and a mass (GM) of the lens, respectively, dividing them gives a physical size (r) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 (z{sub L}=0.6304) and RXJ1131−1231 (z{sub L}=0.295), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, σ{sup 2}, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in D{sub A} per object. This improves to 13% when we measure σ{sup 2} at the so-called sweet-spot radius. Achieving 7% is possible if we can determine σ{sup 2} with 5% precision.
SPACE WARPS - I. Crowdsourcing the discovery of gravitational lenses
NASA Astrophysics Data System (ADS)
Marshall, Philip J.; Verma, Aprajita; More, Anupreeta; Davis, Christopher P.; More, Surhud; Kapadia, Amit; Parrish, Michael; Snyder, Chris; Wilcox, Julianne; Baeten, Elisabeth; Macmillan, Christine; Cornen, Claude; Baumer, Michael; Simpson, Edwin; Lintott, Chris J.; Miller, David; Paget, Edward; Simpson, Robert; Smith, Arfon M.; Küng, Rafael; Saha, Prasenjit; Collett, Thomas E.
2016-01-01
We describe SPACE WARPS, a novel gravitational lens discovery service that yields samples of high purity and completeness through crowdsourced visual inspection. Carefully produced colour composite images are displayed to volunteers via a web-based classification interface, which records their estimates of the positions of candidate lensed features. Images of simulated lenses, as well as real images which lack lenses, are inserted into the image stream at random intervals; this training set is used to give the volunteers instantaneous feedback on their performance, as well as to calibrate a model of the system that provides dynamical updates to the probability that a classified image contains a lens. Low-probability systems are retired from the site periodically, concentrating the sample towards a set of lens candidates. Having divided 160 deg2 of Canada-France-Hawaii Telescope Legacy Survey imaging into some 430 000 overlapping 82 by 82 arcsec tiles and displaying them on the site, we were joined by around 37 000 volunteers who contributed 11 million image classifications over the course of eight months. This stage 1 search reduced the sample to 3381 images containing candidates; these were then refined in stage 2 to yield a sample that we expect to be over 90 per cent complete and 30 per cent pure, based on our analysis of the volunteers performance on training images. We comment on the scalability of the SPACE WARPS system to the wide field survey era, based on our projection that searches of 105 images could be performed by a crowd of 105 volunteers in 6 d.
OBSERVING GRAVITATIONAL LENSING EFFECTS BY Sgr A* WITH GRAVITY
Bozza, V.; Mancini, L. E-mail: mancini@mpia-hd.mpg.de
2012-07-01
The massive black hole Sgr A* at the Galactic center is surrounded by a cluster of stars orbiting around it. Light from these stars is bent by the gravitational field of the black hole, giving rise to several phenomena: astrometric displacement of the primary image, the creation of a secondary image that may shift the centroid of Sgr A*, and magnification effects on both images. The soon-to-be second-generation Very Large Telescope Interferometer instrument GRAVITY will perform observations in the near-infrared of the Galactic center at unprecedented resolution, opening the possibility of observing such effects. Here we investigate the observability limits for GRAVITY of gravitational lensing effects on the S-stars in the parameter space 1[D{sub LS}, {gamma}, K], where D{sub LS} is the distance between the lens and the source, {gamma} is the alignment angle of the source, and K is the source's apparent magnitude in the K band. The easiest effect to observe in future years is the astrometric displacement of primary images. In particular, the shift of the star S17 from its Keplerian orbit will be detected as soon as GRAVITY becomes operative. For exceptional configurations, it will be possible to detect effects related to the spin of the black hole or post-Newtonian orders in the deflection.
Gravitational lensing: a unique probe of dark matter and dark energy
Ellis, Richard S.
2010-01-01
I review the development of gravitational lensing as a powerful tool of the observational cosmologist. After the historic eclipse expedition organized by Arthur Eddington and Frank Dyson, the subject lay observationally dormant for 60 years. However, subsequent progress has been astonishingly rapid, especially in the past decade, so that gravitational lensing now holds the key to unravelling the two most profound mysteries of our Universe—the nature and distribution of dark matter, and the origin of the puzzling cosmic acceleration first identified in the late 1990s. In this non-specialist review, I focus on the unusual history and achievements of gravitational lensing and its future observational prospects. PMID:20123743
Gravitational lensing: a unique probe of dark matter and dark energy.
Ellis, Richard S
2010-03-13
I review the development of gravitational lensing as a powerful tool of the observational cosmologist. After the historic eclipse expedition organized by Arthur Eddington and Frank Dyson, the subject lay observationally dormant for 60 years. However, subsequent progress has been astonishingly rapid, especially in the past decade, so that gravitational lensing now holds the key to unravelling the two most profound mysteries of our Universe-the nature and distribution of dark matter, and the origin of the puzzling cosmic acceleration first identified in the late 1990s. In this non-specialist review, I focus on the unusual history and achievements of gravitational lensing and its future observational prospects.
WEAK LENSING MEASUREMENT OF GALAXY CLUSTERS IN THE CFHTLS-WIDE SURVEY
Shan Huanyuan; Tao Charling; Kneib, Jean-Paul; Jauzac, Mathilde; Limousin, Marceau; Fan Zuhui; Massey, Richard; Rhodes, Jason; Thanjavur, Karun; McCracken, Henry J.
2012-03-20
We present the first weak gravitational lensing analysis of the completed Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). We study the 64 deg{sup 2} W1 field, the largest of the CFHTLS-Wide survey fields, and present the largest contiguous weak lensing convergence 'mass map' yet made. 2.66 million galaxy shapes are measured, using the Kaiser Squires and Broadhurst Method (KSB) pipeline verified against high-resolution Hubble Space Telescope imaging that covers part of the CFHTLS. Our i'-band measurements are also consistent with an analysis of independent r'-band imaging. The reconstructed lensing convergence map contains 301 peaks with signal-to-noise ratio {nu} > 3.5, consistent with predictions of a {Lambda}CDM model. Of these peaks, 126 lie within 3.'0 of a brightest central galaxy identified from multicolor optical imaging in an independent, red sequence survey. We also identify seven counterparts for massive clusters previously seen in X-ray emission within 6 deg{sup 2} XMM-LSS survey. With photometric redshift estimates for the source galaxies, we use a tomographic lensing method to fit the redshift and mass of each convergence peak. Matching these to the optical observations, we confirm 85 groups/clusters with {chi}{sup 2}{sub reduced} < 3.0, at a mean redshift (z{sub c} ) = 0.36 and velocity dispersion ({sigma}{sub c}) = 658.8 km s{sup -1}. Future surveys, such as DES, LSST, KDUST, and EUCLID, will be able to apply these techniques to map clusters in much larger volumes and thus tightly constrain cosmological models.
NASA Astrophysics Data System (ADS)
Egami, Eiichi; Rawle, Timothy; Cava, Antonio; Clement, Benjamin; Dessauges-Zavadsky, Miroslava; Ebeling, Harald; Kneib, Jean-Paul; Perez-Gonzalez, Pablo; Richard, Johan; Rujopakarn, Wiphu; Schaerer, Daniel; Walth, Gregory
2015-10-01
Using the Herschel Space Observatory, our team has been conducting a large survey of the fields of massive galaxy clusters, 'The Herschel Lensing Survey (HLS)' (PI: Egami; 419 hours). The main scientific goal is to penetrate the confusion limit of Herschel by taking advantage of the strong gravitational lensing power of these massive clusters and study the population of low-luminosity and/or high-redshift dusty star-forming galaxies that are beyond the reach of field Herschel surveys. In the course of this survey, we have obtained deep PACS (100/160 um) and SPIRE (250/350/500 um) images for 54 clusters (HLS-deep) as well as shallower (but nearly confusion-limited) SPIRE images for 527 clusters (HLS-snapshot). The goal of this proposal is to obtain shallow (500 sec/band) 3.6/4.5 um images of 266 cluster fields that have been observed by the HLS-snapshot survey but do not have any corresponding IRAC data. The HLS-snapshot SPIRE images are deep enough to detect a large number of sources in the target cluster fields, many of which are distant star-forming galaxies lensed by the foreground clusters, and the large sample size of HLS-snapshot promises a great potential for making exciting discoveries. Yet, these Herschel images would be of limited use if we could not identify the counterparts of the Herschel sources accurately and efficiently. The proposed IRAC snapshot program will greatly enhance the utility of these Herschel data, and will feed powerful gound observing facilities like ALMA and NOEMA with interesting targets to follow up.
Weak-lensing Peak Finding: Estimators, Filters, and Biases
NASA Astrophysics Data System (ADS)
Schmidt, Fabian; Rozo, Eduardo
2011-07-01
Large catalogs of shear-selected peaks have recently become a reality. In order to properly interpret the abundance and properties of these peaks, it is necessary to take into account the effects of the clustering of source galaxies, among themselves and with the lens. In addition, the preferred selection of magnified galaxies in a flux- and size-limited sample leads to fluctuations in the apparent source density that correlate with the lensing field. In this paper, we investigate these issues for two different choices of shear estimators that are commonly in use today: globally normalized and locally normalized estimators. While in principle equivalent, in practice these estimators respond differently to systematic effects such as magnification and cluster member dilution. Furthermore, we find that the answer to the question of which estimator is statistically superior depends on the specific shape of the filter employed for peak finding; suboptimal choices of the estimator+filter combination can result in a suppression of the number of high peaks by orders of magnitude. Magnification and size bias generally act to increase the signal-to-noise ν of shear peaks; for high peaks the boost can be as large as Δν ≈ 1-2. Due to the steepness of the peak abundance function, these boosts can result in a significant increase in the observed abundance of shear peaks. A companion paper investigates these same issues within the context of stacked weak-lensing mass estimates.
NASA Astrophysics Data System (ADS)
Umetsu, Keiichi; Zitrin, Adi; Gruen, Daniel; Merten, Julian; Donahue, Megan; Postman, Marc
2016-04-01
We present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19≲ z≲ 0.69 selected from Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis combines constraints from 16-band Hubble Space Telescope observations and wide-field multi-color imaging taken primarily with Suprime-Cam on the Subaru Telescope, spanning a wide range of cluster radii (10″-16‧). We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all of the clusters. We find the internal consistency of the ensemble mass calibration to be ≤5% ± 6% in the one-halo regime (200-2000 kpc h-1) compared to the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample of 16 clusters, we examine the concentration-mass (c-M) relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of c{| }z=0.34=3.95+/- 0.35 at M200c ≃ 14 × 1014 M⊙ and an intrinsic scatter of σ ({ln}{c}200{{c}})=0.13+/- 0.06, which is in excellent agreement with Λ cold dark matter predictions when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account. We also derive an ensemble-averaged surface mass density profile for the X-ray-selected subsample by stacking their individual profiles. The stacked lensing signal is detected at 33σ significance over the entire radial range ≤4000 kpc h-1, accounting for the effects of intrinsic profile variations and uncorrelated large-scale structure along the line of sight. The stacked mass profile is well described by a family of density profiles predicted for cuspy dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro-Frenk-White (NFW), Einasto, and DARKexp models, whereas the single
Detecting dark matter substructure spectroscopically in strong gravitational lenses
NASA Astrophysics Data System (ADS)
Moustakas, Leonidas A.; Metcalf, R. Benton
2003-03-01
The cold dark matter (CDM) model for galaxy formation predicts that a significant fraction of mass in the dark matter haloes that surround L~L* galaxies is bound in substructures of mass 104-107 Msolar. The number of observable baryonic substructures (such as dwarf galaxies and globular clusters) falls short of these predictions by at least an order of magnitude. We present a method for searching for substructure in the haloes of gravitational lenses that produce multiple images of quasi-stellar objects (QSOs), such as four-image Einstein Cross lenses. Current methods based on broad-band flux ratios cannot cleanly distinguish between substructure, differential extinction, scattering in the radio by ionized regions in the lens galaxy, microlensing by stars and, most importantly, ambiguities in the host lens model. These difficulties may be overcome by utilizing the prediction that, when substructure is present, the magnification will be a function of source size. QSO broad-line and narrow-line emission regions are ~1 pc and >100 pc in size, respectively. The radio emission region is typically intermediate to these and the continuum emission region is much smaller. When narrow-line region (NLR) features are used as a normalization, the relative intensity and equivalent width of broad-line region (BLR) features will respectively reflect substructure-lensing and microlensing effects. Spectroscopic observations of just a few image pairs would probably be able to extract the desired substructure signature cleanly and distinguish it from microlensing - depending on the actual level of projected mass in substructure. In the rest-optical, the Hβ/[OIII] region is ideal, since the narrow wavelength range also largely eliminates differential reddening problems. In the rest-ultraviolet, the region longward of and including Lyα may also work. Simulations of Q2237+0305 are done as an example, to determine the level of substructure that is detectable in this way. Possible
Weber's gravitational force as static weak field approximation
NASA Astrophysics Data System (ADS)
Tiandho, Yuant
2016-02-01
Weber's gravitational force (WGF) is one of gravitational model that can accommodate a non-static system because it depends not only on the distance but also on the velocity and the acceleration. Unlike Newton's law of gravitation, WGF can predict the anomalous of Mercury and gravitational bending of light near massive object very well. Then, some researchers use WGF as an alternative model of gravitation and propose a new mechanics theory namely the relational mechanics theory. However, currently we have known that the theory of general relativity which proposed by Einstein can explain gravity with very accurate. Through the static weak field approximation for the non-relativistic object, we also have known that the theory of general relativity will reduce to Newton's law of gravity. In this work, we expand the static weak field approximation that compatible with relativistic object and we obtain a force equation which correspond to WGF. Therefore, WGF is more precise than Newton's gravitational law. The static-weak gravitational field that we used is a solution of the Einstein's equation in the vacuum that satisfy the linear field approximation. The expression of WGF with ξ = 1 and satisfy the requirement of energy conservation are obtained after resolving the geodesic equation. By this result, we can conclude that WGF can be derived from the general relativity.
NASA Astrophysics Data System (ADS)
Jee, M. J.; Dawson, K. S.; Hoekstra, H.; Perlmutter, S.; Rosati, P.; Brodwin, M.; Suzuki, N.; Koester, B.; Postman, M.; Lubin, L.; Meyers, J.; Stanford, S. A.; Barbary, K.; Barrientos, F.; Eisenhardt, P.; Ford, H. C.; Gilbank, D. G.; Gladders, M. D.; Gonzalez, A.; Harris, D. W.; Huang, X.; Lidman, C.; Rykoff, E. S.; Rubin, D.; Spadafora, A. L.
2011-08-01
We present weak gravitational lensing analysis of 22 high-redshift (z >~ 1) clusters based on Hubble Space Telescope images. Most clusters in our sample provide significant lensing signals and are well detected in their reconstructed two-dimensional mass maps. Combining the current results and our previous weak-lensing studies of five other high-z clusters, we compare gravitational lensing masses of these clusters with other observables. We revisit the question whether the presence of the most massive clusters in our sample is in tension with the current ΛCDM structure formation paradigm. We find that the lensing masses are tightly correlated with the gas temperatures and establish, for the first time, the lensing mass-temperature relation at z >~ 1. For the power-law slope of the M-TX relation (MvpropT α), we obtain α = 1.54 ± 0.23. This is consistent with the theoretical self-similar prediction α = 3/2 and with the results previously reported in the literature for much lower redshift samples. However, our normalization is lower than the previous results by 20%-30%, indicating that the normalization in the M-TX relation might evolve. After correcting for Eddington bias and updating the discovery area with a more conservative choice, we find that the existence of the most massive clusters in our sample still provides a tension with the current ΛCDM model. The combined probability of finding the four most massive clusters in this sample after the marginalization over cosmological parameters is less than 1%. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555, under program 9290, 9919, and 10496.
Magnification of light from many distant quasars by gravitational lenses.
Wyithe, J Stuart B; Loeb, Abraham
2002-06-27
Exceptionally bright quasars with redshifts up to z = 6.28 have recently been discovered. Quasars are thought to be powered by the accretion of gas onto supermassive black holes at the centres of galaxies. Their maximum (Eddington) luminosity depends on the mass of the black hole, and the brighter quasars are inferred to have black holes with masses of more than a few billion solar masses. The existence of such massive black holes poses a challenge to models for the formation of structures in the early Universe, as it requires their formation within one billion years of the Big Bang. Here we show that up to one-third of known quasars with z approximately equal to 6 will have had their observed flux magnified by a factor of ten or more, as a consequence of gravitational lensing by galaxies along the line of sight. The inferred abundance of quasar host galaxies, as well as the luminosity density provided by the quasars, has therefore been substantially overestimated.
Constraining warm dark matter using QSO gravitational lensing
NASA Astrophysics Data System (ADS)
Miranda, Marco; Macciò, Andrea V.
2007-12-01
Warm dark matter (WDM) has been invoked to resolve apparent conflicts of cold dark matter (CDM) models with observations on subgalactic scales. In this work, we provide a new and independent lower limit for the WDM particle mass (e.g. sterile neutrino) through the analysis of image fluxes in gravitationally lensed quasi-stellar objects (QSOs). Starting from a theoretical unperturbed cusp configuration, we analyse the effects of intergalactic haloes in modifying the fluxes of QSO multiple images, giving rise to the so-called anomalous flux ratio. We found that the global effect of such haloes strongly depends on their mass/abundance ratio and it is maximized for haloes in the mass range 106-108Msolar. This result opens up a new possibility to constrain CDM predictions on small scales and test different warm candidates, since free streaming of WDM particles can considerably dampen the matter power spectrum in this mass range. As a consequence, while a (Λ)CDM model is able to produce flux anomalies at a level similar to those observed, a WDM model, with an insufficiently massive particle, fails to reproduce the observational evidences. Our analysis suggests a lower limit of a few keV (mν ~ 10) for the mass of WDM candidates in the form of a sterile neutrino. This result makes sterile neutrino WDM less attractive as an alternative to CDM, in good agreement with previous findings from Lyman α forest and cosmic microwave background analysis.
Cosmic superstring gravitational lensing phenomena: Predictions for networks of (p,q) strings
Shlaer, Benjamin; Wyman, Mark
2005-12-15
The unique, conical space-time created by cosmic strings brings about distinctive gravitational lensing phenomena. The variety of these distinctive phenomena is increased when the strings have nontrivial mutual interactions. In particular, when strings bind and create junctions, rather than intercommute, the resulting configurations can lead to novel gravitational lensing patterns. In this brief note, we use exact solutions to characterize these phenomena, the detection of which would be strong evidence for the existence of complex cosmic string networks of the kind predicted by string theory-motivated cosmic string models. We also correct some common errors in the lensing phenomenology of straight cosmic strings.
NASA Astrophysics Data System (ADS)
Hojjati, Alireza; McCarthy, Ian G.; Harnois-Deraps, Joachim; Ma, Yin-Zhe; Van Waerbeke, Ludovic; Hinshaw, Gary; Le Brun, Amandine M. C.
2015-10-01
We use the cosmo-OWLS suite of cosmological hydrodynamical simulations, which includes different galactic feedback models, to predict the cross-correlation signal between weak gravitational lensing and the thermal Sunyaev-Zeldovich (tSZ) y-parameter. The predictions are compared to the recent detection reported by van Waerbeke and collaborators. The simulations reproduce the weak lensing-tSZ cross-correlation, ξyκ(θ), well. The uncertainty arising from different possible feedback models appears to be important on small scales only (0θ lesssim 1 arcmin), while the amplitude of the correlation on all scales is sensitive to cosmological parameters that control the growth rate of structure (such as σ8, Ωm and Ωb). This study confirms our previous claim (in Ma et al.) that a significant proportion of the signal originates from the diffuse gas component in low-mass (Mhalo lesssim 1014 Msolar) clusters as well as from the region beyond the virial radius. We estimate that approximately 20% of the detected signal comes from low-mass clusters, which corresponds to about 30% of the baryon density of the Universe. The simulations also suggest that more than half of the baryons in the Universe are in the form of diffuse gas outside halos (gtrsim 5 times the virial radius) which is not hot or dense enough to produce a significant tSZ signal or be observed by X-ray experiments. Finally, we show that future high-resolution tSZ-lensing cross-correlation observations will serve as a powerful tool for discriminating between different galactic feedback models.
Chen, Songbai; Jing, Jiliang E-mail: jljing@hunnu.edu.cn
2015-10-01
We have investigated the strong gravitational lensing for the photons coupled to Weyl tensor in a Schwarzschild black hole spacetime. We find that in the four-dimensional black hole spacetime the equation of motion of the photons depends not only on the coupling between photon and Weyl tensor, but also on the polarization direction of the photons. It is quite different from that in the case of the usual photon without coupling to Weyl tensor in which the equation of motion is independent of the polarization of the photon. Moreover, we find that the coupling and the polarization direction modify the properties of the photon sphere, the deflection angle, the coefficients in strong field lensing, and the observational gravitational lensing variables. Combining with the supermassive central object in our Galaxy, we estimated three observables in the strong gravitational lensing for the photons coupled to Weyl tensor.
A gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds.
Inada, Naohisa; Oguri, Masamune; Pindor, Bartosz; Hennawi, Joseph F; Chiu, Kuenley; Zheng, Wei; Ichikawa, Shin-Ichi; Gregg, Michael D; Becker, Robert H; Suto, Yasushi; Strauss, Michael A; Turner, Edwin L; Keeton, Charles R; Annis, James; Castander, Francisco J; Eisenstein, Daniel J; Frieman, Joshua A; Fukugita, Masataka; Gunn, James E; Johnston, David E; Kent, Stephen M; Nichol, Robert C; Richards, Gordon T; Rix, Hans-Walter; Sheldon, Erin Scott; Bahcall, Neta A; Brinkmann, J; Ivezić, Zeljko; Lamb, Don Q; McKay, Timothy A; Schneider, Donald P; York, Donald G
2003-12-18
Gravitational lensing is a powerful tool for the study of the distribution of dark matter in the Universe. The cold-dark-matter model of the formation of large-scale structures (that is, clusters of galaxies and even larger assemblies) predicts the existence of quasars gravitationally lensed by concentrations of dark matter so massive that the quasar images would be split by over 7 arcsec. Numerous searches for large-separation lensed quasars have, however, been unsuccessful. All of the roughly 70 lensed quasars known, including the first lensed quasar discovered, have smaller separations that can be explained in terms of galaxy-scale concentrations of baryonic matter. Although gravitationally lensed galaxies with large separations are known, quasars are more useful cosmological probes because of the simplicity of the resulting lens systems. Here we report the discovery of a lensed quasar, SDSS J1004 + 4112, which has a maximum separation between the components of 14.62 arcsec. Such a large separation means that the lensing object must be dominated by dark matter. Our results are fully consistent with theoretical expectations based on the cold-dark-matter model.
Gravitational anomaly and Hawking radiation near a weakly isolated horizon
Wu Xiaoning; Huang Chaoguang; Sun Jiarui
2008-06-15
Based on the idea of the work by Wilczek and his collaborators, we consider the gravitational anomaly near a weakly isolated horizon. We find that there exists a universal choice of tortoise coordinate for any weakly isolated horizon. Under this coordinate, the leading behavior of a quite arbitrary scalar field near a horizon is a 2-dimensional chiral scalar field. This means we can extend the idea of Wilczek and his collaborators to more general cases and show the relation between gravitational anomaly and Hawking radiation is a universal property of a black hole horizon.
Gravitational anomaly and Hawking radiation near a weakly isolated horizon
NASA Astrophysics Data System (ADS)
Wu, Xiaoning; Huang, Chao-Guang; Sun, Jia-Rui
2008-06-01
Based on the idea of the work by Wilczek and his collaborators, we consider the gravitational anomaly near a weakly isolated horizon. We find that there exists a universal choice of tortoise coordinate for any weakly isolated horizon. Under this coordinate, the leading behavior of a quite arbitrary scalar field near a horizon is a 2-dimensional chiral scalar field. This means we can extend the idea of Wilczek and his collaborators to more general cases and show the relation between gravitational anomaly and Hawking radiation is a universal property of a black hole horizon.
Weak lensing analysis of the galaxy cluster RXJ1117.4+0743 ([VMF98]097)
NASA Astrophysics Data System (ADS)
Gonzalez, E. J.; Domínguez, M.; García Lambas, D.; Moreschi, O.; Foex, G.; Nilo Castellon, J. L.; Alonso, M. V.
We present a weak lensing analysis of the galaxy cluster RXJ1117.4+0743 ([VMF98]097) at ; based on data collected with Gemini South Telescope. The cluster was formerly analyzed by Carrasco et al. (2007; ApJ; 664; 777); and they found a large discrepancy between the mass estimated from X-ray observations and lensing estimates; exceeding the lensing mass by more than a factor three. Our result for the mass from the weak lensing analysis is lower than the mass obtained by Carrasco et al. and closer to the X-ray mass.
Weak Gravitational Wave and Casimir Energy of a Scalar Field
NASA Astrophysics Data System (ADS)
Tavakoli, F.; Pirmoradian, R.; Parsabod, I.
2016-09-01
In this paper, we calculate the effect of a weak gravitational field on the Casimir force between two ideal plates subjected to a massless minimally coupled field. It is the aim of this work to study the Casimir energy under a weak perturbation of gravity. Moreover, the fluctuations of the stress-energy tensor for a scalar field in de Sitter space-time are computed as well.
An Instrumentation Systematic for Weak Lensing from WFIRST
NASA Astrophysics Data System (ADS)
Jayaraman, Arun; Shapiro, Charles; Mandelbaum, Rachel; Hirata, Christopher M.; Kruk, Jeffrey W.; Rhodes, Jason
2016-06-01
The Wide Field Infra-Red Space Telescope (WFIRST), which is planned to be launched in 2025, will image the Universe in the near-Infrared bands and help measure shapes of ~400M galaxies according to the current survey design. Given such a big dataset, in order to be able to make precise weak lensing measurements and thereby understand the dark sectors of the Universe, it is necessary to not be biased by systematic effects. An understanding of systematic effects that arise from both astrophysical situations and from the instrumentation becomes crucial. The detectors used in WFIRST are made of HgCdTe and have CMOS based readout electronics, thus suffering from systematic effects that are different from that of CCDs. In this talk, I will focus on one such effect called the 'Interpixel Capacitance' (IPC) effect, which is a form of electrical crosstalk between neighboring pixels. I will show some results on how the shape of observed PSF, which will include the effect of IPC, varies as a function of the IPC parameters. I will also show how the shear measurement bias is affected if the IPC in the individual exposures is not perfectly corrected for, due to the misestimation of the IPC parameters. The requirements on PSF shapes and measurement biases can be translated into requirements on the IPC parameters and thus be used to specify the desired level of detector performance.
UP TO 100,000 RELIABLE STRONG GRAVITATIONAL LENSES IN FUTURE DARK ENERGY EXPERIMENTS
Serjeant, S.
2014-09-20
The Euclid space telescope will observe ∼10{sup 5} strong galaxy-galaxy gravitational lens events in its wide field imaging survey over around half the sky, but identifying the gravitational lenses from their observed morphologies requires solving the difficult problem of reliably separating the lensed sources from contaminant populations, such as tidal tails, as well as presenting challenges for spectroscopic follow-up redshift campaigns. Here I present alternative selection techniques for strong gravitational lenses in both Euclid and the Square Kilometre Array, exploiting the strong magnification bias present in the steep end of the Hα luminosity function and the H I mass function. Around 10{sup 3} strong lensing events are detectable with this method in the Euclid wide survey. While only ∼1% of the total haul of Euclid lenses, this sample has ∼100% reliability, known source redshifts, high signal-to-noise, and a magnification-based selection independent of assumptions of lens morphology. With the proposed Square Kilometre Array dark energy survey, the numbers of reliable strong gravitational lenses with source redshifts can reach 10{sup 5}.
Gravitational Lensing of Stars in the Central Arcsecond of Our Galaxy
NASA Astrophysics Data System (ADS)
Bozza, V.; Mancini, L.
2005-07-01
In the neighborhood of Sgr A*, several stars (S2, S12, S14, S1, S8, and S13) enjoy an accurate determination of their orbital parameters. General relativity predicts that the central black hole acts as a gravitational lens on these stars, generating a secondary image and two infinite series of relativistic images. For each of these six stars, we calculate the light curves for the secondary and the first two relativistic images, in the Schwarzschild black hole hypothesis, throughout their orbital periods. The curves are peaked around the periapse epoch, but two subpeaks may arise in nearly edge-on orbits, when the source is behind or in front of Sgr A*. We show that for most of these stars the secondary image should be observable during its brightness peak. In particular, S14 is the best candidate, since its secondary image reaches K=23.3 with an angular separation of 0.125 mas from the apparent horizon of the central black hole. The detection of such images by future instruments could represent the first observation of gravitational lensing beyond the weak-field approximation.
Galaxy clusters mass measurements: news in X-ray and Weak lensing data analysis
NASA Astrophysics Data System (ADS)
Bartalucci, Iacopo; Formicola, Ilaria; Martino, Rossella
2012-10-01
We describe the recent improvements made on the techniques for the estimates of the total mass of galaxy clusters using the X-ray data, obtained by the Chandra and XMM satellites, and the weak lensing observations, performed by Subaru telescope. Furthermore, we show the current state of X-ray and weak lensing mass comparison obtained by simulations and observational data. In particular, we use a subsample of 21 galaxy clusters of the LOCUSS High-Lx sample, for which e find that X-ray masses overcome weak lensing mass by about 10%.
Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M.; André, M.; Anton, G.; Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J.; Basa, S.; Biagi, S.; Capone, A.; Caramete, L.; and others
2014-11-01
This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 10{sup 46} erg s{sup -1}. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.
IMPACT OF ATMOSPHERIC CHROMATIC EFFECTS ON WEAK LENSING MEASUREMENTS
Meyers, Joshua E.; Burchat, Patricia R.
2015-07-10
Current and future imaging surveys will measure cosmic shear with statistical precision that demands a deeper understanding of potential systematic biases in galaxy shape measurements than has been achieved to date. We use analytic and computational techniques to study the impact on shape measurements of two atmospheric chromatic effects for ground-based surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope (LSST): (1) atmospheric differential chromatic refraction and (2) wavelength dependence of seeing. We investigate the effects of using the point-spread function (PSF) measured with stars to determine the shapes of galaxies that have different spectral energy distributions than the stars. We find that both chromatic effects lead to significant biases in galaxy shape measurements for current and future surveys, if not corrected. Using simulated galaxy images, we find a form of chromatic “model bias” that arises when fitting a galaxy image with a model that has been convolved with a stellar, instead of galactic, PSF. We show that both forms of atmospheric chromatic biases can be predicted (and corrected) with minimal model bias by applying an ordered set of perturbative PSF-level corrections based on machine-learning techniques applied to six-band photometry. Catalog-level corrections do not address the model bias. We conclude that achieving the ultimate precision for weak lensing from current and future ground-based imaging surveys requires a detailed understanding of the wavelength dependence of the PSF from the atmosphere, and from other sources such as optics and sensors. The source code for this analysis is available at https://github.com/DarkEnergyScienceCollaboration/chroma.
Impact of Atmospheric Chromatic Effects on Weak Lensing Measurements
NASA Astrophysics Data System (ADS)
Meyers, Joshua E.; Burchat, Patricia R.
2015-07-01
Current and future imaging surveys will measure cosmic shear with statistical precision that demands a deeper understanding of potential systematic biases in galaxy shape measurements than has been achieved to date. We use analytic and computational techniques to study the impact on shape measurements of two atmospheric chromatic effects for ground-based surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope (LSST): (1) atmospheric differential chromatic refraction and (2) wavelength dependence of seeing. We investigate the effects of using the point-spread function (PSF) measured with stars to determine the shapes of galaxies that have different spectral energy distributions than the stars. We find that both chromatic effects lead to significant biases in galaxy shape measurements for current and future surveys, if not corrected. Using simulated galaxy images, we find a form of chromatic “model bias” that arises when fitting a galaxy image with a model that has been convolved with a stellar, instead of galactic, PSF. We show that both forms of atmospheric chromatic biases can be predicted (and corrected) with minimal model bias by applying an ordered set of perturbative PSF-level corrections based on machine-learning techniques applied to six-band photometry. Catalog-level corrections do not address the model bias. We conclude that achieving the ultimate precision for weak lensing from current and future ground-based imaging surveys requires a detailed understanding of the wavelength dependence of the PSF from the atmosphere, and from other sources such as optics and sensors. The source code for this analysis is available at https://github.com/DarkEnergyScienceCollaboration/chroma.
Fullana, M. J.; Arnau, J. V.; Thacker, R. J.; Couchman, H. M. P.; Saez, D.
2010-03-20
We estimate the impact of weak lensing by strongly nonlinear cosmological structures on the cosmic microwave background. Accurate calculation of large l multipoles requires N-body simulations and ray-tracing schemes with both high spatial and temporal resolution. To this end, we have developed a new code that combines a gravitational Adaptive Particle-Particle, Particle-Mesh solver with a weak-lensing evaluation routine. The lensing deviations are evaluated while structure evolves during the simulation so that all evolution steps-rather than just a few outputs-are used in the lensing computations. The new code also includes a ray-tracing procedure that avoids periodicity effects in a universe that is modeled as a three-dimensional torus in the standard way. Results from our new simulations are compared with previous ones based on Particle-Mesh simulations. We also systematically investigate the impact of box volume, resolution, and ray-tracing directions on the variance of the computed power spectra. We find that a box size of 512 h {sup -1} Mpc is sufficient to provide a robust estimate of the weak-lensing angular power spectrum in the l-interval (2000-7000). For a reaslistic cosmological model, the power [l(l + 1)C{sub l}/2pi]{sup 1/2} takes on values of a few muK in this interval, which suggests that a future detection is feasible and may explain the excess power at high l in the Berkeley-Illinois-Maryland Association and Cosmic Background Imager observations.
Sub-pixel calibration for Weak Lensing and Astrometry
NASA Astrophysics Data System (ADS)
Shao, Michael
We have recently developed and demonstrated a new method of sub-pixel detector calibration that offers orders of magnitude improvement in astrometry with CCD focal planes. Using this technique we have demonstrated centroiding of images to 1e 5 lambda/D in laboratory conditions. Our method allows reconstructing the true optical point spread function (PSF) of a telescope from pixelated stellar images. Although this technique was originally developed for centroiding of images across a large focal plane, it can also be applied to weak lensing program on WFIRST. We use a laser metrology technique to measure geometric imperfections in the focal plane array from pixel placement errors to non-uniform quantum efficiency (QE) within every pixel. With precise sub-pixel calibration one can use dithered images (e.g., a 2×2 dither) to derive Nyquist-sampled image of stars. The WFIRST telescope has a large 0.28 sq.deg field of view (FOV) with theoretical PSF varying considerably over that FOV. However, even at high galactic latitude there will be over 1,000 stars brighter than 16 mag and, with Nyquist-sampled images, it should be possible to calculate the spatially varying PSF at 1,000 locations in the focal plane. With knowledge of the optical PSF and sub-pixel calibration of the detector, one can remove biases in the shapes of galaxies introduced by the spatially varying PSF. The technique of sub-pixel calibration has so far only been demonstrated in with visible CCD detectors and applied to achieve ultra-precise image centroiding. The purpose of this proposal is to extend the technique of removing biases in the shape of galaxies due to pixilation and spatially varying PSF and to extend the calibration of visible detectors to NIR detectors. The new technique could be used to enable 4 10 microarcsecond (μas) astrometry within the 0.28 sq.deg FOV of the WFIRST telescope. Using the upcoming Gaia catalogue accurate to ~10 μas, we will be able to stitch the HgCdTe arrays on
Probing cluster potentials through gravitational lensing of background X-ray sources
NASA Technical Reports Server (NTRS)
Refregier, A.; Loeb, A.
1996-01-01
The gravitational lensing effect of a foreground galaxy cluster, on the number count statistics of background X-ray sources, was examined. The lensing produces a deficit in the number of resolved sources in a ring close to the critical radius of the cluster. The cluster lens can be used as a natural telescope to study the faint end of the (log N)-(log S) relation for the sources which account for the X-ray background.
NASA Astrophysics Data System (ADS)
Petri, Andrea; Liu, Jia; Haiman, Zoltán; May, Morgan; Hui, Lam; Kratochvil, Jan M.
2015-05-01
Weak gravitational lensing is a powerful cosmological probe, with non-Gaussian features potentially containing the majority of the information. We examine constraints on the parameter triplet (Ωm,w ,σ8) from non-Gaussian features of the weak lensing convergence field, including a set of moments (up to fourth order) and Minkowski functionals, using publicly available data from the 154 deg2 CFHTLenS survey. We utilize a suite of ray-tracing N-body simulations spanning 91 points in (Ωm,w ,σ8) parameter space, replicating the galaxy sky positions, redshifts and shape noise in the CFHTLenS catalogs. We then build an emulator that interpolates the simulated descriptors as a function of (Ωm,w ,σ8), and use it to compute the likelihood function and parameter constraints. We employ a principal component analysis to reduce dimensionality and to help stabilize the constraints with respect to the number of bins used to construct each statistic. Using the full set of statistics, we find Σ8≡σ8(Ωm/0.27 )0.55=0.75 ±0.04 (68% C.L.), in agreement with previous values. We find that constraints on the (Ωm,σ8) doublet from the Minkowski functionals suffer a strong bias. However, high-order moments break the (Ωm,σ8) degeneracy and provide a tight constraint on these parameters with no apparent bias. The main contribution comes from quartic moments of derivatives.
NASA Astrophysics Data System (ADS)
Liu, Xiangkun; Li, Baojiu; Zhao, Gong-Bo; Chiu, Mu-Chen; Fang, Wei; Pan, Chuzhong; Wang, Qiao; Du, Wei; Yuan, Shuo; Fu, Liping; Fan, Zuhui
2016-07-01
In this Letter, we report the observational constraints on the Hu-Sawicki f (R ) theory derived from weak lensing peak abundances, which are closely related to the mass function of massive halos. In comparison with studies using optical or x-ray clusters of galaxies, weak lensing peak analyses have the advantages of not relying on mass-baryonic observable calibrations. With observations from the Canada-France-Hawaii-Telescope Lensing Survey, our peak analyses give rise to a tight constraint on the model parameter |fR 0| for n =1 . The 95% C.L. is log10|fR 0|<-4.82 given WMAP9 priors on (Ωm , As ). With Planck15 priors, the corresponding result is log10|fR 0|<-5.16 .
Liu, Xiangkun; Li, Baojiu; Zhao, Gong-Bo; Chiu, Mu-Chen; Fang, Wei; Pan, Chuzhong; Wang, Qiao; Du, Wei; Yuan, Shuo; Fu, Liping; Fan, Zuhui
2016-07-29
In this Letter, we report the observational constraints on the Hu-Sawicki f(R) theory derived from weak lensing peak abundances, which are closely related to the mass function of massive halos. In comparison with studies using optical or x-ray clusters of galaxies, weak lensing peak analyses have the advantages of not relying on mass-baryonic observable calibrations. With observations from the Canada-France-Hawaii-Telescope Lensing Survey, our peak analyses give rise to a tight constraint on the model parameter |f_{R0}| for n=1. The 95% C.L. is log_{10}|f_{R0}|<-4.82 given WMAP9 priors on (Ω_{m}, A_{s}). With Planck15 priors, the corresponding result is log_{10}|f_{R0}|<-5.16. PMID:27517761
Liu, Xiangkun; Li, Baojiu; Zhao, Gong-Bo; Chiu, Mu-Chen; Fang, Wei; Pan, Chuzhong; Wang, Qiao; Du, Wei; Yuan, Shuo; Fu, Liping; Fan, Zuhui
2016-07-29
In this Letter, we report the observational constraints on the Hu-Sawicki f(R) theory derived from weak lensing peak abundances, which are closely related to the mass function of massive halos. In comparison with studies using optical or x-ray clusters of galaxies, weak lensing peak analyses have the advantages of not relying on mass-baryonic observable calibrations. With observations from the Canada-France-Hawaii-Telescope Lensing Survey, our peak analyses give rise to a tight constraint on the model parameter |f_{R0}| for n=1. The 95% C.L. is log_{10}|f_{R0}|<-4.82 given WMAP9 priors on (Ω_{m}, A_{s}). With Planck15 priors, the corresponding result is log_{10}|f_{R0}|<-5.16.
Discovery of a new component in the gravitationally lensed quasar 0957 + 561
NASA Technical Reports Server (NTRS)
Jones, C.; Stern, C.; Falco, E.; Forman, W.; David, L.; Shapiro, I.; Fabian, A. C.
1993-01-01
X-ray observations of the gravitationally lensed quasar 0957 + 561 with the Einstein Observatory High Resolution Imager indicate the presence of a new component in the system. The significantly greater X-ray intensity of image A compared with image B and the extended X-ray emission can be interpreted as the gravitational lensing of a quasi-circular X-ray emitting region into a partial Einstein ring. It is suggested that the observed X-ray emission is produced by a strong cooling flow which could arise were 0957 + 561 embedded in a group of cluster galaxies.
SDSS J0246-0825: A New Gravitationally Lensed Quasar from the Sloan Digital Sky Survey
Inada, N; Burles, S; Gregg, M D; Becker, R H; Schechter, P L; Eisenstein, D J; Oguri, M; Castander, F J; Hall, P B; Johnston, D E; Pindor, B; Richards, G T; Schneider, D P; White, R L; Brinkmann, J; Szalay, A; York, D G
2005-11-10
We report the discovery of a new two-image gravitationally lensed quasar, SDSS J024634.11-082536.2 (SDSS J0246-0825). This object was selected as a lensed quasar candidate from the Sloan Digital Sky Survey (SDSS) by the same algorithm that was used to discover other SDSS lensed quasars (e.g., SDSS J0924+0219). Multicolor imaging with the Magellan Consortium's Walter Baade 6.5-m telescope and the spectroscopic observations using the W. M. Keck Observatory's Keck II telescope confirm that SDSS J0246-0825 consists of two lensed images ({Delta}{theta} = 1''.04) of a source quasar at z = 1.68. Imaging observations with the Keck telescope and the Hubble Space Telescope reveal an extended object between the two quasar components, which is likely to be a lensing galaxy of this system. From the absorption lines in the spectra of quasar components and the apparent magnitude of the galaxy, combined with the expected absolute magnitude from the Faber-Jackson relation, we estimate the redshift of the lensing galaxy to be z = 0.724. A highly distorted ring is visible in the Hubble Space Telescope images, which is likely to be the lensed host galaxy of the source quasar. Simple mass modeling predicts the possibility that there is a small (faint) lensing object near the primary lensing galaxy.
SDSS J094604.90+183541.8: A GRAVITATIONALLY LENSED QUASAR AT z = 4.8
McGreer, Ian D.; Fan Xiaohui; Bian Fuyan; Farnsworth, Kara; Hall, Patrick B.; Inada, Naohisa; Oguri, Masamune; Strauss, Michael A.; Schneider, Donald P.
2010-08-15
We report the discovery of a gravitationally lensed quasar identified serendipitously in the Sloan Digital Sky Survey (SDSS). The object, SDSS J094604.90+183541.8, was initially targeted for spectroscopy as a luminous red galaxy, but the SDSS spectrum has the features of both a z = 0.388 galaxy and a z = 4.8 quasar. We have obtained additional imaging that resolves the system into two quasar images separated by 3.''06 and a bright galaxy that is strongly blended with one of the quasar images. We confirm spectroscopically that the two quasar images represent a single-lensed source at z = 4.8 with a total magnification of 3.2, and we derive a model for the lensing galaxy. This is the highest redshift lensed quasar currently known. We examine the issues surrounding the selection of such an unusual object from existing data and briefly discuss implications for lensed quasar surveys.
Probabilities for gravitational lensing by point masses in a locally inhomogeneous universe
NASA Technical Reports Server (NTRS)
Isaacson, Jeffrey A.; Canizares, Claude R.
1989-01-01
Probability functions for gravitational lensing by point masses that incorporate Poisson statistics and flux conservation are formulated in the Dyer-Roeder construction. Optical depths to lensing for distant sources are calculated using both the method of Press and Gunn (1973) which counts lenses in an otherwise empty cone, and the method of Ehlers and Schneider (1986) which projects lensing cross sections onto the source sphere. These are then used as parameters of the probability density for lensing in the case of a critical (q0 = 1/2) Friedmann universe. A comparison of the probability functions indicates that the effects of angle-averaging can be well approximated by adjusting the average magnification along a random line of sight so as to conserve flux.
Rotation of galaxies as a signature of cosmic strings in weak lensing surveys.
Thomas, Daniel B; Contaldi, Carlo R; Magueijo, João
2009-10-30
Vector perturbations sourced by topological defects can generate rotations in the lensing of background galaxies. This is a potential smoking gun for the existence of defects since rotation generates a curl-like component in the weak lensing signal which is not generated by standard density perturbations at linear order. This rotation signal is calculated as generated by cosmic strings. Future large scale weak lensing surveys should be able to detect this signal even for string tensions an order of magnitude lower than current constraints. PMID:19905797
Effects of Multiple Weak Deflections on the Galaxy-Galaxy Lensing Signal
NASA Astrophysics Data System (ADS)
Brainerd, Tereasa G.; Blumenthal, Kelly
2014-06-01
Galaxy-galaxy lensing is a powerful tool with which the dark mass distribution around galaxies can be constrained directly. One potential complication to the interpretation of an observed galaxy-galaxy lensing signal, however, is the effect of multiple weak deflections. A number of previous studies have shown that for a typical deep data set, background source galaxies will have been lensed at a comparable level by two or more foreground galaxies. Contrary to naive expectations, these multiple weak deflections that are undergone by the images of the source galaxies do not generally cancel out, nor can they usually be ignored. Previous work as shown that at large angular scales the net shear experienced by distant source galaxies due to all foreground lenses generally exceeds the shear due to the single lens with the smallest impact parameter (the "closest lens"). When multiple deflections that have occurred in the observational data are not included in the interpretation of the observed shear profile, systematic errors in the constraints on the lens masses can occur. Here we explore the effects of multiple deflections on the galaxy-galaxy lensing signal using various toy models. We show that the main cause for the difference between the shear profile resulting from all foreground weak lenses and the shear profile resulting from the single closest weak lens is the fact that galaxies have a broad distribution in redshift space. That is, it is not correct to consider realistic galaxy-galaxy lensing as being confined primarily to a single lens plane in redshift space. We also explore the effect of multiple weak deflections on the surface mass density inferred for foreground lenses when the net mean tangential shear (i.e., the shear that results when all multiple weak deflections are taken into account) is used.
Testing the MOND paradigm of modified dynamics with galaxy-galaxy gravitational lensing.
Milgrom, Mordehai
2013-07-26
The MOND paradigm of modified dynamics predicts that the asymptotic gravitational potential of an isolated, bounded (baryonic) mass, M, is ϕ(r)=(MGa0)1/2ln(r). Relativistic MOND theories predict that the lensing effects of M are dictated by ϕ(r) as general-relativity lensing is dictated by the Newtonian potential. Thus MOND predicts that the asymptotic Newtonian potential deduced from galaxy-galaxy gravitational lensing will have (1) a logarithmic r dependence, and (2) a normalization (parametrized standardly as 2σ2) that depends only on M: σ=(MGa0/4)1/4. I compare these predictions with recent results of galaxy-galaxy lensing, and find agreement on all counts. For the “blue”-lenses subsample (“spiral” galaxies) MOND reproduces the observations well with an r′-band M/Lr′∼(1–3)(M/L)⊙, and for “red” lenses (“elliptical” galaxies) with M/Lr′∼(3–6)(M/L)⊙, both consistent with baryons only. In contradistinction, Newtonian analysis requires, typically, M/Lr′∼130(M/L)⊙, bespeaking a mass discrepancy of a factor ∼40. Compared with the staple, rotation-curve tests, MOND is here tested in a wider population of galaxies, through a different phenomenon, using relativistic test objects, and is probed to several-times-lower accelerations–as low as a few percent of a0. PMID:23931350
Nonsingular Density Profiles of Dark Matter Halos and Strong Gravitational Lensing
NASA Astrophysics Data System (ADS)
Chen, Da-Ming
2005-08-01
We use the statistics of strong gravitational lenses to investigate whether mass profiles with a flat density core are supported. The probability for lensing by halos modeled by a nonsingular truncated isothermal sphere (NTIS) with image separations greater than a certain value (ranging from 0" to 10") is calculated. NTIS is an analytical model for the postcollapse equilibrium structure of virialized objects derived by Shapiro, Iliev, & Raga. This profile has a soft core and matches quite well with the mass profiles of dark matter-dominated dwarf galaxies deduced from their observed rotation curves. It also agrees well with the NFW (Navarro-Frenk-White) profile at all radii outside of a few NTIS core radii. Unfortunately, comparing the results with those for singular lensing halos (NFW and SIS + NFW) and strong lensing observations, the probabilities for lensing by NTIS halos are far too low. As this result is valid for any other nonsingular density profile (with a large core radius), we conclude that nonsingular density profiles (with a large core radius) for CDM halos are ruled out by statistics of strong gravitational lenses.
Strong deflection limit of black hole gravitational lensing with arbitrary source distances
Bozza, V.; Scarpetta, G.
2007-10-15
The gravitational field of supermassive black holes is able to strongly bend light rays emitted by nearby sources. When the deflection angle exceeds {pi}, gravitational lensing can be analytically approximated by the so-called strong deflection limit. In this paper we remove the conventional assumption of sources very far from the black hole, considering the distance of the source as an additional parameter in the lensing problem to be treated exactly. We find expressions for critical curves, caustics, and all lensing observables valid for any position of the source up to the horizon. After analyzing the spherically symmetric case we focus on the Kerr black hole, for which we present an analytical 3-dimensional description of the higher order caustic tubes.
Testing Einstein's weak equivalence principle with gravitational waves
NASA Astrophysics Data System (ADS)
Wu, Xue-Feng; Gao, He; Wei, Jun-Jie; Mészáros, Peter; Zhang, Bing; Dai, Zi-Gao; Zhang, Shuang-Nan; Zhu, Zong-Hong
2016-07-01
A conservative constraint on Einstein's weak equivalence principle (WEP) can be obtained under the assumption that the observed time delay between correlated particles from astronomical sources is dominated by the gravitational fields through which they move. Current limits on the WEP are mainly based on the observed time delays of photons with different energies. It is highly desirable to develop more accurate tests that include the gravitational wave (GW) sector. The detection by the advanced LIGO/VIRGO systems of gravitational waves will provide attractive candidates for constraining the WEP, extending the tests to gravitational interactions with potentially higher accuracy. Considering the capabilities of the advanced LIGO/VIRGO network and the source direction uncertainty, we show that the joint detection of GWs and electromagnetic signals could probe the WEP to an accuracy down to 10-10 , which is one order of magnitude tighter than previous limits, and 7 orders of magnitude tighter than the multimessenger (photons and neutrinos) results by supernova 1987A.
COMPARING DENSE GALAXY CLUSTER REDSHIFT SURVEYS WITH WEAK-LENSING MAPS
Hwang, Ho Seong; Geller, Margaret J.; Zahid, H. Jabran; Diaferio, Antonaldo; Rines, Kenneth J. E-mail: mgeller@cfa.harvard.edu E-mail: diaferio@ph.unito.it
2014-12-20
We use dense redshift surveys of nine galaxy clusters at z ∼ 0.2 to compare the galaxy distribution in each system with the projected matter distribution from weak lensing. By combining 2087 new MMT/Hectospec redshifts and the data in the literature, we construct spectroscopic samples within the region of weak-lensing maps of high (70%-89%) and uniform completeness. With these dense redshift surveys, we construct galaxy number density maps using several galaxy subsamples. The shape of the main cluster concentration in the weak-lensing maps is similar to the global morphology of the number density maps based on cluster members alone, mainly dominated by red members. We cross-correlate the galaxy number density maps with the weak-lensing maps. The cross-correlation signal when we include foreground and background galaxies at 0.5z {sub cl} < z < 2z {sub cl} is 10%-23% larger than for cluster members alone at the cluster virial radius. The excess can be as high as 30% depending on the cluster. Cross-correlating the galaxy number density and weak-lensing maps suggests that superimposed structures close to the cluster in redshift space contribute more significantly to the excess cross-correlation signal than unrelated large-scale structure along the line of sight. Interestingly, the weak-lensing mass profiles are not well constrained for the clusters with the largest cross-correlation signal excesses (>20% for A383, A689, and A750). The fractional excess in the cross-correlation signal including foreground and background structures could be a useful proxy for assessing the reliability of weak-lensing cluster mass estimates.
Gravitational force in weakly correlated particle spatial distributions.
Gabrielli, Andrea; Masucci, Adolfo Paolo; Labini, Francesco Sylos
2004-03-01
We study the statistics of the gravitational (Newtonian) force in a particular class of weakly correlated spatial distributions of pointlike and unitary mass particles generated by the so-called Gauss-Poisson point processes. In particular we extend to these distributions the analysis that Chandrasekhar introduced for purely Poisson processes. In this way we can find the explicit asymptotic behavior of the probability density function of the force for both large and small values of the field as a generalization of the Holtzmark statistics. In particular, we show how the modifications at large fields depend on the density correlations introduced at small scales. The validity of the introduced approximations is positively tested through a direct comparison with the analysis of the statistics of the gravitational force in numerical simulations of Gauss-Poisson processes.
NASA Astrophysics Data System (ADS)
Hoekstra, Henk; Herbonnet, Ricardo; Muzzin, Adam; Babul, Arif; Mahdavi, Andi; Viola, Massimo; Cacciato, Marcello
2015-05-01
Masses of clusters of galaxies from weak gravitational lensing analyses of ever larger samples are increasingly used as the reference to which baryonic scaling relations are compared. In this paper we revisit the analysis of a sample of 50 clusters studied as part of the Canadian Cluster Comparison Project. We examine the key sources of systematic error in cluster masses. We quantify the robustness of our shape measurements and calibrate our algorithm empirically using extensive image simulations. The source redshift distribution is revised using the latest state-of-the-art photometric redshift catalogues that include new deep near-infrared observations. None the less we find that the uncertainty in the determination of photometric redshifts is the largest source of systematic error for our mass estimates. We use our updated masses to determine b, the bias in the hydrostatic mass, for the clusters detected by Planck. Our results suggest 1 - b = 0.76 ± 0.05 (stat) ± 0.06 (syst), which does not resolve the tension with the measurements from the primary cosmic microwave background.
Mocking the weak lensing universe: The LensTools Python computing package
NASA Astrophysics Data System (ADS)
Petri, A.
2016-10-01
We present a newly developed software package which implements a wide range of routines frequently used in Weak Gravitational Lensing (WL). With the continuously increasing size of the WL scientific community we feel that easy to use Application Program Interfaces (APIs) for common calculations are a necessity to ensure efficiency and coordination across different working groups. Coupled with existing open source codes, such as CAMB (Lewis et al., 2000) and Gadget2 (Springel, 2005), LensTools brings together a cosmic shear simulation pipeline which, complemented with a variety of WL feature measurement tools and parameter sampling routines, provides easy access to the numerics for theoretical studies of WL as well as for experiment forecasts. Being implemented in PYTHON (Rossum, 1995), LensTools takes full advantage of a range of state-of-the art techniques developed by the large and growing open-source software community (Jones et al., 2001; McKinney, 2010; Astrophy Collaboration, 2013; Pedregosa et al., 2011; Foreman-Mackey et al., 2013). We made the LensTools code available on the Python Package Index and published its documentation on http://lenstools.readthedocs.io.
NASA Astrophysics Data System (ADS)
Petri, Andrea; May, Morgan; Haiman, Zoltán
2016-09-01
Weak gravitational lensing is becoming a mature technique for constraining cosmological parameters, and future surveys will be able to constrain the dark energy equation of state w . When analyzing galaxy surveys, redshift information has proven to be a valuable addition to angular shear correlations. We forecast parameter constraints on the triplet (Ωm,w ,σ8) for a LSST-like photometric galaxy survey, using tomography of the shear-shear power spectrum, convergence peak counts and higher convergence moments. We find that redshift tomography with the power spectrum reduces the area of the 1 σ confidence interval in (Ωm,w ) space by a factor of 8 with respect to the case of the single highest redshift bin. We also find that adding non-Gaussian information from the peak counts and higher-order moments of the convergence field and its spatial derivatives further reduces the constrained area in (Ωm,w ) by factors of 3 and 4, respectively. When we add cosmic microwave background parameter priors from Planck to our analysis, tomography improves power spectrum constraints by a factor of 3. Adding moments yields an improvement by an additional factor of 2, and adding both moments and peaks improves by almost a factor of 3 over power spectrum tomography alone. We evaluate the effect of uncorrected systematic photometric redshift errors on the parameter constraints. We find that different statistics lead to different bias directions in parameter space, suggesting the possibility of eliminating this bias via self-calibration.
Simulation of a Combined SZE and Weak Lensing Cluster Survey for Amiba Experiment
NASA Astrophysics Data System (ADS)
Umetsu, Keiichi; Chiueh, Tzihong; Lin, Kai-Yang; Wu, Jun-Mein; Tseng, Yao-Huan
We present simulations of interferometric Sunyaev-Zel'dovich effect (SZE) and optical weak lenisng observations for the forthcoming AMiBA experiment, aiming at searching for high-redshift clusters of galaxies. On the basis of simulated sky maps, we have derived theoretical halo number counts and redshift distributions of selected halo samples for an AMiBA SZE survey and a weak lensing follow-up survey. By utilizing the conditional number counts of weak lensing halos with the faint SZE detection, we show that a combined SZE and weak lensing survey can gain an additional fainter halo sample at a given false positive rate, which cannot be obtained from either survey alone.
Cross-correlating Sunyaev-Zel'dovich and weak lensing maps
NASA Astrophysics Data System (ADS)
Munshi, Dipak; Joudaki, Shahab; Coles, Peter; Smidt, Joseph; Kay, Scott T.
2014-07-01
We present novel statistical tools to cross-correlate frequency cleaned thermal Sunyaev-Zel'dovich (tSZ) maps and tomographic weak lensing (wl) convergence maps. Moving beyond the lowest order cross-correlation, we introduce a hierarchy of mixed higher order statistics, the cumulants and cumulant correlators, to analyse non-Gaussianity in real space, as well as corresponding polyspectra in the harmonic domain. Using these moments, we derive analytical expressions for the joint two-point probability distribution function for smoothed tSZ (y) and convergence (κ) maps. The presence of tomographic information allows us to study the evolution of higher order mixed tSZ-wl statistics with redshift. We express the joint PDFs pκy(κ, y) in terms of individual one-point PDFs [pκ(κ), py(y)] and the relevant bias functions [bκ(κ), by(y)]. Analytical results for two different regimes are presented that correspond to the small and large angular smoothing scales. Results are also obtained for corresponding hotspots in the tSZ and convergence maps. In addition to results based on hierarchical techniques and perturbative methods, we present results of calculations based on the lognormal approximation. The analytical expressions derived here are generic and applicable to cross-correlation studies of arbitrary tracers of large-scale structure including, e.g., that of tSZ and soft X-ray background. We provide detailed comparison of our analytical results against state of the art Millennium Gas Simulations with and without non-gravitational effects such as pre-heating and cooling. Comparison of these results with gravity only simulations, shows reasonable agreement and can be used to isolate effect of non-gravitational physics from observational data.
NASA Astrophysics Data System (ADS)
Harris, Edward G.
1991-05-01
Starting from the equations of general relativity, equations similar to those of electromagnetic theory are derived. It is assumed that the particles are slowly moving (v≪c), and the gravitational field is sufficiently weak that nonlinear terms in Einstein's field equations can be neglected. For static fields, the analogy to electrostatics and magnetostatics is very close. Results are compared with those of a previous derivation by Braginsky, Caves, and Thorne [Phys. Rev. D 15, 2047-2068 (1977)]. These results lead to very simple derivations of the Lense-Thirring precession [Phys. Z. 19, 156-163 (1918)] and the spin-curvature force of Papepetrou [Proc. R. Soc. London Ser. A 209, 248-258 (1951)] and Pirani [Acta Phys. Pol. 15, 389-405 (1956)].
THE EINSTEIN CROSS: CONSTRAINT ON DARK MATTER FROM STELLAR DYNAMICS AND GRAVITATIONAL LENSING
Van de Ven, Glenn; Falcon-Barroso, Jesus; Cappellari, Michele; Miller, Bryan W.; De Zeeuw, P. Tim
2010-08-20
We present two-dimensional line-of-sight stellar kinematics of the lens galaxy in the Einstein Cross, obtained with the GEMINI 8 m telescope, using the GMOS integral-field spectrograph. The stellar kinematics extend to a radius of 4'' (with 0.''2 spaxels), covering about two-thirds of the effective (or half-light) radius R{sub e} {approx_equal} 6'' of this early-type spiral galaxy at redshift z{sub l} {approx_equal} 0.04, of which the bulge is lensing a background quasar at redshift z{sub s} {approx_equal} 1.7. The velocity map shows regular rotation up to {approx}100 km s{sup -1} around the minor axis of the bulge, consistent with axisymmetry. The velocity dispersion map shows a weak gradient increasing toward a central (R < 1'') value of {sigma}{sub 0} = 170 {+-} 9 km s{sup -1}. We deproject the observed surface brightness from Hubble Space Telescope imaging to obtain a realistic luminosity density of the lens galaxy, which in turn is used to build axisymmetric dynamical models that fit the observed kinematic maps. We also construct a gravitational lens model that accurately fits the positions and relative fluxes of the four quasar images. We combine these independent constraints from stellar dynamics and gravitational lensing to study the total mass distribution in the inner parts of the lens galaxy. We find that the resulting luminous and total mass distribution are nearly identical around the Einstein radius R{sub E} = 0.''89, with a slope that is close to isothermal, but which becomes shallower toward the center if indeed mass follows light. The dynamical model fits to the observed kinematic maps result in a total mass-to-light ratio Y{sub dyn} = 3.7 {+-} 0.5 Y{sub sun,I} (in the I band). This is consistent with the Einstein mass M{sub E} = 1.54 x 10{sup 10} M {sub sun} divided by the (projected) luminosity within R{sub E} , which yields a total mass-to-light ratio of Y {sub E} = 3.4 Y{sub sun,I}, with an error of at most a few percent. We estimate from
Probing cosmology with weak lensing selected clusters. II. Dark energy and f(R) gravity models
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Hamana, Takashi; Yoshida, Naoki
2016-02-01
Ongoing and future wide-field galaxy surveys can be used to locate a number of clusters of galaxies with cosmic shear measurement alone. We study constraints on cosmological models using statistics of weak lensing selected galaxy clusters. We extend our previous theoretical framework to model the statistical properties of clusters in variants of cosmological models as well as in the standard ΛCDM model. Weak lensing selection of clusters does not rely on conventional assumptions such as the relation between luminosity and mass and/or hydrostatic equilibrium, but a number of observational effects compromise robust identification. We use a large set of realistic mock weak lensing catalogs as well as analytic models to perform a Fisher analysis and make a forecast for constraining two competing cosmological models, the wCDM model and f(R) model proposed by Hu and Sawicki (2007, Phys. Rev. D, 76, 064004), with our lensing statistics. We show that weak lensing selected clusters are excellent probes of cosmology when combined with cosmic shear power spectrum even in the presence of galaxy shape noise and masked regions. With the information from weak lensing selected clusters, the precision of cosmological parameter estimates can be improved by a factor of ˜1.6 and ˜8 for the wCDM model and f(R) model, respectively. The Hyper Suprime-Cam survey with sky coverage of 1250 degrees squared can constrain the equation of state of dark energy w0 with a level of Δw0 ˜ 0.1. It can also constrain the additional scalar degree of freedom in the f(R) model with a level of |fR0| ˜ 5 × 10-6, when constraints from cosmic microwave background measurements are incorporated. Future weak lensing surveys with sky coverage of 20000 degrees squared will place tighter constraints on w0 and |fR0| even without cosmic microwave background measurements.
CLASH: Weak-lensing shear-and-magnification analysis of 20 galaxy clusters
Umetsu, Keiichi; Czakon, Nicole; Medezinski, Elinor; Lemze, Doron; Ford, Holland; Nonino, Mario; Balestra, Italo; Biviano, Andrea; Merten, Julian; Postman, Marc; Koekemoer, Anton; Meneghetti, Massimo; Donahue, Megan; Molino, Alberto; Benítez, Narciso; Seitz, Stella; Gruen, Daniel; Broadhurst, Tom; Grillo, Claudio; Melchior, Peter; and others
2014-11-10
We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19 ≲ z ≲ 0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked-shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ≅ 25 in the radial range of 200-3500 kpc h {sup –1}, providing integrated constraints on the halo profile shape and concentration-mass relation. The stacked tangential-shear signal is well described by a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of c{sub 200c}=4.01{sub −0.32}{sup +0.35} at an effective halo mass of M{sub 200c}=1.34{sub −0.09}{sup +0.10}×10{sup 15} M{sub ⊙}. We show that this is in excellent agreement with Λ cold dark matter (ΛCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is α{sub E}=0.191{sub −0.068}{sup +0.071}, which is consistent with the NFW-equivalent Einasto parameter of ∼0.18. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data and measure cluster masses at several characteristic radii assuming an NFW density profile. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions, including the effects of surrounding large-scale structure as
Retro gravitational lensing for Sgr A* with Radiastron
NASA Astrophysics Data System (ADS)
Zakharov, A. F.; Nucita, A. A.; de Paolis, F.; Ingrosso, G.
2005-03-01
Recently Holz & Wheeler (2002) have considered a very attractive possibility to detect retro-MACHOs, i.e. retro-images of the Sun by a Schwarzschild black hole. We analyze the case of a Kerr black hole with an arbitrary spin for some selected positions of a distant observer with respect to the equatorial plane of a Kerr black hole. We discuss glories (mirages) formed near rapidly rotating Kerr black hole horizons and propose a procedure to measure masses and rotation parameters by analyzing these forms of mirages. In some sense, that is a manifestation of gravitational lens effect in the strong gravitational field near the black hole horizon and a generalization of the retro-gravitational lens phenomenon. We also propose to use future radio interferometer Radioastron facilities to measure shapes of mirages (glories) and to evaluate the black hole spin as a function of the position angle of a distant observer.
Probing cosmology with weak lensing selected clusters - I. Halo approach and all-sky simulations
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Hamana, Takashi; Yoshida, Naoki
2015-11-01
We explore a variety of statistics of clusters selected with cosmic shear measurement by utilizing both analytic models and large numerical simulations. We first develop a halo model to predict the abundance and the clustering of weak lensing selected clusters. Observational effects such as galaxy shape noise are included in our model. We then generate realistic mock weak lensing catalogues to test the accuracy of our analytic model. To this end, we perform full-sky ray-tracing simulations that allow us to have multiple realizations of a large continuous area. We model the masked regions on the sky using the actual positions of bright stars, and generate 200 mock weak lensing catalogues with sky coverage of ˜1000 deg2. We show that our theoretical model agrees well with the ensemble average of statistics and their covariances calculated directly from the mock catalogues. With a typical selection threshold, ignoring shape noise correction causes overestimation of the clustering of weak lensing selected clusters with a level of about 10 per cent, and shape noise correction boosts the cluster abundance by a factor of a few. We calculate the cross-covariances using the halo model with accounting for the effective reduction of the survey area due to masks. The covariance of the cosmic shear auto power spectrum is affected by the mode-coupling effect that originates from sky masking. Our model and the results can be readily used for cosmological analysis with ongoing and future weak lensing surveys.
Rozo, Eduardo; Wu, Hao-Yi; Schmidt, Fabian; /Caltech
2011-11-04
When extracting the weak lensing shear signal, one may employ either locally normalized or globally normalized shear estimators. The former is the standard approach when estimating cluster masses, while the latter is the more common method among peak finding efforts. While both approaches have identical signal-to-noise in the weak lensing limit, it is possible that higher order corrections or systematic considerations make one estimator preferable over the other. In this paper, we consider the efficacy of both estimators within the context of stacked weak lensing mass estimation in the Dark Energy Survey (DES). We find that the two estimators have nearly identical statistical precision, even after including higher order corrections, but that these corrections must be incorporated into the analysis to avoid observationally relevant biases in the recovered masses. We also demonstrate that finite bin-width effects may be significant if not properly accounted for, and that the two estimators exhibit different systematics, particularly with respect to contamination of the source catalog by foreground galaxies. Thus, the two estimators may be employed as a systematic cross-check of each other. Stacked weak lensing in the DES should allow for the mean mass of galaxy clusters to be calibrated to {approx}2% precision (statistical only), which can improve the figure of merit of the DES cluster abundance experiment by a factor of {approx}3 relative to the self-calibration expectation. A companion paper investigates how the two types of estimators considered here impact weak lensing peak finding efforts.
Multiplane gravitational lensing. II. Global geometry of caustics.
NASA Astrophysics Data System (ADS)
Petters, A. O.
1995-08-01
The global geometry of caustics due to a general multiplane gravitational lens system is investigated. Cusp-counting formulas and total curvatures are determined for individual caustics as well as whole caustic networks. The notion of light path obstruction points is fundamental in these studies. Lower bounds are found for such points and are used to get upper bounds for the total curvature. Curvature functions of caustics are also treated. All theorems obtained do not rely on the detailed nature of any specific potential assumed as a gravitational lens model, but on the overall differential-topological properties of general potentials.
Nemesis, Tyche, Planet Nine Hypotheses. I. Can We Detect the Bodies Using Gravitational Lensing?
NASA Astrophysics Data System (ADS)
Philippov, J. P.; Chobanu, M. I.
2016-08-01
In this paper, the hypothesis of the existence of a massive dark body (Nemesis, Tyche, Planet Nine, or any other trans-Plutonian planet) at the Solar system periphery is analysed. Basic physical properties and orbital characteristics of such massive bodies are considered. The problem of the definition of a scattering angle of a photon in the gravitational field of a spherical lens is studied. It is shown that, the required value of the scattering angle can be measured for the cases of Nemesis and Tyche. The formation of gravitational lensing images is studied here for a point mass event. It is demonstrated that in most cases of the close rapprochement of a source and the lens (for Nemesis and Tyche), it is possible to resolve two images. The possibility of resolving these images is one of the main arguments favouring the gravitational lensing method as its efficiency in searching for dark massive objects at the edge of the Solar System is higher than the one corresponding to other methods such as stellar occultation. For the cases of Planet Nine and any other trans-Plutonian planet, the strong gravitational lensing is impossible because at least one of the images is always eclipsed.
SDSSJ102111.02+491330.4: A Newly Discovered Gravitationally Lensed Quasar
Pindor, B; Eisenstein, D J; Gregg, M D; Becker, R H; Inada, N; Oguri, M; Hall, P B; Johnston, D E; Richards, G T; Schneider, D P; Turner, E L; Brasi, G; Hinz, P M; Kenworthy, M A; Miller, D; Barentine, J C; Brewington, H J; Brinkmann, J; Harvanek, M; Kleinman, S J; Krzesinski, J; Long, D; Neilsen Jr., E H; Newman, P R; Nitta, A; Snedden, S A; York, D G
2005-11-10
We report follow-up observations of two gravitational lens candidates identified in the Sloan Digital Sky Survey (SDSS) dataset. We have confirmed that SDSS J102111.02+491330.4 is a previously unknown gravitationally lensed quasar. This lens system exhibits two images of a z = 1.72 quasar, with an image separation of 1''.14 {+-} 0.04. Optical and near-IR imaging of the system reveals the presence of the lensing galaxy between the two quasar images. Observations of SDSS J112012.12+671116.0 indicate that it is more likely a binary quasar than a gravitational lens. This system has two quasars at a redshift of z = 1.49, with an angular separation of 1''.49 {+-} 0.02. However, the two quasars have markedly different SEDs and no lens galaxy is apparent in optical and near-IR images of this system. We also present a list of 31 SDSS lens candidates which follow-up observations have confirmed are not gravitational lenses.
SDSS J102111.02+491330.4: A Newly discovered gravitationally lensed quasar
Pindor, Bart; Eisenstein, Daniel J.; Gregg, Michael D.; Becker, Robert H.; Inada, Naohisa; Oguri, Masamune; Hall, Patrick B.; Johnston, David E.; Richards, Gordon T.; Schneider, Donald P.; Turner, Edwin L.; Brasi, Guido; Hinz, Philip M.; Kenworthy, Matthew A.; Miller, Doug; Barentine, J.C.; Brewington, Howard J.; Brinkmann, J.; Harvanek, Michael; Kleinman, S.J.; Krzesinski, Jurek; /Toronto U., Astron. Dept. /Arizona U., Astron. Dept. - Steward Observ. /UC, Davis /LLNL, Livermore /Tokyo U., Inst. Astron. /Tokyo U. /Princeton U. Observ. /York U., Canada /Penn State U., Astron. Astrophys. /Apache Point Observ. /Mt. Suhora Observ., Cracow /Fermilab /Chicago U., Astron. Astrophys. Ctr.
2005-09-01
We report follow-up observations of two gravitational lens candidates identified in the Sloan Digital Sky Survey (SDSS) dataset. We have confirmed that SDSS J102111.02+491330.4 is a previously unknown gravitationally lensed quasar. This lens system exhibits two images of a z = 1.72 quasar, with an image separation of 1.14'' {+-} 0.04''. Optical and near-IR imaging of the system reveals the presence of the lensing galaxy between the two quasar images. Observations of SDSS J112012.12+671116.0 indicate that it is more likely a binary quasar than a gravitational lens. This system has two quasars at a redshift of z = 1.49, with an angular separation of 1.49'' {+-} 0.02''. However, the two quasars have markedly different SEDs and no lens galaxy is apparent in optical and near-IR images of this system. We also present a list of 31 SDSS lens candidates which follow-up observations have confirmed are not gravitational lenses.
Equatorial gravitational lensing by accelerating and rotating black hole with NUT parameter
NASA Astrophysics Data System (ADS)
Sharif, M.; Iftikhar, Sehrish
2016-01-01
This paper is devoted to study equatorial gravitational lensing in accelerating and rotating black hole with a NUT parameter in the strong field limit. For this purpose, we first calculate null geodesic equation using the Hamilton-Jacobi separation method. We then numerically obtain deflection angle and deflection coefficients which depend on acceleration and spin parameter of the black hole. We also investigate observables in the strong field limit by taking the example of a black hole in the center of galaxy. It is concluded that acceleration parameter has a significant effect on the strong field lensing in the equatorial plane.
The Dust-to-Gas Ratio in the Damped Ly alpha Clouds Towards the Gravitationally Lensed QSO 0957+561
NASA Technical Reports Server (NTRS)
Zuo, Lin; Beaver, E. A.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Lyons, R. W.
1997-01-01
We present HST/FOS spectra of the two bright images (A and B) of the gravitationally lensed QSO 0957+561 in the wavelength range 2200-3300 A. We find that the absorption system (Z(sub abs)) = 1.3911) near z(sub em) is a weak, damped Ly alpha system with strong Ly alpha absorption lines seen in both images. However, the H(I) column densities are different, with the line of sight to image A intersecting a larger column density. The continuum shapes of the two spectra differ in the sense that the flux level of image A increases more slowly toward shorter wavelengths than that of image B. We explain this as the result of differential reddening by dust grains in the damped Ly alpha absorber. A direct outcome of this explanation is a determination of the dust-to-gas ratio, k, in the damped Ly alpha system. We derive k = 0.55 + 0.18 for a simple 1/lambda extinction law and k = 0.31 + 0.10 for the Galactic extinction curve. For gravitationally lensed systems with damped Ly alpha absorbers, our method is a powerful tool for determining the values and dispersion of k, and the shapes of extinction curves, especially in the FUV and EUV regions. We compare our results with previous work.
NASA Astrophysics Data System (ADS)
Hunt, L. R.; Pisano, D. J.; Edel, S.
2016-08-01
Neutral hydrogen (Hi) provides a very important fuel for star formation, but is difficult to detect at high redshift due to weak emission, limited sensitivity of modern instruments, and terrestrial radio frequency interference (RFI) at low frequencies. We report the first attempt to use gravitational lensing to detect Hi line emission from three gravitationally lensed galaxies behind the cluster Abell 773, two at redshifts of 0.398 and one at z = 0.487, using the Green Bank Telescope. We find that a 3σ upper limit for a galaxy with a rotation velocity of 200 km s‑1 is M H i = 6.58 × 109 and 1.5 × 1010 M ⊙ at z = 0.398 and z = 0.487. The estimated Hi masses of the sources at z = 0.398 and z = 0.487 are factors of 3.7 and ˜30 times lower than our detection limits at the respective redshifts. To facilitate these observations we have used sigma-clipping to remove both narrow- and wideband RFI but retain the signal from the source. We are able to reduce the noise of the spectrum by ˜25% using our routine instead of discarding observations with too much RFI. The routine is most effective when ˜10% of the integrations or fewer contain RFI. These techniques can be used to study Hi in highly magnified distant galaxies that are otherwise too faint to detect.
NASA Astrophysics Data System (ADS)
Hunt, L. R.; Pisano, D. J.; Edel, S.
2016-08-01
Neutral hydrogen (Hi) provides a very important fuel for star formation, but is difficult to detect at high redshift due to weak emission, limited sensitivity of modern instruments, and terrestrial radio frequency interference (RFI) at low frequencies. We report the first attempt to use gravitational lensing to detect Hi line emission from three gravitationally lensed galaxies behind the cluster Abell 773, two at redshifts of 0.398 and one at z = 0.487, using the Green Bank Telescope. We find that a 3σ upper limit for a galaxy with a rotation velocity of 200 km s-1 is M H i = 6.58 × 109 and 1.5 × 1010 M ⊙ at z = 0.398 and z = 0.487. The estimated Hi masses of the sources at z = 0.398 and z = 0.487 are factors of 3.7 and ˜30 times lower than our detection limits at the respective redshifts. To facilitate these observations we have used sigma-clipping to remove both narrow- and wideband RFI but retain the signal from the source. We are able to reduce the noise of the spectrum by ˜25% using our routine instead of discarding observations with too much RFI. The routine is most effective when ˜10% of the integrations or fewer contain RFI. These techniques can be used to study Hi in highly magnified distant galaxies that are otherwise too faint to detect.
NASA Astrophysics Data System (ADS)
Okura, Yuki; Petri, Andrea; May, Morgan; Plazas, Andrés A.; Tamagawa, Toru
2016-07-01
Weak gravitational lensing causes subtle changes in the apparent shapes of galaxies due to the bending of light by the gravity of foreground masses. By measuring the shapes of large numbers of galaxies (millions in recent surveys, up to tens of billions in future surveys) we can infer the parameters that determine cosmology. Imperfections in the detectors used to record images of the sky can introduce changes in the apparent shapes of galaxies, which in turn can bias the inferred cosmological parameters. In this paper we consider the effect of two widely discussed sensor imperfections: tree rings, due to impurity gradients that cause transverse electric fields in the charge-coupled devices (CCDs), and pixel size variation, due to periodic CCD fabrication errors. These imperfections can be observed when the detectors are subject to uniform illumination (flat-field images). We develop methods to determine the spurious shear and convergence (due to the imperfections) from the flat-field images. We calculate how the spurious shear when added to the lensing shear will bias the determination of cosmological parameters. We apply our methods to candidate sensors of the Large Synoptic Survey Telescope (LSST) as a timely and important example, analyzing flat-field images recorded with LSST prototype CCDs in the laboratory. We find that tree rings and periodic pixel size variation present in the LSST CCDs will introduce negligible bias to cosmological parameters determined from the lensing power spectrum, specifically w, {{{Ω }}}m, and {σ }8.
The Mass Of The Coma Cluster From Weak Lensing In The Sloan Digital Sky Survey
Kubo, Jeffrey M.; Stebbins, Albert; Annis, James; Dell'Antonio, Ian P.; Lin, Huan; Khiabanian, Hossein; Frieman, Joshua A.
2007-09-01
We present a weak lensing analysis of the Coma Cluster using the Sloan Digital Sky Survey (SDSS) Data Release Five. Complete imaging of a {approx} 200 square degree region is used to measure the tangential shear of this cluster. The shear is fit to an NFW model and we find a virial radius of r{sub 200} = 1.99{sup +0.21}{sub -0.22}h{sup -1}Mpc which corresponds to a virial mass of M{sub 200} = 1.88{sup +0.65}{sub -0.56} x 10{sup 15}h{sup -1}M{circle_dot}. We additionally compare our weak lensing measurement to the virial mass derived using dynamical techniques, and find they are in agreement. This is the lowest redshift, largest angle weak lensing measurement of an individual cluster to date.
TESTING WEAK-LENSING MAPS WITH REDSHIFT SURVEYS: A SUBARU FIELD
Kurtz, Michael J.; Geller, Margaret J.; Fabricant, Daniel G.; Utsumi, Yousuke; Miyazaki, Satoshi; Dell'Antonio, Ian P. E-mail: mgeller@cfa.harvard.edu E-mail: yousuke.utsumi@nao.ac.jp E-mail: ian@het.brown.edu
2012-05-10
We use a dense redshift survey in the foreground of the Subaru GTO2deg{sup 2} weak-lensing field (centered at {alpha}{sub 2000} = 16{sup h}04{sup m}44{sup s}; {delta}{sub 2000} = 43 Degree-Sign 11'24'') to assess the completeness and comment on the purity of massive halo identification in the weak-lensing map. The redshift survey (published here) includes 4541 galaxies; 4405 are new redshifts measured with the Hectospec on the MMT. Among the weak-lensing peaks with a signal-to-noise greater than 4.25, 2/3 correspond to individual massive systems; this result is essentially identical to the Geller et al. test of the Deep Lens Survey (DLS) field F2. The Subaru map, based on images in substantially better seeing than the DLS, enables detection of less massive halos at fixed redshift as expected. We demonstrate that the procedure adopted by Miyazaki et al. for removing some contaminated peaks from the weak-lensing map improves agreement between the lensing map and the redshift survey in the identification of candidate massive systems.
Analysis of gravitational effects on liquid lenses (ANGEL)
NASA Astrophysics Data System (ADS)
Newman, Kevin; Stephens, Kyle
2012-09-01
Liquid lenses have been developed as a means for fast and reliable variable-focus optics by using an adjustable curvature in a liquid-liquid interface. The use of liquid lenses also provides the benefit of reducing the number of elements in a system, and providing a degree of freedom without any moving parts. Different methods for surface curvature actuation have been developed, including aperture adjustment, mechanical actuators, stimuli-responsive hydrogels, and mechanical-wetting. Current liquid lens designs are limited to small apertures (less than 4mm) and density-matching fluids to lessen the negative effects of gravity. By creating a lens intended for use in a microgravity environment, the aperture size can be increased by orders of magnitude, and optimal fluids can be used regardless of their density. Using a large-aperture (12mm) liquid lens, image and surface metrology was conducted using a fixed-focus configuration. The Software Configurable Optical Test System (SCOTS) method was utilized to test the effect of microgravity, standard gravity, and hypergravity on the liquid lens during parabolic flights. Under standard gravity, the RMS wavefront error (WFE) was 27 wavelengths, while microgravity conditions allowed an improvement to 17 wavelengths RMS WFE. Test performance can be improved by using lower viscosity fluids or longer duration microgravity flights. The experiment also served as an engineering demonstration for the SCOTS method in an environment where other methods of optical metrology would be impossible.
Source-position transformation: an approximate invariance in strong gravitational lensing
NASA Astrophysics Data System (ADS)
Schneider, Peter; Sluse, Dominique
2014-04-01
The main obstacle that gravitational lensing has in determining accurate masses of deflectors, or in determining precise estimates for the Hubble constant, is the degeneracy of lensing observables with respect to the mass-sheet transformation (MST). The MST is a global modification of the mass distribution which leaves all image positions, shapes, and flux ratios invariant, but which changes the time delay. Here we show that another global transformation of lensing mass distributions exists which leaves image positions and flux ratios almost invariant, and of which the MST is a special case. As is the case for the MST, this new transformation only applies if one considers only those source components that are at the same distance from us. Whereas for axi-symmetric lenses this source position transformation exactly reproduces all strong lensing observables, it does so only approximately for more general lens situations. We provide crude estimates for the accuracy with which the transformed mass distribution can reproduce the same image positions as the original lens model, and present an illustrative example of its performance. This new invariance transformation is most likely the reason why the same strong lensing information can be accounted for with rather different mass models.
Detecting Gravitational Lensing of the Cosmic Microwave Background by Galaxy Clusters
Baxter, Eric Jones
2014-08-01
Clusters of galaxies gravitationally lens the Cosmic Microwave Background (CMB) leading to a distinct signal in the CMB on arcminute scales. Measurement of the cluster lensing effect offers the exciting possibility of constraining the masses of galaxy clusters using CMB data alone. Improved constraints on cluster masses are in turn essential to the use of clusters as cosmological probes: uncertainties in cluster masses are currently the dominant systematic affecting cluster abundance constraints on cosmology. To date, however, the CMB cluster lensing signal remains undetected because of its small magnitude and angular size. In this thesis, we develop a maximum likelihood approach to extracting the signal from CMB temperature data. We validate the technique by applying it to mock data designed to replicate as closely as possible real data from the South Pole Telescope’s (SPT) Sunyaev-Zel’dovich (SZ) survey: the effects of the SPT beam, transfer function, instrumental noise and cluster selection are incorporated. We consider the effects of foreground emission on the analysis and show that uncertainty in amount of foreground lensing results in a small systematic error on the lensing constraints. Additionally, we show that if unaccounted for, the SZ effect leads to unacceptably large biases on the lensing constraints and develop an approach for removing SZ contamination. The results of the mock analysis presented here suggest that a 4σ first detection of the cluster lensing effect can be achieved with current SPT-SZ data.
Shadows (Mirages) Around Black Holes and Retro Gravitational Lensing
NASA Astrophysics Data System (ADS)
Zakharov, A. F.; Nucita, A. A.; Depaolis, F.; Ingrosso, G.
Recently Holz & Wheeler [1] considered a very attracting possibility to detect retro-MACHOs, i.e. retro-images of the Sun by a Schwarzschild black hole. In this paper we discuss glories (mirages) formed near rapidly rotating Kerr black hole horizons and propose a procedure to measure masses and rotation parameters analyzing these forms of mirages (a detailed description of the problem is given in [2]). In some sense that is a manifestation of gravitational lens effect in the strong gravitational field near black hole horizon and a generalization of the retro-gravitational lens phenomenon. We analyze the case of a Kerr black hole rotating at arbitrary speed for some selected positions of a distant observer with respect to the equatorial plane of a Kerr black hole. Some time ago Falcke, Melia & Agol [3] suggested to search shadows at the Galactic Center. In this paper we present the boundaries for shadows calculated numerically. We also propose to use future radio interferometer RADIOASTRON facilities to measure shapes of mirages (glories) and to evaluate the black hole spin as a function of the position angle of a distant observer.
A 7 deg2 survey for galaxy-scale gravitational lenses with the HST imaging archive
NASA Astrophysics Data System (ADS)
Pawase, R. S.; Courbin, F.; Faure, C.; Kokotanekova, R.; Meylan, G.
2014-04-01
We present the results of a visual search for galaxy-scale gravitational lenses in ˜7 deg2 of Hubble Space Telescope (HST) images. The data set comprises the whole imaging data ever taken with the Advanced Camera for Surveys (ACS) in the filter F814W (I-band) up to 2011 August 31, i.e. 6.03 deg2 excluding the field of the Cosmic Evolution Survey which has been the subject of a separate visual search. In addition, we have searched for lenses in the whole Wide Field Camera 3 (WFC3) near-IR imaging data set in all filters (1.01 deg2) up to the same date. Our primary goal is to provide a sample of lenses with a broad range of different morphologies and lens-source brightness contrast in order to estimate a lower limit to the number of galaxy-scale strong lenses in the future Euclid survey in its VIS band. Our criteria to select lenses are purely morphological as we do not use any colour or redshift information. The final candidate selection is very conservative hence leading to a nearly pure but incomplete sample. We find 49 new lens candidates: 40 in the ACS images and 9 in the WFC3 images. Out of these, 16 candidates are secure lenses owing to their striking morphology, 21 more are very good candidates and 12 more have morphologies compatible with gravitational lensing but also compatible with other astrophysical objects such as ring and chain galaxies or mergers. Interestingly, some lens galaxies include low surface brightness galaxies, compact groups and mergers. The imaging data set is heterogeneous in depth and spans a broad range of galactic latitudes. It is therefore insensitive to cosmic variance and allows us to estimate the number of galaxy-scale strong lenses on the sky for a putative survey depth, which is the main result of this work. Because of the incompleteness of the sample, the estimated lensing rates should be taken as lower limits. Using these, we anticipate that a 15 000 deg2 space survey such as Euclid will find at least 60 000 galaxy
NASA Astrophysics Data System (ADS)
Sato, Masanori; Nishimichi, Takahiro
2013-06-01
We study how well the Gaussian approximation is valid for computing the covariance matrices of the convergence power and bispectrum in weak gravitational lensing analyses. We focus on its impact on the cosmological parameter estimations by comparing the results with and without non-Gaussian error contribution in the covariance matrix. We numerically derive the covariance matrix as well as the cosmology dependence of the spectra from a large set of N-body simulations performed for various cosmologies and carry out Fisher matrix forecasts for tomographic weak lensing surveys with three source redshifts. After showing the consistency of the power and bispectra measured from our simulations with the state-of-the-art fitting formulas, we investigate the covariance matrix assuming a typical ongoing survey across 1500deg2 with the mean source number density of 30arcmin-2 at the mean redshift zs=1.0. Although the shape noise contributes a significant fraction to the total error budget and it mitigates the impact of the non-Gaussian error for this source number density, we find that the non-Gaussian error degrades the cumulative signal-to-noise ratio up to the maximum multipole of 2000 by a factor of about 2 (3) in the power (bi-) spectrum analysis. Its impact on the final cosmological parameter forecast with 6 parameters can be as large as 15% in the size of the one-dimensional statistical error. This can be a problem in future wide and deep weak lensing surveys for precision cosmology. We also show how much the dark energy figure of merit is affected by the non-Gaussian error contribution and demonstrate an optimal survey design with a fixed observational time.
Cosmological constraints from strong gravitational lensing in clusters of galaxies.
Jullo, Eric; Natarajan, Priyamvada; Kneib, Jean-Paul; D'Aloisio, Anson; Limousin, Marceau; Richard, Johan; Schimd, Carlo
2010-08-20
Current efforts in observational cosmology are focused on characterizing the mass-energy content of the universe. We present results from a geometric test based on strong lensing in galaxy clusters. Based on Hubble Space Telescope images and extensive ground-based spectroscopic follow-up of the massive galaxy cluster Abell 1689, we used a parametric model to simultaneously constrain the cluster mass distribution and dark energy equation of state. Combining our cosmological constraints with those from x-ray clusters and the Wilkinson Microwave Anisotropy Probe 5-year data gives Omega(m) = 0.25 +/- 0.05 and w(x) = -0.97 +/- 0.07, which are consistent with results from other methods. Inclusion of our method with all other available techniques brings down the current 2sigma contours on the dark energy equation-of-state parameter w(x) by approximately 30%.
Cosmological constraints from strong gravitational lensing in clusters of galaxies.
Jullo, Eric; Natarajan, Priyamvada; Kneib, Jean-Paul; D'Aloisio, Anson; Limousin, Marceau; Richard, Johan; Schimd, Carlo
2010-08-20
Current efforts in observational cosmology are focused on characterizing the mass-energy content of the universe. We present results from a geometric test based on strong lensing in galaxy clusters. Based on Hubble Space Telescope images and extensive ground-based spectroscopic follow-up of the massive galaxy cluster Abell 1689, we used a parametric model to simultaneously constrain the cluster mass distribution and dark energy equation of state. Combining our cosmological constraints with those from x-ray clusters and the Wilkinson Microwave Anisotropy Probe 5-year data gives Omega(m) = 0.25 +/- 0.05 and w(x) = -0.97 +/- 0.07, which are consistent with results from other methods. Inclusion of our method with all other available techniques brings down the current 2sigma contours on the dark energy equation-of-state parameter w(x) by approximately 30%. PMID:20724628
NASA Astrophysics Data System (ADS)
Chen, Yun; Geng, Chao-Qiang; Cao, Shuo; Huang, Yu-Mei; Zhu, Zong-Hong
2015-02-01
We constrain the scalar field dark energy model with an inverse power-law potential, i.e., V(phi) propto phi-α (α > 0), from a set of recent cosmological observations by compiling an updated sample of Hubble parameter measurements including 30 independent data points. Our results show that the constraining power of the updated sample of H(z) data with the HST prior on H0 is stronger than those of the SCP Union2 and Union2.1 compilations. A recent sample of strong gravitational lensing systems is also adopted to confine the model even though the results are not significant. A joint analysis of the strong gravitational lensing data with the more restrictive updated Hubble parameter measurements and the Type Ia supernovae data from SCP Union2 indicates that the recent observations still can not distinguish whether dark energy is a time-independent cosmological constant or a time-varying dynamical component.
The SDSS-III BOSS quasar lens survey: discovery of 13 gravitationally lensed quasars
NASA Astrophysics Data System (ADS)
More, Anupreeta; Oguri, Masamune; Kayo, Issha; Zinn, Joel; Strauss, Michael A.; Santiago, Basilio X.; Mosquera, Ana M.; Inada, Naohisa; Kochanek, Christopher S.; Rusu, Cristian E.; Brownstein, Joel R.; da Costa, Luiz N.; Kneib, Jean-Paul; Maia, Marcio A. G.; Quimby, Robert M.; Schneider, Donald P.; Streblyanska, Alina; York, Donald G.
2016-02-01
We report the discovery of 13 confirmed two-image quasar lenses from a systematic search for gravitationally lensed quasars in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). We adopted a methodology similar to that used in the SDSS Quasar Lens Search (SQLS). In addition to the confirmed lenses, we report 11 quasar pairs with small angular separations ( ≲ 2 arcsec) confirmed from our spectroscopy, which are either projected pairs, physical binaries, or possibly quasar lens systems whose lens galaxies have not yet been detected. The newly discovered quasar lens system, SDSS J1452+4224 at zs ≈ 4.8 is one of the highest redshift multiply imaged quasars found to date. Furthermore, we have over 50 good lens candidates yet to be followed up. Owing to the heterogeneous selection of BOSS quasars, the lens sample presented here does not have a well-defined selection function.
Gravitational lensing by a massive black hole at the Galactic center
NASA Technical Reports Server (NTRS)
Wardle, Mark; Yusef-Zadeh, Farhad
1992-01-01
The manifestations of gravitational lensing by a massive black hole at the Galactic center, with particular attention given to lensing of stars in the stellar cluster that lie behind Sgr A*, and of Sgr A east, a nonthermal extended radio source which is known with certainty to lie behind the Galactic center. Lensing of the stellar cluster produces a deficit of stellar images within 10 mas of the center, and a surplus between 30 and 300 mas. The results suggest that the proper motion of the stars will produce brightness variations of stellar images on a time scale of a few years or less. Both images of such a source should be visible, and will rise and fall in luminosity together.
NASA Astrophysics Data System (ADS)
Coe, Daniel Aaron
The goal of thesis is to help scientists resolve one of the great mysteries of our time: the nature of Dark Matter. Dark Matter is currently believed to make up over 80% of the material in our universe, yet we have so far inferred but a few of its basic properties. Here we study the Dark Matter surrounding a galaxy cluster, Abell 1689, via the most direct method currently available--gravitational lensing. Abell 1689 is a "strong" gravitational lens, meaning it produces multiple images of more distant galaxies. The observed positions of these images can be measured very precisely and act as a blueprint allowing us to reconstruct the Dark Matter distribution of the lens. Until now, such mass models of Abell 1689 have reproduced the observed multiple images well but with significant positional offsets. Using a new method we develop here, we obtain a new mass model which perfectly reproduces the observed positions of 168 knots identified within 135 multiple images of 42 galaxies. An important ingredient to our mass model is the accurate measurement of distances to the lensed galaxies via their photometric redshifts. Here we develop tools which improve the accuracy of these measurements based on our study of the Hubble Ultra Deep Field, the only image yet taken to comparable depth as the magnified regions of Abell 1689. We present results both for objects in the Hubble Ultra Deep Field and for galaxies gravitationally lensed by Abell 1689. As part of this thesis, we also provide reviews of Dark Matter and Gravitational Lensing, including a chapter devoted to the mass profiles of Dark Matter halos realized in simulations. The original work presented here was performed primarily by myself under the guidance of Narciso Benítez and Holland Ford as a member of the Advanced Camera for Surveys GTO Science Team at Johns Hopkins University and the Instituto de Astrofisica de Andalucfa. My advisors served on my thesis committee along with Rick White, Gabor Domokos, and Steve
X-ray and Weak Lensing Masses for a Sample of 50 Relaxed and Non-Relaxed Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Mahdavi, Andisheh; Hoekstra, Henk; Babul, Arif
2014-08-01
We present an updated, recalibrated, multiwavelength, X-ray + weak lensing measurement of the mass profiles for 50 rich systems of galaxies. We find that our weak gravitational lensing masses, calibrated with state-of-the-art shear testing simulations, are 18% +/- 4% higher than those found for the clusters in the Planck satellite sample. Using the Joint Analysis of Cluster Observations codebase, we simultaneously model the baryonic and nonbaryonic matter profiles in these systems, deriving joint constraints on the gas entropy, pressure, metallicity, and dark matter distributions. Simultaneous analysis of Chandra and XMM-Newton data where both are available allows us to constrain these profiles over nearly two decades in radius. We find clusters with low BCG-to-X-ray center offsets form a remarkably regular sample, with NFW dark matter profiles and gas fraction values that are consistent with the cosmological value. Clusters with low central gas entropy exhibit a similar trend, and do so with an intrinsic scatter that is consistent with zero. Non-relaxed clusters, on the other hand---those with offset BCGs and high central entropies---exhibit significant scatter and have mass profiles inconsistent with the NFW value (most likely due to strong violations of spherical symmetry).
Bradac, Marusa; Clowe, Douglas; Gonzalez, Anthony H.; Marshall, Phil; Forman, William; Jones, Christine; Markevitch, Maxim; Randall, Scott; Schrabback, Tim; Zaritsky, Dennis; /KIPAC, Menlo Park /Bonn, Inst. Astrophys. /Arizona U., Astron. Dept. - Steward Observ. /Florida U. /Harvard-Smithsonian Ctr. Astrophys.
2006-09-27
The galaxy cluster 1E0657-56 (z = 0.296) is remarkably well-suited for addressing outstanding issues in both galaxy evolution and fundamental physics. We present a reconstruction of the mass distribution from both strong and weak gravitational lensing data. Multi-color, high-resolution HST ACS images allow detection of many more arc candidates than were previously known, especially around the subcluster. Using the known redshift of one of the multiply imaged systems, we determine the remaining source redshifts using the predictive power of the strong lens model. Combining this information with shape measurements of ''weakly'' lensed sources, we derive a high-resolution, absolutely-calibrated mass map, using no assumptions regarding the physical properties of the underlying cluster potential. This map provides the best available quantification of the total mass of the central part of the cluster. We also confirm the result from Clowe et al. (2004, 2006a) that the total mass does not trace the baryonic mass.
Caustics of 1/rn binary gravitational lenses: from galactic haloes to exotic matter
NASA Astrophysics Data System (ADS)
Bozza, V.; Melchiorre, C.
2016-03-01
We investigate the caustic topologies for binary gravitational lenses made up of two objects whose gravitational potential declines as 1/rn. With n<1 this corresponds to power-law dust distributions like the singular isothermal sphere. The n>1 regime can be obtained with some violations of the energy conditions, one famous example being the Ellis wormhole. Gravitational lensing provides a natural arena to distinguish and identify such exotic objects in our Universe. We find that there are still three topologies for caustics as in the standard Schwarzschild binary lens, with the main novelty coming from the secondary caustics of the close topology, which become huge at higher n. After drawing caustics by numerical methods, we derive a large amount of analytical formulae in all limits that are useful to provide deeper insight in the mathematics of the problem. Our study is useful to better understand the phenomenology of galaxy lensing in clusters as well as the distinct signatures of exotic matter in complex systems.
Jee, M. J.; Lubin, L.; Stanford, S. A.; Dawson, K. S.; Harris, D. W.; Hoekstra, H.; Perlmutter, S.; Suzuki, N.; Meyers, J.; Barbary, K.; Rosati, P.; Brodwin, M.; Koester, B.; Gladders, M. D.; Postman, M.; Barrientos, F.; Eisenhardt, P.; Ford, H. C.; Gilbank, D. G.; Gonzalez, A.
2011-08-20
We present weak gravitational lensing analysis of 22 high-redshift (z {approx}> 1) clusters based on Hubble Space Telescope images. Most clusters in our sample provide significant lensing signals and are well detected in their reconstructed two-dimensional mass maps. Combining the current results and our previous weak-lensing studies of five other high-z clusters, we compare gravitational lensing masses of these clusters with other observables. We revisit the question whether the presence of the most massive clusters in our sample is in tension with the current {Lambda}CDM structure formation paradigm. We find that the lensing masses are tightly correlated with the gas temperatures and establish, for the first time, the lensing mass-temperature relation at z {approx}> 1. For the power-law slope of the M-T{sub X} relation (M{proportional_to}T{sup {alpha}}), we obtain {alpha} = 1.54 {+-} 0.23. This is consistent with the theoretical self-similar prediction {alpha} = 3/2 and with the results previously reported in the literature for much lower redshift samples. However, our normalization is lower than the previous results by 20%-30%, indicating that the normalization in the M-T{sub X} relation might evolve. After correcting for Eddington bias and updating the discovery area with a more conservative choice, we find that the existence of the most massive clusters in our sample still provides a tension with the current {Lambda}CDM model. The combined probability of finding the four most massive clusters in this sample after the marginalization over cosmological parameters is less than 1%.
Complementarity of weak lensing and peculiar velocity measurements in testing general relativity
Song, Yong-Seon; Zhao Gongbo; Bacon, David; Koyama, Kazuya; Nichol, Robert C.; Pogosian, Levon
2011-10-15
We explore the complementarity of weak lensing and galaxy peculiar velocity measurements to better constrain modifications to General Relativity. We find no evidence for deviations from General Relativity on cosmological scales from a combination of peculiar velocity measurements (for Luminous Red Galaxies in the Sloan Digital Sky Survey) with weak lensing measurements (from the Canadian France Hawaii Telescope Legacy Survey). We provide a Fisher error forecast for a Euclid-like space-based survey including both lensing and peculiar velocity measurements and show that the expected constraints on modified gravity will be at least an order of magnitude better than with present data, i.e. we will obtain {approx_equal}5% errors on the modified gravity parametrization described here. We also present a model-independent method for constraining modified gravity parameters using tomographic peculiar velocity information, and apply this methodology to the present data set.
Gravitational failure of sea cliffs in weakly lithified sediment
Hampton, M.A.
2002-01-01
Gravitational failure of sea cliffs eroded into weakly lithified sediment at several sites in California involves episodic stress-release fracturing and cantilevered block falls. The principal variables that influence the gravitational stability are tensional stresses generated during the release of horizontal confining stress and weakening of the sediment with increased saturation levels. Individual failures typically comprise less than a cubic meter of sediment, but large areas of a cliff face can be affected by sustained instability over a period of several days. Typically, only the outer meter or so of sediment is removed during a failure episode. In-place sediment saturation levels vary over time and space, generally being higher during the rainy season but moderate to high year-round. Laboratory direct-shear tests show that sediment cohesion decreases abruptly with increasing saturation level; the decrease is similar for all tested sediment if the cohesion is normalized by the maximum, dry-sediment cohesion. Large failures that extend over most or all of the height of the sea cliff are uncommon, but a few large wedge-shaped failures sometimes occur, as does separation of large blocks at sea cliff-gully intersections.
Algorithms and Programs for Strong Gravitational Lensing In Kerr Space-time Including Polarization
NASA Astrophysics Data System (ADS)
Chen, Bin; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie; Maddumage, Prasad
2015-05-01
Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.
ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION
Chen, Bin; Maddumage, Prasad; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie
2015-05-15
Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.
Gravitational lensing effects of vacuum strings - Exact solutions
NASA Technical Reports Server (NTRS)
Gott, J. R., III
1985-01-01
Exact interior and exterior solutions to Einstein's field equations are derived for vacuum strings. The exterior solution for a uniform density vacuum string corresponds to a conical space while the interior solution is that of a spherical cap. For Mu equals 0-1/4 the external metric is ds-squared = -dt-squared + dr-squared + (1-4 Mu)-squared r-squared dphi-squared + dz-squared, where Mu is the mass per unit length in the string in Planck masses per Planck length. A maximum mass per unit length for a string is 6.73 x 10 to the 27th g/cm. It is shown that strings cause temperature fluctuations in the cosmic microwave background and produce equal brightness double QSO images separated by up to several minutes of arc. Formulae for lensing probabilities, image splittings, and time delays are derived for strings in a realistic cosmological setting. String searches using ST, the VLA, and the COBE satellite are discussed.
Zeldovich and the Missing Baryons, Results from Gravitational Lensing
NASA Astrophysics Data System (ADS)
Schild, Rudolph E.
2016-10-01
Central to Zeldovich's attempts to understand the origin of cosmological structure was his exploration of the fluid dynamical effects in the primordial gas, and how the baryonic dark matter formed. Unfortunately microlensing searches for condensed objects in the foreground of the Magellanic Clouds were flawed by the assumption that the objects would be uniformly (Gaussian) distributed, and because the cadence of daily observations strongly disfavored detection of planet mass microlenses. But quasar microlensing showed them to exist at planetary mass at the same time that a hydro-gravitational theory predicted the planet-mass population as fossils of turbulence at the time of recombination (z = 1100; Gibson 1996, 2001). Where the population has now been detected from MACHO searches to the LMC (Sumi et al. 2011) we compare the quasar microlensing results to the recent determination of the mass distribution function measured for the planetary mass function, and show that the population can account for the baryonic dark matter.
SDSS J133401.39+331534.3: A NEW SUBARCSECOND GRAVITATIONALLY LENSED QUASAR
Rusu, Cristian E.; Iye, Masanori; Oguri, Masamune; Inada, Naohisa; Kayo, Issha; Hayano, Yutaka; Oya, Shin; Hattori, Masayuki; Saito, Yoshihiko; Ito, Meguru; Minowa, Yosuke; Pyo, Tae-Soo; Terada, Hiroshi; Takami, Hideki; Watanabe, Makoto
2011-09-01
The quasar SDSS J133401.39+331534.3 at z = 2.426 is found to be a two-image gravitationally lensed quasar with an image separation of 0.''833. The object is first identified as a lensed quasar candidate in the Sloan Digital Sky Survey Quasar Lens Search, and then confirmed as a lensed system from follow-up observations at the Subaru and University of Hawaii 2.2 m telescopes. We estimate the redshift of the lensing galaxy to be 0.557 based on absorption lines in the quasar spectra as well as the color of the galaxy. In particular, we observe the system with the Subaru Telescope AO188 adaptive optics with a laser guide star, in order to derive accurate astrometry, which well demonstrates the usefulness of the laser guide star adaptive optics imaging for studying strong lens systems. Our mass modeling with improved astrometry implies that a nearby bright galaxy {approx}4'' apart from the lensing galaxy is likely to affect the lens potential.
Combining weak lensing tomography with halo clustering to probe dark energy
NASA Astrophysics Data System (ADS)
Shapiro, Charles; Dodelson, Scott
2007-10-01
Two methods of constraining the properties of dark energy are weak lensing tomography and cluster counting. Uncertainties in mass calibration of clusters can be reduced by using the properties of halo clustering (the clustering of clusters). However, within a single survey, weak lensing and halo clustering probe the same density fluctuations. We explore the question of whether this information can be used twice—once in weak lensing and then again in halo clustering to calibrate cluster masses—or whether the combined dark energy constraints are weaker than the sum of the individual constraints. For a survey like the Dark Energy Survey (DES), we find that the cosmic shearing of source galaxies at high redshifts is indeed highly correlated with halo clustering at lower redshifts. Surprisingly, this correlation does not degrade cosmological constraints for a DES-like survey, and in fact, constraints are marginally improved since the correlations themselves act as additional observables. This considerably simplifies the analysis for a DES-like survey: when weak lensing and halo clustering are treated as independent experiments, the combined dark energy constraints (cluster counts included) are accurate if not slightly conservative. Our findings mirror those of Takada and Bridle, who investigated correlations between the cosmic shear and cluster counts.
Bandara, Kaushala; Crampton, David; Peng, Chien; Simard, Luc
2013-11-01
We take advantage of the magnification in size and flux of a galaxy provided by gravitational lensing to analyze the properties of 62 strongly lensed galaxies from the Sloan Lens ACS (SLACS) Survey. The sample of lensed galaxies spans a redshift range of 0.20 ≤ z ≤ 1.20 with a median redshift of z = 0.61. We use the lens modeling code LENSFIT to derive the luminosities, sizes, and Sérsic indices of the lensed galaxies. The measured properties of the lensed galaxies show a primarily compact, {sup d}isk{sup -}like population with the peaks of the size and Sérsic index distributions corresponding to ∼1.50 kpc and n ∼ 1, respectively. Comparison of the SLACS galaxies to a non-lensing, broadband imaging survey shows that a lensing survey allows us to probe a galaxy population that reaches ∼2 mag fainter. Our analysis allows us to compare the (z) = 0.61 disk galaxy sample (n ≤ 2.5) to an unprecedented local galaxy sample of ∼670, 000 SDSS galaxies at z ∼ 0.1; this analysis indicates that the evolution of the luminosity-size relation since z ∼ 1 may not be fully explained by a pure-size or pure-luminosity evolution but may instead require a combination of both. Our observations are also in agreement with recent numerical simulations of disk galaxies that show evidence of a mass-dependent evolution since z ∼ 1, where high-mass disk galaxies (M{sub *} > 10{sup 9} M{sub ☉}) evolve more in size and low-mass disk galaxies (M{sub *} ≤ 10{sup 9} M{sub ☉}) evolve more in luminosity.
Confirmation of general relativity on large scales from weak lensing and galaxy velocities.
Reyes, Reinabelle; Mandelbaum, Rachel; Seljak, Uros; Baldauf, Tobias; Gunn, James E; Lombriser, Lucas; Smith, Robert E
2010-03-11
Although general relativity underlies modern cosmology, its applicability on cosmological length scales has yet to be stringently tested. Such a test has recently been proposed, using a quantity, E(G), that combines measures of large-scale gravitational lensing, galaxy clustering and structure growth rate. The combination is insensitive to 'galaxy bias' (the difference between the clustering of visible galaxies and invisible dark matter) and is thus robust to the uncertainty in this parameter. Modified theories of gravity generally predict values of E(G) different from the general relativistic prediction because, in these theories, the 'gravitational slip' (the difference between the two potentials that describe perturbations in the gravitational metric) is non-zero, which leads to changes in the growth of structure and the strength of the gravitational lensing effect. Here we report that E(G) = 0.39 +/- 0.06 on length scales of tens of megaparsecs, in agreement with the general relativistic prediction of E(G) approximately 0.4. The measured value excludes a model within the tensor-vector-scalar gravity theory, which modifies both Newtonian and Einstein gravity. However, the relatively large uncertainty still permits models within f(R) theory, which is an extension of general relativity. A fivefold decrease in uncertainty is needed to rule out these models.
Weak lensing by intergalactic ministructures in quadruple lens systems: simulation and detection
NASA Astrophysics Data System (ADS)
Takahashi, Ryuichi; Inoue, Kaiki Taro
2014-05-01
We investigate the weak lensing effects of line-of-sight structures on quadruple images in quasar-galaxy strong lens systems based on N-body and ray-tracing simulations that can resolve haloes with a mass of ˜105 M⊙. The intervening haloes and voids disturb the magnification ratios of lensed images as well as their relative positions due to lensing. The magnification ratios typically change by O(10 per cent) when the shifts of relative angular positions of lensed images are constrained to <0.004 arcsec. The constrained amplitudes of projected density perturbations due to line-of-sight structures are O(108) M⊙ arcsec- 2. These results are consistent with our new analytical estimate based on the two-point correlation of density fluctuations. The observed mid-infrared flux ratios for six quasar-galaxy lens systems with quadruple images agree well with the numerically estimated values without taking into account subhalos residing in the lensing galaxies. We find that the constrained mean amplitudes of projected density perturbations in the line of sight are negative, which suggests that the fluxes of lensed images are perturbed mainly by minivoids and minihaloes in underdense regions. We derive a new fitting formula for estimating the probability distribution function of magnification perturbation. We also find that the mean amplitude of magnification perturbation roughly equals the standard deviation regardless of the model parameters.
De Putter, Roland; Doré, Olivier; Das, Sudeep
2014-01-10
Cross correlations between the galaxy number density in a lensing source sample and that in an overlapping spectroscopic sample can in principle be used to calibrate the lensing source redshift distribution. In this paper, we study in detail to what extent this cross-correlation method can mitigate the loss of cosmological information in upcoming weak lensing surveys (combined with a cosmic microwave background prior) due to lack of knowledge of the source distribution. We consider a scenario where photometric redshifts are available and find that, unless the photometric redshift distribution p(z {sub ph}|z) is calibrated very accurately a priori (bias and scatter known to ∼0.002 for, e.g., EUCLID), the additional constraint on p(z {sub ph}|z) from the cross-correlation technique to a large extent restores the cosmological information originally lost due to the uncertainty in dn/dz(z). Considering only the gain in photo-z accuracy and not the additional cosmological information, enhancements of the dark energy figure of merit of up to a factor of four (40) can be achieved for a SuMIRe-like (EUCLID-like) combination of lensing and redshift surveys, where SuMIRe stands for Subaru Measurement of Images and Redshifts). However, the success of the method is strongly sensitive to our knowledge of the galaxy bias evolution in the source sample and we find that a percent level bias prior is needed to optimize the gains from the cross-correlation method (i.e., to approach the cosmology constraints attainable if the bias was known exactly).
Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Borys, C; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Leitch, E M; Linder, E; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Poletti, D; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K; Schanning, I; Schenck, D E; Sherwin, B D; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tikhomirov, A; Tomaru, T; Wilson, B; Yadav, A; Zahn, O
2014-04-01
We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics. PMID:24745402
NASA Astrophysics Data System (ADS)
Ade, P. A. R.; Akiba, Y.; Anthony, A. E.; Arnold, K.; Atlas, M.; Barron, D.; Boettger, D.; Borrill, J.; Borys, C.; Chapman, S.; Chinone, Y.; Dobbs, M.; Elleflot, T.; Errard, J.; Fabbian, G.; Feng, C.; Flanigan, D.; Gilbert, A.; Grainger, W.; Halverson, N. W.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Holzapfel, W. L.; Hori, Y.; Howard, J.; Hyland, P.; Inoue, Y.; Jaehnig, G. C.; Jaffe, A.; Keating, B.; Kermish, Z.; Keskitalo, R.; Kisner, T.; Le Jeune, M.; Lee, A. T.; Leitch, E. M.; Linder, E.; Lungu, M.; Matsuda, F.; Matsumura, T.; Meng, X.; Miller, N. J.; Morii, H.; Moyerman, S.; Myers, M. J.; Navaroli, M.; Nishino, H.; Paar, H.; Peloton, J.; Poletti, D.; Quealy, E.; Rebeiz, G.; Reichardt, C. L.; Richards, P. L.; Ross, C.; Rotermund, K.; Schanning, I.; Schenck, D. E.; Sherwin, B. D.; Shimizu, A.; Shimmin, C.; Shimon, M.; Siritanasak, P.; Smecher, G.; Spieler, H.; Stebor, N.; Steinbach, B.; Stompor, R.; Suzuki, A.; Takakura, S.; Tikhomirov, A.; Tomaru, T.; Wilson, B.; Yadav, A.; Zahn, O.; Polarbear Collaboration
2014-04-01
We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics.
Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Borys, C; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Leitch, E M; Linder, E; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Poletti, D; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K; Schanning, I; Schenck, D E; Sherwin, B D; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tikhomirov, A; Tomaru, T; Wilson, B; Yadav, A; Zahn, O
2014-04-01
We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics.
Multi Dark Lens Simulations: weak lensing light-cones and data base presentation
NASA Astrophysics Data System (ADS)
Giocoli, Carlo; Jullo, Eric; Metcalf, R. Benton; de la Torre, Sylvain; Yepes, Gustavo; Prada, Francisco; Comparat, Johan; Göttlober, Stefan; Kyplin, Anatoly; Kneib, Jean-Paul; Petkova, Margarita; Shan, Huan Yuan; Tessore, Nicolas
2016-09-01
In this paper we present a large data base of weak lensing light cones constructed using different snapshots from the Big MultiDark simulation (BigMDPL). The ray-tracing through different multiple plane has been performed with the GLAMER code accounting both for single source redshifts and for sources distributed along the cosmic time. This first paper presents weak lensing forecasts and results according to the geometry of the VIPERS-W1 and VIPERS-W4 field of view. Additional fields will be available on our data base and new ones can be run upon request. Our data base also contains some tools for lensing analysis. In this paper we present results for convergence power spectra, one point and high order weak lensing statistics useful for forecasts and for cosmological studies. Covariance matrices have also been computed for the different realizations of the W1 and W4 fields. In addition we compute also galaxy-shear and projected density contrasts for different halo masses at two lens redshift according to the CFHTLS source redshift distribution both using stacking and cross-correlation techniques, finding very good agreement.
Weak lensing calibrated M-T scaling relation of galaxy groups in the cosmos field
Kettula, K.; Finoguenov, A.; Massey, R.; Rhodes, J.; Hoekstra, H.; Taylor, J. E.; Spinelli, P. F.; Tanaka, M.; Ilbert, O.; Capak, P.; McCracken, H. J.; Koekemoer, A.
2013-11-20
The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10 galaxy groups in the COSMOS field, combined with 55 higher-mass clusters from the literature. The COSMOS data includes Hubble Space Telescope imaging and redshift measurements of 46 source galaxies per arcminute{sup 2}, enabling us to perform unique weak lensing measurements of low-mass systems. Our sample extends the mass range of the lensing calibrated M-T relation an order of magnitude lower than any previous study, resulting in a power-law slope of 1.48{sub −0.09}{sup +0.13}. The slope is consistent with the self-similar model, predictions from simulations, and observations of clusters. However, X-ray observations relying on mass measurements derived under the assumption of hydrostatic equilibrium have indicated that masses at group scales are lower than expected. Both simulations and observations suggest that hydrostatic mass measurements can be biased low. Our external weak lensing masses provide the first observational support for hydrostatic mass bias at group level, showing an increasing bias with decreasing temperature and reaching a level of 30%-50% at 1 keV.
Joint cosmic microwave background and weak lensing analysis: constraints on cosmological parameters.
Contaldi, Carlo R; Hoekstra, Henk; Lewis, Antony
2003-06-01
We use cosmic microwave background (CMB) observations together with the red-sequence cluster survey weak lensing results to derive constraints on a range of cosmological parameters. This particular choice of observations is motivated by their robust physical interpretation and complementarity. Our combined analysis, including a weak nucleosynthesis constraint, yields accurate determinations of a number of parameters including the amplitude of fluctuations sigma(8)=0.89+/-0.05 and matter density Omega(m)=0.30+/-0.03. We also find a value for the Hubble parameter of H(0)=70+/-3 km s(-1) Mpc(-1), in good agreement with the Hubble Space Telescope key-project result. We conclude that the combination of CMB and weak lensing data provides some of the most powerful constraints available in cosmology today.
Joint cosmic microwave background and weak lensing analysis: constraints on cosmological parameters.
Contaldi, Carlo R; Hoekstra, Henk; Lewis, Antony
2003-06-01
We use cosmic microwave background (CMB) observations together with the red-sequence cluster survey weak lensing results to derive constraints on a range of cosmological parameters. This particular choice of observations is motivated by their robust physical interpretation and complementarity. Our combined analysis, including a weak nucleosynthesis constraint, yields accurate determinations of a number of parameters including the amplitude of fluctuations sigma(8)=0.89+/-0.05 and matter density Omega(m)=0.30+/-0.03. We also find a value for the Hubble parameter of H(0)=70+/-3 km s(-1) Mpc(-1), in good agreement with the Hubble Space Telescope key-project result. We conclude that the combination of CMB and weak lensing data provides some of the most powerful constraints available in cosmology today. PMID:12857304
How gravitational lensing helps γ-ray photons avoid γ – γ absorption
Barnacka, Anna; Böttcher, Markus; Sushch, Iurii E-mail: Markus.Bottcher@nwu.ac.za
2014-08-01
We investigate potential γ – γ absorption of γ-ray emission from blazars arising from inhomogeneities along the line of sight, beyond the diffuse Extragalactic Background Light (EBL). As plausible sources of excess γ – γ opacity, we consider (1) foreground galaxies, including cases in which this configuration leads to strong gravitational lensing, (2) individual stars within these foreground galaxies, and (3) individual stars within our own galaxy, which may act as lenses for microlensing events. We found that intervening galaxies close to the line of sight are unlikely to lead to significant excess γ – γ absorption. This opens up the prospect of detecting lensed gamma-ray blazars at energies above 10 GeV with their gamma-ray spectra effectively only affected by the EBL. The most luminous stars located either in intervening galaxies or in our galaxy provide an environment in which these gamma-rays could, in principle, be significantly absorbed. However, despite a large microlensing probability due to stars located in intervening galaxies, γ-rays avoid absorption by being deflected by the gravitational potentials of such intervening stars to projected distances ({sup i}mpact parameters{sup )} where the resulting γ – γ opacities are negligible. Thus, neither of the intervening excess photon fields considered here, provide a substantial source of excess γ – γ opacity beyond the EBL, even in the case of very close alignments between the background blazar and a foreground star or galaxy.
STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827
Carrasco, E. R.; Gomez, P. L.; Lee, H.; Diaz, R.; Bergmann, M.; Turner, J. E. H.; Miller, B. W.; West, M. J.; Verdugo, T.
2010-06-01
We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z {approx} 0.2. Located {approx}20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z {approx} 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG), and other galaxies. We derive a total mass of (2.7 {+-} 0.4) x 10{sup 13} M {sub sun} within 37 h {sup -1} kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.
LoCuSS: Exploring the selection of faint blue background galaxies for cluster weak-lensing
NASA Astrophysics Data System (ADS)
Ziparo, Felicia; Smith, Graham P.; Okabe, Nobuhiro; Haines, Chris P.; Pereira, Maria J.; Egami, Eiichi
2016-10-01
Cosmological constraints from galaxy clusters rely on accurate measurements of the mass and internal structure of clusters. An important source of systematic uncertainty in cluster mass and structure measurements is the secure selection of background galaxies that are gravitationally lensed by clusters. This issue has been shown to be particular severe for faint blue galaxies. We therefore explore the selection of faint blue background galaxies, by reference to photometric redshift catalogues derived from the COSMOS survey and our own observations of massive galaxy clusters at z ≃ 0.2. We show that methods relying on photometric redshifts of galaxies in/behind clusters based on observations through five filters, and on deep 30-band COSMOS photometric redshifts are both inadequate to safely identify faint blue background galaxies with the same 1 per cent contamination level that we have achieved with red galaxies. This is due to the small number of filters used by the former, and absence of massive galaxy clusters at redshifts of interest in the latter. Nevertheless, our least contaminated blue galaxy sample yields stacked weak-lensing results consistent with our previously published results based on red galaxies, and we show that the stacked clustercentric number density profile of these faint blue galaxies is consistent with expectations from consideration of the lens magnification signal of the clusters. Indeed, the observed number density of blue background galaxies changes by ˜10 - 30 per cent across the radial range over which other surveys assume it to be flat.
PROBING THE INNER KILOPARSEC OF MASSIVE GALAXIES WITH STRONG GRAVITATIONAL LENSING
Hezaveh, Yashar D.; Marshall, Philip J.; Blandford, Roger D.
2015-01-30
We examine the prospects of detecting demagnified images of gravitational lenses in observations of strongly lensed millimeter-wave molecular emission lines with ALMA. We model the lensing galaxies as a superposition of a dark matter component, a stellar component, and a central super-massive black hole (SMBH) and assess the detectability of the central images for a range of relevant parameters (e.g., stellar core, black hole mass, and source size). We find that over a large range of plausible parameters, future deep observations of lensed molecular lines with ALMA should enable the detection of the central images at ≳3σ significance. We use a Fisher analysis to examine the constraints that could be placed on these parameters in various scenarios and find that for large stellar cores, both the core size and the mass of the central SMBHs can be accurately measured. We also study the prospects for detecting binary SMBHs with such observations and find that only under rare conditions and with very long integrations (∼40 hr) the masses of both SMBHs may be measured using the distortions of central images.
Spin effects in gravitational radiation back reaction. I. The Lense-Thirring approximation
NASA Astrophysics Data System (ADS)
Gergely, László Á.; Perjés, Zoltán I.; Vasúth, Mátyás
1998-01-01
The gravitational radiation back reaction effects are considered in the Lense-Thirring approximation. New methods for parametrizing the orbit and for averaging the instantaneous radiative losses are developed. To first order in the spin S of the black hole, both in the absence and in the presence of gravitational radiation, a complete description of the test-particle orbit is given. This is achieved by two improvements over the existing descriptions: first, by introducing new angle variables with a straightforward geometrical meaning; second, by finding a new parametrization of a generic orbit, which assures that the integration over a radial period can be done in an especially simple way, by applying the residue theorem. The instantaneous gravitational radiation losses of the system are computed using the formulation of Blanchet, Damour and Iyer. All losses are given both in terms of the dynamical constants of motion and the properly defined orbital elements a, e, ι and Ψ0. The radiative losses of the constants characterizing the Lense-Thirring motion, when suitably converted, are in agreement with earlier results of Kidder, Will and Wiseman, Ryan and Shibata. In addition, the radiative losses of two slowly changing orbital elements Ψ0,Φ0 are given in order to complete the characterization of the orbit.
Matter in the Beam: Weak Lensing, Substructures, and the Temperature of Dark Matter
NASA Astrophysics Data System (ADS)
Mahdi, Hareth S.; Elahi, Pascal J.; Lewis, Geraint F.; Power, Chris
2016-08-01
Warm dark matter (WDM) models offer an attractive alternative to the current cold dark matter (CDM) cosmological model. We present a novel method to differentiate between WDM and CDM cosmologies, namely, using weak lensing; this provides a unique probe as it is sensitive to all of the “matter in the beam,” not just dark matter haloes and the galaxies that reside in them, but also the diffuse material between haloes. We compare the weak lensing maps of CDM clusters to those in a WDM model corresponding to a thermally produced 0.5 keV dark matter particle. Our analysis clearly shows that the weak lensing magnification, convergence, and shear distributions can be used to distinguish between CDM and WDM models. WDM models increase the probability of weak magnifications, with the differences being significant to ≳5σ, while leaving no significant imprint on the shear distribution. WDM clusters analyzed in this work are more homogeneous than CDM ones, and the fractional decrease in the amount of material in haloes is proportional to the average increase in the magnification. This difference arises from matter that would be bound in compact haloes in CDM being smoothly distributed over much larger volumes at lower densities in WDM. Moreover, the signature does not solely lie in the probability distribution function but in the full spatial distribution of the convergence field.
NASA Astrophysics Data System (ADS)
Moustakas, Leonidas A.; Cyr-Racine, Francis-Yan; Keeton, Charles R.
2016-01-01
The properties of the dark matter particle or particles lead to different small scale halo populations, distributions, and evolution over cosmic time. We introduce a new method for characterizing the properties of substructure within galaxies through the power spectrum of potential fluctuations, and demonstrate how complete sets of multiwavelength imaging and time domain observations can be processed directly to infer all facets of the strong gravitational lensing components and source properties, including the dark matter substructure power spectrum constraints. We are able to take advantage of analysis parallels with cosmic background radiation techniques, and furthermore demonstrate how this technique, dubbed The Aspen Framework, reduces to the long-standing approach of working with reduced or derived observable quantities in lensing.
Okura, Yuki; Petri, Andrea; May, Morgan; Plazas, Andrés A.; Tamagawa, Toru
2016-06-27
Weak gravitational lensing causes subtle changes in the apparent shapes of galaxies due to the bending of light by the gravity of foreground masses. By measuring the shapes of large numbers of galaxies (millions in recent surveys, up to tens of billions in future surveys) we can infer the parameters that determine cosmology. Imperfections in the detectors used to record images of the sky can introduce changes in the apparent shape of galaxies, which in turn can bias the inferred cosmological parameters. Here in this paper we consider the effect of two widely discussed sensor imperfections: tree-rings, due to impuritymore » gradients which cause transverse electric fields in the Charge-Coupled Devices (CCD), and pixel-size variation, due to periodic CCD fabrication errors. These imperfections can be observed when the detectors are subject to uniform illumination (flat field images). We develop methods to determine the spurious shear and convergence (due to the imperfections) from the flat-field images. We calculate how the spurious shear when added to the lensing shear will bias the determination of cosmological parameters. We apply our methods to candidate sensors of the Large Synoptic Survey Telescope (LSST) as a timely and important example, analyzing flat field images recorded with LSST prototype CCDs in the laboratory. In conclusion, we find that tree-rings and periodic pixel-size variation present in the LSST CCDs will introduce negligible bias to cosmological parameters determined from the lensing power spectrum, specifically w,Ωm and σ8.« less
The time delay in strong gravitational lensing with Gauss-Bonnet correction
Man, Jingyun; Cheng, Hongbo E-mail: hbcheng@ecust.edu.cn
2014-11-01
The time delay between two relativistic images in the strong gravitational lensing governed by Gauss-Bonnet gravity is studied. We make a complete analytical derivation of the expression of time delay in presence of Gauss-Bonnet coupling. With respect to Schwarzschild, the time delay decreases as a consequence of the shrinking of the photon sphere. As the coupling increases, the second term in the time delay expansion becomes more relevant. Thus time delay in strong limit encodes some new information about geometry in five-dimensional spacetime with Gauss-Bonnet correction.
Using gravitational lensing to study the X-ray spectrum of distant QSO
NASA Astrophysics Data System (ADS)
Dadina, Mauro
2014-11-01
The unique imaging capabilities of Chandra have been successfully used to perform microlensing studies of distant QSOs. The main aim was to infer the dimensions of their X-ray emitting regions. Using data from the Chandra archive, we built-up an XMM-Newton program devoted to using the magnification due to gravitational lenses to characterize in detail the broad band spectra and variability of distant AGN. Here we present preliminary results of the XMM-Newton observation of QSO B1422+231 at z=3.62.
The Shear Testing Programme - I. Weak lensing analysis of simulated ground-based observations
NASA Astrophysics Data System (ADS)
Heymans, Catherine; Van Waerbeke, Ludovic; Bacon, David; Berge, Joel; Bernstein, Gary; Bertin, Emmanuel; Bridle, Sarah; Brown, Michael L.; Clowe, Douglas; Dahle, Håkon; Erben, Thomas; Gray, Meghan; Hetterscheidt, Marco; Hoekstra, Henk; Hudelot, Patrick; Jarvis, Mike; Kuijken, Konrad; Margoniner, Vera; Massey, Richard; Mellier, Yannick; Nakajima, Reiko; Refregier, Alexandre; Rhodes, Jason; Schrabback, Tim; Wittman, David
2006-05-01
The Shear Testing Programme (STEP) is a collaborative project to improve the accuracy and reliability of all weak lensing measurements in preparation for the next generation of wide-field surveys. In this first STEP paper, we present the results of a blind analysis of simulated ground-based observations of relatively simple galaxy morphologies. The most successful methods are shown to achieve percent level accuracy. From the cosmic shear pipelines that have been used to constrain cosmology, we find weak lensing shear measured to an accuracy that is within the statistical errors of current weak lensing analyses, with shear measurements accurate to better than 7 per cent. The dominant source of measurement error is shown to arise from calibration uncertainties where the measured shear is over or underestimated by a constant multiplicative factor. This is of concern as calibration errors cannot be detected through standard diagnostic tests. The measured calibration errors appear to result from stellar contamination, false object detection, the shear measurement method itself, selection bias and/or the use of biased weights. Additive systematics (false detections of shear) resulting from residual point-spread function anisotropy are, in most cases, reduced to below an equivalent shear of 0.001, an order of magnitude below cosmic shear distortions on the scales probed by current surveys. Our results provide a snapshot view of the accuracy of current ground-based weak lensing methods and a benchmark upon which we can improve. To this end we provide descriptions of each method tested and include details of the eight different implementations of the commonly used Kaiser, Squires & Broadhurst method (KSB+) to aid the improvement of future KSB+ analyses.
MEASURING PRIMORDIAL NON-GAUSSIANITY THROUGH WEAK-LENSING PEAK COUNTS
Marian, Laura; Hilbert, Stefan; Smith, Robert E.; Schneider, Peter; Desjacques, Vincent
2011-02-10
We explore the possibility of detecting primordial non-Gaussianity of the local type using weak-lensing peak counts. We measure the peak abundance in sets of simulated weak-lensing maps corresponding to three models f{sub NL} = 0, - 100, and 100. Using survey specifications similar to those of EUCLID and without assuming any knowledge of the lens and source redshifts, we find the peak functions of the non-Gaussian models with f{sub NL} = {+-}100 to differ by up to 15% from the Gaussian peak function at the high-mass end. For the assumed survey parameters, the probability of fitting an f{sub NL} = 0 peak function to the f{sub NL} = {+-}100 peak functions is less than 0.1%. Assuming the other cosmological parameters are known, f{sub NL} can be measured with an error {Delta}f{sub NL} {approx} 13. It is therefore possible that future weak-lensing surveys like EUCLID and LSST may detect primordial non-Gaussianity from the abundance of peak counts, and provide information complementary to that obtained from the cosmic microwave background.
CFHTLenS: weak lensing calibrated scaling relations for low-mass clusters of galaxies
NASA Astrophysics Data System (ADS)
Kettula, K.; Giodini, S.; van Uitert, E.; Hoekstra, H.; Finoguenov, A.; Lerchster, M.; Erben, T.; Heymans, C.; Hildebrandt, H.; Kitching, T. D.; Mahdavi, A.; Mellier, Y.; Miller, L.; Mirkazemi, M.; Van Waerbeke, L.; Coupon, J.; Egami, E.; Fu, L.; Hudson, M. J.; Kneib, J. P.; Kuijken, K.; McCracken, H. J.; Pereira, M. J.; Rowe, B.; Schrabback, T.; Tanaka, M.; Velander, M.
2015-08-01
We present weak lensing and X-ray analysis of 12 low-mass clusters from the Canada-France-Hawaii Telescope Lensing Survey and XMM-CFHTLS surveys. We combine these systems with high-mass systems from Canadian Cluster Comparison Project and low-mass systems from Cosmic Evolution Survey to obtain a sample of 70 systems, spanning over two orders of magnitude in mass. We measure core-excised LX-TX, M-LX and M-TX scaling relations and include corrections for observational biases. By providing fully bias-corrected relations, we give the current limitations for LX and TX as cluster mass proxies. We demonstrate that TX benefits from a significantly lower intrinsic scatter at fixed mass than LX. By studying the residuals of the bias-corrected relations, we show for the first time using weak lensing masses that galaxy groups seem more luminous and warmer for their mass than clusters. This implies a steepening of the M-LX and M-TX relations at low masses. We verify the inferred steepening using a different high-mass sample from the literature and show that variance between samples is the dominant effect leading to discrepant scaling relations. We divide our sample into subsamples of merging and relaxed systems, and find that mergers may have enhanced scatter in lensing measurements, most likely due to stronger triaxiality and more substructure. For the LX-TX relation, which is unaffected by lensing measurements, we find the opposite trend in scatter. We also explore the effects of X-ray cross-calibration and find that Chandra calibration leads to flatter LX-TX and M-TX relations than XMM-Newton.
Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data
NASA Astrophysics Data System (ADS)
Viola, M.; Cacciato, M.; Brouwer, M.; Kuijken, K.; Hoekstra, H.; Norberg, P.; Robotham, A. S. G.; van Uitert, E.; Alpaslan, M.; Baldry, I. K.; Choi, A.; de Jong, J. T. A.; Driver, S. P.; Erben, T.; Grado, A.; Graham, Alister W.; Heymans, C.; Hildebrandt, H.; Hopkins, A. M.; Irisarri, N.; Joachimi, B.; Loveday, J.; Miller, L.; Nakajima, R.; Schneider, P.; Sifón, C.; Verdoes Kleijn, G.
2015-10-01
The Kilo-Degree Survey is an optical wide-field survey designed to map the matter distribution in the Universe using weak gravitational lensing. In this paper, we use these data to measure the density profiles and masses of a sample of ˜1400 spectroscopically identified galaxy groups and clusters from the Galaxy And Mass Assembly survey. We detect a highly significant signal (signal-to-noise-ratio ˜120), allowing us to study the properties of dark matter haloes over one and a half order of magnitude in mass, from M ˜ 1013-1014.5 h-1 M⊙. We interpret the results for various subsamples of groups using a halo model framework which accounts for the mis-centring of the brightest cluster galaxy (used as the tracer of the group centre) with respect to the centre of the group's dark matter halo. We find that the density profiles of the haloes are well described by an NFW profile with concentrations that agree with predictions from numerical simulations. In addition, we constrain scaling relations between the mass and a number of observable group properties. We find that the mass scales with the total r-band luminosity as a power law with slope 1.16 ± 0.13 (1σ) and with the group velocity dispersion as a power law with slope 1.89 ± 0.27 (1σ). Finally, we demonstrate the potential of weak lensing studies of groups to discriminate between models of baryonic feedback at group scales by comparing our results with the predictions from the Cosmo-OverWhelmingly Large Simulations project, ruling out models without AGN feedback.
High, F. W.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Hoekstra, H.; Leethochawalit, N.; De Haan, T.; Abramson, L.; Aird, K. A.; Armstrong, R.; Ashby, M. L. N.; Conroy, M.; Bautz, M.; Bayliss, M.; Bazin, G.; Brodwin, M.; Cho, H. M.; Clocchiatti, A.; and others
2012-10-10
We use weak gravitational lensing to measure the masses of five galaxy clusters selected from the South Pole Telescope (SPT) survey, with the primary goal of comparing these with the SPT Sunyaev-Zel'dovich (SZ) and X-ray-based mass estimates. The clusters span redshifts 0.28 < z < 0.43 and have masses M{sub 500} > 2 Multiplication-Sign 10{sup 14} h {sup -1} M{sub Sun }, and three of the five clusters were discovered by the SPT survey. We observed the clusters in the g'r'i' passbands with the Megacam imager on the Magellan Clay 6.5 m telescope. We measure a mean ratio of weak-lensing (WL) aperture masses to inferred aperture masses from the SZ data, both within an aperture of R{sub 500,SZ} derived from the SZ mass, of 1.04 {+-} 0.18. We measure a mean ratio of spherical WL masses evaluated at R{sub 500,SZ} to spherical SZ masses of 1.07 {+-} 0.18, and a mean ratio of spherical WL masses evaluated at R{sub 500,WL} to spherical SZ masses of 1.10 {+-} 0.24. We explore potential sources of systematic error in the mass comparisons and conclude that all are subdominant to the statistical uncertainty, with dominant terms being cluster concentration uncertainty and N-body simulation calibration bias. Expanding the sample of SPT clusters with WL observations has the potential to significantly improve the SPT cluster mass calibration and the resulting cosmological constraints from the SPT cluster survey. These are the first WL detections using Megacam on the Magellan Clay telescope.
ERIC Educational Resources Information Center
Turner, Edwin L.
1988-01-01
Describes cosmic flukes which offer a unique window on new information about the universe. Discusses the historical background, theory, and detection of this effect. Proposes the importance of information found by the examination of these phenomena. (CW)
Chen, Yun; Geng, Chao-Qiang; Cao, Shuo; Huang, Yu-Mei; Zhu, Zong-Hong E-mail: geng@phys.nthu.edu.tw E-mail: huangymei@gmail.com
2015-02-01
We constrain the scalar field dark energy model with an inverse power-law potential, i.e., V(φ) ∝ φ{sup −α} (α > 0), from a set of recent cosmological observations by compiling an updated sample of Hubble parameter measurements including 30 independent data points. Our results show that the constraining power of the updated sample of H(z) data with the HST prior on H{sub 0} is stronger than those of the SCP Union2 and Union2.1 compilations. A recent sample of strong gravitational lensing systems is also adopted to confine the model even though the results are not significant. A joint analysis of the strong gravitational lensing data with the more restrictive updated Hubble parameter measurements and the Type Ia supernovae data from SCP Union2 indicates that the recent observations still can not distinguish whether dark energy is a time-independent cosmological constant or a time-varying dynamical component.
Battaglia, N.; Hill, J. C.; Murray, N.
2015-10-20
Recent first detections of the cross-correlation of the thermal Sunyaev–Zel’dovich (tSZ) signal in Planck cosmic microwave background (CMB) temperature maps with gravitational lensing maps inferred from the Planck CMB data and the CFHTLenS galaxy survey provide new probes of the relationship between baryons and dark matter. Using cosmological hydrodynamics simulations, we show that these cross-correlation signals are dominated by contributions from hot gas in the intracluster medium (ICM), rather than diffuse, unbound gas located beyond the virial radius (the “missing baryons”). Thus, these cross-correlations offer a tool with which to study the ICM over a wide range of halo masses and redshifts. In particular, we show that the tSZ—CMB lensing cross-correlation is more sensitive to gas in lower-mass, higher-redshift halos and gas at larger cluster-centric radii than the tSZ—galaxy lensing cross-correlation. Combining these measurements with primary CMB data will constrain feedback models through their signatures in the ICM pressure profile. We forecast the ability of ongoing and future experiments to constrain the parameters of a phenomenological ICM model, including the mean amplitude of the pressure–mass relation, the redshift evolution of this amplitude, and the mean outer logarithmic slope of the pressure profile. The results are promising, with ≈5%–20% precision constraints achievable with upcoming experiments, even after marginalizing over cosmological parameters.
A new pixel-based method for analyzing spatially resolved, gravitationally lensed images
NASA Astrophysics Data System (ADS)
Tagore, Amitpal S.; Keeton, C. R.; Baker, A. J.
2014-01-01
Gravitational lens modeling of spatially resolved sources is a challenging inverse problem that requires careful handling of parameter degeneracies. I describe a new pixel-based source reconstruction method and analyze statistical and systematic effects, including pixelization, noise, telescope pointing, and resolution. I show applications of the method to observations of two lensed, high-redshift galaxies. For SDSS J120602.09+514229.5 (also known as the Clone), a z=2.001 star-forming galaxy lensed by a foreground galaxy at z=0.42, the errors on the model are appropriately accounted for, and the results are in agreement with previous analyses. For SDSS J0901+1814 (J0901), a z=2.26 ultraluminous infrared star-forming galaxy lensed by a foreground group of galaxies at z=0.35, I constrain the lens model using CO rotational line maps of multiple velocity channels, in addition to optical and infrared data. The reconstructed velocity fields in the source plane make it possible to infer J0901's intrinsic dynamical mass and gas mass fraction. Combining the CO maps with H-alpha observations allows us to test the applicability of the local Kennicutt-Schmidt relation at high redshift.
Two New Gravitationally Lensed Double Quasars from theSloan Digital Sky Survey
Inada, Naohisa; Oguri, Masamune; Becker, Robert H.; White, Richard L.; Kayo, Issha; Kochanek, Christopher S.; Hall, Patrick B.; Schneider, Donald P.; York, Donald G.; Richards, Gordon T.; /Tokyo U., Inst. Astron. /KIPAC, Menlo Park /Princeton U. Observ. /LLNL, Livermore /UC, Davis /Baltimore, Space Telescope Sci. /Nagoya U. /Ohio State U., Dept. Astron. /York U., Canada /Penn State U., Astron. Astrophys. /Chicago U., Astron. Astrophys. Ctr. /Chicago U., EFI /Johns Hopkins U. /Drexel U.
2006-09-28
We report the discoveries of the two-image gravitationally lensed quasars, SDSS J0746+4403 and SDSS J1406+6126, selected from the Sloan Digital Sky Survey (SDSS). SDSS J0746+4403, which will be included in our lens sample for statistics and cosmology, has a source redshift of z{sub s} = 2.00, an estimated lens redshift of z{sub l} {approx} 0.3, and an image separation of 1.08''. SDSS J1406+6126 has a source redshift of z{sub s} = 2.13, a spectroscopically measured lens redshift of z{sub l} = 0.27, and an image separation of 1.98''. We find that the two quasar images of SDSS J1406+6126 have different intervening Mg II absorption strengths, which are suggestive of large variations of absorbers on kpc scales. The positions and fluxes of both the lensed quasar systems are easily reproduced by simple mass models with reasonable parameter values. These objects bring to 18 the number of lensed quasars that have been discovered from the SDSS data.
A new hybrid framework to efficiently model lines of sight to gravitational lenses
NASA Astrophysics Data System (ADS)
McCully, Curtis; Keeton, Charles R.; Wong, Kenneth C.; Zabludoff, Ann I.
2014-10-01
In strong gravitational lens systems, the light bending is usually dominated by one main galaxy, but may be affected by other mass along the line of sight (LOS). Shear and convergence can be used to approximate the contributions from less significant perturbers (e.g. those that are projected far from the lens or have a small mass), but higher order effects need to be included for objects that are closer or more massive. We develop a framework for multiplane lensing that can handle an arbitrary combination of tidal planes treated with shear and convergence and planes treated exactly (i.e. including higher order terms). This framework addresses all of the traditional lensing observables including image positions, fluxes, and time delays to facilitate lens modelling that includes the non-linear effects due to mass along the LOS. It balances accuracy (accounting for higher order terms when necessary) with efficiency (compressing all other LOS effects into a set of matrices that can be calculated up front and cached for lens modelling). We identify a generalized multiplane mass sheet degeneracy, in which the effective shear and convergence are sums over the lensing planes with specific, redshift-dependent weighting factors.
Searching for a Long Cosmic String through the Gravitational Lensing Effect
NASA Astrophysics Data System (ADS)
Shirasaki, Y.; Matsuzaki, Ei-ichi; Mizumoto, Yoshihiko; Kakimoto, Fumio; Ogio, Syoichi; Yasuda, Naoki; Tanaka, Masahiro; Yahagi, Hideki; Nagashima, Masahiro; Kosugi, George
2003-07-01
It has been suggested that cosmic strings produced at a phase transition in the early universe can be the origin of the extremely high energy cosmic rays (EHCR) observed by AGASA above 1020 eV. superheavy cosmic strings with linear mass density of 1022 g/cm can be indirectly observed through the gravitational lensing effect the distant galaxies. The lensing effect by a long straight object can be characterized by a line of double galaxies or quasars with angular separation of about 5 arcsec. We have searched for aligned double objects from the archived data taken by the Subaru Prime Fo cus Camera (Suprime-Cam). The SuprimeCam has a great advantage in observing the wide field of view (30×30 arcmin2 ) with high sensitivity (R<26 400s exposure), so it is suitable for this research. In this paper, we describe the result of simulation study for developing the method of searching the objects lensed by cosmic strings, and present the observational result obtained by this method.
Gravitational lensing limits on the cosmological constant in a flat universe
NASA Technical Reports Server (NTRS)
Turner, Edwin L.
1990-01-01
Inflationary cosmological theories predict, and some more general aesthetic criteria suggest, that the large-scale spatial curvature of the universe k should be accurately zero (i.e., flat), a condition which is satisfied when the universe's present mean density and the value of the cosmological constant Lambda have certain pairs of values. Available data on the frequency of multiple image-lensing of high-redshift quasars by galaxies suggest that the cosmological constant cannot make a dominant contribution to producing a flat universe. In particular, if the mean density of the universe is as small as the baryon density inferred from standard cosmic nucleosynthesis calculations or as determined from typical dynamical studies of galaxies and galaxy clusters, then a value of Lambda large enough to produce a k = 0 universe would result in a substantially higher frequency of multiple-image lensing of quasars than has been observed so far. Shortcomings of the available lens data and uncertainties concerning galaxy properties allow some possibility of escaping this conclusion, but systematic searches for a gravitational lenses and continuing investigations of galaxy mass distributions should soon provide decisive information. It is also noted that nonzero-curvature cosmological models can account for the observed frequency of galaxy-quasar lens systems and for a variety of other constraints.
SDSS J131339.98+515128.3: A new GravitationallyLensed Quasar Selected Based on Near-infrared Excess
Ofek, E.O.; Oguri, M.; Jackson, N.; Inada, N.; Kayo, I.
2007-09-28
We report the discovery of a new gravitationally lensed quasar, SDSS J131339.98+515128.3, at a redshift of 1:875 with an image separation of 1: 0024. The lensing galaxy is clearly detected in visible-light follow-up observations. We also identify three absorption-line doublets in the spectra of the lensed quasar images, from which we measure the lens redshift to be 0:194. Like several other known lenses, the lensed quasar images have different continuum slopes. This difference is probably the result of reddening and microlensing in the lensing galaxy. The lensed quasar was selected by correlating Sloan Digital Sky Survey (SDSS) spectroscopic quasars with Two Micron All Sky Survey (2MASS) sources and choosing quasars that show near-infrared (IR) excess. The near-IR excess can originate, for example, from the contribution of the lensing galaxy at near-IR wavelengths. We show that the near-IR excess technique is indeed an efficient method to identify lensed systems from a large sample of quasars.
Full-sky formulae for weak lensing power spectra from total angular momentum method
NASA Astrophysics Data System (ADS)
Yamauchi, Daisuke; Namikawa, Toshiya; Taruya, Atsushi
2013-08-01
We systematically derive full-sky formulae for the weak lensing power spectra generated by scalar, vector and tensor perturbations from the total angular momentum (TAM) method. Based on both the geodesic and geodesic deviation equations, we first give the gauge-invariant expressions for the deflection angle and Jacobi map as observables of the CMB lensing and cosmic shear experiments. We then apply the TAM method, originally developed in the theoretical studies of CMB, to a systematic derivation of the angular power spectra. The TAM representation, which characterizes the total angular dependence of the spatial modes projected along a line-of-sight, can carry all the information of the lensing modes generated by scalar, vector, and tensor metric perturbations. This greatly simplifies the calculation, and we present a complete set of the full-sky formulae for angular power spectra in both the E-/B-mode cosmic shear and gradient-/curl-mode lensing potential of deflection angle. Based on the formulae, we give illustrative examples of non-vanishing B-mode cosmic shear and curl-mode of deflection angle in the presence of the vector and tensor perturbations, and explicitly compute the power spectra.
Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C.; Gould, A.; Gaudi, B. S.; Henderson, C. B.; Sumi, T.; Udalski, A.; Beaulieu, J.-P.; Street, R.; Dominik, M.; Allen, W.; Almeida, L. A.; Christie, G. W.; Depoy, D. L.; Dong, S.; Drummond, J.; Gal-Yam, A.; Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others
2012-05-20
We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of {theta}{sub E} {approx} 0.08 mas combined with the short timescale of t{sub E} {approx} 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of {approx}0.84 M{sub Sun} is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.
NASA Astrophysics Data System (ADS)
Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C.; Gould, A.; Sumi, T.; Udalski, A.; Beaulieu, J.-P.; Street, R.; Dominik, M.; Allen, W.; Almeida, L. A.; Bos, M.; Christie, G. W.; Depoy, D. L.; Dong, S.; Drummond, J.; Gal-Yam, A.; Gaudi, B. S.; Henderson, C. B.; Hung, L.-W.; Jablonski, F.; Janczak, J.; Lee, C.-U.; Mallia, F.; Maury, A.; McCormick, J.; McGregor, D.; Monard, L. A. G.; Moorhouse, D.; Muñoz, J. A.; Natusch, T.; Nelson, C.; Park, B.-G.; Pogge, R. W.; "TG" Tan, T.-G.; Thornley, G.; Yee, J. C.; μFUN Collaboration; Abe, F.; Barnard, E.; Baudry, J.; Bennett, D. P.; Bond, I. A.; Botzler, C. S.; Freeman, M.; Fukui, A.; Furusawa, K.; Hayashi, F.; Hearnshaw, J. B.; Hosaka, S.; Itow, Y.; Kamiya, K.; Kilmartin, P. M.; Kobara, S.; Korpela, A.; Lin, W.; Ling, C. H.; Makita, S.; Masuda, K.; Matsubara, Y.; Miyake, N.; Muraki, Y.; Nagaya, M.; Nishimoto, K.; Ohnishi, K.; Okumura, T.; Omori, K.; Perrott, Y. C.; Rattenbury, N.; Saito, To.; Skuljan, L.; Sullivan, D. J.; Suzuki, D.; Suzuki, K.; Sweatman, W. L.; Takino, S.; Tristram, P. J.; Wada, K.; Yock, P. C. M.; MOA Collaboration; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Poleski, R.; Ulaczyk, K.; Wyrzykowski, Ł.; Kozłowski, S.; Pietrukowicz, P.; OGLE Collaboration; Albrow, M. D.; Bachelet, E.; Batista, V.; Bennett, C. S.; Bowens-Rubin, R.; Brillant, S.; Cassan, A.; Cole, A.; Corrales, E.; Coutures, Ch.; Dieters, S.; Dominis Prester, D.; Donatowicz, J.; Fouqué, P.; Greenhill, J.; Kane, S. R.; Menzies, J.; Sahu, K. C.; Wambsganss, J.; Williams, A.; Zub, M.; PLANET Collaboration; Allan, A.; Bramich, D. M.; Browne, P.; Clay, N.; Fraser, S.; Horne, K.; Kains, N.; Mottram, C.; Snodgrass, C.; Steele, I.; Tsapras, Y.; RoboNet Collaboration; Alsubai, K. A.; Bozza, V.; Burgdorf, M. J.; Calchi Novati, S.; Dodds, P.; Dreizler, S.; Finet, F.; Gerner, T.; Glitrup, M.; Grundahl, F.; Hardis, S.; Harpsøe, K.; Hinse, T. C.; Hundertmark, M.; Jørgensen, U. G.; Kerins, E.; Liebig, C.; Maier, G.; Mancini, L.; Mathiasen, M.; Penny, M. T.; Proft, S.; Rahvar, S.; Ricci, D.; Scarpetta, G.; Schäfer, S.; Schönebeck, F.; Skottfelt, J.; Surdej, J.; Southworth, J.; Zimmer, F.; MiNDSTEp Consortium
2012-05-01
We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of θE ~ 0.08 mas combined with the short timescale of t E ~ 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of ~0.84 M ⊙ is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.
NASA Astrophysics Data System (ADS)
Bardeau, S.; Soucail, G.; Kneib, J.-P.; Czoske, O.; Ebeling, H.; Hudelot, P.; Smail, I.; Smith, G. P.
2007-08-01
Aims:We present a wide-field multi-color survey of a homogeneous sample of eleven clusters of galaxies for which we measure total masses and mass distributions from weak lensing. This sample, spanning a small range in both X-ray luminosity and redshift, is ideally suited to determining the normalisation of scaling relations between X-ray properties of clusters and their masses (the M-TX and the M-LX relations) and also estimating the scatter in these relations at a fixed luminosity. Methods: The eleven clusters in our sample are all X-ray luminous and span a narrow redshift range at z = 0.21 ± 0.04. The weak lensing analysis of the sample is based on ground-based wide-field imaging obtained with the CFH12k camera on CFHT. We use the methodology developed and applied previously on the massive cluster Abell 1689. A Bayesian method, implemented in the Im2shape software, is used to fit the shape parameters of the faint background galaxies and to correct for PSF smearing. A multi-color selection of the background galaxies is applied to retrieve the weak lensing signal, resulting in a background density of sources of ~10 galaxies per square arc minute. With the present data, shear profiles are measured in all clusters out to at least 2 Mpc (more than 15´ from the center) with high confidence. The radial shear profiles are fitted with different parametric mass profiles and the virial mass M200 is estimated for each cluster and then compared to other physical properties. Results: Scaling relations between mass and optical luminosity indicate an increase of the M/L ratio with luminosity (M/L ∝ L0.8) and a LX-M200 relation scaling as LX ∝ M2000.83 ± 0.11 while the normalization of the M200 ∝ TX3/2 relation is close to the one expected from hydrodynamical simulations of cluster formation as well as previous X-ray analyses. We suggest that the dispersion in the M200-TX and M200-LX relations reflects the different merging and dynamical histories for clusters of similar
[The use of a detector of the extremely weak radiation as a variometer of gravitation field].
Gorshkov, E S; Bondarenko, E G; Shapovalov, S N; Sokolovskiĭ, V V; Troshichev, O A
2001-01-01
It was shown that the detector of extremely weak radiation with selectively increased sensitivity to the nonelectromagnetic, including the gravitational component of the spectrum of active physical fields can be used as the basis for constructing a variometer of gravitational field of a new type.
NASA Astrophysics Data System (ADS)
Linet, B.; Teyssandier, P.
2016-02-01
We present a complete analysis of the light rays within the linearized, weak-field approximation of a Schwarzschild-like metric describing the gravitational field of an isolated, spherically symmetric body. We prove in this context the existence of two time transfer functions and we obtain these functions in an exact closed-form. We are led to distinguish two regimes. In the first regime, the two time transfer functions correspond to rays which are confined in regions of spacetime where the weak-field approximation is valid. Such a regime occurs in gravitational lensing configurations with double images of a given source. We find the general expressions of the angular separation and the difference in light travel time between the two images. In the second regime, there exists only one time transfer function corresponding to a light ray remaining in a region of weak field. Performing a Taylor expansion of this function with respect to the gravitational constant, we obtain the Shapiro time delay completed by a series of so-called "enhanced terms." The enhanced terms beyond the third order are new.
Paschen-α Emission in the Gravitationally Lensed Galaxy SMM J163554.2+661225
NASA Astrophysics Data System (ADS)
Papovich, Casey; Rudnick, Gregory; Rigby, Jane R.; Willmer, Christopher N. A.; Smith, J.-D. T.; Finkelstein, Steven L.; Egami, Eiichi; Rieke, Marcia
2009-10-01
We report the detection of the Paα emission line in the z = 2.515 galaxy SMM J163554.2+661225 using Spitzer spectroscopy. SMM J163554.2+661225 is a submillimeter-selected infrared-luminous galaxy maintaining a high star formation rate (SFR), with no evidence of an active galactic nucleus from optical or infrared spectroscopy, nor X-ray emission. This galaxy is lensed gravitationally by the cluster Abell 2218, making it accessible to Spitzer spectroscopy. We measure a line luminosity, L(Paα) = (2.05 ± 0.33) × 1042 erg s-1, corrected for gravitational lensing. Comparing the Hα and Paα luminosities, we derive a nebular extinction, A(V) = 3.6 ± 0.4 mag. The dust-corrected luminosity, L(Paα) = (2.57 ± 0.43) × 1042 erg s-1, corresponds to an ionization rate, Q 0 = (1.6 ± 0.3) × 1055 γ s-1. The instantaneous SFR is ψ = 171 ± 28 M ⊙ yr-1, assuming a Salpeter-like initial mass function from 0.1 to 100 M ⊙ yr-1. The total IR luminosity derived using 70, 450, and 850 μm data is LIR = (5-10) × 1011 L ⊙, corrected for gravitational lensing. This corresponds to ψ = 90-180 M ⊙ yr-1, where the upper range is consistent with that derived from the Paα luminosity. While the L(8 μm)/L(Paα) ratio is consistent with the extrapolated relation observed in local galaxies and star-forming regions, the rest-frame 24 μm luminosity is significantly lower with respect to local galaxies of comparable Paα luminosity. Thus, SMM J163554.2+661225 arguably lacks a warmer dust component (TD ~ 70 K), which is associated with deeply embedded star formation, and which contrasts with local galaxies with comparable SFRs. Rather, the starburst in SMM J163554.2+661225 is consistent with star-forming local galaxies with intrinsic luminosities, LIR ≈ 1010 L ⊙, but "scaled up" by a factor of ~10-100. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under
Radio Weak Lensing Shear Measurement in the Visibility Domain - I. Methodology
NASA Astrophysics Data System (ADS)
Rivi, M.; Miller, L.; Makhathini, S.; Abdalla, F. B.
2016-08-01
The high sensitivity of the new generation of radio telescopes such as the Square Kilometre Array (SKA) will allow cosmological weak lensing measurements at radio wavelengths that are competitive with optical surveys. We present an adaptation to radio data of lensfit, a method for galaxy shape measurement originally developed and used for optical weak lensing surveys. This likelihood method uses an analytical galaxy model and makes a Bayesian marginalisation of the likelihood over uninteresting parameters. It has the feature of working directly in the visibility domain, which is the natural approach to adopt with radio interferometer data, avoiding systematics introduced by the imaging process. As a proof of concept, we provide results for visibility simulations of individual galaxies with flux density S ≥ 10μJy at the phase centre of the proposed SKA1-MID baseline configuration, adopting 12 frequency channels in the band 950 - 1190 MHz. Weak lensing shear measurements from a population of galaxies with realistic flux and scalelength distributions are obtained after natural gridding of the raw visibilities. Shear measurements are expected to be affected by `noise bias': we estimate the bias in the method as a function of signal-to-noise ratio (SNR). We obtain additive and multiplicative bias values that are comparable to SKA1 requirements for SNR > 18 and SNR > 30, respectively. The multiplicative bias for SNR >10 is comparable to that found in ground-based optical surveys such as CFHTLenS, and we anticipate that similar shear measurement calibration strategies to those used for optical surveys may be used to good effect in the analysis of SKA radio interferometer data.
LoCuSS: weak-lensing mass calibration of galaxy clusters
NASA Astrophysics Data System (ADS)
Okabe, Nobuhiro; Smith, Graham P.
2016-10-01
We present weak-lensing mass measurements of 50 X-ray luminous galaxy clusters at 0.15 ≤ z ≤ 0.3, based on uniform high-quality observations with Suprime-Cam mounted on the 8.2-m Subaru telescope. We pay close attention to possible systematic biases, aiming to control them at the ≲4 per cent level. The dominant source of systematic bias in weak-lensing measurements of the mass of individual galaxy clusters is contamination of background galaxy catalogues by faint cluster and foreground galaxies. We extend our conservative method for selecting background galaxies with (V - i') colours redder than the red sequence of cluster members to use a colour-cut that depends on cluster-centric radius. This allows us to define background galaxy samples that suffer ≤1 per cent contamination, and comprise 13 galaxies per square arcminute. Thanks to the purity of our background galaxy catalogue, the largest systematic that we identify in our analysis is a shape measurement bias of 3 per cent, that we measure using simulations that probe weak shears up to g = 0.3. Our individual cluster mass and concentration measurements are in excellent agreement with predictions of the mass-concentration relation. Equally, our stacked shear profile is in excellent agreement with the Navarro Frenk and White profile. Our new Local Cluster Substructure Survey mass measurements are consistent with the Canadian Cluster Cosmology Project and Cluster Lensing And Supernova Survey with Hubble surveys, and in tension with the Weighing the Giants at ˜1σ-2σ significance. Overall, the consensus at z ≤ 0.3 that is emerging from these complementary surveys represents important progress for cluster mass calibration, and augurs well for cluster cosmology.
A new model to predict weak-lensing peak counts. II. Parameter constraint strategies
NASA Astrophysics Data System (ADS)
Lin, Chieh-An; Kilbinger, Martin
2015-11-01
Context. Peak counts have been shown to be an excellent tool for extracting the non-Gaussian part of the weak lensing signal. Recently, we developed a fast stochastic forward model to predict weak-lensing peak counts. Our model is able to reconstruct the underlying distribution of observables for analysis. Aims: In this work, we explore and compare various strategies for constraining a parameter using our model, focusing on the matter density Ωm and the density fluctuation amplitude σ8. Methods: First, we examine the impact from the cosmological dependency of covariances (CDC). Second, we perform the analysis with the copula likelihood, a technique that makes a weaker assumption than does the Gaussian likelihood. Third, direct, non-analytic parameter estimations are applied using the full information of the distribution. Fourth, we obtain constraints with approximate Bayesian computation (ABC), an efficient, robust, and likelihood-free algorithm based on accept-reject sampling. Results: We find that neglecting the CDC effect enlarges parameter contours by 22% and that the covariance-varying copula likelihood is a very good approximation to the true likelihood. The direct techniques work well in spite of noisier contours. Concerning ABC, the iterative process converges quickly to a posterior distribution that is in excellent agreement with results from our other analyses. The time cost for ABC is reduced by two orders of magnitude. Conclusions: The stochastic nature of our weak-lensing peak count model allows us to use various techniques that approach the true underlying probability distribution of observables, without making simplifying assumptions. Our work can be generalized to other observables where forward simulations provide samples of the underlying distribution.
NASA Astrophysics Data System (ADS)
Jauzac, Mathilde; Jullo, Eric; Kneib, Jean-Paul; Ebeling, Harald; Leauthaud, Alexie; Ma, Cheng-Jiun; Limousin, Marceau; Massey, Richard; Richard, Johan
2012-11-01
We report the first weak lensing detection of a large-scale filament funnelling matter on to the core of the massive galaxy cluster MACS J0717.5+3745. Our analysis is based on a mosaic of 18 multipassband images obtained with the Advanced Camera for Surveys aboard the Hubble Space Telescope, covering an area of ˜10 × 20 arcmin2. We use a weak lensing pipeline developed for the Cosmic Evolution Survey, modified for the analysis of galaxy clusters, to produce a weak lensing catalogue. A mass map is then computed by applying a weak gravitational lensing multiscale reconstruction technique designed to describe irregular mass distributions such as the one investigated here. We test the resulting mass map by comparing the mass distribution inferred for the cluster core with the one derived from strong lensing constraints and find excellent agreement. Our analysis detects the MACS J0717.5+3745 filament within the 3σ detection contour of the lensing mass reconstruction, and underlines the importance of filaments for theoretical and numerical models of the mass distribution in the cosmic web. We measure the filament's projected length as ˜4.5 h74-1 Mpc, and its mean density as (2.92 ± 0.66) × 108 h74 M⊙ kpc-2. Combined with the redshift distribution of galaxies obtained after an extensive spectroscopic follow-up in the area, we can rule out any projection effect resulting from the chance alignment on the sky of unrelated galaxy group-scale structures. Assuming plausible constraints concerning the structure's geometry based on its galaxy velocity field, we construct a three-dimensional (3D) model of the large-scale filament. Within this framework, we derive the 3D length of the filament to be 18 h74-1 Mpc. The filament's deprojected density in terms of the critical density of the Universe is measured as (206 ± 46) ρcrit, a value that lies at the very high end of the range predicted by numerical simulations. Finally, we study the distribution of stellar mass in the
Gravitational lensing effects in a time-variable cosmological 'constant' cosmology
NASA Technical Reports Server (NTRS)
Ratra, Bharat; Quillen, Alice
1992-01-01
A scalar field phi with a potential V(phi) varies as phi exp -alpha(alpha is greater than 0) has an energy density, behaving like that of a time-variable cosmological 'constant', that redshifts less rapidly than the energy densities of radiation and matter, and so might contribute significantly to the present energy density. We compute, in this spatially flat cosmology, the gravitational lensing optical depth, and the expected lens redshift distribution for fixed source redshift. We find, for the values of alpha of about 4 and baryonic density parameter Omega of about 0.2 consistent with the classical cosmological tests, that the optical depth is significantly smaller than that in a constant-Lambda model with the same Omega. We also find that the redshift of the maximum of the lens distribution falls between that in the constant-Lambda model and that in the Einstein-de Sitter model.
Mediavilla, E.; Lopez, P.; Gonzalez-Morcillo, C.; Jimenez-Vicente, J.
2011-11-01
We derive an exact solution (in the form of a series expansion) to compute gravitational lensing magnification maps. It is based on the backward gravitational lens mapping of a partition of the image plane in polygonal cells (inverse polygon mapping, IPM), not including critical points (except perhaps at the cell boundaries). The zeroth-order term of the series expansion leads to the method described by Mediavilla et al. The first-order term is used to study the error induced by the truncation of the series at zeroth order, explaining the high accuracy of the IPM even at this low order of approximation. Interpreting the Inverse Ray Shooting (IRS) method in terms of IPM, we explain the previously reported N {sup -3/4} dependence of the IRS error with the number of collected rays per pixel. Cells intersected by critical curves (critical cells) transform to non-simply connected regions with topological pathologies like auto-overlapping or non-preservation of the boundary under the transformation. To define a non-critical partition, we use a linear approximation of the critical curve to divide each critical cell into two non-critical subcells. The optimal choice of the cell size depends basically on the curvature of the critical curves. For typical applications in which the pixel of the magnification map is a small fraction of the Einstein radius, a one-to-one relationship between the cell and pixel sizes in the absence of lensing guarantees both the consistence of the method and a very high accuracy. This prescription is simple but very conservative. We show that substantially larger cells can be used to obtain magnification maps with huge savings in computation time.
Constraints on the identity of the dark matter from strong gravitational lenses
NASA Astrophysics Data System (ADS)
Li, Ran; Frenk, Carlos S.; Cole, Shaun; Gao, Liang; Bose, Sownak; Hellwing, Wojciech A.
2016-07-01
The cold dark matter (CDM) cosmological model unambiguously predicts that a large number of haloes should survive as subhaloes when they are accreted into a larger halo. The CDM model would be ruled out if such substructures were shown not to exist. By contrast, if the dark matter consists of Warm Dark Matter (WDM) particles, then below a threshold mass that depends on the particle mass far fewer substructures would be present. Finding subhaloes below a certain mass would then rule out warm particle masses below some value. Strong gravitational lensing provides a clean method to measure the subhalo mass function through distortions in the structure of Einstein rings and giant arcs. Using mock lensing observations constructed from high-resolution N-body simulations, we show that measurements of approximately 100 strong lens systems with a detection limit of Mlow = 107 h-1 M⊙ would clearly distinguish CDM from WDM in the case where this consists of 7 keV sterile neutrinos such as those that might be responsible for the 3.5 keV X-ray emission line recently detected in galaxies and clusters.
First gravitational lensing mass estimate of a damped Lyman α galaxy at z = 2.2
NASA Astrophysics Data System (ADS)
Grillo, C.; Fynbo, J. P. U.
2014-03-01
We present the first lensing total mass estimate of a galaxy, at redshift 2.207, that acts as a gravitational deflector and damped Lyman α absorber on the background QSO SDSS J1135-0010, at redshift 2.888. The remarkably small projected distance, or impact parameter, between the lens and the source has been estimated to be 0.8 ± 0.1 kpc in a recent work. By exploiting the Sloan Digital Sky Survey data base, we establish a likely lensing magnification signal in the photometry of the QSO. This is determined to be 2.2 mag brighter (or eight times more luminous) than the median QSO at comparable redshifts. We describe the total mass distribution of the lens galaxy with a one-component singular isothermal sphere model and contrast the values of the observed and model-predicted magnification factors. For the former, we use conservatively the photometric data of the 95 per cent of the available distant QSO population. We estimate that the values of the lens effective velocity dispersion and two-dimensional total mass, projected within a cylinder with radius equal to the impact parameter, are included between 60 and 170 km s-1 and 2.1 × 109 and 1.8 × 1010 M⊙, respectively. We conclude by remarking that analyses of this kind are crucial to exploring the relation between the luminous and dark-matter components of galaxies in the high-redshift Universe.
MULTIPOLE GRAVITATIONAL LENSING AND HIGH-ORDER PERTURBATIONS ON THE QUADRUPOLE LENS
Chu, Z.; Lin, W. P.; Li, G. L.; Kang, X. E-mail: linwp@shao.ac.cn
2013-03-10
An arbitrary surface mass density of the gravitational lens can be decomposed into multipole components. We simulate the ray tracing for the multipolar mass distribution of the generalized Singular Isothermal Sphere model based on deflection angles, which are analytically calculated. The magnification patterns in the source plane are then derived from an inverse shooting technique. As has been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses this kind of overlapping caustics, the image numbers change by {+-}4, rather than {+-}2. There are two kinds of caustic images. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4, and 5 mode components and found that one, two, and three butterfly or swallowtail singularities can be produced, respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails make contact, then eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.
Strong Gravitational Lensing as a Tool to Investigate the Structure of Jets at High Energies
NASA Astrophysics Data System (ADS)
Barnacka, Anna; Geller, Margaret J.; Dell'Antonio, Ian P.; Benbow, Wystan
2014-06-01
The components of blazar jets that emit radiation span a factor of 1010 in scale. The spatial structure of these emitting regions depends on the observed energy. Photons emitted at different sites cross the lens plane at different distances from the mass-weighted center of the lens. Thus there are differences in magnification ratios and time delays between the images of lensed blazars observed at different energies. When the lens structure and redshift are known from optical observations, these constraints can elucidate the structure of the source at high energies. At these energies, current technology is inadequate to resolve these sources, and the observed light curve is thus the sum of the images. Durations of γ-ray flares are short compared with typical time delays; thus both the magnification ratio and the time delay can be measured for the delayed counterparts. These measurements are a basis for localizing the emitting region along the jet. To demonstrate the power of strong gravitational lensing, we build a toy model based on the best studied and the nearest relativistic jet M87.
Strong gravitational lensing as a tool to investigate the structure of jets at high energies
Barnacka, Anna; Geller, Margaret J.; Benbow, Wystan; Dell'antonio, Ian P.
2014-06-20
The components of blazar jets that emit radiation span a factor of 10{sup 10} in scale. The spatial structure of these emitting regions depends on the observed energy. Photons emitted at different sites cross the lens plane at different distances from the mass-weighted center of the lens. Thus there are differences in magnification ratios and time delays between the images of lensed blazars observed at different energies. When the lens structure and redshift are known from optical observations, these constraints can elucidate the structure of the source at high energies. At these energies, current technology is inadequate to resolve these sources, and the observed light curve is thus the sum of the images. Durations of γ-ray flares are short compared with typical time delays; thus both the magnification ratio and the time delay can be measured for the delayed counterparts. These measurements are a basis for localizing the emitting region along the jet. To demonstrate the power of strong gravitational lensing, we build a toy model based on the best studied and the nearest relativistic jet M87.
Visualizing the gravitational lensing and vortex and tendex lines of colliding black holes
NASA Astrophysics Data System (ADS)
Khan, Haroon; Lovelace, Geoffery; SXS Collaboration
2016-03-01
Gravitational waves (GW's) are ripples of space and time that are created when the universe unleashes its violent nature in the presence of strong gravity. Merging black holes (BH) are one of the most promising sources of GW's. In order to detect and physically study the GW's emitted by merging BH with ground based detectors such as Advanced LIGO, we must accurately predict how the waveforms look and behave. This can only be done by numerically simulating BH mergers on supercomputers, because all analytical approximations fail near the time of merger. This poster focuses on using these simulations to answer the question of ``What do merging BH look like''? I will present visualizations made using the Spectral Einstein Code (SpEC) and in particular a raytracing lensing code, developed by the SXS Lensing team, that shows how merging BH bend the light around them. I will also present visualizations of the vortex and tendex lines for a binary BH system, using SpEC. Vortex lines describe how an observer will be twisted by the BH and the tendex lines describe how much an observer would be stretched and squeezed. I am exploring how these lines change with time.
Weak Lensing Calibrated M-T Scaling Relation of Galaxy Groups in the COSMOS Fieldsstarf
NASA Astrophysics Data System (ADS)
Kettula, K.; Finoguenov, A.; Massey, R.; Rhodes, J.; Hoekstra, H.; Taylor, J. E.; Spinelli, P. F.; Tanaka, M.; Ilbert, O.; Capak, P.; McCracken, H. J.; Koekemoer, A.
2013-11-01
The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10 galaxy groups in the COSMOS field, combined with 55 higher-mass clusters from the literature. The COSMOS data includes Hubble Space Telescope imaging and redshift measurements of 46 source galaxies per arcminute2, enabling us to perform unique weak lensing measurements of low-mass systems. Our sample extends the mass range of the lensing calibrated M-T relation an order of magnitude lower than any previous study, resulting in a power-law slope of 1.48^{+0.13}_{-0.09}. The slope is consistent with the self-similar model, predictions from simulations, and observations of clusters. However, X-ray observations relying on mass measurements derived under the assumption of hydrostatic equilibrium have indicated that masses at group scales are lower than expected. Both simulations and observations suggest that hydrostatic mass measurements can be biased low. Our external weak lensing masses provide the first observational support for hydrostatic mass bias at group level, showing an increasing bias with decreasing temperature and reaching a level of 30%-50% at 1 keV. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555. Also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which
Cosmic discordance: are Planck CMB and CFHTLenS weak lensing measurements out of tune?
MacCrann, Niall; Zuntz, Joe; Bridle, Sarah; Jain, Bhuvnesh; Becker, M. R.
2015-06-17
We examine the level of agreement between low-redshift weak lensing data and the cosmic microwave background using measurements from the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) and Planck+Wilkinson Microwave Anisotropy Probe (WMAP) polarization. We perform an independent analysis of the CFHTLenS six bin tomography results of Heymans et al. We extend their systematics treatment and find the cosmological constraints to be relatively robust to the choice of non-linear modelling, extension to the intrinsic alignment model and inclusion of baryons. We find that when marginalized in the Ωm–σ8 plane, the 95 percent confidence contours of CFHTLenS and Planck+WMAP only just touch, but the discrepancy is less significant in the full six-dimensional parameter space of Λ cold dark matter (ΛCDM). Allowing a massive active neutrino or tensor modes does not significantly resolve the tension in the full n-dimensional parameter space. Our results differ from some in the literature because we use the full tomographic information in the weak lensing data and marginalize over systematics. We note that adding a sterile neutrino to ΛCDM brings the 2D marginalized contours into greater overlap, mainly due to the extra effective number of neutrino species, which we find to be 0.88 ± 0.43 (68 per cent) greater than standard on combining the data sets. We discuss why this is not a completely satisfactory resolution, leaving open the possibility of other new physics or observational systematics as contributing factors. We provide updated cosmology fitting functions for the CFHTLenS constraints and discuss the differences from ones used in the literature.
Cosmic discordance: are Planck CMB and CFHTLenS weak lensing measurements out of tune?
MacCrann, Niall; Zuntz, Joe; Bridle, Sarah; Jain, Bhuvnesh; Becker, M. R.
2015-06-17
We examine the level of agreement between low-redshift weak lensing data and the cosmic microwave background using measurements from the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) and Planck+Wilkinson Microwave Anisotropy Probe (WMAP) polarization. We perform an independent analysis of the CFHTLenS six bin tomography results of Heymans et al. We extend their systematics treatment and find the cosmological constraints to be relatively robust to the choice of non-linear modelling, extension to the intrinsic alignment model and inclusion of baryons. We find that when marginalized in the Ωm–σ8 plane, the 95 percent confidence contours of CFHTLenS and Planck+WMAP only just touch, butmore » the discrepancy is less significant in the full six-dimensional parameter space of Λ cold dark matter (ΛCDM). Allowing a massive active neutrino or tensor modes does not significantly resolve the tension in the full n-dimensional parameter space. Our results differ from some in the literature because we use the full tomographic information in the weak lensing data and marginalize over systematics. We note that adding a sterile neutrino to ΛCDM brings the 2D marginalized contours into greater overlap, mainly due to the extra effective number of neutrino species, which we find to be 0.88 ± 0.43 (68 per cent) greater than standard on combining the data sets. We discuss why this is not a completely satisfactory resolution, leaving open the possibility of other new physics or observational systematics as contributing factors. We provide updated cosmology fitting functions for the CFHTLenS constraints and discuss the differences from ones used in the literature.« less
Selecting background galaxies in weak-lensing analysis of galaxy clusters
NASA Astrophysics Data System (ADS)
Formicola, I.; Radovich, M.; Meneghetti, M.; Mazzotta, P.; Grado, A.; Giocoli, C.
2016-05-01
In this paper, we present a new method to select the faint, background galaxies used to derive the mass of galaxy clusters by weak lensing. The method is based on the simultaneous analysis of the shear signal, that should be consistent with zero for the foreground, unlensed galaxies, and of the colours of the galaxies: photometric data from the COSMic evOlution Survey are used to train the colour selection. In order to validate this methodology, we test it against a set of state-of-the-art image simulations of mock galaxy clusters in different redshift [0.23-0.45] and mass [0.5-1.55 × 1015 M⊙] ranges, mimicking medium-deep multicolour imaging observations [e.g. Subaru, Large Binocular Telescope]. The performance of our method in terms of contamination by unlensed sources is comparable to a selection based on photometric redshifts, which however requires a good spectral coverage and is thus much more observationally demanding. The application of our method to simulations gives an average ratio between estimated and true masses of ˜0.98 ± 0.09. As a further test, we finally apply our method to real data, and compare our results with other weak-lensing mass estimates in the literature: for this purpose, we choose the cluster Abell 2219 (z = 0.228), for which multiband (BVRi) data are publicly available.
Constraining dark energy evolution with gravitational lensing by large scale structures
Benabed, Karim; Waerbeke, Ludovic van
2004-12-15
We study the sensitivity of weak lensing by large scale structures as a probe of the evolution of dark energy. We explore a two-parameters model of dark energy evolution, inspired by tracking quintessence models. To this end, we compute the likelihood of a few fiducial models with varying and nonvarying equation of states. For the different models, we investigate the dark energy parameter degeneracies with the mass power spectrum shape {gamma}, normalization {sigma}{sub 8}, and with the matter mean density {omega}{sub M}. We find that degeneracies are such that weak lensing turns out to be a good probe of dark energy evolution, even with limited knowledge on {gamma}, {sigma}{sub 8}, and {omega}{sub M}. This result is a strong motivation for performing large scale structure simulations beyond the simple constant dark energy models, in order to calibrate the nonlinear regime accurately. Such calibration could then be used for any large scale structure tests of dark energy evolution. Prospective for the Canada France Hawaii Telescope Legacy Survey and Super-Novae Acceleration Probe are given. These results complement nicely the cosmic microwave background and supernovae constraints.
Okura, Yuki; Futamase, Toshifumi E-mail: tof@astr.tohoku.ac.jp
2013-07-01
This is the third paper on the improvement of systematic errors in weak lensing analysis using an elliptical weight function, referred to as E-HOLICs. In previous papers, we succeeded in avoiding errors that depend on the ellipticity of the background image. In this paper, we investigate the systematic error that depends on the signal-to-noise ratio of the background image. We find that the origin of this error is the random count noise that comes from the Poisson noise of sky counts. The random count noise makes additional moments and centroid shift error, and those first-order effects are canceled in averaging, but the second-order effects are not canceled. We derive the formulae that correct this systematic error due to the random count noise in measuring the moments and ellipticity of the background image. The correction formulae obtained are expressed as combinations of complex moments of the image, and thus can correct the systematic errors caused by each object. We test their validity using a simulated image and find that the systematic error becomes less than 1% in the measured ellipticity for objects with an IMCAT significance threshold of {nu} {approx} 11.7.
NASA Astrophysics Data System (ADS)
Neronov, A.; Vovk, Ie.
2016-01-01
We show that observation of the time-dependent effect of microlensing of relativistically broadened emission lines (such as e.g. the Fe K α line in x rays) in strongly lensed quasars could provide data on celestial mechanics of circular orbits in the direct vicinity of the horizon of supermassive black holes. This information can be extracted from the observation of evolution of the red/blue edge of the magnified line just before and just after the period of crossing of the innermost stable circular orbit by the microlensing caustic. The functional form of this evolution is insensitive to numerous astrophysical parameters of the accreting black hole and of the microlensing caustics network system (as opposed to the evolution of the full line spectrum). Measurement of the temporal evolution of the red/blue edge could provide a precision measurement of the radial dependence of the gravitational redshift and of velocity of the circular orbits, down to the innermost stable circular orbit. These measurements could be used to discriminate between general relativity and alternative models of the relativistic gravity in which the dynamics of photons and massive bodies orbiting the gravitating center is different from that of the geodesics in the Schwarzschild or Kerr space-times.
Morokuma, Tomoki; Inada, Naohisa; Oguri, Masamune; Ichikawa, Shin-Ichi; Kawano, Yozo; Tokita, Kouichi; Kayo, Issha; Hall, Patrick B.; Kochanek, Christopher S.; Richards, Gordon T.; York, Donald G.; Schneider, Donald P.; /Tokyo U., Inst. Astron. /KIPAC, Menlo Park /Princeton U. /Tokyo, Astron. Observ. /Nagoya U. /York U., Canada /Ohio State U., Dept. Astron. /Johns Hopkins U. /Drexel U. /Chicago U., Astron. Astrophys. Ctr. /Chicago U., EFI /Penn State U., Astron. Astrophys.
2006-09-28
We report the discovery of the two-image gravitationally lensed quasar SDSS J133222.62+034739.9 (SDSS J1332+0347) with an image separation of {Delta}{theta} = 1.14''. This system consists of a source quasar at z{sub s} = 1.445 and a lens galaxy at z{sub l} = 0.191. The agreement of the luminosity, ellipticity and position angle of the lens galaxy with those expected from lens model confirms the lensing hypothesis.
Berge, Joel; Refregier, Alexandre
2010-04-01
We compare the efficiency of weak-lensing-selected galaxy cluster counts and of the weak-lensing bispectrum at capturing non-Gaussian features in the dark matter distribution. We use the halo model to compute the weak-lensing power spectrum, the bispectrum, and the expected number of detected clusters, and derive constraints on cosmological parameters for a large, low systematic weak-lensing survey, by focusing on the OMEGA{sub m}-sigma{sub 8} plane and on the dark energy equation of state. We separate the power spectrum into the resolved and the unresolved parts of the data, the resolved part being defined as detected clusters, and the unresolved part as the rest of the field. We consider four kinds of clusters counts, taking into account different amount of information: signal-to-noise ratio peak counts, counts as a function of clusters' mass, counts as a function of clusters' redshift, and counts as a function of clusters' mass and redshift. We show that when combined with the power spectrum, those four kinds of counts provide similar constraints, thus allowing one to perform the most direct counts, signal-to-noise peak counts, and get percent level constraints on cosmological parameters. We show that the weak-lensing bispectrum gives constraints comparable to those given by the power spectrum and captures non-Gaussian features as well as cluster counts, its combination with the power spectrum giving errors on cosmological parameters that are similar to, if not marginally smaller than, those obtained when combining the power spectrum with cluster counts. We finally note that in order to reach its potential, the weak-lensing bispectrum must be computed using all triangle configurations, as equilateral triangles alone do not provide useful information. The appendices summarize the halo model, and the way the power spectrum and bispectrum are computed in this framework.
NASA Astrophysics Data System (ADS)
Corless, Virginia L.; King, Lindsay J.; Clowe, Douglas
2009-03-01
Measuring the three-dimensional (3D) distribution of mass on galaxy cluster scales is a crucial test of the Λ cold dark matter (ΛCDM) model, providing constraints on the nature of dark matter. Recent work investigating mass distributions of individual galaxy clusters (e.g. Abell1689) using weak and strong gravitational lensing has revealed potential inconsistencies between the predictions of structure formation models relating halo mass to concentration and those relationships as measured in massive clusters. However, such analyses employ simple spherical halo models while a growing body of work indicates that triaxial 3D halo structure is both common and important in parameter estimates. We recently introduced a Markov Chain Monte Carlo method to fit fully triaxial models to weak lensing data that gives parameter and error estimates that fully incorporate the true shape uncertainty present in nature. In this paper we apply that method to weak lensing data obtained with the ESO/MPG Wide Field Imager for galaxy clusters A1689, A1835 and A2204, under a range of Bayesian priors derived from theory and from independent X-ray and strong lensing observations. For Abell1689, using a simple strong lensing prior we find marginalized mean parameter values M200 = (0.83 +/- 0.16) × 1015h-1Msolar and C = 12.2 +/- 6.7, which are marginally consistent with the mass-concentration relation predicted in ΛCDM. With the same strong lensing prior we find for Abell1835 M200 = (0.67 +/- 0.22) × 1015h-1Msolar and C = 7.1+10.6-7.1, and using weak lensing information alone find for Abell2204 M200 = (0.50 +/- 0.19) × 1015h-1Msolar and C = 7.1 +/- 6.2. The large error contours that accompany our triaxial parameter estimates more accurately represent the true extent of our limited knowledge of the structure of galaxy cluster lenses, and make clear the importance of combining many constraints from other theoretical, lensing (strong, flexion), or other observational (X-ray, Sunyaev
Self-calibration of photometric redshift scatter in weak-lensing surveys
Zhang, Pengjie; Pen, Ue -Li; Bernstein, Gary
2010-06-11
Photo-z errors, especially catastrophic errors, are a major uncertainty for precision weak lensing cosmology. We find that the shear-(galaxy number) density and density-density cross correlation measurements between photo-z bins, available from the same lensing surveys, contain valuable information for self-calibration of the scattering probabilities between the true-z and photo-z bins. The self-calibration technique we propose does not rely on cosmological priors nor parameterization of the photo-z probability distribution function, and preserves all of the cosmological information available from shear-shear measurement. We estimate the calibration accuracy through the Fisher matrix formalism. We find that, for advanced lensing surveys such as the planned stage IV surveys, the rate of photo-z outliers can be determined with statistical uncertainties of 0.01-1% for z < 2 galaxies. Among the several sources of calibration error that we identify and investigate, the galaxy distribution bias is likely the most dominant systematic error, whereby photo-z outliers have different redshift distributions and/or bias than non-outliers from the same bin. This bias affects all photo-z calibration techniques based on correlation measurements. As a result, galaxy bias variations of O(0.1) produce biases in photo-z outlier rates similar to the statistical errors of our method, so this galaxy distribution bias may bias the reconstructed scatters at several-σ level, but is unlikely to completely invalidate the self-calibration technique.
Self-calibration of photometric redshift scatter in weak-lensing surveys
Zhang, Pengjie; Pen, Ue -Li; Bernstein, Gary
2010-06-11
Photo-z errors, especially catastrophic errors, are a major uncertainty for precision weak lensing cosmology. We find that the shear-(galaxy number) density and density-density cross correlation measurements between photo-z bins, available from the same lensing surveys, contain valuable information for self-calibration of the scattering probabilities between the true-z and photo-z bins. The self-calibration technique we propose does not rely on cosmological priors nor parameterization of the photo-z probability distribution function, and preserves all of the cosmological information available from shear-shear measurement. We estimate the calibration accuracy through the Fisher matrix formalism. We find that, for advanced lensing surveys such as themore » planned stage IV surveys, the rate of photo-z outliers can be determined with statistical uncertainties of 0.01-1% for z < 2 galaxies. Among the several sources of calibration error that we identify and investigate, the galaxy distribution bias is likely the most dominant systematic error, whereby photo-z outliers have different redshift distributions and/or bias than non-outliers from the same bin. This bias affects all photo-z calibration techniques based on correlation measurements. As a result, galaxy bias variations of O(0.1) produce biases in photo-z outlier rates similar to the statistical errors of our method, so this galaxy distribution bias may bias the reconstructed scatters at several-σ level, but is unlikely to completely invalidate the self-calibration technique.« less
Impact of spurious shear on cosmological parameter estimates from weak lensing observables
Petri, Andrea; May, Morgan; Haiman, Zoltán; Kratochvil, Jan M.
2014-12-30
We research, residual errors in shear measurements, after corrections for instrument systematics and atmospheric effects, can impact cosmological parameters derived from weak lensing observations. Here we combine convergence maps from our suite of ray-tracing simulations with random realizations of spurious shear. This allows us to quantify the errors and biases of the triplet (Ωm,w,σ8) derived from the power spectrum (PS), as well as from three different sets of non-Gaussian statistics of the lensing convergence field: Minkowski functionals (MFs), low-order moments (LMs), and peak counts (PKs). Our main results are as follows: (i) We find an order of magnitude smaller biasesmore » from the PS than in previous work. (ii) The PS and LM yield biases much smaller than the morphological statistics (MF, PK). (iii) For strictly Gaussian spurious shear with integrated amplitude as low as its current estimate of σsys2 ≈ 10-7, biases from the PS and LM would be unimportant even for a survey with the statistical power of Large Synoptic Survey Telescope. However, we find that for surveys larger than ≈ 100 deg2, non-Gaussianity in the noise (not included in our analysis) will likely be important and must be quantified to assess the biases. (iv) The morphological statistics (MF, PK) introduce important biases even for Gaussian noise, which must be corrected in large surveys. The biases are in different directions in (Ωm,w,σ8) parameter space, allowing self-calibration by combining multiple statistics. Our results warrant follow-up studies with more extensive lensing simulations and more accurate spurious shear estimates.« less
Impact of spurious shear on cosmological parameter estimates from weak lensing observables
Petri, Andrea; May, Morgan; Haiman, Zoltán; Kratochvil, Jan M.
2014-12-30
We research, residual errors in shear measurements, after corrections for instrument systematics and atmospheric effects, can impact cosmological parameters derived from weak lensing observations. Here we combine convergence maps from our suite of ray-tracing simulations with random realizations of spurious shear. This allows us to quantify the errors and biases of the triplet (Ω_{m},w,σ_{8}) derived from the power spectrum (PS), as well as from three different sets of non-Gaussian statistics of the lensing convergence field: Minkowski functionals (MFs), low-order moments (LMs), and peak counts (PKs). Our main results are as follows: (i) We find an order of magnitude smaller biases from the PS than in previous work. (ii) The PS and LM yield biases much smaller than the morphological statistics (MF, PK). (iii) For strictly Gaussian spurious shear with integrated amplitude as low as its current estimate of σ_{sys}^{2} ≈ 10^{-7}, biases from the PS and LM would be unimportant even for a survey with the statistical power of Large Synoptic Survey Telescope. However, we find that for surveys larger than ≈ 100 deg^{2}, non-Gaussianity in the noise (not included in our analysis) will likely be important and must be quantified to assess the biases. (iv) The morphological statistics (MF, PK) introduce important biases even for Gaussian noise, which must be corrected in large surveys. The biases are in different directions in (Ωm,w,σ8) parameter space, allowing self-calibration by combining multiple statistics. Our results warrant follow-up studies with more extensive lensing simulations and more accurate spurious shear estimates.
Weak lensing study of 16 DAFT/FADA clusters: Substructures and filaments
NASA Astrophysics Data System (ADS)
Martinet, Nicolas; Clowe, Douglas; Durret, Florence; Adami, Christophe; Acebrón, Ana; Hernandez-García, Lorena; Márquez, Isabel; Guennou, Loic; Sarron, Florian; Ulmer, Mel
2016-05-01
While our current cosmological model places galaxy clusters at the nodes of a filament network (the cosmic web), we still struggle to detect these filaments at high redshifts. We perform a weak lensing study for a sample of 16 massive, medium-high redshift (0.4
Schlaufman, K
2004-10-11
Atmospheric turbulence can mimic the effects of weak lensing in astronomical images, so it is necessary to understand to what degree turbulence affects weak lensing measurements. In particular, we studied the ellipticity induced upon the point-spread functions (PSFs) of a grid of simulated stars separated by distances (d {approx} 1{prime}) that will be characteristic of Large Synoptic Survey Telescope (LSST) images. We observe that atmospherically induced ellipticity changes on small scales (d < 0.5{prime}) and use linear interpolation between stars separated by d = 0.5{prime} to determine the induced ellipticity everywhere in the field-of-view.
The Canadian Cluster Comparison Project: weak lensing masses and SZ scaling relations
NASA Astrophysics Data System (ADS)
Hoekstra, Henk; Mahdavi, Andisheh; Babul, Arif; Bildfell, Chris
2012-12-01
The Canadian Cluster Comparison Project is a comprehensive multi-wavelength survey targeting 50 massive X-ray selected clusters of galaxies to examine baryonic tracers of cluster mass and to probe the cluster-to-cluster variation in the thermal properties of the hot intra-cluster medium. In this paper we present the weak lensing masses, based on the analysis of deep wide field imaging data obtained using the Canada-France-Hawaii Telescope. The final sample includes two additional clusters that were located in the field-of-view. We take these masses as our reference for the comparison of cluster properties at other wavelengths. In this paper we limit the comparison to published measurements of the Sunyaev-Zel'dovich effect. We find that this signal correlates well with the projected lensing mass, with an intrinsic scatter of 12 ± 5 per cent at ˜r2500, demonstrating it is an excellent proxy for cluster mass. Based on observations from the Canada-France-Hawaii Telescope, which is operated by the National Research Council of Canada, le Centre National de la Recherche Scientifique and the University of Hawaii.
On the bias of the distance-redshift relation from gravitational lensing
NASA Astrophysics Data System (ADS)
Kaiser, Nick; Peacock, John A.
2016-02-01
A long-standing question in cosmology is whether gravitational lensing changes the distance-redshift relation D (z) or the mean flux density of sources. Interest in this has been rekindled by recent studies in non-linear relativistic perturbation theory that find biases in both the area of a surface of constant redshift and in the mean distance to this surface, with a fractional bias in both cases of the order of the mean squared convergence <κ2>. Any such area bias could alter cosmic microwave background (CMB) cosmology, and the corresponding bias in mean flux density could affect supernova cosmology. We show that the perturbation to the area of a surface of constant redshift is in reality much smaller, being of the order of the cumulative bending angle squared, or roughly a part-in-a-million effect. This validates the arguments of Weinberg that the mean magnification of sources is unity and of Kibble & Lieu that the mean direction-averaged inverse magnification is unity. It also validates the conventional treatment of CMB lensing. But the existence of a scatter in magnification will cause any non-linear function of these conserved quantities to be statistically biased. The fractional bias in such quantities is generally of order <κ2>, which is orders of magnitude larger than the area perturbation. Claims for large bias in area or flux density of sources appear to have resulted from misinterpretation of such effects: they do not represent a new non-Newtonian effect, nor do they invalidate standard cosmological analyses.
CoMaLit - III. Literature catalogues of weak lensing clusters of galaxies (LC2)
NASA Astrophysics Data System (ADS)
Sereno, Mauro
2015-07-01
The measurement of the mass of clusters of galaxies is crucial for their use in cosmology and astrophysics. Masses can be efficiently determined with weak lensing (WL) analyses. I compiled literature catalogues of WL clusters (LC2). Cluster identifiers, coordinates, and redshifts have been standardized. WL masses were reported to over-densities of 2500, 500, 200, and to the virial one in the reference ΛCDM model. Duplicate entries were carefully handled. I produced three catalogues: LC2-single, with 485 unique groups and clusters analysed with the single-halo model; LC2-substructure, listing substructures in complex systems; LC2-all, listing all the 822 WL masses found in the literature. The catalogues and future updates are publicly available at http://pico.bo.astro.it/˜sereno/CoMaLit/LC2/.
NASA Astrophysics Data System (ADS)
Errard, Josquin; Feeney, Stephen M.; Peiris, Hiranya V.; Jaffe, Andrew H.
2016-03-01
Recent results from the BICEP, Keck Array and Planck Collaborations demonstrate that Galactic foregrounds are an unavoidable obstacle in the search for evidence of inflationary gravitational waves in the cosmic microwave background (CMB) polarization. Beyond the foregrounds, the effect of lensing by intervening large-scale structure further obscures all but the strongest inflationary signals permitted by current data. With a plethora of ongoing and upcoming experiments aiming to measure these signatures, careful and self-consistent consideration of experiments' foreground- and lensing-removal capabilities is critical in obtaining credible forecasts of their performance. We investigate the capabilities of instruments such as Advanced ACTPol, BICEP3 and Keck Array, CLASS, EBEX10K, PIPER, Simons Array, SPT-3G and SPIDER, and projects as COrE+, LiteBIRD-ext, PIXIE and Stage IV, to clean contamination due to polarized synchrotron and dust from raw multi-frequency data, and remove lensing from the resulting co-added CMB maps (either using iterative CMB-only techniques or through cross-correlation with external data). Incorporating these effects, we present forecasts for the constraining power of these experiments in terms of inflationary physics, the neutrino sector, and dark energy parameters. Made publicly available through an online interface, this tool enables the next generation of CMB experiments to foreground-proof their designs, optimize their frequency coverage to maximize scientific output, and determine where cross-experimental collaboration would be most beneficial. We find that analyzing data from ground, balloon and space instruments in complementary combinations can significantly improve component separation performance, delensing, and cosmological constraints over individual datasets. In particular, we find that a combination of post-2020 ground- and space-based experiments could achieve constraints such as σ(r)~1.3×10-4, σ(nt)~0.03, σ( ns )~1.8×10
Bonnett, C.
2015-07-21
We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods { annz2, bpz calibrated against BCC-U fig simulations, skynet, and tpz { are analysed. For training, calibration, and testing of these methods, we also construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evalu-ated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-zs. From the galaxies in the DES SV shear catalogue, which have mean redshift 0.72 ±0.01 over the range 0:3 < z < 1:3, we construct three tomographic bins with means of z = {0.45; 0.67,1.00g}. These bins each have systematic uncertainties δ_{z} ≲ 0.05 in the mean of the fiducial skynet photo-z n(z). We propagate the errors in the redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of σ_{8} of approx. 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalog. We also found that further study of the potential impact of systematic differences on the critical surface density, Σ_{crit}, contained levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0:05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.
NASA Astrophysics Data System (ADS)
Clerkin, L.; Kirk, D.; Manera, M.; Lahav, O.; Abdalla, F.; Amara, A.; Bacon, D.; Chang, C.; Gaztañaga, E.; Hawken, A.; Jain, B.; Joachimi, B.; Vikram, V.; Abbott, T.; Allam, S.; Armstrong, R.; Benoit-Lévy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Carrasco Kind, M.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Melchior, P.; Miquel, R.; Nord, B.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.
2016-08-01
It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (κWL) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the Counts in Cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey (DES) Science Verification data over 139 deg2. We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirm that the galaxy density contrast distribution is well modeled by a lognormal PDF convolved with Poisson noise at angular scales from 10'- 40'(corresponding to physical scales of 3-10 Mpc). We note that as κWL is a weighted sum of the mass fluctuations along the line of sight, its PDF is expected to be only approximately lognormal. We find that the κWL distribution is well modeled by a lognormal PDF convolved with Gaussian shape noise at scales between 10'and 20', with a best-fit χ2/DOF of 1.11 compared to 1.84 for a Gaussian model, corresponding to p-values 0.35 and 0.07 respectively, at a scale of 10'. Above 20'a simple Gaussian model is sufficient. The joint PDF is also reasonably fitted by a bivariate lognormal. As a consistency check we compare the variances derived from the lognormal modelling with those directly measured via CiC. Our methods are validated against maps from the MICE Grand Challenge N-body simulation.
Resolving the High-energy Universe with Strong Gravitational Lensing: The Case of PKS 1830–211
NASA Astrophysics Data System (ADS)
Barnacka, Anna; Geller, Margaret J.; Dell’Antonio, Ian P.; Benbow, Wystan
2015-08-01
Gravitational lensing is a potentially powerful tool for elucidating the origin of gamma-ray emission from distant sources. Cosmic lenses magnify the emission from distant sources and produce time delays between mirage images. Gravitationally induced time delays depend on the position of the emitting regions in the source plane. The Fermi/LAT telescope continuously monitors the entire sky and detects gamma-ray flares, including those from gravitationally lensed blazars. Therefore, temporal resolution at gamma-ray energies can be used to measure these time delays, which, in turn, can be used to resolve the origin of the gamma-ray flares spatially. We provide a guide to the application and Monte Carlo simulation of three techniques for analyzing these unresolved light curves: the autocorrelation function, the double power spectrum, and the maximum peak method. We apply these methods to derive time delays from the gamma-ray light curve of the gravitationally lensed blazar PKS 1830–211. The result of temporal analysis combined with the properties of the lens from radio observations yield an improvement in spatial resolution at gamma-ray energies by a factor of 10,000. We analyze four active periods. For two of these periods the emission is consistent with origination from the core, and for the other two the data suggest that the emission region is displaced from the core by more than ∼1.5 kpc. For the core emission, the gamma-ray time delays, 23+/- 0.5 {days} and 19.7+/- 1.2 days, are consistent with the radio time delay of {26}-5+4 days.
NASA Astrophysics Data System (ADS)
Cooray, Asantha
2013-10-01
We propose WFC3 G102 and G141 grism spectral imaging of two gravitationally lensed dusty, starburst galaxies found with the 600 square degree Herschel-ATLAS survey. One galaxy is the brightest {both in far-IR at 250 micron and in near-IR in J/K-band}, while the second is the largest {11 arcsec on the sky} of the lensed sub-mm galaxies in a sample of 200 imaged with WFC3/F110W. The two galaxies are at redshifts that are optimal for grism observations with HST/WFC3. The lensing flux magnification and spatial enhancement makes them very unique for the study proposed hereand will increase the number of lensed galaxies imaged in spectral lines with WFC3 grisms to three from existing single serendipitous lens studied in HST-3D survey. With WFC3 grism spectra taken in a specific orientation to minimize foreground and lensing galaxy confusion we can map each of these galaxies in a variety of spatially-resolved spectral lines in the rest-frame optical, including impostant Balmer lines for studies on the interstellar medium. The grism spectra will allow us to determine the gas-phase metallicities of these two galaxies and to study the extinction of optically-thin regions compared to direct sub-mm emission seen in interferometric continuum images of optically thick dust in starbursting knots and clumps. With spatial resolution provided by gravitational lensing combined with HST/WFC3 resolution, we will be able to study the dependence of line ratios in high density/SFR regions to low dense diffuse environments.
The Shear Testing Programme 2: Factors affecting high-precision weak-lensing analyses
NASA Astrophysics Data System (ADS)
Massey, Richard; Heymans, Catherine; Bergé, Joel; Bernstein, Gary; Bridle, Sarah; Clowe, Douglas; Dahle, Håkon; Ellis, Richard; Erben, Thomas; Hetterscheidt, Marco; High, F. William; Hirata, Christopher; Hoekstra, Henk; Hudelot, Patrick; Jarvis, Mike; Johnston, David; Kuijken, Konrad; Margoniner, Vera; Mandelbaum, Rachel; Mellier, Yannick; Nakajima, Reiko; Paulin-Henriksson, Stephane; Peeples, Molly; Roat, Chris; Refregier, Alexandre; Rhodes, Jason; Schrabback, Tim; Schirmer, Mischa; Seljak, Uroš; Semboloni, Elisabetta; van Waerbeke, Ludovic
2007-03-01
The Shear Testing Programme (STEP) is a collaborative project to improve the accuracy and reliability of weak-lensing measurement, in preparation for the next generation of wide-field surveys. We review 16 current and emerging shear-measurement methods in a common language, and assess their performance by running them (blindly) on simulated images that contain a known shear signal. We determine the common features of algorithms that most successfully recover the input parameters. A desirable goal would be the combination of their best elements into one ultimate shear-measurement method. In this analysis, we achieve previously unattained discriminatory precision via a combination of more extensive simulations and pairs of galaxy images that have been rotated with respect to each other. That removes the otherwise overwhelming noise from their intrinsic ellipticities. Finally, the robustness of our simulation approach is confirmed by testing the relative calibration of methods on real data. Weak-lensing measurements have improved since the first STEP paper. Several methods now consistently achieve better than 2 per cent precision, and are still being developed. However, we can now distinguish all methods from perfect performance. Our main concern continues to be the potential for a multiplicative shear calibration bias: not least because this cannot be internally calibrated with real data. We determine which galaxy populations are responsible for bias and, by adjusting the simulated observing conditions, we also investigate the effects of instrumental and atmospheric parameters. The simulated point spread functions are not allowed to vary spatially, to avoid additional confusion from interpolation errors. We have isolated several previously unrecognized aspects of galaxy shape measurement, in which focused development could provide further progress towards the sub-per cent level of precision desired for future surveys. These areas include the suitable treatment of
Rapoport, Sharon; Onken, Christopher A.; Schmidt, Brian P.; Tucker, Brad E.; Wyithe, J. Stuart B.; Levan, Andrew J.
2012-08-01
Sixty percent of gamma-ray bursts (GRBs) reveal strong Mg II absorbing systems, which is a factor of {approx}2 times the rate seen along lines of sight to quasars. Previous studies argue that the discrepancy in the strong Mg II covering factor is most likely to be the result of either quasars being obscured due to dust or the consequence of many GRBs being strongly gravitationally lensed. We analyze observations of quasars that show strong foreground Mg II absorption. We find that GRB lines of sight pass closer to bright galaxies than would be expected for random lines of sight within the impact parameter expected for strong Mg II absorption. While this cannot be explained by obscuration in the GRB sample, it is a natural consequence of gravitational lensing. Upon examining the particular configurations of galaxies near a sample of GRBs with strong Mg II absorption, we find several intriguing lensing candidates. Our results suggest that lensing provides a viable contribution to the observed enhancement of strong Mg II absorption along lines of sight to GRBs, and we outline the future observations required to test this hypothesis conclusively.
Misawa, Toru; Inada, Naohisa; Oguri, Masamune; Gandhi, Poshak; Horiuchi, Takashi; Koyamada, Suzuka; Okamoto, Rina
2014-10-20
We study the geometry and the internal structure of the outflowing wind from the accretion disk of a quasar by observing multiple sightlines with the aid of strong gravitational lensing. Using Subaru/High Dispersion Spectrograph, we performed high-resolution (R ∼ 36,000) spectroscopic observations of images A and B of the gravitationally lensed quasar SDSS J1029+2623 (at z {sub em} ∼ 2.197) whose image separation angle, θ ∼ 22.''5, is the largest among those discovered so far. We confirm that the difference in absorption profiles in images A and B discovered by Misawa et al. has remained unchanged since 2010, implying the difference is not due to time variability of the absorption profiles over the delay between the images, Δt ∼ 744 days, but rather due to differences along the sightlines. We also discovered a time variation of C IV absorption strength in both images A and B due to a change in the ionization condition. If a typical absorber's size is smaller than its distance from the flux source by more than five orders of magnitude, it should be possible to detect sightline variations among images of other smaller separation, galaxy-scale gravitationally lensed quasars.
A demonstration of position angle-only weak lensing shear estimators on the GREAT3 simulations
NASA Astrophysics Data System (ADS)
Whittaker, Lee; Brown, Michael L.; Battye, Richard A.
2015-12-01
We develop and apply the position angle-only shear estimator of Whittaker, Brown & Battye to realistic galaxy images. This is done by demonstrating the method on the simulations of the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, which include contributions from anisotropic point spread functions (PSFs). We measure the position angles of the galaxies using three distinct methods - the integrated light method, quadrupole moments of surface brightness, and using model-based ellipticity measurements provided by IM3SHAPE. A weighting scheme is adopted to address biases in the position angle measurements which arise in the presence of an anisotropic PSF. Biases on the shear estimates, due to measurement errors on the position angles and correlations between the measurement errors and the true position angles, are corrected for using simulated galaxy images and an iterative procedure. The properties of the simulations are estimated using the deep field images provided as part of the challenge. A method is developed to match the distributions of galaxy fluxes and half-light radii from the deep fields to the corresponding distributions in the field of interest. We recover angle-only shear estimates with a performance close to current well-established model and moments-based methods for all three angle measurement techniques. The Q-values for all three methods are found to be Q ˜ 400. The code is freely available online at http://www.jb.man.ac.uk/mbrown/angle_only_shear/.
Das, Sudeep; Louis, Thibaut; Calabrese, Erminia; Dunkley, Joanna; Nolta, Michael R.; Bond, J Richard; Hajian, Amir; Hincks, Adam D.; Addison, Graeme E.; Halpern, Mark; Battistelli, Elia S.; Crichton, Devin; Gralla, Megan; Devlin, Mark J.; Dicker, Simon; Dünner, Rolando; Fowler, Joseph W.; Hasselfield, Matthew; Hlozek, Renée; Hilton, Matt; and others
2014-04-01
We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ΛCDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6σ detection significance.
NASA Technical Reports Server (NTRS)
Das, Sudeep; Louis, Thibaut; Nolta, Michael R.; Addison, Graeme E.; Battisetti, Elia S.; Bond, J. Richard; Calabrese, Erminia; Crichton, Devin; Devlin, Mark J.; Dicker, Simon; Dunkley, Joanna; Dunner, Rolando; Fowler, Joseph W.; Gralla, Megan; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Huffenberger, Kevin M.; Hughes, John P.; Irwin, Kent D; Kosowsky, Arthur; Wollack, Ed
2014-01-01
We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ?CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6s detection significance.
Dusty starburst galaxies in the early Universe as revealed by gravitational lensing.
Vieira, J D; Marrone, D P; Chapman, S C; De Breuck, C; Hezaveh, Y D; Weiβ, A; Aguirre, J E; Aird, K A; Aravena, M; Ashby, M L N; Bayliss, M; Benson, B A; Biggs, A D; Bleem, L E; Bock, J J; Bothwell, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; de Haan, T; Dobbs, M A; Fomalont, E B; Fassnacht, C D; George, E M; Gladders, M D; Gonzalez, A H; Greve, T R; Gullberg, B; Halverson, N W; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Hunter, T R; Keisler, R; Lee, A T; Leitch, E M; Lueker, M; Luong-Van, D; Malkan, M; McIntyre, V; McMahon, J J; Mehl, J; Menten, K M; Meyer, S S; Mocanu, L M; Murphy, E J; Natoli, T; Padin, S; Plagge, T; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Sharon, K; Schaffer, K K; Shaw, L; Shirokoff, E; Spilker, J S; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Vanderlinde, K; Welikala, N; Williamson, R
2013-03-21
In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.
A framework for modeling line-of-sight effects in strong gravitational lensing
NASA Astrophysics Data System (ADS)
Keeton, Charles R.; McCully, C.; Wong, K. C.; Zabludoff, A. I.
2014-01-01
In strong gravitational lens systems, the light bending is usually dominated by one main galaxy but may be affected by other objects along the line of sight (LOS). Perturbers projected far from the lens can be approximated with convergence and shear, but perturbers projected closer to the lens create higher-order effects and need to be treated individually. We present a theoretical framework for multi-plane lensing that can handle an arbitrary combination of planes with shear/convergence and planes with higher-order terms. We test our framework first using simulations with a single perturber to study where the shear approximation is not valid and where non-linear effects are important. We show that perturbers behind the lens galaxy can be treated as an effective shear in the main lens plane, but perturbers in front of the lens cannot be mimicked by such a shear. Applying this to realistic fields, we find that our LOS framework can reproduce the fitted lens properties and the Hubble Constant, H0, without bias and with scatter that is smaller than typical measurement uncertainties.
Probing the cosmic distance duality with strong gravitational lensing and supernovae Ia data
NASA Astrophysics Data System (ADS)
Holanda, R. F. L.; Busti, V. C.; Alcaniz, J. S.
2016-02-01
We propose and perform a new test of the cosmic distance-duality relation (CDDR), DL(z) / DA(z) (1 + z)2 = 1, where DA is the angular diameter distance and DL is the luminosity distance to a given source at redshift z, using strong gravitational lensing (SGL) and type Ia Supernovae (SNe Ia) data. We show that the ratio D=DA12/DA2 and D*=DL12/DL2, where the subscripts 1 and 2 correspond, respectively, to redshifts z1 and z2, are linked by D/D*=(1+z1)2 if the CDDR is valid. We allow departures from the CDDR by defining two functions for η(z1), which equals unity when the CDDR is valid. We find that combination of SGL and SNe Ia data favours no violation of the CDDR at 1σ confidence level (η(z) simeq 1), in complete agreement with other tests and reinforcing the theoretical pillars of the CDDR.
THE REMARKABLE {gamma}-RAY ACTIVITY IN THE GRAVITATIONALLY LENSED BLAZAR PKS 1830-211
Donnarumma, I.; De Rosa, A.; Vittorini, V.; Tavani, M.; Striani, E.; Pacciani, L.; Popovic, L. C.; Simic, S.; Kuulkers, E.; Vercellone, S.; Verrecchia, F.; Pittori, C.; Giommi, P.; Barbiellini, G.; Bulgarelli, A.
2011-08-01
We report the extraordinary {gamma}-ray activity (E > 100 MeV) of the gravitationally lensed blazar PKS 1830-211 (z = 2.507) detected by AGILE between 2010 October and November. On October 14, the source experienced a factor of {approx}12 flux increase with respect to its average value and remained brightest at this flux level ({approx}500 x 10{sup -8} photons cm{sup -2} s{sup -1}) for about four days. The one-month {gamma}-ray light curve across the flare showed a mean flux F(E > 100 MeV) = 200 x 10{sup -8} photons cm{sup -2} s{sup -1}, which resulted in a factor of four enhancement with respect to the average value. Following the {gamma}-ray flare, the source was observed in near-IR (NIR)-optical energy bands at the Cerro Tololo Inter-American Observatory and in X-Rays by Swift/X-Ray Telescope and INTEGRAL/IBIS. The main result of these multifrequency observations is that the large variability observed in {gamma}-rays does not have a significant counterpart at lower frequencies: no variation greater than a factor of {approx}1.5 appeared in the NIR and X-Ray energy bands. PKS 1830-211 is then a good '{gamma}-ray only flaring' blazar showing substantial variability only above 10-100 MeV. We discuss the theoretical implications of our findings.
Discovery of two gravitationally lensed quasars in the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Agnello, A.; Treu, T.; Ostrovski, F.; Schechter, P. L.; Buckley-Geer, E. J.; Lin, H.; Auger, M. W.; Courbin, F.; Fassnacht, C. D.; Frieman, J.; Kuropatkin, N.; Marshall, P. J.; McMahon, R. G.; Meylan, G.; More, A.; Suyu, S. H.; Rusu, C. E.; Finley, D.; Abbott, T.; Abdalla, F. B.; Allam, S.; Annis, J.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Estrada, J.; Neto, A. Fausti; Flaugher, B.; Fosalba, P.; Gerdes, D. W.; Gruen, D.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Tucker, D.; Walker, A. R.; Wechsler, R. H.; Zhang, Y.
2015-12-01
We present spectroscopic confirmation of two new gravitationally lensed quasars, discovered in the Dark Energy Survey (DES) and Wide-field Infrared Survey Explorer (WISE) based on their multiband photometry and extended morphology in DES images. Images of DES J0115-5244 show a red galaxy with two blue point sources at either side, which are images of the same quasar at zs = 1.64 as obtained by our long-slit spectroscopic data. The Einstein radius estimated from the DES images is 0.51 arcsec. DES J2146-0047 is in the area of overlap between DES and the Sloan Digital Sky Survey (SDSS). Two blue components are visible in the DES and SDSS images. The SDSS fibre spectrum shows a quasar component at zs = 2.38 and absorption by Mg II and Fe II at zl = 0.799, which we tentatively associate with the foreground lens galaxy. Our long-slit spectra show that the blue components are resolved images of the same quasar. The Einstein radius is 0.68 arcsec, corresponding to an enclosed mass of 1.6 × 1011 M⊙. Three other candidates were observed and rejected, two being low-redshift pairs of starburst galaxies, and one being a quasar behind a blue star. These first confirmation results provide an important empirical validation of the data mining and model-based selection that is being applied to the entire DES data set.
Gravitational lensing by spinning black holes in astrophysics, and in the movie Interstellar
NASA Astrophysics Data System (ADS)
James, Oliver; von Tunzelmann, Eugénie; Franklin, Paul; Thorne, Kip S.
2015-03-01
Interstellar is the first Hollywood movie to attempt depicting a black hole as it would actually be seen by somebody nearby. For this, our team at Double Negative Visual Effects, in collaboration with physicist Kip Thorne, developed a code called Double Negative Gravitational Renderer (DNGR) to solve the equations for ray-bundle (light-beam) propagation through the curved spacetime of a spinning (Kerr) black hole, and to render IMAX-quality, rapidly changing images. Our ray-bundle techniques were crucial for achieving IMAX-quality smoothness without flickering; and they differ from physicists’ image-generation techniques (which generally rely on individual light rays rather than ray bundles), and also differ from techniques previously used in the film industry’s CGI community. This paper has four purposes: (i) to describe DNGR for physicists and CGI practitioners, who may find interesting and useful some of our unconventional techniques. (ii) To present the equations we use, when the camera is in arbitrary motion at an arbitrary location near a Kerr black hole, for mapping light sources to camera images via elliptical ray bundles. (iii) To describe new insights, from DNGR, into gravitational lensing when the camera is near the spinning black hole, rather than far away as in almost all prior studies; we focus on the shapes, sizes and influence of caustics and critical curves, the creation and annihilation of stellar images, the pattern of multiple images, and the influence of almost-trapped light rays, and we find similar results to the more familiar case of a camera far from the hole. (iv) To describe how the images of the black hole Gargantua and its accretion disk, in the movie Interstellar, were generated with DNGR—including, especially, the influences of (a) colour changes due to doppler and gravitational frequency shifts, (b) intensity changes due to the frequency shifts, (c) simulated camera lens flare, and (d) decisions that the film makers made about
NASA Astrophysics Data System (ADS)
Yushchenko, A.; Kim, C.; Sergeev, A.
2003-04-01
Quasar-galaxy associations can be explained as gravitational lensing by globular clusters, located in the halos of the foreground galaxies and dwarf galaxies in small groups of galaxies. We propose an observational test for checking this hypothesis. We used the SUPERCOSMOS sky survey to find the overdensities of star-like sources with zero proper motions in the vicinities of the~foreground galaxies from the CfA3 catalog. The results obtained for 19413 galaxies are presented. We show the results of calculations of number densities of star-like sources with zero proper motions in the vicinity of 19413 galaxies. Two different effects can explain the observational data: lensing by globular clusters and lensing by dwarf galaxies. We carried out the CCD 3-color photometry with the 2.0-m telescope of the~Terskol Observatory and the 1.8-m telescope of the Bohyunsan Observatory (South Korea) to select extremely lensed objects around several galaxies for future spectroscopic observations. From ads Wed Jan 12 06:25:17 2005 Return-Path:
Cosmology Constraints from the Weak Lensing Peak Counts and the Power Spectrum in CFHTLenS
Liu, Jia; May, Morgan; Petri, Andrea; Haiman, Zoltan; Hui, Lam; Kratochvil, Jan M.
2015-03-04
Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models, covering broad ranges of the three parameters Ω_{m}, σ_{8}, and w, and replicating the galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build an emulator that interpolates the power spectrum and the peak counts to an accuracy of ≤ 5%, and compute the likelihood in the three-dimensional parameter space (Ω_{m}, σ_{8}, w) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain w without external data. When the power spectrum and peak counts are combined, the area of the error “banana” in the (Ω_{m}, σ_{8}) plane reduces by a factor of ≈ two, compared to using the power spectrum alone. For a flat Λ cold dark matter model, combining both statistics, we obtain the constraint σ_{8}(Ω_{m}/0.27)0.63 = 0.85^{+0.03}_{-0.03}.
A new method to measure galaxy bias by combining the density and weak lensing fields
NASA Astrophysics Data System (ADS)
Pujol, Arnau; Chang, Chihway; Gaztañaga, Enrique; Amara, Adam; Refregier, Alexandre; Bacon, David J.; Carretero, Jorge; Castander, Francisco J.; Crocce, Martin; Fosalba, Pablo; Manera, Marc; Vikram, Vinu
2016-10-01
We present a new method to measure redshift-dependent galaxy bias by combining information from the galaxy density field and the weak lensing field. This method is based on the work of Amara et al., who use the galaxy density field to construct a bias-weighted convergence field κg. The main difference between Amara et al.'s work and our new implementation is that here we present another way to measure galaxy bias, using tomography instead of bias parametrizations. The correlation between κg and the true lensing field κ allows us to measure galaxy bias using different zero-lag correlations, such as <κgκ>/<κκ> or <κgκg>/<κgκ>. Our method measures the linear bias factor on linear scales, under the assumption of no stochasticity between galaxies and matter. We use the Marenostrum Institut de Ciències de l'Espai (MICE) simulation to measure the linear galaxy bias for a flux-limited sample (i < 22.5) in tomographic redshift bins using this method. This article is the first that studies the accuracy and systematic uncertainties associated with the implementation of the method and the regime in which it is consistent with the linear galaxy bias defined by projected two-point correlation functions (2PCF). We find that our method is consistent with a linear bias at the per cent level for scales larger than 30 arcmin, while non-linearities appear at smaller scales. This measurement is a good complement to other measurements of bias, since it does not depend strongly on σ8 as do the 2PCF measurements. We will apply this method to the Dark Energy Survey Science Verification data in a follow-up article.
Cosmology Constraints from the Weak Lensing Peak Counts and the Power Spectrum in CFHTLenS
Liu, Jia; May, Morgan; Petri, Andrea; Haiman, Zoltan; Hui, Lam; Kratochvil, Jan M.
2015-03-04
Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models, covering broad ranges of the three parameters Ωm, σ8, and w, and replicating the galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build an emulator thatmore » interpolates the power spectrum and the peak counts to an accuracy of ≤ 5%, and compute the likelihood in the three-dimensional parameter space (Ωm, σ8, w) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain w without external data. When the power spectrum and peak counts are combined, the area of the error “banana” in the (Ωm, σ8) plane reduces by a factor of ≈ two, compared to using the power spectrum alone. For a flat Λ cold dark matter model, combining both statistics, we obtain the constraint σ8(Ωm/0.27)0.63 = 0.85+0.03-0.03.« less
NASA Astrophysics Data System (ADS)
Heymans, Catherine; Grocutt, Emma; Heavens, Alan; Kilbinger, Martin; Kitching, Thomas D.; Simpson, Fergus; Benjamin, Jonathan; Erben, Thomas; Hildebrandt, Hendrik; Hoekstra, Henk; Mellier, Yannick; Miller, Lance; Van Waerbeke, Ludovic; Brown, Michael L.; Coupon, Jean; Fu, Liping; Harnois-Déraps, Joachim; Hudson, Michael J.; Kuijken, Konrad; Rowe, Barnaby; Schrabback, Tim; Semboloni, Elisabetta; Vafaei, Sanaz; Velander, Malin
2013-07-01
We present a finely binned tomographic weak lensing analysis of the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) mitigating contamination to the signal from the presence of intrinsic galaxy alignments via the simultaneous fit of a cosmological model and an intrinsic alignment model. CFHTLenS spans 154 square degrees in five optical bands, with accurate shear and photometric redshifts for a galaxy sample with a median redshift of zm = 0.70. We estimate the 21 sets of cosmic shear correlation functions associated with six redshift bins, each spanning the angular range of 1.5 < θ < 35 arcmin. We combine this CFHTLenS data with auxiliary cosmological probes: the cosmic microwave background with data from WMAP7, baryon acoustic oscillations with data from Baryon Oscillation Spectroscopic Survey and a prior on the Hubble constant from the Hubble Space Telescope distance ladder. This leads to constraints on the normalization of the matter power spectrum σ8 = 0.799 ± 0.015 and the matter density parameter Ωm = 0.271 ± 0.010 for a flat Λ cold dark matter (ΛCDM) cosmology. For a flat wCDM cosmology, we constrain the dark energy equation-of-state parameter w = -1.02 ± 0.09. We also provide constraints for curved ΛCDM and wCDM cosmologies. We find the intrinsic alignment contamination to be galaxy-type dependent with a significant intrinsic alignment signal found for early-type galaxies, in contrast to the late-type galaxy sample for which the intrinsic alignment signal is found to be consistent with zero.
Constraining multiplicative bias in CFHTLenS weak lensing shear data
NASA Astrophysics Data System (ADS)
Liu, Jia; Ortiz-Vazquez, Alvaro; Hill, J. Colin
2016-05-01
Several recent cosmological analyses have found tension between constraints derived from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) data and those derived from other data sets, such as the Planck cosmic microwave background (CMB) temperature anisotropies. Similarly, a direct cross-correlation of the CFHTLenS data with Planck CMB lensing data yielded an anomalously low amplitude compared to expectations based on Planck or WMAP-derived cosmological parameters Liu and Hill [Phys. Rev. D 92, 063517 (2015)]. One potential explanation for these results is a multiplicative bias afflicting the CFHTLenS galaxy shape measurements, from which shears are inferred. Simulations are used in the CFHTLenS pipeline to calibrate such biases, but no data-driven constraints have been presented to date. In this paper, we cross-correlate CFHTLenS galaxy density maps with CFHTLenS shear maps and Planck CMB lensing maps to calibrate an additional multiplicative shear bias (m ) in CFHTLenS (beyond the multiplicative correction that has already been applied to the CFHTLenS galaxy shears), following methods suggested by Vallinotto [Astrophys. J. 759, 32 (2012)], and Das et al. [arXiv:1311.2338]. We analyze three magnitude-limited galaxy samples, finding 2 - 4 σ evidence for m <1 using the deepest sample (i <24 ), while the others are consistent with m =1 (no bias). This matches the expectation that the shapes of faint galaxies are the most prone to measurement biases. Our results for m are essentially independent of the assumed cosmology, and only weakly sensitive to assumptions about the galaxy bias. We consider three galaxy bias models, finding in all cases that the best-fit multiplicative shear bias is less than unity (neglecting photometric redshift errors and intrinsic alignment contamination). A value of m ≈0.9 would suffice to reconcile the amplitude of density fluctuations inferred from the CFHTLenS shear two-point statistics with that inferred from Planck CMB
LoCuSS: the near-infrared luminosity and weak-lensing mass scaling relation of galaxy clusters
NASA Astrophysics Data System (ADS)
Mulroy, Sarah L.; Smith, Graham P.; Haines, Chris P.; Marrone, Daniel P.; Okabe, Nobuhiro; Pereira, Maria J.; Egami, Eiichi; Babul, Arif; Finoguenov, Alexis; Martino, Rossella
2014-10-01
We present the first scaling relation between weak-lensing galaxy cluster mass, MWL, and near-infrared luminosity, LK. Our results are based on 17 clusters observed with wide-field instruments on Subaru, the United Kingdom Infrared Telescope, the Mayall Telescope, and the MMT. We concentrate on the relation between projected 2D weak-lensing mass and spectroscopically confirmed luminosity within 1 Mpc, modelled as M_WL ∝ LK^b, obtaining a power-law slope of b=0.83^{+0.27}_{-0.24} and an intrinsic scatter of σ _{lnM_WL|LK}=10^{+8}_{-5} per cent. Intrinsic scatter of ˜10 per cent is a consistent feature of our results regardless of how we modify our approach to measuring the relationship between mass and light. For example, deprojecting the mass and measuring both quantities within r500, that is itself obtained from the lensing analysis, yields σ _{lnM_WL|LK}=10^{+7}_{-5} per cent and b=0.97^{+0.17}_{-0.17}. We also find that selecting members based on their (J - K) colours instead of spectroscopic redshifts neither increases the scatter nor modifies the slope. Overall our results indicate that near-infrared luminosity measured on scales comparable with r500 (typically 1 Mpc for our sample) is a low scatter and relatively inexpensive proxy for weak-lensing mass. Near-infrared luminosity may therefore be a useful mass proxy for cluster cosmology experiments.
NASA Astrophysics Data System (ADS)
Johnson, Jyothisraj; Keeton, Charles R.; Brennan, Sean
2016-01-01
The Cold Dark Matter (CDM) model of the universe predicts that there should be hundreds to thousands of clumps surrounding a massive galaxy. However, observations have shown that we only see dozens of dwarf galaxies and not the hundreds to thousands that are predicted. This means that either the CDM model prediction is wrong, or most of the substructure consists of dark matter that cannot be observed directly. Massive galaxies serve as natural gravitational lenses throughout the universe that allow us to indirectly observe these dark matter perturbations. Strong gravitational lensing occurs when these massive elliptical galaxies have the critical density required to bend light from a source located behind it and produce multiple images of that same source. Dark matter clumps located near these multiple images affect their positions and flux ratios. We used lensing simulations to quantify how dark matter clumps affect image properties and to characterize this zone of influence through color maps of chi-squared values. Our results showed regions around each of the image positions that display significant perturbations for low mass clumps. For higher mass clumps, however, these distinct regions bleed together. We found that there is a correlation between the mass of the dark matter clump and the area it perturbs.This research has been supported by NSF grant PHY-1263280.
The Optical Gravitational Lensing Experiment. Gaia South Ecliptic Pole Field as Seen by OGLE-IV
NASA Astrophysics Data System (ADS)
Soszyński, I.; Udalski, A.; Poleski, R.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Ulaczyk, K.; Skowron, J.
2012-09-01
We present a comprehensive analysis of the Gaia South Ecliptic Pole (GSEP) field, 5.3 square degrees area around the South Ecliptic Pole on the outskirts of the LMC, based on the data collected during the fourth phase of the Optical Gravitational Lensing Experiment, OGLE-IV. The GSEP field will be observed during the commissioning phase of the ESA Gaia space mission for testing and calibrating the Gaia instruments. We provide the photometric maps of the GSEP region containing the mean VI photometry of all detected stellar objects and their equatorial coordinates. We show the quality and completeness of the OGLE-IV photometry and color-magnitude diagrams of this region. We conducted an extensive search for variable stars in the GSEP field leading to the discovery of 6789 variable stars. In this sample we found 132 classical Cepheids, 686 RR Lyr type stars, 2819 long-period, and 1377 eclipsing variables. Several objects deserving special attention were also selected, including a new classical Cepheid in a binary eclipsing system. To provide empirical data for the Gaia Science Alert system we also conducted a search for optical transients. We discovered two firm type Ia supernovae and nine additional supernova candidates. To facilitate future Gaia supernovae detections we prepared a list of more than 1900 galaxies to redshift about 0.1 located in the GSEP field. Finally, we present the results of astrometric study of the GSEP field. With the 26 months time base of the presented here OGLE-IV data, proper motions of stars could be detected with the accuracy reaching 2 mas/yr. Astrometry allowed to distinguish galactic foreground variable stars detected in the GSEP field from LMC objects and to discover about 50 high proper motion stars (proper motion ≥ 100 mas/yr). Among them three new nearby white dwarfs were found. All data presented in this paper are available to the astronomical community from the OGLE Internet archive.
TIME DELAYS IN THE GRAVITATIONALLY LENSED QUASAR H1413+117 (CLOVERLEAF)
Goicoechea, Luis J.
2010-01-10
The quadruple quasar H1413+117 (z{sub s} = 2.56) has been monitored with the 2.0 m Liverpool Telescope in the r Sloan band from 2008 February to July. This optical follow-up leads to accurate light curves of the four quasar images (A-D), which are defined by 33 epochs of observation and an average photometric error of approx15 mmag. We then use the observed (intrinsic) variations of approx50-100 mmag to measure the three time delays for the lens system for the first time (1sigma confidence intervals): DELTAtau{sub AB} = -17 +- 3, DELTAtau{sub AC} = -20 +- 4, and DELTAtau{sub AD} = 23 +- 4 days (DELTAtau{sub ij} = tau{sub j} - tau{sub i}; B and C are leading, while D is trailing). Although time delays for lens systems are often used to obtain the Hubble constant (H{sub 0}), the unavailability of the spectroscopic lens redshift (z{sub l} ) in the system H1413+117 prevents a determination of H{sub 0} from the measured delays. In this paper, the new time-delay constraints and a concordance expansion rate (H{sub 0} = 70 km s{sup -1} Mpc{sup -1}) allow us to improve the lens model and to estimate the previously unknown z{sub l} . Our 1sigma estimate z{sub l} = 1.88{sup +0.09}{sub -0.11} is an example of how to infer the redshift of very distant galaxies via gravitational lensing.
Story, K. T.; Hanson, D.; Ade, P. A. R.; Aird, K. A.; Austermann, J. E.; Beall, J. A.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; et al
2015-08-28
Here, we present a measurement of the cosmic microwave background (CMB) gravitational lensing potential using data from the first two seasons of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope. The observations used in this work cover 100 deg2 of sky with arcminute resolution at 150 GHz. Using a quadratic estimator, we make maps of the CMB lensing potential from combinations of CMB temperature and polarization maps. We combine these lensing potential maps to form a minimum-variance (MV) map. The lensing potential is measured with a signal-to-noise ratio of greater than one for angular multipoles betweenmore » $$100\\lt L\\lt 250$$. This is the highest signal-to-noise mass map made from the CMB to date and will be powerful in cross-correlation with other tracers of large-scale structure. We calculate the power spectrum of the lensing potential for each estimator, and we report the value of the MV power spectrum between $$100\\lt L\\lt 2000$$ as our primary result. We constrain the ratio of the spectrum to a fiducial ΛCDM model to be AMV = 0.92 ± 0.14 (Stat.) ± 0.08 (Sys.). Restricting ourselves to polarized data only, we find APOL = 0.92 ± 0.24 (Stat.) ± 0.11 (Sys.). This measurement rejects the hypothesis of no lensing at $$5.9\\sigma $$ using polarization data alone, and at $$14\\sigma $$ using both temperature and polarization data.« less
Story, K. T.; Hanson, D.; Ade, P. A. R.; Aird, K. A.; Austermann, J. E.; Beall, J. A.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Cho, H. -M.; Citron, R.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Everett, W.; Gallicchio, J.; Gao, J.; George, E. M.; Gilbert, A.; Halverson, N. W.; Harrington, N.; Henning, J. W.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Li, D.; Liang, C.; Luong-Van, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Montroy, T. E.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Smecher, G.; Stark, A. A.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Zahn, O.
2015-08-28
Here, we present a measurement of the cosmic microwave background (CMB) gravitational lensing potential using data from the first two seasons of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope. The observations used in this work cover 100 deg^{2} of sky with arcminute resolution at 150 GHz. Using a quadratic estimator, we make maps of the CMB lensing potential from combinations of CMB temperature and polarization maps. We combine these lensing potential maps to form a minimum-variance (MV) map. The lensing potential is measured with a signal-to-noise ratio of greater than one for angular multipoles between $100\\lt L\\lt 250$. This is the highest signal-to-noise mass map made from the CMB to date and will be powerful in cross-correlation with other tracers of large-scale structure. We calculate the power spectrum of the lensing potential for each estimator, and we report the value of the MV power spectrum between $100\\lt L\\lt 2000$ as our primary result. We constrain the ratio of the spectrum to a fiducial ΛCDM model to be AMV = 0.92 ± 0.14 (Stat.) ± 0.08 (Sys.). Restricting ourselves to polarized data only, we find A_{POL} = 0.92 ± 0.24 (Stat.) ± 0.11 (Sys.). This measurement rejects the hypothesis of no lensing at $5.9\\sigma $ using polarization data alone, and at $14\\sigma $ using both temperature and polarization data.
NASA Astrophysics Data System (ADS)
Story, K. T.; Hanson, D.; Ade, P. A. R.; Aird, K. A.; Austermann, J. E.; Beall, J. A.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Cho, H.-M.; Citron, R.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Everett, W.; Gallicchio, J.; Gao, J.; George, E. M.; Gilbert, A.; Halverson, N. W.; Harrington, N.; Henning, J. W.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Li, D.; Liang, C.; Luong-Van, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Montroy, T. E.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Smecher, G.; Stark, A. A.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Zahn, O.
2015-09-01
We present a measurement of the cosmic microwave background (CMB) gravitational lensing potential using data from the first two seasons of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope. The observations used in this work cover 100 deg2 of sky with arcminute resolution at 150 GHz. Using a quadratic estimator, we make maps of the CMB lensing potential from combinations of CMB temperature and polarization maps. We combine these lensing potential maps to form a minimum-variance (MV) map. The lensing potential is measured with a signal-to-noise ratio of greater than one for angular multipoles between 100\\lt L\\lt 250. This is the highest signal-to-noise mass map made from the CMB to date and will be powerful in cross-correlation with other tracers of large-scale structure. We calculate the power spectrum of the lensing potential for each estimator, and we report the value of the MV power spectrum between 100\\lt L\\lt 2000 as our primary result. We constrain the ratio of the spectrum to a fiducial ΛCDM model to be AMV = 0.92 ± 0.14 (Stat.) ± 0.08 (Sys.). Restricting ourselves to polarized data only, we find APOL = 0.92 ± 0.24 (Stat.) ± 0.11 (Sys.). This measurement rejects the hypothesis of no lensing at 5.9σ using polarization data alone, and at 14σ using both temperature and polarization data.
NASA Technical Reports Server (NTRS)
Eisenhardt, Peter R.; Armus, Lee; Hogg, David W.; Soifer, B. T.; Neugebauer, G.; Werner, Michael W.
1996-01-01
With a redshift of 2.3, the IRAS source FSC 10214+4724 is apparently one of the most luminous objects known in the universe. We present an image of FSC 10214+4724 at 0.8 pm obtained with the Hubble Space Telescope (HST) WFPC2 Planetary Camera. The source appears as an unresolved (less then 0.06) arc 0.7 long, with significant substructure along its length. The center of curvature of the arc is located near an elliptical galaxy 1.18 to the north. An unresolved component 100 times fainter than the arc is clearly detected on the opposite side of this galaxy. The most straightforward interpretation is that FSC 10214+4724 is gravitationally lensed by the foreground elliptical galaxy, with the faint component a counter-image of the IRAS source. The brightness of the arc in the HST image is then magnified by approx. 100, and the intrinsic source diameter is approx. 0.0l (80 pc) at 0.25 microns rest wavelength. The bolometric luminosity is probably amplified by a smaller factor (approx. 30) as a result of the larger extent expected for the source in the far-infrared. A detailed lensing model is presented that reproduces the observed morphology and relative flux of the arc and counterimage and correctly predicts the position angle of the lensing galaxy. The model also predicts reasonable values for the velocity dispersion, mass, and mass-to-light ratio of the lensing galaxy for a wide range of galaxy redshifts. A redshift for the lensing galaxy of -0.9 is consistent with the measured surface brightness profile from the image, as well as with the galaxy's spectral energy distribution. The background lensed source has an intrinsic luminosity approx. 2 x 10(exp 13) L(solar mass) and remains a highly luminous quasar with an extremely large ratio of infrared to optical/ultraviolet luminosity.
Story, K.T.; et al.
2015-08-28
We present a measurement of the cosmic microwave background (CMB) gravitational lensing potential using data from the first two seasons of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope. The observations used in this work cover 100 deg(2) of sky with arcminute resolution at 150 GHz. Using a quadratic estimator, we make maps of the CMB lensing potential from combinations of CMB temperature and polarization maps. We combine these lensing potential maps to form a minimum-variance (MV) map. The lensing potential is measured with a signal-to-noise ratio of greater than one for angular multipoles between $100\\lt L\\lt 250$. This is the highest signal-to-noise mass map made from the CMB to date and will be powerful in cross-correlation with other tracers of large-scale structure. We calculate the power spectrum of the lensing potential for each estimator, and we report the value of the MV power spectrum between $100\\lt L\\lt 2000$ as our primary result. We constrain the ratio of the spectrum to a fiducial ΛCDM model to be A(MV) = 0.92 ± 0.14 (Stat.) ± 0.08 (Sys.). Restricting ourselves to polarized data only, we find A(POL) = 0.92 ± 0.24 (Stat.) ± 0.11 (Sys.). This measurement rejects the hypothesis of no lensing at $5.9\\sigma $ using polarization data alone, and at $14\\sigma $ using both temperature and polarization data.
Baxter, E. J.; Keisler, R.; Dodelson, S.; Aird, K. A.; Allen, S. W.; Ashby, M. L.N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H. -M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; Dietrich, J. P.; de Haan, T.; Dobbs, M. A.; Foley, R. J.; Forman, W. R.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Harrington, N. L.; Hennig, C.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Jones, C.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Millea, M.; Mocanu, L. M.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.
2015-06-22
Clusters of galaxies are expected to gravitationally lens the cosmic microwave background (CMB) and thereby generate a distinct signal in the CMB on arcminute scales. Measurements of this effect can be used to constrain the masses of galaxy clusters with CMB data alone. Here we present a measurement of lensing of the CMB by galaxy clusters using data from the South Pole Telescope (SPT). We also develop a maximum likelihood approach to extract the CMB cluster lensing signal and validate the method on mock data. We quantify the effects on our analysis of several potential sources of systematic error and find that they generally act to reduce the best-fit cluster mass. It is estimated that this bias to lower cluster mass is roughly 0.85σ in units of the statistical error bar, although this estimate should be viewed as an upper limit. Furthermore, we apply our maximum likelihood technique to 513 clusters selected via their Sunyaev–Zeldovich (SZ) signatures in SPT data, and rule out the null hypothesis of no lensing at 3.1σ. The lensing-derived mass estimate for the full cluster sample is consistent with that inferred from the SZ flux: M_{200,lens} = 0.83^{+0.38}_{-0.37} M_{200,SZ} (68% C.L., statistical error only).
Baxter, E. J.; Keisler, R.; Dodelson, S.; Aird, K. A.; Allen, S. W.; Ashby, M. L.N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; et al
2015-06-22
Clusters of galaxies are expected to gravitationally lens the cosmic microwave background (CMB) and thereby generate a distinct signal in the CMB on arcminute scales. Measurements of this effect can be used to constrain the masses of galaxy clusters with CMB data alone. Here we present a measurement of lensing of the CMB by galaxy clusters using data from the South Pole Telescope (SPT). We also develop a maximum likelihood approach to extract the CMB cluster lensing signal and validate the method on mock data. We quantify the effects on our analysis of several potential sources of systematic error andmore » find that they generally act to reduce the best-fit cluster mass. It is estimated that this bias to lower cluster mass is roughly 0.85σ in units of the statistical error bar, although this estimate should be viewed as an upper limit. Furthermore, we apply our maximum likelihood technique to 513 clusters selected via their Sunyaev–Zeldovich (SZ) signatures in SPT data, and rule out the null hypothesis of no lensing at 3.1σ. The lensing-derived mass estimate for the full cluster sample is consistent with that inferred from the SZ flux: M200,lens = 0.83+0.38-0.37 M200,SZ (68% C.L., statistical error only).« less
Cross-correlation Weak Lensing of SDSS Galaxy Clusters I: Measurements
Sheldon, Erin S.; Johnston, David E.; Scranton, Ryan; Koester, Ben P.; McKay, Timothy A.; Oyaizu, Hiroaki; Cunha, Carlos; Lima, Marcos; Lin, Huan; Frieman, Joshua A.; Wechsler, Risa H.; Annis, James; Mandelbaum, Rachel; Bahcall, Neta A.; Fukugita, Masataka
2007-09-28
This is the first in a series of papers on the weak lensing effect caused by clusters of galaxies in Sloan Digital Sky Survey. The photometrically selected cluster sample, known as MaxBCG, includes {approx}130,000 objects between redshift 0.1 and 0.3, ranging in size from small groups to massive clusters. We split the clusters into bins of richness and luminosity and stack the surface density contrast to produce mean radial profiles. The mean profiles are detected over a range of scales, from the inner halo (25 kpc/h) well into the surrounding large scale structure (30 Mpc/h), with a significance of 15 to 20 in each bin. The signal over this large range of scales is best interpreted in terms of the cluster-mass cross-correlation function. We pay careful attention to sources of systematic error, correcting for them where possible and bounding them where not. We find that the profiles scale strongly with richness and luminosity. We find the signal within a given richness bin depends upon luminosity, suggesting that luminosity is more closely correlated with mass than galaxy counts. We split the samples by redshift but detect no significant evolution. The profiles are not well described by power laws. In a subsequent series of papers we invert the profiles to three-dimensional mass profiles, show that they are well fit by a halo model description, measure mass-to-light ratios and provide a cosmological interpretation.
Shape profiles and orientation bias for weak and strong lensing cluster halos
Groener, A. M.; Goldberg, D. M.
2014-11-10
We study the intrinsic shape and alignment of isodensities of galaxy cluster halos extracted from the MultiDark MDR1 cosmological simulation. We find that the simulated halos are extremely prolate on small scales and increasingly spherical on larger ones. Due to this trend, analytical projection along the line of sight produces an overestimation of the concentration index as a decreasing function of radius, which we quantify by using both the intrinsic distribution of three-dimensional concentrations (c {sub 200}) and isodensity shape on weak and strong lensing scales. We find this difference to be ∼18% (∼9%) for low- (medium-)mass cluster halos with intrinsically low concentrations (c {sub 200} = 1-3), while we find virtually no difference for halos with intrinsically high concentrations. Isodensities are found to be fairly well aligned throughout the entirety of the radial scale of each halo population. However, major axes of individual halos have been found to deviate by as much as ∼30°. We also present a value-added catalog of our analysis results, which we have made publicly available to download.
Covariance in the thermal SZ-weak lensing mass scaling relation of galaxy clusters
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Nagai, Daisuke; Lau, Erwin T.
2016-08-01
The thermal Sunyaev-Zel'dovich (tSZ) effect signal is widely recognized as a robust mass proxy of galaxy clusters with small intrinsic scatter. However, recent observational calibration of the tSZ scaling relation using weak lensing (WL) mass exhibits considerably larger scatter than the intrinsic scatter predicted from numerical simulations. This raises a question as to whether we can realize the full statistical power of ongoing and upcoming tSZ-WL observations of galaxy clusters. In this work, we investigate the origin of observed scatter in the tSZ-WL scaling relation, using mock maps of galaxy clusters extracted from cosmological hydrodynamic simulations. We show that the inferred intrinsic scatter from mock tSZ-WL analyses is considerably larger than the intrinsic scatter measured in simulations, and comparable to the scatter in the observed tSZ-WL relation. We show that this enhanced scatter originates from the combination of the projection of correlated structures along the line of sight and the uncertainty in the cluster radius associated with WL mass estimates, causing the amplitude of the scatter to depend on the covariance between tSZ and WL signals. We present a statistical model to recover the unbiased cluster scaling relation and cosmological parameter by taking into account the covariance in the tSZ-WL mass relation from multiwavelength cluster surveys.
Intrinsic alignment of simulated galaxies in the cosmic web: implications for weak lensing surveys
NASA Astrophysics Data System (ADS)
Codis, S.; Gavazzi, R.; Dubois, Y.; Pichon, C.; Benabed, K.; Desjacques, V.; Pogosyan, D.; Devriendt, J.; Slyz, A.
2015-04-01
The intrinsic alignment of galaxy shapes (by means of their angular momentum) and their cross-correlation with the surrounding dark matter tidal field are investigated using the 160 000, z = 1.2 synthetic galaxies extracted from the high-resolution cosmological hydrodynamical simulation HORIZON-AGN. One- and two-point statistics of the spin of the stellar component are measured as a function of mass and colour. For the low-mass galaxies, this spin is locally aligned with the tidal field `filamentary' direction while, for the high-mass galaxies, it is perpendicular to both filaments and walls. The bluest galaxies of our synthetic catalogue are more strongly correlated with the surrounding tidal field than the reddest galaxies, and this correlation extends up to ˜10 h- 1 Mpc comoving distance. We also report a correlation of the projected ellipticities of blue, intermediate-mass galaxies on a similar scale at a level of 10-4 which could be a concern for cosmic shear measurements. We do not report any measurable intrinsic alignments of the reddest galaxies of our sample. This work is a first step towards the use of very realistic catalogue of synthetic galaxies to evaluate the contamination of weak lensing measurement by the intrinsic galactic alignments.
Gavazzi, Raphaël; Marshall, Philip J.; Treu, Tommaso; Sonnenfeld, Alessandro
2014-04-20
We present RINGFINDER, a tool for finding galaxy-scale strong gravitational lenses in multi-band imaging data. By construction, the method is sensitive to configurations involving a massive foreground ETG and a faint, background, blue source. RINGFINDER detects the presence of blue residuals embedded in an otherwise smooth red light distribution by difference imaging in two bands. The method is automated for efficient application to current and future surveys, having originally been designed for the 150 deg{sup 2} Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). We describe each of the steps of RINGFINDER. We then carry out extensive simulations to assess completeness and purity. For sources with magnification μ > 4, RINGFINDER reaches 42% (25%) completeness and 29% (86%) purity before (after) visual inspection. The completeness of RINGFINDER is substantially improved in the particular range of Einstein radii 0.''8 ≤ R {sub Ein} ≤ 2.''0 and lensed images brighter than g = 22.5, where it can be as high as ∼70%. RINGFINDER does not introduce any significant bias in the source or deflector population. We conclude by presenting the final catalog of RINGFINDER CFHTLS galaxy-scale strong lens candidates. Additional information obtained with Hubble Space Telescope and Keck adaptive optics high-resolution imaging, and with Keck and Very Large Telescope spectroscopy, is used to assess the validity of our classification and measure the redshift of the foreground and the background objects. From an initial sample of 640,000 ETGs, RINGFINDER returns 2500 candidates, which we further reduce by visual inspection to 330 candidates. We confirm 33 new gravitational lenses from the main sample of candidates, plus an additional 16 systems taken from earlier versions of RINGFINDER. First applications are presented in the Strong Lensing Legacy Survey galaxy-scale lens sample paper series.
Localized electromagnetic and weak gravitational fields in the source-free space.
Borzdov, G N
2001-03-01
Localized electromagnetic and weak gravitational time-harmonic fields in the source-free space are treated using expansions in plane waves. The presented solutions describe fields having a very small (about several wavelengths) and clearly defined core region with maximum intensity of field oscillations. In a given Lorentz frame L, a set of the obtained exact time-harmonic solutions of the free-space homogeneous Maxwell equations consists of three subsets (storms, whirls, and tornados), for which time average energy flux is identically zero at all points, azimuthal and spiral, respectively. In any other Lorentz frame L', they will be observed as a kind of electromagnetic missile moving without dispersing at speed V
NASA Astrophysics Data System (ADS)
Xu, Lixin
2016-08-01
Cosmology plays a fundamental role to determine the neutrino mass, therefore also to determine its mass hierarchy, since the massive neutrino contributes to the total matter density in the Universe at the background and perturbation levels, once it becomes non-relativistic. After the non-relativistic transition the fluctuations are smashed out at the scales k gg kfs. Therefore, the missing fluctuation in the total matter is imprinted on the large scale structure, say the suppression of the matter power spectrum ΔP/P ≈ -8fν at the scales k gg kfs. In this paper, instead of considering the linear perturbation theory, which is well understood in the presence of neutrino, we propose to use the cross correlation between the Rees-Sciama effect and weak lensing to probe the neutrino mass. At the small scales, the density contrast grows faster than the background scale factor δ ~ a, that makes a sign flipping on Φ' propto Script Hδ d ln (δ/a)/d ln a, which happens only in the non-linear regime. We show that the flipping scale in the cross power spectrum between the Rees-Sciama effect and weak lensing depends on the neutrino mass by assuming the shallow and deep weak lensing surveys. Our analysis shows that the Deep survey has larger signal-to-noise ratio S/N ~ 160. Finally, we use the Fisher information matrix to forecast constraint on the neutrino mass.
NASA Astrophysics Data System (ADS)
Xu, Lixin
2016-08-01
Cosmology plays a fundamental role to determine the neutrino mass, therefore also to determine its mass hierarchy, since the massive neutrino contributes to the total matter density in the Universe at the background and perturbation levels, once it becomes non-relativistic. After the non-relativistic transition the fluctuations are smashed out at the scales k gg kfs. Therefore, the missing fluctuation in the total matter is imprinted on the large scale structure, say the suppression of the matter power spectrum ΔP/P ≈ ‑8fν at the scales k gg kfs. In this paper, instead of considering the linear perturbation theory, which is well understood in the presence of neutrino, we propose to use the cross correlation between the Rees-Sciama effect and weak lensing to probe the neutrino mass. At the small scales, the density contrast grows faster than the background scale factor δ ~ a, that makes a sign flipping on Φ' propto Script Hδ d ln (δ/a)/d ln a, which happens only in the non-linear regime. We show that the flipping scale in the cross power spectrum between the Rees-Sciama effect and weak lensing depends on the neutrino mass by assuming the shallow and deep weak lensing surveys. Our analysis shows that the Deep survey has larger signal-to-noise ratio S/N ~ 160. Finally, we use the Fisher information matrix to forecast constraint on the neutrino mass.
A new model to predict weak-lensing peak counts. III. Filtering technique comparisons
NASA Astrophysics Data System (ADS)
Lin, Chieh-An; Kilbinger, Martin; Pires, Sandrine
2016-09-01
Context. This is the third in a series of papers that develop a new and flexible model to predict weak-lensing (WL) peak counts, which have been shown to be a very valuable non-Gaussian probe of cosmology. Aims: In this paper, we compare the cosmological information extracted from WL peak counts using different filtering techniques of the galaxy shear data, including linear filtering with a Gaussian and two compensated filters (the starlet wavelet and the aperture mass), and the nonlinear filtering method MRLens. We present improvements to our model that account for realistic survey conditions, which are masks, shear-to-convergence transformations, and non-constant noise. Methods: We create simulated peak counts from our stochastic model, from which we obtain constraints on the matter density Ωm, the power spectrum normalisation σ8, and the dark-energy parameter w0de. We use two methods for parameter inference, a copula likelihood, and approximate Bayesian computation (ABC). We measure the contour width in the Ωm-σ8 degeneracy direction and the figure of merit to compare parameter constraints from different filtering techniques. Results: We find that starlet filtering outperforms the Gaussian kernel, and that including peak counts from different smoothing scales helps to lift parameter degeneracies. Peak counts from different smoothing scales with a compensated filter show very little cross-correlation, and adding information from different scales can therefore strongly enhance the available information. Measuring peak counts separately from different scales yields tighter constraints than using a combined peak histogram from a single map that includes multiscale information. Conclusions: Our results suggest that a compensated filter function with counts included separately from different smoothing scales yields the tightest constraints on cosmological parameters from WL peaks.
Atmospheric PSF Interpolation for Weak Lensing in Short Exposure Imaging Data
Chang, C.; Marshall, P.J.; Jernigan, J.G.; Peterson, J.R.; Kahn, S.M.; Gull, S.F.; AlSayyad, Y.; Ahmad, Z.; Bankert, J.; Bard, D.; Connolly, A.; Gibson, R.R.; Gilmore, K.; Grace, E.; Hannel, M.; Hodge, M.A.; Jones, L.; Krughoff, S.; Lorenz, S.; Marshall, S.; Meert, A.
2012-09-19
A main science goal for the Large Synoptic Survey Telescope (LSST) is to measure the cosmic shear signal from weak lensing to extreme accuracy. One difficulty, however, is that with the short exposure time ({approx_equal}15 seconds) proposed, the spatial variation of the Point Spread Function (PSF) shapes may be dominated by the atmosphere, in addition to optics errors. While optics errors mainly cause the PSF to vary on angular scales similar or larger than a single CCD sensor, the atmosphere generates stochastic structures on a wide range of angular scales. It thus becomes a challenge to infer the multi-scale, complex atmospheric PSF patterns by interpolating the sparsely sampled stars in the field. In this paper we present a new method, psfent, for interpolating the PSF shape parameters, based on reconstructing underlying shape parameter maps with a multi-scale maximum entropy algorithm. We demonstrate, using images from the LSST Photon Simulator, the performance of our approach relative to a 5th-order polynomial fit (representing the current standard) and a simple boxcar smoothing technique. Quantitatively, psfent predicts more accurate PSF models in all scenarios and the residual PSF errors are spatially less correlated. This improvement in PSF interpolation leads to a factor of 3.5 lower systematic errors in the shear power spectrum on scales smaller than {approx} 13, compared to polynomial fitting. We estimate that with psfent and for stellar densities greater than {approx_equal}1/arcmin{sup 2}, the spurious shear correlation from PSF interpolation, after combining a complete 10-year dataset from LSST, is lower than the corresponding statistical uncertainties on the cosmic shear power spectrum, even under a conservative scenario.
Testing a phenomenologically extended DGP model with upcoming weak lensing surveys
Camera, Stefano; Diaferio, Antonaldo; Cardone, Vincenzo F. E-mail: diaferio@ph.unito.it
2011-01-01
A phenomenological extension of the well-known brane-world cosmology of Dvali, Gabadadze and Porrati (eDGP) has recently been proposed. In this model, a cosmological-constant-like term is explicitly present as a non-vanishing tension σ on the brane, and an extra parameter α tunes the cross-over scale r{sub c}, the scale at which higher dimensional gravity effects become non negligible. Since the Hubble parameter in this cosmology reproduces the same ΛCDM expansion history, we study how upcoming weak lensing surveys, such as Euclid and DES (Dark Energy Survey), can confirm or rule out this class of models. We perform Monte Carlo Markov Chain simulations to determine the parameters of the model, using Type Ia Supernovæ, H(z) data, Gamma Ray Bursts and Baryon Acoustic Oscillations. We also fit the power spectrum of the temperature anisotropies of the Cosmic Microwave Background to obtain the correct normalisation for the density perturbation power spectrum. Then, we compute the matter and the cosmic shear power spectra, both in the linear and non-linear régimes. The latter is calculated with the two different approaches of Hu and Sawicki (2007) (HS) and Khoury and Wyman (2009) (KW). With the eDGP parameters coming from the Markov Chains, KW reproduces the ΛCDM matter power spectrum at both linear and non-linear scales and the ΛCDM and eDGP shear signals are degenerate. This result does not hold with the HS prescription. Indeed, Euclid can distinguish the eDGP model from ΛCDM because their expected power spectra roughly differ by the 3σ uncertainty in the angular scale range 700∼
Testing a phenomenologically extended DGP model with upcoming weak lensing surveys
NASA Astrophysics Data System (ADS)
Camera, Stefano; Diaferio, Antonaldo; Cardone, Vincenzo F.
2011-01-01
A phenomenological extension of the well-known brane-world cosmology of Dvali, Gabadadze and Porrati (eDGP) has recently been proposed. In this model, a cosmological-constant-like term is explicitly present as a non-vanishing tension σ on the brane, and an extra parameter α tunes the cross-over scale rc, the scale at which higher dimensional gravity effects become non negligible. Since the Hubble parameter in this cosmology reproduces the same ΛCDM expansion history, we study how upcoming weak lensing surveys, such as Euclid and DES (Dark Energy Survey), can confirm or rule out this class of models. We perform Monte Carlo Markov Chain simulations to determine the parameters of the model, using Type Ia Supernovæ, H(z) data, Gamma Ray Bursts and Baryon Acoustic Oscillations. We also fit the power spectrum of the temperature anisotropies of the Cosmic Microwave Background to obtain the correct normalisation for the density perturbation power spectrum. Then, we compute the matter and the cosmic shear power spectra, both in the linear and non-linear régimes. The latter is calculated with the two different approaches of Hu and Sawicki (2007) (HS) and Khoury and Wyman (2009) (KW). With the eDGP parameters coming from the Markov Chains, KW reproduces the ΛCDM matter power spectrum at both linear and non-linear scales and the ΛCDM and eDGP shear signals are degenerate. This result does not hold with the HS prescription. Indeed, Euclid can distinguish the eDGP model from ΛCDM because their expected power spectra roughly differ by the 3σ uncertainty in the angular scale range 700lesssimllesssim3000; on the contrary, the two models differ at most by the 1σ uncertainty over the range 500lesssimllesssim3000 in the DES experiment and they are virtually indistinguishable.
Hezaveh, Yashar D.
2014-08-20
Application of the most robust method of measuring black hole masses, spatially resolved kinematics of gas and stars, is presently limited to nearby galaxies. The Atacama Large Millimeter/sub-millimeter Array (ALMA) and 30m class telescopes (the Thirty Meter Telescope, the Giant Magellan Telescope, and the European Extremely Large Telescope) with milli-arcsecond resolution are expected to extend such measurements to larger distances. Here, we study the possibility of exploiting the angular magnification provided by strong gravitational lensing to measure black hole masses at high redshifts (z ∼ 1-6), using resolved gas kinematics with these instruments. We show that in ∼15% and ∼20% of strongly lensed galaxies, the inner 25 and 50 pc could be resolved, allowing the mass of ≳ 10{sup 8} M {sub ☉} black holes to be dynamically measured with ALMA, if moderately bright molecular gas is present at these small radii. Given the large number of strong lenses discovered in current millimeter surveys and future optical surveys, this fraction could constitute a statistically significant population for studying the evolution of the M-σ relation at high redshifts.
Oguri, Masamune; Inada, Naohisa; Hennawi, Joseph F.; Richards, Gordon T.; Johnston, David E.; Frieman, Joshua A.; Pindor, Bartosz; Strauss, Michael A.; Brunner, Robert J.; Becker, Robert H.; Castander, Francisco J.; Gregg, Michael D.; Hall, Patrick B.; Rix, Hans-Walter; Schneider, Donald P.; Bahcall, Neta A.; Brinkmann, Jonathan; York, Donald G. /Princeton U. Observ. /Tokyo U. /Tokyo U., Inst. Astron. /UC, Berkeley, Astron. Dept. /Chicago U., Astron. Astrophys. Ctr. /Fermilab /Canadian Inst. Theor. Astrophys. /Illinois U., Urbana, Astron. Dept. /UC, Davis /LLNL, Livermore /Barcelona, IEEC /York U., Canada /Heidelberg, Max Planck Inst. Astron. /Penn State U., Astron. Astrophys. /Apache Point Observ. /Chicago U., EFI
2004-11-01
We report the discovery of two doubly-imaged quasars, SDSS J100128.61+502756.9 and SDSS J120629.65+433217.6, at redshifts of 1.838 and 1.789 and with image separations of 2.86'' and 2.90'', respectively. The objects were selected as lens candidates from the Sloan Digital Sky Survey (SDSS). Based on the identical nature of the spectra of the two quasars in each pair and the identification of the lens galaxies, we conclude that the objects are gravitational lenses. The lenses are complicated; in both systems there are several galaxies in the fields very close to the quasars, in addition to the lens galaxies themselves. The lens modeling implies that these nearby galaxies contribute significantly to the lens potentials. On larger scales, we have detected an enhancement in the galaxy density near SDSS J100128.61+502756.9. The number of lenses with image separation of {approx} 3'' in the SDSS already exceeds the prediction of simple theoretical models based on the standard Lambda-dominated cosmology and observed velocity function of galaxies.
Geier, S.; Man, A. W. S.; Krühler, T.; Toft, S.; Fynbo, J. P. U.; Richard, J.; Marchesini, D.
2013-11-10
Quiescent massive galaxies at z ∼ 2 are thought to be the progenitors of present-day massive ellipticals. Observations revealed them to be extraordinarily compact. Until now, the determination of stellar ages, star formation rates, and dust properties via spectroscopic measurements has been feasible only for the most luminous and massive specimens (∼3 × M*). Here we present a spectroscopic study of two near-infrared-selected galaxies that are close to the characteristic stellar mass M* (∼0.9 × M* and ∼1.3 × M*) and whose observed brightness has been boosted by the gravitational lensing effect. We measure the redshifts of the two galaxies to be z = 1.71 ± 0.02 and z = 2.15 ± 0.01. By fitting stellar population synthesis models to their spectrophotometric spectral energy distributions we determine their ages to be 2.4{sup +0.8}{sub -0.6} Gyr and 1.7 ± 0.3 Gyr, respectively, which implies that the two galaxies have higher mass-to-light ratios than most quiescent z ∼ 2 galaxies in other studies. We find no direct evidence for active star formation or active galactic nucleus activity in either of the two galaxies, based on the non-detection of emission lines. Based on the derived redshifts and stellar ages we estimate the formation redshifts to be z=4.3{sup +3.4}{sub -1.2} and z=4.3{sup +1.0}{sub -0.6}, respectively. We use the increased spatial resolution due to the gravitational lensing to derive constraints on the morphology. Fitting Sérsic profiles to the de-lensed images of the two galaxies confirms their compactness, with one of them being spheroid-like and the other providing the first confirmation of a passive lenticular galaxy at a spectroscopically derived redshift of z ∼ 2.
NASA Astrophysics Data System (ADS)
Leauthaud, Alexie; Finoguenov, Alexis; Kneib, Jean-Paul; Taylor, James E.; Massey, Richard; Rhodes, Jason; Ilbert, Olivier; Bundy, Kevin; Tinker, Jeremy; George, Matthew R.; Capak, Peter; Koekemoer, Anton M.; Johnston, David E.; Zhang, Yu-Ying; Cappelluti, Nico; Ellis, Richard S.; Elvis, Martin; Giodini, Stefania; Heymans, Catherine; Le Fèvre, Oliver; Lilly, Simon; McCracken, Henry J.; Mellier, Yannick; Réfrégier, Alexandre; Salvato, Mara; Scoville, Nick; Smoot, George; Tanaka, Masayuki; Van Waerbeke, Ludovic; Wolk, Melody
2010-01-01
Measurements of X-ray scaling laws are critical for improving cosmological constraints derived with the halo mass function and for understanding the physical processes that govern the heating and cooling of the intracluster medium. In this paper, we use a sample of 206 X-ray-selected galaxy groups to investigate the scaling relation between X-ray luminosity (L X) and halo mass (M 200) where M 200 is derived via stacked weak gravitational lensing. This work draws upon a broad array of multi-wavelength COSMOS observations including 1.64 degrees2 of contiguous imaging with the Advanced Camera for Surveys to a limiting magnitude of I F814W = 26.5 and deep XMM-Newton/Chandra imaging to a limiting flux of 1.0 × 10-15 erg cm-2 s-1 in the 0.5-2 keV band. The combined depth of these two data sets allows us to probe the lensing signals of X-ray-detected structures at both higher redshifts and lower masses than previously explored. Weak lensing profiles and halo masses are derived for nine sub-samples, narrowly binned in luminosity and redshift. The COSMOS data alone are well fit by a power law, M 200 vprop (L X)α, with a slope of α = 0.66 ± 0.14. These results significantly extend the dynamic range for which the halo masses of X-ray-selected structures have been measured with weak gravitational lensing. As a result, tight constraints are obtained for the slope of the M-L X relation. The combination of our group data with previously published cluster data demonstrates that the M-L X relation is well described by a single power law, α = 0.64 ± 0.03, over two decades in mass, M 200 ~ 1013.5-1015.5 h -1 72 M sun. These results are inconsistent at the 3.7σ level with the self-similar prediction of α = 0.75. We examine the redshift dependence of the M-L X relation and find little evidence for evolution beyond the rate predicted by self-similarity from z ~ 0.25 to z ~ 0.8. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope
CROSS-CORRELATION WEAK LENSING OF SDSS GALAXY CLUSTERS. III. MASS-TO-LIGHT RATIOS
Sheldon, Erin S.; Johnston, David E.; Masjedi, Morad; Blanton, Michael R.; McKay, Timothy A.; Scranton, Ryan; Wechsler, Risa H.; Koester, Benjamin P.; Hansen, Sarah M.; Frieman, Joshua A.; Annis, James
2009-10-01
We present measurements of the excess mass-to-light ratio (M/L) measured around MaxBCG galaxy clusters observed in the Sloan Digital Sky Survey. This red-sequence cluster sample includes objects from small groups with M {sub 200} approx 5 x 10{sup 12} h {sup -1} M {sub sun} to clusters with M {sub 200} approx 10{sup 15} h {sup -1} M {sub sun}. Using cross-correlation weak lensing, we measure the excess mass density profile above the universal mean DELTArho(r)=rho(r)-rho-bar for clusters in bins of richness and optical luminosity. We also measure the excess luminosity density DELTAl(r)=l(r)-l-bar measured in the z = 0.25 i band. For both mass and light, we de-project the profiles to produce three-dimensional mass and light profiles over scales from 25 h {sup -1} kpc to 22 h {sup -1} Mpc. From these profiles we calculate the cumulative excess mass DELTAM(r) and excess light DELTAL(r) as a function of separation from the BCG. On small scales, where rho(r)>>rho-bar, the integrated mass-to-light profile (DELTAM/DELTAL)(r) may be interpreted as the cluster M/L. We find the (DELTAM/DELTAL){sub 200}, the M/L within r {sub 200}, scales with cluster mass as a power law with index 0.33 +- 0.02. On large scales, where rho(r)approxrho-bar, the DELTAM/DELTAL approaches an asymptotic value independent of cluster richness. For small groups, the mean (DELTAM/DELTAL){sub 200} is much smaller than the asymptotic value, while for large clusters (DELTAM/DELTAL){sub 200} is consistent with the asymptotic value. This asymptotic value should be proportional to the mean M/L of the universe (M/L). We find (M/L)b{sup -2} {sub M/L} = 362 +- 54h (statistical). There is additional uncertainty in the overall calibration at the approx10% level. The parameter b {sup 2} {sub M/L} is primarily a function of the bias of the L approx< L {sub *} galaxies used as light tracers, and should be of order unity. Multiplying by the luminosity density in the same bandpass we find OMEGA {sub m}b{sup -2} {sub M
Cross-correlation Weak Lensing of SDSS Galaxy Clusters III: Mass-to-light Ratios
Sheldon, Erin S.; Johnston, David E.; Masjedi, Morad; McKay, Timothy A.; Blanton, Michael R.; Scranton, Ryan; Wechsler, Risa H.; Koester, Ben P.; Hansen, Sarah M.; Frieman, Joshua A.; Annis, James
2007-09-28
We present measurements of the excess mass-to-light ratio measured around MaxBCG galaxy clusters observed in the SDSS. This red sequence cluster sample includes objects from small groups with M{sub 200} {approx} 5 x 10{sup 12}h{sup -1}M{sub {circle_dot}} to clusters with M{sub 200} {approx} 5 x 10{sup 15}h{sup -1}M{sub {circle_dot}}. Using cross-correlation weak lensing, we measure the excess mass density profile above the universal mean {Delta}{yields}(r) = {rho}(r) -- {bar {rho}} for clusters in bins of richness and optical luminosity. We also measure the excess {sup 0.25}i-band luminosity density {Delta}{ell}(r) = {ell}(r) -- {bar {ell}}. For both mass and light, we de-project the profiles to produce 3D mass and light profiles over scales from 25h{sup -1} kpc to 22h{sup -1} Mpc. From these profiles we calculate the cumulative excess mass {Delta}M(r) and excess light {Delta}L(r) as a function of separation from the BCG. On small scales, where {rho}(r) >> {bar {rho}}, the integrated mass-to-light profile ({Delta}M/{Delta}L)(r) may be interpreted as the cluster mass-to-light ratio. We find the ({Delta}M/{Delta}L){sub 200}, the mass-to-light ratio within r{sub 200}, scales with cluster mass as a power law with index 0.33{+-}0.02. On large scales, where {rho}(r) {approx} {bar {rho}}, the {Delta}M/{Delta}L approaches an asymptotic value independent of scale or cluster richness. For small groups, the mean ({Delta}M/{Delta}L){sub 200} is much smaller than the asymptotic value, while for large clusters ({Delta}M/{Delta}L)200 is consistent with the asymptotic value. This asymptotic value should be proportional to the mean mass-to-light ratio of the universe {l_angle}M/L{r_angle}. We find {l_angle}M/L{r_angle} b{sup -2}{sub M/L} = 362 {+-} 54h measured in the {sup 0.25}i-bandpass. The parameter b{sup 2}{sub M/L} is primarily a function of the bias of the L {approx}< L* galaxies used as light tracers, and should be of order unity. Multiplying by the luminosity density in
Constraining primordial non-Gaussianity with cosmological weak lensing: shear and flexion
Fedeli, C.; Bartelmann, M.; Moscardini, L. E-mail: bartelmann@uni-heidelberg.de
2012-10-01
We examine the cosmological constraining power of future large-scale weak lensing surveys on the model of the ESA planned mission Euclid, with particular reference to primordial non-Gaussianity. Our analysis considers several different estimators of the projected matter power spectrum, based on both shear and flexion. We review the covariance and Fisher matrix for cosmic shear and evaluate those for cosmic flexion and for the cross-correlation between the two. The bounds provided by cosmic shear alone are looser than previously estimated, mainly due to the reduced sky coverage and background number density of sources for the latest Euclid specifications. New constraints for the local bispectrum shape, marginalized over σ{sub 8}, are at the level of Δf{sub NL} ∼ 100, with the precise value depending on the exact multipole range that is considered in the analysis. We consider three additional bispectrum shapes, for which the cosmic shear constraints range from Δf{sub NL} ∼ 340 (equilateral shape) up to Δf{sub NL} ∼ 500 (orthogonal shape). Also, constraints on the level of non-Gaussianity and on the amplitude of the matter power spectrum σ{sub 8} are almost perfectly anti-correlated, except for the orthogonal bispectrum shape for which they are correlated. The competitiveness of cosmic flexion constraints against cosmic shear ones depends by and large on the galaxy intrinsic flexion noise, that is still virtually unconstrained. Adopting the very high value that has been occasionally used in the literature results in the flexion contribution being basically negligible with respect to the shear one, and for realistic configurations the former does not improve significantly the constraining power of the latter. Since the shear shot noise is white, while the flexion one decreases with decreasing scale, by considering high enough multipoles the two contributions have to become comparable. Extending the analysis up to l{sub max} = 20,000 cosmic flexion, while
COSMOS: STOCHASTIC BIAS FROM MEASUREMENTS OF WEAK LENSING AND GALAXY CLUSTERING
Jullo, Eric; Rhodes, Jason; Kiessling, Alina; Massey, Richard; Taylor, James E.; Berge, Joel; Schimd, Carlo; Kneib, Jean-Paul; Scoville, Nick
2012-05-01
In the theory of structure formation, galaxies are biased tracers of the underlying matter density field. The statistical relation between galaxy and matter density field is commonly referred to as galaxy bias. In this paper, we test the linear bias model with weak-lensing and galaxy clustering measurements in the 2 deg{sup 2} COSMOS field. We estimate the bias of galaxies between redshifts z = 0.2 and z = 1 and over correlation scales between R = 0.2 h{sup -1} Mpc and R = 15 h{sup -1} Mpc. We focus on three galaxy samples, selected in flux (simultaneous cuts I{sub 814W} < 26.5 and K{sub s} < 24) and in stellar mass (10{sup 9} < M{sub *} < 10{sup 10} h{sup -2} M{sub Sun} and 10{sup 10} < M{sub *} < 10{sup 11} h{sup -2} M{sub Sun }). At scales R > 2 h{sup -1} Mpc, our measurements support a model of bias increasing with redshift. The Tinker et al. fitting function provides a good fit to the data. We find the best-fit mass of the galaxy halos to be log (M{sub 200}/h{sup -1} M{sub Sun }) = 11.7{sup +0.6}{sub -1.3} and log (M{sub 200}/h{sup -1} M{sub Sun }) = 12.4{sup +0.2}{sub -2.9}, respectively, for the low and high stellar-mass samples. In the halo model framework, bias is scale dependent with a change of slope at the transition scale between the one and the two halo terms. We detect a scale dependence of bias with a turndown at scale R = 2.3 {+-} 1.5 h{sup -1} Mpc, in agreement with previous galaxy clustering studies. We find no significant amount of stochasticity, suggesting that a linear bias model is sufficient to describe our data. We use N-body simulations to quantify both the amount of cosmic variance and systematic errors in the measurement.
Probing the neutrino mass hierarchy with cosmic microwave background weak lensing
NASA Astrophysics Data System (ADS)
Hall, Alex C.; Challinor, Anthony
2012-09-01
We forecast constraints on cosmological parameters with primary cosmic microwave background (CMB) anisotropy information and weak lensing reconstruction with a future post-Planck CMB experiment, the Cosmic Origins Explorer (COrE), using oscillation data on the neutrino mass splittings as prior information. Our Markov chain Monte Carlo (MCMC) simulations in flat models with a non-evolving equation of state of dark energy w give typical 68 per cent upper bounds on the total neutrino mass of 0.136 and 0.098 eV for the inverted and normal hierarchies, respectively, assuming the total summed mass is close to the minimum allowed by the oscillation data for the respective hierarchies (0.10 and 0.06 eV). Including geometric information from future baryon acoustic oscillation measurements with the complete Baryon Oscillation Spectroscopic Survey, Type Ia supernovae distance moduli from Wide-Field Infrared Survey Telescope (WFIRST) and a realistic prior on the Hubble constant, these upper limits shrink to 0.118 and 0.080 eV for the inverted and normal hierarchies, respectively. Addition of these distance priors also yields per cent-level constraints on w. We find tension between our MCMC results and the results of a Fisher matrix analysis, most likely due to a strong geometric degeneracy between the total neutrino mass, the Hubble constant and w in the unlensed CMB power spectra. If the minimal-mass, normal hierarchy were realized in nature, the inverted hierarchy should be disfavoured by the full data combination at typically greater than the 2σ level. For the minimal-mass inverted hierarchy, we compute the Bayes factor between the two hierarchies for various combinations of our forecast data sets, and find that the future cosmological probes considered here should be able to provide 'strong' evidence (odds ratio 12:1) for the inverted hierarchy. Finally, we consider potential biases of the other cosmological parameters from assuming the wrong hierarchy and find that all
EFFECTS OF STRONG GRAVITATIONAL LENSING ON MILLIMETER-WAVE GALAXY NUMBER COUNTS
Hezaveh, Yashar D.; Holder, Gilbert P.
2011-06-10
We study the effects of strong lensing on the observed number counts of millimeter sources using a ray-tracing simulation and two number count models of unlensed sources. We employ a quantitative treatment of maximum attainable magnification factor depending on the physical size of the sources, also accounting for effects of lens halo ellipticity. We calculate predicted number counts and redshift distributions of millimeter galaxies including the effects of strong lensing and compare with the recent source count measurements of the South Pole Telescope (SPT). The predictions have large uncertainties, especially the details of the mass distribution in lens galaxies and the finite extent of sources, but the SPT observations are in good agreement with predictions. The sources detected by SPT are predicted to largely consist of strongly lensed galaxies at z > 2. The typical magnifications of these sources strongly depend on both the assumed unlensed source counts and the flux of the observed sources.
Gravitational lensing of extended high-redshift sources by dark matter haloes
NASA Astrophysics Data System (ADS)
Perrotta, F.; Baccigalupi, C.; Bartelmann, M.; De Zotti, G.; Granato, G. L.
2002-01-01
High-redshift galaxies and quasi-stellar objects (QSOs) are most likely to be strongly lensed by intervening haloes between the source and the observer. In addition, a large fraction of lensed sources is expected to be seen in the submillimetre region, as a result of the enhanced magnification bias on the steep intrinsic number counts. We extend in three directions Blain's earlier study of this effect. First, we use a modification of the Press-Schechter mass function and detailed lens models to compute the magnification probability distribution. We compare the magnification cross-sections of populations of singular isothermal spheres and Navarro, Frenk & White (NFW) haloes and find that they are very similar, in contrast to the image-splitting statistics which were recently investigated in other studies. The distinction between the two types of density profile is therefore irrelevant for our purposes. Secondly, we discuss quantitatively the maximum magnification, μmax, that can be achieved for extended sources (galaxies) with realistic luminosity profiles, taking into account the possible ellipticity of the lensing potential. We find that μmax plausibly falls into the range 10-30 for sources of 1-10h-1kpc effective radius at redshifts within 1-4. Thirdly, we apply our model for the lensing magnification to a class of sources following the luminosity evolution typical for a unified scheme of QSO formation. As a result of the peculiar steepness of their intrinsic number counts, we find that the lensed source counts at a fiducial wave length of 850μm can exceed the unlensed counts by several orders of magnitude at flux densities >~100mJy, even with a conservative choice of the maximum magnification.
NASA Technical Reports Server (NTRS)
Loewenstein, M.
1994-01-01
A simple method for deriving well-behaved temperature solutions to the equation of hydrostatic equilibrium for intracluster media with X-ray imaging observations is presented and applied to a series of generalized models as well as to observations of the Perseus cluster and Abell 2256. In these applications the allowed range in the ratio of nonbaryons to baryons as a function of radius is derived, taking into account the uncertainties and crude spatial resolution of the X-ray spectra and considering a range of physically reasonable mass models with various scale heights. Particular attention is paid to the central regions of the cluster, and it is found that the dark matter can be sufficiently concentrated to be consistent with the high central mass surface densities for moderate-redshift clusters from their gravitational lensing properties.
Paczyński; Pindor
2000-04-20
We selected Cepheids from the Optical Gravitational Lensing Experiment database for the Magellanic Clouds in the period range of 101.1
Baldauf, Tobias; Smith, Robert E.; Seljak, Uros; Mandelbaum, Rachel
2010-03-15
The clustering of matter on cosmological scales is an essential probe for studying the physical origin and composition of our Universe. To date, most of the direct studies have focused on shear-shear weak lensing correlations, but it is also possible to extract the dark matter clustering by combining galaxy-clustering and galaxy-galaxy-lensing measurements. In order to extract the required information, one must relate the observable galaxy distribution to the underlying dark matter distribution. In this study we develop in detail a method that can constrain the dark matter correlation function from galaxy clustering and galaxy-galaxy-lensing measurements, by focusing on the correlation coefficient between the galaxy and matter overdensity fields. Our goal is to develop an estimator that maximally correlates the two. To generate a mock galaxy catalogue for testing purposes, we use the halo occupation distribution approach applied to a large ensemble of N-body simulations to model preexisting SDSS luminous red galaxy sample observations. Using this mock catalogue, we show that a direct comparison between the excess surface mass density measured by lensing and its corresponding galaxy clustering quantity is not optimal. We develop a new statistic that suppresses the small-scale contributions to these observations and show that this new statistic leads to a cross-correlation coefficient that is within a few percent of unity down to 5h{sup -1} Mpc. Furthermore, the residual incoherence between the galaxy and matter fields can be explained using a theoretical model for scale-dependent galaxy bias, giving us a final estimator that is unbiased to within 1%, so that we can reconstruct the dark matter clustering power spectrum at this accuracy up to k{approx}1h Mpc{sup -1}. We also perform a comprehensive study of other physical effects that can affect the analysis, such as redshift space distortions and differences in radial windows between galaxy clustering and weak
Mapping all the mass in the universe (with weak gravitational lensing) - Oral Presentation
Everett, Spencer
2015-08-13
Recent discoveries have shown that most of the universe is made of an exotic dark matter that behaves much differently than the normal matter that we experience in everyday life. As we cannot detect dark matter directly, we must infer its location in the universe by indirect effects, such as the distortion of light from distant galaxies as it travels through large clouds of dark matter. While the degree of distortion should be proportional to the amount of dark matter present, we don't know the original shape of the galaxy so the distortion is difficult to quantify. If we had a model of how dark matter is linked to galaxies, and thus be able predict the amount of distortion that should occur, we could apply the model to galaxy surveys to map out the dark matter in our universe. In this research, I attach a spherical 'halo' of dark matter to each galaxy in a simulated universe to approximate its known complex dark matter structure. I then predict how the halos distort the light from distant galaxies generated behind the halos. As the data is simulated, the true distortion of the light is known which is compared to the halo-predicted distortion. I find that, on average, the model under-predicts the degree of distortion on all scales and fails to capture distortions from large-scale dark matter structure. These issues are likely due to missing features in the model, as the halo model is a greatly simplified version of the actual distribution of dark matter. Potential improvements to the model for future work are discussed.
MacLeod, Chelsea L.; Jones, Ramsey; Agol, Eric; Kochanek, Christopher S.
2013-08-10
We present 11.2 {mu}m observations of the gravitationally lensed, radio-loud z{sub s} = 2.64 quasar MG0414+0534, obtained using the Michelle camera on Gemini North. We find a flux ratio anomaly of A2/A1 = 0.93 {+-} 0.02 for the quasar images A1 and A2. When combined with the 11.7 {mu}m measurements from Minezaki et al., the A2/A1 flux ratio is nearly 5{sigma} from the expected ratio for a model based on the two visible lens galaxies. The mid-IR flux ratio anomaly can be explained by a satellite (substructure), 0.''3 northeast of image A2, as can the detailed very long baseline interferometry (VLBI) structures of the jet produced by the quasar. When we combine the mid-IR flux ratios with high-resolution VLBI measurements, we find a best-fit mass between 10{sup 6.2} and 10{sup 7.5} M{sub Sun} inside the Einstein radius for a satellite substructure modeled as a singular isothermal sphere at the redshift of the main lens (z{sub l} = 0.96). We are unable to set an interesting limit on the mass to light ratio due to its proximity to the quasar image A2. While the observations used here were technically difficult, surveys of flux anomalies in gravitational lenses with the James Webb Space Telescope will be simple, fast, and should well constrain the abundance of substructure in dark matter halos.
3D-HST GRISM SPECTROSCOPY OF A GRAVITATIONALLY LENSED, LOW-METALLICITY STARBURST GALAXY AT z = 1.847
Brammer, Gabriel B.; Sanchez-Janssen, Ruben; Labbe, Ivo; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Da Cunha, Elisabete; Rix, Hans-Walter; Schmidt, Kasper B.; Van der Wel, Arjen; Erb, Dawn K.; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica; Skelton, Rosalind E.; Van Dokkum, Pieter G.; Wake, David A.; Whitaker, Katherine E.; Marchesini, Danilo; Quadri, Ryan
2012-10-10
We present Hubble Space Telescope (HST) imaging and spectroscopy of the gravitational lens SL2SJ02176-0513, a cusp arc at z = 1.847. The UV continuum of the lensed galaxy is very blue, which is seemingly at odds with its redder optical colors. The 3D-HST WFC3/G141 near-infrared spectrum of the lens reveals the source of this discrepancy to be extremely strong [O III] {lambda}5007 and H{beta} emission lines with rest-frame equivalent widths of 2000 {+-} 100 and 520 {+-} 40 A, respectively. The source has a stellar mass {approx}10{sup 8} M{sub Sun }, sSFR {approx} 100 Gyr{sup -1}, and detection of [O III] {lambda}4363 yields a metallicity of 12 + log (O/H) = 7.5 {+-} 0.2. We identify local blue compact dwarf analogs to SL2SJ02176-0513, which are among the most metal-poor galaxies in the Sloan Digital Sky Survey. The local analogs resemble the lensed galaxy in many ways, including UV/optical spectral energy distribution, spatial morphology, and emission line equivalent widths and ratios. Common to SL2SJ02176-0513 and its local counterparts is an upturn at mid-IR wavelengths likely arising from hot dust heated by starbursts. The emission lines of SL2SJ02176-0513 are spatially resolved owing to the combination of the lens and the high spatial resolution of HST. The lensed galaxy is composed of two clumps with combined size r{sub e} {approx}300 pc, and we resolve significant differences in UV color and emission line equivalent width between them. Though it has characteristics occasionally attributed to active galactic nuclei, we conclude that SL2SJ02176-0513 is a low-metallicity star-bursting dwarf galaxy. Such galaxies will be found in significant numbers in the full 3D-HST grism survey.
NASA Astrophysics Data System (ADS)
Meyers, Adrian
2015-01-01
Over its long history, the Milky Way is expected to have accreted many dwarf galaxies. The debris from the destruction of most of these dwarf galaxies will by now be fully phase-mixed throughout the Galaxy and hence undetectable as local over-densities in position-space. However, the debris from these systems could have distinct kinematic signatures that may help distinguish these stars from, for example, the Galactic disk. We aim to construct a reliable method of determining the contributions to the Milky Way disk from accreted structures that could be applied to current kinematic data sets, such as SDSS's APOGEE survey. In an effort to mimic the kinematic traits of an accreted satellite, we construct single-orbit models to compare to a cosmologically motivated simulation of satellite accretion. We find that these orbit models adhere to the kinematic signatures of certain types of accreted galaxies better than others, giving us insight on which parameters to trust when searching for accreted populations. As a bonus, we describe a separate project in which we attempt to deduce the intrinsic properties of the 8 o'clock arc, a gravitationally lensed Lyman break galaxy at redshift 2.73. Using the lensmodel code and its pixel-based source reconstruction extension pixsrc, we derive a de-lensed image of the galaxy in the source plane.
Gasparini, Maria Alice; Marshall, Phil; Treu, Tommaso; Morganson, Eric; Dubath, Florian; /Santa Barbara, KITP
2007-11-14
We use current theoretical estimates for the density of long cosmic strings to predict the number of strong gravitational lensing events in astronomical imaging surveys as a function of angular resolution and survey area. We show that angular resolution is the single most important factor, and that interesting limits on the dimensionless string tension G{mu}/c{sup 2} can be obtained by existing and planned surveys. At the resolution of the Hubble Space Telescope (0'.14), it is sufficient to survey of order a square degree -- well within reach of the current HST archive -- to probe the regime G{mu}/c{sup 2} {approx} 10{sup -8}. If lensing by cosmic strings is not detected, such a survey would improve the limit on the string tension by an order of magnitude on that available from the cosmic microwave background. At the resolution (0'.028) attainable with the next generation of large ground based instruments, both in the radio and the infra-red with adaptive optics, surveying a sky area of order ten square degrees will allow us to probe the G{mu}/c{sup 2} {approx} 10{sup -9} regime. These limits will not be improved significantly by increasing the solid angle of the survey.
Asaba, Shinsuke; Hikage, Chiaki; Koyama, Kazuya; Zhao, Gong-Bo; Hojjati, Alireza; Pogosian, Levon E-mail: hikage@kmi.nagoya-u.ac.jp E-mail: gong-bo.zhao@port.ac.uk E-mail: levon@sfu.ca
2013-08-01
We perform a principal component analysis to assess ability of future observations to measure departures from General Relativity in predictions of the Poisson and anisotropy equations on linear scales. In particular, we focus on how the measurements of redshift-space distortions (RSD) observed from spectroscopic galaxy redshift surveys will improve the constraints when combined with lensing tomographic surveys. Assuming a Euclid-like galaxy imaging and redshift survey, we find that adding the 3D information decreases the statistical uncertainty by a factor between 3 and 7 compared to the case when only observables from lensing tomographic surveys are used. We also find that the number of well-constrained modes increases by a factor between 3 and 6. Our study indicates the importance of joint galaxy imaging and redshift surveys such as SuMIRe and Euclid to give more stringent tests of the ΛCDM model and to distinguish between various modified gravity and dark energy models.
NASA Astrophysics Data System (ADS)
Luppino, G. A.; Gioia, I. M.; Annis, J.; Le Fevre, O.; Hammer, F.
1993-10-01
We report the discovery of a new, complex, gravitationally lensed arc system in the X-ray luminous cluster of galaxies MS 0440+0204 at z = 0.190. This cluster has Lx = 4.0 × 1044 ergs s-1 and is one of a sample of 38 high X-ray luminosity (Lx > 2 × 1044 ergs s-1), intermediate-redshift (z > 0.15) clusters we are systematically searching for evidence of gravitational lensing. The clusters were selected from the Einstein Observatory Extended Medium Sensitivity Survey (EM SS) and form a statistically complete, X-ray luminosity limited sample. We present CCD images of MS 0440+0204 that show at least 15 blue circular structures surrounding a multiple nucleus cD galaxy in the core of a compact, poor cluster. The largest giant luminous arc has a length 1> 10" and remains unresolved in 0."5 seeing. The three brightest arcs all of which may be bright enough for spectroscopy and many of the fainter arcs trace out a 22" radius circular critical line corresponding to 90h-150 kpc radius at the cluster redshift (q0 = ½). The thin arcs provide strong evidence for a compact lensing mass distribution. The optical morphology of the cluster is remarkable. The core contains six bright galaxies and numerous fainter galaxies embedded in a low surface brightness halo. It appears that we are seeing a poor cluster in the short-lived period when many of the cluster galaxies are merging to form the giant, central cD galaxy. In addition, Donahue, Stocke, & Gioia have observed extended Hα emission coincident with the core of the cluster, suggesting the presence of a large cooling flow an interpretation supported by the presence of radio emission associated with the cD galaxy. We measure a total optical luminosity of 9.4 × 1011 Lsun and compute a lower limit to the total mass enclosed by the arcs of 1.0 × 1014 Msun (assuming a source redshift of zs ≃ 0.4), corresponding to a central mass-to-light ratio of 110 Msun/Lsun. This cluster is an ideal target for future X-ray observations with
Ren, Jing; Xianyu, Zhong-Zhi; He, Hong-Jian E-mail: xianyuzhongzhi@gmail.com
2014-06-01
We study gravitational interaction of Higgs boson through the unique dimension-4 operator ξH{sup †}HR, with H the Higgs doublet and R the Ricci scalar curvature. We analyze the effect of this dimensionless nonminimal coupling ξ on weak gauge boson scattering in both Jordan and Einstein frames. We explicitly establish the longitudinal-Goldstone equivalence theorem with nonzero ξ coupling in both frames, and analyze the unitarity constraints. We study the ξ-induced weak boson scattering cross sections at O(1−30) TeV scales, and propose to probe the Higgs-gravity coupling via weak boson scattering experiments at the LHC (14 TeV) and the next generation pp colliders (50-100 TeV). We further extend our study to Higgs inflation, and quantitatively derive the perturbative unitarity bounds via coupled channel analysis, under large field background at the inflation scale. We analyze the unitarity constraints on the parameter space in both the conventional Higgs inflation and the improved models in light of the recent BICEP2 data.
Geometrical approach to strong gravitational lensing in f(R) gravity
Nzioki, Anne Marie; Goswami, Rituparno; Dunsby, Peter K. S.; Carloni, Sante
2011-01-15
We present a framework for the study of lensing in spherically symmetric spacetimes within the context of f(R) gravity. Equations for the propagation of null geodesics, together with an expression for the bending angle, are derived for any f(R) theory and then applied to an exact spherically symmetric solution of R{sup n} gravity. We find that for this case more bending is expected for R{sup n} gravity theories in comparison to general relativity and is dependent on the value of n and the value of the distance of closest approach of the incident null geodesic.
NASA Astrophysics Data System (ADS)
Tewes, M.; Courbin, F.; Meylan, G.; Kochanek, C. S.; Eulaers, E.; Cantale, N.; Mosquera, A. M.; Magain, P.; Van Winckel, H.; Sluse, D.; Cataldi, G.; Vörös, D.; Dye, S.
2013-08-01
We present the results from nine years of optically monitoring the gravitationally lensed zQSO = 0.658 quasar RX J1131-1231. The R-band light curves of the four individual images of the quasar were obtained using deconvolution photometry for a total of 707 epochs. Several sharp quasar variability features strongly constrain the time delays between the quasar images. Using three different numerical techniques, we measured these delays for all possible pairs of quasar images while always processing the four light curves simultaneously. For all three methods, the delays between the three close images A, B, and C are compatible with being 0, while we measured the delay of image D to be 91 days, with a fractional uncertainty of 1.5% (1σ), including systematic errors. Our analysis of random and systematic errors accounts in a realistic way for the observed quasar variability, fluctuating microlensing magnification over a broad range of temporal scales, noise properties, and seasonal gaps. Finally, we find that our time-delay measurement methods yield compatible results when applied to subsets of the data. Based on observations made with the 1.2-m Swiss Euler telescope (La Silla, Chile), the 1.3-m SMARTS telescope (Las Campanas, Chile), and the 1.2-m Mercator Telescope. Mercator is operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Light curves are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/A22
Using Weak-Lensing Dilution to Improve Measurements of the Luminous and Dark Matter in A1689
NASA Astrophysics Data System (ADS)
Medezinski, Elinor; Broadhurst, Tom; Umetsu, Keiichi; Coe, Dan; Benítez, Narciso; Ford, Holland; Rephaeli, Yoel; Arimoto, Nobuo; Kong, Xu
2007-07-01
The E/S0 sequence of a cluster defines a boundary redward of which a reliable weak-lensing signal can be obtained from background galaxies, uncontaminated by cluster members. For bluer colors, both background and cluster members are present, reducing the average distortion signal by the proportion of unlensed cluster members. In deep Subaru and HST/ACS images of A1689, the tangential distortion of galaxies with bluer colors falls rapidly toward the cluster center relative to lensing signal of the red background. We use this dilution effect to derive the cluster light profile and luminosity function to large radius, with the advantage that no subtraction of far-field background counts is required. The light profile declines smoothly to the limit of the data, r<2 h-1 Mpc, with a constant slope, dlog(L)/dlog(r)=-1.12+/-0.06, unlike the lensing mass profile which steepens continuously with radius, so that M/L peaks at an intermediate radius, ~=100 h-1 kpc. A flatter behavior is found for the more physically meaningful ratio of dark matter to stellar matter when accounting for the color-mass relation of cluster members. The cluster luminosity function has a flat slope, α=-1.05+/-0.05, independent of radius and with no faint upturn to Mi'<-12. We establish that the very bluest objects are negligibly contaminated by the cluster [(V-i')AB<0.2], because their distortion profile rises toward the center following the red background, but offset higher by ~=20%. This larger amplitude is consistent with the greater estimated depth of the faint blue galaxies,
LoCuSS: THE SUNYAEV-ZEL'DOVICH EFFECT AND WEAK-LENSING MASS SCALING RELATION
Marrone, Daniel P.; Carlstrom, John E.; Gralla, Megan; Greer, Christopher H.; Hennessy, Ryan; Leitch, Erik M.; Plagge, Thomas; Smith, Graham P.; Okabe, Nobuhiro; Bonamente, Massimiliano; Hasler, Nicole; Culverhouse, Thomas L.; Hawkins, David; Lamb, James W.; Muchovej, Stephen; Joy, Marshall; Martino, Rossella; Mazzotta, Pasquale; Miller, Amber; Mroczkowski, Tony; and others
2012-08-01
We present the first weak-lensing-based scaling relation between galaxy cluster mass, M{sub WL}, and integrated Compton parameter Y{sub sph}. Observations of 18 galaxy clusters at z {approx_equal} 0.2 were obtained with the Subaru 8.2 m telescope and the Sunyaev-Zel'dovich Array. The M{sub WL}-Y{sub sph} scaling relations, measured at {Delta} = 500, 1000, and 2500 {rho}{sub c}, are consistent in slope and normalization with previous results derived under the assumption of hydrostatic equilibrium (HSE). We find an intrinsic scatter in M{sub WL} at fixed Y{sub sph} of 20%, larger than both previous measurements of M{sub HSE}-Y{sub sph} scatter as well as the scatter in true mass at fixed Y{sub sph} found in simulations. Moreover, the scatter in our lensing-based scaling relations is morphology dependent, with 30%-40% larger M{sub WL} for undisturbed compared to disturbed clusters at the same Y{sub sph} at r{sub 500}. Further examination suggests that the segregation may be explained by the inability of our spherical lens models to faithfully describe the three-dimensional structure of the clusters, in particular, the structure along the line of sight. We find that the ellipticity of the brightest cluster galaxy, a proxy for halo orientation, correlates well with the offset in mass from the mean scaling relation, which supports this picture. This provides empirical evidence that line-of-sight projection effects are an important systematic uncertainty in lensing-based scaling relations.
Is there a black hole in the sky?. [gravitational lensing candidate
NASA Technical Reports Server (NTRS)
Paczynski, B.
1986-01-01
The consequences of the hypothesis that a supermassive black hole can serve as a gravitational lens are analytically studied. It is shown that the presence of a black hole could be established by the unique property that it would appear against the microwave background as a black spot with a diameter of 0.1 arcsec or greater. The only instrument capable of either resolving the black spot or at least noticing it as a negative luminosity source is the Very Large Array.
Cosmology constraints from the weak lensing peak counts and the power spectrum in CFHTLenS data
NASA Astrophysics Data System (ADS)
Liu, Jia; Petri, Andrea; Haiman, Zoltán; Hui, Lam; Kratochvil, Jan M.; May, Morgan
2015-03-01
Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models covering broad ranges of the three parameters Ωm, σ8, and w , and replicating the Galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build an emulator that interpolates the power spectrum and the peak counts to an accuracy of ≤5 %, and compute the likelihood in the three-dimensional parameter space (Ωm, σ8, w ) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain w without external data. When the power spectrum and peak counts are combined, the area of the error "banana" in the (Ωm, σ8) plane reduces by a factor of ≈2 , compared to using the power spectrum alone. For a flat Λ cold dark matter model, combining both statistics, we obtain the constraint σ8(Ωm/0.27 )0.63=0.85-0.03+0.03 .
NASA Astrophysics Data System (ADS)
Clément, Benjamin; Egami, Eiichi; Richard, Johan; Schaerer, Daniel
2015-08-01
Gravitationally lensed high-redshift galaxies are powerful for constraining the abundance and properties of lower-luminosity galaxies in the reionization era. Here, I present the results from a spectroscopic survey of strongly lensed galaxies in massive cluster fields that resulted in the detection of the Lyman-α line for galaxies at redshifts 5.5 < z < 7. Candidates for follow-up were selected by applying the dropout technique to the extremely deep HST/ACS and HST/WFC3 data obtained by several HST programs including the CLASH MCT program and the Frontier Fields program. By combining the optical and near-infrared data with deep Spitzer/IRAC imaging, one can map out the spectral energy distribution from the rest-frame UV to optical and derive physical properties of this faint and distant galaxy population. However, it is now suspected that IRAC 3.6/4.5 μm broad-band measurements of z>6 galaxies may be significantly affected by the presence of strong nebular emission lines such as Hα, Hβ, and [O III] 4959/5007Å lines. Most notably, at 6.7
NASA Astrophysics Data System (ADS)
Cao, Shuo; Biesiada, Marek; Yao, Meng; Zhu, Zong-Hong
2016-09-01
We use 118 strong gravitational lenses observed by the SLACS, BOSS emission-line lens survey (BELLS), LSD and SL2S surveys to constrain the total mass profile and the profile of luminosity density of stars (light tracers) in elliptical galaxies up to redshift z ˜ 1. Assuming power-law density profiles for the total mass density, ρ = ρ0(r/r0)-α, and luminosity density, ν = ν0(r/r0)-δ, we investigate the power-law index and its first derivative with respect to the redshift. Using Monte Carlo simulations of the posterior likelihood taking the Planck's best-fitting cosmology as a prior, we find γ = 2.132 ± 0.055 with a mild trend ∂γ/∂zl = -0.067 ± 0.119 when α = δ = γ, suggesting that the total density profile of massive galaxies could have become slightly steeper over cosmic time. Furthermore, similar analyses performed on sub-samples defined by different lens redshifts and velocity dispersions indicate the need of treating low-, intermediate- and high-mass galaxies separately. Allowing δ to be a free parameter, we obtain α = 2.070 ± 0.031, ∂α/∂zl = -0.121 ± 0.078 and δ = 2.710 ± 0.143. The model in which mass traces light is rejected at >95 per cent confidence, and our analysis robustly indicates the presence of dark matter in the form of a mass component that is differently spatially extended than the light. In this case, intermediate-mass elliptical galaxies (200 km s-1 <σap ≤ 300 km s-1) show the best consistency with the singular isothermal sphere as an effective model of galactic lenses.
Marrone, Daniel P.; Culverhouse, Thomas; Carlstrom, John E.; Greer, Christopher; Hennessy, Ryan; Leitch, Erik M.; Loh, Michael; Pryke, Clem; Smith, Graham P.; Hamilton-Morris, Victoria; Richard, Johan; Joy, Marshall; Kneib, Jean-Paul; Hawkins, David; Lamb, James W.; Muchovej, Stephen; Miller, Amber; Mroczkowski, Tony
2009-08-20
We present the first measurement of the relationship between the Sunyaev-Zel'dovich effect (SZE) signal and the mass of galaxy clusters that uses gravitational lensing to measure cluster mass, based on 14 X-ray luminous clusters at z {approx_equal} 0.2 from the Local Cluster Substructure Survey. We measure the integrated Compton y-parameter, Y, and total projected mass of the clusters (M {sub GL}) within a projected clustercentric radius of 350 kpc, corresponding to mean overdensities of 4000-8000 relative to the critical density. We find self-similar scaling between M {sub GL} and Y, with a scatter in mass at fixed Y of 32%. This scatter exceeds that predicted from numerical cluster simulations, however, it is smaller than comparable measurements of the scatter in mass at fixed T{sub X} . We also find no evidence of segregation in Y between disturbed and undisturbed clusters, as had been seen with T{sub X} on the same physical scales. We compare our scaling relation to the Bonamente et al. relation based on mass measurements that assume hydrostatic equilibrium, finding no evidence for a hydrostatic mass bias in cluster cores (M {sub GL} = 0.98 {+-} 0.13 M {sub HSE}), consistent with both predictions from numerical simulations and lensing/X-ray-based measurements of mass-observable scaling relations at larger radii. Overall our results suggest that the SZE may be less sensitive than X-ray observations to the details of cluster physics in cluster cores.
NASA Astrophysics Data System (ADS)
More, Surhud; Miyatake, Hironao; Mandelbaum, Rachel; Takada, Masahiro; Spergel, David. N.; Brownstein, Joel R.; Schneider, Donald P.
2015-06-01
We perform a joint analysis of the abundance, the clustering, and the galaxy-galaxy lensing signal of galaxies measured from Data Release 11 of the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey in our companion paper, Miyatake et al. The lensing signal was obtained by using the shape catalog of background galaxies from the Canada France Hawaii Telescope Legacy Survey, which was made publicly available by the CFHTLenS collaboration, with an area overlap of about 105 deg2. We analyze the data in the framework of the halo model in order to fit halo occupation parameters and cosmological parameters (Ωm and {{σ }8}) to these observables simultaneously, and thus break the degeneracy between galaxy bias and cosmology. Adopting a flat ΛCDM cosmology with priors on Ωb{{h}2}, {{n}s}, and h from the analysis of WMAP 9 yr data, we obtain constraints on the stellar mass-halo mass relation of galaxies in our sample. Marginalizing over the halo occupation distribution parameters and a number of other nuisance parameters in our model, we obtain Ωm=0.310-0.020+0.019 and {{σ }8}=0.785-0.044+0.044 (68% confidence). We demonstrate the robustness of our results with respect to sample selection and a variety of systematics such