Sample records for weak interaction physics

  1. Weak Interactions Group

    Science.gov Websites

    Weak Interactions Group UC Berkeley UC Berkeley Physics Lawrence Berkeley Lab Nuclear Science Division at LBL Physics Division at LBL Phonebook A-Z Index Navigation Home Members Research Projects CUORE Design Concept Berkeley Projects People Publications Contact Links KamLAND Physics Impact Neutrino

  2. Evaluating nuclear physics inputs in core-collapse supernova models

    NASA Astrophysics Data System (ADS)

    Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.

    Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.

  3. Weak Bond-Based Injectable and Stimuli Responsive Hydrogels for Biomedical Applications

    PubMed Central

    Ding, Xiaochu; Wang, Yadong

    2017-01-01

    Here we define hydrogels crosslinked by weak bonds as physical hydrogels. They possess unique features including reversible bonding, shear thinning and stimuli-responsiveness. Unlike covalently crosslinked hydrogels, physical hydrogels do not require triggers to initiate chemical reactions for in situ gelation. The drug can be fully loaded in a pre-formed hydrogel for delivery with minimal cargo leakage during injection. These benefits make physical hydrogels useful as delivery vehicles for applications in biomedical engineering. This review focuses on recent advances of physical hydrogels crosslinked by weak bonds: hydrogen bonds, ionic interactions, host-guest chemistry, hydrophobic interactions, coordination bonds and π-π stacking interactions. Understanding the principles and the state of the art of gels with these dynamic bonds may give rise to breakthroughs in many biomedical research areas including drug delivery and tissue engineering. PMID:29062484

  4. History of Weak Interactions

    DOE R&D Accomplishments Database

    Lee, T. D.

    1970-07-01

    While the phenomenon of beta-decay was discovered near the end of the last century, the notion that the weak interaction forms a separate field of physical forces evolved rather gradually. This became clear only after the experimental discoveries of other weak reactions such as muon-decay, muon-capture, etc., and the theoretical observation that all these reactions can be described by approximately the same coupling constant, thus giving rise to the notion of a universal weak interaction. Only then did one slowly recognize that the weak interaction force forms an independent field, perhaps on the same footing as the gravitational force, the electromagnetic force, and the strong nuclear and sub-nuclear forces.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannenbaum, Michael J.

    The search for the left-handed W± bosons, the proposed quanta of the weak interaction, and the Higgs boson, which spontaneously breaks the symmetry of unification of electromagnetic and weak interactions, has driven elementary-particle physics research from the time that I entered college to the present and has led to many unexpected and exciting discoveries which revolutionized our view of subnuclear physics over that period. In this article I describe how these searches and discoveries have intertwined with my own career.

  6. Challenges and dreams: physics of weak interactions essential to life

    PubMed Central

    Chien, Peter; Gierasch, Lila M.

    2014-01-01

    Biological systems display stunning capacities to self-organize. Moreover, their subcellular architectures are dynamic and responsive to changing needs and conditions. Key to these properties are manifold weak “quinary” interactions that have evolved to create specific spatial networks of macromolecules. These specific arrangements of molecules enable signals to be propagated over distances much greater than molecular dimensions, create phase separations that define functional regions in cells, and amplify cellular responses to changes in their environments. A major challenge is to develop biochemical tools and physical models to describe the panoply of weak interactions operating in cells. We also need better approaches to measure the biases in the spatial distributions of cellular macromolecules that result from the integrated action of multiple weak interactions. Partnerships between cell biologists, biochemists, and physicists are required to deploy these methods. Together these approaches will help us realize the dream of understanding the biological “glue” that sustains life at a molecular and cellular level. PMID:25368424

  7. Visualizing an ultra-weak protein-protein interaction in phosphorylation signaling.

    PubMed

    Xing, Qiong; Huang, Peng; Yang, Ju; Sun, Jian-Qiang; Gong, Zhou; Dong, Xu; Guo, Da-Chuan; Chen, Shao-Min; Yang, Yu-Hong; Wang, Yan; Yang, Ming-Hui; Yi, Ming; Ding, Yi-Ming; Liu, Mai-Li; Zhang, Wei-Ping; Tang, Chun

    2014-10-20

    Proteins interact with each other to fulfill their functions. The importance of weak protein-protein interactions has been increasingly recognized. However, owing to technical difficulties, ultra-weak interactions remain to be characterized. Phosphorylation can take place via a K(D)≈25 mM interaction between two bacterial enzymes. Using paramagnetic NMR spectroscopy and with the introduction of a novel Gd(III)-based probe, we determined the structure of the resulting complex to atomic resolution. The structure accounts for the mechanism of phosphoryl transfer between the two enzymes and demonstrates the physical basis for their ultra-weak interaction. Further, molecular dynamics (MD) simulations suggest that the complex has a lifetime in the micro- to millisecond regimen. Hence such interaction is termed a fleeting interaction. From mathematical modeling, we propose that an ultra-weak fleeting interaction enables rapid flux of phosphoryl signal, providing a high effective protein concentration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Waiting for the W and the Higgs

    DOE PAGES

    Tannenbaum, Michael J.

    2016-10-06

    The search for the left-handed W± bosons, the proposed quanta of the weak interaction, and the Higgs boson, which spontaneously breaks the symmetry of unification of electromagnetic and weak interactions, has driven elementary-particle physics research from the time that I entered college to the present and has led to many unexpected and exciting discoveries which revolutionized our view of subnuclear physics over that period. In this article I describe how these searches and discoveries have intertwined with my own career.

  9. Waiting for the W. and the Higgs

    NASA Astrophysics Data System (ADS)

    Tannenbaum, M. J.

    2016-12-01

    The search for the left-handed W± bosons, the proposed quanta of the weak interaction, and the Higgs boson, which spontaneously breaks the symmetry of unification of electromagnetic and weak interactions, has driven elementary-particle physics research from the time that I entered college to the present and has led to many unexpected and exciting discoveries which revolutionized our view of subnuclear physics over that period. In this article I describe how these searches and discoveries have intertwined with my own career.

  10. The first dozen years of the history of ITEP Theoretical Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Ioffe, B. L.

    2013-01-01

    The theoretical investigations at ITEP in the years 1945 - 1958 are reviewed. There are exposed the most important theoretical results, obtained in the following branches of physics: (1) the theory of nuclear reactors on thermal neutrons; (2) the hydrogen bomb project ("Tube" in USSR and "Classical Super" in USA); (3) radiation theory; (4) low temperature physics; (5) quantum electrodynamics and quantum field theories; (6) parity violation in weak interactions, the theory of β-decay and other weak processes; (7) strong interaction and nuclear physics. To the review are added the English translations of a few papers, originally published in Russian, but unknown (or almost unknown) to Western readers.

  11. Steven Weinberg, Weak Interactions, and Electromagnetic Interactions

    Science.gov Websites

    a professor of physics and astronomy at UT [The University of Texas] Austin and is founding director to physics and cosmology ... Weinberg's work has been honored with numerous prizes, including the Nobel Prize in Physics in 1979 and the National Medal of Science in 1991. Weinberg is the author of the

  12. Quantum controlled-Z gate for weakly interacting qubits

    NASA Astrophysics Data System (ADS)

    Mičuda, Michal; Stárek, Robert; Straka, Ivo; Miková, Martina; Dušek, Miloslav; Ježek, Miroslav; Filip, Radim; Fiurášek, Jaromír

    2015-08-01

    We propose and experimentally demonstrate a scheme for the implementation of a maximally entangling quantum controlled-Z gate between two weakly interacting systems. We conditionally enhance the interqubit coupling by quantum interference. Both before and after the interqubit interaction, one of the qubits is coherently coupled to an auxiliary quantum system, and finally it is projected back onto qubit subspace. We experimentally verify the practical feasibility of this technique by using a linear optical setup with weak interferometric coupling between single-photon qubits. Our procedure is universally applicable to a wide range of physical platforms including hybrid systems such as atomic clouds or optomechanical oscillators coupled to light.

  13. Nuclear and particle physics in the early universe

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1981-01-01

    Basic principles and implications of Big Bang cosmology are reviewed, noting the physical evidence of a previous universe temperature of 10,000 K and theoretical arguments such as grand unification decoupling indicating a primal temperature of 10 to the 15th eV. The Planck time of 10 to the -43rd sec after the Big Bang is set as the limit before which gravity was quantized and nothing is known. Gauge theories of elementary particle physics are reviewed for successful predictions of similarity in weak and electromagnetic interactions and quantum chromodynamic predictions for strong interactions. The large number of photons in the universe relative to the baryons is considered and the grand unified theories are cited as showing the existence of baryon nonconservation as an explanation. Further attention is given to quark-hadron phase transition, the decoupling for the weak interaction and relic neutrinos, and Big Bang nucleosynthesis.

  14. Challenges and dreams: physics of weak interactions essential to life.

    PubMed

    Chien, Peter; Gierasch, Lila M

    2014-11-05

    Biological systems display stunning capacities to self-organize. Moreover, their subcellular architectures are dynamic and responsive to changing needs and conditions. Key to these properties are manifold weak "quinary" interactions that have evolved to create specific spatial networks of macromolecules. These specific arrangements of molecules enable signals to be propagated over distances much greater than molecular dimensions, create phase separations that define functional regions in cells, and amplify cellular responses to changes in their environments. A major challenge is to develop biochemical tools and physical models to describe the panoply of weak interactions operating in cells. We also need better approaches to measure the biases in the spatial distributions of cellular macromolecules that result from the integrated action of multiple weak interactions. Partnerships between cell biologists, biochemists, and physicists are required to deploy these methods. Together these approaches will help us realize the dream of understanding the biological "glue" that sustains life at a molecular and cellular level. © 2014 Chien and Gierasch. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Universality of emergent states in diverse physical systems

    NASA Astrophysics Data System (ADS)

    Guidry, Mike

    2017-12-01

    Our physics textbooks are dominated by examples of simple weakly-interacting microscopic states, but most of the real world around us is most effectively described in terms of emergent states that have no clear connection to simple textbook states. Emergent states are strongly-correlated and dominated by properties that emerge as a consequence of interactions and are not part of the description of the corresponding weakly-interacting system. This paper proposes a connection of weakly-interacting textbook states and realistic emergent states through fermion dynamical symmetries having fully-microscopic generators of the emergent states. These imply unique truncation of the Hilbert space for the weakly-interacting system to a collective subspace where the emergent states live. Universality arises because the possible symmetries under commutation of generators, which transcend the microscopic structure of the generators, are highly restricted in character and determine the basic structure of the emergent state, with the microscopic structure of the generators influencing emergent state only parametrically. In support of this idea we show explicit evidence that high-temperature superconductors, collective states in heavy atomic nuclei, and graphene quantum Hall states in strong magnetic fields exhibit a near-universal emergent behavior in their microscopically-computed total energy surfaces, even though these systems share essentially nothing in common at the microscopic level and their emergent states are characterized by fundamentally different order parameters.

  16. The Charm and Beauty of Strong Interactions

    NASA Astrophysics Data System (ADS)

    El-Bennich, Bruno

    2018-01-01

    We briefly review common features and overlapping issues in hadron and flavor physics focussing on continuum QCD approaches to heavy bound states, their mass spectrum and weak decay constants in different strong interaction models.

  17. A facility to search for hidden particles at the CERN SPS: the SHiP physics case.

    PubMed

    Alekhin, Sergey; Altmannshofer, Wolfgang; Asaka, Takehiko; Batell, Brian; Bezrukov, Fedor; Bondarenko, Kyrylo; Boyarsky, Alexey; Choi, Ki-Young; Corral, Cristóbal; Craig, Nathaniel; Curtin, David; Davidson, Sacha; de Gouvêa, André; Dell'Oro, Stefano; deNiverville, Patrick; Bhupal Dev, P S; Dreiner, Herbi; Drewes, Marco; Eijima, Shintaro; Essig, Rouven; Fradette, Anthony; Garbrecht, Björn; Gavela, Belen; Giudice, Gian F; Goodsell, Mark D; Gorbunov, Dmitry; Gori, Stefania; Grojean, Christophe; Guffanti, Alberto; Hambye, Thomas; Hansen, Steen H; Helo, Juan Carlos; Hernandez, Pilar; Ibarra, Alejandro; Ivashko, Artem; Izaguirre, Eder; Jaeckel, Joerg; Jeong, Yu Seon; Kahlhoefer, Felix; Kahn, Yonatan; Katz, Andrey; Kim, Choong Sun; Kovalenko, Sergey; Krnjaic, Gordan; Lyubovitskij, Valery E; Marcocci, Simone; Mccullough, Matthew; McKeen, David; Mitselmakher, Guenakh; Moch, Sven-Olaf; Mohapatra, Rabindra N; Morrissey, David E; Ovchynnikov, Maksym; Paschos, Emmanuel; Pilaftsis, Apostolos; Pospelov, Maxim; Reno, Mary Hall; Ringwald, Andreas; Ritz, Adam; Roszkowski, Leszek; Rubakov, Valery; Ruchayskiy, Oleg; Schienbein, Ingo; Schmeier, Daniel; Schmidt-Hoberg, Kai; Schwaller, Pedro; Senjanovic, Goran; Seto, Osamu; Shaposhnikov, Mikhail; Shchutska, Lesya; Shelton, Jessie; Shrock, Robert; Shuve, Brian; Spannowsky, Michael; Spray, Andy; Staub, Florian; Stolarski, Daniel; Strassler, Matt; Tello, Vladimir; Tramontano, Francesco; Tripathi, Anurag; Tulin, Sean; Vissani, Francesco; Winkler, Martin W; Zurek, Kathryn M

    2016-12-01

    This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, [Formula: see text] and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.

  18. Evidence of C-F-P and aromatic π-F-P weak interactions in imidazolium ionic liquids and its consequences

    NASA Astrophysics Data System (ADS)

    Panja, Sumit Kumar; Srivastava, Nitin; Srivastava, Jyoti; Prasad, Namburi Eswara; Noothalapati, Hemanth; Shigeto, Shinsuke; Saha, Satyen

    2018-04-01

    A simple change from alkyl group to alkene in side chain of imidazolium cation with same anion resulted in a drastic impact on physical properties (e.g., melting point) from bmimPF6 IL to cmimPF6 IL. The underlying reasons have been elucidated by structural and interaction studies with the help of DSC, SCXRD, vibrational and multi-nuclear NMR spectroscopic techniques. Experiments reveal existence of new weak interactions involving the carbon and π cloud of the imidazolium aromatic ring with fluoride of PF6 anion (i.e., C2-F-P and π-F-P) in cmimPF6 but are absent in structurally similar prototype IL, bmimPF6. Though weak, these interactions helped to form ladder type supramolecular arrangement, resulting in quite high melting point for cmimPF6 IL compared to bmimPF6 IL. These findings emphasize that an IL system can behave uniquely because of the existence of uncommon weak interactions.

  19. Precision measurement of the weak charge of the proton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The weak charge of the proton Q_W^p sets the strength of the proton's interaction with other particles via the neutral electroweak force, just as the electric charge sets the strength of the purely electromagnetic (EM) interaction. The standard model (SM) of electroweak particle physics predicts that Q_W^p is suppressed, due to a near-cancellation between the weak charges of the proton's three constituent quarks. This small SM "background" makes Q_W^p especially sensitive to potential new parity-violating (PV) interactions beyond those of the SM. Parity symmetry (invariance under spatial inversion (x,y,z) --> (-x,-y,-z)) is violated in the weak interaction, but not inmore » the other three forces of nature. Therefore PV provides a unique tool to isolate the weak interaction in order to observe the proton's weak charge1. Earlier experiments2 have measured parity-violating electron-scattering (PVES) asymmetries in kinematic regimes that are more sensitive to the proton's extended structure than to its weak charge. Here we report the most precise measurement of the PV electron-proton scattering asymmetry (A_ep = -226.5 ± 9.3 ppb, 1 ppb=10-9), in a kinematic regime where the theoretical uncertainties involved in determining Q_W^p are small. We use this measurement of A_ep to determine Q_W^p, obtaining consistent results using several methods which vary the degree of experimental and theoretical input. Our result for Q_W^p (0.0719 ± 0.0045) is in excellent agreement with the SM3. We employ energy-scale-dependent quantum corrections to relate Q_W^p to the electroweak mixing angle sin^2 theta_W, a fundamental SM parameter with which we are also in good agreement. In addition, we use our precise Q_W^p result to set TeV-scale constraints on potential new semi-leptonic PV physics not described by the SM.« less

  20. Scientific and personal recollections of Roberto Petronzio

    NASA Astrophysics Data System (ADS)

    Parisi, Giorgio

    2018-03-01

    This paper aims to recall some of the main contributions of Roberto Petronzio to physics, with a particular regard to the period we have been working together. His seminal contributions cover an extremely wide range of topics: the foundation of the perturbative approach to QCD, various aspects of weak interaction theory, from basic questions (e.g. the mass of the Higgs) to lattice weak interaction, lattice QCD from the beginning to most recent computations.

  1. Precision measurement of the weak charge of the proton.

    PubMed

    2018-05-01

    Large experimental programmes in the fields of nuclear and particle physics search for evidence of physics beyond that explained by current theories. The observation of the Higgs boson completed the set of particles predicted by the standard model, which currently provides the best description of fundamental particles and forces. However, this theory's limitations include a failure to predict fundamental parameters, such as the mass of the Higgs boson, and the inability to account for dark matter and energy, gravity, and the matter-antimatter asymmetry in the Universe, among other phenomena. These limitations have inspired searches for physics beyond the standard model in the post-Higgs era through the direct production of additional particles at high-energy accelerators, which have so far been unsuccessful. Examples include searches for supersymmetric particles, which connect bosons (integer-spin particles) with fermions (half-integer-spin particles), and for leptoquarks, which mix the fundamental quarks with leptons. Alternatively, indirect searches using precise measurements of well predicted standard-model observables allow highly targeted alternative tests for physics beyond the standard model because they can reach mass and energy scales beyond those directly accessible by today's high-energy accelerators. Such an indirect search aims to determine the weak charge of the proton, which defines the strength of the proton's interaction with other particles via the well known neutral electroweak force. Because parity symmetry (invariance under the spatial inversion (x, y, z) → (-x, -y, -z)) is violated only in the weak interaction, it provides a tool with which to isolate the weak interaction and thus to measure the proton's weak charge 1 . Here we report the value 0.0719 ± 0.0045, where the uncertainty is one standard deviation, derived from our measured parity-violating asymmetry in the scattering of polarized electrons on protons, which is -226.5 ± 9.3 parts per billion (the uncertainty is one standard deviation). Our value for the proton's weak charge is in excellent agreement with the standard model 2 and sets multi-teraelectronvolt-scale constraints on any semi-leptonic parity-violating physics not described within the standard model. Our results show that precision parity-violating measurements enable searches for physics beyond the standard model that can compete with direct searches at high-energy accelerators and, together with astronomical observations, can provide fertile approaches to probing higher mass scales.

  2. Nuclei and Fundamental Symmetries

    NASA Astrophysics Data System (ADS)

    Haxton, Wick

    2016-09-01

    Nuclei provide marvelous laboratories for testing fundamental interactions, often enhancing weak processes through accidental degeneracies among states, and providing selection rules that can be exploited to isolate selected interactions. I will give an overview of current work, including the use of parity violation to probe unknown aspects of the hadronic weak interaction; nuclear electric dipole moment searches that may shed light on new sources of CP violation; and tests of lepton number violation made possible by the fact that many nuclei can only decay by rare second-order weak interactions. I will point to opportunities in both theory and experiment to advance the field. Based upon work supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics and SciDAC under Awards DE-SC00046548 (Berkeley), DE-AC02-05CH11231 (LBNL), and KB0301052 (LBNL).

  3. Guided solitary waves.

    PubMed

    Miles, J

    1980-04-01

    Transversely periodic solitary-wave solutions of the Boussinesq equations (which govern wave propagation in a weakly dispersive, weakly nonlinear physical system) are determined. The solutions for negative dispersion (e.g., gravity waves) are singular and therefore physically unacceptable. The solutions for positive dispersion (e.g., capillary waves or magnetosonic waves in a plasma) are physically acceptable except in a limited parametric interval, in which they are complex. The two end points of this interval are associated with (two different) resonant interactions among three basic solitary waves, two of which are two-dimensional complex conjugates and the third of which is one-dimensional and real.

  4. Testing the Standard Model by precision measurement of the weak charges of quarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross Young; Roger Carlini; Anthony Thomas

    In a global analysis of the latest parity-violating electron scattering measurements on nuclear targets, we demonstrate a significant improvement in the experimental knowledge of the weak neutral-current lepton-quark interactions at low-energy. The precision of this new result, combined with earlier atomic parity-violation measurements, limits the magnitude of possible contributions from physics beyond the Standard Model - setting a model-independent, lower-bound on the scale of new physics at ~1 TeV.

  5. Testing the standard model by precision measurement of the weak charges of quarks.

    PubMed

    Young, R D; Carlini, R D; Thomas, A W; Roche, J

    2007-09-21

    In a global analysis of the latest parity-violating electron scattering measurements on nuclear targets, we demonstrate a significant improvement in the experimental knowledge of the weak neutral-current lepton-quark interactions at low energy. The precision of this new result, combined with earlier atomic parity-violation measurements, places tight constraints on the size of possible contributions from physics beyond the standard model. Consequently, this result improves the lower-bound on the scale of relevant new physics to approximately 1 TeV.

  6. Weak turbulence theory for beam-plasma interaction

    NASA Astrophysics Data System (ADS)

    Yoon, Peter H.

    2018-01-01

    The kinetic theory of weak plasma turbulence, of which Ronald C. Davidson was an important early pioneer [R. C. Davidson, Methods in Nonlinear Plasma Theory, (Academic Press, New York, 1972)], is a venerable and valid theory that may be applicable to a large number of problems in both laboratory and space plasmas. This paper applies the weak turbulence theory to the problem of gentle beam-plasma interaction and Langmuir turbulence. It is shown that the beam-plasma interaction undergoes various stages of physical processes starting from linear instability, to quasilinear saturation, to mode coupling that takes place after the quasilinear stage, followed by a state of quasi-static "turbulent equilibrium." The long term quasi-equilibrium stage is eventually perturbed by binary collisional effects in order to bring the plasma to a thermodynamic equilibrium with increased entropy.

  7. Gauge bosons and heavy quarks: Proceedings of Summer Institute on Particle Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawthorne, J.F.

    1991-01-01

    This report contains papers on the following topics: Z decays and tests of the standard model; future possibilities for LEP; studies of the interactions of electroweak gauge bosons; top quark topics; the next linear collider; electroweak processes in hadron colliders; theoretical topics in B-physics; experimental aspects of B-physics; B-factory storage ring design; rare kaon decays; CP violation in K{sup 0} decays at CERN; recent K{sup 0} decay results from Fermilab E-731; results from LEP on heavy quark physics; review of recent results on heavy flavor production; weak matrix elements and the determination of the weak mixing angles; recent results frommore » CLEO I and a glance at CLEO II data; recent results from ARGUS; neutrino lepton physics with the CHARM 2 detector; recent results from the three TRISTAN experiments; baryon number violation at high energy in the standard model: fact or fiction New particle searches at LEP; review of QCD at LEP; electroweak interactions at LEP; recent results on W physics from the UA2 experiment at the CERN {rho}{bar {rho}} collider; B physics at CDF; and review of particle astrophysics.« less

  8. J. J. Sakurai Prize: Astrophysics, Cosmology and PQ Symmetry--Linking the Very Small and the Very Large

    NASA Astrophysics Data System (ADS)

    Quinn, Helen

    2013-04-01

    The symmetry between the laws of physics for matter and those for antimatter (technically known as CP symmetry) is broken in the weak interaction but maintained to a high level of precision in the strong interaction. In the context of the Standard Model theory of particles and their interactions this is a puzzle --what protects the strong interaction from being more ``infected'' by the lack of a symmetry of the weak interaction? I will review the history of the idea we had to solve this puzzle, its consequences, and its evolution into the versions still viable today. Our answer to this puzzle, adding a further symmetry now known as PQ symmetry, arose from thinking about the effects of quark-Higgs couplings as in the early Universe, in the phase transition that gives quarks their masses. Not only did this modification of the Standard Model arise from cosmological thinking, it turns out to have possible cosmological consequences in the form of a light, weakly-coupled particle known as the axion, a possible dark matter candidate. Furthermore astrophysical constraints on such a particle have played a role in the subsequent evolution of theories with PQ symmetry. I will review the early history of this fascinating linkage of large scale and small scale physics, leaving later developments for my collaborator and co-recipient of this prize, Roberto Peccei, to talk about.

  9. Dynamics in terahertz semiconductor microcavity: quantum noise spectra

    NASA Astrophysics Data System (ADS)

    Jabri, H.; Eleuch, H.

    2018-05-01

    We investigate the physics of an optical semiconductor microcavity containing a coupled double quantum well interacting with cavity photons. The photon statistics of the transmitted light by the cavity is explored. We show that the nonlinear interactions in the direct and indirect excitonic modes generate an important squeezing despite the weak nonlinearities. When the strong coupling regime is achieved, the noise spectra of the system is dominated by the indirect exciton distribution. At the opposite, in the weak regime, direct excitons contribute much larger in the noise spectra.

  10. Using an innovative multiple regression procedure in a cancer population (Part II): fever, depressive affect, and mobility problems clarify an influential symptom pair (pain-fatigue/weakness) and cluster (pain-fatigue/weakness-sleep problems).

    PubMed

    Francoeur, Richard B

    2015-01-01

    Most patients with advanced cancer experience symptom pairs or clusters among pain, fatigue, and insomnia. However, only combinations where symptoms are mutually influential hold potential for identifying patient subgroups at greater risk, and in some contexts, interventions with "cross-over" (multisymptom) effects. Improved methods to detect and interpret interactions among symptoms, signs, or biomarkers are needed to reveal these influential pairs and clusters. I recently created sequential residual centering (SRC) to reduce multicollinearity in moderated regression, which enhances sensitivity to detect these interactions. I applied SRC to moderated regressions of single-item symptoms that interact to predict outcomes from 268 palliative radiation outpatients. I investigated: 1) the hypothesis that the interaction, pain × fatigue/weakness × sleep problems, predicts depressive affect only when fever presents, and 2) an exploratory analysis, when fever is absent, that the interaction, pain × fatigue/weakness × sleep problems × depressive affect, predicts mobility problems. In the fever context, three-way interactions (and derivative terms) of the four symptoms (pain, fatigue/weakness, fever, sleep problems) are tested individually and simultaneously; in the non-fever context, a single four-way interaction (and derivative terms) is tested. Fever interacts separately with fatigue/weakness and sleep problems; these comoderators each magnify the pain-depressive affect relationship along the upper or full range of pain values. In non-fever contexts, fatigue/weakness, sleep problems, and depressive affect comagnify the relationship between pain and mobility problems. Different mechanisms contribute to the pain × fatigue/weakness × sleep problems interaction, but all depend on the presence of fever, a sign/biomarker/symptom of proinflammatory sickness behavior. In non-fever contexts, depressive affect is no longer an outcome representing malaise from the physical symptoms of sickness, but becomes a fourth symptom of the interaction. In outpatient subgroups at heightened risk, single interventions could potentially relieve multiple symptoms when fever accompanies sickness malaise and in non-fever contexts with mobility problems. SRC strengthens insights into symptom pairs/clusters.

  11. Precision muon physics

    NASA Astrophysics Data System (ADS)

    Gorringe, T. P.; Hertzog, D. W.

    2015-09-01

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio μμ /μp, lepton mass ratio mμ /me, and proton charge radius rp. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiments. Another focus is the uncommonly broad and topical range of questions in atomic, nuclear and particle physics that such experiments explore.

  12. Why are living things sensitive to weak magnetic fields?

    PubMed

    Liboff, Abraham R

    2014-09-01

    There is evidence for robust interactions of weak ELF magnetic fields with biological systems. Quite apart from the difficulties attending a proper physical basis for such interactions, an equally daunting question asks why these should even occur, given the apparent lack of comparable signals in the long-term electromagnetic environment. We suggest that the biological basis is likely to be found in the weak (∼50 nT) daily swing in the geomagnetic field that results from the solar tidal force on free electrons in the upper atmosphere, a remarkably constant effect exactly in phase with the solar diurnal change. Because this magnetic change is locked into the solar-derived everyday diurnal response in living things, one can argue that it acts as a surrogate for the solar variation, and therefore plays a role in chronobiological processes. This implies that weak magnetic field interactions may have a chronodisruptive basis, homologous to the more familiar effects on the biological clock arising from sleep deprivation, phase-shift employment and light at night. It is conceivable that the widespread sensitivity of biological systems to weak ELF magnetic fields is vestigially derived from this diurnal geomagnetic effect.

  13. Cation specific binding with protein surface charges

    PubMed Central

    Hess, Berk; van der Vegt, Nico F. A.

    2009-01-01

    Biological organization depends on a sensitive balance of noncovalent interactions, in particular also those involving interactions between ions. Ion-pairing is qualitatively described by the law of “matching water affinities.” This law predicts that cations and anions (with equal valence) form stable contact ion pairs if their sizes match. We show that this simple physical model fails to describe the interaction of cations with (molecular) anions of weak carboxylic acids, which are present on the surfaces of many intra- and extracellular proteins. We performed molecular simulations with quantitatively accurate models and observed that the order K+ < Na+ < Li+ of increasing binding affinity with carboxylate ions is caused by a stronger preference for forming weak solvent-shared ion pairs. The relative insignificance of contact pair interactions with protein surfaces indicates that thermodynamic stability and interactions between proteins in alkali salt solutions is governed by interactions mediated through hydration water molecules. PMID:19666545

  14. Neutrino Oscillation Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far themore » most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.« less

  15. Complete energy conversion by autoresonant three-wave mixing in nonuniform media.

    PubMed

    Yaakobi, O; Caspani, L; Clerici, M; Vidal, F; Morandotti, R

    2013-01-28

    Resonant three-wave interactions appear in many fields of physics e.g. nonlinear optics, plasma physics, acoustics and hydrodynamics. A general theory of autoresonant three-wave mixing in a nonuniform media is derived analytically and demonstrated numerically. It is shown that due to the medium nonuniformity, a stable phase-locked evolution is automatically established. For a weak nonuniformity, the efficiency of the energy conversion between the interacting waves can reach almost 100%. One of the potential applications of our theory is the design of highly-efficient optical parametric amplifiers.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berezinskii, V.S.; Zatsepin, G.T.

    A review is given of the experiments that can be performed using cosmic neutrinos in the TeV range. The physics of weak interactions is discussed with emphasis on the search for the W boson. Details are given of the Dumand, Athene, and unicorn experiments.(AIP)

  17. Critical exponents and universal magnetic behavior of noncentrosymmetric Fe0.6Co0.4Si

    NASA Astrophysics Data System (ADS)

    Shanmukharao Samatham, S.; Suresh, K. G.

    2018-05-01

    The critical magnetic properties of a non-centrosymmetric B20 cubic helimagnet Fe0.6Co0.4Si are investigated using magnetization isotherms. It belongs to the 3D-Heisenberg universality class with short range magnetic coupling as inferred from the self-consistent critical exponents , , and in combination with exchange interaction . Itinerant magnetic nature of the compound is realized by the Rhodes–Wholfarth analysis. Field-induced weak first (parahelical) to second (parafield-polarized) order transition is reported to occur at low critical field due to the weak spin–orbit coupling arising from the weak Dzyaloshinksii–Moriya interactions. Our study suggests the distinct phenomenological magnetic structures for Fe-based cubic magnets (Fe1‑x Co x Si and FeGe) and MnSi which cause contrasting physical properties.

  18. Partially composite particle physics with and without supersymmetry

    NASA Astrophysics Data System (ADS)

    Kramer, Thomas A.

    Theories in which the Standard Model fields are partially compositeness provide elegant and phenomenologically viable solutions to the Hierarchy Problem. In this thesis we will study types of models from two different perspectives. We first derive an effective field theory describing the interactions of the Standard Models fields with their lightest composite partners based on two weakly coupled sectors. Technically, via the AdS/CFT correspondence, our model is dual to a highly deconstructed theory with a single warped extra-dimension. This two sector theory provides a simplified approach to the phenomenology of this important class of theories. We then use this effective field theoretic approach to study models with weak scale accidental supersymmetry. Particularly, we will investigate the possibility that the Standard Model Higgs field is a member of a composite supersymmetric sector interacting weakly with the known Standard Model fields.

  19. Can biological homochirality result from a phase transition?

    PubMed

    Figureau, A; Duval, E; Boukenter, A

    1995-06-01

    The problem of chiral purity in living organisms is still one of the prominent difficulties in the study of the origins of life. In particular the parity non-conservation known to occur in weak interactions could not be related to this lack of symmetry: these physical forces, though universal, are very weak and up to now no amplification process had been proposed. In 1991, A. Salam remarked that, due to the attractive character of the parity violating force in electro-weak interactions, a phase transition at low temperature should exist, leading eventually to enantiomeric purity. We undertook then a series of experimental tests, looking for a sizeable change in the optical activity of cystine molecules. We found no evidence for the phase transition down to 0.01 K. The interpretation of these negative results will be discussed, and future experiments proposed.

  20. Weak- versus strong-disorder superfluid—Bose glass transition in one dimension

    NASA Astrophysics Data System (ADS)

    Doggen, Elmer V. H.; Lemarié, Gabriel; Capponi, Sylvain; Laflorencie, Nicolas

    2017-11-01

    Using large-scale simulations based on matrix product state and quantum Monte Carlo techniques, we study the superfluid to Bose glass transition for one-dimensional attractive hard-core bosons at zero temperature, across the full regime from weak to strong disorder. As a function of interaction and disorder strength, we identify a Berezinskii-Kosterlitz-Thouless critical line with two different regimes. At small attraction where critical disorder is weak compared to the bandwidth, the critical Luttinger parameter Kc takes its universal Giamarchi-Schulz value Kc=3 /2 . Conversely, a nonuniversal Kc>3 /2 emerges for stronger attraction where weak-link physics is relevant. In this strong-disorder regime, the transition is characterized by self-similar power-law-distributed weak links with a continuously varying characteristic exponent α .

  1. Conservation Laws in Weak Interactions

    DOE R&D Accomplishments Database

    Lee, T. D.

    1957-03-01

    Notes are presented on four lectures given at Harvard University in March 1957 on elementary particle physics, the theta-tau problem, validity of parity conservation, tests for invariance under P, C, and T, and the two-component theory of the neutrino. (W.D.M.)

  2. Particle physics on ice: constraints on neutrino interactions far above the weak scale.

    PubMed

    Anchordoqui, Luis A; Feng, Jonathan L; Goldberg, Haim

    2006-01-20

    Ultrahigh energy cosmic rays and neutrinos probe energies far above the weak scale. Their usefulness might appear to be limited by astrophysical uncertainties; however, by simultaneously considering up- and down-going events, one may disentangle particle physics from astrophysics. We show that present data from the AMANDA experiment in the South Pole ice already imply an upper bound on neutrino cross sections at energy scales that will likely never be probed at man-made accelerators. The existing data also place an upper limit on the neutrino flux valid for any neutrino cross section. In the future, similar analyses of IceCube data will constrain neutrino properties and fluxes at the theta(10%) level.

  3. Two interacting Hofstadter butterflies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barelli, A.; Bellissard, J.; Jacquod, P.

    1997-04-01

    The problem of two interacting particles in a quasiperiodic potential is addressed. Using analytical and numerical methods, we explore the spectral properties and eigenstates structure from the weak to the strong interaction case. More precisely, a semiclassical approach based on noncommutative geometry techniques is used to understand the intricate structure of such a spectrum. An interaction induced localization effect is furthermore emphasized. We discuss the application of our results on a two-dimensional model of two particles in a uniform magnetic field with on-site interaction. {copyright} {ital 1997} {ital The American Physical Society}

  4. The Volume Field Model about Strong Interaction and Weak Interaction

    NASA Astrophysics Data System (ADS)

    Liu, Rongwu

    2016-03-01

    For a long time researchers have believed that strong interaction and weak interaction are realized by exchanging intermediate particles. This article proposes a new mechanism as follows: Volume field is a form of material existence in plane space, it takes volume-changing motion in the form of non-continuous motion, volume fields have strong interaction or weak interaction between them by overlapping their volume fields. Based on these concepts, this article further proposes a ``bag model'' of volume field for atomic nucleus, which includes three sub-models of the complex structure of fundamental body (such as quark), the atom-like structure of hadron, and the molecule-like structure of atomic nucleus. This article also proposes a plane space model and formulates a physics model of volume field in the plane space, as well as a model of space-time conversion. The model of space-time conversion suggests that: Point space-time and plane space-time convert each other by means of merging and rupture respectively, the essence of space-time conversion is the mutual transformations of matter and energy respectively; the process of collision of high energy hadrons, the formation of black hole, and the Big Bang of universe are three kinds of space-time conversions.

  5. Two Impurities in a Bose-Einstein Condensate: From Yukawa to Efimov Attracted Polarons

    NASA Astrophysics Data System (ADS)

    Naidon, Pascal

    2018-04-01

    The well-known Yukawa and Efimov potentials are two different mediated interaction potentials. The first one arises in quantum field theory from the exchange of virtual particles. The second one is mediated by a real particle resonantly interacting with two other particles. This Letter shows how two impurities immersed in a Bose-Einstein condensate can exhibit both phenomena. For a weak attraction with the condensate, the two impurities form two polarons that interact through a weak Yukawa attraction mediated by virtual excitations. For a resonant attraction with the condensate, the exchanged excitation becomes a real boson and the mediated interaction changes to a strong Efimov attraction that can bind the two polarons. The resulting bipolarons turn into in-medium Efimov trimers made of the two impurities and one boson. Evidence of this physics could be seen in ultracold mixtures of atoms.

  6. Reconciling phase diffusion and Hartree-Fock approximation in condensate systems

    NASA Astrophysics Data System (ADS)

    Giorgi, Gian Luca; de Pasquale, Ferdinando

    2012-01-01

    Despite the weakly interacting regime, the physics of Bose-Einstein condensates is widely affected by particle-particle interactions. They determine quantum phase diffusion, which is known to be the main cause of loss of coherence. Studying a simple model of two interacting Bose systems, we show how to predict the appearance of phase diffusion beyond the Bogoliubov approximation, providing a self-consistent treatment in the framework of a generalized Hartree-Fock-Bogoliubov perturbation theory.

  7. Search of low-mass WIMPs with a p -type point contact germanium detector in the CDEX-1 experiment

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Yue, Q.; Kang, K. J.; Cheng, J. P.; Li, Y. J.; Wong, H. T.; Lin, S. T.; Chang, J. P.; Chen, J. H.; Chen, Q. H.; Chen, Y. H.; Deng, Z.; Du, Q.; Gong, H.; Hao, X. Q.; He, H. J.; He, Q. J.; Huang, H. X.; Huang, T. R.; Jiang, H.; Li, H. B.; Li, J.; Li, J.; Li, J. M.; Li, X.; Li, X. Y.; Li, Y. L.; Lin, F. K.; Liu, S. K.; Lü, L. C.; Ma, H.; Ma, J. L.; Mao, S. J.; Qin, J. Q.; Ren, J.; Ren, J.; Ruan, X. C.; Sharma, V.; Shen, M. B.; Singh, L.; Singh, M. K.; Soma, A. K.; Su, J.; Tang, C. J.; Wang, J. M.; Wang, L.; Wang, Q.; Wu, S. Y.; Wu, Y. C.; Xianyu, Z. Z.; Xiao, R. Q.; Xing, H. Y.; Xu, F. Z.; Xu, Y.; Xu, X. J.; Xue, T.; Yang, L. T.; Yang, S. W.; Yi, N.; Yu, C. X.; Yu, H.; Yu, X. Z.; Zeng, M.; Zeng, X. H.; Zeng, Z.; Zhang, L.; Zhang, Y. H.; Zhao, M. G.; Zhou, Z. Y.; Zhu, J. J.; Zhu, W. B.; Zhu, X. Z.; Zhu, Z. H.; CDEX Collaboration

    2016-05-01

    The CDEX-1 experiment conducted a search of low-mass (<10 GeV /c2 ) weakly interacting massive particles dark matter at the China Jinping Underground Laboratory using a p-type point-contact germanium detector with a fiducial mass of 915 g at a physics analysis threshold of 475 eVee. We report the hardware setup, detector characterization, data acquisition, and analysis procedures of this experiment. No excess of unidentified events is observed after the subtraction of the known background. Using 335.6 kg-days of data, exclusion constraints on the weakly interacting massive particle-nucleon spin-independent and spin-dependent couplings are derived.

  8. Critical exponents and universal magnetic behavior of noncentrosymmetric Fe0.6Co0.4Si.

    PubMed

    Samatham, S Shanmukharao; Suresh, K G

    2018-05-31

    The critical magnetic properties of a non-centrosymmetric B20 cubic helimagnet Fe 0.6 Co 0.4 Si are investigated using magnetization isotherms. It belongs to the 3D-Heisenberg universality class with short range magnetic coupling as inferred from the self-consistent critical exponents [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] in combination with exchange interaction [Formula: see text]. Itinerant magnetic nature of the compound is realized by the Rhodes-Wholfarth analysis. Field-induced weak first (para[Formula: see text]helical) to second (para[Formula: see text]field-polarized) order transition is reported to occur at low critical field due to the weak spin-orbit coupling arising from the weak Dzyaloshinksii-Moriya interactions. Our study suggests the distinct phenomenological magnetic structures for Fe-based cubic magnets (Fe 1-x Co x Si and FeGe) and MnSi which cause contrasting physical properties.

  9. Measurement of the β-asymmetry parameter of Cu67 in search for tensor-type currents in the weak interaction

    NASA Astrophysics Data System (ADS)

    Soti, G.; Wauters, F.; Breitenfeldt, M.; Finlay, P.; Herzog, P.; Knecht, A.; Köster, U.; Kraev, I. S.; Porobic, T.; Prashanth, P. N.; Towner, I. S.; Tramm, C.; Zákoucký, D.; Severijns, N.

    2014-09-01

    Background: Precision measurements at low energy search for physics beyond the standard model in a way complementary to searches for new particles at colliders. In the weak sector the most general β-decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor, and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear β decay are on the level of several percent. Purpose: Extracting new information on tensor coupling constants by measuring the β-asymmetry parameter in the pure Gamow-Teller decay of Cu67, thereby testing the V-A structure of the weak interaction. Method: An iron sample foil into which the radioactive nuclei were implanted was cooled down to mK temperatures in a 3He-4He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic β radiation was observed with planar high-purity germanium detectors operating at a temperature of about 10 K. An on-line measurement of the β asymmetry of Cu68 was performed as well for normalization purposes. Systematic effects were investigated using geant4 simulations. Results: The experimental value, Ã=0.587(14), is in agreement with the standard model value of 0.5991(2) and is interpreted in terms of physics beyond the standard model. The limits obtained on possible tensor-type charged currents in the weak interaction Hamiltonian are -0.045<(CT+CT')/CA<0.159 (90% C.L.). Conclusions: The obtained limits are comparable to limits from other correlation measurements in nuclear β decay and contribute to further constraining tensor coupling constants.

  10. Study of top quark dipole interactions in t t \\xAF production associated with two heavy gauge bosons at the LHC

    NASA Astrophysics Data System (ADS)

    Etesami, Seyed Mohsen; Khatibi, Sara; Mohammadi Najafabadi, Mojtaba

    2018-04-01

    In this paper, we investigate the prospects of measuring the strong and weak dipole moments of the top quark at the Large Hadron Collider (LHC). Measurements of these couplings provide an excellent opportunity to probe new physics interactions as they have quite small magnitudes in the standard model. Our analyses are performed using the production cross sections of t t ¯W W and t t ¯Z Z processes in the same sign dilepton and four-lepton final states, respectively. The sensitivities to strong and weak top quark dipole interactions at the 95% confidence level for various integrated luminosity scenarios are derived and compared with other studies. To estimate the constraints, the main source of backgrounds and a realistic simulation of the detector response are considered.

  11. The Dark Matter of Biology.

    PubMed

    Ross, Jennifer L

    2016-09-06

    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Constraining unparticle physics with cosmology and astrophysics.

    PubMed

    Davoudiasl, Hooman

    2007-10-05

    It has recently been suggested that a scale-invariant "unparticle" sector with a nontrivial infrared fixed point may couple to the standard model (SM) via higher-dimensional operators. The weakness of such interactions hides the unparticle phenomena at low energies. We demonstrate how cosmology and astrophysics can place significant bounds on the strength of unparticle-SM interactions. We also discuss the possibility of a having a non-negligible unparticle relic density today.

  13. The phenomenology of maverick dark matter

    NASA Astrophysics Data System (ADS)

    Krusberg, Zosia Anna Celina

    Astrophysical observations from galactic to cosmological scales point to a substantial non-baryonic component to the universe's total matter density. Although very little is presently known about the physical properties of dark matter, its existence offers some of the most compelling evidence for physics beyond the standard model (BSM). In the weakly interacting massive particle (WIMP) scenario, the dark matter consists of particles that possess weak-scale interactions with the particles of the standard model, offering a compelling theoretical framework that allows us to understand the relic abundance of dark matter as a natural consequence of the thermal history of the early universe. From the perspective of particle physics phenomenology, the WIMP scenario is appealing for two additional reasons. First, many theories of BSM physics contain attractive WIMP candidates. Second, the weak-scale interactions between WIMPs and standard model particles imply the possibility of detecting scatterings between relic WIMPs and detector nuclei in direct detection experiments, products of WIMP annihilations at locations throughout the galaxy in indirect detection programs, and WIMP production signals at high-energy particle colliders. In this work, we use an effective field theory approach to study model-independent dark matter phenomenology in direct detection and collider experiments. The maverick dark matter scenario is defined by an effective field theory in which the WIMP is the only new particle within the energy range accessible to the Large Hadron Collider (LHC). Although certain assumptions are necessary to keep the problem tractable, we describe our WIMP candidate generically by specifying only its spin and dominant interaction form with standard model particles. Constraints are placed on the masses and coupling constants of the maverick WIMPs using the Wilkinson Microwave Anisotropy Probe (WMAP) relic density measurement and direct detection exclusion data from both spin-independent (XENON100 and SuperCDMS) and spin-dependent (COUPP) experiments. We further study the distinguishability of maverick WIMP production signals at the Tevatron and the LHC---at its early and nominal configurations---using standard simulation packages, place constraints on maverick WIMP properties using existing collider data, and determine projected mass reaches in future data from both colliders. We find ourselves in a unique era of theoretically-motivated, high-precision dark matter searches that hold the potential to give us important insights, not only into the nature of dark matter, but also into the physics that lies beyond the standard model.

  14. Plato alleges that God forever geometrizes

    NASA Astrophysics Data System (ADS)

    Ne'Eman, Yuval

    1996-05-01

    Since 1961, the experimental exploration at the fundamental level of physical reality has surprised physists by revealing to them a highly geometric scenery. Like Einstein's (classical) theory of gravity, the “standard model,” describing the strong, weak, and electromagnetic interaction, testifies in favor of Plato's reported allegation.

  15. The ICM research agenda on intensive care unit-acquired weakness.

    PubMed

    Latronico, Nicola; Herridge, Margaret; Hopkins, Ramona O; Angus, Derek; Hart, Nicholas; Hermans, Greet; Iwashyna, Theodore; Arabi, Yaseen; Citerio, Giuseppe; Wesley Ely, E; Hall, Jesse; Mehta, Sangeeta; Puntillo, Kathleen; Van den Hoeven, Johannes; Wunsch, Hannah; Cook, Deborah; Dos Santos, Claudia; Rubenfeld, Gordon; Vincent, Jean-Louis; Van den Berghe, Greet; Azoulay, Elie; Needham, Dale M

    2017-09-01

    We present areas of uncertainty concerning intensive care unit-acquired weakness (ICUAW) and identify areas for future research. Age, pre-ICU functional and cognitive state, concurrent illness, frailty, and health trajectories impact outcomes and should be assessed to stratify patients. In the ICU, early assessment of limb and diaphragm muscle strength and function using nonvolitional tests may be useful, but comparison with established methods of global and specific muscle strength and physical function and determination of their reliability and normal values would be important to advance these techniques. Serial measurements of limb and respiratory muscle strength, and systematic screening for dysphagia, would be helpful to clarify if and how weakness of these muscle groups is independently associated with outcome. ICUAW, delirium, and sedatives and analgesics may interact with each other, amplifying the effects of each individual factor. Reduced mobility in patients with hypoactive delirium needs investigations into dysfunction of central and peripheral nervous system motor pathways. Interventional nutritional studies should include muscle mass, strength, and physical function as outcomes, and prioritize elucidation of mechanisms. At follow-up, ICU survivors may suffer from prolonged muscle weakness and wasting and other physical impairments, as well as fatigue without demonstrable weakness on examination. Further studies should evaluate the prevalence and severity of fatigue in ICU survivors and define its association with psychiatric disorders, pain, cognitive impairment, and axonal loss. Finally, methodological issues, including accounting for baseline status, handling of missing data, and inclusion of patient-centered outcome measures should be addressed in future studies.

  16. Limits on Light Weakly Interacting Massive Particles from the First 102.8 kg×day Data of the CDEX-10 Experiment

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Jia, L. P.; Yue, Q.; Kang, K. J.; Cheng, J. P.; Li, Y. J.; Wong, H. T.; Agartioglu, M.; An, H. P.; Chang, J. P.; Chen, J. H.; Chen, Y. H.; Deng, Z.; Du, Q.; Gong, H.; He, L.; Hu, J. W.; Hu, Q. D.; Huang, H. X.; Li, H. B.; Li, H.; Li, J. M.; Li, J.; Li, X.; Li, X. Q.; Li, Y. L.; Liao, B.; Lin, F. K.; Lin, S. T.; Liu, S. K.; Liu, Y. D.; Liu, Y. Y.; Liu, Z. Z.; Ma, H.; Ma, J. L.; Pan, H.; Ren, J.; Ruan, X. C.; Sevda, B.; Sharma, V.; Shen, M. B.; Singh, L.; Singh, M. K.; Sun, T. X.; Tang, C. J.; Tang, W. Y.; Tian, Y.; Wang, G. F.; Wang, J. M.; Wang, L.; Wang, Q.; Wang, Y.; Wu, S. Y.; Wu, Y. C.; Xing, H. Y.; Xu, Y.; Xue, T.; Yang, L. T.; Yang, S. W.; Yi, N.; Yu, C. X.; Yu, H. J.; Yue, J. F.; Zeng, X. H.; Zeng, M.; Zeng, Z.; Zhang, F. S.; Zhang, Y. H.; Zhao, M. G.; Zhou, J. F.; Zhou, Z. Y.; Zhu, J. J.; Zhu, Z. H.; CDEX Collaboration

    2018-06-01

    We report the first results of a light weakly interacting massive particles (WIMPs) search from the CDEX-10 experiment with a 10 kg germanium detector array immersed in liquid nitrogen at the China Jinping Underground Laboratory with a physics data size of 102.8 kg day. At an analysis threshold of 160 eVee, improved limits of 8 ×10-42 and 3 ×10-36 cm2 at a 90% confidence level on spin-independent and spin-dependent WIMP-nucleon cross sections, respectively, at a WIMP mass (mχ ) of 5 GeV /c2 are achieved. The lower reach of mχ is extended to 2 GeV /c2 .

  17. Interactions of neutrinos with matter

    NASA Astrophysics Data System (ADS)

    Vannucci, F.

    2017-07-01

    Neutrinos are elementary particles electrically neutral which belong to the family of leptons. As a consequence and in first approximation they only undergo weak processes. This gives them very special properties. They are ideal tools to study precisely the weak interactions, but there is a price to pay: neutrinos are characterized by extremely low probabilities of interactions, they easily penetrate large amount of matter without being stopped. Consequently, it is hard to perform neutrino physics measurements. In practice the difficulty is twofold: in order to accumulate enough statistics, experiments must rely on huge fluxes traversing huge detectors, the number of interactions being obviously proportional to these two factors. As a corollary, backgrounds are difficult to handle because they appear much more commonly than good events. Nevertheless, neutrino interactions have been detected from a variety of sources, both man-made and natural, from very low to very large energies. The aim of this review is to survey our current knowledge about interaction cross sections of neutrinos with matter across all pertinent energy scales. We will see that neutrino interactions cover a large range of processes: nuclear capture, inverse beta-decay, quasi-elastic scattering, resonant pion production, deep inelastic scattering and ultra-high energy interactions. All the gathered information will be used to study weak properties of matter but it will also allow to explore the properties of the neutrinos themselves. In particular, the known three different flavors of neutrinos have different behaviors inside matter and this will be relevant to give some precious understanding about their intrinsic parameters in particular their masses and mixings. As a second order process, neutrinos can undergo electromagnetic interactions. This will also be discussed. Although the corresponding phenomena are not yet experimentally proven by actual measurements, the theory is able to calculate them and it is useful to discuss the topic since it may become an important issue to test ideas of cosmological relevance. This review will mainly adopt an experimental point of view. Strong emphasis will be placed on important detectors which have illustrated the challenging progresses in neutrino physics; they will be described and their results confronted to theoretical predictions.

  18. Manipulation of particles by weak forces

    NASA Technical Reports Server (NTRS)

    Adler, M. S.; Savkar, S. D.; Summerhayes, H. R.

    1972-01-01

    Quantitative relations between various force fields and their effects on the motion of particles of various sizes and physical characteristics were studied. The forces considered were those derived from light, heat, microwaves, electric interactions, magnetic interactions, particulate interactions, and sound. A physical understanding is given of the forces considered as well as formulae which express how the size of the force depends on the physical and electrical properties of the particle. The drift velocity in a viscous fluid is evaluated as a function of initial acceleration and the effects of thermal random motion are considered. A means of selectively sorting or moving particles by choosing a force system and/or environment such that the particle of interest reacts uniquely was developed. The forces considered and a demonstration of how the initial acceleration, drift velocity, and ultimate particle density distribution is affected by particle, input, and environmental parameters are tabulated.

  19. Surprises in low-dimensional correlated systems

    NASA Astrophysics Data System (ADS)

    Lin, Hsiu-Hau

    In this thesis, correlation effects in low-dimensional systems were studied. In particular, we focus on two systems: a point-contact in the quantum-Hall regime under the influence of ac drive and quasi-one-dimensional ladder materials with generic interactions in weak coupling. Powerful techniques, including renormalization group, quantum field theory, operator product expansions, bosonization,...etc., were employed to extract surprising physics out of these strongly fluctuating systems. We first study the effect of an ac drive on the current-voltage (I-V) characteristics of a tunnel junction between two fractional Quantum Hall fluids at filling nu-1 an odd integer. In a semi-classical limit, the tunneling current exhibits mode-locking, which corresponds to plateaus in the I-V curve at integer multiples of I = ef , with f the ac drive frequency. However, the full quantum model exhibits rounded plateaus centered around the quantized current values due to quantum fluctuations. The locations of these plateaus can serve as an indirect hint of fractional charges. Switching attentions to quasi-one-dimensional coupled-chain systems, we present a systematic weak-coupling renormalization group (RG) technique and find that generally broad regions of the phase space of the ladder materials are unstable to pairing, usually with approximate d-wave symmetry. The dimensional crossovers from 1D to 2D were also discussed. Carbon nanotubes as possible candidates that display such unconventional pairing and interesting physics in weak coupling were discussed. Quite surprisingly, a hidden symmetry was found in the weakly-coupled two-leg ladder. A perturbative renormalization group analysis reveals that at half-filling the model scales onto an exactly soluble SO(8) symmetric Gross-Neveu model. Integrability of the Gross-Neveu model is employed to extract the exact energies, degeneracies and quantum numbers of all the low energy excited states, which fall into degenerate SO(8) multiplets. For generic physical interactions, there are four robust phases which have different SO(8) symmetries but share a common SO(5) symmetry. The effects of marginal chiral interactions were discussed at the end. Finally, we summarize our main results and discuss related open questions for future study.

  20. More about unphysical zeroes in quark mass matrices

    NASA Astrophysics Data System (ADS)

    Emmanuel-Costa, David; González Felipe, Ricardo

    2017-01-01

    We look for all weak bases that lead to texture zeroes in the quark mass matrices and contain a minimal number of parameters in the framework of the standard model. Since there are ten physical observables, namely, six nonvanishing quark masses, three mixing angles and one CP phase, the maximum number of texture zeroes in both quark sectors is altogether nine. The nine zero entries can only be distributed between the up- and down-quark sectors in matrix pairs with six and three texture zeroes or five and four texture zeroes. In the weak basis where a quark mass matrix is nonsingular and has six zeroes in one sector, we find that there are 54 matrices with three zeroes in the other sector, obtainable through right-handed weak basis transformations. It is also found that all pairs composed of a nonsingular matrix with five zeroes and a nonsingular and nondecoupled matrix with four zeroes simply correspond to a weak basis choice. Without any further assumptions, none of these pairs of up- and down-quark mass matrices has physical content. It is shown that all non-weak-basis pairs of quark mass matrices that contain nine zeroes are not compatible with current experimental data. The particular case of the so-called nearest-neighbour-interaction pattern is also discussed.

  1. 3D Modeling of Ultrasonic Wave Interaction with Disbonds and Weak Bonds

    NASA Technical Reports Server (NTRS)

    Leckey, C.; Hinders, M.

    2011-01-01

    Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.

  2. Galilean-invariant scalar fields can strengthen gravitational lensing.

    PubMed

    Wyman, Mark

    2011-05-20

    The mystery of dark energy suggests that there is new gravitational physics on long length scales. Yet light degrees of freedom in gravity are strictly limited by Solar System observations. We can resolve this apparent contradiction by adding a Galilean-invariant scalar field to gravity. Called Galileons, these scalars have strong self-interactions near overdensities, like the Solar System, that suppress their dynamical effect. These nonlinearities are weak on cosmological scales, permitting new physics to operate. In this Letter, we point out that a massive-gravity-inspired coupling of Galileons to stress energy can enhance gravitational lensing. Because the enhancement appears at a fixed scaled location for dark matter halos of a wide range of masses, stacked cluster analysis of weak lensing data should be able to detect or constrain this effect.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornejo, Juan Carlos

    The Standard Model has been a theory with the greatest success in describing the fundamental interactions of particles. As of the writing of this dissertation, the Standard Model has not been shown to make a false prediction. However, the limitations of the Standard Model have long been suspected by its lack of a description of gravity, nor dark matter. Its largest challenge to date, has been the observation of neutrino oscillations, and the implication that they may not be massless, as required by the Standard Model. The growing consensus is that the Standard Model is simply a lower energy effectivemore » field theory, and that new physics lies at much higher energies. The Q weak Experiment is testing the Electroweak theory of the Standard Model by making a precise determination of the weak charge of the proton (Q p w). Any signs of "new physics" will appear as a deviation to the Standard Model prediction. The weak charge is determined via a precise measurement of the parity-violating asymmetry of the electron-proton interaction via elastic scattering of a longitudinally polarized electron beam of an un-polarized proton target. The experiment required that the electron beam polarization be measured to an absolute uncertainty of 1%. At this level the electron beam polarization was projected to contribute the single largest experimental uncertainty to the parity-violating asymmetry measurement. This dissertation will detail the use of Compton scattering to determine the electron beam polarization via the detection of the scattered photon. I will conclude the remainder of the dissertation with an independent analysis of the blinded Q weak.« less

  4. Multiscale modeling of shock wave localization in porous energetic material

    NASA Astrophysics Data System (ADS)

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; Thompson, A. P.

    2018-01-01

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (<6 GPa), atomistic simulations of pore collapse are used to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock waves interacting with pores as a function of this viscoplastic material response. We find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.

  5. Search for a Neutron Electric Dipole Moment

    PubMed Central

    Golub, R.; Huffman, P. R.

    2005-01-01

    The possible existence of a nonzero electric dipole moment (EDM) of the neutron is of great fundamental interest in itself and directly impacts our understanding of the nature of electro-weak and strong interactions. The experimental search for this moment has the potential to reveal new sources of T and CP violation and to challenge calculations that propose extensions to the Standard Model. The goal of the current experiment is to significantly improve the measurement sensitivity to the neutron EDM over what is reported in the literature. The experiment has the potential to either measure the magnitude of the neutron EDM or to lower the current experimental limit by two orders of magnitude. Achieving these objectives will have a major impact on our understanding of the physics of both weak and strong interactions. PMID:27308116

  6. Towards A Predictive First Principles Understanding Of Molecular Adsorption On Graphene

    DTIC Science & Technology

    2016-10-05

    used and developed state-of-the-art quantum mechanical methods to make accurate predictions about the interaction strength and adsorption structure...density functional theory, ab initio methods 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION OF ABSTRACT SAR 18.  NUMBER OF PAGES   11   19a.  NAME OF...important physical properties for a whole class of systems with weak non-covalent interactions, for example those involving the binding between water

  7. The moderating role of personal resources in the relationship between psychosocial job demands and health: a cross-sectional study

    PubMed Central

    Mayerl, Hannes; Stolz, Erwin; Großschädl, Franziska; Rásky, Éva; Freidl, Wolfgang

    2017-01-01

    Objective The main objective of this research was to investigate the buffering effects of an individual’s physical, mental and social resources in the relationship between psychosocial job demands and (1) health symptoms, (2) mental strain and (3) the body mass index (BMI), respectively. Methods We performed moderated regression analysis to examine data from a large cross-sectional survey of an Austrian employee sample (n=9434). Results The results revealed a robust association between psychosocial job demands and health symptoms as well as mental strain, but only a weak relationship between psychosocial job demands and BMI. Although the personal resources showed a positive effect on health symptoms and mental strain, only weak evidence was found for the hypothesised interaction with psychosocial job demands. Solely the physical fitness of a person was found to mitigate the impact of psychosocial job demands on health symptoms. Conclusions In conclusion, personal resources substantially accounted for the prediction of health. However, the interactions between psychosocial job demands and personal resources only slightly contributed to explaining the variation in health. PMID:28851776

  8. Was Newton right? A search for non-Newtonian behavior of weak-field gravity

    NASA Astrophysics Data System (ADS)

    Boynton, Paul; Moore, Michael; Newman, Riley; Berg, Eric; Bonicalzi, Ricco; McKenney, Keven

    2014-06-01

    Empirical tests of Einstein's metric theory of gravitation, even in the non-relativistic, weak-field limit, could play an important role in judging theory-driven extensions of the current Standard Model of fundamental interactions. Guided by Galileo's work and his own experiments, Newton formulated a theory of gravity in which the force of attraction between two bodies is independent of composition and proportional to the inertia of each, thereby transparently satisfying Galileo's empirically informed conjecture regarding the Universality of Free Fall. Similarly, Einstein honored the manifest success of Newton's theory by assuring that the linearized equations of GTR matched the Newtonian formalism under "classical" conditions. Each of these steps, however, was explicitly an approximation raised to the status of principle. Perhaps, at some level, Newtonian gravity does not accurately describe the physical interaction between uncharged, unmagnetized, macroscopic bits of ordinary matter. What if Newton were wrong? Detecting any significant deviation from Newtonian behavior, no matter how small, could provide new insights and possibly reveal new physics. In the context of physics as an empirical science, for us this yet unanswered question constitutes sufficient motivation to attempt precision measurements of the kind described here. In this paper we report the current status of a project to search for violation of the Newtonian inverse square law of gravity.

  9. Quasilinear theory of plasma turbulence. Origins, ideas, and evolution of the method

    NASA Astrophysics Data System (ADS)

    Bakunin, O. G.

    2018-01-01

    The quasilinear method of describing weak plasma turbulence is one of the most important elements of current plasma physics research. Today, this method is not only a tool for solving individual problems but a full-fledged theory of general physical interest. The author's objective is to show how the early ideas of describing the wave-particle interactions in a plasma have evolved as a result of the rapid expansion of the research interests of turbulence and turbulent transport theorists.

  10. J. J. Sakurai Prize for Theoretical Particle Physics Talk: The Boundless Horizons of Supercollider Physics

    NASA Astrophysics Data System (ADS)

    Quigg, Chris

    2011-04-01

    The Large Hadron Collider at CERN is moving the experimental frontier of particle physics to the domain of electroweak symmetry breaking, reaching energies around one trillion electron volts for collisions among the basic constituents of matter. We do not know what the new wave of exploration will find, but the discoveries we make and the new puzzles we encounter are certain to change the face of particle physics and echo through neighboring sciences. In this new world, we confidently expect to learn what sets electromagnetism apart from the weak interactions, with profound implications for deceptively simple questions: Why are there atoms? Why chemistry? What makes stable structures possible? A pivotal step will be finding the Higgs boson-or whatever takes its place -and exploring its properties. But we hope for much more. More predictive extensions of the electroweak theory, including dynamical symmetry breaking and supersymmetry, imply new kinds of matter that would be within reach of LHC experiments. We suspect that candidates for the dark matter of the Universe could also await discovery on the TeV scale. The strong interactions may hold their own surprises. As we unravel the riddle of electroweak symmetry breaking, prospects arise for other new insights: into the different forms of matter, the unity of quarks and leptons, and the nature of spacetime. The questions in play all seem linked to one another-and to the kinship of the weak and electromagnetic interactions. I will speak of the evolving dialogue between theory and experiment, highlighting the work before us. Fermilab is operated by the Fermi Research Alliance under contract no. DE-AC02-07CH11359 with the U.S. Department of Energy.

  11. Activities report in nuclear physics and particle acceleration

    NASA Astrophysics Data System (ADS)

    Jansen, J. F. W.; Demeijer, R. J.

    1984-04-01

    Research on nuclear resonances; charge transfer; breakup of light and heavy ions; reaction mechanisms of heavy ion collisions; high-spin states; and fundamental symmetries in weak interactions are outlined. Group theoretical methods applied to supersymmetries; phenomenological description of rotation-vibration coupling; a microscopic theory of collective variables; the binding energy of hydrogen adsorbed on stepped platinium; and single electron capture are discussed. Isotopes for nuclear medicine, for off-line nuclear spectroscopy work, and for the study of hyperfine interactions were produced.

  12. Remote sensing of the solar photosphere: a tale of two methods

    NASA Astrophysics Data System (ADS)

    Viavattene, G.; Berrilli, F.; Collados Vera, M.; Del Moro, D.; Giovannelli, L.; Ruiz Cobo, B.; Zuccarello, F.

    2018-01-01

    Solar spectro-polarimetry is a powerful tool to investigate the physical processes occurring in the solar atmosphere. The different states of polarization and wavelengths have in fact encoded the information about the thermodynamic state of the solar plasma and the interacting magnetic field. In particular, the radiative transfer theory allows us to invert the spectro-polarimetric data to obtain the physical parameters of the different atmospheric layers and, in particular, of the photosphere. In this work, we present a comparison between two methods used to analyze spectro-polarimetric data: the classical Center of Gravity method in the weak field approximation and an inversion code that solves numerically the radiative transfer equation. The Center of Gravity method returns reliable values for the magnetic field and for the line-of-sight velocity in those regions where the weak field approximation is valid (field strength below 400 G), while the inversion code is able to return the stratification of many physical parameters in the layers where the spectral line used for the inversion is formed.

  13. Neutron Measurements and the Weak Nucleon-Nucleon Interaction

    PubMed Central

    Snow, W. M.

    2005-01-01

    The weak interaction between nucleons remains one of the most poorly-understood sectors of the Standard Model. A quantitative description of this interaction is needed to understand weak interaction phenomena in atomic, nuclear, and hadronic systems. This paper summarizes briefly what is known about the weak nucleon-nucleon interaction, tries to place this phenomenon in the context of other studies of the weak and strong interactions, and outlines a set of measurements involving low energy neutrons which can lead to significant experimental progress. PMID:27308120

  14. Physics through the 1990s: Elementary-particle physics

    NASA Astrophysics Data System (ADS)

    The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.

  15. Physics through the 1990s: elementary-particle physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the fieldmore » is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.« less

  16. Physics through the 1990s: Elementary-particle physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.

  17. Physical and Relativistic Numerical Cosmology.

    PubMed

    Anninos, Peter

    1998-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  18. Multiscale modeling of shock wave localization in porous energetic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less

  19. Multiscale modeling of shock wave localization in porous energetic material

    DOE PAGES

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; ...

    2018-01-30

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less

  20. Quantum Fluctuations in Quasi-One-Dimensional Dipolar Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Edler, D.; Mishra, C.; Wächtler, F.; Nath, R.; Sinha, S.; Santos, L.

    2017-08-01

    Recent experiments have revealed that beyond-mean-field corrections are much more relevant in weakly interacting dipolar condensates than in their nondipolar counterparts. We show that in quasi-one-dimensional geometries quantum corrections in dipolar and nondipolar condensates are strikingly different due to the peculiar momentum dependence of the dipolar interactions. The energy correction of the condensate presents not only a modified density dependence, but it may even change from attractive to repulsive at a critical density due to the surprising role played by the transversal directions. The anomalous quantum correction translates into a strongly modified physics for quantum-stabilized droplets and dipolar solitons. Moreover, and for similar reasons, quantum corrections of three-body correlations, and hence of three-body losses, are strongly modified by the dipolar interactions. This intriguing physics can be readily probed in current experiments with magnetic atoms.

  1. Quantum Fluctuations in Quasi-One-Dimensional Dipolar Bose-Einstein Condensates.

    PubMed

    Edler, D; Mishra, C; Wächtler, F; Nath, R; Sinha, S; Santos, L

    2017-08-04

    Recent experiments have revealed that beyond-mean-field corrections are much more relevant in weakly interacting dipolar condensates than in their nondipolar counterparts. We show that in quasi-one-dimensional geometries quantum corrections in dipolar and nondipolar condensates are strikingly different due to the peculiar momentum dependence of the dipolar interactions. The energy correction of the condensate presents not only a modified density dependence, but it may even change from attractive to repulsive at a critical density due to the surprising role played by the transversal directions. The anomalous quantum correction translates into a strongly modified physics for quantum-stabilized droplets and dipolar solitons. Moreover, and for similar reasons, quantum corrections of three-body correlations, and hence of three-body losses, are strongly modified by the dipolar interactions. This intriguing physics can be readily probed in current experiments with magnetic atoms.

  2. Probing top-Z dipole moments at the LHC and ILC

    DOE PAGES

    Röntsch, Raoul; Schulze, Markus

    2015-08-11

    We investigate the weak electric and magnetic dipole moments of top quark-Z boson interactions at the Large Hadron Collider (LHC) and the International Linear Collider (ILC). Their vanishingly small magnitude in the Standard Model makes these couplings ideal for probing New Physics interactions and for exploring the role of top quarks in electroweak symmetry breaking. In our analysis, we consider the production of two top quarks in association with a Z boson at the LHC, and top quark pairs mediated by neutral gauge bosons at the ILC. These processes yield direct sensitivity to top quark-Z boson interactions and complement indirectmore » constraints from electroweak precision data. Our computation is accurate to next-to-leading order in QCD, we include the full decay chain of top quarks and the Z boson, and account for theoretical uncertainties in our constraints. Furthermore, we find that LHC experiments will soon be able to probe weak dipole moments for the first time.« less

  3. Importance of σ Bonding Electrons for the Accurate Description of Electron Correlation in Graphene.

    PubMed

    Zheng, Huihuo; Gan, Yu; Abbamonte, Peter; Wagner, Lucas K

    2017-10-20

    Electron correlation in graphene is unique because of the interplay between the Dirac cone dispersion of π electrons and long-range Coulomb interaction. Because of the zero density of states at Fermi level, the random phase approximation predicts no metallic screening at long distance and low energy, so one might expect that graphene should be a poorly screened system. However, empirically graphene is a weakly interacting semimetal, which leads to the question of how electron correlations take place in graphene at different length scales. We address this question by computing the equal time and dynamic structure factor S(q) and S(q,ω) of freestanding graphene using ab initio fixed-node diffusion Monte Carlo simulations and the random phase approximation. We find that the σ electrons contribute strongly to S(q,ω) for relevant experimental values of ω even at distances up to around 80 Å. These findings illustrate how the emergent physics from underlying Coulomb interactions results in the observed weakly correlated semimetal.

  4. Faithful conditional quantum state transfer between weakly coupled qubits

    NASA Astrophysics Data System (ADS)

    Miková, M.; Straka, I.; Mičuda, M.; Krčmarský, V.; Dušek, M.; Ježek, M.; Fiurášek, J.; Filip, R.

    2016-08-01

    One of the strengths of quantum information theory is that it can treat quantum states without referring to their particular physical representation. In principle, quantum states can be therefore fully swapped between various quantum systems by their mutual interaction and this quantum state transfer is crucial for many quantum communication and information processing tasks. In practice, however, the achievable interaction time and strength are often limited by decoherence. Here we propose and experimentally demonstrate a procedure for faithful quantum state transfer between two weakly interacting qubits. Our scheme enables a probabilistic yet perfect unidirectional transfer of an arbitrary unknown state of a source qubit onto a target qubit prepared initially in a known state. The transfer is achieved by a combination of a suitable measurement of the source qubit and quantum filtering on the target qubit depending on the outcome of measurement on the source qubit. We experimentally verify feasibility and robustness of the transfer using a linear optical setup with qubits encoded into polarization states of single photons.

  5. Probes for dark matter physics

    NASA Astrophysics Data System (ADS)

    Khlopov, Maxim Yu.

    The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and consists of new stable particles. Weakly Interacting Massive Particle (WIMP) miracle appeals to search for neutral stable weakly interacting particles in underground experiments by their nuclear recoil and at colliders by missing energy and momentum, which they carry out. However, the lack of WIMP effects in their direct underground searches and at colliders can appeal to other forms of dark matter candidates. These candidates may be weakly interacting slim particles, superweakly interacting particles, or composite dark matter, in which new particles are bound. Their existence should lead to cosmological effects that can find probes in the astrophysical data. However, if composite dark matter contains stable electrically charged leptons and quarks bound by ordinary Coulomb interaction in elusive dark atoms, these charged constituents of dark atoms can be the subject of direct experimental test at the colliders. The models, predicting stable particles with charge ‑ 2 without stable particles with charges + 1 and ‑ 1 can avoid severe constraints on anomalous isotopes of light elements and provide solution for the puzzles of dark matter searches. In such models, the excessive ‑ 2 charged particles are bound with primordial helium in O-helium atoms, maintaining specific nuclear-interacting form of the dark matter. The successful development of composite dark matter scenarios appeals for experimental search for doubly charged constituents of dark atoms, making experimental search for exotic stable double charged particles experimentum crucis for dark atoms of composite dark matter.

  6. Mitochondrial-nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome C oxidase complex.

    PubMed

    Osada, Naoki; Akashi, Hiroshi

    2012-01-01

    Accelerated rates of mitochondrial protein evolution have been proposed to reflect Darwinian coadaptation for efficient energy production for mammalian flight and brain activity. However, several features of mammalian mtDNA (absence of recombination, small effective population size, and high mutation rate) promote genome degradation through the accumulation of weakly deleterious mutations. Here, we present evidence for "compensatory" adaptive substitutions in nuclear DNA- (nDNA) encoded mitochondrial proteins to prevent fitness decline in primate mitochondrial protein complexes. We show that high mutation rate and small effective population size, key features of primate mitochondrial genomes, can accelerate compensatory adaptive evolution in nDNA-encoded genes. We combine phylogenetic information and the 3D structure of the cytochrome c oxidase (COX) complex to test for accelerated compensatory changes among interacting sites. Physical interactions among mtDNA- and nDNA-encoded components are critical in COX evolution; amino acids in close physical proximity in the 3D structure show a strong tendency for correlated evolution among lineages. Only nuclear-encoded components of COX show evidence for positive selection and adaptive nDNA-encoded changes tend to follow mtDNA-encoded amino acid changes at nearby sites in the 3D structure. This bias in the temporal order of substitutions supports compensatory weak selection as a major factor in accelerated primate COX evolution.

  7. Coupling functions: Universal insights into dynamical interaction mechanisms

    NASA Astrophysics Data System (ADS)

    Stankovski, Tomislav; Pereira, Tiago; McClintock, Peter V. E.; Stefanovska, Aneta

    2017-10-01

    The dynamical systems found in nature are rarely isolated. Instead they interact and influence each other. The coupling functions that connect them contain detailed information about the functional mechanisms underlying the interactions and prescribe the physical rule specifying how an interaction occurs. A coherent and comprehensive review is presented encompassing the rapid progress made recently in the analysis, understanding, and applications of coupling functions. The basic concepts and characteristics of coupling functions are presented through demonstrative examples of different domains, revealing the mechanisms and emphasizing their multivariate nature. The theory of coupling functions is discussed through gradually increasing complexity from strong and weak interactions to globally coupled systems and networks. A variety of methods that have been developed for the detection and reconstruction of coupling functions from measured data is described. These methods are based on different statistical techniques for dynamical inference. Stemming from physics, such methods are being applied in diverse areas of science and technology, including chemistry, biology, physiology, neuroscience, social sciences, mechanics, and secure communications. This breadth of application illustrates the universality of coupling functions for studying the interaction mechanisms of coupled dynamical systems.

  8. Quantum-optical nonlinearities induced by Rydberg-Rydberg interactions: A perturbative approach

    NASA Astrophysics Data System (ADS)

    Grankin, A.; Brion, E.; Bimbard, E.; Boddeda, R.; Usmani, I.; Ourjoumtsev, A.; Grangier, P.

    2015-10-01

    In this article, we theoretically study the quantum statistical properties of the light transmitted through or reflected from an optical cavity, filled by an atomic medium with strong optical nonlinearity induced by Rydberg-Rydberg van der Waals interactions. Atoms are driven on a two-photon transition from their ground state to a Rydberg level via an intermediate state by the combination of a weak signal field and a strong control beam. By using a perturbative approach, we get analytic results which remain valid in the regime of weak feeding fields, even when the intermediate state becomes resonant thus generalizing our previous results. We can thus investigate quantitatively new features associated with the resonant behavior of the system. We also propose an effective nonlinear three-boson model of the system which, in addition to leading to the same analytic results as the original problem, sheds light on the physical processes at work in the system.

  9. Electrical and thermal transport in the quasiatomic limit of coupled Luttinger liquids

    NASA Astrophysics Data System (ADS)

    Szasz, Aaron; Ilan, Roni; Moore, Joel E.

    2017-02-01

    We introduce a new model for quasi-one-dimensional materials, motivated by intriguing but not yet well-understood experiments that have shown two-dimensional polymer films to be promising materials for thermoelectric devices. We consider a two-dimensional material consisting of many one-dimensional systems, each treated as a Luttinger liquid, with weak (incoherent) coupling between them. This approximation of strong interactions within each one-dimensional chain and weak coupling between them is the "quasiatomic limit." We find integral expressions for the (interchain) transport coefficients, including the electrical and thermal conductivities and the thermopower, and we extract their power law dependencies on temperature. Luttinger liquid physics is manifested in a violation of the Wiedemann-Franz law; the Lorenz number is larger than the Fermi liquid value by a factor between γ2 and γ4, where γ ≥1 is a measure of the electron-electron interaction strength in the system.

  10. Investigating the Effects of the Interaction Intensity in a Weak Measurement.

    PubMed

    Piacentini, Fabrizio; Avella, Alessio; Gramegna, Marco; Lussana, Rudi; Villa, Federica; Tosi, Alberto; Brida, Giorgio; Degiovanni, Ivo Pietro; Genovese, Marco

    2018-05-03

    Measurements are crucial in quantum mechanics, for fundamental research as well as for applicative fields like quantum metrology, quantum-enhanced measurements and other quantum technologies. In the recent years, weak-interaction-based protocols like Weak Measurements and Protective Measurements have been experimentally realized, showing peculiar features leading to surprising advantages in several different applications. In this work we analyze the validity range for such measurement protocols, that is, how the interaction strength affects the weak value extraction, by measuring different polarization weak values on heralded single photons. We show that, even in the weak interaction regime, the coupling intensity limits the range of weak values achievable, setting a threshold on the signal amplification effect exploited in many weak measurement based experiments.

  11. 40 years of neutrino physics

    NASA Astrophysics Data System (ADS)

    Reines, Frederick

    Wolfgang Pauli and Enrico Fermi pioneered the hypothesis and characteristics of the weak interaction and the elementary particle called the neutrino. Since its discovery some forty years ago the neutrino has been shown to be a fundamental constituent of matter with a surprisingly rich, and in very many ways unexpected, set of characteristics ranging from basic roles in the generation of energy in the sun to supernovæ.

  12. Weak interactions, omnivory and emergent food-web properties.

    PubMed

    Emmerson, Mark; Yearsley, Jon M

    2004-02-22

    Empirical studies have shown that, in real ecosystems, species-interaction strengths are generally skewed in their distribution towards weak interactions. Some theoretical work also suggests that weak interactions, especially in omnivorous links, are important for the local stability of a community at equilibrium. However, the majority of theoretical studies use uniform distributions of interaction strengths to generate artificial communities for study. We investigate the effects of the underlying interaction-strength distribution upon the return time, permanence and feasibility of simple Lotka-Volterra equilibrium communities. We show that a skew towards weak interactions promotes local and global stability only when omnivory is present. It is found that skewed interaction strengths are an emergent property of stable omnivorous communities, and that this skew towards weak interactions creates a dynamic constraint maintaining omnivory. Omnivory is more likely to occur when omnivorous interactions are skewed towards weak interactions. However, a skew towards weak interactions increases the return time to equilibrium, delays the recovery of ecosystems and hence decreases the stability of a community. When no skew is imposed, the set of stable omnivorous communities shows an emergent distribution of skewed interaction strengths. Our results apply to both local and global concepts of stability and are robust to the definition of a feasible community. These results are discussed in the light of empirical data and other theoretical studies, in conjunction with their broader implications for community assembly.

  13. Characterizing carbohydrate-protein interactions by NMR

    PubMed Central

    Bewley, Carole A.; Shahzad-ul-Hussan, Syed

    2013-01-01

    Interactions between proteins and soluble carbohydrates and/or surface displayed glycans are central to countless recognition, attachment and signaling events in biology. The physical chemical features associated with these binding events vary considerably, depending on the biological system of interest. For example, carbohydrate-protein interactions can be stoichiometric or multivalent, the protein receptors can be monomeric or oligomeric, and the specificity of recognition can be highly stringent or rather promiscuous. Equilibrium dissociation constants for carbohydrate binding are known to vary from micromolar to millimolar, with weak interactions being far more prevalent; and individual carbohydrate binding sites can be truly symmetrical or merely homologous, and hence, the affinities of individual sites within a single protein can vary, as can the order of binding. Several factors, including the weak affinities with which glycans bind their protein receptors, the dynamic nature of the glycans themselves, and the non-equivalent interactions among oligomeric carbohydrate receptors, have made NMR an especially powerful tool for studying and defining carbohydrate-protein interactions. Here we describe those NMR approaches that have proven to be the most robust in characterizing these systems, and explain what type of information can (or cannot) be obtained from each. Our goal is to provide to the reader the information necessary for selecting the correct experiment or sets of experiments to characterize their carbohydrate-protein interaction of interest. PMID:23784792

  14. Intensive Care Unit–Acquired Weakness: Implications for Physical Therapist Management

    PubMed Central

    Moss, Marc; Quan, Dianna; Schenkman, Margaret

    2012-01-01

    Patients admitted to the intensive care unit (ICU) can develop a condition referred to as “ICU-acquired weakness.” This condition is characterized by profound weakness that is greater than might be expected to result from prolonged bed rest. Intensive care unit–acquired weakness often is accompanied by dysfunction of multiple organ systems. Individuals with ICU-acquired weakness typically have significant activity limitations, often requiring physical assistance for even the most basic activities associated with bed mobility. Many of these individuals have activity limitations months to years after hospitalization. The purpose of this article is to review evidence that guides physical rehabilitation of people with ICU-acquired weakness. Included are diagnostic criteria, medical management, and prognostic indicators, as well as criteria for beginning physical rehabilitation, with an emphasis on patient safety. Data are presented indicating that rehabilitation can be implemented with very few adverse effects. Evidence is provided for appropriate measurement approaches and for physical intervention strategies. Finally, some of the key issues are summarized that should be investigated to determine the best intervention guidelines for individuals with ICU-acquired weakness. PMID:22282769

  15. Full Simulation for the Qweak Experiment at 1.16 and 0.877 GeV and their Impact on Extracting the PV Asymmetry in the N → Δ Transition.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhait, Hend

    The Qweak project is seeking to find new physics beyond the Standard Model. It is aimed to measure the weak charge of the proton, which has never been measured, at 4% precision at low momentum transfer. The experiment is performed by scattering electrons from protons and exploiting parity violation in the weak interaction at low four-momentum transfer. In this experiment, two measurements were considered: which are elastic and inelastic. The elastic is to measure the proton's weak charge. In addition, the inelastic asymmetry measurement, which will extract the low energy constant d. That measurement works in the neutral current sectormore » of the weak interaction. Qweak measures the asymmetry in the N → Δ; transition. Because the elastic radiative tail gives a dominant contribution to the uncertainty to the N → Δ; asymmetries, this thesis will discuss the radiative correction. In addition, this thesis will describe in details the extensive simulations preformed to determine the impact of all simulated background processes on extracting the PV N → Δ; asymmetries. In the process of verifying the validity of these background fractions, we determined the best value of a quantity measured during the Qweak experiment: the beam normal single spin asymmetry, Bn, in the N → Δ; transition.« less

  16. Weak Localization and Antilocalization in Topological Materials with Impurity Spin-Orbit Interactions

    PubMed Central

    Hankiewicz, Ewelina M.; Culcer, Dimitrie

    2017-01-01

    Topological materials have attracted considerable experimental and theoretical attention. They exhibit strong spin-orbit coupling both in the band structure (intrinsic) and in the impurity potentials (extrinsic), although the latter is often neglected. In this work, we discuss weak localization and antilocalization of massless Dirac fermions in topological insulators and massive Dirac fermions in Weyl semimetal thin films, taking into account both intrinsic and extrinsic spin-orbit interactions. The physics is governed by the complex interplay of the chiral spin texture, quasiparticle mass, and scalar and spin-orbit scattering. We demonstrate that terms linear in the extrinsic spin-orbit scattering are generally present in the Bloch and momentum relaxation times in all topological materials, and the correction to the diffusion constant is linear in the strength of the extrinsic spin-orbit. In topological insulators, which have zero quasiparticle mass, the terms linear in the impurity spin-orbit coupling lead to an observable density dependence in the weak antilocalization correction. They produce substantial qualitative modifications to the magnetoconductivity, differing greatly from the conventional Hikami-Larkin-Nagaoka formula traditionally used in experimental fits, which predicts a crossover from weak localization to antilocalization as a function of the extrinsic spin-orbit strength. In contrast, our analysis reveals that topological insulators always exhibit weak antilocalization. In Weyl semimetal thin films having intermediate to large values of the quasiparticle mass, we show that extrinsic spin-orbit scattering strongly affects the boundary of the weak localization to antilocalization transition. We produce a complete phase diagram for this transition as a function of the mass and spin-orbit scattering strength. Throughout the paper, we discuss implications for experimental work, and, at the end, we provide a brief comparison with transition metal dichalcogenides. PMID:28773167

  17. Measurement of parity violation in electron-quark scattering.

    PubMed

    2014-02-06

    Symmetry permeates nature and is fundamental to all laws of physics. One example is parity (mirror) symmetry, which implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering has been important in establishing (and now testing) the standard model of particle physics. One particular set of quantities accessible through measurements of parity-violating electron scattering are the effective weak couplings C2q, sensitive to the quarks' chirality preference when participating in the weak force, which have been measured directly only once in the past 40 years. Here we report a measurement of the parity-violating asymmetry in electron-quark scattering, which yields a determination of 2C2u - C2d (where u and d denote up and down quarks, respectively) with a precision increased by a factor of five relative to the earlier result. These results provide evidence with greater than 95 per cent confidence that the C2q couplings are non-zero, as predicted by the electroweak theory. They lead to constraints on new parity-violating interactions beyond the standard model, particularly those due to quark chirality. Whereas contemporary particle physics research is focused on high-energy colliders such as the Large Hadron Collider, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. Our measurement is relatively free of ambiguity in its interpretation, and opens the door to even more precise measurements in the future.

  18. Dark-matter particles without weak-scale masses or weak interactions.

    PubMed

    Feng, Jonathan L; Kumar, Jason

    2008-12-05

    We propose that dark matter is composed of particles that naturally have the correct thermal relic density, but have neither weak-scale masses nor weak interactions. These models emerge naturally from gauge-mediated supersymmetry breaking, where they elegantly solve the dark-matter problem. The framework accommodates single or multiple component dark matter, dark-matter masses from 10 MeV to 10 TeV, and interaction strengths from gravitational to strong. These candidates enhance many direct and indirect signals relative to weakly interacting massive particles and have qualitatively new implications for dark-matter searches and cosmological implications for colliders.

  19. The moderating role of personal resources in the relationship between psychosocial job demands and health: a cross-sectional study.

    PubMed

    Mayerl, Hannes; Stolz, Erwin; Großschädl, Franziska; Rásky, Éva; Freidl, Wolfgang

    2017-08-28

    The main objective of this research was to investigate the buffering effects of an individual's physical, mental and social resources in the relationship between psychosocial job demands and (1) health symptoms, (2) mental strain and (3) the body mass index (BMI), respectively. We performed moderated regression analysis to examine data from a large cross-sectional survey of an Austrian employee sample (n = 9434). The results revealed a robust association between psychosocial job demands and health symptoms as well as mental strain, but only a weak relationship between psychosocial job demands and BMI. Although the personal resources showed a positive effect on health symptoms and mental strain, only weak evidence was found for the hypothesised interaction with psychosocial job demands. Solely the physical fitness of a person was found to mitigate the impact of psychosocial job demands on health symptoms. In conclusion, personal resources substantially accounted for the prediction of health. However, the interactions between psychosocial job demands and personal resources only slightly contributed to explaining the variation in health. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Ion-Neutral Coupling in Solar Prominences

    NASA Technical Reports Server (NTRS)

    Gilbert, Holly

    2011-01-01

    Interactions between ions and neutrals in a partially ionized plasma are important throughout heliophysics, including near the solar surface in prominences. Understanding how ion-neutral coupling affects formation, support, structure, and dynamics of prominences will advance our physical understanding of magnetized systems involving a transition from a weakly ionized dense gas to a fully ionized tenuous plasma. We address the fundamental physics of prominence support, which is normally described in terms of a magnetic force on the prominence plasma that balances the solar gravitational force, and the implications for observations. Because the prominence plasma is only partially ionized, it is necessary to consider the support of the both the ionized and neutral components. Support of the neutrals is accomplished through a frictional interaction between the neutral and ionized components of the plasma, and its efficacy depends strongly on the degree of ionization of the plasma. More specifically, the frictional force is proportional to the relative flow of neutral and ion species, and for a sufficiently weakly ionized plasma, this flow must be relatively large to produce a frictional force that balances gravity. A large relative flow, of course, implies significant draining of neutral particles from the prominence. We evaluate the importance of this draining effect for a hydrogen-helium plasma, and consider the observational evidence for cross-field diffusion of neutral prominence material.

  1. Nonlinear mode interaction in equal-leg angle struts susceptible to cellular buckling.

    PubMed

    Bai, L; Wang, F; Wadee, M A; Yang, J

    2017-11-01

    A variational model that describes the interactive buckling of a thin-walled equal-leg angle strut under pure axial compression is presented. A formulation combining the Rayleigh-Ritz method and continuous displacement functions is used to derive a system of differential and integral equilibrium equations for the structural component. Solving the equations using numerical continuation reveals progressive cellular buckling (or snaking) arising from the nonlinear interaction between the weak-axis flexural buckling mode and the strong-axis flexural-torsional buckling mode for the first time-the resulting behaviour being highly unstable. Physical experiments conducted on 10 cold-formed steel specimens are presented and the results show good agreement with the variational model.

  2. Constraints on the dark matter and dark energy interactions from weak lensing bispectrum tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Rui; Feng, Chang; Wang, Bin, E-mail: an_rui@sjtu.edu.cn, E-mail: chang.feng@uci.edu, E-mail: wang_b@sjtu.edu.cn

    We estimate uncertainties of cosmological parameters for phenomenological interacting dark energy models using weak lensing convergence power spectrum and bispectrum. We focus on the bispectrum tomography and examine how well the weak lensing bispectrum with tomography can constrain the interactions between dark sectors, as well as other cosmological parameters. Employing the Fisher matrix analysis, we forecast parameter uncertainties derived from weak lensing bispectra with a two-bin tomography and place upper bounds on strength of the interactions between the dark sectors. The cosmic shear will be measured from upcoming weak lensing surveys with high sensitivity, thus it enables us to usemore » the higher order correlation functions of weak lensing to constrain the interaction between dark sectors and will potentially provide more stringent results with other observations combined.« less

  3. Improved models of stellar core collapse and still no explosions: what is missing?

    PubMed

    Buras, R; Rampp, M; Janka, H-Th; Kifonidis, K

    2003-06-20

    Two-dimensional hydrodynamic simulations of stellar core collapse are presented which for the first time were performed by solving the Boltzmann equation for the neutrino transport including a state-of-the-art description of neutrino interactions. Stellar rotation is also taken into account. Although convection develops below the neutrinosphere and in the neutrino-heated region behind the supernova shock, the models do not explode. This suggests missing physics, possibly with respect to the nuclear equation of state and weak interactions in the subnuclear regime. However, it might also indicate a fundamental problem with the neutrino-driven explosion mechanism.

  4. Interactions of large amplitude solitary waves in viscous fluid conduits

    NASA Astrophysics Data System (ADS)

    Lowman, Nicholas K.; Hoefer, M. A.; El, G. A.

    2014-07-01

    The free interface separating an exterior, viscous fluid from an intrusive conduit of buoyant, less viscous fluid is known to support strongly nonlinear solitary waves due to a balance between viscosity-induced dispersion and buoyancy-induced nonlinearity. The overtaking, pairwise interaction of weakly nonlinear solitary waves has been classified theoretically for the Korteweg-de Vries equation and experimentally in the context of shallow water waves, but a theoretical and experimental classification of strongly nonlinear solitary wave interactions is lacking. The interactions of large amplitude solitary waves in viscous fluid conduits, a model physical system for the study of one-dimensional, truly dissipationless, dispersive nonlinear waves, are classified. Using a combined numerical and experimental approach, three classes of nonlinear interaction behavior are identified: purely bimodal, purely unimodal, and a mixed type. The magnitude of the dispersive radiation due to solitary wave interactions is quantified numerically and observed to be beyond the sensitivity of our experiments, suggesting that conduit solitary waves behave as "physical solitons." Experimental data are shown to be in excellent agreement with numerical simulations of the reduced model. Experimental movies are available with the online version of the paper.

  5. Transition in Electron Physics of Magnetic Reconnection in Weakly Collisional Plasma

    NASA Astrophysics Data System (ADS)

    Le, A.; Roytershteyn, V.; Karimabadi, H.; Daughton, W. S.; Egedal, J.; Forest, C.

    2013-12-01

    Using self-consistent fully kinetic simulations with a Monte-Carlo treatment of the Coulomb collision operator, we explore the transition between collisional and kinetic regimes of magnetic reconnection in high-Lundquist-number current sheets. Recent research in collisionless reconnection has shown that electron kinetic physics plays a key role in the evolution. Large-scale electron current sheets may form, leading to secondary island formation and turbulent flux rope interactions in 3D. The new collisional simulations demonstrate how increasing collisionality modifies or eliminates these electron structures in the kinetic regimes. Additional basic questions that are addressed include how the reconnection rate and the release of magnetic energy into electrons and ions vary with collisionality. The numerical study provides insight into reconnection in dense regions of the solar corona, the solar wind, and upcoming laboratory experiments at MRX (Princeton) and MPDX (UW-Madison). The implications of these results for studies of turbulence dissipation in weakly collisional plasmas are discussed.

  6. Identification of interfaces involved in weak interactions with application to F-actin-aldolase rafts.

    PubMed

    Hu, Guiqing; Taylor, Dianne W; Liu, Jun; Taylor, Kenneth A

    2018-03-01

    Macromolecular interactions occur with widely varying affinities. Strong interactions form well defined interfaces but weak interactions are more dynamic and variable. Weak interactions can collectively lead to large structures such as microvilli via cooperativity and are often the precursors of much stronger interactions, e.g. the initial actin-myosin interaction during muscle contraction. Electron tomography combined with subvolume alignment and classification is an ideal method for the study of weak interactions because a 3-D image is obtained for the individual interactions, which subsequently are characterized collectively. Here we describe a method to characterize heterogeneous F-actin-aldolase interactions in 2-D rafts using electron tomography. By forming separate averages of the two constituents and fitting an atomic structure to each average, together with the alignment information which relates the raw motif to the average, an atomic model of each crosslink is determined and a frequency map of contact residues is computed. The approach should be applicable to any large structure composed of constituents that interact weakly and heterogeneously. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Substellar Companions to weak-line TTauri Stars

    NASA Astrophysics Data System (ADS)

    Brandner, W.; Alcala, J. M.; Covino, E.; Frink, S.

    1997-05-01

    Weak-line TTauri stars, contrary to classical TTauri stars, no longer possess massive circumstellar disks. In weak-line TTauri stars, the circumstellar matter was either accreted onto the TTauri star or has been redistributed. Disk instabilities in the outer disk might result in the formation of brown dwarfs and giant planets. Based on photometric and spectroscopic studies of ROSAT sources, we have selected an initial sample of 200 weak-line TTauri stars in the Chamaeleon T association and the Scorpius Centaurus OB association. In the course of follow-up observations we identified visual and spectroscopic binary stars and excluded them from our final list, as the complex dynamics and gravitational interaction in binary systems might aggravate or even completely inhibit the formation of planets (depending on physical separation of the binary components and their mass-ratio). The membership of individual stars to the associations was established from proper motion studies and radial velocity surveys. Our final sample consists of 70 single weak-line TTauri stars. We have initiated a program to spatially RESOLVE young brown dwarfs and young giant planets as companions to single weak-line TTauri stars using adaptive optics at the ESO 3.6m telescope and HST/NICMOS. In this poster we describe the observing strategy and present first results of our adaptive optics observations.

  8. An ionic-chemical-mechanical model for muscle contraction.

    PubMed

    Manning, Gerald S

    2016-12-01

    The dynamic process underlying muscle contraction is the parallel sliding of thin actin filaments along an immobile thick myosin fiber powered by oar-like movements of protruding myosin cross bridges (myosin heads). The free energy for functioning of the myosin nanomotor comes from the hydrolysis of ATP bound to the myosin heads. The unit step of translational movement is based on a mechanical-chemical cycle involving ATP binding to myosin, hydrolysis of the bound ATP with ultimate release of the hydrolysis products, stress-generating conformational changes in the myosin cross bridge, and relief of built-up stress in the myosin power stroke. The cycle is regulated by a transition between weak and strong actin-myosin binding affinities. The dissociation of the weakly bound complex by addition of salt indicates the electrostatic basis for the weak affinity, while structural studies demonstrate that electrostatic interactions among negatively charged amino acid residues of actin and positively charged residues of myosin are involved in the strong binding interface. We therefore conjecture that intermediate states of increasing actin-myosin engagement during the weak-to-strong binding transition also involve electrostatic interactions. Methods of polymer solution physics have shown that the thin actin filament can be regarded in some of its aspects as a net negatively charged polyelectrolyte. Here we employ polyelectrolyte theory to suggest how actin-myosin electrostatic interactions might be of significance in the intermediate stages of binding, ensuring an engaged power stroke of the myosin motor that transmits force to the actin filament, and preventing the motor from getting stuck in a metastable pre-power stroke state. We provide electrostatic force estimates that are in the pN range known to operate in the cycle. © 2016 Wiley Periodicals, Inc.

  9. Analysis of GEANT4 Physics List Properties in the 12 GeV MOLLER Simulation Framework

    NASA Astrophysics Data System (ADS)

    Haufe, Christopher; Moller Collaboration

    2013-10-01

    To determine the validity of new physics beyond the scope of the electroweak theory, nuclear physicists across the globe have been collaborating on future endeavors that will provide the precision needed to confirm these speculations. One of these is the MOLLER experiment - a low-energy particle experiment that will utilize the 12 GeV upgrade of Jefferson Lab's CEBAF accelerator. The motivation of this experiment is to measure the parity-violating asymmetry of scattered polarized electrons off unpolarized electrons in a liquid hydrogen target. This measurement would allow for a more precise determination of the electron's weak charge and weak mixing angle. While still in its planning stages, the MOLLER experiment requires a detailed simulation framework in order to determine how the project should be run in the future. The simulation framework for MOLLER, called ``remoll'', is written in GEANT4 code. As a result, the simulation can utilize a number of GEANT4 coded physics lists that provide the simulation with a number of particle interaction constraints based off of different particle physics models. By comparing these lists with one another using the data-analysis application ROOT, the most optimal physics list for the MOLLER simulation can be determined and implemented. This material is based upon work supported by the National Science Foundation under Grant No. 714001.

  10. Pions to Quarks

    NASA Astrophysics Data System (ADS)

    Brown, Laurie Mark; Dresden, Max; Hoddeson, Lillian

    2009-01-01

    Part I. Introduction; 1. Pions to quarks: particle physics in the 1950s Laurie M Brown, Max Dresden and Lillian Hoddeson; 2. Particle physics in the early 1950s Chen Ning Yang; 3. An historian's interest in particle physics J. L. Heilbron; Part II. Particle discoveries in cosmic rays; 4. Cosmic-ray cloud-chamber contributions to the discovery of the strange particles in the decade 1947-1957 George D. Rochester; 5. Cosmic-ray work with emulsions in the 1940s and 1950s Donald H. Perkins; Part III. High-energy nuclear physics; Learning about nucleon resonances with pion photoproduction Robert L. Walker; 7. A personal view of nucleon structure as revealed by electron scattering Robert Hofstadter; 8. Comments on electromagnetic form factors of the nucleon Robert G. Sachs and Kameshwar C. Wali; Part IV. The new laboratory; 9. The making of an accelerator physicist Matthew Sands; 10. Accelerator design and construction in the 1950s John P. Blewett; 11. Early history of the Cosmotron and AGS Ernest D. Courant; 12. Panel on accelerators and detectors in the 1950s Lawrence W. Jones, Luis W. Alvarez, Ugo Amaldi, Robert Hofstadter, Donald W. Kerst, Robert R. Wilson; 13. Accelerators and the Midwestern Universities Research Association in the 1950s Donald W. Kerst; 14. Bubbles, sparks and the postwar laboratory Peter Galison; 15. Development of the discharge (spark) chamber in Japan in the 1950s Shuji Fukui; 16. Early work at the Bevatron: a personal account Gerson Goldhaber; 17. The discovery of the antiproton Owen Chamberlain; 18. On the antiproton discovery Oreste Piccioni; Part V. The Strange Particles; 19. The hydrogen bubble chamber and the strange resonances Luis W. Alvarez; 20. A particular view of particle physics in the fifties Jack Steinberger; 21. Strange particles William Chinowsky; 22. Strange particles: production by Cosmotron beams as observed in diffusion cloud chambers William B. Fowler; 23. From the 1940s into the 1950s Abraham Pais; Part VI. Detection of the neutrino Frederick Reines; 25. Recollections on the establishment of the weak-interaction notion Bruno M. Pontecorvo; 26. Symmetry and conservation laws in particle physics in the fifties Louis Michel; 27. A connection between the strong and weak interactions Sam B. Treiman; Part VII. Weak interactions and parity nonconservation; 29. The nondiscovery of parity nonconservation Allan Franklin; 30. K-meson decays and parity violation Richard H. Dalitz; 31. An Experimentalist's Perspective Val L. Fitch; 32. The early experiments leading to the V - A interaction Valentine L. Telegdi; 33. Midcentury adventures in particles physics E. C. G. Sudarshan; Part VIII. The particle physics community; 34. The postwar political economy of high-energy physics Robert Seidel; 35. The history of CERN during the early 1950s Edoardo Amaldi; 36. Arguments pro and contra the European laboratory in the participating countries Armin Hermann; 37. Physics and excellences of the life it brings Abdus Salam; 38. Social aspects of Japanese particle physics in the 1950s Michiji Konuma; Part IX. Theories of hadrons; 39. The early S-matrix theory and its propagation (1942-1952) Helmut Rechenberg; 40. From field theory to phenomenology: the history of dispersion relations Andy Pickering; 41. Particles as S-matrix poles: hadron democracy Geoffrey F. Chew; 42. The general theory of quantised fields in the 1950s Arthur S. Wrightman; 43. The classification and structure of hadrons Yuval Ne'eman; 44. Gauge principle, vector-meson dominance and spontaneous symmetry breaking Yoichiro Nambu; Part X. Personal overviews; 45. Scientific impact of the first decade of the Rochester conferences (1950-1960) Robert E. Marshak; 46. Some reflections on the history of particle physics in the 1950s Silvan S. Schweber; 47. Progress in elementary particle theory 1950-1964 Murray Gell-Mann.

  11. Cellular target of weak magnetic fields: ionic conduction along actin filaments of microvilli.

    PubMed

    Gartzke, Joachim; Lange, Klaus

    2002-11-01

    The interaction of weak electromagnetic fields (EMF) with living cells is a most important but still unresolved biophysical problem. For this interaction, thermal and other types of noise appear to cause severe restrictions in the action of weak signals on relevant components of the cell. A recently presented general concept of regulation of ion and substrate pathways through microvilli provides a possible theoretical basis for the comprehension of physiological effects of even extremely low magnetic fields. The actin-based core of microfilaments in microvilli is proposed to represent a cellular interaction site for magnetic fields. Both the central role of F-actin in Ca2+ signaling and its polyelectrolyte nature eliciting specific ion conduction properties render the microvillar actin filament bundle an ideal interaction site for magnetic and electric fields. Ion channels at the tip of microvilli are connected with the cytoplasm by a bundle of microfilaments forming a diffusion barrier system. Because of its polyelectrolyte nature, the microfilament core of microvilli allows Ca2+ entry into the cytoplasm via nonlinear cable-like cation conduction through arrays of condensed ion clouds. The interaction of ion clouds with periodically applied EMFs and field-induced cation pumping through the cascade of potential barriers on the F-actin polyelectrolyte follows well-known physical principles of ion-magnetic field (MF) interaction and signal discrimination as described by the stochastic resonance and Brownian motor hypotheses. The proposed interaction mechanism is in accord with our present knowledge about Ca2+ signaling as the biological main target of MFs and the postulated extreme sensitivity for coherent excitation by very low field energies within specific amplitude and frequency windows. Microvillar F-actin bundles shielded by a lipid membrane appear to function like electronic integration devices for signal-to-noise enhancement; the influence of coherent signals on cation transduction is amplified, whereas that of random noise is reduced.

  12. Perceived neighborhood walkability and physical exercise: An examination of casual communication in a social process.

    PubMed

    Yamamoto, Masahiro; Jo, Hyerim

    2018-05-01

    Despite the accumulated evidence for the environmental correlates of physical activity, social processes underlying this association are not entirely clear. This study positions communication characterized by weak ties as a social mechanism linking neighborhood walkability with physical exercise. Data from a survey of Chicago residents show that perceived neighborhood walkability is positively related to frequency of weak-tie communication. Frequency of weak-tie communication is related positively to perceived social cohesion and negatively to anonymity, both of which are significantly related to frequency of physical exercise in the neighborhood. Data also show a sequential indirect relationship involving perceived neighborhood walkability, weak-tie communication, anonymity, and physical exercise. Implications are discussed in terms of the role of communication in promoting locality-based physical exercise. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Response theory of the ergodic many-body delocalized phase: Keldysh Finkel'stein sigma models and the 10-fold way

    NASA Astrophysics Data System (ADS)

    Liao, Yunxiang; Levchenko, Alex; Foster, Matthew S.

    2017-11-01

    We derive the finite temperature Keldysh response theory for interacting fermions in the presence of quenched short-ranged disorder, as applicable to any of the 10 Altland-Zirnbauer classes in an Anderson delocalized phase with at least a U(1) continuous symmetry. In this formulation of the interacting Finkel'stein nonlinear sigma model, the statistics of one-body wave functions are encoded by the constrained matrix field, while physical correlations follow from the hydrodynamic density or spin response field, which decouples the interactions. Integrating out the matrix field first, we obtain weak (anti) localization and Altshuler-Aronov quantum conductance corrections from the hydrodynamic response function. This procedure automatically incorporates the correct infrared cutoff physics, and in particular gives the Altshuler-Aronov-Khmelnitsky (AAK) equations for dephasing of weak (anti)localization due to electron-electron collisions. We explicate the method by deriving known quantumcorrections in two dimensions for the symplectic metal class AII, as well as the spin-SU(2) invariant superconductor classes C and CI. We show that quantum conductance corrections due to the special modes at zero energy in nonstandard classes are automatically cut off by temperature, as previously expected, while the Wigner-Dyson class Cooperon modes that persist to all energies are cut by dephasing. We also show that for short-ranged interactions, the standard self-consistent solution for the dephasing rate is equivalent to a particular summation of diagrams via the self-consistent Born approximation. This should be compared to the corresponding AAK solution for long-ranged Coulomb interactions, which exploits the Markovian noise correlations induced by thermal fluctuations of the electromagnetic field. We discuss prospects for exploring the many-body localization transition as a dephasing catastrophe in short-range interacting models, as encountered by approaching from the ergodic side.

  14. Physics of the very early Universe: what can we learn from cosmological observations?

    NASA Astrophysics Data System (ADS)

    Gondolo, Paolo

    Cosmological observations are starting to probe the evolution of the Universe before nucleosyn- thesis. The observed fluctuations in the cosmic microwave background and in the distribution of matter can be traced back to their origin during inflation, and the inflaton potential has begun to be unraveled. A future probe of the first microseconds would be the detection of weakly-interacting massive particles as dark matter. Discovery of supersymmetric particles at odds with the standard cosmological lore may open an experimental window on the physics at the highest energies, per- haps as far as superstring theory. This presentation will overview two topics on the physics of the Universe before nucleosynthesis: (1) slow-roll, natural and chain inflation in the landscape, and

  15. A dynamical model of plasma turbulence in the solar wind

    PubMed Central

    Howes, G. G.

    2015-01-01

    A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature. PMID:25848075

  16. Physical complications in acute lung injury survivors: a two-year longitudinal prospective study.

    PubMed

    Fan, Eddy; Dowdy, David W; Colantuoni, Elizabeth; Mendez-Tellez, Pedro A; Sevransky, Jonathan E; Shanholtz, Carl; Himmelfarb, Cheryl R Dennison; Desai, Sanjay V; Ciesla, Nancy; Herridge, Margaret S; Pronovost, Peter J; Needham, Dale M

    2014-04-01

    Survivors of severe critical illness frequently develop substantial and persistent physical complications, including muscle weakness, impaired physical function, and decreased health-related quality of life. Our objective was to determine the longitudinal epidemiology of muscle weakness, physical function, and health-related quality of life and their associations with critical illness and ICU exposures. A multisite prospective study with longitudinal follow-up at 3, 6, 12, and 24 months after acute lung injury. Thirteen ICUs from four academic teaching hospitals. Two hundred twenty-two survivors of acute lung injury. None. At each time point, patients underwent standardized clinical evaluations of extremity, hand grip, and respiratory muscle strength; anthropometrics (height, weight, mid-arm circumference, and triceps skin fold thickness); 6-minute walk distance, and the Medical Outcomes Short-Form 36 health-related quality of life survey. During their hospitalization, survivors also had detailed daily evaluation of critical illness and related treatment variables. Over one third of survivors had objective evidence of muscle weakness at hospital discharge, with most improving within 12 months. This weakness was associated with substantial impairments in physical function and health-related quality of life that persisted at 24 months. The duration of bed rest during critical illness was consistently associated with weakness throughout 24-month follow-up. The cumulative dose of systematic corticosteroids and use of neuromuscular blockers in the ICU were not associated with weakness. Muscle weakness is common after acute lung injury, usually recovering within 12 months. This weakness is associated with substantial impairments in physical function and health-related quality of life that continue beyond 24 months. These results provide valuable prognostic information regarding physical recovery after acute lung injury. Evidence-based methods to reduce the duration of bed rest during critical illness may be important for improving these long-term impairments.

  17. Analysis of factors related to arm weakness in patients with breast cancer-related lymphedema.

    PubMed

    Lee, Daegu; Hwang, Ji Hye; Chu, Inho; Chang, Hyun Ju; Shim, Young Hun; Kim, Jung Hyun

    2015-08-01

    The aim of this study was to evaluate the ratio of significant weakness in the affected arm of breast cancer-related lymphedema patients to their unaffected side. Another purpose was to identify factors related to arm weakness and physical function in patients with breast cancer-related lymphedema. Consecutive patients (n = 80) attended a single evaluation session following their outpatient lymphedema clinic visit. Possible independent factors (i.e., lymphedema, pain, psychological, educational, and behavioral) were evaluated. Handgrip strength was used to assess upper extremity muscle strength and the disabilities of arm, shoulder, and hand (DASH) questionnaire was used to assess upper extremity physical function. Multivariate logistic regression was performed using factors that had significant differences between the handgrip weakness and non-weakness groups. Out of the 80 patients with breast cancer-related lymphedema, 29 patients (36.3 %) had significant weakness in the affected arm. Weakness of the arm with lymphedema was not related to lymphedema itself, but was related to the fear of using the affected limb (odds ratio = 1.76, 95 % confidence interval = 1.30-2.37). Fears of using the affected limb and depression significantly contributed to the variance in DASH scores. Appropriate physical and psychological interventions, including providing accurate information and reassurance of physical activity safety, are necessary to prevent arm weakness and physical dysfunction in patients with breast cancer-related lymphedema.

  18. Compton Scattering Polarimetry for the Determination of the Proton's Weak Charge Through Measurements of the Parity-Violating Asymmetry of 1H(e,e')p

    NASA Astrophysics Data System (ADS)

    Cornejo, Juan Carlos

    The Standard Model has been a theory with the greatest success in describing the fundamental interactions of particles. As of the writing of this dissertation, the Standard Model has not been shown to make a false prediction. However, the limitations of the Standard Model have long been suspected by its lack of a description of gravity, nor dark matter. Its largest challenge to date, has been the observation of neutrino oscillations, and the implication that they may not be massless, as required by the Standard Model. The growing consensus is that the Standard Model is simply a lower energy effective field theory, and that new physics lies at much higher energies. The Qweak Experiment is testing the Electroweak theory of the Standard Model by making a precise determination of the weak charge of the proton (Qpw). Any signs of "new physics" will appear as a deviation to the Standard Model prediction. The weak charge is determined via a precise measurement of the parity-violating asymmetry of the electron-proton interaction via elastic scattering of a longitudinally polarized electron beam of an un-polarized proton target. The experiment required that the electron beam polarization be measured to an absolute uncertainty of 1 %. At this level the electron beam polarization was projected to contribute the single largest experimental uncertainty to the parity-violating asymmetry measurement. This dissertation will detail the use of Compton scattering to determine the electron beam polarization via the detection of the scattered photon. I will conclude the remainder of the dissertation with an independent analysis of the blinded Qweak.

  19. Microwave plasma induced surface modification of diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Rao Polaki, Shyamala; Kumar, Niranjan; Gopala Krishna, Nanda; Madapu, Kishore; Kamruddin, Mohamed; Dash, Sitaram; Tyagi, Ashok Kumar

    2017-12-01

    Tailoring the surface of diamond-like carbon (DLC) film is technically relevant for altering the physical and chemical properties, desirable for useful applications. A physically smooth and sp3 dominated DLC film with tetrahedral coordination was prepared by plasma-enhanced chemical vapor deposition technique. The surface of the DLC film was exposed to hydrogen, oxygen and nitrogen plasma for physical and chemical modifications. The surface modification was based on the concept of adsorption-desorption of plasma species and surface entities of films. Energetic chemical species of microwave plasma are adsorbed, leading to desorbtion of the surface carbon atoms due to energy and momentum exchange. The interaction of such reactive species with DLC films enhanced the roughness, surface defects and dangling bonds of carbon atoms. Adsorbed hydrogen, oxygen and nitrogen formed a covalent network while saturating the dangling carbon bonds around the tetrahedral sp3 valency. The modified surface chemical affinity depends upon the charge carriers and electron covalency of the adsorbed atoms. The contact angle of chemically reconstructed surface increases when a water droplet interacts either through hydrogen or van dear Waals bonding. These weak interactions influenced the wetting property of the DLC surface to a great extent.

  20. Studying rotational dynamics with a smartphone—accelerometer versus gyroscope

    NASA Astrophysics Data System (ADS)

    Braskén, Mats; Pörn, Ray

    2017-07-01

    The wide-spread availability of smartphones makes them a valuable addition to the measurement equipment of both the physics classroom and the instructional physics laboratory, encouraging an active interaction between measurements and modeling activities. Two useful sensors, available in most modern smartphones and tablets, are the 3-axis acceleration sensor and the 3-axis gyroscope. We explore the strengths and weaknesses of each type of sensor and use them to study the rotational dynamics of objects rotating about a fixed axis. Care has to be taken when interpreting acceleration sensor data, and in some cases the gyroscope will allow for rotational measurements not easily replicated using the acceleration sensor.

  1. Measurement of parity violation in electron–quark scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, D.; Pan, K.; Subedi, R.

    2014-02-05

    Symmetry permeates nature and is fundamental to all laws of physics. One example is parity (mirror) symmetry, which implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering has been important in establishing (and now testing) the standard model of particle physics. One particular set of quantities accessible through measurements of parity-violating electron scattering are the effective weak couplings C2q, sensitive to the quarks chirality preference when participating in the weak force,more » which have been measured directly3, 4 only once in the past 40?years. Here we report a measurement of the parity-violating asymmetry in electron-quark scattering, which yields a determination of 2C2u???C2d (where u and d denote up and down quarks, respectively) with a precision increased by a factor of five relative to the earlier result. These results provide evidence with greater than 95 per cent confidence that the C2q couplings are non-zero, as predicted by the electroweak theory. They lead to constraints on new parity-violating interactions beyond the standard model, particularly those due to quark chirality. Whereas contemporary particle physics research is focused on high-energy colliders such as the Large Hadron Collider, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. Our measurement is relatively free of ambiguity in its interpretation, and opens the door to even more precise measurements in the future.« less

  2. Annual modulation experiments, galactic models and WIMPs

    NASA Astrophysics Data System (ADS)

    Hudson, Robert G.

    Our task in the paper is to examine some recent experiments (in the period 1996-2002) bearing on the issue of whether there is dark matter in the universe in the form of neutralino WIMPs (weakly interacting massive particles). Our main focus is an experiment performed by the DAMA group that claims to have found an 'annual modulation signature' for the WIMP. DAMA's result has been hotly contested by two other groups, EDELWEISS and CDMS, and we study the details of the experiments performed by all three groups. Our goal is to investigate the philosophic and sociological implications of this controversy. Particularly, using an innovative theoretical strategy suggested by (Copi, C. and L. M. Krauss (2003). Comparing interaction rate detectors for weakly interacting massive particles with annual modulation detectors. Physical Review D, 67, 103 507), we suggest a new way of resolving discordant experimental data (extending a previous analysis by (Franklin, A. (2002). Selectivity and discord. Pittsburgh: University of Pittsburgh Press). In addition, we are in a position to contribute substantively to the debate between realists and constructive empiricists. Finally, from a sociological standpoint, we remark that DAMA's work has been valuable in mobilizing other research teams and providing them with a critical focus.

  3. Analysis of weak interactions and Eotvos experiments

    NASA Technical Reports Server (NTRS)

    Hsu, J. P.

    1978-01-01

    The intermediate-vector-boson model is preferred over the current-current model as a basis for calculating effects due to weak self-energy. Attention is given to a possible violation of the equivalence principle by weak-interaction effects, and it is noted that effects due to weak self-energy are at least an order of magnitude greater than those due to the weak binding energy for typical nuclei. It is assumed that the weak and electromagnetic energies are independent.

  4. First Principles based methods and applications for realistic simulations on complex soft materials to develop new materials for energy, health, and environmental sustainability

    NASA Astrophysics Data System (ADS)

    Goddard, William

    2013-03-01

    For soft materials applications it is essential to obtain accurate descriptions of the weak (London dispersion, electrostatic) interactions between nonbond units, to include interactions with and stabilization by solvent, and to obtain accurate free energies and entropic changes during chemical, physical, and thermal processing. We will describe some of the advances being made in first principles based methods for treating soft materials with applications selected from new organic electrodes and electrolytes for batteries and fuel cells, forward osmosis for water cleanup, extended matter stable at ambient conditions, and drugs for modulating activation of GCPR membrane proteins,

  5. Curvaton scenario within the minimal supersymmetric standard model and predictions for non-Gaussianity.

    PubMed

    Mazumdar, Anupam; Nadathur, Seshadri

    2012-03-16

    We provide a model in which both the inflaton and the curvaton are obtained from within the minimal supersymmetric standard model, with known gauge and Yukawa interactions. Since now both the inflaton and curvaton fields are successfully embedded within the same sector, their decay products thermalize very quickly before the electroweak scale. This results in two important features of the model: first, there will be no residual isocurvature perturbations, and second, observable non-Gaussianities can be generated with the non-Gaussianity parameter f(NL)~O(5-1000) being determined solely by the combination of weak-scale physics and the standard model Yukawa interactions.

  6. Viscosity of a multichannel one-dimensional Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGottardi, Wade; Matveev, K. A.

    Many one-dimensional systems of experimental interest possess multiple bands arising from shallow confining potentials. In this paper, we study a gas of weakly interacting fermions and show that the bulk viscosity is dramatically altered by the occupation of more than one band. The reasons for this are twofold: a multichannel system is more easily displaced from equilibrium and the associated relaxation processes lead to more rapid equilibration than in the single channel case. We estimate the bulk viscosity in terms of the underlying microscopic interactions. The experimental relevance of this physics is discussed in the context of quantum wires andmore » trapped cold atomic gases.« less

  7. Cold atoms in one-dimensional rings: a Luttinger liquid approach to precision measurement

    NASA Astrophysics Data System (ADS)

    Ragole, Stephen; Taylor, Jacob

    Recent experiments have realized ring shaped traps for ultracold atoms. We consider the one-dimensional limit of these ring systems with a moving weak barrier, such as a blue-detuned laser beam. In this limit, we employ Luttinger liquid theory and find an analogy with the superconducting charge qubit. In particular, we find that strongly-interacting atoms in such a system could be used for precision rotation sensing. We compare the performance of this new sensor to the state of the art non-interacting atom interferometry. Funding provided by the Physics Frontier Center at the JQI and by DARPA QUASAR.

  8. Contextual and individual predictors of physical activity: Interactions between environmental factors and health cognitions.

    PubMed

    Schüz, Benjamin; Wurm, Susanne; Ziegelmann, Jochen P; Wolff, Julia K; Warner, Lisa M; Schwarzer, Ralf; Tesch-Römer, Clemens

    2012-11-01

    Although health behavior theories assume a role of the context in health behavior self-regulation, this role is often weakly specified and rarely examined. The two studies in this article test whether properties of the environment (districts) affect if and how health-related cognitions are translated into physical activity. Multilevel modeling was used to examine the assumed cross-level interactions. Study 1 is a large-scale survey representative of the German adult population (N = 6,201). Gross domestic product (GDP) on the level of administrative districts was used to indicate environmental opportunities and barriers. Study 2 examined cross-level interactions of proximal predictors of physical activity (intentions, action planning, and coping planning) in older adults with multiple illnesses (N = 309), a high-risk group for health deteriorations. Study 1 showed that on the individual level, health attitudes (B = .11) and education (B = .71) were significantly associated with physical activity. GDP moderated the attitudes-behavior relation (B = .01), with higher attitude-behavior relations in districts with higher GDP. Study 2 finds that intention (B = .16), action planning (B = .17), and coping planning (B = .13) significantly predict activity. In addition, district-level GDP significantly moderated the relations between action planning and coping planning, but not intention, on physical activity. Results suggest that the effects of health attitudes and planning on physical activity are moderated by environmental factors. Districts with higher GDP provide better contextual opportunities for the enactment of concrete if-then plans for physical activity. This has implications for both theory and health promotion.

  9. Force-Induced Strengthening of the Interaction between Staphylococcus aureus Clumping Factor B and Loricrin

    PubMed Central

    Vitry, Pauline; Valotteau, Claire; Feuillie, Cécile; Bernard, Simon

    2017-01-01

    ABSTRACT Bacterial pathogens that colonize host surfaces are subjected to physical stresses such as fluid flow and cell surface contacts. How bacteria respond to such mechanical cues is an important yet poorly understood issue. Staphylococcus aureus uses a repertoire of surface proteins to resist shear stress during the colonization of host tissues, but whether their adhesive functions can be modulated by physical forces is not known. Here, we show that the interaction of S. aureus clumping factor B (ClfB) with the squamous epithelial cell envelope protein loricrin is enhanced by mechanical force. We find that ClfB mediates S. aureus adhesion to loricrin through weak and strong molecular interactions both in a laboratory strain and in a clinical isolate. Strong forces (~1,500 pN), among the strongest measured for a receptor-ligand bond, are consistent with a high-affinity “dock, lock, and latch” binding mechanism involving dynamic conformational changes in the adhesin. Notably, we demonstrate that the strength of the ClfB-loricrin bond increases as mechanical force is applied. These findings favor a two-state model whereby bacterial adhesion to loricrin is enhanced through force-induced conformational changes in the ClfB molecule, from a weakly binding folded state to a strongly binding extended state. This force-sensitive mechanism may provide S. aureus with a means to finely tune its adhesive properties during the colonization of host surfaces, helping cells to attach firmly under high shear stress and to detach and spread under low shear stress. PMID:29208742

  10. Nonlinear optics of fibre event horizons.

    PubMed

    Webb, Karen E; Erkintalo, Miro; Xu, Yiqing; Broderick, Neil G R; Dudley, John M; Genty, Goëry; Murdoch, Stuart G

    2014-09-17

    The nonlinear interaction of light in an optical fibre can mimic the physics at an event horizon. This analogue arises when a weak probe wave is unable to pass through an intense soliton, despite propagating at a different velocity. To date, these dynamics have been described in the time domain in terms of a soliton-induced refractive index barrier that modifies the velocity of the probe. Here we complete the physical description of fibre-optic event horizons by presenting a full frequency-domain description in terms of cascaded four-wave mixing between discrete single-frequency fields, and experimentally demonstrate signature frequency shifts using continuous wave lasers. Our description is confirmed by the remarkable agreement with experiments performed in the continuum limit, reached using ultrafast lasers. We anticipate that clarifying the description of fibre event horizons will significantly impact on the description of horizon dynamics and soliton interactions in photonics and other systems.

  11. Computational Cosmology: From the Early Universe to the Large Scale Structure.

    PubMed

    Anninos, Peter

    2001-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  12. Computational Cosmology: from the Early Universe to the Large Scale Structure.

    PubMed

    Anninos, Peter

    1998-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  13. Estimates of the Attenuation Rates of Baroclinic Tidal Energy Caused by Resonant Interactions Among Internal Waves based on the Weak Turbulence Theory

    NASA Astrophysics Data System (ADS)

    Onuki, Y.; Hibiya, T.

    2016-02-01

    The baroclinic tides are thought to be the dominant energy source for turbulent mixing in the ocean interior. In contrast to the geography of the energy conversion rates from the barotropic to baroclinic tides, which has been clarified in recent numerical studies, the global distribution of the energy sink for the resulting low-mode baroclinic tides remains obscure. A key to resolve this issue is the resonant wave-wave interactions, which transfer part of the baroclinic tidal energy to the background internal wave field enhancing the local energy dissipation rates. Recent field observations and numerical studies have pointed out that parametric subharmonic instability (PSI), one of the resonant interactions, causes significant energy sink of baroclinic tidal energy at mid-latitudes. The purpose of this study is to analyze the quantitative aspect of PSI to demonstrate the global distribution of the intensity of resonant wave interactions, namely, the attenuation rate of low-mode baroclinic tidal energy. Our approach is basically following the weak turbulence theory, which is the standard theory for resonant wave-wave interactions, where techniques of singular perturbation and statistical physics are employed. This study is, however, different from the classical theory in some points; we have reformulated the weak turbulence theory to be applicable to low-mode internal waves and also developed its numerical calculation method so that the effects of stratification profile and oceanic total depth can be taken into account. We have calculated the attenuation rate of low-mode baroclinic tidal waves interacting with the background Garrett-Munk internal wave field. The calculated results clearly show the rapid attenuation of baroclinic tidal energy at mid-latitudes, in agreement with the results from field observations and also show the zonal inhomogeneity of the attenuation rate caused by the density structures associated with the subtropical gyre. This study is expected to contribute to clarify the global distribution of the dissipation rates of baroclinic tidal energy.

  14. Covalent intermolecular interaction of the nitric oxide dimer (NO)2

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zheng, Gui-Li; Lv, Gang; Geng, Yi-Zhao; Ji, Qing

    2015-09-01

    Covalent bonds arise from the overlap of the electronic clouds in the internucleus region, which is a pure quantum effect and cannot be obtained in any classical way. If the intermolecular interaction is of covalent character, the result from direct applications of classical simulation methods to the molecular system would be questionable. Here, we analyze the special intermolecular interaction between two NO molecules based on quantum chemical calculation. This weak intermolecular interaction, which is of covalent character, is responsible for the formation of the NO dimer, (NO)2, in its most stable conformation, a cis conformation. The natural bond orbital (NBO) analysis gives an intuitive illustration of the formation of the dimer bonding and antibonding orbitals concomitant with the breaking of the π bonds with bond order 0.5 of the monomers. The dimer bonding is counteracted by partially filling the antibonding dimer orbital and the repulsion between those fully or nearly fully occupied nonbonding dimer orbitals that make the dimer binding rather weak. The direct molecular mechanics (MM) calculation with the UFF force fields predicts a trans conformation as the most stable state, which contradicts the result of quantum mechanics (QM). The lesson from the investigation of this special system is that for the case where intermolecular interaction is of covalent character, a specific modification of the force fields of the molecular simulation method is necessary. Project supported by the National Natural Science Foundation of China (Grant Nos. 90403007 and 10975044), the Key Subject Construction Project of Hebei Provincial Universities, China, the Research Project of Hebei Education Department, China (Grant Nos. Z2012067 and Z2011133), the National Natural Science Foundation of China (Grant No. 11147103), and the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Grant No. Y5KF211CJ1).

  15. Book review: Modern Plasma Physics, Vol. I: Physical Kinetics of Turbulent Plasmas, by Patrick H. Diamond, Sanae-I. Itoh and Kimitaka Itoh, Cambridge University Press, Cambridge (UK), 2010, IX, 417 p., ISBN 978-0-521-86920-1 (Hardback)

    NASA Astrophysics Data System (ADS)

    Somov, B. V.

    If you want to learn not only the most fundamental things about the physics of turbulent plasmas but also the current state of the problem including the most recent results in theoretical and experimental investigations - and certainly many physicists and astrophysicists do - this series of three excellent monographs is just for you. The first volume "Physical Kinetics of Turbulent Plasmas" develops the kinetic theory of turbulence through a focus on quasi-particle models and dynamics. It discusses the concepts and theoretical methods for describing weak and strong fluid and phase space turbulence in plasma systems far from equilibrium. The core material includes fluctuation theory, self-similar cascades and transport, mean field theory, resonance broadening and nonlinear wave-particle interaction, wave-wave interaction and wave turbulence, strong turbulence theory and renormalization. The book gives readers a deep understanding of the fields under consideration and builds a foundation for future applications to multi-scale processes of self-organization in tokamaks and other confined plasmas. In spite of a short pedagogical introduction, the book is addressed mainly to well prepared readers with a serious background in plasma physics, to researchers and advanced graduate students in nonlinear plasma physics, controlled fusions and related fields such as cosmic plasma physics

  16. NMR characterization of weak interactions between RhoGDI2 and fragment screening hits.

    PubMed

    Liu, Jiuyang; Gao, Jia; Li, Fudong; Ma, Rongsheng; Wei, Qingtao; Wang, Aidong; Wu, Jihui; Ruan, Ke

    2017-01-01

    The delineation of intrinsically weak interactions between novel targets and fragment screening hits has long limited the pace of hit-to-lead evolution. Rho guanine-nucleotide dissociation inhibitor 2 (RhoGDI2) is a novel target that lacks any chemical probes for the treatment of tumor metastasis. Protein-observed and ligand-observed NMR spectroscopy was used to characterize the weak interactions between RhoGDI2 and fragment screening hits. We identified three hits of RhoGDI2 using streamlined NMR fragment-based screening. The binding site residues were assigned using non-uniformly sampled C α - and H α -based three dimensional NMR spectra. The molecular docking to the proposed geranylgeranyl binding pocket of RhoGDI2 was guided by NMR restraints of chemical shift perturbations and ligand-observed transferred paramagnetic relaxation enhancement. We further validated the weak RhoGDI2-hit interactions using mutagenesis and structure-affinity analysis. Weak interactions between RhoGDI2 and fragment screening hits were delineated using an integrated NMR approach. Binders to RhoGDI2 as a potential anti-cancer target have been first reported, and their weak interactions were depicted using NMR spectroscopy. Our work highlights the powerfulness and the versatility of the integrative NMR techniques to provide valuable structural insight into the intrinsically weak interactions between RhoGDI2 and the fragment screening hits, which could hardly be conceived using other biochemical techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Testing quantum gravity

    NASA Astrophysics Data System (ADS)

    Hansson, Johan; Francois, Stephane

    The search for a theory of quantum gravity is the most fundamental problem in all of theoretical physics, but there are as yet no experimental results at all to guide this endeavor. What seems to be needed is a pragmatic way to test if gravitation really occurs between quantum objects or not. In this paper, we suggest such a potential way out of this deadlock, utilizing macroscopic quantum systems; superfluid helium, gaseous Bose-Einstein condensates and “macroscopic” molecules. It turns out that true quantum gravity effects — here defined as observable gravitational interactions between truly quantum objects — could and should be seen (if they occur in nature) using existing technology. A falsification of the low-energy limit in the accessible weak-field regime would also falsify the full theory of quantum gravity, making it enter the realm of testable, potentially falsifiable theories, i.e. becoming real physics after almost a century of pure theorizing. If weak-field gravity between quantum objects is shown to be absent (in the regime where the approximation should apply), we know that gravity then is a strictly classical phenomenon absent at the quantum level.

  18. The Fundamental Neutron Physics Beamline at the Spallation Neutron Source.

    PubMed

    Greene, Geoffrey; Cianciolo, Vince; Koehler, Paul; Allen, Richard; Snow, William Michael; Huffman, Paul; Gould, Chris; Bowman, David; Cooper, Martin; Doyle, John

    2005-01-01

    The Spallation Neutron Source (SNS), currently under construction at Oak Ridge National Laboratory with an anticipated start-up in early 2006, will provide the most intense pulsed beams of cold neutrons in the world. At a projected power of 1.4 MW, the time averaged fluxes and fluences of the SNS will approach those of high flux reactors. One of the flight paths on the cold, coupled moderator will be devoted to fundamental neutron physics. The fundamental neutron physics beamline is anticipated to include two beam-lines; a broad band cold beam, and a monochromatic beam of 0.89 nm neutrons for ultracold neutron (UCN) experiments. The fundamental neutron physics beamline will be operated as a user facility with experiment selection based on a peer reviewed proposal process. An initial program of five experiments in neutron decay, hadronic weak interaction and time reversal symmetry violation have been proposed.

  19. Cosmology and particle physics

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1988-01-01

    The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.

  20. Nonlocal gradient corrections to the exchange free energy of an inhomogeneous many-fermion system at finite temperature

    NASA Astrophysics Data System (ADS)

    Geldart, D. J. W.; Dunlap, E.; Glasser, M. L.; Shegelski, Mark R. A.

    1993-10-01

    A general exact result is derived for the coefficient B x( n; T) which determines the first gradient correction to the leading exchange contribution to the free energy at finite temperature of a weakly inhomogeneous extended many fermion system having arbitrary two-body interactions. Explicit analytical results are given in the case of bare Coulomb interactions, and the case of statically screened Coulomb interactions is studied numerically. It is shown that nonanalytical structure leads to different limiting values of B x( n; T) when the inverse screening length and the temperature are both small. Some implications for physical many-electron systems are discussed, including the reasons for discrepancies between the first principles and semiempirical gradient coefficients for atomic exchange energies.

  1. Physical meaning of two-particle HBT measurements in case of correlated emission

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Zalewski, K.

    2004-07-01

    It is shown that, in the presence of correlations in particle emission, the measured HBT radii are related to the correlation range rather than to the size of the interaction volume. Only in the case of weak correlations the standard interpretation may be applicable. The earlier discussion [Phys. Rev. Lett. 68 (1992) 1109; Phys. Rev. C 49 (1994) 2722] of the short-range correlations in configuration space is generalized to include also the correlations of particle momenta.

  2. Development of a new experimental device for long-duration magnetic reconnection in weakly ionized plasma

    NASA Astrophysics Data System (ADS)

    Yanai, Ryoma; Kaminou, Yasuhiro; Nishida, Kento; Inomoto, Michiaki

    2016-10-01

    Magnetic reconnection is a universal phenomenon which determines global structure and energy conversion in magnetized plasmas. Many experimental studies have been carried out to explore the physics of magnetic reconnection in fully ionized condition. However, it is predicted that the behavior of magnetic reconnection in weakly ionized plasmas such as solar chromosphere plasma will show different behavior such as ambipolar diffusion caused by interaction with neutral particles. In this research, we are developing a new experimental device to uncover the importance of ambipolar diffusion during magnetic reconnection in weakly ionized plasmas. We employ an inverter-driven rotating magnetic fields technique, which is used for generating steady azimuthal plasma current, to establish long-duration ( 1 ms) anti-parallel reconnection with magnetic field of 5 mT in weakly ionized plasma. We will present development status and initial results from the new experimental setup. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus'', Giant-in Aid for Scientific Research (KAKENHI) 15H05750, 15K14279, 26287143 and the NIFS Collaboration Research program (NIFS14KNWP004).

  3. Role of nuclear charge change and nuclear recoil on shaking processes and their possible implication on physical processes

    NASA Astrophysics Data System (ADS)

    Sharma, Prashant

    2017-12-01

    The probable role of the sudden nuclear charge change and nuclear recoil in the shaking processes during the neutron- or heavy-ion-induced nuclear reactions and weakly interacting massive particle-nucleus scattering has been investigated in the present work. Using hydrogenic wavefunctions, general analytical expressions of survival, shakeup/shakedown, and shakeoff probability have been derived for various subshells of hydrogen-like atomic systems. These expressions are employed to calculate the shaking, shakeup/shakedown, and shakeoff probabilities in some important cases of interest in the nuclear astrophysics and the dark matter search experiments. The results underline that the shaking processes are one of the probable channels of electronic transitions during the weakly interacting massive particle-nucleus scattering, which can be used to probe the dark matter in the sub-GeV regime. Further, it is found that the shaking processes initiating due to nuclear charge change and nuclear recoil during the nuclear reactions may influence the electronic configuration of the participating atomic systems and thus may affect the nuclear reaction measurements at astrophysically relevant energies.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkas, R. R.; Foot, R.; He, X.

    The universal QCD color theory is extended to an SU(3)/sub 1//direct product/SU(3)/sub 2//direct product/SU(3)/sub 3/ gauge theory, where quarks of the /ital i/th generation transform as triplets under SU(3)/sub /ital i// and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamentalmore » issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements.« less

  5. [Epidemiologic research on the environment and health: some methodologic aspects].

    PubMed

    Hémon, D

    1995-01-01

    Research in environmental epidemiology deals with physical, chemical and biological agents whose presence--or relative absence--within the different media coming into contract with human beings (air, water, soil, food, etc...) may be harmful to human health. Some "major" environmental risk factors are well known. In a number of situations, however, environment-disease associations are "weak". This does not rule out the possibility that the exposures involved have a significant impact on human health, considering their prevalence which is frequently high. However, this complicates their study owing to the potential importance of biases as well as that of sampling fluctuations. Although increasing study size is of crucial importance, it is not sufficient to establish a clearcut distinction between "weak" associations and "diluted" ones. To improve our knowledge of health risks which are associated with environmental exposures, the basic methodological principles of epidemiological research--to define and adequately measure exposures, health outcomes, confounders and effect modifiers--may be very valuable to approach the study of "weak" associations: 1) identifying and quantifying the presence of the agents of interest in the environment, studying the distribution of environmental exposures among individuals and its determinants, taking into account the whole history of personal exposures and integrating adequately the short term time variability of exposures, giving special attention to the type and intensity of exposures may help in the definition and measurement of exposures; 2) carefully analyzing the interactions which may exist between the physical, chemical and biological agents of interest and the human body may greatly help in the elaboration, measurement and validation of relevant health outcomes (exposures to the target organs, early lesions and health impairments); 3) this same approach may also greatly contribute to the identification of constitutional or acquired individual characteristics which may interact with environmental agents in the development of diseases. While there is no guarantee that such approaches will successfully discriminate between "weak" and "diluted" associations, it is likely that inconclusive epidemiological evidence will be very difficult to avoid if such approaches are neglected by environmental epidemiologists.

  6. Normal modes of weak colloidal gels

    NASA Astrophysics Data System (ADS)

    Varga, Zsigmond; Swan, James W.

    2018-01-01

    The normal modes and relaxation rates of weak colloidal gels are investigated in calculations using different models of the hydrodynamic interactions between suspended particles. The relaxation spectrum is computed for freely draining, Rotne-Prager-Yamakawa, and accelerated Stokesian dynamics approximations of the hydrodynamic mobility in a normal mode analysis of a harmonic network representing several colloidal gels. We find that the density of states and spatial structure of the normal modes are fundamentally altered by long-ranged hydrodynamic coupling among the particles. Short-ranged coupling due to hydrodynamic lubrication affects only the relaxation rates of short-wavelength modes. Hydrodynamic models accounting for long-ranged coupling exhibit a microscopic relaxation rate for each normal mode, λ that scales as l-2, where l is the spatial correlation length of the normal mode. For the freely draining approximation, which neglects long-ranged coupling, the microscopic relaxation rate scales as l-γ, where γ varies between three and two with increasing particle volume fraction. A simple phenomenological model of the internal elastic response to normal mode fluctuations is developed, which shows that long-ranged hydrodynamic interactions play a central role in the viscoelasticity of the gel network. Dynamic simulations of hard spheres that gel in response to short-ranged depletion attractions are used to test the applicability of the density of states predictions. For particle concentrations up to 30% by volume, the power law decay of the relaxation modulus in simulations accounting for long-ranged hydrodynamic interactions agrees with predictions generated by the density of states of the corresponding harmonic networks as well as experimental measurements. For higher volume fractions, excluded volume interactions dominate the stress response, and the prediction from the harmonic network density of states fails. Analogous to the Zimm model in polymer physics, our results indicate that long-ranged hydrodynamic interactions play a crucial role in determining the microscopic dynamics and macroscopic properties of weak colloidal gels.

  7. A Simple Mathematical Model for Standard Model of Elementary Particles and Extension Thereof

    NASA Astrophysics Data System (ADS)

    Sinha, Ashok

    2016-03-01

    An algebraically (and geometrically) simple model representing the masses of the elementary particles in terms of the interaction (strong, weak, electromagnetic) constants is developed, including the Higgs bosons. The predicted Higgs boson mass is identical to that discovered by LHC experimental programs; while possibility of additional Higgs bosons (and their masses) is indicated. The model can be analyzed to explain and resolve many puzzles of particle physics and cosmology including the neutrino masses and mixing; origin of the proton mass and the mass-difference between the proton and the neutron; the big bang and cosmological Inflation; the Hubble expansion; etc. A novel interpretation of the model in terms of quaternion and rotation in the six-dimensional space of the elementary particle interaction-space - or, equivalently, in six-dimensional spacetime - is presented. Interrelations among particle masses are derived theoretically. A new approach for defining the interaction parameters leading to an elegant and symmetrical diagram is delineated. Generalization of the model to include supersymmetry is illustrated without recourse to complex mathematical formulation and free from any ambiguity. This Abstract represents some results of the Author's Independent Theoretical Research in Particle Physics, with possible connection to the Superstring Theory. However, only very elementary mathematics and physics is used in my presentation.

  8. A rheological assessment of the nature of interactions between mucoadhesive polymers and a homogenised mucus gel.

    PubMed

    Madsen, F; Eberth, K; Smart, J D

    1998-06-01

    The ability of mucoadhesive materials to produce a large increase in the resistance to deformation when incorporated into a mucus gel, relative to when the mucus gel and test materials are evaluated separately at the same concentration, has been reported in several previous studies. It has been proposed that this phenomenon, termed rheological synergism, can be used as a measure of the strength of the mucoadhesive interaction. This study investigated the interactions between four putative mucoadhesive polymers (Noveon, Pemulen TR-2, carageenan and sodium carboxymethylcellulose) and a homogenised mucus gel, using dynamic oscillatory rheology. It was shown that, with the exception of sodium carboxymethylcellulose, incorporating a mucoadhesive polymer into a mucus gel produces rheological behaviour indicative of a weakly cross-linked gel network, which suggested a structure containing physical chain entanglements and non-covalent (probably hydrogen) bonds. Optimum gel strengthening occurred in a weakly acidic environment, suggesting an optimum conformation and degree of ionisation of the polymer and mucus molecules. Subsequent work suggested that the macromolecular interactions between polymer and mucus are sensitive to temperature, with the dynamic moduli decreasing with increasing temperature, further indicating bonding of a non-covalent nature. This work provide further evidence that rheological methods can be used as a tool to evaluate the interactions between a mucoadhesive macromolecule and a mucus gel. It also adds to the perception that molecular interpenetration may be an important factor in mucoadhesion by strengthening the mucus in the mucoadhesive/mucosal interfacial layer.

  9. Superallowed nuclear beta decay: Precision measurements for basic physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, J. C.

    2012-11-20

    For 60 years, superallowed 0{sup +}{yields}0{sup +} nuclear beta decay has been used to probe the weak interaction, currently verifying the conservation of the vector current (CVC) to high precision ({+-}0.01%) and anchoring the most demanding available test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix ({+-}0.06%), a fundamental pillar of the electroweak standard model. Each superallowed transition is characterized by its ft-value, a result obtained from three measured quantities: the total decay energy of the transition, its branching ratio, and the half-life of the parent state. Today's data set is composed of some 150 independent measurements of 13 separatemore » superallowed transitions covering a wide range of parent nuclei from {sup 10}C to {sup 74}Rb. Excellent consistency among the average results for all 13 transitions - a prediction of CVC - also confirms the validity of the small transition-dependent theoretical corrections that have been applied to account for isospin symmetry breaking. With CVC consistency established, the value of the vector coupling constant, G{sub V}, has been extracted from the data and used to determine the top left element of the CKM matrix, V{sub ud}. With this result the top-row unitarity test of the CKM matrix yields the value 0.99995(61), a result that sets a tight limit on possible new physics beyond the standard model. To have any impact on these fundamental weak-interaction tests, any measurement must be made with a precision of 0.1% or better - a substantial experimental challenge well beyond the requirements of most nuclear physics measurements. I overview the current state of the field and outline some of the requirements that need to be met by experimentalists if they aim to make measurements with this high level of precision.« less

  10. A Dark Matter Search with MALBEK

    NASA Astrophysics Data System (ADS)

    Giovanetti, G. K.; Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.

    The Majorana Demonstrator is an array of natural and enriched high purity germanium detectors that will search for the neutrinoless double-beta decay of 76Ge and perform a search for weakly interacting massive particles (WIMPs) with masses below 10 GeV. As part of the Majorana research and development efforts, we have deployed a modified, low-background broad energy germanium detector at the Kimballton Underground Research Facility. With its sub-keV energy threshold, this detector is sensitive to potential non-Standard Model physics, including interactions with WIMPs. We discuss the backgrounds present in the WIMP region of interest and explore the impact of slow surface event contamination when searching for a WIMP signal.

  11. A dark matter search with MALBEK

    DOE PAGES

    Giovanetti, G. K.; Abgrall, N.; Aguayo, E.; ...

    2015-01-01

    The Majorana Demonstrator is an array of natural and enriched high purity germanium detectors that will search for the neutrinoless double-beta decay of ⁷⁶Ge and perform a search for weakly interacting massive particles (WIMPs) with masses below 10 GeV. As part of the Majorana research and development efforts, we have deployed a modified, low-background broad energy germanium detector at the Kimballton Underground Research Facility. With its sub-keV energy threshold, this detector is sensitive to potential non-Standard Model physics, including interactions with WIMPs. We discuss the backgrounds present in the WIMP region of interest and explore the impact of slow surfacemore » event contamination when searching for a WIMP signal.« less

  12. Compressible Fluids Interacting with a Linear-Elastic Shell

    NASA Astrophysics Data System (ADS)

    Breit, Dominic; Schwarzacher, Sebastian

    2018-05-01

    We study the Navier-Stokes equations governing the motion of an isentropic compressible fluid in three dimensions interacting with a flexible shell of Koiter type. The latter one constitutes a moving part of the boundary of the physical domain. Its deformation is modeled by a linearized version of Koiter's elastic energy. We show the existence of weak solutions to the corresponding system of PDEs provided the adiabatic exponent satisfies {γ > 12/7} ({γ >1 } in two dimensions). The solution exists until the moving boundary approaches a self-intersection. This provides a compressible counterpart of the results in Lengeler and Růžičkaka (Arch Ration Mech Anal 211(1):205-255, 2014) on incompressible Navier-Stokes equations.

  13. Molecular Handshake: Recognition through Weak Noncovalent Interactions

    ERIC Educational Resources Information Center

    Murthy, Parvathi S.

    2006-01-01

    The weak noncovalent interactions between substances, the handshake in the form of electrostatic interactions, van der Waals' interactions or hydrogen bonding is universal to all living and nonliving matter. They significantly influence the molecular and bulk properties and behavior of matter. Their transient nature affects chemical reactions and…

  14. Analysis and gyrokinetic simulation of MHD Alfven wave interactions

    NASA Astrophysics Data System (ADS)

    Nielson, Kevin Derek

    The study of low-frequency turbulence in magnetized plasmas is a difficult problem due to both the enormous range of scales involved and the variety of physics encompassed over this range. Much of the progress that has been made in turbulence theory is based upon a result from incompressible magnetohydrodynamics (MHD), in which energy is only transferred from large scales to small via the collision of Alfven waves propagating oppositely along the mean magnetic field. Improvements in laboratory devices and satellite measurements have demonstrated that, while theories based on this premise are useful over inertial ranges, describing turbulence at scales that approach particle gyroscales requires new theory. In this thesis, we examine the limits of incompressible MHD theory in describing collisions between pairs of Alfven waves. This interaction represents the fundamental unit of plasma turbulence. To study this interaction, we develop an analytic theory describing the nonlinear evolution of interacting Alfven waves and compare this theory to simulations performed using the gyrokinetic code AstroGK. Gyrokinetics captures a much richer set of physics than that described by incompressible MHD, and is well-suited to describing Alfvenic turbulence around the ion gyroscale. We demonstrate that AstroGK is well suited to the study of physical Alfven waves by reproducing laboratory Alfven dispersion data collected using the LAPD. Additionally, we have developed an initialization alogrithm for use with AstroGK that allows exact Alfven eigenmodes to be initialized with user specified amplitudes and phases. We demonstrate that our analytic theory based upon incompressible MHD gives excellent agreement with gyrokinetic simulations for weakly turbulent collisions in the limit that k⊥rho i << 1. In this limit, agreement is observed in the time evolution of nonlinear products, and in the strength of nonlinear interaction with respect to polarization and scale. We also examine the effect of wave amplitude upon the validity of our analytic solution, exploring the nature of strong turbulence. In the kinetic limit where k⊥ rhoi ≳ 1 where incompressible MHD is no longer a valid description, we illustrate how the nonlinear evolution departs from our analytic expression. The analytic theory we develop provides a framework from which more sophisticated of weak and strong inertial-range turbulence theories may be developed. Characterization of the limits of this theory may provide guidance in the development of kinetic Alfven wave turbulence.

  15. Hidden multiparticle excitation in a weakly interacting Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Watabe, Shohei

    2018-03-01

    We investigate multiparticle excitation effect on a collective density excitation as well as a single-particle excitation in a weakly interacting Bose-Einstein condensate (BEC). We find that although the weakly interacting BEC offers weak multiparticle excitation spectrum at low temperatures, this multiparticle excitation effect may not remain hidden, but emerges as bimodality in the density response function through the single-particle excitation. Identification of spectra in the BEC between the single-particle excitation and the density excitation is also assessed at nonzero temperatures, which has been known to be unique nature in the BEC at absolute zero temperature.

  16. Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm.

    PubMed

    Yu, Isseki; Mori, Takaharu; Ando, Tadashi; Harada, Ryuhei; Jung, Jaewoon; Sugita, Yuji; Feig, Michael

    2016-11-01

    Biological macromolecules function in highly crowded cellular environments. The structure and dynamics of proteins and nucleic acids are well characterized in vitro, but in vivo crowding effects remain unclear. Using molecular dynamics simulations of a comprehensive atomistic model cytoplasm we found that protein-protein interactions may destabilize native protein structures, whereas metabolite interactions may induce more compact states due to electrostatic screening. Protein-protein interactions also resulted in significant variations in reduced macromolecular diffusion under crowded conditions, while metabolites exhibited significant two-dimensional surface diffusion and altered protein-ligand binding that may reduce the effective concentration of metabolites and ligands in vivo. Metabolic enzymes showed weak non-specific association in cellular environments attributed to solvation and entropic effects. These effects are expected to have broad implications for the in vivo functioning of biomolecules. This work is a first step towards physically realistic in silico whole-cell models that connect molecular with cellular biology.

  17. Astrophysical neutrino production diagnostics with the Glashow resonance

    NASA Astrophysics Data System (ADS)

    Biehl, Daniel; Fedynitch, Anatoli; Palladino, Andrea; Weiler, Tom J.; Winter, Walter

    2017-01-01

    We study the Glashow resonance bar nue + e- → W- → hadrons at 6.3 PeV as diagnostic of the production processes of ultra-high energy neutrinos. The focus lies on describing the physics of neutrino production from pion decay as accurate as possible by including the kinematics of weak decays and Monte Carlo simulations of pp and pγ interactions. We discuss optically thick (to photohadronic interactions) sources, sources of cosmic ray ``nuclei'' and muon damped sources. Even in the proposed upgrade IceCube-Gen2, a discrimination of scenarios such as pp versus pγ is extremely challenging under realistic assumptions. Nonetheless, the Glashow resonance can serve as a smoking gun signature of neutrino production from photohadronic (Aγ) interactions of heavier nuclei, as the expected Glashow event rate exceeds that of pp interactions. We finally quantify the exposures for which the non-observation of Glashow events exerts pressure on certain scenarios.

  18. Intramolecular symmetry-adapted perturbation theory with a single-determinant wavefunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastorczak, Ewa; Prlj, Antonio; Corminboeuf, Clémence, E-mail: clemence.corminboeuf@epfl.ch

    2015-12-14

    We introduce an intramolecular energy decomposition scheme for analyzing non-covalent interactions within molecules in the spirit of symmetry-adapted perturbation theory (SAPT). The proposed intra-SAPT approach is based upon the Chemical Hamiltonian of Mayer [Int. J. Quantum Chem. 23(2), 341–363 (1983)] and the recently introduced zeroth-order wavefunction [J. F. Gonthier and C. Corminboeuf, J. Chem. Phys. 140(15), 154107 (2014)]. The scheme decomposes the interaction energy between weakly bound fragments located within the same molecule into physically meaningful components, i.e., electrostatic-exchange, induction, and dispersion. Here, we discuss the key steps of the approach and demonstrate that a single-determinant wavefunction can already delivermore » a detailed and insightful description of a wide range of intramolecular non-covalent phenomena such as hydrogen bonds, dihydrogen contacts, and π − π stacking interactions. Intra-SAPT is also used to shed the light on competing intra- and intermolecular interactions.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biehl, Daniel; Fedynitch, Anatoli; Winter, Walter

    We study the Glashow resonance ν-bar {sub e} + e {sup −} → W {sup −} → hadrons at 6.3 PeV as diagnostic of the production processes of ultra-high energy neutrinos. The focus lies on describing the physics of neutrino production from pion decay as accurate as possible by including the kinematics of weak decays and Monte Carlo simulations of pp and pγ interactions. We discuss optically thick (to photohadronic interactions) sources, sources of cosmic ray ''nuclei'' and muon damped sources. Even in the proposed upgrade IceCube-Gen2, a discrimination of scenarios such as pp versus pγ is extremely challenging undermore » realistic assumptions. Nonetheless, the Glashow resonance can serve as a smoking gun signature of neutrino production from photohadronic (Aγ) interactions of heavier nuclei, as the expected Glashow event rate exceeds that of pp interactions. We finally quantify the exposures for which the non-observation of Glashow events exerts pressure on certain scenarios.« less

  20. Direct quantum process tomography via measuring sequential weak values of incompatible observables.

    PubMed

    Kim, Yosep; Kim, Yong-Su; Lee, Sang-Yun; Han, Sang-Wook; Moon, Sung; Kim, Yoon-Ho; Cho, Young-Wook

    2018-01-15

    The weak value concept has enabled fundamental studies of quantum measurement and, recently, found potential applications in quantum and classical metrology. However, most weak value experiments reported to date do not require quantum mechanical descriptions, as they only exploit the classical wave nature of the physical systems. In this work, we demonstrate measurement of the sequential weak value of two incompatible observables by making use of two-photon quantum interference so that the results can only be explained quantum physically. We then demonstrate that the sequential weak value measurement can be used to perform direct quantum process tomography of a qubit channel. Our work not only demonstrates the quantum nature of weak values but also presents potential new applications of weak values in analyzing quantum channels and operations.

  1. Analysis of the substrate influence on the ordering of epitaxial molecular layers: The special case of point-on-line coincidence

    NASA Astrophysics Data System (ADS)

    Mannsfeld, S. C.; Fritz, T.

    2004-02-01

    The physical structure of organic-inorganic heteroepitaxial thin films is usually governed by a fine balance between weak molecule-molecule interactions and a weakly laterally varying molecule-substrate interaction potential. Therefore, in order to investigate the energetics of such a layer system one has to consider large molecular domains. So far, layer potential calculations for large domains of organic thin films on crystalline substrates were difficult to perform concerning the computational effort which stems from the vast number of atoms which have to be included. Here, we present a technique which enables the calculation of the molecule-substrate interaction potential for large molecular domains by utilizing potential energy grid files. This technique allows the investigation of the substrate influence in systems prepared by organic molecular beam epitaxy (OMBE), like 3,4,9,10-perylenetetracarboxylicdianhydride on highly oriented pyrolytic graphite. For this system the so-called point-on-line coincidence was proposed, a growth mode which has been controversially discussed in literature. Furthermore, we are able to provide evidence for a general energetic advantage of such point-on-line coincident domain orientations over arbitrarily oriented domains which substantiates that energetically favorable lattice structures in OMBE systems are not restricted to commensurate unit cells or coincident super cells.

  2. Rogue events in the group velocity horizon.

    PubMed

    Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Mahnke, Christoph; Mitschke, Fedor; Steinmeyer, Günter

    2012-01-01

    The concept of rogue waves arises from a mysterious and potentially calamitous phenomenon of oceanic surfaces. There is mounting evidence that they are actually commonplace in a variety of different physical settings. A set of defining criteria has been advanced; this set is of great generality and therefore applicable to a wide class of systems. The question arises naturally whether there are generic mechanisms responsible for extreme events in different systems. Here we argue that under suitable circumstances nonlinear interaction between weak and strong waves results in intermittent giant waves with all the signatures of rogue waves. To obtain these circumstances only a few basic conditions must be met. Then reflection of waves at the so-called group-velocity horizon occurs. The connection between rogue waves and event horizons, seemingly unrelated physical phenomena, is identified as a feature common in many different physical systems.

  3. Unattractive, promiscuous and heavy drinkers: perceptions of women with tattoos.

    PubMed

    Swami, Viren; Furnham, Adrian

    2007-12-01

    This study examined social and physical perceptions of blonde and brunette women with different degrees of tattooing. Eighty-four female and 76 male undergraduates rated a series of 16 female line drawings that varied in 2 levels of hair colour and 8 levels of tattooing. Ratings were made for physical attractiveness and sexual promiscuity, as well as estimates of the number of alcohol units consumed on a typical night out. Results showed that tattooed women were rated as less physically attractive, more sexually promiscuous and heavier drinkers than untattooed women, with more negative ratings with increasing number of tattoos. There were also weak interactions between body art and hair colour, with blonde women in general rated more negatively than brunettes. Results are discussed in terms of stereotypes about women who have tattoos and the effects of such stereotypes on well-being.

  4. Edible oil structures at low and intermediate concentrations. I. Modeling, computer simulation, and predictions for X ray scattering

    NASA Astrophysics Data System (ADS)

    Pink, David A.; Quinn, Bonnie; Peyronel, Fernanda; Marangoni, Alejandro G.

    2013-12-01

    Triacylglycerols (TAGs) are biologically important molecules which form the recently discovered highly anisotropic crystalline nanoplatelets (CNPs) and, ultimately, the large-scale fat crystal networks in edible oils. Identifying the hierarchies of these networks and how they spontaneously self-assemble is important to understanding their functionality and oil binding capacity. We have modelled CNPs and studied how they aggregate under the assumption that all CNPs are present before aggregation begins and that their solubility in the liquid oil is very low. We represented CNPs as rigid planar arrays of spheres with diameter ≈50 nm and defined the interaction between spheres in terms of a Hamaker coefficient, A, and a binding energy, VB. We studied three cases: weak binding, |VB|/kBT ≪ 1, physically realistic binding, VB = Vd(R, Δ), so that |VB|/kBT ≈ 1, and Strong binding with |VB|/kBT ≫ 1. We divided the concentration of CNPs, ϕ, with 0≤ϕ= 10-2 (solid fat content) ≤1, into two regions: Low and intermediate concentrations with 0<ϕ<0.25 and high concentrations with 0.25 < ϕ and considered only the first case. We employed Monte Carlo computer simulation to model CNP aggregation and analyzed them using static structure functions, S(q). We found that strong binding cases formed aggregates with fractal dimension, D, 1.7≤D ≤1.8, in accord with diffusion limited cluster-cluster aggregation (DLCA) and weak binding formed aggregates with D =3, indicating a random distribution of CNPs. We found that models with physically realistic intermediate binding energies formed linear multilayer stacks of CNPs (TAGwoods) with fractal dimension D =1 for ϕ =0.06,0.13, and 0.22. TAGwood lengths were greater at lower ϕ than at higher ϕ, where some of the aggregates appeared as thick CNPs. We increased the spatial scale and modelled the TAGwoods as rigid linear arrays of spheres of diameter ≈500 nm, interacting via the attractive van der Waals interaction. We found that TAGwoods aggregated via DLCA into clusters with fractal dimension D =1.7-1.8. As the simulations were run further, TAGwoods relaxed their positions in order to maximize the attractive interaction making the process look like reaction limited cluster-cluster aggregation with the fractal dimension increasing to D =2.0-2.1. For higher concentrations of CNPs, many TAGwood clusters were formed and, because of their weak interactions, were distributed randomly with D =3.0. We summarize the hierarchy of structures and make predictions for X-ray scattering.

  5. Anomalous Ground State of the Electrons in Nano-confined Water

    DTIC Science & Technology

    2016-06-13

    confined water system, Nafion, is so different from that of bulk water that the weakly electrostatically interacting molecule model of water is clearly...assume that water is made up molecules weakly interacting(on the scale of the zero point bond energy~.2eV) electrostatically with its neighbors2-3. In an...not possible for a collection of molecules interacting weakly electrostatically . These changes in the spatial distribution of valence electrons in

  6. Young Brown Dwarfs and Giant Planets as Companions to Weak-Line T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Brandner, Wolfgang; Frink, Sabine; Kohler, Rainer; Kunkel, Michael

    Weak-line T Tauri stars, contrary to classical T Tauri stars, no longer possess massive circumstellar disks. In weak-line T Tauri stars, the circumstellar matter was either accreted onto the T Tauri star or has been redistributed. Disk instabilities in the outer disk might result in the formation of brown dwarfs and giant planets. Based on photometric and spectroscopic studies of ROSAT sources, we have selected an initial sample of 200 weak-line T Tauri stars in the Chamaeleon T association and the Scorpius-Centaurus OB association. In the course of follow-up observations, we identified visual and spectroscopic binary stars and excluded them from our final list, as the complex dynamics and gravitational interaction in binary systems might aggravate or even completely inhibit the formation of planets (depending on physical separation of the binary components and their mass ratio). The membership of individual stars to the associations was established from proper motion studies and radial velocity surveys. Our final sample consists of 70 single weak-line T Tauri stars. We have initiated a program to spatially resolve young brown dwarfs and young giant planets as companions to single weak-line T Tauri stars using adaptive optics at the ESO 3.6 m telescope and HST/NICMOS. In this poster we describe the observing strategy and present first results of our adaptive optics observations. An update on the program status can be found at http://www.astro.uiuc.edu/~brandner/text/bd/bd.html

  7. O Wave Interactions: Explosive Resonant Triads and Critical Layers.

    NASA Astrophysics Data System (ADS)

    Mahoney, Daniel J.

    This thesis considers the phenomenon of explosive resonant triads in weakly nonlinear, dispersive wave systems. These are nearly linear waves with slowly varying amplitudes which become unbounded in finite time. It is shown that such interactions are much stronger than previously thought. These waves can be thought of as a nonlinear instability, in the sense that a weakly nonlinear perturbation to some system grows to such magnitudes that the behavior of the system is governed by strongly nonlinear effects. This may occur for systems which are linearly or neutrally stable. This is contrasted with previous resolutions of this problem, which treated such perturbations as being large amplitude, nearly linear waves. Analytical and numerical evidence is presented to support these claims. These waves represent a potentially important effect in a variety of physical systems, most notably plasma physics. Attention here is turned to their occurrence in fluid mechanics. Here previous work is extended to include flow systems with continuously varying basic velocities and densities. Many of the problems encountered here will be found to be of a singular nature themselves, and the techniques for analyzing these difficulties will be developed. This will involve the concept of a critical layer in a fluid, a level at which a wave phase speed equals the unperturbed fluid velocity in the direction of propagation. Examples of such waves in this context will be presented. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  8. Water as a matrix for life

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2005-01-01

    Life is based on non-covalent interactions. They might be either specific (enzyme-substrate interactions, selective ion transport) or nonspecific (lipid-lipid and lipid-protein interactions needed for membrane integrity, fusion and division). Their strength needs to be properly tuned, and this is mediated by the solvent. If interactions are too weak, there might be undesired response to natural fluctuations of physical and chemical parameters. If they are too strong it could impede kinetics and energetics of cellular processes. Thus, the solvent must allow for balancing these interactions. Physical and chemical properties of solvent provide strong constraints for life. Water exhibits a remarkable trait that it promotes both solvophobic and solvophilic interactions. Solvophobic interactions; related to high dielectric constant of the solvent) are necessary for self-organization of matter whereas solvophilic interactions are needed to ensure solubility of polar species. Water offers a large temperature domain of stable liquid and the characteristics hydrophobic effects are a consequence of the temperature in sensitivity of essential properties of its liquid state. Water, however, is not the only liquid with these favorable properties. I will compare in detail properties of water and other pure liquids or their mixtures that have a high dielectric constant and simultaneously support self-organization. I will also discuss properties of water that are unfavorable to life (e.g. its chemical activity against polymerization reactions) and close with summarizing what are alternatives to water as a matrix of life in space.

  9. n→π* Non-Covalent Interaction is Weak but Strong in Action

    NASA Astrophysics Data System (ADS)

    Singh, Santosh Kumar; Das, Aloke

    2017-06-01

    n→π* interaction is a newly discovered non-covalent interaction which involves delocalization of lone pair (n) electrons of an electronegative atom into π* orbital of a carbonyl group or an aromatic ring. It is widely observed in materials, biomolecules (protein, DNA, RNA), amino acids, neurotransmitter and drugs. However, due to its weak strength and counterintuitive nature its existence is debatable. Such weak interactions are often masked by solvent effects in condense phase or physiological conditions thereby, making it difficult to prove the presence of such weak interactions. Therefore, we have used isolated gas phase spectroscopy in combination with quantum chemical calculations to study n→π* interaction in several molecules where, our molecular systems are free from solvent effects or any external forces. Herein I will be discussing two of the molecular systems (phenyl formate and salicin) where, we have observed the significance of n→π* interaction in determining the conformational specificity of the molecules. We have proved the existence of n→π* interaction for the first time through IR spectroscopy by probing the carbonyl stretching frequency of phenyl formate. Our study is further pursued on a drug named salicin where, we have observed that its conformational preferences is ruled by n→π* interaction even though a strong hydrogen bonding interaction is present in the molecule. Our results show that n→π* interaction, in spite of its weak strength, should not be overlooked as it existence can play an important role in governing the structures of molecules like other strong non-covalent interactions do.

  10. Using polarized positrons to probe physics beyond the standard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furletova, Yulia; Mantry, Sonny

    A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. Here, a comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C 3u -more » C 3d and would complement the proposed plan for a precision extraction of the combination 2C 2u - C d at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e + → τ + transitions in a manner that is independent and complementary to the proposed e - → τ - search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e + + e - → A' + γ.« less

  11. Using polarized positrons to probe physics beyond the standard model

    DOE PAGES

    Furletova, Yulia; Mantry, Sonny

    2018-05-25

    A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. Here, a comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C 3u -more » C 3d and would complement the proposed plan for a precision extraction of the combination 2C 2u - C d at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e + → τ + transitions in a manner that is independent and complementary to the proposed e - → τ - search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e + + e - → A' + γ.« less

  12. Using polarized positrons to probe physics beyond the standard model

    NASA Astrophysics Data System (ADS)

    Furletova, Yulia; Mantry, Sonny

    2018-05-01

    A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. A comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C3u - C3d and would complement the proposed plan for a precision extraction of the combination 2C2u - Cd at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e+ → τ+ transitions in a manner that is independent and complementary to the proposed e- → τ- search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e+ + e- → A' + γ.

  13. Theoretical studies of association and dissociation of Feshbach molecules in a microgravity environment

    NASA Astrophysics Data System (ADS)

    D'Incao, Jose; Williams, Jason

    2017-04-01

    NASA's Cold Atom Laboratory (CAL) is a multi-user facility scheduled for launch to the ISS in 2017. Our flight experiments with CAL will characterize and mitigate leading-order systematics in dual-atomic-species atom interferometers in microgravity relevant for future fundamental physics missions in space. As part of the initial state preparation for interferometry studies, here, we study the RF association and dissociation of weakly bound heteronuclear Feshbach molecules for expected parameters relevant for the microgravity environment of CAL. This includes temperatures on the pico-Kelvin range and atomic densities as low as 108/cm3. We show that under such conditions, thermal and loss effects can be greatly suppressed, resulting in high efficiency in both association and dissociation of extremely weakly bound Feshbach molecules and allowing for high accuracy determination coherent properties of such processes. In addition we study the possibility to implement delta-kick cooling techniques for weakly bound heteronuclear molecules and explore numerically other methods for molecular association and dissociation including the effects of three-body interactions. This research is supported by the National Aeronautics and Space Administration.

  14. Intercomparison Project on Parameterizations of Large-Scale Dynamics for Simulations of Tropical Convection

    NASA Astrophysics Data System (ADS)

    Sobel, A. H.; Wang, S.; Bellon, G.; Sessions, S. L.; Woolnough, S.

    2013-12-01

    Parameterizations of large-scale dynamics have been developed in the past decade for studying the interaction between tropical convection and large-scale dynamics, based on our physical understanding of the tropical atmosphere. A principal advantage of these methods is that they offer a pathway to attack the key question of what controls large-scale variations of tropical deep convection. These methods have been used with both single column models (SCMs) and cloud-resolving models (CRMs) to study the interaction of deep convection with several kinds of environmental forcings. While much has been learned from these efforts, different groups' efforts are somewhat hard to compare. Different models, different versions of the large-scale parameterization methods, and experimental designs that differ in other ways are used. It is not obvious which choices are consequential to the scientific conclusions drawn and which are not. The methods have matured to the point that there is value in an intercomparison project. In this context, the Global Atmospheric Systems Study - Weak Temperature Gradient (GASS-WTG) project was proposed at the Pan-GASS meeting in September 2012. The weak temperature gradient approximation is one method to parameterize large-scale dynamics, and is used in the project name for historical reasons and simplicity, but another method, the damped gravity wave (DGW) method, will also be used in the project. The goal of the GASS-WTG project is to develop community understanding of the parameterization methods currently in use. Their strengths, weaknesses, and functionality in models with different physics and numerics will be explored in detail, and their utility to improve our understanding of tropical weather and climate phenomena will be further evaluated. This presentation will introduce the intercomparison project, including background, goals, and overview of the proposed experimental design. Interested groups will be invited to join (it will not be too late), and preliminary results will be presented.

  15. Coherent manipulation of spontaneous emission spectra in coupled semiconductor quantum well structures.

    PubMed

    Chen, Aixi

    2014-11-03

    In triple coupled semiconductor quantum well structures (SQWs) interacting with a coherent driving filed, a coherent coupling field and a weak probe field, spontaneous emission spectra are investigated. Our studies show emission spectra can easily be manipulated through changing the intensity of the driving and coupling field, detuning of the driving field. Some interesting physical phenomena such as spectral-line enhancement/suppression, spectral-line narrowing and spontaneous emission quenching may be obtained in our system. The theoretical studies of spontaneous emission spectra in SQWS have potential application in high-precision spectroscopy. Our studies are based on the real physical system [Appl. Phys. Lett.86(20), 201112 (2005)], and this scheme might be realizable with presently available techniques.

  16. Using an innovative multiple regression procedure in a cancer population (Part 1): detecting and probing relationships of common interacting symptoms (pain, fatigue/weakness, sleep problems) as a strategy to discover influential symptom pairs and clusters.

    PubMed

    Francoeur, Richard B

    2015-01-01

    The majority of patients with advanced cancer experience symptom pairs or clusters among pain, fatigue, and insomnia. Improved methods are needed to detect and interpret interactions among symptoms or diesease markers to reveal influential pairs or clusters. In prior work, I developed and validated sequential residual centering (SRC), a method that improves the sensitivity of multiple regression to detect interactions among predictors, by conditioning for multicollinearity (shared variation) among interactions and component predictors. Using a hypothetical three-way interaction among pain, fatigue, and sleep to predict depressive affect, I derive and explain SRC multiple regression. Subsequently, I estimate raw and SRC multiple regressions using real data for these symptoms from 268 palliative radiation outpatients. Unlike raw regression, SRC reveals that the three-way interaction (pain × fatigue/weakness × sleep problems) is statistically significant. In follow-up analyses, the relationship between pain and depressive affect is aggravated (magnified) within two partial ranges: 1) complete-to-some control over fatigue/weakness when there is complete control over sleep problems (ie, a subset of the pain-fatigue/weakness symptom pair), and 2) no control over fatigue/weakness when there is some-to-no control over sleep problems (ie, a subset of the pain-fatigue/weakness-sleep problems symptom cluster). Otherwise, the relationship weakens (buffering) as control over fatigue/weakness or sleep problems diminishes. By reducing the standard error, SRC unmasks a three-way interaction comprising a symptom pair and cluster. Low-to-moderate levels of the moderator variable for fatigue/weakness magnify the relationship between pain and depressive affect. However, when the comoderator variable for sleep problems accompanies fatigue/weakness, only frequent or unrelenting levels of both symptoms magnify the relationship. These findings suggest that a countervailing mechanism involving depressive affect could account for the effectiveness of a cognitive behavioral intervention to reduce the severity of a pain, fatigue, and sleep disturbance cluster in a previous randomized trial.

  17. Development of a direct experimental test for any violation of the equivalence principle by the weak interaction

    NASA Technical Reports Server (NTRS)

    Parker, P. D. M.

    1981-01-01

    Violation of the equivalence principle by the weak interaction is tested. Any variation of the weak interaction coupling constant with gravitational potential, i.e., a spatial variation of the fundamental constants is investigated. The level of sensitivity required for such a measurement is estimated on the basis of the size of a change in the gravitational potential which is accessible. The alpha particle spectrum is analyzed, and the counting rate was improved by a factor of approximately 100.

  18. Cosmology and the weak interaction

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1989-01-01

    The weak interaction plays a critical role in modern Big Bang cosmology. Two of its most publicized comological connections are emphasized: big bang nucleosynthesis and dark matter. The first of these is connected to the cosmological prediction of neutrine flavors, N(sub nu) is approximately 3 which in now being confirmed. The second is interrelated to the whole problem of galacty and structure formation in the universe. The role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure is demonstrated.

  19. Supramolecular features of 2-(chlorophenyl)-3-[(chlorobenzylidene)-amino]-2,3-dihydroquinazolin-4(1H)-ones: A combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Mandal, Arkalekha; Patel, Bhisma K.

    2018-03-01

    The molecular structures of two isomeric 2-(chlorophenyl)-3-[(chlorobenzylidene)-amino] substituted 2,3-dihydroquinazolin-4(1H)-ones have been determined via single crystal XRD. Both isomers contain chloro substitutions on each of the phenyl rings and as a result a broad spectrum of halogen mediated weak interactions are viable in their crystal structures. The crystal packing of these compounds is stabilized by strong N-H⋯O hydrogen bond and various weak, non-classical hydrogen bonds acting synergistically. Both the molecules contain a chiral center and the weak interactions observed in them are either chiral self-discriminatory or chiral self-recognizing in nature. The weak interactions and spectral features of the compounds have been studied through experimental as well as computational methods including DFT, MEP, NBO and Hiresfeld surface analyses. In addition, the effect of different weak interactions to dictate either chiral self-recognition or self-discrimination in crystal packing has been elucidated.

  20. Weak-interaction rates in stellar conditions

    NASA Astrophysics Data System (ADS)

    Sarriguren, Pedro

    2018-05-01

    Weak-interaction rates, including β-decay and electron captures, are studied in several mass regions at various densities and temperatures of astrophysical interest. In particular, we study odd-A nuclei in the pf-shell region, which are involved in presupernova formations. Weak rates are relevant to understand the late stages of the stellar evolution, as well as the nucleosynthesis of heavy nuclei. The nuclear structure involved in the weak processes is studied within a quasiparticle proton-neutron random-phase approximation with residual interactions in both particle-hole and particle-particle channels on top of a deformed Skyrme Hartree-Fock mean field with pairing correlations. First, the energy distributions of the Gamow-Teller strength are discussed and compared with the available experimental information, measured under terrestrial conditions from charge-exchange reactions. Then, the sensitivity of the weak-interaction rates to both astrophysical densities and temperatures is studied. Special attention is paid to the relative contribution to these rates of thermally populated excited states in the decaying nucleus and to the electron captures from the degenerate electron plasma.

  1. Measurement of CKM-angle γ with Charmed B 0 Meson Decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baak, Max Arjen

    2007-02-05

    This thesis reports measurements of the time-dependent CP asymmetries in fully reconstructed B 0 → (D (*)∓π ± and B 0 → D ∓ ρ ± ) decays in approximately 232 million Y(4S) → Bmore » $$\\bar{B}$$ events, collected with the BABAR detector at the PEP-II asymmetric-energy B factory at the Stanford Linear Accelerator Center in California, as published in Ref. [14]. The phenomenon of CP violation allows one to distinguish between matter and antimatter, and, as such, is one of the essential ingredients needed to explain the apparent abundance of matter over antimatter in the universe. The Standard Model describes the observed elementary particles in terms of three generations of quarks and leptons, as well as the weak, electromagnetic, and strong interactions between them. In the Standard Model, CP violation is incorporated in the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which describes the weak interactions between the quarks. The weak interactions between quarks are described by coupling constants that are functions of three real parameters and one irreducible complex phase. The magnitude of all CP violating effects in the Standard Model is related to this complex phase. The measurement of the CP violating phase of the CKM matrix is an important part of the present scientific program in particle physics. Violation of the CP symmetry manifests itself as a non-zero area of the Unitarity Triangle. The Unitarity Triangle needs to be overconstrained by experimental measurements in order to demonstrate that the CKM mechanism is the correct explanation of this phenomenon. No stringent measurement of the CKM-angle γ is yet available.« less

  2. ["Workpeople in general are healthier [...] than the masters". Experience of illness and masculinity in autobiographies of workpeople].

    PubMed

    Schmidt, Jürgen

    2005-01-01

    Workers' autobiographies of the late 19th and early 20th centuries depict, at length, diseases both in terms of physical description and impact, and in terms of psychological effects. Drastic physical defects and their consequences are explicitly described. Many writers appear weak against the primary presumption of the strong, male body of the workers. Mourning and dejection over the authors' own weaknesses and the illnesses of others (relatives and colleagues) are prevalent. However, the masculinity of the first-person narrator, in principle, is not eclipsed or overshadowed by doubt because of disease and weakened physical condition. Diseases are metaphors for bad social conditions which lead to weakness, whilst the authors succeeded in coping with their weaknesses by compensating with other abilities and talents.

  3. Sex difference in attractiveness perceptions of strong and weak male walkers.

    PubMed

    Fink, Bernhard; André, Selina; Mines, Johanna S; Weege, Bettina; Shackelford, Todd K; Butovskaya, Marina L

    2016-11-01

    Men and women accurately assess male physical strength from facial and body morphology cues. Women's assessments of male facial attractiveness, masculinity, and dominance correlate positively with male physical strength. A positive relationship also has been reported between physical strength and attractiveness of men's dance movements. Here, we investigate men's and women's attractiveness, dominance, and strength assessments from brief samples of male gait. Handgrip strength (HGS) was measured in 70 heterosexual men and their gait was motion-captured. Men and women judged 20 precategorized strong (high HGS) and weak (low HGS) walkers on attractiveness, dominance, and strength, and provided a measure of their own HGS. Both men and women judged strong walkers higher on dominance and strength than weak walkers. Women but not men judged strong walkers more attractive than weak walkers. These effects were independent of observers' physical strength. Male physical strength is conveyed not only through facial and body morphology, but also through body movements. We discuss our findings with reference to studies suggesting that physical strength provides information about male quality in contexts of inter- and intrasexual selection. Am. J. Hum. Biol. 28:913-917, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Effect of intermolecular dipole-dipole interactions on interfacial supramolecular structures of C3-symmetric hexa-peri-hexabenzocoronene derivatives.

    PubMed

    Mu, Zhongcheng; Shao, Qi; Ye, Jun; Zeng, Zebing; Zhao, Yang; Hng, Huey Hoon; Boey, Freddy Yin Chiang; Wu, Jishan; Chen, Xiaodong

    2011-02-15

    Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.

  5. A Dark Matter Search with MALBEK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giovanetti, G. K.; Abgrall, N.; Aguayo, Estanislao

    2015-06-01

    The Majorana Demonstrator is an array of natural and enriched high purity germanium detectors that will search for the neutrinoless double-beta decay of 76Ge and perform a search for weakly interacting massive particles (WIMPs) with masses below 10 GeV. As part of the Majorana research and development efforts, we have deployed a modified, low-background broad energy germanium detector at the Kimballton Underground Research Facility. With its sub-keV energy threshold, this detector is potentially sensitive to non-Standard Model physics, including interactions with WIMPs. We discuss the backgrounds present in the WIMP region of interest and present results from a WIMP searchmore » with 221.49 live days of data from this detector.« less

  6. Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Han, Nannan; Su, Yan; Zhang, Junfeng; Zhao, Jijun

    2017-02-01

    Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interactions between GR and several MOs (including Cu2O, NiO). The Schottky barrier height (SBH) in these metal/semiconductor heterostructures are computed using the macroscopically averaged electrostatic potential method, and the role of interfacial dipole is discussed. The calculated SBHs below 1 eV suggest low contact resistance; thus these GR/MO composites are favorable anode materials for better lithium ion batteries.

  7. Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations.

    PubMed

    Cheng, Kai; Han, Nannan; Su, Yan; Zhang, Junfeng; Zhao, Jijun

    2017-02-06

    Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interactions between GR and several MOs (including Cu2O, NiO). The Schottky barrier height (SBH) in these metal/semiconductor heterostructures are computed using the macroscopically averaged electrostatic potential method, and the role of interfacial dipole is discussed. The calculated SBHs below 1 eV suggest low contact resistance; thus these GR/MO composites are favorable anode materials for better lithium ion batteries.

  8. Quantum algorithms for quantum field theories.

    PubMed

    Jordan, Stephen P; Lee, Keith S M; Preskill, John

    2012-06-01

    Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.

  9. Dark Photon Searches at BESIII

    NASA Astrophysics Data System (ADS)

    Wang, Dayong

    Many models beyond the Standard Model, motivated by the recent astrophysical anomalies, predict a new type of weak-interacting degrees of freedom. Typical models include the possibility of the low-mass dark gauge bosons of a few GeV and thus making them accessible at the BESIII experiment running at the tau-charm region. The BESIII has recently searched such dark bosons in several decay modes using the high statistics data set collected at charmonium resonaces. This talk will summarize the recent BESIII results of these dark photon searches and related new physics studies.

  10. Dark matter and weak signals of quantum spacetime

    NASA Astrophysics Data System (ADS)

    Doplicher, Sergio; Fredenhagen, Klaus; Morsella, Gerardo; Pinamonti, Nicola

    2017-03-01

    In physically motivated models of quantum spacetime, a U (1 ) gauge theory turns into a U (∞ ) gauge theory; hence, free classical electrodynamics is no longer free and neutral fields may have electromagnetic interactions. We discuss the last point for scalar fields, as a way to possibly describe dark matter; we have in mind the gravitational collapse of binary systems or future applications to self-gravitating Bose-Einstein condensates as possible sources of evidence of quantum gravitational phenomena. The effects considered so far, however, seem too faint to be detectable at present.

  11. Primakoff Prize Talk: The Search for Dark Sectors

    NASA Astrophysics Data System (ADS)

    Essig, Rouven

    2015-04-01

    Dark sectors, consisting of new, light, weakly-coupled particles that do not interact with the known strong, weak, or electromagnetic forces, are a particularly interesting possibility for new physics. Nature may contain numerous dark sectors, each with their own beautiful structure, distinct particles, and forces. Examples of dark sector particles include dark photons, axions, axion-like particles, and dark matter. In many cases, the exploration of dark sectors can proceed with existing facilities and comparatively modest experiments. This talk summarizes the physics motivation for dark sectors and the exciting opportunities for experimental exploration. Particular emphasis will be given to the search for dark photons, the mediators of a broken dark U(1) gauge theory that kinetically mixes with the Standard Model hypercharge, with masses in the MeV-to-GeV range. Experimental searches include low-energy e+e- colliders, new and old high-intensity fixed-target experiments, and high-energy colliders. The talk will highlight the APEX and HPS experiments at Jefferson Lab, which are pioneering, low-cost experiments to search for dark photons in fixed target electroproduction. Over the next few years, they have the potential for a transformative discovery.

  12. The MOLLER Experiment: ``An Ultra-precise Measurement of the Weak Charge of the Electron using moller Scattering''

    NASA Astrophysics Data System (ADS)

    Beminiwattha, Rakitha; Moller Collaboration

    2017-09-01

    Parity Violating Electron Scattering (PVES) is an extremely successful precision frontier tool that has been used for testing the Standard Model (SM) and understanding nucleon structure. Several generations of highly successful PVES programs at SLAC, MIT-Bates, MAMI-Mainz, and Jefferson Lab have contributed to the understanding of nucleon structure and testing the SM. But missing phenomena like matter-antimatter asymmetry, neutrino flavor oscillations, and dark matter and energy suggest that the SM is only a `low energy' effective theory. The MOLLER experiment at Jefferson Lab will measure the weak charge of the electron, QWe = 1 - 4sin2θW , with a precision of 2.4 % by measuring the parity violating asymmetry in electron-electron () scattering and will be sensitive to subtle but measurable deviations from precisely calculable predictions from the SM. The MOLLER experiment will provide the best contact interaction search for leptons at low OR high energy makes it a probe of physics beyond the Standard Model with sensitivities to mass-scales of new PV physics up to 7.5 TeV. Overview of the experiment and recent pre-R&D progress will be reported.

  13. Phase Transition of a Dynamical System with a Bi-Directional, Instantaneous Coupling to a Virtual System

    NASA Astrophysics Data System (ADS)

    Gintautas, Vadas; Hubler, Alfred

    2006-03-01

    As worldwide computer resources increase in power and decrease in cost, real-time simulations of physical systems are becoming increasingly prevalent, from laboratory models to stock market projections and entire ``virtual worlds'' in computer games. Often, these systems are meticulously designed to match real-world systems as closely as possible. We study the limiting behavior of a virtual horizontally driven pendulum coupled to its real-world counterpart, where the interaction occurs on a time scale that is much shorter than the time scale of the dynamical system. We find that if the physical parameters of the virtual system match those of the real system within a certain tolerance, there is a qualitative change in the behavior of the two-pendulum system as the strength of the coupling is increased. Applications include a new method to measure the physical parameters of a real system and the use of resonance spectroscopy to refine a computer model. As virtual systems better approximate real ones, even very weak interactions may produce unexpected and dramatic behavior. The research is supported by the National Science Foundation Grant No. NSF PHY 01-40179, NSF DMS 03-25939 ITR, and NSF DGE 03-38215.

  14. Rogue events in the group velocity horizon

    PubMed Central

    Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Mahnke, Christoph; Mitschke, Fedor; Steinmeyer, Günter

    2012-01-01

    The concept of rogue waves arises from a mysterious and potentially calamitous phenomenon of oceanic surfaces. There is mounting evidence that they are actually commonplace in a variety of different physical settings. A set of defining criteria has been advanced; this set is of great generality and therefore applicable to a wide class of systems. The question arises naturally whether there are generic mechanisms responsible for extreme events in different systems. Here we argue that under suitable circumstances nonlinear interaction between weak and strong waves results in intermittent giant waves with all the signatures of rogue waves. To obtain these circumstances only a few basic conditions must be met. Then reflection of waves at the so-called group-velocity horizon occurs. The connection between rogue waves and event horizons, seemingly unrelated physical phenomena, is identified as a feature common in many different physical systems. PMID:23152941

  15. The problem of the Grand Unification Theory

    NASA Astrophysics Data System (ADS)

    Treder, H.-J.

    The evolution and fundamental questions of physical theories unifying the gravitational, electromagnetic, and quantum-mechanical interactions are explored, taking Pauli's aphorism as a motto: 'Let no man join what God has cast asunder.' The contributions of Faraday and Riemann, Lorentz, Einstein, and others are discussed, and the criterion of Pauli is applied to Grand Unification Theories (GUT) in general and to those seeking to link gravitation and electromagnetism in particular. Formal mathematical symmetry principles must be shown to have real physical relevance by predicting measurable phenomena not explainable without a GUT; these phenomena must be macroscopic because gravitational effects are to weak to be measured on the microscopic level. It is shown that empirical and theoretical studies of 'gravomagnetism', 'gravoelectricity', or possible links between gravoelectrity and the cosmic baryon assymmetry eventually lead back to basic questions which appear philosophical or purely mathematical but actually challenge physics to seek verifiable answers.

  16. Modeling virus capsids and their protein binding -- the search for weak regions within the HIV capsid

    NASA Astrophysics Data System (ADS)

    Sankey, Otto; Benson, Daryn

    2010-10-01

    Viruses remain a threat to the health of humans worldwide with 33 million infected with AIDS. Viruses are ubiquitous infecting animals, plants, and bacteria. Each virus infects in its own unique manner making the problem seem intractable. However, some general physical steps apply to many viruses and the application of basic physical modeling can potentially have great impact. The aim of this theoretical study is to investigate the stability of the HIV viral capsid (protein shell). The structural shell can be compromised by physical probes such as pulsed laser light. But what are the weakest regions of the capsid so that we can begin to understand vulnerabilities of these deadly materials? The atomic structure of HIV capsids is not precisely known and we begin by describing our work to model the capsid structure. Next we describe a course grained model to investigate protein interactions within the capsid.

  17. Unexpected weak interaction

    NASA Astrophysics Data System (ADS)

    2013-08-01

    Stéphane Coen and Miro Erkintalo from the University of Auckland in New Zealand talk to Nature Photonics about their surprising findings regarding a weak long-range interaction they serendipitously stumbled upon while researching temporal cavity solitons.

  18. A novel microfluidics-based method for probing weak protein-protein interactions.

    PubMed

    Tan, Darren Cherng-wen; Wijaya, I Putu Mahendra; Andreasson-Ochsner, Mirjam; Vasina, Elena Nikolaevna; Nallani, Madhavan; Hunziker, Walter; Sinner, Eva-Kathrin

    2012-08-07

    We report the use of a novel microfluidics-based method to detect weak protein-protein interactions between membrane proteins. The tight junction protein, claudin-2, synthesised in vitro using a cell-free expression system in the presence of polymer vesicles as membrane scaffolds, was used as a model membrane protein. Individual claudin-2 molecules interact weakly, although the cumulative effect of these interactions is significant. This effect results in a transient decrease of average vesicle dispersivity and reduction in transport speed of claudin-2-functionalised vesicles. Polymer vesicles functionalised with claudin-2 were perfused through a microfluidic channel and the time taken to traverse a defined distance within the channel was measured. Functionalised vesicles took 1.19 to 1.69 times longer to traverse this distance than unfunctionalised ones. Coating the channel walls with protein A and incubating the vesicles with anti-claudin-2 antibodies prior to perfusion resulted in the functionalised vesicles taking 1.75 to 2.5 times longer to traverse this distance compared to the controls. The data show that our system is able to detect weak as well as strong protein-protein interactions. This system offers researchers a portable, easily operated and customizable platform for the study of weak protein-protein interactions, particularly between membrane proteins.

  19. Correlation measurements in nuclear {beta}-decay using traps and polarized low energy beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naviliat-Cuncic, Oscar

    2013-05-06

    Precision measurements in nuclear {beta}-decay provide sensitive means to test discrete symmetries in the weak interaction and to determine some of the fundamental constants in semi-leptonic decays, like the coupling of the lightest quarks to charged weak bosons. The main motivation of such measurements is to find deviations from Standard Model predictions as possible indications of new physics. In this contribution I will focus on two topics related to precision measurements in nuclear {beta}-decay: i) the determination of the V{sub ud} element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix from nuclear mirror transitions and ii) the search for exotic scalar ormore » tensor contributions from {beta}{nu} angular correlations. The purpose is to underline the role being played by experimental techniques based on the confinement of radioactive species with atom and ion traps as well as the plans to use low energy polarized beams.« less

  20. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach

    NASA Astrophysics Data System (ADS)

    Xu, Dazhi; Cao, Jianshu

    2016-08-01

    The concept of polaron, emerged from condense matter physics, describes the dynamical interaction of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynamics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.

  1. Bell's theorem, the measurement problem, Newton's self-gravitation and its connections to violations of the discrete symmetries C, P, T

    NASA Astrophysics Data System (ADS)

    Hiesmayr, Beatrix C.

    2015-07-01

    About 50 years ago John St. Bell published his famous Bell theorem that initiated a new field in physics. This contribution discusses how discrete symmetries relate to the big open questions of quantum mechanics, in particular: (i) how correlations stronger than those predicted by theories sharing randomness (Bell's theorem) relate to the violation of the CP symmetry and the P symmetry; and its relation to the security of quantum cryptography, (ii) how the measurement problem (“why do we observe no tables in superposition?”) can be polled in weakly decaying systems, (iii) how strongly and weakly interacting quantum systems are affected by Newton's self gravitation. These presented preliminary results show that the meson-antimeson systems and the hyperon- antihyperon systems are a unique laboratory to tackle deep fundamental questions and to contribute to the understand what impact the violation of discrete symmetries has.

  2. Rheological behavior of mammalian cells.

    PubMed

    Stamenović, D

    2008-11-01

    Rheological properties of living cells determine how cells interact with their mechanical microenvironment and influence their physiological functions. Numerous experimental studies have show that mechanical contractile stress borne by the cytoskeleton and weak power-law viscoelasticity are governing principles of cell rheology, and that the controlling physics is at the level of integrative cytoskeletal lattice properties. Based on these observations, two concepts have emerged as leading models of cytoskeletal mechanics. One is the tensegrity model, which explains the role of the contractile stress in cytoskeletal mechanics, and the other is the soft glass rheology model, which explains the weak power-law viscoelasticity of cells. While these two models are conceptually disparate, the phenomena that they describe are often closely associated in living cells for reasons that are largely unknown. In this review, we discuss current understanding of cell rheology by emphasizing the underlying biophysical mechanism and critically evaluating the existing rheological models.

  3. Interacting dark sector and precision cosmology

    NASA Astrophysics Data System (ADS)

    Buen-Abad, Manuel A.; Schmaltz, Martin; Lesgourgues, Julien; Brinckmann, Thejs

    2018-01-01

    We consider a recently proposed model in which dark matter interacts with a thermal background of dark radiation. Dark radiation consists of relativistic degrees of freedom which allow larger values of the expansion rate of the universe today to be consistent with CMB data (H0-problem). Scattering between dark matter and radiation suppresses the matter power spectrum at small scales and can explain the apparent discrepancies between ΛCDM predictions of the matter power spectrum and direct measurements of Large Scale Structure LSS (σ8-problem). We go beyond previous work in two ways: 1. we enlarge the parameter space of our previous model and allow for an arbitrary fraction of the dark matter to be interacting and 2. we update the data sets used in our fits, most importantly we include LSS data with full k-dependence to explore the sensitivity of current data to the shape of the matter power spectrum. We find that LSS data prefer models with overall suppressed matter clustering due to dark matter - dark radiation interactions over ΛCDM at 3–4 σ. However recent weak lensing measurements of the power spectrum are not yet precise enough to clearly distinguish two limits of the model with different predicted shapes for the linear matter power spectrum. In two appendices we give a derivation of the coupled dark matter and dark radiation perturbation equations from the Boltzmann equation in order to clarify a confusion in the recent literature, and we derive analytic approximations to the solutions of the perturbation equations in the two physically interesting limits of all dark matter weakly interacting or a small fraction of dark matter strongly interacting.

  4. Content Analysis of Standardized-Patients' Descriptive Feedback on Student Performance on the CPX.

    PubMed

    Lee, Young Hee; Lee, Young-Mee; Kim, Byung Soo

    2010-12-01

    The goal of this study was to explore what kind of additional information is provided by the descriptive comments other than the rating scales, on the physician-patient interaction (PPI) in the clinical performance examination (CPX) and its feedback role in identifying students' strengths and weaknesses in communication skills. The data were collected from 18 medical schools in Seoul and Gyeonggi region, which participated in the CPX for fourth-year medical students in 2006 and 2007. In total 12,650 examination cases in 2006 and 12,814 cases in 2007 were analyzed. Descriptive comments from the standardized patients (SPs) were analyzed by content analysis, which includes a 4-step process: coding, conceptualizing, categorizing and explanation. Ten categories (41 concepts) for 'strength' and 11 for 'weakness' (40 concepts) in the PPI were extracted. Among them, 10 categories were the same in both strength and weakness: providing adequate interview atmosphere, attentive listening, providing emotional support, non-verbal behaviors, professional attitude, questioning, explanation, reaching agreement, counseling & education and conducting adequate physical examination. For the 'structured and organized interview', only weakness was described. In 'providing emotional support' and 'adequate interview atmosphere', comments on strengths were more frequently mentioned than weaknesses. However, communication skills that were related to non-verbal behaviors were more frequently considered weaknesses rather than strengths. The numbers and content of the SP's comments on students' strengths and weaknesses in the PPI varied depending on the case specificities. The results suggest that the SPs' descriptive comments on student' performance on the CPX can provide additional information versus structured quantitative assessment tools such as performance checklists and rating scales. In particular, this information can be used as valuable feedback to identify the advantages and dicadvantages of the PPI and to enhance students' communication skills.

  5. Fundamental physics issues of multilevel logic in developing a parallel processor.

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Anirban; Miki, Kazushi

    2007-06-01

    In the last century, On and Off physical switches, were equated with two decisions 0 and 1 to express every information in terms of binary digits and physically realize it in terms of switches connected in a circuit. Apart from memory-density increase significantly, more possible choices in particular space enables pattern-logic a reality, and manipulation of pattern would allow controlling logic, generating a new kind of processor. Neumann's computer is based on sequential logic, processing bits one by one. But as pattern-logic is generated on a surface, viewing whole pattern at a time is a truly parallel processing. Following Neumann's and Shannons fundamental thermodynamical approaches we have built compatible model based on series of single molecule based multibit logic systems of 4-12 bits in an UHV-STM. On their monolayer multilevel communication and pattern formation is experimentally verified. Furthermore, the developed intelligent monolayer is trained by Artificial Neural Network. Therefore fundamental weak interactions for the building of truly parallel processor are explored here physically and theoretically.

  6. Lectures on Dark Matter Physics

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela

    Rotation curve measurements from the 1970s provided the first strong indication that a significant fraction of matter in the Universe is non-baryonic. In the intervening years, a tremendous amount of progress has been made on both the theoretical and experimental fronts in the search for this missing matter, which we now know constitutes nearly 85% of the Universe's matter density. These series of lectures provide an introduction to the basics of dark matter physics. They are geared for the advanced undergraduate or graduate student interested in pursuing research in high-energy physics. The primary goal is to build an understanding of how observations constrain the assumptions that can be made about the astro- and particle physics properties of dark matter. The lectures begin by delineating the basic assumptions that can be inferred about dark matter from rotation curves. A detailed discussion of thermal dark matter follows, motivating Weakly Interacting Massive Particles, as well as lighter-mass alternatives. As an application of these concepts, the phenomenology of direct and indirect detection experiments is discussed in detail.

  7. Perturbations to trophic interactions and the stability of complex food webs

    PubMed Central

    O'Gorman, Eoin J.; Emmerson, Mark C.

    2009-01-01

    The pattern of predator–prey interactions is thought to be a key determinant of ecosystem processes and stability. Complex ecological networks are characterized by distributions of interaction strengths that are highly skewed, with many weak and few strong interactors present. Theory suggests that this pattern promotes stability as weak interactors dampen the destabilizing potential of strong interactors. Here, we present an experimental test of this hypothesis and provide empirical evidence that the loss of weak interactors can destabilize communities in nature. We ranked 10 marine consumer species by the strength of their trophic interactions. We removed the strongest and weakest of these interactors from experimental food webs containing >100 species. Extinction of strong interactors produced a dramatic trophic cascade and reduced the temporal stability of key ecosystem process rates, community diversity and resistance to changes in community composition. Loss of weak interactors also proved damaging for our experimental ecosystems, leading to reductions in the temporal and spatial stability of ecosystem process rates, community diversity, and resistance. These results highlight the importance of conserving species to maintain the stabilizing pattern of trophic interactions in nature, even if they are perceived to have weak effects in the system. PMID:19666606

  8. Modified silicon carbide whiskers

    DOEpatents

    Tiegs, Terry N.; Lindemer, Terrence B.

    1991-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  9. Modified silicon carbide whiskers

    DOEpatents

    Tiegs, T.N.; Lindemer, T.B.

    1991-05-21

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orozco, Luis A

    This is a report of the construction of a Francium Trapping Facility (FTF) at the Isotope Separator and Accelerator (ISAC) of TRIUMF in Vancouver, Canada, where the Francium Parity Non Conservation (FrPNC) international collaboration has its home. This facility will be used to study fundamental symmetries with high-resolution atomic spectroscopy. The primary scientific objective of the program is a measurement of the anapole moment of francium in a chain of isotopes by observing the parity violation induced by the weak interaction. The anapole moment of francium and associated signal are expected to be ten times larger than in cesium, themore » only element in which an anapole moment has been observed. The measurement will provide crucial information for better understanding weak hadronic interactions in the context of Quantum Chromodynamics (QCD). The methodology combines nuclear and particle physics techniques for the production of francium with precision measurements based on laser cooling and trapping and microwave spectroscopy. The program builds on an initial series of atomic spectroscopy measurements of the nuclear structure of francium, based on isotope shifts and hyperfine anomalies, before conducting the anapole moment measurements, these measurements performed during commissioning runs help understand the atomic and nuclear structure of Fr.« less

  11. Ceramic composites reinforced with modified silicon carbide whiskers and method for modifying the whiskers

    DOEpatents

    Tiegs, Terry N.; Lindemer, Terrence B.

    1991-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  12. Ceramic composites reinforced with modified silicon carbide whiskers and method for modifying the whiskers

    DOEpatents

    Tiegs, T.N.; Lindemer, T.B.

    1991-02-19

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  13. Ceramic composites reinforced with modified silicon carbide whiskers

    DOEpatents

    Tiegs, Terry N.; Lindemer, Terrence B.

    1990-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  14. Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures.

    PubMed

    Cheon, Gowoon; Duerloo, Karel-Alexander N; Sendek, Austin D; Porter, Chase; Chen, Yuan; Reed, Evan J

    2017-03-08

    Layered materials held together by weak interactions including van der Waals forces, such as graphite, have attracted interest for both technological applications and fundamental physics in their layered form and as an isolated single-layer. Only a few dozen single-layer van der Waals solids have been subject to considerable research focus, although there are likely to be many more that could have superior properties. To identify a broad spectrum of layered materials, we present a novel data mining algorithm that determines the dimensionality of weakly bonded subcomponents based on the atomic positions of bulk, three-dimensional crystal structures. By applying this algorithm to the Materials Project database of over 50,000 inorganic crystals, we identify 1173 two-dimensional layered materials and 487 materials that consist of weakly bonded one-dimensional molecular chains. This is an order of magnitude increase in the number of identified materials with most materials not known as two- or one-dimensional materials. Moreover, we discover 98 weakly bonded heterostructures of two-dimensional and one-dimensional subcomponents that are found within bulk materials, opening new possibilities for much-studied assembly of van der Waals heterostructures. Chemical families of materials, band gaps, and point groups for the materials identified in this work are presented. Point group and piezoelectricity in layered materials are also evaluated in single-layer forms. Three hundred and twenty-five of these materials are expected to have piezoelectric monolayers with a variety of forms of the piezoelectric tensor. This work significantly extends the scope of potential low-dimensional weakly bonded solids to be investigated.

  15. Angular ellipticity correlations in a composite alignment model for elliptical and spiral galaxies and inference from weak lensing

    NASA Astrophysics Data System (ADS)

    Tugendhat, Tim M.; Schäfer, Björn Malte

    2018-05-01

    We investigate a physical, composite alignment model for both spiral and elliptical galaxies and its impact on cosmological parameter estimation from weak lensing for a tomographic survey. Ellipticity correlation functions and angular ellipticity spectra for spiral and elliptical galaxies are derived on the basis of tidal interactions with the cosmic large-scale structure and compared to the tomographic weak-lensing signal. We find that elliptical galaxies cause a contribution to the weak-lensing dominated ellipticity correlation on intermediate angular scales between ℓ ≃ 40 and ℓ ≃ 400 before that of spiral galaxies dominates on higher multipoles. The predominant term on intermediate scales is the negative cross-correlation between intrinsic alignments and weak gravitational lensing (GI-alignment). We simulate parameter inference from weak gravitational lensing with intrinsic alignments unaccounted; the bias induced by ignoring intrinsic alignments in a survey like Euclid is shown to be several times larger than the statistical error and can lead to faulty conclusions when comparing to other observations. The biases generally point into different directions in parameter space, such that in some cases one can observe a partial cancellation effect. Furthermore, it is shown that the biases increase with the number of tomographic bins used for the parameter estimation process. We quantify this parameter estimation bias in units of the statistical error and compute the loss of Bayesian evidence for a model due to the presence of systematic errors as well as the Kullback-Leibler divergence to quantify the distance between the true model and the wrongly inferred one.

  16. New insights on emergence from the perspective of weak values and dynamical non-locality

    NASA Astrophysics Data System (ADS)

    Tollaksen, Jeff

    2014-04-01

    In this article, we will examine new fundamental aspects of "emergence" and "information" using novel approaches to quantum mechanics which originated from the group around Aharonov. The two-state vector formalism provides a complete description of pre- and post-selected quantum systems and has uncovered a host of new quantum phenomena which were previously hidden. The most important feature is that any weak coupling to a pre- and post-selected system is effectively a coupling to a "weak value" which is given by a simple expression depending on the two-state vector. In particular, weak values, are the outcomes of so called "weak measurements" which have recently become a very powerful tool for ultra-sensitive measurements. Using weak values, we will show how to separate a particle from its properties, not unlike the Cheshire cat story: "Well! I've often seen a cat without a grin," thought Alice; "but a grin without a cat! It's the most curious thing I ever saw in all my life!" Next, we address the question whether the physics on different scales "emerges" from quantum mechanics or whether the laws of physics at those scales are fundamental. We show that the classical limit of quantum mechanics is a far more complicated issue; it is in fact dramatically more involved and it requires a complete revision of all our intuitions. The revised intuitions can then serve as a guide to finding novel quantum effects. Next we show that novel experimental aspects of contextuality can be demonstrated with weak measurements and these suggest new restrictions on hidden variable approaches. Next we emphasize that the most important implication of the Aharonov-Bohm effect is the existence of non-local interactions which do not violate causality. Finally, we review some generalizations of quantum mechanics and their implications for "emergence" and "information." First, we review an alternative approach to quantum evolution in which each moment of time is viewed as a new "universe" and time evolution is given by correlations between different moments. Next, we present a new solution to the measurement problem involving future boundary conditions placed on the universe as a whole. Finally, we introduce another fundamental approach to quantum evolution which allows for tremendous richness in the types of allowable Hamiltonians.

  17. Fatigue is associated with muscle weakness in Ehlers-Danlos syndrome: an explorative study.

    PubMed

    Voermans, N C; Knoop, H; Bleijenberg, G; van Engelen, B G

    2011-06-01

    Ehlers-Danlos syndrome (EDS) is a clinically and genetically heterogeneous group of inherited connective tissue disorders characterised by joint hypermobility, skin hyperextensibility and tissue fragility. It has recently been shown that muscle weakness occurs frequently in EDS, and that fatigue is a common and clinically important symptom. The aim of this study was to investigate the relationship between fatigue severity and subjective and objective measures of muscle weakness. Furthermore, the predictive value of muscle weakness for fatigue severity was determined, together with that of pain and physical activity. An explorative, cross-sectional, observational study. Thirty EDS patients, recruited from the Dutch patient association, were investigated at the neuromuscular outpatient department of a tertiary referral centre in The Netherlands. Muscle strength measured with manual muscle strength testing and hand-held dynamometry. Self-reported muscle weakness, pain, physical activity levels and fatigue were assessed with standardised questionnaires. Fatigue severity in EDS was significantly correlated with measured and self-reported muscle weakness (r=-0.408 for manual muscle strength, r=0.461 for hand-held dynamometry and r=0.603 for self-reported muscle weakness). Both muscle weakness and pain severity were significant predictors of fatigue severity in a multiple regression analysis. The results suggest a positive and direct relationship between fatigue severity and muscle weakness in EDS. Future research should focus on the relationship between fatigue, muscle weakness and objectively measured physical activity, preferably in a larger cohort of EDS patients. Copyright © 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  18. Investigating Student Understanding for a Statistical Analysis of Two Thermally Interacting Solids

    NASA Astrophysics Data System (ADS)

    Loverude, Michael E.

    2010-10-01

    As part of an ongoing research and curriculum development project for upper-division courses in thermal physics, we have developed a sequence of tutorials in which students apply statistical methods to examine the behavior of two interacting Einstein solids. In the sequence, students begin with simple results from probability and develop a means for counting the states in a single Einstein solid. The students then consider the thermal interaction of two solids, and observe that the classical equilibrium state corresponds to the most probable distribution of energy between the two solids. As part of the development of the tutorial sequence, we have developed several assessment questions to probe student understanding of various aspects of this system. In this paper, we describe the strengths and weaknesses of student reasoning, both qualitative and quantitative, to assess the readiness of students for one tutorial in the sequence.

  19. Quantum optics in a high impedance environment

    NASA Astrophysics Data System (ADS)

    Puertas, Javier; Gheeraert, Nicolas; Krupko, Yuriy; Dassonneville, Remy; Planat, Luca; Foroughui, Farshad; Naud, Cecile; Guichard, Wiebke; Buisson, Olivier; Florens, Serge; Roch, Nicolas; Snyman, Izak

    Understanding light matter interaction remains a key topic in fundamental physics. Its strength is imposed by the fine structure constant, α. For most atomic and molecular systems α =e2/ℏc 4 πɛo = 1 / 137 << 1 , giving weak interactions. When dealing with superconducting artificial atoms, α is either proportional to 1 /Zc (magnetic coupling) or Zc (electric coupling), where Zc is the characteristic impedance of the environment. Recent experiments followed the first approach, coupling a flux qubit to a low impedance environment, demonstrating strong interaction (α 1). In our work, we reached the large α regime, following a complementary approach: we couple electrically a transmon qubit to an array of 5000 SQUIDs. This metamaterial provides high characteristic impedance ( 3 kΩ), in-situ flux tunability and full control over its dispersion relation. In this new regime, all usual approximations break down and new phenomena such as frequency conversion at the single photon level are expected.

  20. The effective fine-structure constant of freestanding graphene measured in graphite.

    PubMed

    Reed, James P; Uchoa, Bruno; Joe, Young Il; Gan, Yu; Casa, Diego; Fradkin, Eduardo; Abbamonte, Peter

    2010-11-05

    Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine-structure constant, α(g)* (k,ω), the value of which approaches 0.14 ± 0.092 ~ 1/7 at low energy and large distances. This value is substantially smaller than the nominal α(g) = 2.2, suggesting that, on the whole, graphene is more weakly interacting than previously believed.

  1. Superheavy dark matter through Higgs portal operators

    NASA Astrophysics Data System (ADS)

    Kolb, Edward W.; Long, Andrew J.

    2017-11-01

    The WIMPzilla hypothesis is that the dark matter is a super-weakly-interacting and superheavy particle. Conventionally, the WIMPzilla abundance is set by gravitational particle production during or at the end of inflation. In this study we allow the WIMPzilla to interact directly with Standard Model fields through the Higgs portal, and we calculate the thermal production (freeze-in) of WIMPzilla dark matter from the annihilation of Higgs boson pairs in the plasma. The two particle-physics model parameters are the WIMPzilla mass and the Higgs-WIMPzilla coupling. The two cosmological parameters are the reheating temperature and the expansion rate of the universe at the end of inflation. We delineate the regions of parameter space where either gravitational or thermal production is dominant, and within those regions we identify the parameters that predict the observed dark matter relic abundance. Allowing for thermal production opens up the parameter space, even for Planck-suppressed Higgs-WIMPzilla interactions.

  2. Non-integral-spin bosonic excitations in untextured magnets

    NASA Astrophysics Data System (ADS)

    Kamra, Akashdeep; Agrawal, Utkarsh; Belzig, Wolfgang

    Interactions are responsible for intriguing physics, e.g. emergence of exotic ground states and excitations, in a wide range of systems. Here we theoretically demonstrate that dipole-dipole interactions lead to bosonic eigen-excitations with spin ranging from zero to above ℏ in magnets with uniformly magnetized ground states. These exotic excitations can be interpreted as quantum coherent conglomerates of magnons, the eigen-excitations when the dipolar interactions are disregarded. We further find that the eigenmodes in an easy-axis antiferromagnet are spin-zero quasiparticles instead of the widely believed spin +/- ℏ magnons. The latter re-emerge when the symmetry is broken by a sufficiently large applied magnetic field. The spin greater than ℏ is accompanied by vacuum fluctuations and may be considered a weak form of frustration. We acknowledge financial support from the Alexander von Humboldt Foundation and the DFG through SFB 767.

  3. Deposition kinetics of colloidal particles at high ionic strengths

    NASA Astrophysics Data System (ADS)

    Cejas, Cesare; Monti, Fabrice; Truchet, Marine; Burnouf, Jean-Pierre; Tabeling, Patrick

    Using microfluidic experiments, we describe the deposition of a fluid suspension of weakly brownian particles transported in a straight channel at small Reynolds numbers under conditions of high ionic strengths. Our studies fall in a regime where electrostatic interactions are neglected and particle-wall van der Waals interactions govern the deposition mechanism on channel walls. We calculate the deposition kinetics analytically for a wide range of physical parameters. We find that the theory agrees with numerical Langevin simulations, which both confirm the experimental results. From this analysis, we demonstrate a universal dimensionless deposition function described by contributions from advection-diffusion transport and adhesion interactions (Hamaker constant). Results show that we accurately confirm the theoretical expression for the deposition kinetics. From a surface science perspective, working in the van der Waals regime enables to measure the Hamaker constant, a task that would take much longer to perform with the standard AFM. Funding from Sanofi Recherche and ESPCI.

  4. Infrared consistency and the weak gravity conjecture

    DOE PAGES

    Cheung, Clifford; Remmen, Grant N.

    2014-12-11

    The weak gravity conjecture (WGC) asserts that an Abelian gauge theory coupled to gravity is inconsistent unless it contains a particle of charge q and mass m such that q ≥ m/m Pl. This criterion is obeyed by all known ultraviolet completions and is needed to evade pathologies from stable black hole remnants. In this paper, we explore the WGC from the perspective of low-energy effective field theory. Below the charged particle threshold, the effective action describes a photon and graviton interacting via higher-dimension operators. We derive infrared consistency conditions on the parameters of the effective action using i )more » analyticity of light-by-light scattering, ii ) unitarity of the dynamics of an arbitrary ultraviolet completion, and iii ) absence of superluminality and causality violation in certain non-trivial backgrounds. For convenience, we begin our analysis in three spacetime dimensions, where gravity is non-dynamical but has a physical effect on photon-photon interactions. We then consider four dimensions, where propagating gravity substantially complicates all of our arguments, but bounds can still be derived. Operators in the effective action arise from two types of diagrams: those that involve electromagnetic interactions (parameterized by a charge-to-mass ratio q/m) and those that do not (parameterized by a coefficient γ). In conclusion, infrared consistency implies that q/m is bounded from below for small γ.« less

  5. Using an innovative multiple regression procedure in a cancer population (Part 1): detecting and probing relationships of common interacting symptoms (pain, fatigue/weakness, sleep problems) as a strategy to discover influential symptom pairs and clusters

    PubMed Central

    Francoeur, Richard B

    2015-01-01

    Background The majority of patients with advanced cancer experience symptom pairs or clusters among pain, fatigue, and insomnia. Improved methods are needed to detect and interpret interactions among symptoms or diesease markers to reveal influential pairs or clusters. In prior work, I developed and validated sequential residual centering (SRC), a method that improves the sensitivity of multiple regression to detect interactions among predictors, by conditioning for multicollinearity (shared variation) among interactions and component predictors. Materials and methods Using a hypothetical three-way interaction among pain, fatigue, and sleep to predict depressive affect, I derive and explain SRC multiple regression. Subsequently, I estimate raw and SRC multiple regressions using real data for these symptoms from 268 palliative radiation outpatients. Results Unlike raw regression, SRC reveals that the three-way interaction (pain × fatigue/weakness × sleep problems) is statistically significant. In follow-up analyses, the relationship between pain and depressive affect is aggravated (magnified) within two partial ranges: 1) complete-to-some control over fatigue/weakness when there is complete control over sleep problems (ie, a subset of the pain–fatigue/weakness symptom pair), and 2) no control over fatigue/weakness when there is some-to-no control over sleep problems (ie, a subset of the pain–fatigue/weakness–sleep problems symptom cluster). Otherwise, the relationship weakens (buffering) as control over fatigue/weakness or sleep problems diminishes. Conclusion By reducing the standard error, SRC unmasks a three-way interaction comprising a symptom pair and cluster. Low-to-moderate levels of the moderator variable for fatigue/weakness magnify the relationship between pain and depressive affect. However, when the comoderator variable for sleep problems accompanies fatigue/weakness, only frequent or unrelenting levels of both symptoms magnify the relationship. These findings suggest that a countervailing mechanism involving depressive affect could account for the effectiveness of a cognitive behavioral intervention to reduce the severity of a pain, fatigue, and sleep disturbance cluster in a previous randomized trial. PMID:25565865

  6. Spontaneous Symmetry Breaking as a Basis of Particle Mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigg, Chris; /Fermilab /CERN

    2007-04-01

    Electroweak theory joins electromagnetism with the weak force in a single quantum field theory, ascribing the two fundamental interactions--so different in their manifestations--to a common symmetry principle. How the electroweak gauge symmetry is hidden is one of the most urgent and challenging questions facing particle physics. The provisional answer incorporated in the ''standard model'' of particle physics was formulated in the 1960s by Higgs, by Brout & Englert, and by Guralnik, Hagen, & Kibble: The agent of electroweak symmetry breaking is an elementary scalar field whose self-interactions select a vacuum state in which the full electroweak symmetry is hidden, leavingmore » a residual phase symmetry of electromagnetism. By analogy with the Meissner effect of the superconducting phase transition, the Higgs mechanism, as it is commonly known, confers masses on the weak force carriers W{sup {+-}} and Z. It also opens the door to masses for the quarks and leptons, and shapes the world around us. It is a good story--though an incomplete story--and we do not know how much of the story is true. Experiments that explore the Fermi scale (the energy regime around 1 TeV) during the next decade will put the electroweak theory to decisive test, and may uncover new elements needed to construct a more satisfying completion of the electroweak theory. The aim of this article is to set the stage by reporting what we know and what we need to know, and to set some ''Big Questions'' that will guide our explorations.« less

  7. Mindfulness and satisfaction in physical activity: A cross-sectional study in the Dutch population.

    PubMed

    Tsafou, Kalliopi-Eleni; De Ridder, Denise Td; van Ee, Raymond; Lacroix, Joyca Pw

    2016-09-01

    Both satisfaction and mindfulness relate to sustained physical activity. This study explored their relationship. We conducted a cross-sectional study with 398 Dutch participants who completed measures on trait mindfulness, mindfulness and satisfaction with physical activity, physical activity habits, and physical activity. We performed mediation and moderated mediation. Satisfaction mediated the effect of mindfulness on physical activity. Mindfulness was related to physical activity only when one's habit was weak. The relation of mindfulness with satisfaction was stronger for weak compared to strong habit. Understanding the relationship between mindfulness and satisfaction can contribute to the development of interventions to sustain physical activity. © The Author(s) 2015.

  8. Nuclear Physics Around the Unitarity Limit.

    PubMed

    König, Sebastian; Grießhammer, Harald W; Hammer, H-W; van Kolck, U

    2017-05-19

    We argue that many features of the structure of nuclei emerge from a strictly perturbative expansion around the unitarity limit, where the two-nucleon S waves have bound states at zero energy. In this limit, the gross features of states in the nuclear chart are correlated to only one dimensionful parameter, which is related to the breaking of scale invariance to a discrete scaling symmetry and set by the triton binding energy. Observables are moved to their physical values by small perturbative corrections, much like in descriptions of the fine structure of atomic spectra. We provide evidence in favor of the conjecture that light, and possibly heavier, nuclei are bound weakly enough to be insensitive to the details of the interactions but strongly enough to be insensitive to the exact size of the two-nucleon system.

  9. Connecting Fermion Masses and Mixings to BSM Physics - Quarks

    NASA Astrophysics Data System (ADS)

    Goldman, Terrence; Stephenson, Gerard J., Jr.

    2015-10-01

    The ``democratic'' mass matrix with BSM physics assumptions has been studied without success. We invert the process and use the ``democratic'' mass matrix plus a parametrization of all possible BSM corrections to analyze the implications of the observed masses and CKM weak interaction current mixing for the BSM parameter values for the up-quarks and down-quarks. We observe that the small mixing of the so-called ``third generation'' is directly related to the large mass gap from the two lighter generations. Conversely, the relatively large value of the Cabibbo angle arises because the mass matrices in the light sub-sector (block diagonalized from the full three channel problem) are neither diagonal nor degenerate and differ significantly between the up and down cases. Alt email:t.goldman@gmail.com

  10. Overview: Parity Violation and Fundamental Symmetries

    NASA Astrophysics Data System (ADS)

    Carlini, Roger

    2017-09-01

    The fields of nuclear and particle physics have undertaken extensive programs of research to search for evidence of new phenomena via the precision measurement of observables that are well predicted within the standard model of electroweak interaction. It is already known that the standard model is incomplete as it does not include gravity and dark matter/energy and therefore likely the low energy approximation of a more complex theory. This talk will be an overview of the motivation, experimental methods and status of some of these efforts (past and future) related to precision in-direct searches that are complementary to the direct searches underway at the Large Hadron Collider. This abstract is for the invited talk associated with the Mini-symposium titled ``Electro-weak Physics and Fundamental Symmetries'' organized by Julie Roche.

  11. Early Physical Rehabilitation in the ICU: A Review for the Neurohospitalist

    PubMed Central

    Mendez-Tellez, Pedro A.; Nusr, Rasha; Feldman, Dorianne; Needham, Dale M.

    2012-01-01

    Advances in critical care have resulted in improved intensive care unit (ICU) mortality. However, improved ICU survival has resulted in a growing number of ICU survivors living with long-term sequelae of critical illness, such as impaired physical function and quality of life (QOL). In addition to critical illness, prolonged bed rest and immobility may lead to severe physical deconditioning and loss of muscle mass and muscle weakness. ICU-acquired weakness is associated with increased duration of mechanical ventilation and weaning, longer ICU and hospital stay, and increased mortality. These physical impairments may last for years after ICU discharge. Early Physical Medicine and Rehabilitation (PM&R) interventions in the ICU may attenuate or prevent the weakness and physical impairments occurring during critical illness. This article reviews the evidence regarding safety, feasibility, barriers, and benefits of early PM&R interventions in ICU patients and discusses the limited existing data on early PM&R in the neurological ICU and future directions for early PM&R in the ICU. PMID:23983871

  12. Localized end states in density modulated quantum wires and rings.

    PubMed

    Gangadharaiah, Suhas; Trifunovic, Luka; Loss, Daniel

    2012-03-30

    We study finite quantum wires and rings in the presence of a charge-density wave gap induced by a periodic modulation of the chemical potential. We show that the Tamm-Shockley bound states emerging at the ends of the wire are stable against weak disorder and interactions, for discrete open chains and for continuum systems. The low-energy physics can be mapped onto the Jackiw-Rebbi equations describing massive Dirac fermions and bound end states. We treat interactions via the continuum model and show that they increase the charge gap and further localize the end states. The electrons placed in the two localized states on the opposite ends of the wire can interact via exchange interactions and this setup can be used as a double quantum dot hosting spin qubits. The existence of these states could be experimentally detected through the presence of an unusual 4π Aharonov-Bohm periodicity in the spectrum and persistent current as a function of the external flux.

  13. Self-consistent perturbation theory for two dimensional twisted bilayers

    NASA Astrophysics Data System (ADS)

    Shirodkar, Sharmila N.; Tritsaris, Georgios A.; Kaxiras, Efthimios

    Theoretical modeling and ab-initio simulations of two dimensional heterostructures with arbitrary angles of rotation between layers involve unrealistically large and expensive calculations. To overcome this shortcoming, we develop a methodology for weakly interacting heterostructures that treats the effect of one layer on the other as perturbation, and restricts the calculations to their primitive cells. Thus, avoiding computationally expensive supercells. We start by approximating the interaction potential between the twisted bilayers to that of a hypothetical configuration (viz. ideally stacked untwisted layers), which produces band structures in reasonable agreement with full-scale ab-initio calculations for commensurate and twisted bilayers of graphene (Gr) and Gr/hexagonal boron nitride (h-BN) heterostructures. We then self-consistently calculate the charge density and hence, interaction potential of the heterostructures. In this work, we test our model for bilayers of various combinations of Gr, h-BN and transition metal dichalcogenides, and discuss the advantages and shortcomings of the self-consistently calculated interaction potential. Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

  14. Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm

    PubMed Central

    Yu, Isseki; Mori, Takaharu; Ando, Tadashi; Harada, Ryuhei; Jung, Jaewoon; Sugita, Yuji; Feig, Michael

    2016-01-01

    Biological macromolecules function in highly crowded cellular environments. The structure and dynamics of proteins and nucleic acids are well characterized in vitro, but in vivo crowding effects remain unclear. Using molecular dynamics simulations of a comprehensive atomistic model cytoplasm we found that protein-protein interactions may destabilize native protein structures, whereas metabolite interactions may induce more compact states due to electrostatic screening. Protein-protein interactions also resulted in significant variations in reduced macromolecular diffusion under crowded conditions, while metabolites exhibited significant two-dimensional surface diffusion and altered protein-ligand binding that may reduce the effective concentration of metabolites and ligands in vivo. Metabolic enzymes showed weak non-specific association in cellular environments attributed to solvation and entropic effects. These effects are expected to have broad implications for the in vivo functioning of biomolecules. This work is a first step towards physically realistic in silico whole-cell models that connect molecular with cellular biology. DOI: http://dx.doi.org/10.7554/eLife.19274.001 PMID:27801646

  15. Search for a Scalar Component in the Weak Interaction

    NASA Astrophysics Data System (ADS)

    Zakoucky, Dalibor; Baczyk, Pavel; Ban, Gilles; Beck, Marcus; Breitenfeldt, Martin; Couratin, Claire; Fabian, Xavier; Finlay, Paul; Flechard, Xavier; Friedag, Peter; Glück, Ferenc; Herlert, Alexander; Knecht, Andreas; Kozlov, Valentin; Lienard, Etienne; Porobic, Tomica; Soti, Gergelj; Tandecki, Michael; Vangorp, Simon; Weinheimer, Christian; Wursten, Elise; Severijns, Nathal

    Weak interactions are described by the Standard Model which uses the basic assumption of a pure "V(ector)-A(xial vector)" character for the interaction. However, after more than half a century of model development and experimental testing of its fundamental ingredients, experimental limits for possible admixtures of scalar and/or tensor interactions are still as high as 7%. The WITCH project (Weak Interaction Trap for CHarged particles) at the isotope separator ISOLDE at CERN is trying to probe the structure of the weak interaction in specific low energy β-decays in order to look for possible scalar or tensor components or at least significantly improve the current experimental limits. This worldwide unique experimental setup consisting of a combination of two Penning ion traps and a retardation spectrometer allows to catch, trap and cool the radioactive nuclei provided by the ISOLDE separator, form a cooled and scattering-free radioactive source of β-decaying nuclei and let these nuclei decay at rest. The precise measurement of the shape of the energy spectrum of the recoiling nuclei, the shape of which is very sensitive to the character of the weak interaction, enables searching for a possible admixture of a scalar/tensor component in the dominant vector/axial vector mode. First online measurements with the isotope 35Ar were performed in 2011 and 2012. The current status of the experiment, the data analysis and results as well as extensive simulations will be presented and discussed.

  16. An Investigation of Human-Computer Interaction Approaches Beneficial to Weak Learners in Complex Animation Learning

    ERIC Educational Resources Information Center

    Yeh, Yu-Fang

    2016-01-01

    Animation is one of the useful contemporary educational technologies in teaching complex subjects. There is a growing interest in proper use of learner-technology interaction to promote learning quality for different groups of learner needs. The purpose of this study is to investigate if an interaction approach supports weak learners, who have…

  17. Alternative method of quantum state tomography toward a typical target via a weak-value measurement

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Dai, Hong-Yi; Yang, Le; Zhang, Ming

    2018-03-01

    There is usually a limitation of weak interaction on the application of weak-value measurement. This limitation dominates the performance of the quantum state tomography toward a typical target in the finite and high-dimensional complex-valued superposition of its basis states, especially when the compressive sensing technique is also employed. Here we propose an alternative method of quantum state tomography, presented as a general model, toward such typical target via weak-value measurement to overcome such limitation. In this model the pointer for the weak-value measurement is a qubit, and the target-pointer coupling interaction is no longer needed within the weak interaction limitation, meanwhile this interaction under the compressive sensing can be described with the Taylor series of the unitary evolution operator. The postselection state at the target is the equal superposition of all basis states, and the pointer readouts are gathered under multiple Pauli operator measurements. The reconstructed quantum state is generated from an optimization algorithm of total variation augmented Lagrangian alternating direction algorithm. Furthermore, we demonstrate an example of this general model for the quantum state tomography toward the planar laser-energy distribution and discuss the relations among some parameters at both our general model and the original first-order approximate model for this tomography.

  18. Association between state physical education (PE) requirements and PE participation, physical activity, and body mass index change.

    PubMed

    Taber, Daniel R; Chriqui, Jamie F; Perna, Frank M; Powell, Lisa M; Slater, Sandy J; Chaloupka, Frank J

    2013-11-01

    To determine if state physical education (PE) laws are associated with student physical education attendance and physical activity (PA), and whether physical education and competitive food laws, in conjunction, are associated with lower BMI change. State laws regarding physical education time requirements and competitive foods in 2003 and 2006 were classified as strong, weak, or none, based on codified law ratings obtained from the Classification of Laws Associated with School Students. Laws were linked to student data on PE attendance and physical activity (8th grade, Spring 2007) and BMI change (5th-8th grade, 2004-2007), obtained from the Early Childhood Longitudinal Study (n=5510 students in 40 states). Girls reported 0.31 more days of activity (95% CI: 0.02, 0.61) and were more likely to attend physical education ≥ 3 days/week (74.1% versus 52.1%, difference=22.0, 95% CI: 2.1, 42.0) if they resided in states with strong physical education laws compared to no physical education laws. Weak physical education laws had modest associations with PE and activity, and there was no evidence that weak laws reduce BMI gain regardless of competitive food laws. Strong physical education laws with specific time requirements may increase physical education attendance and activity in girls. There is insufficient evidence that physical education laws reduce student weight gain. © 2013.

  19. Interactive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Schroeder, Daniel V.

    2015-03-01

    Physics students now have access to interactive molecular dynamics simulations that can model and animate the motions of hundreds of particles, such as noble gas atoms, that attract each other weakly at short distances but repel strongly when pressed together. Using these simulations, students can develop an understanding of forces and motions at the molecular scale, nonideal fluids, phases of matter, thermal equilibrium, nonequilibrium states, the Boltzmann distribution, the arrow of time, and much more. This article summarizes the basic features and capabilities of such a simulation, presents a variety of student exercises using it at the introductory and intermediate levels, and describes some enhancements that can further extend its uses. A working simulation code, in html5 and javascript for running within any modern Web browser, is provided as an online supplement.

  20. REVIEWS OF TOPICAL PROBLEMS: Helium-isotope mass-spectrometric method for studying tritium beta decay (idea, experiment, nuclear and molecular physics applications)

    NASA Astrophysics Data System (ADS)

    Akulov, Yuii A.; Mamyrin, Boris A.

    2003-11-01

    Experimental data on the variation of tritium nucleus beta decay constant caused by the interaction of the resulting beta-electron with orbital electrons and shell vacancies are reviewed for free atomic tritium and molecular tritium and used to obtain the half-life of atomic tritium (T1/2)a=(12.264±0.018) y, the half-life of the free triton (T1/2)t=(12.238±0.020) y, the axial-vector-to-vector weak-interaction coupling constant ratio (GA/GV)t=-1.2646 ± 0.0035 for beta decay of the triton, and an independent estimate of the free neutron lifetime τn= (890.3 ± 3.9stat ± 1.4syst) s.

  1. Gamma ray heating and neutrino cooling rates due to weak interaction processes on sd-shell nuclei in stellar cores

    NASA Astrophysics Data System (ADS)

    Fayaz, Muhammad; Nabi, Jameel-Un; Majid, Muhammad

    2017-07-01

    Gamma ray heating and neutrino cooling rates, due to weak interaction processes, on sd-shell nuclei in stellar core are calculated using the proton neutron quasiparticle random phase approximation theory. The recent extensive experimental mass compilation of Wang et al. (Chin. Phys. C 36:1603, 2012), other improved model input parameters including nuclear quadrupole deformation (Raman et al. in At. Data Nucl. Data Tables 78(1):1-128, 2001; Möller et al. in At. Data Nucl. Data Tables 109:1-204, 2016) and physical constants are taken into account in the current calculation. The purpose of this work is two fold, one is to improve the earlier calculation of weak rates performed by Nabi and Klapdor-Kleingrothaus (At. Data Nucl. Data Tables 71:149, 1999a) using the same theory. We further compare our results with previous calculations. The selected sd-shell nuclei, considered in this work, are of special interest for the evolution of O-Ne-Mg core in 8-10 M_{⊙} stars due to competitive gamma ray heating rates and cooling by URCA processes. The outcome of these competitions is to determine, whether the stars end up as a white dwarf (Nabi in Phys. Rev. C 78(4):045801, 2008b), an electron-capture supernova (Jones et al. in Astrophys. J. 772(2):150, 2013) or Fe core-collapse supernova (Suzuki et al. in Astrophys. J. 817(2):163, 2016). The selected sd-shell nuclei for calculation of associated weak-interaction rates include ^{20,23}O, ^{20,23}F, ^{20,23,24}Ne, {}^{20,23-25}Na, and {}^{23-25}Mg. The cooling and heating rates are calculated for density range (10 ≤ ρ (g cm^{-3}) ≤ 10^{11}) and temperature range (0.01× 109≤ T(K)≤ 30× 109). The calculated gamma heating rates are orders of magnitude bigger than the shell model rates (except for ^{25}Mg at low densities). At high temperatures the gamma heating rates are in reasonable agreement. The calculated cooling rates are up to an order of magnitude bigger for odd-A nuclei.

  2. New Models and Methods for the Electroweak Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Linda

    2017-09-26

    This is the Final Technical Report to the US Department of Energy for grant DE-SC0013529, New Models and Methods for the Electroweak Scale, covering the time period April 1, 2015 to March 31, 2017. The goal of this project was to maximize the understanding of fundamental weak scale physics in light of current experiments, mainly the ongoing run of the Large Hadron Collider and the space based satellite experiements searching for signals Dark Matter annihilation or decay. This research program focused on the phenomenology of supersymmetry, Higgs physics, and Dark Matter. The properties of the Higgs boson are currently beingmore » measured by the Large Hadron collider, and could be a sensitive window into new physics at the weak scale. Supersymmetry is the leading theoretical candidate to explain the natural nessof the electroweak theory, however new model space must be explored as the Large Hadron collider has disfavored much minimal model parameter space. In addition the nature of Dark Matter, the mysterious particle that makes up 25% of the mass of the universe is still unknown. This project sought to address measurements of the Higgs boson couplings to the Standard Model particles, new LHC discovery scenarios for supersymmetric particles, and new measurements of Dark Matter interactions with the Standard Model both in collider production and annihilation in space. Accomplishments include new creating tools for analyses of Dark Matter models in Dark Matter which annihilates into multiple Standard Model particles, including new visualizations of bounds for models with various Dark Matter branching ratios; benchmark studies for new discovery scenarios of Dark Matter at the Large Hardon Collider for Higgs-Dark Matter and gauge boson-Dark Matter interactions; New target analyses to detect direct decays of the Higgs boson into challenging final states like pairs of light jets, and new phenomenological analysis of non-minimal supersymmetric models, namely the set of Dirac Gaugino Models.« less

  3. Biceps-Related Physical Findings Are Useful to Prevent Misdiagnosis of Cervical Spondylotic Amyotrophy as a Rotator Cuff Tear.

    PubMed

    Iwata, Eiichiro; Shigematsu, Hideki; Inoue, Kazuya; Egawa, Takuya; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Yamamoto, Yusuke; Sakamoto, Yoshihiro; Koizumi, Munehisa; Tanaka, Yasuhito

    2018-02-01

    Case-control study. The aim of the present study was to identify physical findings useful for differentiating between cervical spondylotic amyotrophy (CSA) and rotator cuff tears to prevent the misdiagnosis of CSA as a rotator cuff tear. CSA and rotator cuff tears are often confused among patients presenting with difficulty in shoulder elevation. Twenty-five patients with CSA and 27 with rotator cuff tears were enrolled. We included five physical findings specific to CSA that were observed in both CSA and rotator cuff tear patients. The findings were as follows: (1) weakness of the deltoid muscle, (2) weakness of the biceps muscle, (3) atrophy of the deltoid muscle, (4) atrophy of the biceps muscle, and (5) swallow-tail sign (assessment of the posterior fibers of the deltoid). Among 25 CSA patients, 10 (40.0%) were misdiagnosed with a rotator cuff tear on initial diagnosis. The sensitivity and specificity of each physical finding were as follows: (1) deltoid weakness (sensitivity, 92.0%; specificity, 55.6%), (2) biceps weakness (sensitivity, 80.0%; specificity, 100%), (3) deltoid atrophy (sensitivity, 96.0%; specificity, 77.8%), (4) biceps atrophy (sensitivity, 88.8%; specificity, 92.6%), and (5) swallow-tail sign (sensitivity, 56.0%; specificity, 74.1%). There were statistically significant differences in each physical finding. CSA is likely to be misdiagnosed as a rotator cuff tear; however, weakness and atrophy of the biceps are useful findings for differentiating between CSA and rotator cuff tears to prevent misdiagnosis.

  4. Introducing a model of pairing based on base pair specific interactions between identical DNA sequences

    NASA Astrophysics Data System (ADS)

    (O' Lee, Dominic J.

    2018-02-01

    At present, there have been suggested two types of physical mechanism that may facilitate preferential pairing between DNA molecules, with identical or similar base pair texts, without separation of base pairs. One mechanism solely relies on base pair specific patterns of helix distortion being the same on the two molecules, discussed extensively in the past. The other mechanism proposes that there are preferential interactions between base pairs of the same composition. We introduce a model, built on this second mechanism, where both thermal stretching and twisting fluctuations are included, as well as the base pair specific helix distortions. Firstly, we consider an approximation for weak pairing interactions, or short molecules. This yields a dependence of the energy on the square root of the molecular length, which could explain recent experimental data. However, analysis suggests that this approximation is no longer valid at large DNA lengths. In a second approximation, for long molecules, we define two adaptation lengths for twisting and stretching, over which the pairing interaction can limit the accumulation of helix disorder. When the pairing interaction is sufficiently strong, both adaptation lengths are finite; however, as we reduce pairing strength, the stretching adaptation length remains finite but the torsional one becomes infinite. This second state persists to arbitrarily weak values of the pairing strength; suggesting that, if the molecules are long enough, the pairing energy scales as length. To probe differences between the two pairing mechanisms, we also construct a model of similar form. However, now, pairing between identical sequences solely relies on the intrinsic helix distortion patterns. Between the two models, we see interesting qualitative differences. We discuss our findings, and suggest new work to distinguish between the two mechanisms.

  5. Annihilation physics of exotic galactic dark matter particles

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1990-01-01

    Various theoretical arguments make exotic heavy neutral weakly interacting fermions, particularly those predicted by supersymmetry theory, attractive candidates for making up the large amount of unseen gravitating mass in galactic halos. Such particles can annihilate with each other, producing secondary particles of cosmic-ray energies, among which are antiprotons, positrons, neutrinos, and gamma-rays. Spectra and fluxes of these annihilation products can be calculated, partly by making use of positron electron collider data and quantum chromodynamic models of particle production derived therefrom. These spectra may provide detectable signatures of exotic particle remnants of the big bang.

  6. The Higgs mechanism and the origin of mass

    NASA Astrophysics Data System (ADS)

    Djouadi, Abdelhak

    2012-06-01

    The Higgs mechanism plays a key role in the physics of elementary particles: in the context of the Standard Model, the theory which describes in a unified framework the electromagnetic, weak and strong nuclear interactions, it allows for the generation of particle masses while preserving the fundamental symmetries of the theory. This mechanism predicts the existence of a new type of particle, the scalar Higgs boson, with unique characteristics. The detection of this particle and the study of its fundamental properties is a major goal of high-energy particle colliders, such as the CERN Large Hadron Collider or LHC.

  7. The Higgs Mechanism and the Orogin of Mass

    NASA Astrophysics Data System (ADS)

    Djouadi, Abdelhak

    The Higgs mechanism plays a key role in the physics of elementary particles: in the context of the Standard Model, the theory which, describes in a unified framework the electromagnetic, weak, and strong nuclear interactions, it allows for the generation of particle masses while preserving the fundamental symmetries of the theory. This mechanism predicts the existence of a new type of particle, the scalar Higgs boson, with unique characteristics. The detection of this particle and the study of its fundamental properties is a major goal of high-energy particle colliders, such as the CERN Large Hadron Collider or LHC.

  8. Indirect searches for dark matter with the Fermi large area telescope

    DOE PAGES

    Albert, Andrea

    2015-03-24

    There is overwhelming evidence that non-baryonic dark matter constitutes ~ 27% of the energy density of the Universe. Weakly Interacting Massive Particles (WIMPs) are promising dark matter candidates that may produce γ rays via annihilation or decay detectable by the Fermi Large Area Telescope (LAT). A detection of WIMPs would also indicate the existence of physics beyond the Standard Model. We present recent results from the two cleanest indirect WIMP searches by the Fermi-LAT Collaboration: searches for γ-ray spectral lines and γ-ray emission associated with Milky Way dwarf spheroidal satellite galaxies.

  9. Reactor monitoring using antineutrino detectors

    NASA Astrophysics Data System (ADS)

    Bowden, N. S.

    2011-08-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactor as part of International Atomic Energy Agency (IAEA) and/or other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway worldwide.

  10. Understanding Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Hix, W. R.; Lentz, E. J.; Baird, M.; Messer, O. E. B.; Mezzacappa, A.; Lee, C.-T.; Bruenn, S. W.; Blondin, J. M.; Marronetti, P.

    2010-03-01

    Our understanding of core-collapse supernovae continues to improve as better microphysics is included in increasingly realistic neutrino-radiationhydrodynamic simulations. Recent multi-dimensional models with spectral neutrino transport, which slowly develop successful explosions for a range of progenitors between 12 and 25 solar mass, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progresses on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  11. Ribbons around Mexican hats

    NASA Astrophysics Data System (ADS)

    Bachas, C.; Tomaras, T. N.

    1994-10-01

    We analyze quasi-topological solitons winding around a Mexican-hat potential in two space-time dimensions. They are prototypes for a large number of physical excitations, including skyrmions of the Higgs sector of the standard electroweak model, magnetic bubbles in thin ferromagnetic films, and strings in certain non-trivial backgrounds. We present explicit solutions, derive the conditions for classical stability, and show that contrary to the naive expectation these can be satisfied in the weak-coupling limit. In this limit we can calculate the soliton properties reliably, and estimate their lifetime semiclassically. We explain why gauge interactions destabilize these solitons, unless the scalar sector is extended.

  12. History of electroweak symmetry breaking

    NASA Astrophysics Data System (ADS)

    Kibble, T. W. B.

    2015-07-01

    In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012.

  13. ForwArd Search ExpeRiment at the LHC

    NASA Astrophysics Data System (ADS)

    Feng, Jonathan L.; Galon, Iftah; Kling, Felix; Trojanowski, Sebastian

    2018-02-01

    New physics has traditionally been expected in the high-pT region at high-energy collider experiments. If new particles are light and weakly coupled, however, this focus may be completely misguided: light particles are typically highly concentrated within a few mrad of the beam line, allowing sensitive searches with small detectors, and even extremely weakly coupled particles may be produced in large numbers there. We propose a new experiment, forward search experiment, or FASER, which would be placed downstream of the ATLAS or CMS interaction point (IP) in the very forward region and operated concurrently there. Two representative on-axis locations are studied: a far location, 400 m from the IP and just off the beam tunnel, and a near location, just 150 m from the IP and right behind the TAN neutral particle absorber. For each location, we examine leading neutrino- and beam-induced backgrounds. As a concrete example of light, weakly coupled particles, we consider dark photons produced through light meson decay and proton bremsstrahlung. We find that even a relatively small and inexpensive cylindrical detector, with a radius of ˜10 cm and length of 5-10 m, depending on the location, can discover dark photons in a large and unprobed region of parameter space with dark photon mass mA'˜10 - 500 MeV and kinetic mixing parameter ɛ ˜10-6-10-3. FASER will clearly also be sensitive to many other forms of new physics. We conclude with a discussion of topics for further study that will be essential for understanding FASER's feasibility, optimizing its design, and realizing its discovery potential.

  14. Measurement of parity-violating asymmetry in deep inelastic scattering at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaochao

    2015-04-01

    Symmetry permeates nature and is fundamental to all laws of physics. One example is mirror symmetry, also called ``parity symmetry''. It implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering played a key role in establishing, and now testing, the Standard Model of particle physics. One particular set of the quantities accessible through measurements of parity-violating electron scattering are the vector-electron axial-vector-quark weak couplings, called C2 q's, measured directly only once in the past 40 years. We report here on a new measurement of the parity-violating asymmetry in electron-quark scattering, that has yielded a specific combination 2C2 u -C2 d five times more precise than the earlier result. (Here u and d stand respectively for the up and the down quarks.) These results are the first evidence, at more than the 95% confidence level, that the C2 q's are non-zero as predicted by the electroweak theory. They lead to constraints on new interactions beyond the Standard Model, particularly on those whose laws change when the quark chirality is flipped between left and right. In today's particle physics research that is focused on colliders such as the LHC, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. In addition to deep inelastic scattering, we will report on measurement of the asymmetry in the nucleon resonance region. These data exhibit for the first time that the quark-hadron duality may work for electroweak observables at the (10--15)% level throughout the whole resonance region. At the end I will give a brief outlook on the future PVDIS program using the Jefferson Lab 12 GeV beam, which will not only provide more precise measurement of C2 q, but also for sin2 θW and for studying unique features of the nucleon structure and that of the strong interaction. for the Jefferson Lab PVDIS Collaboration.

  15. Characterization of Strength and Function in Ambulatory Adults With GNE Myopathy.

    PubMed

    Argov, Zohar; Bronstein, Faye; Esposito, Alicia; Feinsod-Meiri, Yael; Florence, Julaine M; Fowler, Eileen; Greenberg, Marcia B; Malkus, Elizabeth C; Rebibo, Odelia; Siener, Catherine S; Caraco, Yoseph; Kolodny, Edwin H; Lau, Heather A; Pestronk, Alan; Shieh, Perry; Skrinar, Alison M; Mayhew, Jill E

    2017-09-01

    To characterize the pattern and extent of muscle weakness and impact on physical functioning in adults with GNEM. Strength and function were assessed in GNEM subjects (n = 47) using hand-held dynamometry, manual muscle testing, upper and lower extremity functional capacity tests, and the GNEM-Functional Activity Scale (GNEM-FAS). Profound upper and lower muscle weakness was measured using hand-held dynamometry in a characteristic pattern, previously described. Functional tests and clinician-reported outcomes demonstrated the consequence of muscle weakness on physical functioning. The characteristic pattern of upper and lower muscle weakness associated with GNEM and the resulting functional limitations can be reliably measured using these clinical outcome assessments of muscle strength and function.

  16. Theoretical modeling of the electronic structure and exchange interactions in Cu(II)Pc

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Fisher, A. J.; Harrison, N. M.; Wang, Hai; Wu, Zhenlin; Gardener, Jules; Heutz, Sandrine; Jones, Tim; Aeppli, Gabriel

    2012-12-01

    We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine (Cu(II)Pc) crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green's function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α- and β-phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.

  17. Theoretical modeling of the electronic structure and exchange interactions in a Cu(II)Pc one-dimensional chain

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Fisher, A. J.; Harrison, N. M.

    2011-07-01

    We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine [Cu(II)Pc] crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green’s function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap, and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α and β phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.

  18. Charge Transport Phenomena in Detectors of the Cryogenic Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Sundqvist, Kyle

    2008-03-01

    The Cryogenic Dark Matter Search (CDMS) seeks to detect putative weakly-interacting massive particles (WIMPS), which could explain the dark matter problem in cosmology and particle physics. By simultaneously measuring the number of charge carriers and the energy in athermal phonons created by particle interactions in intrinsic Ge and Si crystals at a temperature of 40 mK, a signature response for each event is produced. This response, combined with phonon pulse-shape information, allows CDMS to actively discriminate candidate WIMP interactions with nuclei apart from electromagnetic radioactive background which interacts with electrons. The challenges associated with these techniques are unique. Carrier drift-fields are maintained at only a few V/cm, else drift-emitted Luke-Neganov phonons would dominate the phonons of the original interaction. Under such conditions, carrier scattering is dominated by zero-point fluctuations of the lattice ions. It has been an open question how well the 8 Kelvin data prominent in the literature depicts this case. We compare the simulated transport properties of electrons and holes in <100> Ge at 40 mK and at 8 K, and apply this understanding to our detectors.

  19. Dimensional crossover and cold-atom realization of topological Mott insulators

    PubMed Central

    Scheurer, Mathias S.; Rachel, Stephan; Orth, Peter P.

    2015-01-01

    Interacting cold-atomic gases in optical lattices offer an experimental approach to outstanding problems of many body physics. One important example is the interplay of interaction and topology which promises to generate a variety of exotic phases such as the fractionalized Chern insulator or the topological Mott insulator. Both theoretically understanding these states of matter and finding suitable systems that host them have proven to be challenging problems. Here we propose a cold-atom setup where Hubbard on-site interactions give rise to spin liquid-like phases: weak and strong topological Mott insulators. They represent the celebrated paradigm of an interacting and topological quantum state with fractionalized spinon excitations that inherit the topology of the non-interacting system. Our proposal shall help to pave the way for a controlled experimental investigation of this exotic state of matter in optical lattices. Furthermore, it allows for the investigation of a dimensional crossover from a two-dimensional quantum spin Hall insulating phase to a three-dimensional strong topological insulator by tuning the hopping between the layers. PMID:25669431

  20. Weakly interacting massive particle-nucleus elastic scattering response

    NASA Astrophysics Data System (ADS)

    Anand, Nikhil; Fitzpatrick, A. Liam; Haxton, W. C.

    2014-06-01

    Background: A model-independent formulation of weakly interacting massive particle (WIMP)-nucleon scattering was recently developed in Galilean-invariant effective field theory. Purpose: Here we complete the embedding of this effective interaction in the nucleus, constructing the most general elastic nuclear cross section as a factorized product of WIMP and nuclear response functions. This form explicitly defines what can and cannot be learned about the low-energy constants of the effective theory—and consequently about candidate ultraviolet theories of dark matter—from elastic scattering experiments. Results: We identify those interactions that cannot be reliably treated in a spin-independent/spin-dependent (SI/SD) formulation: For derivative- or velocity-dependent couplings, the SI/SD formulation generally mischaracterizes the relevant nuclear operator and its multipolarity (e.g., scalar or vector) and greatly underestimates experimental sensitivities. This can lead to apparent conflicts between experiments when, in fact, none may exist. The new nuclear responses appearing in the factorized cross section are related to familiar electroweak nuclear operators such as angular momentum l⃗(i) and the spin-orbit coupling σ⃗(i).l⃗(i). Conclusions: To unambiguously interpret experiments and to extract all of the available information on the particle physics of dark matter, experimentalists will need to (1) do a sufficient number of experiments with nuclear targets having the requisite sensitivities to the various operators and (2) analyze the results in a formalism that does not arbitrarily limit the candidate operators. In an appendix we describe a code that is available to help interested readers implement such an analysis.

  1. Self-determined motivation and physical activity in children and adolescents: a systematic review and meta-analysis.

    PubMed

    B Owen, Katherine; Smith, Jordan; Lubans, David R; Ng, Johan Y Y; Lonsdale, Chris

    2014-10-01

    Self-determination theory is used as a framework for examining the relation between motivation and physical activity. The purpose of this review was to systematically review studies that assessed the association between self-determined motivation and physical activity levels in children and adolescents. We searched electronic databases in April 2013. Included studies assessed the relation between motivation (as outlined in self-determination theory) and physical activity in children and adolescents. Forty-six studies (n=15,984 participants) met the inclusion criteria. Meta-analysis indicated that overall levels of self-determined motivation had a weak to moderate, positive associations with physical activity (ρ=.21 to .31). Autonomous forms of motivation (i.e., intrinsic motivation and identified regulation) had moderate, positive associations with physical activity (ρ=.27 to .38), whereas controlled forms of motivation (i.e., introjection and external regulation) had weak, negative associations with physical activity (ρ=-.03 to -.17). Amotivation had a weak, negative association with physical activity (ρ=-.11 to -.21). Evidence provides some support for self-determination theory tenets. However, there was substantial heterogeneity in most associations and many studies had methodological shortcomings. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  2. Physics of Resonating Valence Bond Spin Liquids

    NASA Astrophysics Data System (ADS)

    Wildeboer, Julia Saskia

    This thesis will investigate various aspects of the physics of resonating valence bond spin liquids. After giving an introduction to the world that lies beyond Landau's priciple of symmetry breaking, e.g. giving an overview of exotic magnetic phases and how they can be described and (possibly) found, we will study a spin-rotationally invariant model system with a known parent Hamiltonian, and argue its ground state to lie within a highly sought after exotic phase, namely the Z2 quantum spin liquid phase. A newly developed numerical procedure --Pfaffian Monte Carlo-- will be introduced to amass evidence that our model Hamiltonian indeed exhibits a Z2 quantum spin liquid phase. Subsequently, we will prove a useful mathematical property of the resonating valence bond states: these states are shown to be linearly independent. Various lattices are investigated concerning this property, and its applications and usefullness are discussed. Eventually, we present a simplified model system describing the interplay of the well known Heisenberg interaction and the Dzyaloshinskii-Moriya (DM) interaction term acting on a sawtooth chain. The effect of the interplay between the two interaction couplings on the phase diagram is investigated. To do so, we employ modern techniques such as the density matrix renormalization group (DMRG) scheme. We find that for weak DM interaction the system exhibits valence bond order. However, a strong enough DM coupling destroys this order.

  3. Neutrino-Argon Interaction with GENIE Event Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesneanu, Daniela; National Institute for Nuclear Physics and Engineering 'Horia Hulubei' Bucharest-Magurele

    2010-11-24

    Neutrinos are very special particles, have only weak interactions, except gravity, and are produced in very different processes in Nuclear and Particle Physics. Neutrinos are, also, messengers from astrophysical objects, as well as relics from Early Universe. Therefore, its can give us information on processes happening in the Universe, during its evolution, which cannot be studied otherwise. The underground instrumentation including a variety of large and very large detectors, thanks to technical breakthroughs, have achieved new fundamental results like the solution of the solar neutrino puzzle and the evidence for Physics beyond the Standard Model of elementary interactions in themore » neutrino sector with non-vanishing neutrino masses and lepton flavour violation.Two of the LAGUNA(Large Apparatus studying Grand Unification and Neutrino Astrophysics) detectors, namely: GLACIER (Giant Liquid Argon Charge Imaging ExpeRiment) and LENA (Low Energy Neutrino Astrophysics) could be emplaced in 'Unirea' salt mine from Slanic-Prahova, Romania. A detailed analysis of the conditions and advantages is necessary. A few results have been presented previously. In the present work, we propose to generate events and compute the cross sections for interactions between neutrino and Argon-40, to estimate possible detection performances and event types. For doing this, we use the code GENIE(G lowbar enerates E lowbar vents for N lowbar eutrino I lowbar nteraction E lowbar xperiments). GENIE Code is an Object-Oriented Neutrino MC Generator supported and developed by an international collaboration of neutrino interaction experts.« less

  4. Observation of steric hindrance effect controlling crystal packing structures and physical properties in three new isomeric nitronyl nitroxide radicals

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-Rong; Sun, Jia-Sen; Sui, Yun-Xia; Ren, Xiao-Ming; Yao, Bin-Qian; Shen, Lin-Jiang; Meng, Qing-Jin

    2009-07-01

    Three isomeric nitronyl nitroxide radical compounds, 2-[ n-( N-benzyl)pyridinium]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide bromide ( n = 2, 3 and 4 for 1, 2 and 3, respectively), have been synthesized and structurally characterized. The influence of steric hindrance on the molecular packing structures and physical properties has been observed. In the radical 1, such steric hindrance leads to a folding conformation of the imidazoline and benzene rings and the intramolecular C-H…π interaction between the methyl group and the benzene ring. There is no such effect in 2 and 3. In crystal of 2, there are the intermolecular C-H…π between methyl groups and benzene ring and intermolecular π…π stacking interaction between pyridine and benzene rings. Crystal of 2 with a chiral space group P2 12 12 1 shows the SHG response about 0.4 times as that of urea. In crystal of 3, there are three symmetry-independent radical molecules, which form an unusually six-membered supramolecular ring via intermolecular O…π interactions. For the solid sample of 3, the X-band EPR exhibits an axially symmetric signal and magnetic susceptibility data suggest intermolecular antiferromagnetic (AFM) coupling interactions and very weak intermolecular ferromagnetic (FM) coupling interactions which is more likely caused by magnetic anisotropy, while measurements of both 1 and 2 show isotropic X-band EPR signals and simple Currie-Weiss magnetic behavior.

  5. Cross-Cultural Investigation of Male Gait Perception in Relation to Physical Strength and Speed

    PubMed Central

    Fink, Bernhard; Wübker, Marieke; Ostner, Julia; Butovskaya, Marina L.; Mezentseva, Anna; Muñoz-Reyes, José Antonio; Sela, Yael; Shackelford, Todd K.

    2017-01-01

    Previous research documents that men and women can accurately judge male physical strength from gait, but also that the sexes differ in attractiveness judgments of strong and weak male walkers. Women’s (but not men’s) attractiveness assessments of strong male walkers are higher than for weak male walkers. Here, we extend this research to assessments of strong and weak male walkers in Chile, Germany, and Russia. Men and women judged videos of virtual characters, animated with the walk movements of motion-captured men, on strength and attractiveness. In two countries (Germany and Russia), these videos were additionally presented at 70% (slower) and 130% (faster) of their original speed. Stronger walkers were judged to be stronger and more attractive than weak walkers, and this effect was independent of country (but not sex). Women tended to provide higher attractiveness judgments to strong walkers, and men tended to provide higher attractiveness judgments to weak walkers. In addition, German and Russian participants rated strong walkers most attractive at slow and fast speed. Thus, across countries men and women can assess male strength from gait, although they tended to differ in attractiveness assessments of strong and weak male walkers. Attractiveness assessments of male gait may be influenced by society-specific emphasis on male physical strength. PMID:28878720

  6. Learning from Higgs physics at future Higgs factories

    NASA Astrophysics Data System (ADS)

    Gu, Jiayin; Li, Honglei; Liu, Zhen; Su, Shufang; Su, Wei

    2017-12-01

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explore its sensitivity to new physics models at the electron-positron colliders. In particular, we study two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We perform a global fit to various Higgs search channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtain the limits on the singlet-doublet mixing angle sin θ, as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyze tree level effects in tan β vs. cos( β - α) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtain lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. We also compare the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).

  7. Turbulence of Weak Gravitational Waves in the Early Universe.

    PubMed

    Galtier, Sébastien; Nazarenko, Sergey V

    2017-12-01

    We study the statistical properties of an ensemble of weak gravitational waves interacting nonlinearly in a flat space-time. We show that the resonant three-wave interactions are absent and develop a theory for four-wave interactions in the reduced case of a 2.5+1 diagonal metric tensor. In this limit, where only plus-polarized gravitational waves are present, we derive the interaction Hamiltonian and consider the asymptotic regime of weak gravitational wave turbulence. Both direct and inverse cascades are found for the energy and the wave action, respectively, and the corresponding wave spectra are derived. The inverse cascade is characterized by a finite-time propagation of the metric excitations-a process similar to an explosive nonequilibrium Bose-Einstein condensation, which provides an efficient mechanism to ironing out small-scale inhomogeneities. The direct cascade leads to an accumulation of the radiation energy in the system. These processes might be important for understanding the early Universe where a background of weak nonlinear gravitational waves is expected.

  8. RF Wave Simulation Using the MFEM Open Source FEM Package

    NASA Astrophysics Data System (ADS)

    Stillerman, J.; Shiraiwa, S.; Bonoli, P. T.; Wright, J. C.; Green, D. L.; Kolev, T.

    2016-10-01

    A new plasma wave simulation environment based on the finite element method is presented. MFEM, a scalable open-source FEM library, is used as the basis for this capability. MFEM allows for assembling an FEM matrix of arbitrarily high order in a parallel computing environment. A 3D frequency domain RF physics layer was implemented using a python wrapper for MFEM and a cold collisional plasma model was ported. This physics layer allows for defining the plasma RF wave simulation model without user knowledge of the FEM weak-form formulation. A graphical user interface is built on πScope, a python-based scientific workbench, such that a user can build a model definition file interactively. Benchmark cases have been ported to this new environment, with results being consistent with those obtained using COMSOL multiphysics, GENRAY, and TORIC/TORLH spectral solvers. This work is a first step in bringing to bear the sophisticated computational tool suite that MFEM provides (e.g., adaptive mesh refinement, solver suite, element types) to the linear plasma-wave interaction problem, and within more complicated integrated workflows, such as coupling with core spectral solver, or incorporating additional physics such as an RF sheath potential model or kinetic effects. USDoE Awards DE-FC02-99ER54512, DE-FC02-01ER54648.

  9. Weak Galilean invariance as a selection principle for coarse-grained diffusive models.

    PubMed

    Cairoli, Andrea; Klages, Rainer; Baule, Adrian

    2018-05-29

    How does the mathematical description of a system change in different reference frames? Galilei first addressed this fundamental question by formulating the famous principle of Galilean invariance. It prescribes that the equations of motion of closed systems remain the same in different inertial frames related by Galilean transformations, thus imposing strong constraints on the dynamical rules. However, real world systems are often described by coarse-grained models integrating complex internal and external interactions indistinguishably as friction and stochastic forces. Since Galilean invariance is then violated, there is seemingly no alternative principle to assess a priori the physical consistency of a given stochastic model in different inertial frames. Here, starting from the Kac-Zwanzig Hamiltonian model generating Brownian motion, we show how Galilean invariance is broken during the coarse-graining procedure when deriving stochastic equations. Our analysis leads to a set of rules characterizing systems in different inertial frames that have to be satisfied by general stochastic models, which we call "weak Galilean invariance." Several well-known stochastic processes are invariant in these terms, except the continuous-time random walk for which we derive the correct invariant description. Our results are particularly relevant for the modeling of biological systems, as they provide a theoretical principle to select physically consistent stochastic models before a validation against experimental data.

  10. Bullying victimization prevalence and its effects on psychosomatic complaints: can sense of coherence make a difference?

    PubMed

    García-Moya, Irene; Suominen, Sakari; Moreno, Carmen

    2014-10-01

    The aim of this study was to examine the prevalence of bullying victimization and its impact on physical and psychological complaints in a representative sample of adolescents and to explore the role of sense of coherence (SOC) in victimization prevalence and consequences. A representative sample of Spanish adolescents (N = 7580, mean age = 15.41) was selected as part of the Health Behaviour in School-aged Children study. Bullying victimization, physical and psychological symptoms, and SOC were measured, and comparisons were made between strong- and weak-SOC adolescents regarding their likelihood of being a victim of bullying and the negative effects of bullying victimization on their health. Weak-SOC adolescents were significantly more likely to suffer from bullying victimization regardless of type (nonphysical vs physical and nonphysical) or means (traditional vs cyberbullying). In addition, bullying victimization showed significant increasing effects on weak-SOC adolescents' physical and psychological symptoms whereas in strong-SOC adolescents it was not significantly associated with increases in physical complaints and its effects on psychological complaints seemed to be weaker. Weak-SOC adolescents seem to be at higher risk of becoming bullying victims and victimization experiences appear to have increased negative effects on them when compared to strong-SOC students. © 2014, American School Health Association.

  11. Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex.

    PubMed

    Ortega-Roldan, Jose Luis; Jensen, Malene Ringkjøbing; Brutscher, Bernhard; Azuaga, Ana I; Blackledge, Martin; van Nuland, Nico A J

    2009-05-01

    The description of the interactome represents one of key challenges remaining for structural biology. Physiologically important weak interactions, with dissociation constants above 100 muM, are remarkably common, but remain beyond the reach of most of structural biology. NMR spectroscopy, and in particular, residual dipolar couplings (RDCs) provide crucial conformational constraints on intermolecular orientation in molecular complexes, but the combination of free and bound contributions to the measured RDC seriously complicates their exploitation for weakly interacting partners. We develop a robust approach for the determination of weak complexes based on: (i) differential isotopic labeling of the partner proteins facilitating RDC measurement in both partners; (ii) measurement of RDC changes upon titration into different equilibrium mixtures of partially aligned free and complex forms of the proteins; (iii) novel analytical approaches to determine the effective alignment in all equilibrium mixtures; and (iv) extraction of precise RDCs for bound forms of both partner proteins. The approach is demonstrated for the determination of the three-dimensional structure of the weakly interacting CD2AP SH3-C:Ubiquitin complex (K(d) = 132 +/- 13 muM) and is shown, using cross-validation, to be highly precise. We expect this methodology to extend the remarkable and unique ability of NMR to study weak protein-protein complexes.

  12. Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex

    PubMed Central

    Ortega-Roldan, Jose Luis; Jensen, Malene Ringkjøbing; Brutscher, Bernhard; Azuaga, Ana I.; Blackledge, Martin; van Nuland, Nico A. J.

    2009-01-01

    The description of the interactome represents one of key challenges remaining for structural biology. Physiologically important weak interactions, with dissociation constants above 100 μM, are remarkably common, but remain beyond the reach of most of structural biology. NMR spectroscopy, and in particular, residual dipolar couplings (RDCs) provide crucial conformational constraints on intermolecular orientation in molecular complexes, but the combination of free and bound contributions to the measured RDC seriously complicates their exploitation for weakly interacting partners. We develop a robust approach for the determination of weak complexes based on: (i) differential isotopic labeling of the partner proteins facilitating RDC measurement in both partners; (ii) measurement of RDC changes upon titration into different equilibrium mixtures of partially aligned free and complex forms of the proteins; (iii) novel analytical approaches to determine the effective alignment in all equilibrium mixtures; and (iv) extraction of precise RDCs for bound forms of both partner proteins. The approach is demonstrated for the determination of the three-dimensional structure of the weakly interacting CD2AP SH3-C:Ubiquitin complex (Kd = 132 ± 13 μM) and is shown, using cross-validation, to be highly precise. We expect this methodology to extend the remarkable and unique ability of NMR to study weak protein–protein complexes. PMID:19359362

  13. Planck 2010: From the Planck Scale to the ElectroWeak Scale (Part 9)

    ScienceCinema

    None

    2018-06-27

    "Planck 2010: From the Planck Scale to the ElectroWeak Scale". The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC. The main topic covered will be "Supersymmetry", with discussions on: supergravity and string phenomenology, extra dimensions, electroweak symmetry breaking, LHC and Tevatron physics, collider physics, flavor and neutrino physics, astroparticle and cosmology, gravity and holography, and strongly coupled physics and CFT.

  14. Planck 2010: From the Planck Scale to the ElectroWeak Scale (Part 5)

    ScienceCinema

    None

    2018-06-27

    "Planck 2010: From the Planck Scale to the ElectroWeak Scale". The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC. The main topic covered will be "Supersymmetry", with discussions on: supergravity and string phenomenology, extra dimensions, electroweak symmetry breaking, LHC and Tevatron physics, collider physics, flavor and neutrino physics, astroparticle and cosmology, gravity and holography, and strongly coupled physics and CFT.

  15. Planck 2010: From the Planck Scale to the ElectroWeak Scale (Part 6)

    ScienceCinema

    None

    2018-06-28

    "Planck 2010: From the Planck Scale to the ElectroWeak Scale". The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC. The main topic covered will be "Supersymmetry", with discussions on: supergravity and string phenomenology, extra dimensions, electroweak symmetry breaking, LHC and Tevatron physics, collider physics, flavor and neutrino physics, astroparticle and cosmology, gravity and holography, and strongly coupled physics and CFT.

  16. Planckian Interacting Massive Particles as Dark Matter.

    PubMed

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S

    2016-03-11

    The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01M_{p} is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.

  17. Magnetic Reconnection in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Lukin, Vyacheslav S.; Ni, Lei; Murphy, Nicholas Arnold

    2017-08-01

    We report on the most recent efforts to accurately and self-consistently model magnetic reconnection processes in the context of the solar chromosphere. The solar chromosphere is a notoriously complex and highly dynamic boundary layer of the solar atmosphere where local variations in the plasma parameters can be of the order of the mean values. At the same time, the interdependence of the physical processes such as magnetic field evolution, local and global energy transfer between internal and electromagnetic plasma energy, radiation transport, plasma reactivity, and dissipation mechanisms make it a particularly difficult system to self-consistently model and understand. Several recent studies have focused on the micro-physics of multi-fluid magnetic reconnection at magnetic nulls in the weakly ionized plasma environment of the lower chromosphere[1-3]. Here, we extend the previous work by considering a range of spatial scales and magnetic field strengths in a configuration with component magnetic reconnection, i.e., for magnetic reconnection with a guide field. We show that in all cases the non-equilibrium reactivity of the plasma and the dynamic interaction among the plasma processes play important roles in determining the structure of the reconnection region. We also speculate as to the possible observables of chromospheric magnetic reconnection and the likely plasma conditions required for generation of Ellerman and IRIS bombs.[1] Leake, Lukin, Linton, and Meier, “Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” ApJ 760 (2012).[2] Leake, Lukin, and Linton, “Magnetic reconnection in a weakly ionized plasma,” PoP 20 (2013).[3] Murphy and Lukin, “Asymmetric magnetic reconnection in weakly ionized chromospheric plasmas,” ApJ 805 (2015).[*Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

  18. Simulation of the weakly interacting Bose gas relaxation for cases of various interaction types

    NASA Astrophysics Data System (ADS)

    Kartsev, P. F.; Kuznetsov, I. O.

    2017-12-01

    In this work, we investigate the role of interactions in the process of thermalization of a weakly interacting Bose gas. The system of kinetic equations based on the ‘Fermi’s golden rule’ is solved numerically using special transformation for calculation efficiency. We study the distribution function for particles in various conditions, including interaction with phonon subsystem, i.e. energy exchange with thermal bath. The possibility to achieve the state of Bose-Einstein condensation with specific values of parameters, is also discussed.

  19. Gauge-invariant formalism of cosmological weak lensing

    NASA Astrophysics Data System (ADS)

    Yoo, Jaiyul; Grimm, Nastassia; Mitsou, Ermis; Amara, Adam; Refregier, Alexandre

    2018-04-01

    We present the gauge-invariant formalism of cosmological weak lensing, accounting for all the relativistic effects due to the scalar, vector, and tensor perturbations at the linear order. While the light propagation is fully described by the geodesic equation, the relation of the photon wavevector to the physical quantities requires the specification of the frames, where they are defined. By constructing the local tetrad bases at the observer and the source positions, we clarify the relation of the weak lensing observables such as the convergence, the shear, and the rotation to the physical size and shape defined in the source rest-frame and the observed angle and redshift measured in the observer rest-frame. Compared to the standard lensing formalism, additional relativistic effects contribute to all the lensing observables. We explicitly verify the gauge-invariance of the lensing observables and compare our results to previous work. In particular, we demonstrate that even in the presence of the vector and tensor perturbations, the physical rotation of the lensing observables vanishes at the linear order, while the tetrad basis rotates along the light propagation compared to a FRW coordinate. Though the latter is often used as a probe of primordial gravitational waves, the rotation of the tetrad basis is indeed not a physical observable. We further clarify its relation to the E-B decomposition in weak lensing. Our formalism provides a transparent and comprehensive perspective of cosmological weak lensing.

  20. Transmission of singularities through a shock wave and the sound generation

    NASA Technical Reports Server (NTRS)

    Ting, L.

    1974-01-01

    The interaction of a plane shock wave of finite strength with a vortex line, point vortex, doublet or quadrupole of weak strength is studied. Based upon the physical condition that a free vortex line cannot support a pressure difference, rules are established which define the change of the linear intensity of the segment of the vortex line after its passage through the shock. The rules for point vortex, doublet, and quadrupole are then established as limiting cases. These rules can be useful for the construction of the solution of the entire flow field and for its physical interpretation. However, the solution can be obtained directly by the technique developed for shock diffraction problems. Explicit solutions and the associated sound generation are obtained for the passage of a point vortex through the shock wave.

  1. Anomalous transport theory for the reversed field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry, P.W.; Hegna, C.C; Sovinec, C.R.

    1996-09-01

    Physically motivated transport models with predictive capabilities and significance beyond the reversed field pinch (RFP) are presented. It is shown that the ambipolar constrained electron heat loss observed in MST can be quantitatively modeled by taking account of the clumping in parallel streaming electrons and the resultant self-consistent interaction with collective modes; that the discrete dynamo process is a relaxation oscillation whose dependence on the tearing instability and profile relaxation physics leads to amplitude and period scaling predictions consistent with experiment; that the Lundquist number scaling in relaxed plasmas driven by magnetic turbulence has a weak S{sup {minus}1/4} scaling; andmore » that radial E{times}B shear flow can lead to large reductions in the edge particle flux with little change in the heat flux, as observed in the RFP and tokamak. 24 refs.« less

  2. Nuclear Physics Around the Unitarity Limit

    DOE PAGES

    König, Sebastian; Grießhammer, Harald W.; Hammer, H. -W.; ...

    2017-05-15

    We argue that many features of the structure of nuclei emerge from a strictly perturbative expansion around the unitarity limit, where the two-nucleon S waves have bound states at zero energy. In this limit, the gross features of states in the nuclear chart are correlated to only one dimensionful parameter, which is related to the breaking of scale invariance to a discrete scaling symmetry and set by the triton binding energy. Observables are moved to their physical values by small perturbative corrections, much like in descriptions of the fine structure of atomic spectra. We provide evidence in favor of themore » conjecture that light, and possibly heavier, nuclei are bound weakly enough to be insensitive to the details of the interactions but strongly enough to be insensitive to the exact size of the two-nucleon system.« less

  3. Tunable Fano resonance using weak-value amplification with asymmetric spectral response as a natural pointer

    NASA Astrophysics Data System (ADS)

    Singh, Ankit K.; Ray, Subir K.; Chandel, Shubham; Pal, Semanti; Gupta, Angad; Mitra, P.; Ghosh, N.

    2018-05-01

    Weak measurement enables faithful amplification and high-precision measurement of small physical parameters and is under intensive investigation as an effective tool in metrology and for addressing foundational questions in quantum mechanics. Here we demonstrate weak-value amplification using the asymmetric spectral response of Fano resonance as the pointer arising naturally in precisely designed metamaterials, namely, waveguided plasmonic crystals. The weak coupling between the polarization degree of freedom and the spectral response of Fano resonance arises due to a tiny shift in the asymmetric spectral response between two orthogonal linear polarizations. By choosing the preselected and postselected polarization states to be nearly mutually orthogonal, we observe both real and imaginary weak-value amplifications manifested as a spectacular shift of the Fano-resonance peak and narrowing (or broadening) of the resonance linewidth, respectively. The remarkable control and tunability of Fano resonance in a single device enabled by weak-value amplification may enhance active Fano-resonance-based applications in the nano-optical domain. In general, weak measurements using Fano-type spectral response broadens the domain of applicability of weak measurements using natural spectral line shapes as a pointer in a wide range of physical systems.

  4. Characterization of Strength and Function in Ambulatory Adults With GNE Myopathy

    PubMed Central

    Argov, Zohar; Bronstein, Faye; Esposito, Alicia; Feinsod-Meiri, Yael; Florence, Julaine M.; Fowler, Eileen; Greenberg, Marcia B.; Malkus, Elizabeth C.; Rebibo, Odelia; Siener, Catherine S.; Caraco, Yoseph; Kolodny, Edwin H.; Lau, Heather A.; Pestronk, Alan; Shieh, Perry; Mayhew, Jill E.

    2017-01-01

    Abstract Objective: To characterize the pattern and extent of muscle weakness and impact on physical functioning in adults with GNEM. Methods: Strength and function were assessed in GNEM subjects (n = 47) using hand-held dynamometry, manual muscle testing, upper and lower extremity functional capacity tests, and the GNEM-Functional Activity Scale (GNEM-FAS). Results: Profound upper and lower muscle weakness was measured using hand-held dynamometry in a characteristic pattern, previously described. Functional tests and clinician-reported outcomes demonstrated the consequence of muscle weakness on physical functioning. Conclusions: The characteristic pattern of upper and lower muscle weakness associated with GNEM and the resulting functional limitations can be reliably measured using these clinical outcome assessments of muscle strength and function. PMID:28827485

  5. Weak annihilation and new physics in charmless [Formula: see text] decays.

    PubMed

    Bobeth, Christoph; Gorbahn, Martin; Vickers, Stefan

    We use currently available data of nonleptonic charmless 2-body [Formula: see text] decays ([Formula: see text]) that are mediated by [Formula: see text] QCD- and QED-penguin operators to study weak annihilation and new-physics effects in the framework of QCD factorization. In particular we introduce one weak-annihilation parameter for decays related by [Formula: see text] quark interchange and test this universality assumption. Within the standard model, the data supports this assumption with the only exceptions in the [Formula: see text] system, which exhibits the well-known "[Formula: see text] puzzle", and some tensions in [Formula: see text]. Beyond the standard model, we simultaneously determine weak-annihilation and new-physics parameters from data, employing model-independent scenarios that address the "[Formula: see text] puzzle", such as QED-penguins and [Formula: see text] current-current operators. We discuss also possibilities that allow further tests of our assumption once improved measurements from LHCb and Belle II become available.

  6. A Universe without Weak Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harnik, Roni; Kribs, Graham D.; Perez, Gilad

    2006-04-07

    A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical ''Weakless Universe'' is matched to our Universe by simultaneously adjusting Standard Model and cosmological parameters. For instance, chemistry and nuclear physics are essentially unchanged. The apparent habitability of the Weakless Universe suggests that the anthropic principle does not determine the scalemore » of electroweak breaking, or even require that it be smaller than the Planck scale, so long as technically natural parameters may be suitably adjusted. Whether the multi-parameter adjustment is realized or probable is dependent on the ultraviolet completion, such as the string landscape. Considering a similar analysis for the cosmological constant, however, we argue that no adjustments of other parameters are able to allow the cosmological constant to raise up even remotely close to the Planck scale while obtaining macroscopic structure. The fine-tuning problems associated with the electroweak breaking scale and the cosmological constant therefore appear to be qualitatively different from the perspective of obtaining a habitable universe.« less

  7. The design of a multi-harmonic step-tunable gyrotron

    NASA Astrophysics Data System (ADS)

    Qi, Xiang-Bo; Du, Chao-Hai; Zhu, Juan-Feng; Pan, Shi; Liu, Pu-Kun

    2017-03-01

    The theoretical study of a step-tunable gyrotron controlled by successive excitation of multi-harmonic modes is presented in this paper. An axis-encircling electron beam is employed to eliminate the harmonic mode competition. Physics images are depicted to elaborate the multi-harmonic interaction mechanism in determining the operating parameters at which arbitrary harmonic tuning can be realized by magnetic field sweeping to achieve controlled multiband frequencies' radiation. An important principle is revealed that a weak coupling coefficient under a high-harmonic interaction can be compensated by a high Q-factor. To some extent, the complementation between the high Q-factor and weak coupling coefficient makes the high-harmonic mode potential to achieve high efficiency. Based on a previous optimized magnetic cusp gun, the multi-harmonic step-tunable gyrotron is feasible by using harmonic tuning of first-to-fourth harmonic modes. Multimode simulation shows that the multi-harmonic gyrotron can operate on the 34 GHz first-harmonic TE11 mode, 54 GHz second-harmonic TE21 mode, 74 GHz third-harmonic TE31 mode, and 94 GHz fourth-harmonic TE41 mode, corresponding to peak efficiencies of 28.6%, 35.7%, 17.1%, and 11.4%, respectively. The multi-harmonic step-tunable gyrotron provides new possibilities in millimeter-terahertz source development especially for advanced terahertz applications.

  8. Short Range Tests of Gravity

    NASA Astrophysics Data System (ADS)

    Cardenas, Crystal; Harter, Andrew; Hoyle, C. D.; Leopardi, Holly; Smith, David

    2014-03-01

    Gravity was the first force to be described mathematically, yet it is the only fundamental force not well understood. The Standard Model of quantum mechanics describes interactions between the fundamental strong, weak and electromagnetic forces while Einstein's theory of General Relativity (GR) describes the fundamental force of gravity. There is yet to be a theory that unifies inconsistencies between GR and quantum mechanics. Scenarios of String Theory predicting more than three spatial dimensions also predict physical effects of gravity at sub-millimeter levels that would alter the gravitational inverse-square law. The Weak Equivalence Principle (WEP), a central feature of GR, states that all objects are accelerated at the same rate in a gravitational field independent of their composition. A violation of the WEP at any length would be evidence that current models of gravity are incorrect. At the Humboldt State University Gravitational Research Laboratory, an experiment is being developed to observe gravitational interactions below the 50-micron distance scale. The experiment measures the twist of a parallel-plate torsion pendulum as an attractor mass is oscillated within 50 microns of the pendulum, providing time varying gravitational torque on the pendulum. The size and distance dependence of the torque amplitude provide means to determine deviations from accepted models of gravity on untested distance scales. undergraduate.

  9. Detector Simulation and WIMP Search Analysis for the Cryogenic Dark Matter Search Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, Kevin

    2013-06-01

    Astrophysical and cosmological measurements on the scales of galaxies, galaxy clusters, and the universe indicate that 85% of the matter in the universe is composed of dark matter, made up of non-baryonic particles that interact with cross-sections on the weak scale or lower. Hypothetical Weakly Interacting Massive Particles, or WIMPs, represent a potential solution to the dark matter problem, and naturally arise in certain Standard Model extensions. The Cryogenic Dark Matter Search (CDMS) collaboration aims to detect the scattering of WIMP particles from nuclei in terrestrial detectors. Germanium and silicon particle detectors are deployed in the Soudan Underground Laboratory inmore » Minnesota. These detectors are instrumented with phonon and ionization sensors, which allows for discrimination against electromagnetic backgrounds, which strike the detector at rates orders of magnitude higher than the expected WIMP signal. This dissertation presents the development of numerical models of the physics of the CDMS detectors, implemented in a computational package collectively known as the CDMS Detector Monte Carlo (DMC). After substantial validation of the models against data, the DMC is used to investigate potential backgrounds to the next iteration of the CDMS experiment, known as SuperCDMS. Finally, an investigation of using the DMC in a reverse Monte Carlo analysis of WIMP search data is presented.« less

  10. Indirect detection of dark matter with γ rays.

    PubMed

    Funk, Stefan

    2015-10-06

    The details of what constitutes the majority of the mass that makes up dark matter in the Universe remains one of the prime puzzles of cosmology and particle physics today-80 y after the first observational indications. Today, it is widely accepted that dark matter exists and that it is very likely composed of elementary particles, which are weakly interacting and massive [weakly interacting massive particles (WIMPs)]. As important as dark matter is in our understanding of cosmology, the detection of these particles has thus far been elusive. Their primary properties such as mass and interaction cross sections are still unknown. Indirect detection searches for the products of WIMP annihilation or decay. This is generally done through observations of γ-ray photons or cosmic rays. Instruments such as the Fermi large-area telescope, high-energy stereoscopic system, major atmospheric gamma-ray imaging Cherenkov, and very energetic radiation imaging telescope array, combined with the future Cherenkov telescope array, will provide important complementarity to other search techniques. Given the expected sensitivities of all search techniques, we are at a stage where the WIMP scenario is facing stringent tests, and it can be expected that WIMPs will be either be detected or the scenario will be so severely constrained that it will have to be rethought. In this sense, we are on the threshold of discovery. In this article, I will give a general overview of the current status and future expectations for indirect searches of dark matter (WIMP) particles.

  11. Regenerable Sorbent for CO2 Removal

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Jayaraman, Ambal

    2013-01-01

    A durable, high-capacity regenerable sorbent can remove CO2 from the breathing loop under a Martian atmosphere. The system design allows near-ambient temperature operation, needs only a small temperature swing, and sorbent regeneration takes place at or above 8 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the breathing loop. The physical adsorbent can be used in a metabolic, heat-driven TSA system to remove CO2 from the breathing loop of the astronaut and reject it to the Martian atmosphere. Two (or more) alternating sorbent beds continuously scrub and reject CO2 from the spacesuit ventilation loop. The sorbent beds are cycled, alternately absorbing CO2 from the vent loop and rejecting the adsorbed material into the environment at a high CO2 partial pressure (above 8 torr). The system does not need to run the adsorber at cryogenic temperatures, and uses a much smaller temperature swing. The sorbent removes CO2 via a weak chemical interaction. The interaction is strong enough to enable CO2 adsorption even at 3 to 7.6 torr. However, because the interaction between the surface adsorption sites and the CO2 is relatively weak, the heat input needed to regenerate the sorbent is much lower than that for chemical absorbents. The sorbent developed in this project could potentially find use in a large commercial market in the removal of CO2 emissions from coal-fired power plants, if regulations are put in place to curb carbon emissions from power plants.

  12. Indirect detection of dark matter with γ rays

    PubMed Central

    Funk, Stefan

    2015-01-01

    The details of what constitutes the majority of the mass that makes up dark matter in the Universe remains one of the prime puzzles of cosmology and particle physics today—80 y after the first observational indications. Today, it is widely accepted that dark matter exists and that it is very likely composed of elementary particles, which are weakly interacting and massive [weakly interacting massive particles (WIMPs)]. As important as dark matter is in our understanding of cosmology, the detection of these particles has thus far been elusive. Their primary properties such as mass and interaction cross sections are still unknown. Indirect detection searches for the products of WIMP annihilation or decay. This is generally done through observations of γ-ray photons or cosmic rays. Instruments such as the Fermi large-area telescope, high-energy stereoscopic system, major atmospheric gamma-ray imaging Cherenkov, and very energetic radiation imaging telescope array, combined with the future Cherenkov telescope array, will provide important complementarity to other search techniques. Given the expected sensitivities of all search techniques, we are at a stage where the WIMP scenario is facing stringent tests, and it can be expected that WIMPs will be either be detected or the scenario will be so severely constrained that it will have to be rethought. In this sense, we are on the threshold of discovery. In this article, I will give a general overview of the current status and future expectations for indirect searches of dark matter (WIMP) particles. PMID:24821791

  13. Observation of a quadrupole interaction for cubic imperfections exhibiting a dynamic Jahn-Teller effect.

    NASA Technical Reports Server (NTRS)

    Herrington, J. R.; Estle, T. L.; Boatner, L. A.

    1972-01-01

    The observation and interpretation of weak EPR transitions, identified as 'forbidden' transitions, establish the existence of a new type of quadrupole interaction for cubic-symmetry imperfections. This interaction is simply a consequence of the ground-vibronic-state degeneracy. The signs as well as the magnitudes of the quadrupole-coupling coefficients are determined experimentally. These data agree well with the predictions of crystal field theory modified to account for a weak-to-moderate vibronic interaction (i.e., a dynamic Jahn-Teller effect).

  14. Interpretation of neutrino-matter interactions at low energies as contraction of gauge group of Electroweak Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromov, N. A., E-mail: gromov@dm.komisc.ru

    The very weak neutrino-matter interactions are explained with the help of the gauge group contraction of the standard Electroweak Model. The mathematical contraction procedure is connected with the energy dependence of the interaction cross section for neutrinos and corresponds to the limiting case of the Electroweak Model at low energies. Contraction parameter is connected with the universal Fermi constant of weak interactions and neutrino energy as j{sup 2}(s) = {radical}(G{sub F} s)

  15. REVIEWS OF TOPICAL PROBLEMS: The neutrino mass in elementary-particle physics and in big bang cosmology

    NASA Astrophysics Data System (ADS)

    Zel'dovich, Ya B.; Khlopov, M. Yu

    1981-09-01

    Some theoretical aspects of a nonzero value for the neutrino rest mass and its possible implications for physics are discussed. The nature of the neutrino mass is analyzed, as well as the physical consequences that may derive from the existence of new helicity states for the neutrino or from lepton charge nonconservation if the mass is of Dirac or Majorana character, respectively. Massive neutrinos are examined in the context of grand unified theories combining the weak, strong, and electromagnetic interactions. Searches for neutrino-mass effects in β decay and for neutrino oscillations are reviewed. Several astrophysical effects of the neutrino mass are described: solar-neutrino oscillations, the decay of primordial neutrinos, the feasibility of detecting massive primordial neutrinos experimentally. The predictions of big bang theory regarding the neutrino number density in the universe are analyzed, and a discussion is given of the influence neutrino oscillations might have on the neutrino density and on cosmological nucleosynthesis.

  16. Weak decays of heavy hadrons into dynamically generated resonances

    DOE PAGES

    Oset, Eulogio; Liang, Wei -Hong; Bayar, Melahat; ...

    2016-01-28

    In this study, we present a review of recent works on weak decay of heavy mesons and baryons with two mesons, or a meson and a baryon, interacting strongly in the final state. The aim is to learn about the interaction of hadrons and how some particular resonances are produced in the reactions. It is shown that these reactions have peculiar features and act as filters for some quantum numbers which allow to identify easily some resonances and learn about their nature. The combination of basic elements of the weak interaction with the framework of the chiral unitary approach allowmore » for an interpretation of results of many reactions and add a novel information to different aspects of the hadron interaction and the properties of dynamically generated resonances.« less

  17. Measurement of parity violation in electron–quark scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, D.; Pan, K.; Subedi, R.

    2014-02-05

    Symmetry permeates nature and is fundamental to all laws of physics. One example is parity (mirror) symmetry, which implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not1, 2. Historically, parity violation in electron scattering has been important in establishing (and now testing) the standard model of particle physics. One particular set of quantities accessible through measurements of parity-violating electron scattering are the effective weak couplings C2q, sensitive to the quarks’ chirality preference when participating in the weakmore » force, which have been measured directly3, 4 only once in the past 40 years. Here we report a measurement of the parity-violating asymmetry in electron–quark scattering, which yields a determination of 2C2u-C2d (where u and d denote up and down quarks, respectively) with a precision increased by a factor of five relative to the earlier result. These results provide evidence with greater than 95 per cent confidence that the C2q couplings are non-zero, as predicted by the electroweak theory. They lead to constraints on new parity-violating interactions beyond the standard model, particularly those due to quark chirality. Whereas contemporary particle physics research is focused on high-energy colliders such as the Large Hadron Collider, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. Our measurement is relatively free of ambiguity in its interpretation, and opens the door to even more precise measurements in the future.« less

  18. The Effects of Physically Unrelated Near Neighbors on the Weak Galaxy-Galaxy Lensing Signal

    NASA Astrophysics Data System (ADS)

    Brainerd, Tereasa

    2018-01-01

    The effects of physically unrelated near neighbors on the weak galaxy-galaxy lensing signal are explored. Physically unrelated near neighbors are galaxies that are close to a given lens galaxy in projection on the sky, but are located at substantially different redshifts. Typically, the effects of such physically unrelated near neighbors are assumed to cancel. If that were truly the case, these objects would not contribute to the mean tangential shear around the lenses and they can be ignored when using an observed weak lensing signal to infer the excess surface mass density surrounding a set of lens galaxies. Here, observed galaxies with known redshifts and luminosities are used as the basis of a suite of Monte Carlo simluations of weak galaxy-galaxy lensing. The simulations incorporate the intrinsic clustering of the lens galaxies, as well as the intrinsic distribution of the lens galaxy masses. Dark matter halos of appropriate sizes and masses are assigned to each of the lens galaxies, and the net effect of all lenses on a set of background source galaxies is determined. The net weak lensing signal (i.e., the mean tangential shear due to all lenses along the line of sight) is computed and then compared to the excess surface mass density surrounding the lenses. Due to the broad redshift and mass distributions of the lenses, the effects of physically unrelated near neighbors in the simulations do not cancel. On scales equal to or greater than the scale for which the two-halo term contributes substantially to the shear, this non-cancellation of the effects of physically unrelated near neighbors significantly affects the accuracy with which the excess surface mass density may be inferred from the mean tangential shear via the standard formula: < ΔΣ > = < Σc γt > . The effects of physically unrelated near neighbors are greatest for the least massive lens galaxies but can also be important for the most massive lens galaxies.

  19. Radiative Energy Loss by Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Ahern, Sean C.; Norbury, John W.; Tripathi, R. K.

    2002-01-01

    Interactions between galactic cosmic rays and matter are a primary focus of the NASA radiation problem. The electromagnetic forces involved are for the most part well documented. Building on previous research, this study investigated the relative importance of the weak forces that occur when a cosmic ray impinges on different types of materials. For the familiar electromagnetic case, it is known that energy lost in the form of radiation is more significant than that lost via contact collisions the rate at which the energy is lost is also well understood. Similar results were derived for the weak force case. It was found that radiation is also the dominant mode of energy loss in weak force interactions and that weak force effects are indeed relatively weak compared to electromagnetic effects.

  20. Weak interactions and gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaillard, M.K.

    1979-12-01

    The status of the electroweak gauge theory, also known as quantum asthenodynamics (QAD), is examined. The major result is that the standard WS-GIM model describes the data well, although one should still look for signs of further complexity and better tests of its gauge theory aspect. A second important result is that the measured values of the three basic coupling constants of present-energy physics, g/sub s/, g, and ..sqrt..(5/3)g' of SU(3)/sub c/ x SU(2)/sub 2/ x U(1), are compatible with the idea that these interactions are unified at high energies. Much of the paper deals with open questions, and itmore » takes up the following topics: the status of QAD, the scalar meson spectrum, the fermion spectrum, CP violation, and decay dynamics. 118 references, 20 figures. (RWR)« less

  1. On the mathematical modeling of the Reynolds stress's equations

    NASA Technical Reports Server (NTRS)

    Lin, Avi

    1990-01-01

    By considering the Reynolds stress equations as a possible descriptor of complex turbulent fields, pressure-velocity interaction and turbulence dissipation are studied as two of the main physical contributions to Reynolds stress balancing in turbulent flow fields. It is proven that the pressure interaction term contains turbulence generation elements. However, the usual 'return to isotropy' element appears more weakly than in the standard models. In addition, convection-like elements are discovered mathematically, but there is no mathematical evidence that the pressure fluctuations contribute to the turbulent transport mechanism. Calculations of some simple one-dimensional fields indicate that this extra convection, rather than the turbulent transport, is needed mathematically. Similarly, an expression for the turbulence dissipation is developed. The end result is a dynamic equation for the dissipation tensor which is based on the tensorial length scales.

  2. Interaction between two polyelectrolyte brushes.

    PubMed

    Kumar, N Arun; Seidel, Christian

    2007-08-01

    We report molecular dynamics simulations on completely charged polyelectrolyte brushes grafted to two parallel surfaces. The pressure Pi is evaluated as a function of separation D between the two grafting planes. For decreasing separation, Pi shows several regimes distinguished by their scaling with D which reflects the different physical nature of the various regimes. At weak compression the pressure obeys the 1D power law predicted by scaling theory of an ideal gas of counterions in the osmotic brush regime. In addition we find that the brushes shrink as they approach each other trying to avoid interpenetration. At higher compressions where excluded volume interactions become important, we obtain scaling exponents between -2 at small grafting density rho(a) and -3 at large rho(a). This behavior indicates a transition from a brush under good solvent condition to the melt regime with increasing grafting density.

  3. Simulation of fluid-structure interaction in micropumps by coupling of two commercial finite element programs

    NASA Astrophysics Data System (ADS)

    Klein, Andreas; Gerlach, Gerald

    1998-09-01

    This paper deals with the simulation of the fluid-structure interaction phenomena in micropumps. The proposed solution approach is based on external coupling of two different solvers, which are considered here as `black boxes'. Therefore, no specific intervention is necessary into the program code, and solvers can be exchanged arbitrarily. For the realization of the external iteration loop, two algorithms are considered: the relaxation-based Gauss-Seidel method and the computationally more extensive Newton method. It is demonstrated in terms of a simplified test case, that for rather weak coupling, the Gauss-Seidel method is sufficient. However, by simply changing the considered fluid from air to water, the two physical domains become strongly coupled, and the Gauss-Seidel method fails to converge in this case. The Newton iteration scheme must be used instead.

  4. Does a network structure exist in molecular liquid SnI4 and GeI4?

    NASA Astrophysics Data System (ADS)

    Sakagami, Takahiro; Fuchizaki, Kazuhiro

    2017-04-01

    The existence of a network structure consisting of electrically neutral tetrahedral molecules in liquid SnI4 and GeI4 at ambient pressure was examined. The liquid structures employed for the examination were obtained from a reverse Monte Carlo analysis. The structures were physically interpreted by introducing an appropriate intermolecular interaction. A ‘bond’ was then defined as an intermolecular connection that minimizes the energy of intermolecular interaction. However, their ‘bond’ energy is too weak for the ‘bond’ and the resulting network structure to be defined statically. The vertex-to-edge orientation between the nearest molecules is so ubiquitous that almost all of the molecules in the system can take part in the network, which is reflected in the appearance of a prepeak in the structure factor.

  5. Bayesian Variable Selection for Hierarchical Gene-Environment and Gene-Gene Interactions

    PubMed Central

    Liu, Changlu; Ma, Jianzhong; Amos, Christopher I.

    2014-01-01

    We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions and gene by environment interactions in the same model. Our approach incorporates the natural hierarchical structure between the main effects and interaction effects into a mixture model, such that our methods tend to remove the irrelevant interaction effects more effectively, resulting in more robust and parsimonious models. We consider both strong and weak hierarchical models. For a strong hierarchical model, both of the main effects between interacting factors must be present for the interactions to be considered in the model development, while for a weak hierarchical model, only one of the two main effects is required to be present for the interaction to be evaluated. Our simulation results show that the proposed strong and weak hierarchical mixture models work well in controlling false positive rates and provide a powerful approach for identifying the predisposing effects and interactions in gene-environment interaction studies, in comparison with the naive model that does not impose this hierarchical constraint in most of the scenarios simulated. We illustrated our approach using data for lung cancer and cutaneous melanoma. PMID:25154630

  6. Analytical Solution for the Anisotropic Rabi Model: Effects of Counter-Rotating Terms

    NASA Astrophysics Data System (ADS)

    Zhang, Guofeng; Zhu, Hanjie

    2015-03-01

    The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the numerical calculations in a wide range of the parameters including the ultrastrong coupling regime. In the weak counter-rotating coupling limit we find out that the counter-rotating terms can be considered as the shifts to the parameters of the Jaynes-Cummings model. This modification shows the validness of the rotating-wave approximation on the assumption of near-resonance and relatively weak coupling. Moreover, the analytical expressions of several physics quantities are also derived, and the results show the break-down of the U(1)-symmetry and the deviation from the Jaynes-Cummings model.

  7. Analytical solution for the anisotropic Rabi model: effects of counter-rotating terms.

    PubMed

    Zhang, Guofeng; Zhu, Hanjie

    2015-03-04

    The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the numerical calculations in a wide range of the parameters including the ultrastrong coupling regime. In the weak counter-rotating coupling limit we find out that the counter-rotating terms can be considered as the shifts to the parameters of the Jaynes-Cummings model. This modification shows the validness of the rotating-wave approximation on the assumption of near-resonance and relatively weak coupling. Moreover, the analytical expressions of several physics quantities are also derived, and the results show the break-down of the U(1)-symmetry and the deviation from the Jaynes-Cummings model.

  8. Simulating 2,368 temperate lakes reveals weak coherence in stratification phenology

    USGS Publications Warehouse

    Read, Jordan S.; Winslow, Luke A.; Hansen, Gretchen J. A.; Van Den Hoek, Jamon; Hanson, Paul C.; Bruce, Louise C; Markfort, Corey D.

    2014-01-01

    Changes in water temperatures resulting from climate warming can alter the structure and function of aquatic ecosystems. Lake-specific physical characteristics may play a role in mediating individual lake responses to climate. Past mechanistic studies of lake-climate interactions have simulated generic lake classes at large spatial scales or performed detailed analyses of small numbers of real lakes. Understanding the diversity of lake responses to climate change across landscapes requires a hybrid approach that couples site-specific lake characteristics with broad-scale environmental drivers. This study provides a substantial advancement in lake ecosystem modeling by combining open-source tools with freely available continental-scale data to mechanistically model daily temperatures for 2,368 Wisconsin lakes over three decades (1979-2011). The model accurately predicted observed surface layer temperatures (RMSE: 1.74°C) and the presence/absence of stratification (81.1% agreement). Among-lake coherence was strong for surface temperatures and weak for the timing of stratification, suggesting individual lake characteristics mediate some - but not all - ecologically relevant lake responses to climate.

  9. Effects of non-Gaussian Brownian motion on direct force optical tweezers measurements of the electrostatic forces between pairs of colloidal particles.

    PubMed

    Raudsepp, Allan; A K Williams, Martin; B Hall, Simon

    2016-07-01

    Measurements of the electrostatic force with separation between a fixed and an optically trapped colloidal particle are examined with experiment, simulation and analytical calculation. Non-Gaussian Brownian motion is observed in the position of the optically trapped particle when particles are close and traps weak. As a consequence of this motion, a simple least squares parameterization of direct force measurements, in which force is inferred from the displacement of an optically trapped particle as separation is gradually decreased, contains forces generated by the rectification of thermal fluctuations in addition to those originating directly from the electrostatic interaction between the particles. Thus, when particles are close and traps weak, simply fitting the measured direct force measurement to DLVO theory extracts parameters with modified meanings when compared to the original formulation. In such cases, however, physically meaningful DLVO parameters can be recovered by comparing the measured non-Gaussian statistics to those predicted by solutions to Smoluchowski's equation for diffusion in a potential.

  10. A collisional-radiative model for low-pressure weakly magnetized Ar plasmas

    NASA Astrophysics Data System (ADS)

    Zhu, Xi-Ming; Tsankov, Tsanko; Czarnetzki, Uwe; Marchuk, Oleksandr

    2016-09-01

    Collisional-radiative (CR) models are widely investigated in plasma physics for describing the kinetics of reactive species and for optical emission spectroscopy. This work reports a new Ar CR model used in low-pressure (0.01-10 Pa) weakly magnetized (<0.1 Tesla) plasmas, including ECR, helicon, and NLD discharges. In this model 108 realistic levels are individually studied, i.e. 51 lowest levels of the Ar atom and 57 lowest levels of the Ar ion. We abandon the concept of an ``effective level'' usually adopted in previous models for glow discharges. Only in this way the model can correctly predict the non-equilibrium population distribution of close energy levels. In addition to studying atomic metastable and radiative levels, this model describes the kinetic processes of ionic metastable and radiative levels in detail for the first time. This is important for investigation of plasma-surface interaction and for optical diagnostics using atomic and ionic line-ratios. This model could also be used for studying Ar impurities in tokamaks and astrophysical plasmas.

  11. A disorder-enhanced quasi-one-dimensional superconductor

    PubMed Central

    Petrović, A. P.; Ansermet, D.; Chernyshov, D.; Hoesch, M.; Salloum, D.; Gougeon, P.; Potel, M.; Boeri, L.; Panagopoulos, C.

    2016-01-01

    A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2−δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials. PMID:27448209

  12. Photoexcitation circular dichroism in chiral molecules

    NASA Astrophysics Data System (ADS)

    Beaulieu, S.; Comby, A.; Descamps, D.; Fabre, B.; Garcia, G. A.; Géneaux, R.; Harvey, A. G.; Légaré, F.; Mašín, Z.; Nahon, L.; Ordonez, A. F.; Petit, S.; Pons, B.; Mairesse, Y.; Smirnova, O.; Blanchet, V.

    2018-05-01

    Chiral effects appear in a wide variety of natural phenomena and are of fundamental importance in science, from particle physics to metamaterials. The standard technique of chiral discrimination—photoabsorption circular dichroism—relies on the magnetic properties of a chiral medium and yields an extremely weak chiral response. Here, we propose and demonstrate an orders of magnitude more sensitive type of circular dichroism in neutral molecules: photoexcitation circular dichroism. This technique does not rely on weak magnetic effects, but takes advantage of the coherent helical motion of bound electrons excited by ultrashort circularly polarized light. It results in an ultrafast chiral response and the efficient excitation of a macroscopic chiral density in an initially isotropic ensemble of randomly oriented chiral molecules. We probe this excitation using linearly polarized laser pulses, without the aid of further chiral interactions. Our time-resolved study of vibronic chiral dynamics opens a way to the efficient initiation, control and monitoring of chiral chemical change in neutral molecules at the level of electrons.

  13. Analytical Solution for the Anisotropic Rabi Model: Effects of Counter-Rotating Terms

    PubMed Central

    Zhang, Guofeng; Zhu, Hanjie

    2015-01-01

    The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the numerical calculations in a wide range of the parameters including the ultrastrong coupling regime. In the weak counter-rotating coupling limit we find out that the counter-rotating terms can be considered as the shifts to the parameters of the Jaynes-Cummings model. This modification shows the validness of the rotating-wave approximation on the assumption of near-resonance and relatively weak coupling. Moreover, the analytical expressions of several physics quantities are also derived, and the results show the break-down of the U(1)-symmetry and the deviation from the Jaynes-Cummings model. PMID:25736827

  14. A disorder-enhanced quasi-one-dimensional superconductor.

    PubMed

    Petrović, A P; Ansermet, D; Chernyshov, D; Hoesch, M; Salloum, D; Gougeon, P; Potel, M; Boeri, L; Panagopoulos, C

    2016-07-22

    A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2-δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials.

  15. Theoretical studies of weak interactions of formamide with methanol and its derivates

    NASA Astrophysics Data System (ADS)

    Zheng, Xiao-Wen; Wang, Lu; Han, Shu-Min; Cui, Xiang-Yang; Du, Chong-Yang; Liu, Tao

    2015-08-01

    Theoretical calculations have been performed for the complexes of formamide (FA) with methanol and its derivates (MAX, X = F, Cl, Br, NO2, H, OH, CH3, and NH2) to study their structures and properties. Substituent effects on the hydrogen bond (H-bond) strength and cooperative effect by using water and its derivatives (HOZ, Z = H, NH2, and Br) as weak interaction probe were also explored. The calculation results show that electron-donating groups strengthen the weak interaction between formamide with methanol whereas electron-withdrawing groups weaken it. The cooperativity is present for the N-HïO H-bond in MAX-FA-HOZ and the cooperative effect increases in a series HONH2, HOH, and HOBr. In addition, we investigated the interaction between FA with hypohalous acids HOY (Y = F, Cl, and Br). It was found that the weak interaction between FA and HOY became stronger with the increase of the size of halogen atom. The nature of the halogen atom has negligible impact on the strength of the H-bond in MAX-FA (X = F, Cl, and Br), whereas it has an obvious influence on the strength of the H-bond in HOY-FA (Y = F, Cl, and Br).

  16. Loss of functionally unique species may gradually undermine ecosystems

    PubMed Central

    O'Gorman, Eoin J.; Yearsley, Jon M.; Crowe, Tasman P.; Emmerson, Mark C.; Jacob, Ute; Petchey, Owen L.

    2011-01-01

    Functionally unique species contribute to the functional diversity of natural systems, often enhancing ecosystem functioning. An abundance of weakly interacting species increases stability in natural systems, suggesting that loss of weakly linked species may reduce stability. Any link between the functional uniqueness of a species and the strength of its interactions in a food web could therefore have simultaneous effects on ecosystem functioning and stability. Here, we analyse patterns in 213 real food webs and show that highly unique species consistently tend to have the weakest mean interaction strength per unit biomass in the system. This relationship is not a simple consequence of the interdependence of both measures on body size and appears to be driven by the empirical pattern of size structuring in aquatic systems and the trophic position of each species in the web. Food web resolution also has an important effect, with aggregation of species into higher taxonomic groups producing a much weaker relationship. Food webs with fewer unique and less weakly interacting species also show significantly greater variability in their levels of primary production. Thus, the loss of highly unique, weakly interacting species may eventually lead to dramatic state changes and unpredictable levels of ecosystem functioning. PMID:21106593

  17. Effect of perforation on flow past a conic cylinder at \\varvec{Re} = 100 : wavy vortex and sign laws

    NASA Astrophysics Data System (ADS)

    Lin, L. M.; Zhong, X. F.; Wu, Y. X.

    2018-04-01

    In order to find the intrinsic physical mechanism of the original Kármán vortex wavily distorted across the span due to the introduction of three-dimensional (3-D) geometric disturbances, a flow past a peak-perforated conic shroud is numerically simulated at a Reynolds number of 100. Based on previous work by Meiburg and Lasheras (1988), the streamwise and vertical interactions with spanwise vortices are introduced and analyzed. Then vortex-shedding patterns in the near wake for different flow regimes are reinspected and illustrated from the view of these two interactions. Generally, in regime I, spanwise vortices are a little distorted due to the weak interaction. Then in regime II, spanwise vortices, even though curved obviously, are still shed synchronously with moderate streamwise and vertical interactions. But in regime III, violently wavy spanwise vortices in some vortex-shedding patterns, typically an Ω -type vortex, are mainly attributed to the strong vertical interactions, while other cases, such as multiple vortex-shedding patterns in sub-regime III-D, are resulted from complex streamwise and vertical interactions. A special phenomenon, spacial distribution of streamwise and vertical components of vorticity with specific signs in the near wake, is analyzed based on two models of streamwise and vertical vortices in explaining physical reasons of top and bottom shear layers wavily varied across the span. Then these two models and above two interactions are unified. Finally two sign laws are summarized: the first sign law for streamwise and vertical components of vorticity is positive in the upper shear layer, but negative in the lower shear layer, while the second sign law for three vorticity components is always negative in the wake.

  18. Relationship between muscle mass and physical performance: is it the same in older adults with weak muscle strength?

    PubMed

    Kim, Kyoung-Eun; Jang, Soong-Nang; Lim, Soo; Park, Young Joo; Paik, Nam-Jong; Kim, Ki Woong; Jang, Hak Chul; Lim, Jae-Young

    2012-11-01

    the relationship between muscle mass and physical performance has not been consistent among studies. to clarify the relationship between muscle mass and physical performance in older adults with weak muscle strength. cross-sectional analysis using the baseline data of 542 older men and women from the Korean Longitudinal Study on Health and Aging. dual X-ray absorptiometry, isokinetic dynamometer and the Short Physical Performance Battery (SPPB) were performed. Two muscle mass parameters, appendicular skeletal mass divided by weight (ASM/Wt) and by height squared (ASM/Ht(2)), were measured. We divided the participants into a lower-quartile (L25) group and an upper-three-quartiles (H75) group based on the knee-extensor peak torque. Correlation analysis and logistic regression models were used to assess the association between muscle mass and low physical performance, defined as SPPB scores <9, after controlling for confounders. in the L25 group, no correlation between mass and SPPB was detected, whereas the correlation between peak torque and SPPB was significant and higher than that in the H75 group. Results from the logistic models also showed no association between muscle mass and SPPB in the L25 group, whereas muscle mass was associated with SPPB in the H75 group. muscle mass was not associated with physical performance in weak older adults. Measures of muscle strength may be of greater clinical importance in weak older adults than is muscle mass per se.

  19. Search for a light Higgs boson decaying to long-lived weakly interacting particles in proton-proton collisions at sqrt[s] = 7 TeV with the ATLAS detector.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abouzeid, O S; Abramowicz, H; Abreu, H; Acerbi, E; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Aderholz, M; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahsan, M; Aielli, G; Akdogan, T; Akesson, T P A; Akimoto, G; Akimov, A V; Akiyama, A; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral, P; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Andrieux, M-L; Anduaga, X S; Angerami, A; Anghinolfi, F; Anisenkov, A; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoun, S; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J-F; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnault, C; Artamonov, A; Artoni, G; Arutinov, D; Asai, S; Asfandiyarov, R; Ask, S; Asman, B; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Aubert, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Bachy, G; Backes, M; Backhaus, M; Badescu, E; Bagnaia, P; Bahinipati, S; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baker, S; Banas, E; Banerjee, P; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barashkou, A; Barbaro Galtieri, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; da Costa, J Barreiro Guimarães; Barrillon, P; Bartoldus, R; Barton, A E; Bartsch, V; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Beale, S; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, S; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Beloborodova, O; Belotskiy, K; Beltramello, O; Ben Ami, S; Benary, O; Benchekroun, D; Benchouk, C; Bendel, M; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertella, C; Bertin, A; Bertinelli, F; Bertolucci, F; Besana, M I; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blazek, T; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V B; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogdanchikov, A; Bogouch, A; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Bolnet, N M; Bona, M; Bondarenko, V G; Bondioli, M; Boonekamp, M; Boorman, G; Booth, C N; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Botterill, D; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozhko, N I; Bozovic-Jelisavcic, I; Bracinik, J; Braem, A; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, W K; Brown, G; Brown, H; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Buat, Q; Bucci, F; Buchanan, J; Buchanan, N J; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Buttinger, W; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cambiaghi, M; Cameron, D; Caminada, L M; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capriotti, D; Capua, M; Caputo, R; Caramarcu, C; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carrillo Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda Hernandez, A M; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N F; Cataldi, G; Cataneo, F; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cauz, D; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Cevenini, F; Chafaq, A; Chakraborty, D; Chan, K; Chapleau, B; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, T; Chen, X; Cheng, S; Cheplakov, A; Chepurnov, V F; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Cheung, S L; Chevalier, L; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chizhov, M V; Choudalakis, G; Chouridou, S; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciba, K; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciobotaru, M D; Ciocca, C; Ciocio, A; Cirilli, M; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Cleland, W; Clemens, J C; Clement, B; Clement, C; Clifft, R W; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coe, P; Cogan, J G; Coggeshall, J; Cogneras, E; Colas, J; Colijn, A P; Collins, N J; Collins-Tooth, C; Collot, J; Colon, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Consonni, M; Consorti, V; Constantinescu, S; Conta, C; Conventi, F; Cook, J; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Costin, T; Côté, D; Coura Torres, R; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Crescioli, F; Cristinziani, M; Crosetti, G; Crupi, R; Crépé-Renaudin, S; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M; Curtis, C J; Cuthbert, C; Cwetanski, P; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Silva, P V M; Da Via, C; Dabrowski, W; Dai, T; Dallapiccola, C; Dam, M; Dameri, M; Damiani, D S; Danielsson, H O; Dannheim, D; Dao, V; Darbo, G; Darlea, G L; Daum, C; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davies, E; Davies, M; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Dawson, J W; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lotto, B; de Mora, L; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dean, S; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Degenhardt, J; Dehchar, M; Del Papa, C; Del Peso, J; Del Prete, T; Delemontex, T; Deliyergiyev, M; Dell'acqua, A; Dell'asta, L; Della Pietra, M; Della Volpe, D; Delmastro, M; Delruelle, N; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Devetak, E; Deviveiros, P O; Dewhurst, A; Dewilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diblen, F; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobbs, M; Dobinson, R; Dobos, D; Dobson, E; Dodd, J; Doglioni, C; Doherty, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Dohmae, T; Donadelli, M; Donega, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dosil, M; Dotti, A; Dova, M T; Dowell, J D; Doxiadis, A D; Doyle, A T; Drasal, Z; Drees, J; Dressnandt, N; Drevermann, H; Driouichi, C; Dris, M; Dubbert, J; Dube, S; Duchovni, E; Duckeck, G; Dudarev, A; Dudziak, F; Dührssen, M; Duerdoth, I P; Duflot, L; Dufour, M-A; Dunford, M; Duran Yildiz, H; Duxfield, R; Dwuznik, M; Dydak, F; Düren, M; Ebenstein, W L; Ebke, J; Eckweiler, S; Edmonds, K; Edwards, C A; Edwards, N C; Ehrenfeld, W; Ehrich, T; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Eppig, A; Erdmann, J; Ereditato, A; Eriksson, D; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Fabre, C; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrington, S M; Farthouat, P; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Fazio, S; Febbraro, R; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Fellmann, D; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Ferland, J; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferrer, A; Ferrer, M L; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filippas, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fischer, P; Fisher, M J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Flores Castillo, L R; Flowerdew, M J; Fokitis, M; Fonseca Martin, T; Forbush, D A; Formica, A; Forti, A; Fortin, D; Foster, J M; Fournier, D; Foussat, A; Fowler, A J; Fowler, K; Fox, H; Francavilla, P; Franchino, S; Francis, D; Frank, T; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, F; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Gan, K K; Gao, Y S; Gapienko, V A; Gaponenko, A; Garberson, F; Garcia-Sciveres, M; García, C; García Navarro, J E; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Garvey, J; Gatti, C; Gaudio, G; Gaumer, O; Gaur, B; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gayde, J-C; Gazis, E N; Ge, P; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gilbert, L M; Gilewsky, V; Gillberg, D; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giunta, M; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glitza, K W; Glonti, G L; Goddard, J R; Godfrey, J; Godlewski, J; Goebel, M; Göpfert, T; Goeringer, C; Gössling, C; Göttfert, T; Goldfarb, S; Golling, T; Golovnia, S N; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; Gonidec, A; Gonzalez, S; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Gorokhov, S A; Goryachev, V N; Gosdzik, B; Gosselink, M; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenshaw, T; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grinstein, S; Grishkevich, Y V; Grivaz, J-F; Groh, M; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guarino, V J; Guest, D; Guicheney, C; Guida, A; Guindon, S; Guler, H; Gunther, J; Guo, B; Guo, J; Gupta, A; Gusakov, Y; Gushchin, V N; Gutierrez, A; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hadavand, H K; Hadley, D R; Haefner, P; Hahn, F; Haider, S; Hajduk, Z; Hakobyan, H; Hall, D; Haller, J; Hamacher, K; Hamal, P; Hamer, M; Hamilton, A; Hamilton, S; Han, H; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, K; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Hatch, M; Hauff, D; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawes, B M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hawkins, D; Hayakawa, T; Hayashi, T; Hayden, D; Hayward, H S; Haywood, S J; Hazen, E; He, M; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, R C W; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Henry-Couannier, F; Hensel, C; Henß, T; Hernandez, C M; Hernández Jiménez, Y; Herrberg, R; Hershenhorn, A D; Herten, G; Hertenberger, R; Hervas, L; Hessey, N P; Higón-Rodriguez, E; Hill, D; Hill, J C; Hill, N; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holder, M; Holmgren, S O; Holy, T; Holzbauer, J L; Homma, Y; Hong, T M; Hooft van Huysduynen, L; Horazdovsky, T; Horn, C; Horner, S; Hostachy, J-Y; Hou, S; Houlden, M A; Hoummada, A; Howarth, J; Howell, D F; Hristova, I; Hrivnac, J; Hruska, I; Hryn'ova, T; Hsu, P J; Hsu, S-C; Huang, G S; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Hughes-Jones, R E; Huhtinen, M; Hurst, P; Hurwitz, M; Husemann, U; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibbotson, M; Ibragimov, I; Ichimiya, R; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Imbault, D; Imori, M; Ince, T; Inigo-Golfin, J; Ioannou, P; Iodice, M; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishikawa, A; Ishino, M; Ishmukhametov, R; Issever, C; Istin, S; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakubek, J; Jana, D K; Jankowski, E; Jansen, E; Jansen, H; Jantsch, A; Janus, M; Jarlskog, G; Jeanty, L; Jelen, K; Jen-La Plante, I; Jenni, P; Jeremie, A; Jež, P; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, G; Jin, S; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansen, L G; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T W; Jones, T J; Jonsson, O; Joram, C; Jorge, P M; Joseph, J; Jovin, T; Ju, X; Jung, C A; Jungst, R M; Juranek, V; Jussel, P; Juste Rozas, A; Kabachenko, V V; Kabana, S; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kaiser, S; Kajomovitz, E; Kalinin, S; Kalinovskaya, L V; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Kar, D; Karagounis, M; Karagoz, M; Karnevskiy, M; Karr, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kazanin, V A; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Kekelidze, G D; Kennedy, J; Kenney, C J; Kenyon, M; Kepka, O; Kerschen, N; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Kholodenko, A G; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, N; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, M S; Kim, P C; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; Kirk, J; Kirsch, L E; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kittelmann, T; Kiver, A M; Kladiva, E; Klaiber-Lodewigs, J; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimek, P; Klimentov, A; Klingenberg, R; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Kluth, S; Knecht, N S; Kneringer, E; Knobloch, J; Knoops, E B F G; Knue, A; Ko, B R; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Köneke, K; König, A C; Koenig, S; Köpke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kokott, T; Kolachev, G M; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Kollar, D; Kollefrath, M; Kolya, S D; Komar, A A; Komori, Y; Kondo, T; Kono, T; Kononov, A I; Konoplich, R; Konstantinidis, N; Kootz, A; Koperny, S; Korcyl, K; Kordas, K; Koreshev, V; Korn, A; Korol, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotamäki, M J; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kraus, J; Kraus, J K; Kreisel, A; Krejci, F; Kretzschmar, J; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruth, A; Kubota, T; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kundu, N; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Labbe, J; Lablak, S; Lacasta, C; Lacava, F; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laisne, E; Lamanna, M; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Landsman, H; Lane, J L; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larionov, A V; Larner, A; Lasseur, C; Lassnig, M; Laurelli, P; Lavrijsen, W; Laycock, P; Lazarev, A B; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Lebel, C; Lecompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, M; Legendre, M; Leger, A; Legeyt, B C; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leite, M A L; Leitner, R; Lellouch, D; Leltchouk, M; Lemmer, B; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leontsinis, S; Leroy, C; Lessard, J-R; Lesser, J; Lester, C G; Leung Fook Cheong, A; Levêque, J; Levin, D; Levinson, L J; Levitski, M S; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, H; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Lifshitz, R; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Linnemann, J T; Lipeles, E; Lipinsky, L; Lipniacka, A; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, M; Liu, S; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Loken, J; Lombardo, V P; Long, R E; Lopes, L; Lopez Mateos, D; Lorenz, J; Losada, M; Loscutoff, P; Lo Sterzo, F; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luijckx, G; Lumb, D; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundberg, J; Lundquist, J; Lungwitz, M; Lutz, G; Lynn, D; Lys, J; Lytken, E; Ma, H; Ma, L L; Macana Goia, J A; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Mackeprang, R; Madaras, R J; Mader, W F; Maenner, R; Maeno, T; Mättig, P; Mättig, S; Magnoni, L; Magradze, E; Mahalalel, Y; Mahboubi, K; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V; Malyukov, S; Mameghani, R; Mamuzic, J; Manabe, A; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Mangeard, P S; Manhaes de Andrade Filho, L; Manjavidze, I D; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Manz, A; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marin, A; Marino, C P; Marroquim, F; Marshall, R; Marshall, Z; Martens, F K; Marti-Garcia, S; Martin, A J; Martin, B; Martin, B; Martin, F F; Martin, J P; Martin, Ph; Martin, T A; Martin, V J; Martin Dit Latour, B; Martin-Haugh, S; Martinez, M; Martinez Outschoorn, V; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massaro, G; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mathes, M; Matricon, P; Matsumoto, H; Matsunaga, H; Matsushita, T; Mattravers, C; Maugain, J M; Maurer, J; Maxfield, S J; Maximov, D A; May, E N; Mayne, A; Mazini, R; Mazur, M; Mazzanti, M; Mazzoni, E; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; McFayden, J A; McGlone, H; McHedlidze, G; McLaren, R A; McLaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T; Mehdiyev, R; Mehlhase, S; Mehta, A; Meier, K; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Mendoza Navas, L; Meng, Z; Mengarelli, A; Menke, S; Menot, C; Meoni, E; Mercurio, K M; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Meyer, T C; Meyer, W T; Miao, J; Michal, S; Micu, L; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Miller, R J; Mills, W J; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Miralles Verge, L; Misiejuk, A; Mitrevski, J; Mitrofanov, G Y; Mitsou, V A; Mitsui, S; Miyagawa, P S; Miyazaki, K; Mjörnmark, J U; Moa, T; Mockett, P; Moed, S; Moeller, V; Mönig, K; Möser, N; Mohapatra, S; Mohr, W; Mohrdieck-Möck, S; Moisseev, A M; Moles-Valls, R; Molina-Perez, J; Monk, J; Monnier, E; Montesano, S; Monticelli, F; Monzani, S; Moore, R W; Moorhead, G F; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Morello, G; Moreno, D; Moreno Llácer, M; Morettini, P; Morii, M; Morin, J; Morley, A K; Mornacchi, G; Morozov, S V; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mudrinic, M; Mueller, F; Mueller, J; Mueller, K; Müller, T A; Mueller, T; Muenstermann, D; Muir, A; Munwes, Y; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nadal, J; Nagai, K; Nagano, K; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Nanava, G; Napier, A; Narayan, R; Nash, M; Nation, N R; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nebot, E; Nechaeva, P Yu; Negri, A; Negri, G; Nektarijevic, S; Nelson, A; Nelson, S; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neusiedl, A; Neves, R M; Nevski, P; Newman, P R; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicolas, L; Nicquevert, B; Niedercorn, F; Nielsen, J; Niinikoski, T; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolaev, K; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsen, H; Nilsson, P; Ninomiya, Y; Nisati, A; Nishiyama, T; Nisius, R; Nodulman, L; Nomachi, M; Nomidis, I; Nordberg, M; Nordkvist, B; Norton, P R; Novakova, J; Nozaki, M; Nozka, L; Nugent, I M; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nyman, T; O'Brien, B J; O'Neale, S W; O'Neil, D C; O'Shea, V; Oakes, L B; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Oda, S; Odaka, S; Odier, J; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Ohshita, H; Ohsugi, T; Okada, S; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olcese, M; Olchevski, A G; Oliveira, M; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Omachi, C; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlov, I; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Osuna, C; Otero Y Garzon, G; Ottersbach, J P; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Paige, F; Pais, P; Pajchel, K; Palacino, G; Paleari, C P; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panes, B; Panikashvili, N; Panitkin, S; Pantea, D; Panuskova, M; Paolone, V; Papadelis, A; Papadopoulou, Th D; Paramonov, A; Park, W; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N; Pater, J R; Patricelli, S; Pauly, T; Pecsy, M; Pedraza Morales, M I; Peleganchuk, S V; Peng, H; Pengo, R; Penson, A; Penwell, J; Perantoni, M; Perez, K; Perez Cavalcanti, T; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Persembe, S; Perus, A; Peshekhonov, V D; Peters, K; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Phan, A; Phillips, P W; Piacquadio, G; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Ping, J; Pinto, B; Pirotte, O; Pizio, C; Plamondon, M; Pleier, M-A; Pleskach, A V; Poblaguev, A; Poddar, S; Podlyski, F; Poggioli, L; Poghosyan, T; Pohl, M; Polci, F; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomarede, D M; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Posch, C; Pospelov, G E; Pospisil, S; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Pretzl, K; Pribyl, L; Price, D; Price, J; Price, L E; Price, M J; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Qian, Z; Qin, Z; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radescu, V; Radics, B; Radloff, P; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, D; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Randrianarivony, K; Ratoff, P N; Rauscher, F; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reichold, A; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Reljic, D; Rembser, C; Ren, Z L; Renaud, A; Renkel, P; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richards, A; Richter, R; Richter-Was, E; Ridel, M; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robinson, M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Rodriguez, D; Roe, A; Roe, S; Røhne, O; Rojo, V; Rolli, S; Romaniouk, A; Romano, M; Romanov, V M; Romeo, G; Romero Adam, E; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosenbaum, G A; Rosenberg, E I; Rosendahl, P L; Rosenthal, O; Rosselet, L; Rossetti, V; Rossi, E; Rossi, L P; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubinskiy, I; Ruckert, B; Ruckstuhl, N; Rud, V I; Rudolph, C; Rudolph, G; Rühr, F; Ruggieri, F; Ruiz-Martinez, A; Rumiantsev, V; Rumyantsev, L; Runge, K; Rurikova, Z; Rusakovich, N A; Rust, D R; Rutherfoord, J P; Ruwiedel, C; Ruzicka, P; Ryabov, Y F; Ryadovikov, V; Ryan, P; Rybar, M; Rybkin, G; Ryder, N C; Rzaeva, S; Saavedra, A F; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sanchez, A; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sandvoss, S; Sankey, D P C; Sansoni, A; Santamarina Rios, C; Santoni, C; Santonico, R; Santos, H; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sartisohn, G; Sasaki, O; Sasao, N; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savinov, V; Savu, D O; Sawyer, L; Saxon, D H; Says, L P; Sbarra, C; Sbrizzi, A; Scallon, O; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schäfer, U; Schaepe, S; Schaetzel, S; Schaffer, A C; Schaile, D; Schamberger, R D; Schamov, A G; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schlereth, J L; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, M; Schöning, A; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schroeder, C; Schroer, N; Schuh, S; Schuler, G; Schultes, J; Schultz-Coulon, H-C; Schulz, H; Schumacher, J W; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Schwindt, T; Schwoerer, M; Scott, W G; Searcy, J; Sedov, G; Sedykh, E; Segura, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Selbach, K E; Seliverstov, D M; Sellden, B; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Seuster, R; Severini, H; Sevior, M E; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaver, L; Shaw, K; Sherman, D; Sherwood, P; Shibata, A; Shichi, H; Shimizu, S; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shupe, M A; Sicho, P; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simmons, B; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K; Skubic, P; Skvorodnev, N; Slater, M; Slavicek, T; Sliwa, K; Sloper, J; Smakhtin, V; Smirnov, S Yu; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snuverink, J; Snyder, S; Soares, M; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solc, J; Soldatov, E; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Soni, N; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soukharev, A; Spagnolo, S; Spanò, F; Spighi, R; Spigo, G; Spila, F; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahl, T; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staude, A; Stavina, P; Stavropoulos, G; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stevenson, K; Stewart, G A; Stillings, J A; Stockton, M C; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strang, M; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Strube, J; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Styles, N A; Soh, D A; Su, D; Subramania, Hs; Succurro, A; Sugaya, Y; Sugimoto, T; Suhr, C; Suita, K; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Sushkov, S; Susinno, G; Sutton, M R; Suzuki, Y; Suzuki, Y; Svatos, M; Sviridov, Yu M; Swedish, S; Sykora, I; Sykora, T; Szeless, B; Sánchez, J; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanaka, Y; Tanasijczuk, A J; Tani, K; Tannoury, N; Tappern, G P; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tatarkhanov, M; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teinturier, M; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Testa, M; Teuscher, R J; Thadome, J; Therhaag, J; Theveneaux-Pelzer, T; Thioye, M; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomson, E; Thomson, M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timoshenko, S; Tipton, P; Tique Aires Viegas, F J; Tisserant, S; Toczek, B; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokunaga, K; Tokushuku, K; Tollefson, K; Tomoto, M; Tompkins, L; Toms, K; Tong, G; Tonoyan, A; Topfel, C; Topilin, N D; Torchiani, I; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Trinh, T N; Tripiana, M F; Trischuk, W; Trivedi, A; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuggle, J M; Turala, M; Turecek, D; Turk Cakir, I; Turlay, E; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Ueno, R; Ugland, M; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Underwood, D G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valenta, J; Valente, P; Valentinetti, S; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; van der Graaf, H; van der Kraaij, E; Van Der Leeuw, R; van der Poel, E; van der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vanadia, M; Vandelli, W; Vandoni, G; Vaniachine, A; Vankov, P; Vannucci, F; Varela Rodriguez, F; Vari, R; Varnes, E W; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vegni, G; Veillet, J J; Vellidis, C; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Virchaux, M; Virzi, J; Vitells, O; Viti, M; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vlasov, N; Vogel, A; Vokac, P; Volpi, G; Volpi, M; Volpini, G; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobiev, A P; Vorwerk, V; Vos, M; Voss, R; Voss, T T; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Wagner, W; Wagner, P; Wahlen, H; Wakabayashi, J; Walbersloh, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, J C; Wang, R; Wang, S M; Warburton, A; Ward, C P; Warsinsky, M; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Weber, M; Weber, M S; Weber, P; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Wellenstein, H; Wells, P S; Wen, M; Wenaus, T; Wendler, S; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Wessels, M; Weydert, C; Whalen, K; Wheeler-Ellis, S J; Whitaker, S P; White, A; White, M J; Whitehead, S R; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wolter, M W; Wolters, H; Wong, W C; Wooden, G; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, C; Wright, M; Wrona, B; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wunstorf, R; Wynne, B M; Xella, S; Xiao, M; Xie, S; Xie, Y; Xu, C; Xu, D; Xu, G; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamaoka, J; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Y; Yang, Y; Yang, Z; Yanush, S; Yao, Y; Yasu, Y; Ybeles Smit, G V; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Young, C; Youssef, S; Yu, D; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaets, V G; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zanello, L; Zarzhitsky, P; Zaytsev, A; Zeitnitz, C; Zeller, M; Zeman, M; Zemla, A; Zendler, C; Zenin, O; Zeniš, T; Zinonos, Z; Zenz, S; Zerwas, D; Zevi Della Porta, G; Zhan, Z; Zhang, D; Zhang, H; Zhang, J; Zhang, X; Zhang, Z; Zhao, L; Zhao, T; Zhao, Z; Zhemchugov, A; Zheng, S; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhuravlov, V; Zieminska, D; Zimmermann, R; Zimmermann, S; Zimmermann, S; Ziolkowski, M; Zitoun, R; Zivković, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; Zolnierowski, Y; Zsenei, A; Zur Nedden, M; Zutshi, V; Zwalinski, L

    2012-06-22

    A search for the decay of a light Higgs boson (120-140 GeV) to a pair of weakly interacting, long-lived particles in 1.94 fb(-1) of proton-proton collisions at sqrt[s] = 7 TeV recorded in 2011 by the ATLAS detector is presented. The search strategy requires that both long-lived particles decay inside the muon spectrometer. No excess of events is observed above the expected background and limits on the Higgs boson production times branching ratio to weakly interacting, long-lived particles are derived as a function of the particle proper decay length.

  20. Integrated information storage and transfer with a coherent magnetic device

    PubMed Central

    Jia, Ning; Banchi, Leonardo; Bayat, Abolfazl; Dong, Guangjiong; Bose, Sougato

    2015-01-01

    Quantum systems are inherently dissipation-less, making them excellent candidates even for classical information processing. We propose to use an array of large-spin quantum magnets for realizing a device which has two modes of operation: memory and data-bus. While the weakly interacting low-energy levels are used as memory to store classical information (bits), the high-energy levels strongly interact with neighboring magnets and mediate the spatial movement of information through quantum dynamics. Despite the fact that memory and data-bus require different features, which are usually prerogative of different physical systems – well isolation for the memory cells, and strong interactions for the transmission – our proposal avoids the notorious complexity of hybrid structures. The proposed mechanism can be realized with different setups. We specifically show that molecular magnets, as the most promising technology, can implement hundreds of operations within their coherence time, while adatoms on surfaces probed by a scanning tunneling microscope is a future possibility. PMID:26347152

  1. Lattice cluster theory of associating polymers. I. Solutions of linear telechelic polymer chains.

    PubMed

    Dudowicz, Jacek; Freed, Karl F

    2012-02-14

    The lattice cluster theory (LCT) for the thermodynamics of a wide array of polymer systems has been developed by using an analogy to Mayer's virial expansions for non-ideal gases. However, the high-temperature expansion inherent to the LCT has heretofore precluded its application to systems exhibiting strong, specific "sticky" interactions. The present paper describes a reformulation of the LCT necessary to treat systems with both weak and strong, "sticky" interactions. This initial study concerns solutions of linear telechelic chains (with stickers at the chain ends) as the self-assembling system. The main idea behind this extension of the LCT lies in the extraction of terms associated with the strong interactions from the cluster expansion. The generalized LCT for sticky systems reduces to the quasi-chemical theory of hydrogen bonding of Panyioutou and Sanchez when correlation corrections are neglected in the LCT. A diagrammatic representation is employed to facilitate the evaluation of the corrections to the zeroth-order approximation from short range correlations. © 2012 American Institute of Physics

  2. Quasi-molecular bosonic complexes-a pathway to SQUID with controlled sensitivity

    NASA Astrophysics Data System (ADS)

    Safavi-Naini, Arghavan; Capogrosso-Sansone, Barbara; Kuklov, Anatoly; Penna, Vittorio

    2016-02-01

    Recent experimental advances in realizing degenerate quantum dipolar gases in optical lattices and the flexibility of experimental setups in attaining various geometries offer the opportunity to explore exotic quantum many-body phases stabilized by anisotropic, long-range dipolar interaction. Moreover, the unprecedented control over the various physical properties of these systems, ranging from the quantum statistics of the particles, to the inter-particle interactions, allow one to engineer novel devices. In this paper, we consider dipolar bosons trapped in a stack of one-dimensional optical lattice layers, previously studied in (Safavi-Naini et al 2014 Phys. Rev. A 90 043604). Building on our prior results, we provide a description of the quantum phases stabilized in this system which include composite superfluids (CSFs), solids, and supercounterfluids, most of which are found to be threshold-less with respect to the dipolar interaction strength. We also demonstrate the effect of enhanced sensitivity to rotations of a SQUID-type device made of two CSF trapped in a ring-shaped optical lattice layer with weak links.

  3. Scaling of elongation transition thickness during thin-film growth on weakly interacting substrates

    NASA Astrophysics Data System (ADS)

    Lü, B.; Souqui, L.; Elofsson, V.; Sarakinos, K.

    2017-08-01

    The elongation transition thickness ( θElong) is a central concept in the theoretical description of thin-film growth dynamics on weakly interacting substrates via scaling relations of θElong with respect to rates of key atomistic film-forming processes. To date, these scaling laws have only been confirmed quantitatively by simulations, while experimental proof has been left ambiguous as it has not been possible to measure θElong. Here, we present a method for determining experimentally θElong for Ag films growing on amorphous SiO2: an archetypical weakly interacting film/substrate system. Our results confirm the theoretically predicted θElong scaling behavior, which then allow us to calculate the rates of adatom diffusion and island coalescence completion, in good agreement with the literature. The methodology presented herein casts the foundation for studying growth dynamics and cataloging atomistic-process rates for a wide range of weakly interacting film/substrate systems. This may provide insights into directed growth of metal films with a well-controlled morphology and interfacial structure on 2D crystals—including graphene and MoS2—for catalytic and nanoelectronic applications.

  4. Internal aerodynamics of a generic three-dimensional scramjet inlet at Mach 10

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.

    1995-01-01

    A combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall compression scramjet inlet configuration at Mach 10 has been performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration. The work proceeded in several phases: the initial inviscid assessment of the internal shock structure, the preliminary computational parametric study, the coupling of the optimized configuration with the physical limitations of the facility, the wind tunnel blockage assessment, and the computational and experimental parametric study of the final configuration. Good agreement between computation and experimentation was observed in the magnitude and location of the interactions, particularly for weakly interacting flow fields. Large-scale forward separations resulted when the interaction strength was increased by increasing the contraction ratio or decreasing the Reynolds number.

  5. Phonon Effects on Charge Transport Through a Two State Molecule

    NASA Astrophysics Data System (ADS)

    Ulloa, Sergio E.; Yudiarsah, Efta

    2008-03-01

    We study the effect of local and non-local phonon on the transport properties of a molecule model described by two- electronic states. The local phonon interaction is tackled by means of a Lang Firsov transformation [1,2]. The interaction with non-local phonons (phonon-assisted hopping) is considered perturbatively up to the first nonzero order in the self energy. The presence of different kinds of electron-phonon interaction open new transmission channels. In addition to the polaron shift and replicas due to local phonons, non-local phonons cause the appearance of new satellite states around the initial states. In the weak coupling regime of non-local phonon and electrons, states are shifted an amount proportional to square of the interaction. However, in the strong coupling regime, the non-linear effects emerge and display more interesting features on transport properties. Additional features on transport properties due to new transmission channel are shown to appear at finite temperatures. [1] G. D. Mahan, Many-particle physics, 3rd ed. (Plenum Publishers, New York, 2000). [2] R. Gutierrez et al., Phys. Rev. B. 74, 235105 (2006).

  6. Phase competition in a one-dimensional three-orbital Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Li, Shaozhi; Tang, Yanfei; Maier, Thomas A.; Johnston, Steven

    2018-05-01

    We study the interplay between the electron-phonon (e -ph) and on-site electron-electron (e-e) interactions in a three-orbital Hubbard-Holstein model on an extended one-dimensional lattice using determinant quantum Monte Carlo. For weak e-e and e -ph interactions, we observe a competition between an orbital-selective Mott phase (OSMP) and a (multicomponent) charge-density-wave (CDW) insulating phase, with an intermediate metallic phase located between them. For large e-e and e -ph couplings, the OSMP and CDW phases persist, while the metallic phase develops short-range orbital correlations and becomes insulating when both the e-e and e -ph interactions are large but comparable. Many of our conclusions are in line with those drawn from a prior dynamical mean-field theory study of the two-orbital Hubbard-Holstein model [Phys. Rev. B 95, 121112(R) (2017), 10.1103/PhysRevB.95.121112] in infinite dimension, suggesting that the competition between the e -ph and e-e interactions in multiorbital Hubbard-Holstein models leads to rich physics, regardless of the dimension of the system.

  7. Social networks, personal values, and creativity: evidence for curvilinear and interaction effects.

    PubMed

    Zhou, Jing; Shin, Shung Jae; Brass, Daniel J; Choi, Jaepil; Zhang, Zhi-Xue

    2009-11-01

    Taking an interactional perspective on creativity, the authors examined the influence of social networks and conformity value on employees' creativity. They theorized and found a curvilinear relationship between number of weak ties and creativity such that employees exhibited greater creativity when their number of weak ties was at intermediate levels rather than at lower or higher levels. In addition, employees' conformity value moderated the curvilinear relationship between number of weak ties and creativity such that employees exhibited greater creativity at intermediate levels of number of weak ties when conformity was low than when it was high. A proper match between personal values and network ties is critical for understanding creativity.

  8. Weakly supervised classification in high energy physics

    DOE PAGES

    Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco; ...

    2017-05-01

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. Here, this paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics $-$ quark versus gluon tagging $-$ we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervisedmore » classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.« less

  9. Weakly supervised classification in high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. Here, this paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics $-$ quark versus gluon tagging $-$ we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervisedmore » classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.« less

  10. Detection of light-matter interaction in the weak-coupling regime by quantum light

    NASA Astrophysics Data System (ADS)

    Bin, Qian; Lü, Xin-You; Zheng, Li-Li; Bin, Shang-Wu; Wu, Ying

    2018-04-01

    "Mollow spectroscopy" is a photon statistics spectroscopy, obtained by scanning the quantum light scattered from a source system. Here, we apply this technique to detect the weak light-matter interaction between the cavity and atom (or a mechanical oscillator) when the strong system dissipation is included. We find that the weak interaction can be measured with high accuracy when exciting the target cavity by quantum light scattered from the source halfway between the central peak and each side peak. This originally comes from the strong correlation of the injected quantum photons. In principle, our proposal can be applied into the normal cavity quantum electrodynamics system described by the Jaynes-Cummings model and an optomechanical system. Furthermore, it is state of the art for experiment even when the interaction strength is reduced to a very small value.

  11. Parkinson disease and Alzheimer disease: environmental risk factors.

    PubMed

    Campdelacreu, J

    2014-01-01

    The purpose of this review is to update and summarise available evidence on environmental risk factors that have been associated with risk of Parkinson disease (PD) or Alzheimer disease (AD) and discuss their potential mechanisms. Evidence consistently suggests that a higher risk of PD is associated with pesticides and that a higher risk of AD is associated with pesticides, hypertension and high cholesterol levels in middle age, hyperhomocysteinaemia, smoking, traumatic brain injury and depression. There is weak evidence suggesting that higher risk of PD is associated with high milk consumption in men, high iron intake, chronic anaemia and traumatic brain injury. Weak evidence also suggests that a higher risk of AD is associated with high aluminium intake through drinking water, excessive exposure to electromagnetic fields from electrical grids, DM and hyperinsulinaemia, obesity in middle age, excessive alcohol consumption and chronic anaemia. Evidence consistently suggests that a lower risk of PD is associated with hyperuricaemia, tobacco and coffee use, while a lower risk of AD is associated with moderate alcohol consumption, physical exercise, perimenopausal hormone replacement therapy and good cognitive reserve. Weak evidence suggests that lower risk of PD is associated with increased vitamin E intake, alcohol, tea, NSAIDs, and vigorous physical exercise, and that lower risk of AD is associated with the Mediterranean diet, coffee and habitual NSAID consumption. Several environmental factors contribute significantly to risk of PD and AD. Some may already be active in the early stages of life, and some may interact with other genetic factors. Population-based strategies to modify such factors could potentially result in fewer cases of PD or AD. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  12. High-resolution γ-ray spectroscopy: a versatile tool for nuclear β-decay studies at TRIUMF-ISAC

    NASA Astrophysics Data System (ADS)

    Ball, G. C.; Achtzehn, T.; Albers, D.; Khalili, J. S. Al; Andreoiu, C.; Andreyev, A.; Ashley, S. F.; Austin, R. A. E.; Becker, J. A.; Bricault, P.; Chan, S.; Chakrawarthy, R. S.; Churchman, R.; Coombes, H.; Cunningham, E. S.; Daoud, J.; Dombsky, M.; Drake, T. E.; Eshpeter, B.; Finlay, P.; Garrett, P. E.; Geppert, C.; Grinyer, G. F.; Hackman, G.; Hanemaayer, V.; Hyland, B.; Jones, G. A.; Koopmans, K. A.; Kulp, W. D.; Lassen, J.; Lavoie, J. P.; Leslie, J. R.; Litvinov, Y.; Macdonald, J. A.; Mattoon, C.; Melconian, D.; Morton, A. C.; Osborne, C. J.; Pearson, C. J.; Pearson, M.; Phillips, A. A.; Ressler, J. J.; Sarazin, F.; Schumaker, M. A.; Schwarzenberg, J.; Scraggs, H. C.; Smith, M. B.; Svensson, C. E.; Valiente-Dobon, J. J.; Waddington, J. C.; Walker, P. M.; Wendt, K.; Williams, S. J.; Wood, J. L.; Zganjar, E. F.

    2005-10-01

    High-resolution γ-ray spectroscopy is essential to fully exploit the unique, high-quality beams available at the next generation of radioactive ion beam facilities such as the TRIUMF isotope separator and accelerator (ISAC). The 8π spectrometer, which consists of 20 Compton-suppressed HPGe detectors, has recently been reconfigured for a vigorous research programme in weak interaction and nuclear structure physics. With the addition of a variety of ancillary detectors it has become the world's most powerful device dedicated to β-decay studies. This paper provides a brief overview of the apparatus and highlights from recent experiments.

  13. Symmetry Violation in Hadron Physics

    NASA Astrophysics Data System (ADS)

    Gell-Mann, Murray

    1982-01-01

    The following sections are included: * INTRODUCTION * SU(3) × SU(3) SYMMETRY * VIOLATION OF SU(3) × SU(3) IN STRONG INTERACTIONS * POSSIBLE CONNECTIONS OF STRONG VIOLATION WITH WEAK AND ELECTROMAGNETIC EFFECTS * SCALE INVARIANCE AND THE DILATION OPERATOR * THE BREAKING OF SCALE INVARIANCE * RELATION BETWEEN VIOLATIONS OF SCALE INVARIANCE AND OF SU(3) × SU(3) * REFERENCES *Note: Much of the work presented in the next two sections was done this summer in collaboration with Lowell Brown. It is based partly on the pioneering research of Kastrup, Mack, Wess, Kenneth Wilson, and others. *In this section and the next, our particle states are normalized to one particle per unit volume.

  14. Evolutionary Diversification of Prey and Predator Species Facilitated by Asymmetric Interactions

    PubMed Central

    Zu, Jian; Wang, Jinliang; Huang, Gang

    2016-01-01

    We investigate the influence of asymmetric interactions on coevolutionary dynamics of a predator-prey system by using the theory of adaptive dynamics. We assume that the defense ability of prey and the attack ability of predators all can adaptively evolve, either caused by phenotypic plasticity or by behavioral choice, but there are certain costs in terms of their growth rate or death rate. The coevolutionary model is constructed from a deterministic approximation of random mutation-selection process. To sum up, if prey’s trade-off curve is globally weakly concave, then five outcomes of coevolution are demonstrated, which depend on the intensity and shape of asymmetric predator-prey interactions and predator’s trade-off shape. Firstly, we find that if there is a weakly decelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species may occur, but after branching further coevolution may lead to extinction of the predator species with a larger trait value. However, if there is a weakly accelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species is also possible and after branching the dimorphic predator can evolutionarily stably coexist with a monomorphic prey species. Secondly, if the asymmetric interactions become a little strong, then prey and predators will evolve to an evolutionarily stable equilibrium, at which they can stably coexist on a long-term timescale of evolution. Thirdly, if there is a weakly accelerating cost and a relatively strongly accelerating benefit for prey species, then evolutionary branching in the prey species is possible and the finally coevolutionary outcome contains a dimorphic prey and a monomorphic predator species. Fourthly, if the asymmetric interactions become more stronger, then predator-prey coevolution may lead to cycles in both traits and equilibrium population densities. The Red Queen dynamic is a possible outcome under asymmetric predator-prey interactions. PMID:27685540

  15. Evolutionary Diversification of Prey and Predator Species Facilitated by Asymmetric Interactions.

    PubMed

    Zu, Jian; Wang, Jinliang; Huang, Gang

    We investigate the influence of asymmetric interactions on coevolutionary dynamics of a predator-prey system by using the theory of adaptive dynamics. We assume that the defense ability of prey and the attack ability of predators all can adaptively evolve, either caused by phenotypic plasticity or by behavioral choice, but there are certain costs in terms of their growth rate or death rate. The coevolutionary model is constructed from a deterministic approximation of random mutation-selection process. To sum up, if prey's trade-off curve is globally weakly concave, then five outcomes of coevolution are demonstrated, which depend on the intensity and shape of asymmetric predator-prey interactions and predator's trade-off shape. Firstly, we find that if there is a weakly decelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species may occur, but after branching further coevolution may lead to extinction of the predator species with a larger trait value. However, if there is a weakly accelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species is also possible and after branching the dimorphic predator can evolutionarily stably coexist with a monomorphic prey species. Secondly, if the asymmetric interactions become a little strong, then prey and predators will evolve to an evolutionarily stable equilibrium, at which they can stably coexist on a long-term timescale of evolution. Thirdly, if there is a weakly accelerating cost and a relatively strongly accelerating benefit for prey species, then evolutionary branching in the prey species is possible and the finally coevolutionary outcome contains a dimorphic prey and a monomorphic predator species. Fourthly, if the asymmetric interactions become more stronger, then predator-prey coevolution may lead to cycles in both traits and equilibrium population densities. The Red Queen dynamic is a possible outcome under asymmetric predator-prey interactions.

  16. Strong FANCA/FANCG but weak FANCA/FANCC interaction in the yeast 2-hybrid system.

    PubMed

    Reuter, T; Herterich, S; Bernhard, O; Hoehn, H; Gross, H J

    2000-01-15

    Three of at least 8 Fanconi anemia (FA) genes have been cloned (FANCA, FANCC, FANCG), but their functions remain unknown. Using the yeast 2-hybrid system and full-length cDNA, the authors found a strong interaction between FANCA and FANCG proteins. They also obtained evidence for a weak interaction between FANCA and FANCC. Neither FANCA nor FANCC was found to interact with itself. These results support the notion of a functional association between the FA gene products. (Blood. 2000;95:719-720)

  17. Measurement of the Parity-Violating Neutron Spin Rotation in 4He

    PubMed Central

    Bass, C. D.; Dawkins, J. M.; Luo, D.; Micherdzinska, A.; Sarsour, M.; Snow, W. M.; Mumm, H. P.; Nico, J. S.; Huffman, P. R.; Markoff, D. M.; Heckel, B. R.; Swanson, H. E.

    2005-01-01

    In the meson exchange model of weak nucleon-nucleon (NN) interactions, the exchange of virtual mesons between the nucleons is parameterized by a set of weak meson exchange amplitudes. The strengths of these amplitudes from theoretical calculations are not well known, and experimental measurements of parity-violating (PV) observables in different nuclear systems have not constrained their values. Transversely polarized cold neutrons traveling through liquid helium experience a PV spin rotation due to the weak interaction with an angle proportional to a linear combination of these weak meson exchange amplitudes. A measurement of the PV neutron spin rotation in helium (φPV (n,α)) would provide information about the relative strengths of the weak meson exchange amplitudes, and with the longitudinal analyzing power measurement in the p + α system, allow the first comparison between isospin mirror systems in weak NN interaction. An earlier experiment performed at NIST obtained a result consistent with zero: φPV (n,α) = (8.0 ±14(stat) ±2.2(syst)) ×10−7 rad / m[1]. We describe a modified apparatus using a superfluid helium target to increase statistics and reduce systematic effects in an effort to reach a sensitivity goal of 10−7 rad/m. PMID:27308122

  18. Weakly Hydrated Surfaces and the Binding Interactions of Small Biological Solutes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, J. W.; Tavagnacco, L.; Ehrlich, L.

    2012-04-01

    Extended planar hydrophobic surfaces, such as are found in the side chains of the amino acids histidine, phenylalanine, tyrosine, and tryptophan, exhibit an affinity for the weakly hydrated faces of glucopyranose. In addition, molecular species such as these, including indole, caffeine, and imidazole, exhibit a weak tendency to pair together by hydrophobic stacking in aqueous solution. These interactions can be partially understood in terms of recent models for the hydration of extended hydrophobic faces and should provide insight into the architecture of sugar-binding sites in proteins.

  19. Weakly hydrated surfaces and the binding interactions of small biological solutes.

    PubMed

    Brady, John W; Tavagnacco, Letizia; Ehrlich, Laurent; Chen, Mo; Schnupf, Udo; Himmel, Michael E; Saboungi, Marie-Louise; Cesàro, Attilio

    2012-04-01

    Extended planar hydrophobic surfaces, such as are found in the side chains of the amino acids histidine, phenylalanine, tyrosine, and tryptophan, exhibit an affinity for the weakly hydrated faces of glucopyranose. In addition, molecular species such as these, including indole, caffeine, and imidazole, exhibit a weak tendency to pair together by hydrophobic stacking in aqueous solution. These interactions can be partially understood in terms of recent models for the hydration of extended hydrophobic faces and should provide insight into the architecture of sugar-binding sites in proteins.

  20. On modeling weak sinks in MODPATH

    USGS Publications Warehouse

    Abrams, Daniel B.; Haitjema, Henk; Kauffman, Leon J.

    2012-01-01

    Regional groundwater flow systems often contain both strong sinks and weak sinks. A strong sink extracts water from the entire aquifer depth, while a weak sink lets some water pass underneath or over the actual sink. The numerical groundwater flow model MODFLOW may allow a sink cell to act as a strong or weak sink, hence extracting all water that enters the cell or allowing some of that water to pass. A physical strong sink can be modeled by either a strong sink cell or a weak sink cell, with the latter generally occurring in low resolution models. Likewise, a physical weak sink may also be represented by either type of sink cell. The representation of weak sinks in the particle tracing code MODPATH is more equivocal than in MODFLOW. With the appropriate parameterization of MODPATH, particle traces and their associated travel times to weak sink streams can be modeled with adequate accuracy, even in single layer models. Weak sink well cells, on the other hand, require special measures as proposed in the literature to generate correct particle traces and individual travel times and hence capture zones. We found that the transit time distributions for well water generally do not require special measures provided aquifer properties are locally homogeneous and the well draws water from the entire aquifer depth, an important observation for determining the response of a well to non-point contaminant inputs.

  1. Weak Higher-Order Interactions in Macroscopic Functional Networks of the Resting Brain.

    PubMed

    Huang, Xuhui; Xu, Kaibin; Chu, Congying; Jiang, Tianzi; Yu, Shan

    2017-10-25

    Interactions among different brain regions are usually examined through functional connectivity (FC) analysis, which is exclusively based on measuring pairwise correlations in activities. However, interactions beyond the pairwise level, that is, higher-order interactions (HOIs), are vital in understanding the behavior of many complex systems. So far, whether HOIs exist among brain regions and how they can affect the brain's activities remains largely elusive. To address these issues, here, we analyzed blood oxygenation level-dependent (BOLD) signals recorded from six typical macroscopic functional networks of the brain in 100 human subjects (46 males and 54 females) during the resting state. Through examining the binarized BOLD signals, we found that HOIs within and across individual networks were both very weak regardless of the network size, topology, degree of spatial proximity, spatial scales, and whether the global signal was regressed. To investigate the potential mechanisms underlying the weak HOIs, we analyzed the dynamics of a network model and also found that HOIs were generally weak within a wide range of key parameters provided that the overall dynamic feature of the model was similar to the empirical data and it was operating close to a linear fluctuation regime. Our results suggest that weak HOI may be a general property of brain's macroscopic functional networks, which implies the dominance of pairwise interactions in shaping brain activities at such a scale and warrants the validity of widely used pairwise-based FC approaches. SIGNIFICANCE STATEMENT To explain how activities of different brain areas are coordinated through interactions is essential to revealing the mechanisms underlying various brain functions. Traditionally, such an interaction structure is commonly studied using pairwise-based functional network analyses. It is unclear whether the interactions beyond the pairwise level (higher-order interactions or HOIs) play any role in this process. Here, we show that HOIs are generally weak in macroscopic brain networks. We also suggest a possible dynamical mechanism that may underlie this phenomenon. These results provide plausible explanation for the effectiveness of widely used pairwise-based approaches in analyzing brain networks. More importantly, it reveals a previously unknown, simple organization of the brain's macroscopic functional systems. Copyright © 2017 the authors 0270-6474/17/3710481-17$15.00/0.

  2. Motor competence and physical fitness in adolescents.

    PubMed

    Gísladóttir, Ordís; Haga, Monika; Sigmundsson, Hermundur

    2014-01-01

    In this study we examined the relationship between physical fitness and motor competence in adolescents aged 15 to 16 years. A sample of 94 adolescents participated in the study. To test motor competence, the Movement Assessment Battery for Children-2 was used. Physical fitness was assessed using the following test items: standing broad jump, 20-m dash, reduced Cooper test, and sit-and-reach test. The results revealed a significant but weak relationship (0.248) between motor competence and physical fitness for the whole sample. More specifically, the correlation between the 2 variables was significant for girls (0.353) but not for boys (0.248). The relatively weak relationship between motor competence and physical fitness suggests that motor competence might not be critical in adolescents to maintain their physical fitness.

  3. Investigating and addressing student difficulties with the corrections to the energies of the hydrogen atom for the strong and weak field Zeeman effect

    NASA Astrophysics Data System (ADS)

    Keebaugh, Christof; Marshman, Emily; Singh, Chandralekha

    2018-07-01

    Understanding when and how to make limiting case approximations and why they are valid in a particular situation is a hallmark of expertise in physics. Using limiting cases can simplify the problem-solving process significantly and they often provide a means to check that the results obtained are reasonable. We discuss an investigation of student difficulties with the corrections to the energy spectrum of the hydrogen atom for the limiting cases of the strong and weak field Zeeman effects using degenerate perturbation theory. This investigation was carried out in advanced quantum mechanics courses by administering written free-response and multiple-choice questions and conducting individual interviews with students. Here we first discuss the common student difficulties related to these concepts. We then describe how the research on student difficulties was used as a guide to develop and evaluate a quantum interactive learning tutorial (QuILT) which strives to help students develop a functional understanding of the concepts necessary for finding the corrections to the energy spectrum of the hydrogen atom for the strong field and weak field Zeeman effects. The development of the QuILT and its evaluation in the undergraduate and PhD level courses are presented.

  4. Polarity-Dependent Vortex Pinning and Spontaneous Vortex-Antivortex Structures in Superconductor/Ferromagnet Hybrids

    NASA Astrophysics Data System (ADS)

    Bending, Simon J.; Milošević, Milorad V.; Moshchalkov, Victor V.

    Hybrid structures composed of superconducting films that are magnetically coupled to arrays of nanoscale ferromagnetic dots have attracted enormous interest in recent years. Broadly speaking, such systems fall into one of two distinct regimes. Ferromagnetic dots with weak moments pin free vortices, leading to enhanced superconducting critical currents, particularly when the conditions for commensurability are satisfied. Dots with strong moments spontaneously generate one or more vortex-antivortex (V-AV) pairs which lead to a rich variety of pinning, anti-pinning and annihilation phenomena. We describe high resolution Hall probe microscopy of flux structures in various hybrid samples composed of superconducting Pb films deposited on arrays of ferromagnetic Co or Co/Pt dots with both weak and strong moments. We show directly that dots with very weak perpendicular magnetic moments do not induce vortex-antivortex pairs, but still act as strong polarity-dependent vortex pinning centres for free vortices. In contrast, we have directly observed spontaneous V-AV pairs induced by large moment dots with both in-plane and perpendicular magnetic anisotropy, and studied the rich physical phenomena that arise when they interact with added "free" (anti)fluxons in an applied magnetic field. The interpretation of our imaging results is supported by bulk magnetometry measurements and state-of-the-art Ginzburg-Landau and London theory calculations.

  5. Influence of the Biosphere on Precipitation: July 1995 Studies with the ARM-CART Data

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Mocko, D. M.; Walker, G. K.; Koster, Randal D.

    2000-01-01

    Ensemble sets of simulation experiments were conducted with a single column model (SCM) using the Goddard GEOS II GCM physics containing a recent version of the Cumulus Scheme (McRAS) and a biosphere based land-fluxes scheme (SSiB). The study used the 18 July to 5 August 1995 ARM-CART (Atmospheric Radiation Measurement-Cloud Atmospheric Radiation Test-bed) data, which was collected at the ARM-CART site in the mid-western United States and analyzed for single column modeling (SCM) studies. The new findings affirm the earlier findings that the vegetation, which increases the solar energy absorption at the surface together with soil and soil-moisture dependent processes, which modulate the surface, fluxes (particularly evapotranspiration) together help to increase the local rainfall. In addition, the results also show that for the particular study period roughly 50% of the increased evaporation over the ARM-CART site would be converted into rainfall with the Column, while the remainder would be advected out to the large-scale. Notwithstanding the limitations of only one-way interaction (i.e., the large-scale influencing the regional physics and not vice versa), the current SCM simulations show a very robust relationship. The evaporation-precipitation relationship turns out to be independent of the soil types, and soil moisture; however, it is weakly dependent on the vegetation cover because of its surface-albedo effect. Clearly, these inferences are prone to weaknesses of the SCM physics, the assumptions of the large-scale being unaffected by gridscale (SCM-scale) changes in moist processes, and other limitations of the evaluation procedures.

  6. Learning from Higgs physics at future Higgs factories

    DOE PAGES

    Gu, Jiayin; Li, Honglei; Liu, Zhen; ...

    2017-12-29

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explored its sensitivity to new physics models at the electron-positron colliders. In particular, we studied two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We performed a global fit to various Higgs searchmore » channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtained the limits on the singlet-doublet mixing angle sin(theta), as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyzed tree level effects in tan(beta) vs. cos(beta-alpha) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtained lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. Here, we also compared the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).« less

  7. Learning from Higgs physics at future Higgs factories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jiayin; Li, Honglei; Liu, Zhen

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explored its sensitivity to new physics models at the electron-positron colliders. In particular, we studied two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We performed a global fit to various Higgs searchmore » channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtained the limits on the singlet-doublet mixing angle sin(theta), as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyzed tree level effects in tan(beta) vs. cos(beta-alpha) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtained lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. Here, we also compared the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).« less

  8. The Effects of Galaxy Interactions on Star Formation

    NASA Astrophysics Data System (ADS)

    Beverage, Aliza; Weiner, Aaron; Ramos Padilla, Andres; Ashby, Matthew; Smith, Howard A.

    2018-01-01

    Galaxy interactions are key events in galaxy evolution, and are widely thought to trigger significant increases in star formation. However, the mechanisms and timescales for these increases are still not well understood. In order to probe the effects of mergers, we undertook an investigation based on the Spitzer Interacting Galaxies Survey (SIGS), a sample of 102 nearby galaxies in 48 systems ranging from weakly interacting to near coalescence. Our study is unique in that we use both broadband photometry and a large sample of objects chosen to be statistically meaningful. Our data come from 32 broad bands ranging from the UV to far-IR, and we model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) to estimate physical characteristics for each galaxy. We find marginal statistical correlations between galaxy interaction strength and dust luminosity and the distribution of dust mass as a function of heating intensity. The specific star formation rates, however, do not show any enhancement across the interaction stages. This result challenges conventional wisdom that mergers induce star formation throughout galaxy interaction.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  9. Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.

    PubMed

    Ubbink, Job; Khokhlov, Alexei R

    2004-03-15

    A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)]. (c) 2004 American Institute of Physics.

  10. Order of magnitude smaller limit on the electric dipole moment of the electron.

    PubMed

    Baron, J; Campbell, W C; DeMille, D; Doyle, J M; Gabrielse, G; Gurevich, Y V; Hess, P W; Hutzler, N R; Kirilov, E; Kozyryev, I; O'Leary, B R; Panda, C D; Parsons, M F; Petrik, E S; Spaun, B; Vutha, A C; West, A D

    2014-01-17

    The Standard Model of particle physics is known to be incomplete. Extensions to the Standard Model, such as weak-scale supersymmetry, posit the existence of new particles and interactions that are asymmetric under time reversal (T) and nearly always predict a small yet potentially measurable electron electric dipole moment (EDM), d(e), in the range of 10(-27) to 10(-30) e·cm. The EDM is an asymmetric charge distribution along the electron spin (S(→)) that is also asymmetric under T. Using the polar molecule thorium monoxide, we measured d(e) = (-2.1 ± 3.7stat ± 2.5syst) × 10(-29) e·cm. This corresponds to an upper limit of |d(e)| < 8.7 × 10(-29) e·cm with 90% confidence, an order of magnitude improvement in sensitivity relative to the previous best limit. Our result constrains T-violating physics at the TeV energy scale.

  11. Dissecting the active site of a photoreceptor protein

    NASA Astrophysics Data System (ADS)

    Hoff, Wouter; Hara, Miwa; Ren, Jie; Moghadam, Farzaneh; Xie, Aihua; Kumauchi, Masato

    While enzymes are quite large molecules, functionally important chemical events are often limited to a small region of the protein: the active site. The physical and chemical properties of residues at such active sites are often strongly altered compared to the same groups dissolved in water. Understanding such effects is important for unraveling the mechanisms underlying protein function and for protein engineering, but has proven challenging. Here we report on our ongoing efforts on using photoactive yellow protein (PYP), a bacterial photoreceptor, as a model system for such effects. We will report on the following questions: How many residues affect active site properties? Are these residues in direct physical contact with the active site? Can functionally important residues be recognized in the crystal structure of a protein? What structural resolution is needed to understand active sites? What spectroscopic techniques are most informative? Which weak interactions dominate active site properties?

  12. Does Physical Fitness Buffer the Relationship between Psychosocial Stress, Retinal Vessel Diameters, and Blood Pressure among Primary Schoolchildren?

    PubMed Central

    Endes, Katharina; Herrmann, Christian; Colledge, Flora; Brand, Serge; Donath, Lars; Faude, Oliver; Pühse, Uwe; Hanssen, Henner; Zahner, Lukas

    2016-01-01

    Background. Strong evidence exists showing that psychosocial stress plays an important part in the development of cardiovascular diseases. Because physical inactivity is associated with less favourable retinal vessel diameter and blood pressure profiles, this study explores whether physical fitness is able to buffer the negative effects of psychosocial stress on retinal vessel diameters and blood pressure in young children. Methods. 325 primary schoolchildren (51% girls, Mage = 7.28 years) took part in this cross-sectional research project. Retinal arteriolar diameters, retinal venular diameters, arteriolar to venular ratio, and systolic and diastolic blood pressure were assessed in all children. Interactions terms between physical fitness (performance in the 20 m shuttle run test) and four indicators of psychosocial stress (parental reports of critical life events, family, peer and school stress) were tested in a series of hierarchical regression analyses. Results. Critical life events and family, peer, and school-related stress were only weakly associated with retinal vessel diameters and blood pressure. No support was found for a stress-buffering effect of physical fitness. Conclusion. More research is needed with different age groups to find out if and from what age physical fitness can protect against arteriolar vessel narrowing and the occurrence of other cardiovascular disease risk factors. PMID:27795958

  13. Study and selection of in vivo protein interactions by coupling bimolecular fluorescence complementation and flow cytometry.

    PubMed

    Morell, Montse; Espargaro, Alba; Aviles, Francesc Xavier; Ventura, Salvador

    2008-01-01

    We present a high-throughput approach to study weak protein-protein interactions by coupling bimolecular fluorescent complementation (BiFC) to flow cytometry (FC). In BiFC, the interaction partners (bait and prey) are fused to two rationally designed fragments of a fluorescent protein, which recovers its function upon the binding of the interacting proteins. For weak protein-protein interactions, the detected fluorescence is proportional to the interaction strength, thereby allowing in vivo discrimination between closely related binders with different affinity for the bait protein. FC provides a method for high-speed multiparametric data acquisition and analysis; the assay is simple, thousands of cells can be analyzed in seconds and, if required, selected using fluorescence-activated cell sorting (FACS). The combination of both methods (BiFC-FC) provides a technically straightforward, fast and highly sensitive method to validate weak protein interactions and to screen and identify optimal ligands in biologically synthesized libraries. Once plasmids encoding the protein fusions have been obtained, the evaluation of a specific interaction, the generation of a library and selection of active partners using BiFC-FC can be accomplished in 5 weeks.

  14. Light weakly interacting massive particles

    NASA Astrophysics Data System (ADS)

    Gelmini, Graciela B.

    2017-08-01

    Light weakly interacting massive particles (WIMPs) are dark matter particle candidates with weak scale interaction with the known particles, and mass in the GeV to tens of GeV range. Hints of light WIMPs have appeared in several dark matter searches in the last decade. The unprecedented possible coincidence into tantalizingly close regions of mass and cross section of four separate direct detection experimental hints and a potential indirect detection signal in gamma rays from the galactic center, aroused considerable interest in our field. Even if these hints did not so far result in a discovery, they have had a significant impact in our field. Here we review the evidence for and against light WIMPs as dark matter candidates and discuss future relevant experiments and observations.

  15. A Note on Weak Solutions of Conservation Laws and Energy/Entropy Conservation

    NASA Astrophysics Data System (ADS)

    Gwiazda, Piotr; Michálek, Martin; Świerczewska-Gwiazda, Agnieszka

    2018-03-01

    A common feature of systems of conservation laws of continuum physics is that they are endowed with natural companion laws which are in such cases most often related to the second law of thermodynamics. This observation easily generalizes to any symmetrizable system of conservation laws; they are endowed with nontrivial companion conservation laws, which are immediately satisfied by classical solutions. Not surprisingly, weak solutions may fail to satisfy companion laws, which are then often relaxed from equality to inequality and overtake the role of physical admissibility conditions for weak solutions. We want to answer the question: what is a critical regularity of weak solutions to a general system of conservation laws to satisfy an associated companion law as an equality? An archetypal example of such a result was derived for the incompressible Euler system in the context of Onsager's conjecture in the early nineties. This general result can serve as a simple criterion to numerous systems of mathematical physics to prescribe the regularity of solutions needed for an appropriate companion law to be satisfied.

  16. DARWIN: towards the ultimate dark matter detector

    NASA Astrophysics Data System (ADS)

    Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Amsler, C.; Aprile, E.; Arazi, L.; Arneodo, F.; Barrow, P.; Baudis, L.; Benabderrahmane, M. L.; Berger, T.; Beskers, B.; Breskin, A.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; Diglio, S.; Drexlin, G.; Duchovni, E.; Erdal, E.; Eurin, G.; Ferella, A.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Di Gangi, P.; Di Giovanni, A.; Galloway, M.; Garbini, M.; Geis, C.; Glueck, F.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hannen, V.; Hogenbirk, E.; Howlett, J.; Hilk, D.; Hils, C.; James, A.; Kaminsky, B.; Kazama, S.; Kilminster, B.; Kish, A.; Krauss, L. M.; Landsman, H.; Lang, R. F.; Lin, Q.; Linde, F. L.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morå, K. D.; Morteau, E.; Murra, M.; Naganoma, J.; Newstead, J. L.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; de Perio, P.; Persiani, R.; Piastra, F.; Piro, M. C.; Plante, G.; Rauch, L.; Reichard, S.; Rizzo, A.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schumann, M.; Schreiner, J.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M. C.; Simgen, H.; Sissol, P.; von Sivers, M.; Thers, D.; Thurn, J.; Tiseni, A.; Trotta, R.; Tunnell, C. D.; Valerius, K.; Vargas, M. A.; Wang, H.; Wei, Y.; Weinheimer, C.; Wester, T.; Wulf, J.; Zhang, Y.; Zhu, T.; Zuber, K.

    2016-11-01

    DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions. It will search for solar axions, galactic axion-like particles and the neutrinoless double-beta decay of 136Xe, as well as measure the low-energy solar neutrino flux with < 1% precision, observe coherent neutrino-nucleus interactions, and detect galactic supernovae. We present the concept of the DARWIN detector and discuss its physics reach, the main sources of backgrounds and the ongoing detector design and R&D efforts.

  17. Measurement of Neutrino and Antineutrino Charged-Current Inclusive Cross Sections with the MINERvA Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devan, Joshua D.

    2015-01-01

    Neutrinos are a nearly massless, neutral particle in the Standard Model that only interact via the weak interaction. Experimental confirmation of neutrino oscillations, in which a neutrino created as a particular type (electron, muon or tau) can be observed as a different type after propagating some distance, earned the 2015 Nobel Prize in Physics. Neutrino oscillation experiments rely on accurate measurements of neutrino interactions with matter, such as that presented here. Neutrinos also provide a unique probe of the nucleus, complementary to electron scattering experiments. This thesis presents a measurement of the charged-current inclusive cross section for muon neutrinos and antineutrinos in the energy range 2 to 50 GeV with the MINERvA detector. MINERvA is a neutrino scattering experiment in the NuMI neutrino beam at Fermilab, near Chicago. A cross section measures the probability of an interaction occurring, measured here as a function of neutrino energy. To extract a cross section from data, the observed rate of interactions is corrected for detector efficiency and divided by the number of scattering nucleons in the target and the flux of neutrinos in the beam. The neutrino flux is determined with the low-more » $$\

  18. Self-interacting dark matter

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.; Argüelles, Carlos R.; Ruffini, Remo; Rueda, Jorge A.

    Self-interacting dark matter (SIDM) is a hypothetical form of dark matter (DM), characterized by relatively strong (compared to the weak interaction strength) self-interactions (SIs), which has been proposed to resolve a number of issues concerning tensions between simulations and observations at the galactic or smaller scales. We review here some recent developments discussed at the 14th Marcel Grossmann Meeting (MG14), paying particular attention to restrictions on the SIDM (total) cross-section from using novel observables in merging galactic structures, as well as the rôle of SIDM on the Milky Way halo and its central region. We report on some interesting particle-physics inspired SIDM models that were discussed at MG14, namely the glueball DM, and a right-handed neutrino DM (with mass of a few tens of keV, that may exist in minimal extensions of the standard model (SM)), interacting among themselves via vector bosons mediators in the dark sector. A detailed phenomenology of the latter model on galactic scales, as well as the potential role of the right handed neutrinos in alleviating some of the small-scale cosmology problems, namely the discrepancies between observations and numerical simulations within standard ΛCDM and ΛWDM cosmologies are reported.

  19. DARWIN: towards the ultimate dark matter detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalbers, J.; Breur, P.A.; Brown, A.

    2016-11-01

    DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/ c {supmore » 2}, such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions. It will search for solar axions, galactic axion-like particles and the neutrinoless double-beta decay of {sup 136}Xe, as well as measure the low-energy solar neutrino flux with < 1% precision, observe coherent neutrino-nucleus interactions, and detect galactic supernovae. We present the concept of the DARWIN detector and discuss its physics reach, the main sources of backgrounds and the ongoing detector design and R and D efforts.« less

  20. Highly anisotropic exchange interactions of j eff = 1 2 iridium moments on the fcc lattice in La 2 B IrO 6   ( B = Mg , Zn )

    DOE PAGES

    Aczel, A. A.; Cook, A. M.; Williams, T. J.; ...

    2016-06-20

    Here we have performed inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites Lamore » $$_2$$ZnIrO$$_6$$ and La$$_2$$MgIrO$$_6$$, which are characterized by A-type antiferromagnetic ground states. The powder inelastic neutron scattering data on these geometrically frustrated $$j_{\\rm eff}=1/2$$ Mott insulators provide clear evidence for gapped spin wave excitations with very weak dispersion. The INS results and thermodynamic data on these materials can be reproduced by conventional Heisenberg-Ising models with significant uniaxial Ising anisotropy and sizeable second-neighbor ferromagnetic interactions. Such a uniaxial Ising exchange interaction is symmetry-forbidden on the ideal fcc lattice, so that it can only arise from the weak crystal distortions away from the ideal fcc limit. This may suggest that even weak distortions in $$j_{\\rm eff}=1/2$$ Mott insulators might lead to strong exchange anisotropies. More tantalizingly, however, we find an alternative viable explanation of the INS results in terms of spin models with a dominant Kitaev interaction. In contrast to the uniaxial Ising exchange, the highly-directional Kitaev interaction is a type of exchange anisotropy which is symmetry-allowed even on the ideal fcc lattice. The Kitaev model has a magnon gap induced by quantum order-by-disorder, while weak anisotropies of the Kitaev couplings generated by the symmetry-lowering due to lattice distortions can pin the order and enhance the magnon gap. In conclusion, our findings highlight how even conventional magnetic orders in heavy transition metal oxides may be driven by highly-directional exchange interactions rooted in strong spin-orbit coupling.« less

  1. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph

    2015-03-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatlymore » suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear.« less

  2. E2 enzyme inhibition by stabilization of a low affinity interface with ubiquitin

    PubMed Central

    St-Cyr, Daniel J.; Ziemba, Amy; Garg, Pankaj; Plamondon, Serge; Auer, Manfred; Sidhu, Sachdev; Marinier, Anne; Kleiger, Gary; Tyers, Mike; Sicheri, Frank

    2014-01-01

    Weak protein interactions between ubiquitin and the ubiquitin-proteasome system (UPS) enzymes that mediate its covalent attachment to substrates serve to position ubiquitin for optimal catalytic transfer. We show that a small molecule inhibitor of the E2 ubiquitin conjugating enzyme Cdc34A, called CC0651, acts by trapping a weak interaction between ubiquitin and the E2 donor ubiquitin binding site. A structure of the ternary CC0651-Cdc34A-ubiquitin complex reveals that the inhibitor engages a composite binding pocket formed from Cdc34A and ubiquitin. CC0651 also suppresses the spontaneous hydrolysis rate of the Cdc34A-ubiquitin thioester, without overtly affecting the interaction between Cdc34A and the RING domain subunit of the E3 enzyme. Stabilization of the numerous other weak interactions between ubiquitin and UPS enzymes by small molecules may be a feasible strategy to selectively inhibit different UPS activities. PMID:24316736

  3. Production of low-background CuSn6-bronze for the CRESST dark-matter-search experiment.

    PubMed

    Majorovits, B; Kader, H; Kraus, H; Lossin, A; Pantic, E; Petricca, F; Proebst, F; Seidel, W

    2009-01-01

    One of the most intriguing open questions in modern particle physics is the nature of the dark matter in our universe. As hypothetical weakly interacting massive particles (WIMPs) do interact with ordinary matter extremely rarely, their observation requires a very low-background detector environment regarding radioactivity as well as an advanced detector technique that allows for active discrimination of the still present radioactive contaminations. The CRESST experiment uses detectors operating at milli-Kelvin temperature. Energy deposition in the detectors is recorded via the simultaneous measurement of a phonon-mediated signal and scintillation emitted by the CaWO(4) crystal targets. The entire setup is made of carefully selected materials. In this note we report on the development of ultra-pure bronze (CuSn(6)) wire in small quantities for springs and clamps that are currently being used in the CRESST II setup.

  4. Gauge Theories of Vector Particles

    DOE R&D Accomplishments Database

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  5. High-resolution Fourier-transform infrared spectroscopy of the ν6 and Coriolis perturbation allowed ν10 modes of ketenimine.

    PubMed

    Bane, Michael K; Robertson, Evan G; Thompson, Christopher D; Appadoo, Dominique R T; McNaughton, Don

    2011-12-14

    High-resolution FTIR spectra of the short lived species ketenimine have been recorded in the region 700-1300 cm(-1) and over 1500 transitions of the ν(10) and ν(6) modes have been assigned. Effective rotational and centrifugal distortion parameters for the v(10) = 1 and v(6) = 1 (excluding K(a) = 5) states were determined by co-fitting transitions, and treating strong a- and c-axis Coriolis interactions between them. Other perturbations attributed to interactions with the v(8) = 2 and v(12) = 1 + v(8) = 1 dark-states were also observed and treated. The ν(10) transitions are predicted to be inherently very weak, but are enhanced by an intensity stealing effect with the highly IR active ν(6) mode. A mechanism for this intensity stealing in ketenimine is also detailed. © 2011 American Institute of Physics

  6. Measurement of the W boson helicity in t$$\\bar{t}$$ decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Christian

    2005-06-01

    The subject of this thesis is the measurement of the helicity of the W boson produced in the decay of the top quark. The standard model predicts the helicity of these W bosons to be either negative or zero, but not positive. In case the top quark sector is already influenced by effects from new physics, the weak charged current, responsible for the decay of the top quark, can be altered from a pure V=A charged current interaction to a pure V+A interaction or a mixture between these two scenarios. This would decrease the fraction of W bosons with negativemore » helicity and W bosons with positive helicity would appear. A change would then be visible in the distribution of the decay angle θ between the lepton and the (negative) b quark direction in the rest frame of the W boson.« less

  7. Muscle-Bone Interactions in Pediatric Bone Diseases.

    PubMed

    Veilleux, Louis-Nicolas; Rauch, Frank

    2017-10-01

    Here, we review the skeletal effects of pediatric muscle disorders as well as muscle impairment in pediatric bone disorders. When starting in utero, muscle disorders can lead to congenital multiple contractures. Pediatric-onset muscle weakness such as cerebral palsy, Duchenne muscular dystrophy, spinal muscular atrophy, or spina bifida typically are associated with small diameter of long-bone shafts, low density of metaphyseal bone, and increased fracture incidence in the lower extremities, in particular, the distal femur. Primary bone diseases can affect muscles through generic mechanisms, such as decreased physical activity or in disease-specific ways. For example, the collagen defect underlying the bone fragility of osteogenesis imperfecta may also affect muscle force generation or transmission. Transforming growth factor beta released from bone in Camurati Engelman disease may decrease muscle function. Considering muscle-bone interactions does not only contribute to the understanding of musculoskeletal disorders but also can identify new targets for therapeutic interventions.

  8. An Experimental Investigation of the Confluent Boundary Layer on a High-Lift System

    NASA Technical Reports Server (NTRS)

    Thomas, F. O.; Nelson, R. C.

    1997-01-01

    This paper describes a fundamental experimental investigation of the confluent boundary layer generated by the interaction of a leading-edge slat wake with the boundary layer on the main element of a multi-element airfoil model. The slat and airfoil model geometry are both fully two-dimensional. The research reported in this paper is performed in an attempt to investigate the flow physics of confluent boundary layers and to build an archival data base on the interaction of the slat wake and the main element wall layer. In addition, an attempt is made to clearly identify the role that slat wake / airfoil boundary layer confluence has on lift production and how this occurs. Although complete LDV flow surveys were performed for a variety of slat gap and overhang settings, in this report the focus is on two cases representing both strong and weak wake boundary layer confluence.

  9. Calculation of the exchange coupling constants of copper binuclear systems based on spin-flip constricted variational density functional theory.

    PubMed

    Zhekova, Hristina R; Seth, Michael; Ziegler, Tom

    2011-11-14

    We have recently developed a methodology for the calculation of exchange coupling constants J in weakly interacting polynuclear metal clusters. The method is based on unrestricted and restricted second order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) and is here applied to eight binuclear copper systems. Comparison of the SF-CV(2)-DFT results with experiment and with results obtained from other DFT and wave function based methods has been made. Restricted SF-CV(2)-DFT with the BH&HLYP functional yields consistently J values in excellent agreement with experiment. The results acquired from this scheme are comparable in quality to those obtained by accurate multi-reference wave function methodologies such as difference dedicated configuration interaction and the complete active space with second-order perturbation theory. © 2011 American Institute of Physics

  10. Theoretical study of some experimentally relevant states of dysprosium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzuba, V. A.; Flambaum, V. V.

    2010-05-15

    Configuration interaction method is used to calculate transition amplitudes and other properties of the low states of dysprosium which are used in cooling and in the study of the time variation of the fine structure constant and violation of fundamental symmetries. The branching ratio for the cooling state to decay to states other than ground states is found to be smaller than 10{sup -4}. The matrix element of the weak interaction between degenerate states at E=19797.96 cm{sup -1} is about 4 Hz which is consistent with the experimental limit |H{sub W}|=|2.3{+-}2.9(stat.){+-}0.7(syst.)| Hz [A. T. Nguyen, D. Budker, D. DeMille, andmore » M. Zolotorev, Phys. Rev. A 56, 3453 (1997)] and points to feasibility of its experimental measurement. Applications include the search for physics beyond the standard model using the parity nonconservation (PNC) isotopic chain approach.« less

  11. A moiré deflectometer for antimatter

    PubMed Central

    Aghion, S.; Ahlén, O.; Amsler, C.; Ariga, A.; Ariga, T.; Belov, A. S.; Berggren, K.; Bonomi, G.; Bräunig, P.; Bremer, J.; Brusa, R. S.; Cabaret, L.; Canali, C.; Caravita, R.; Castelli, F.; Cerchiari, G.; Cialdi, S.; Comparat, D.; Consolati, G.; Derking, H.; Di Domizio, S.; Di Noto, L.; Doser, M.; Dudarev, A.; Ereditato, A.; Ferragut, R.; Fontana, A.; Genova, P.; Giammarchi, M.; Gligorova, A.; Gninenko, S. N.; Haider, S.; Huse, T.; Jordan, E.; Jørgensen, L. V.; Kaltenbacher, T.; Kawada, J.; Kellerbauer, A.; Kimura, M.; Knecht, A.; Krasnický, D.; Lagomarsino, V.; Lehner, S.; Magnani, A.; Malbrunot, C.; Mariazzi, S.; Matveev, V. A.; Moia, F.; Nebbia, G.; Nédélec, P.; Oberthaler, M. K.; Pacifico, N.; Petràček, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Regenfus, C.; Riccardi, C.; Røhne, O.; Rotondi, A.; Sandaker, H.; Scampoli, P.; Storey, J.; Vasquez, M.A. Subieta; Špaček, M.; Testera, G.; Vaccarone, R.; Widmann, E.; Zavatarelli, S.; Zmeskal, J.

    2014-01-01

    The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational interaction is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics—the moiré deflectometer—for a measurement of the acceleration of slow antiprotons. The setup consists of two identical transmission gratings and a spatially resolving emulsion detector for antiproton annihilations. Absolute referencing of the observed antimatter pattern with a photon pattern experiencing no deflection allows the direct inference of forces present. The concept is also straightforwardly applicable to antihydrogen measurements as pursued by the AEgIS collaboration. The combination of these very different techniques from high energy and atomic physics opens a very promising route to the direct detection of the gravitational acceleration of neutral antimatter. PMID:25066810

  12. A moiré deflectometer for antimatter.

    PubMed

    Aghion, S; Ahlén, O; Amsler, C; Ariga, A; Ariga, T; Belov, A S; Berggren, K; Bonomi, G; Bräunig, P; Bremer, J; Brusa, R S; Cabaret, L; Canali, C; Caravita, R; Castelli, F; Cerchiari, G; Cialdi, S; Comparat, D; Consolati, G; Derking, H; Di Domizio, S; Di Noto, L; Doser, M; Dudarev, A; Ereditato, A; Ferragut, R; Fontana, A; Genova, P; Giammarchi, M; Gligorova, A; Gninenko, S N; Haider, S; Huse, T; Jordan, E; Jørgensen, L V; Kaltenbacher, T; Kawada, J; Kellerbauer, A; Kimura, M; Knecht, A; Krasnický, D; Lagomarsino, V; Lehner, S; Magnani, A; Malbrunot, C; Mariazzi, S; Matveev, V A; Moia, F; Nebbia, G; Nédélec, P; Oberthaler, M K; Pacifico, N; Petràček, V; Pistillo, C; Prelz, F; Prevedelli, M; Regenfus, C; Riccardi, C; Røhne, O; Rotondi, A; Sandaker, H; Scampoli, P; Storey, J; Vasquez, M A Subieta; Špaček, M; Testera, G; Vaccarone, R; Widmann, E; Zavatarelli, S; Zmeskal, J

    2014-07-28

    The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational interaction is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics--the moiré deflectometer--for a measurement of the acceleration of slow antiprotons. The setup consists of two identical transmission gratings and a spatially resolving emulsion detector for antiproton annihilations. Absolute referencing of the observed antimatter pattern with a photon pattern experiencing no deflection allows the direct inference of forces present. The concept is also straightforwardly applicable to antihydrogen measurements as pursued by the AEgIS collaboration. The combination of these very different techniques from high energy and atomic physics opens a very promising route to the direct detection of the gravitational acceleration of neutral antimatter.

  13. Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment.

    PubMed

    Tan, Andi; Xiao, Mengjiao; Cui, Xiangyi; Chen, Xun; Chen, Yunhua; Fang, Deqing; Fu, Changbo; Giboni, Karl; Giuliani, Franco; Gong, Haowei; Guo, Xuyuan; Han, Ke; Hu, Shouyang; Huang, Xingtao; Ji, Xiangdong; Ju, Yonglin; Lei, Siao; Li, Shaoli; Li, Xiaomei; Li, Xinglong; Liang, Hao; Lin, Qing; Liu, Huaxuan; Liu, Jianglai; Lorenzon, Wolfgang; Ma, Yugang; Mao, Yajun; Ni, Kaixuan; Ren, Xiangxiang; Schubnell, Michael; Shen, Manbin; Shi, Fang; Wang, Hongwei; Wang, Jimin; Wang, Meng; Wang, Qiuhong; Wang, Siguang; Wang, Xuming; Wang, Zhou; Wu, Shiyong; Xiao, Xiang; Xie, Pengwei; Yan, Binbin; Yang, Yong; Yue, Jianfeng; Zeng, Xionghui; Zhang, Hongguang; Zhang, Hua; Zhang, Huanqiao; Zhang, Tao; Zhao, Li; Zhou, Jing; Zhou, Ning; Zhou, Xiaopeng

    2016-09-16

    We report the weakly interacting massive particle (WIMP) dark matter search results using the first physics-run data of the PandaX-II 500 kg liquid xenon dual-phase time-projection chamber, operating at the China JinPing underground laboratory. No dark matter candidate is identified above background. In combination with the data set during the commissioning run, with a total exposure of 3.3×10^{4}  kg day, the most stringent limit to the spin-independent interaction between the ordinary and WIMP dark matter is set for a range of dark matter mass between 5 and 1000  GeV/c^{2}. The best upper limit on the scattering cross section is found 2.5×10^{-46}  cm^{2} for the WIMP mass 40  GeV/c^{2} at 90% confidence level.

  14. Search for Dark Matter with DEAP-3600

    NASA Astrophysics Data System (ADS)

    Jillings, Chris; DEAP-3600 Collaboration Collaboration

    2017-01-01

    DEAP-3600 is a single-phase liquid argon detector, which searches for dark matter particle interactions with 1 tonne fiducial target mass (3.6 tonnes total) contained in an ultra-pure acrylic vessel viewed by 255 high quantum efficiency photomultiplier tubes. It is located 2 km underground at SNOLAB, in Sudbury, Ontario. Radioactive backgrounds are controlled through pulse-shape discrimination in case of electromagnetic backgrounds (demonstrated with a smaller 7-kg prototype DEAP-1) and with a combination of excellent radiopurity, shielding and fiducialization for neutron and alpha backgrounds. The target sensitivity to spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons is 10-46 cm2 at 100 GeV/c2. Commissioning of the DEAP-3600 detector is now complete and physics data taking is starting. This talk will present an overview and status of the project, including early results demonstrating the detector performance.

  15. Interplay of weak interactions in the atom-by-atom condensation of xenon within quantum boxes

    PubMed Central

    Nowakowska, Sylwia; Wäckerlin, Aneliia; Kawai, Shigeki; Ivas, Toni; Nowakowski, Jan; Fatayer, Shadi; Wäckerlin, Christian; Nijs, Thomas; Meyer, Ernst; Björk, Jonas; Stöhr, Meike; Gade, Lutz H.; Jung, Thomas A.

    2015-01-01

    Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined ‘quantum boxes’. Our analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on—but is not limited to—the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry. PMID:25608225

  16. Intentional Movement Performance Ability (IMPA): a method for robot-aided quantitative assessment of motor function.

    PubMed

    Shin, Sung Yul; Kim, Jung Yoon; Lee, Sanghyeop; Lee, Junwon; Kim, Seung-Jong; Kim, ChangHwan

    2013-06-01

    The purpose of this paper is to propose a new assessment method for evaluating motor function of the patients who are suffering from physical weakness after stroke, incomplete spinal cord injury (iSCI) or other diseases. In this work, we use a robotic device to obtain the information of interaction occur between patient and robot, and use it as a measure for assessing the patients. The Intentional Movement Performance Ability (IMPA) is defined by the root mean square of the interactive torque, while the subject performs given periodic movement with the robot. IMPA is proposed to quantitatively determine the level of subject's impaired motor function. The method is indirectly tested by asking the healthy subjects to lift a barbell to disturb their motor function. The experimental result shows that the IMPA has a potential for providing a proper information of the subject's motor function level.

  17. Whispering gallery states of neutrons and anti-hydrogen atoms and their applications to fundamental and surface physics

    NASA Astrophysics Data System (ADS)

    Nesvizhevsky, Valery

    2013-03-01

    The `whispering gallery' effect has been known since ancient times for sound waves in air, later in water and more recently for a broad range of electromagnetic waves: radio, optics, Roentgen and so on. It is intensively used and explored due to its numerous crucial applications. It consists of wave localization near a curved reflecting surface and is expected for waves of various natures, for instance, for neutrons and (anti)atoms. For (anti)matter waves, it includes a new feature: a massive particle is settled in quantum states, with parameters depending on its mass. In this talk, we present the first observation of the quantum whispering-gallery effect for matter particles (cold neutrons) 1-2. This phenomenon provides an example of an exactly solvable problem analogous to the `quantum bouncer'; it is complementary to recently discovered gravitational quantum states of neutrons3. These two phenomena provide a direct demonstration of the weak equivalence principle for a massive particle in a quantum state. Deeply bound long-living states are weakly sensitive to surface potential; highly excited short-living states are very sensitive to the wall nuclear potential shape. Therefore, they are a promising tool for studying fundamental neutron-matter interactions, quantum neutron optics and surface physics effects. Analogous phenomena could be measured with atoms and anti-atoms 4-5.

  18. Structure-directing weak phosphoryl XH...O=P (X = C, N) hydrogen bonds in cyclic oxazaphospholidines and oxazaphosphinanes.

    PubMed

    van der Lee, A; Rolland, M; Marat, X; Virieux, D; Volle, J N; Pirat, J L

    2008-04-01

    The structures of six cyclic oxazaphospholidines and three cyclic oxazaphosphinanes have been determined and their supramolecular structures have been compared. The molecules differ with respect to the functional groups attached to the central five- or six-membered rings, but have one phosphoryl group in common. The predominant feature in the supramolecular structures is the existence of relatively weak intermolecular phosphoryl XH...O=P (X = C, N) hydrogen bonds, creating in nearly all cases linear zigzag or double molecular chains. The molecular chains are in general linked to each other via very weak CH...pi or usual hydrogen-bond interactions. A survey of the Cambridge Structural Database on similar XH...O=P interactions shows a very large flexibility of the XH...O angle, which is in agreement with the DFT calculation reported elsewhere. The strength of the XH...O=P interaction can therefore be considered as relatively weak to moderately strong, and is expected to play at least a role in the formation of secondary substructures.

  19. Interplay of Dzyaloshinsky-Moriya and dipole-dipole interactions and their joint effects upon vortical structures on nanodisks

    NASA Astrophysics Data System (ADS)

    Liu, Zhaosen; Ciftja, Orion; Ian, Hou

    2017-06-01

    In transition metal oxides, magnetic dipole-dipole (DD) and chiral Dzyaloshinsky-Moriya (DM) interactions between nearest neighboring spins are comparable in magnitude. In particular, the effects of the DD interaction on the physical properties of magnetic nanosystems cannot be simply neglected due to its long-range character. For these reasons, we employed here a new quantum simulation approach in order to investigate the interplay of these two interactions and study their combined effects upon the magnetic vortical structures of monolayer nanodisks. Consequently, we found out from our computational results that, in the presence of Heisenberg exchange interaction, a sufficiently strong DD interaction is also able to induce a single magnetic vortex on a small nanodisk; a strong DM interaction usually gives rise to a multi-domain structure which evolves with changing temperature; In this circumstance, if a weak DD interaction is further considered, the multi-domains merge to form a single vortex in the whole magnetic phase. Moreover, if only the Heisenberg exchange and chiral DM interactions are considered in simulations, our results from calculations with different spin values show that the transition temperature TM is simply proportional to S (S + 1) ; if the temperature is scaled with TM, and the calculated magnetizations are divided by the spin value S, their curves exhibit very similar features in the whole temperature region below TM.

  20. Entire-Dataset Analysis of NMR Fast-Exchange Titration Spectra: A Mg2+ Titration Analysis for HIV-1 Ribonuclease H Domain.

    PubMed

    Karki, Ichhuk; Christen, Martin T; Spiriti, Justin; Slack, Ryan L; Oda, Masayuki; Kanaori, Kenji; Zuckerman, Daniel M; Ishima, Rieko

    2016-12-15

    This article communicates our study to elucidate the molecular determinants of weak Mg 2+ interaction with the ribonuclease H (RNH) domain of HIV-1 reverse transcriptase in solution. As the interaction is weak (a ligand-dissociation constant >1 mM), nonspecific Mg 2+ interaction with the protein or interaction of the protein with other solutes that are present in the buffer solution can confound the observed Mg 2+ -titration data. To investigate these indirect effects, we monitored changes in the chemical shifts of backbone amides of RNH by recording NMR 1 H- 15 N heteronuclear single-quantum coherence spectra upon titration of Mg 2+ into an RNH solution. We performed the titration under three different conditions: (1) in the absence of NaCl, (2) in the presence of 50 mM NaCl, and (3) at a constant 160 mM Cl - concentration. Careful analysis of these three sets of titration data, along with molecular dynamics simulation data of RNH with Na + and Cl - ions, demonstrates two characteristic phenomena distinct from the specific Mg 2+ interaction with the active site: (1) weak interaction of Mg 2+ , as a salt, with the substrate-handle region of the protein and (2) overall apparent lower Mg 2+ affinity in the absence of NaCl compared to that in the presence of 50 mM NaCl. A possible explanation may be that the titrated MgCl 2 is consumed as a salt and interacts with RNH in the absence of NaCl. In addition, our data suggest that Na + increases the kinetic rate of the specific Mg 2+ interaction at the active site of RNH. Taken together, our study provides biophysical insight into the mechanism of weak metal interaction on a protein.

  1. Parity violation and the masslessness of the neutrino

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannheim, P.D.

    1978-09-01

    It is proposed that the weak interaction be obtained by gauging the strong interaction chiral flavor group. The neutrinos are then four-component spinors. Pairs of right-handed neutrinos are allowed to condense into the vacuum. This produces maximal parity violation in both the quark and lepton sectors of the weak interaction, keeps the neutrinos massless, and also leads to the conventional Weinberg mixing pattern. The approach also in principle provides a way of calculating the Cabibbo angle. 11 references.

  2. Spatial complexity reduces interaction strengths in the meta-food web of a river floodplain mosaic

    USGS Publications Warehouse

    Bellmore, James Ryan; Baxter, Colden Vance; Connolly, Patrick J.

    2015-01-01

    Theory states that both the spatial complexity of landscapes and the strength of interactions between consumers and their resources are important for maintaining biodiversity and the 'balance of nature.' Spatial complexity is hypothesized to promote biodiversity by reducing potential for competitive exclusion; whereas, models show weak trophic interactions can enhance stability and maintain biodiversity by dampening destabilizing oscillations associated with strong interactions. Here we show that spatial complexity can reduce the strength of consumer-resource interactions in natural food webs. By sequentially aggregating food webs of individual aquatic habitat patches across a floodplain mosaic, we found that increasing spatial complexity resulted in decreases in the strength of interactions between predators and prey, owing to a greater proportion of weak interactions and a reduced proportion of strong interactions in the meta-food web. The main mechanism behind this pattern was that some patches provided predation refugia for species which were often strongly preyed upon in other patches. If weak trophic interactions do indeed promote stability, then our findings may signal an additional mechanism by which complexity and stability are linked in nature. In turn, this may have implications for how the values of landscape complexity, and the costs of biophysical homogenization, are assessed.

  3. Simulation of linear and nonlinear Landau damping of lower hybrid waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Lei; Wang, X. Y.; Lin, Y.

    2013-06-15

    The linear physics of lower hybrid waves (LHWs) and their nonlinear interaction with particles through Landau damping are studied with the gyrokinetic electron and fully kinetic ion (GeFi) particle simulation model in the electrostatic limit. Unlike most other wave modes, the LHWs can resonantly interact with both electrons and ions, with the former being highly magnetized and latter nearly unmagnetized around the lower hybrid frequency. Direct interactions of LHWs with electrons and/or ions are investigated for cases with various k{sub ∥}/k,T{sub i}/T{sub e}, and wave amplitudes. In the linear electron Landau damping (ELD), the dispersion relation and the linear dampingmore » rate obtained from our simulation agree well with the analytical linear theory. As the wave amplitude increases, the nonlinear Landau effects are present, and a transition from strong decay at smaller amplitudes to weak decay at larger amplitudes is observed. In the nonlinear stage, the LHWs in the long time evolution finally exhibit a steady Bernstein-Greene-Kruskal mode, in which the wave amplitude is saturated above the noise level. While the resonant electrons are trapped in the wave field in the nonlinear ELD, the resonant ions are untrapped in the LHW time scales. The ion Landau damping is thus predominantly in a linear fashion, leading to a wave saturation level significantly lower than that in the ELD. On the long time scales, however, the ions are still weakly trapped. The results show a coupling between the LHW frequency and the ion cyclotron frequency during the long-time LHW evolution.« less

  4. p -wave superconductivity in weakly repulsive 2D Hubbard model with Zeeman splitting and weak Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Hugdal, Henning G.; Sudbø, Asle

    2018-01-01

    We study the superconducting order in a two-dimensional square lattice Hubbard model with weak repulsive interactions, subject to a Zeeman field and weak Rashba spin-orbit interactions. Diagonalizing the noninteracting Hamiltonian leads to two separate bands, and by deriving an effective low-energy interaction we find the mean field gap equations for the superconducting order parameter on the bands. Solving the gap equations just below the critical temperature, we find that superconductivity is caused by Kohn-Luttinger-type interaction, while the pairing symmetry of the bands is indirectly affected by the spin-orbit coupling. The dominating attractive momentum channel of the Kohn-Luttinger term depends on the filling fraction n of the system, and it is therefore possible to change the momentum dependence of the order parameter by tuning n . Moreover, n also determines which band has the highest critical temperature. Rotating the magnetic field changes the momentum dependence from states that for small momenta reduce to a chiral px±i py type state for out-of-plane fields, to a nodal p -wave-type state for purely in-plane fields.

  5. Large Deviations in Weakly Interacting Boundary Driven Lattice Gases

    NASA Astrophysics Data System (ADS)

    van Wijland, Frédéric; Rácz, Zoltán

    2005-01-01

    One-dimensional, boundary-driven lattice gases with local interactions are studied in the weakly interacting limit. The density profiles and the correlation functions are calculated to first order in the interaction strength for zero-range and short-range processes differing only in the specifics of the detailed-balance dynamics. Furthermore, the effective free-energy (large-deviation function) and the integrated current distribution are also found to this order. From the former, we find that the boundary drive generates long-range correlations only for the short-range dynamics while the latter provides support to an additivity principle recently proposed by Bodineau and Derrida.

  6. CP Violation, Neutral Currents, and Weak Equivalence

    DOE R&D Accomplishments Database

    Fitch, V. L.

    1972-03-23

    Within the past few months two excellent summaries of the state of our knowledge of the weak interactions have been presented. Correspondingly, we will not attempt a comprehensive review but instead concentrate this discussion on the status of CP violation, the question of the neutral currents, and the weak equivalence principle.

  7. Pharmacokinetic Drug Interactions with Panax ginseng.

    PubMed

    Ramanathan, Meenakshi R; Penzak, Scott R

    2017-08-01

    Panax ginseng is widely used as an adaptogen throughout the world. The major active constituents of P. ginseng are ginsenosides. Most naturally occurring ginsenosides are deglycosylated by colonic bacteria to intestinal metabolites. Ginsenosides along with these metabolites are widely accepted as being responsible for the pharmacologic activity and drug interaction potential of ginseng. Numerous preclinical studies have assessed the influence of various ginseng components on cytochrome P450 (CYP), glucuronidation, and drug transport activity. Results from these investigations have been largely inconclusive due to the use of different ginseng products and variations in methodology between studies. Drug interaction studies in humans have been conflicting and have largely yielded negative results or results that suggest only a weak interaction. One study using a midazolam probe found weak CYP3A induction and another using a fexofenadine probe found weak P-gp inhibition. Despite several case reports indicating a drug interaction between warfarin and P. ginseng, pharmacokinetic studies involving these agents in combination have failed to find significant pharmacokinetic or pharmacodynamic interactions. To this end, drug interactions involving P. ginseng appear to be rare; however, close clinical monitoring is still suggested for patients taking warfarin or CYP3A or P-gp substrates with narrow therapeutic indices.

  8. Role of Interactions and Correlations on Collective Dynamics of Molecular Motors Along Parallel Filaments

    NASA Astrophysics Data System (ADS)

    Midha, Tripti; Gupta, Arvind Kumar

    2017-11-01

    Cytoskeletal motors known as motor proteins are molecules that drive cellular transport along several parallel cytoskeletal filaments and support many biological processes. Experimental evidences suggest that they interact with the nearest molecules of their filament while performing any mechanical work. These interactions modify the microscopic level properties of motor proteins. In this work, a new version of two-channel totally asymmetric simple exclusion process, that incorporates the intra-channel interactions in a thermodynamically consistent way, is proposed. As the existing approaches for multi-channel systems deviate from analyzing the combined effect of inter and intra-channel interactions, a new approach known as modified vertical cluster mean field is developed. The approach along with Monte Carlo simulations successfully encounters some correlations and computes the complex dynamic properties of the system. Role of symmetry of interactions and inter-channel coupling is observed on the phase diagrams, maximal particle current and its corresponding optimal interaction strength. Surprisingly, for all values of coupling rate and most of the interaction splittings, the optimal interaction strength corresponding to maximal current belongs to the case of weak repulsive interactions. Moreover, for weak interaction splittings and with an increase in the coupling rate, the optimal interaction strength tends towards the known experimental results. The effect of coupling as well as interaction energy is also measured for correlations. They are found to be short-range and weaker for repulsive and weak attractive interactions while they are long-range and stronger for large attractions.

  9. Extracting joint weak values with local, single-particle measurements.

    PubMed

    Resch, K J; Steinberg, A M

    2004-04-02

    Weak measurement is a new technique which allows one to describe the evolution of postselected quantum systems. It appears to be useful for resolving a variety of thorny quantum paradoxes, particularly when used to study properties of pairs of particles. Unfortunately, such nonlocal or joint observables often prove difficult to measure directly in practice (for instance, in optics-a common testing ground for this technique-strong photon-photon interactions would be needed to implement an appropriate von Neumann interaction). Here we derive a general, experimentally feasible, method for extracting these joint weak values from correlations between single-particle observables.

  10. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Wu, Yilin

    Collective oscillatory behavior is ubiquitous in nature and it plays a vital role in many biological processes. Collective oscillations in biological multicellular systems often arise from coupling mediated by diffusive chemicals, by electrochemical mechanisms, or by biomechanical interaction between cells and their physical environment. In these examples, the phase of some oscillatory intracellular degree of freedom is synchronized. Here, in contrast, we discovered a unique 'weak synchronization' mechanism that does not require long-range coupling, nor even inherent oscillation of individual cells: We found that millions of motile cells in dense bacterial suspensions can self-organize into highly robust collective oscillatory motion, while individuals move in an erratic manner. Over large spatial scales we found that the phase of the oscillations is in fact organized into a centimeter scale traveling wave. We present a model of noisy self-propelled particles with strictly local interactions that accounts faithfully for our observations. These findings expand our knowledge of biological self-organization and reveal a new type of long-range order in active matter systems. The mechanism of collective oscillation uncovered here may inspire new strategies to control the self-organization of active matter and swarming robots. This work is supported by funding from CUHK Direct research Grants (4053019, 4053079, 4053130), the Research Grants Council of HKSAR (RGC Ref. No. CUHK 409713), and from the National Natural Science Foundation of China (NSFC 21473152).

  11. Microscopy of the interacting Harper-Hofstadter model in the few-body limit

    NASA Astrophysics Data System (ADS)

    Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Schittko, Robert; Menke, Tim; Borgnia, Dan; Preiss, Philipp; Grusdt, Fabian; Kaufman, Adam; Greiner, Markus

    2017-04-01

    The interplay of magnetic fields and interacting particles can lead to exotic phases of matter exhibiting topological order and high degrees of spatial entanglement. While these phases were discovered in a solid-state setting, recent techniques have enabled the realization of gauge fields in systems of ultracold neutral atoms, offering a new experimental paradigm for studying these novel states of matter. This complementary platform holds promise for exploring exotic physics in fractional quantum Hall systems due to the microscopic manipulation and precision possible in cold atom systems. However, these experiments thus far have mostly explored the regime of weak interactions. Here, we show how strong interactions can modify the propagation of particles in a 2 × N , real-space ladder governed by the Harper-Hofstadter model. We observe inter-particle interactions affect the populating of chiral bands, giving rise to chiral dynamics whose multi-particle correlations indicate both bound and free-particle character. The novel form of interaction-induced chirality observed in these experiments demonstrates the essential ingredients for future investigations of highly entangled topological phases of many-body systems. We are supported by Grants from the National Science Foundation, Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program, an Army Research Office MURI program, and the NSF GRFP (MNR).

  12. The Scientific Publications of Richard H. Dalitz, FRS (1925-2006)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aitchison, Ian J.R.; Close, Frank E.; Gal, Avraham

    2006-03-29

    Professor Richard H. Dalitz passed away on January 13, 2006. He was almost 81 years old and his outstanding contributions are intimately connected to some of the major breakthroughs of the 20th century in particle and nuclear physics. These outstanding contributions go beyond the Dalitz Plot, Dalitz Pair and CDD poles that bear his name. He pioneered the theoretical study of strange baryon resonances, of baryon spectroscopy in the quark model, and of hypernuclei, to all of which he made lasting contributions. His formulation of the ''{theta} - {tau} puzzle'' led to the discovery that parity is not a symmetrymore » of the weak interactions. A brief scientific evaluation of Dalitz's major contributions to particle and nuclear physics is hereby presented, followed by the first comprehensive list of his scientific publications, as assembled from several sources. The list is divided into two categories: the first, main part comprises Dalitz's research papers and reviews, including topics in the history of particle physics, biographies and reminescences; the second part lists book reviews, public lectures and obituaries authored by Dalitz, and books edited by him. This provides the first necessary step towards a more systematic research of the Dalitz heritage in modern physics.« less

  13. Evolution from BCS superconductivity to Bose condensation: Calculation of the zero-temperature phase coherence length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistolesi, F.; Strinati, G.C.

    1996-06-01

    We consider a fermionic system at zero temperature interacting through an effective nonretarded potential of the type introduced by Nozi{grave e}res and Schmitt-Rink, and calculate the {ital phase} coherence length {xi}{sub phase} (associated with the spatial fluctuations of the superconducting order parameter) by exploiting a functional-integral formulation for the correlation functions and the associated loop expansion. This formulation is especially suited to follow the evolution of the fermionic system from a BCS-type superconductor for weak coupling to a Bose-condensed system for strong coupling, since in the latter limit a {ital direct} mapping of the original fermionic system onto an effectivemore » system of bosons with a residual boson-boson interaction can be established. Explicit calculations are performed at the one-loop order. The phase coherence length {xi}{sub phase} is compared with the coherence length {xi}{sub pair} for two-electron correlation, which is relevant to distinguish the weak- ({ital k}{sub {ital F}}{xi}{sub pair}{gt}1) from the strong- ({ital k}{sub {ital F}}{xi}{sub pair}{lt}1) coupling limits ({ital k}{sub {ital F}} being the Fermi wave vector) {ital as} {ital well} {ital as} to follow the crossover in between. It is shown that {xi}{sub phase} coincides with {xi}{sub pair} down to {ital k}{sub {ital F}}{xi}{sub pair}{approx_equal}10, {xi}{sub pair} in turn coinciding with the Pippard coherence length. In the strong-coupling limit we find instead that {xi}{sub phase}{gt}{xi}{sub pair}, with {xi}{sub pair} coinciding with the radius of the bound-electron pair. From the mapping onto an effective system of bosons in the strong-coupling limit we further relate {xi}{sub pair} with the {open_quote}{open_quote}range{close_quote}{close_quote} of the residual boson-boson interaction, which is physically the only significant length associated with the dynamics of the bosonic system. {copyright} {ital 1996 The American Physical Society.}« less

  14. Environmental Dependence of Warps in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae; Bae, Hyun Jeong

    2016-12-01

    We determined the warp parameters of 192 warped galaxies which are selected from 340 edge-on galaxies using color images as well as r-band isophotal maps. We derive the local background density (Σ_{n}) to examine the dependence of the warp amplitudes on the galaxy environment. We find a clear trend that strongly warped galaxies are likely to be found in high density regions where tidal interactions are supposed to be frequent. However, the correlation between α_{w} and Σ_{n} is too weak for weakly warped galaxies (α_{w} < 4°) and the cumulative distributions of weakly warped galaxies are not significantly different from those of galaxies with no detectable warps. This suggests that tidal interactions do not play a decisive role in the formation of weak warps.}

  15. Effect of headgroup size, charge, and solvent structure on polymer-micelle interactions, studied by molecular dynamics simulations.

    PubMed

    Shang, Barry Z; Wang, Zuowei; Larson, Ronald G

    2009-11-19

    We performed atomistic molecular dynamics simulations of anionic and cationic micelles in the presence of poly(ethylene oxide) (PEO) to understand why nonionic water-soluble polymers such as PEO interact strongly with anionic micelles but only weakly with cationic micelles. Our micelles include sodium n-dodecyl sulfate (SDS), n-dodecyl trimethylammonium chloride (DTAC), n-dodecyl ammonium chloride (DAC), and micelles in which we artificially reverse the sign of partial charges in SDS and DTAC. We observe that the polymer interacts hydrophobically with anionic SDS but only weakly with cationic DTAC and DAC, in agreement with experiment. However, the polymer also interacts with the artificial anionic DTAC but fails to interact hydrophobically with the artificial cationic SDS, illustrating that large headgroup size does not explain the weak polymer interaction with cationic micelles. In addition, we observe through simulation that this preference for interaction with anionic micelles still exists in a dipolar "dumbbell" solvent, indicating that water structure and hydrogen bonding alone cannot explain this preferential interaction. Our simulations suggest that direct electrostatic interactions between the micelle and polymer explain the preference for interaction with anionic micelles, even though the polymer overall carries no net charge. This is possible given the asymmetric distribution of negative charges on smaller atoms and positive charges on larger units in the polymer chain.

  16. Assessing Binocular Interaction in Amblyopia and Its Clinical Feasibility

    PubMed Central

    Kwon, MiYoung; Lu, Zhong-Lin; Miller, Alexandra; Kazlas, Melanie; Hunter, David G.; Bex, Peter J.

    2014-01-01

    Purpose To measure binocular interaction in amblyopes using a rapid and patient-friendly computer-based method, and to test the feasibility of the assessment in the clinic. Methods Binocular interaction was assessed in subjects with strabismic amblyopia (n = 7), anisometropic amblyopia (n = 6), strabismus without amblyopia (n = 15) and normal vision (n = 40). Binocular interaction was measured with a dichoptic phase matching task in which subjects matched the position of a binocular probe to the cyclopean perceived phase of a dichoptic pair of gratings whose contrast ratios were systematically varied. The resulting effective contrast ratio of the weak eye was taken as an indicator of interocular imbalance. Testing was performed in an ophthalmology clinic under 8 mins. We examined the relationships between our binocular interaction measure and standard clinical measures indicating abnormal binocularity such as interocular acuity difference and stereoacuity. The test-retest reliability of the testing method was also evaluated. Results Compared to normally-sighted controls, amblyopes exhibited significantly reduced effective contrast (∼20%) of the weak eye, suggesting a higher contrast requirement for the amblyopic eye compared to the fellow eye. We found that the effective contrast ratio of the weak eye covaried with standard clincal measures of binocular vision. Our results showed that there was a high correlation between the 1st and 2nd measurements (r = 0.94, p<0.001) but without any significant bias between the two. Conclusions Our findings demonstrate that abnormal binocular interaction can be reliably captured by measuring the effective contrast ratio of the weak eye and quantitative assessment of binocular interaction is a quick and simple test that can be performed in the clinic. We believe that reliable and timely assessment of deficits in a binocular interaction may improve detection and treatment of amblyopia. PMID:24959842

  17. Weak interactions involving organic fluorine: analysis of structural motifs in Flunazirine and Haloperidol

    NASA Astrophysics Data System (ADS)

    Prasanna, M. D.; Row, T. N. Guru

    2001-05-01

    The crystal structure of Flunazirine, an anticonvulsant drug, is analyzed in terms of intermolecular interactions involving fluorine. The structure displays motifs formed by only weak interactions C-H⋯F and C-H⋯π. The motifs thus generated show cavities, which could serve as hosts for complexation. The structure of Flunazirine displays cavities formed by C-H⋯F and C-H⋯π interactions. Haloperidol, an antipsychotic drug, shows F⋯F interactions in the crystalline lattice in lieu of Cl⋯Cl interactions. However, strong O-H⋯N interactions dominate packing. The salient features of the two structures in terms of intermolecular interactions reveal, even though organic fluorine has lower tendency to engage in hydrogen bonding and F⋯F interactions, these interactions could play a significant role in the design of molecular assemblies via crystal engineering.

  18. Extension of lattice cluster theory to strongly interacting, self-assembling polymeric systems.

    PubMed

    Freed, Karl F

    2009-02-14

    A new extension of the lattice cluster theory is developed to describe the influence of monomer structure and local correlations on the free energy of strongly interacting and self-assembling polymer systems. This extension combines a systematic high dimension (1/d) and high temperature expansion (that is appropriate for weakly interacting systems) with a direct treatment of strong interactions. The general theory is illustrated for a binary polymer blend whose two components contain "sticky" donor and acceptor groups, respectively. The free energy is determined as an explicit function of the donor-acceptor contact probabilities that depend, in turn, on the local structure and both the strong and weak interactions.

  19. Interacting quantum dot coupled to a kondo spin: a universal Hamiltonian study.

    PubMed

    Rotter, Stefan; Türeci, Hakan E; Alhassid, Y; Stone, A Douglas

    2008-04-25

    We study a Kondo spin coupled to a mesoscopic interacting quantum dot that is described by the "universal Hamiltonian." The problem is solved numerically by diagonalizing the system Hamiltonian in a good-spin basis and analytically in the weak and strong Kondo coupling limits. The ferromagnetic exchange interaction within the dot leads to a stepwise increase of the ground-state spin (Stoner staircase), which is modified nontrivially by the Kondo interaction. We find that the spin-transition steps move to lower values of the exchange coupling for weak Kondo interaction, but shift back up for sufficiently strong Kondo coupling. The interplay between Kondo and ferromagnetic exchange correlations can be probed with experimentally tunable parameters.

  20. The Standard Model: how far can it go and how can we tell?

    PubMed

    Butterworth, J M

    2016-08-28

    The Standard Model of particle physics encapsulates our current best understanding of physics at the smallest distances and highest energies. It incorporates quantum electrodynamics (the quantized version of Maxwell's electromagnetism) and the weak and strong interactions, and has survived unmodified for decades, save for the inclusion of non-zero neutrino masses after the observation of neutrino oscillations in the late 1990s. It describes a vast array of data over a wide range of energy scales. I review a selection of these successes, including the remarkably successful prediction of a new scalar boson, a qualitatively new kind of object observed in 2012 at the Large Hadron Collider. New calculational techniques and experimental advances challenge the Standard Model across an ever-wider range of phenomena, now extending significantly above the electroweak symmetry breaking scale. I will outline some of the consequences of these new challenges, and briefly discuss what is still to be found.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'. © 2016 The Author(s).

  1. Quantum technologies with hybrid systems

    PubMed Central

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-01-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558

  2. Quantum technologies with hybrid systems.

    PubMed

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-31

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  3. Rethinking antiparticles. Hermann Weyl's contribution to neutrino physics

    NASA Astrophysics Data System (ADS)

    De Bianchi, Silvia

    2018-02-01

    This paper focuses on Hermann Weyl's two-component theory and frames it within the early development of different theories of spinors and the history of the discovery of parity violation in weak interactions. In order to show the implications of Weyl's theory, the paper discusses the case study of Ettore Majorana's symmetric theory of electron and positron (1937), as well as its role in inspiring Case's formulation of parity violation for massive neutrinos in 1957. In doing so, this paper clarifies the relevance of Weyl's and Majorana's theories for the foundations of neutrino physics and emphasizes which conceptual aspects of Weyl's approach led to Lee's and Yang's works on neutrino physics and to the solution of the theta-tau puzzle in 1957. This contribution thus sheds a light on the alleged "re-discovery" of Weyl's and Majorana's theories in 1957, by showing that this did not happen all of a sudden. On the contrary, the scientific community was well versed in applying these theories in the 1950s on the ground of previous studies that involved important actors in both Europe and United States.

  4. Quantum technologies with hybrid systems

    NASA Astrophysics Data System (ADS)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  5. A weakly nonlinear theory for wave-vortex interactions in curved channel flow

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Erlebacher, Gordon; Zang, Thomas A.

    1992-01-01

    A weakly nonlinear theory is developed to study the interaction of Tollmien-Schlichting (TS) waves and Dean vortices in curved channel flow. The predictions obtained from the theory agree well with results obtained from direct numerical simulations of curved channel flow, especially for low amplitude disturbances. Some discrepancies in the results of a previous theory with direct numerical simulations are resolved.

  6. Synergistic foaming and surface properties of a weakly interacting mixture of soy glycinin and biosurfactant stevioside.

    PubMed

    Wan, Zhi-Li; Wang, Li-Ying; Wang, Jin-Mei; Yuan, Yang; Yang, Xiao-Quan

    2014-07-16

    The adsorption of the mixtures of soy glycinin (11S) with a biosurfactant stevioside (STE) at the air-water interface was studied to understand its relation with foaming properties. A combination of several techniques such as dynamic surface tension, dilatational rheology, fluorescence spectroscopy, and isothermal titration calorimetry (ITC) was used. In the presence of intermediate STE concentrations (0.25-0.5%), the weak binding of STE with 11S in bulk occurred by hydrophobic interactions, which could induce conformational changes of 11S, as evidenced by fluorescence and ITC. Accordingly, the strong synergy in reducing surface tension and the plateau in surface elasticity for mixed 11S-STE layers formed from the weakly interacting mixtures were clearly observed. This effect could be explained by the complexation with STE, which might facilitate the partial dissociation and further unfolding of 11S upon adsorption, thus enhancing the protein-protein and protein-STE interfacial interactions. These surface properties were positively reflected in foams produced by the weakly interacting system, which exhibited good foaming capacity and considerable stability probably due to better response to external stresses. However, at high STE concentrations (1-2%), as a consequence of the interface dominated by STE due to the preferential adsorption of STE molecules, the surface elasticity of layers dramatically decreased, and the resultant foams became less stable.

  7. Teaching and Learning Physics in a 1:1 Laptop School

    NASA Astrophysics Data System (ADS)

    Zucker, Andrew A.; Hug, Sarah T.

    2008-12-01

    1:1 laptop programs, in which every student is provided with a personal computer to use during the school year, permit increased and routine use of powerful, user-friendly computer-based tools. Growing numbers of 1:1 programs are reshaping the roles of teachers and learners in science classrooms. At the Denver School of Science and Technology, a public charter high school where a large percentage of students come from low-income families, 1:1 laptops are used often by teachers and students. This article describes the school's use of laptops, the Internet, and related digital tools, especially for teaching and learning physics. The data are from teacher and student surveys, interviews, classroom observations, and document analyses. Physics students and teachers use an interactive digital textbook; Internet-based simulations (some developed by a Nobel Prize winner); word processors; digital drop boxes; email; formative electronic assessments; computer-based and stand-alone graphing calculators; probes and associated software; and digital video cameras to explore hypotheses, collaborate, engage in scientific inquiry, and to identify strengths and weaknesses of students' understanding of physics. Technology provides students at DSST with high-quality tools to explore scientific concepts and the experiences of teachers and students illustrate effective uses of digital technology for high school physics.

  8. Weak gauge boson radiation in parton showers

    NASA Astrophysics Data System (ADS)

    Christiansen, Jesper R.; Sjöstrand, Torbjörn

    2014-04-01

    The emission of W and Z gauge bosons off quarks is included in a traditional QCD + QED shower. The unitarity of the shower algorithm links the real radiation of the weak gauge bosons to the negative weak virtual corrections. The shower evolution process leads to a competition between QCD, QED and weak radiation, and allows for W and Z boson production inside jets. Various effects on LHC physics are studied, both at low and high transverse momenta, and effects at higher-energy hadron colliders are outlined.

  9. A theory with consolidation: Linking everything to explain everything

    NASA Astrophysics Data System (ADS)

    Biraris, Gaurav Shantaram

    The paper reports a theory which gives explicit (ontic) understanding of the abstract (epistemic) mechanisms spanning many branches of physics. It results to most modern physics starting from Newtonian physics by abandoning progress in twentieth century. The theory assumes consolidation of points in 4-balls of specific radius in the universe. Thus the 4-balls are fundamental elements of the universe. Analogue of momentum defined as soul vector is assumed to be induced on the 4-balls at the beginning of the universe. Then with progression of local time, collisions happen leading to different rotations of CNs. For such rotations, the consolidation provides centripetal binding. By using general terminologies of force and work, the mass energy mechanism gets revealed. The theory provides explicit interpretation of intrinsic properties of mass, electric charge, color charge, weak charge, spin etc. It also provides explicit understanding of the wave-particle duality & quantum mechanics. Epistemic study of the universe with the consolidation results to conventional quantum theories. Elementary mechanism of the field interactions is evident due to conservation of the soul vectors, and its epistemic expectation results to the gauge theories. The theory predicts that four types of interaction would exist in the universe along with the acceptable relative strengths; it provides fundamental interpretation of the physical forces. Further, it explains the basic mechanisms which can be identified with dark energy & dark matter. It also results to (or explains) entanglement, chirality, excess of matter, 4-component spinor, real-abstract (ontic-epistemic) correspondence etc. The theory is beyond standard model and results to the standard model, relativity, dark energy & dark matter, starting by simple assumptions.

  10. Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers.

    PubMed

    Wu, Jiang; Zhao, Chao; Hu, Rundong; Lin, Weifeng; Wang, Qiuming; Zhao, Jun; Bilinovich, Stephanie M; Leeper, Thomas C; Li, Lingyan; Cheung, Harry M; Chen, Shengfu; Zheng, Jie

    2014-02-01

    Protein-polymer interactions are of great interest in a wide range of scientific and technological applications. Neutral poly(ethylene glycol) (PEG) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA) are two well-known nonfouling materials that exhibit strong surface resistance to proteins. However, it still remains unclear or unexplored how PEG and pSBMA interact with proteins in solution. In this work, we examine the interactions between two model proteins (bovine serum albumin and lysozyme) and two typical antifouling polymers of PEG and pSBMA in aqueous solution using fluorescence spectroscopy, atomic force microscopy and nuclear magnetic resonance. The effect of protein:polymer mass ratios on the interactions is also examined. Collective data clearly demonstrate the existence of weak hydrophobic interactions between PEG and proteins, while there are no detectable interactions between pSBMA and proteins. The elimination of protein interaction with pSBMA could be due to an enhanced surface hydration of zwitterionic groups in pSBMA. New evidence is given to demonstrate the interactions between PEG and proteins, which are often neglected in the literature because the PEG-protein interactions are weak and reversible, as well as the structural change caused by hydrophobic interaction. This work provides a better fundamental understanding of the intrinsic structure-activity relationship of polymers underlying polymer-protein interactions, which are important for designing new biomaterials for biosensor, medical diagnostics and drug delivery applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Nonthermal Supermassive Dark Matter

    NASA Technical Reports Server (NTRS)

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  12. Electric Dipolar Kondo Effect Emerging from a Vibrating Magnetic Ion

    NASA Astrophysics Data System (ADS)

    Hotta, Takashi; Ueda, Kazuo

    2012-06-01

    When a magnetic ion vibrates in a metal, it inevitably introduces a new channel of hybridization with conduction electrons, and in general, the vibrating ion induces an electric dipole moment. In such a situation, we find that magnetic and nonmagnetic Kondo effects alternatively occur due to the screening of the spin moment and electric dipole moment of the vibrating ion. In particular, the electric dipolar two-channel Kondo effect is found to occur for a weak Coulomb interaction. We also show that a magnetically robust heavy-electron state appears near the fixed point of the electric dipolar two-channel Kondo effect. We believe that the vibrating magnetic ion opens a new door in Kondo physics.

  13. Direct quantitative measurement of the C═O⋅⋅⋅H–C bond by atomic force microscopy

    PubMed Central

    Kawai, Shigeki; Nishiuchi, Tomohiko; Kodama, Takuya; Spijker, Peter; Pawlak, Rémy; Meier, Tobias; Tracey, John; Kubo, Takashi; Meyer, Ernst; Foster, Adam S.

    2017-01-01

    The hydrogen atom—the smallest and most abundant atom—is of utmost importance in physics and chemistry. Although many analysis methods have been applied to its study, direct observation of hydrogen atoms in a single molecule remains largely unexplored. We use atomic force microscopy (AFM) to resolve the outermost hydrogen atoms of propellane molecules via very weak C═O⋅⋅⋅H–C hydrogen bonding just before the onset of Pauli repulsion. The direct measurement of the interaction with a hydrogen atom paves the way for the identification of three-dimensional molecules such as DNAs and polymers, building the capabilities of AFM toward quantitative probing of local chemical reactivity. PMID:28508080

  14. Probing quantum frustrated systems via factorization of the ground state.

    PubMed

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.

  15. Chiral Spin Order in Kondo-Heisenberg Systems

    NASA Astrophysics Data System (ADS)

    Tsvelik, A. M.; Yevtushenko, O. M.

    2017-12-01

    We demonstrate that low dimensional Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel-Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates, the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our finding paves the way towards pioneering experimental realizations of the chiral spin liquid in systems with spontaneously broken time-reversal symmetry.

  16. Organic molecules on metal and oxide semiconductor substrates: Adsorption behavior and electronic energy level alignment

    NASA Astrophysics Data System (ADS)

    Ruggieri, Charles M.

    Modern devices such as organic light emitting diodes use organic/oxide and organic/metal interfaces for crucial processes such as charge injection and charge transfer. Understanding fundamental physical processes occurring at these interfaces is essential to improving device performance. The ultimate goal of studying such interfaces is to form a predictive model of interfacial interactions, which has not yet been established. To this end, this thesis focuses on obtaining a better understanding of fundamental physical interactions governing molecular self-assembly and electronic energy level alignment at organic/metal and organic/oxide interfaces. This is accomplished by investigating both the molecular adsorption geometry using scanning tunneling microscopy, as well as the electronic structure at the interface using direct and inverse photoemission spectroscopy, and analyzing the results in the context of first principles electronic structure calculations. First, we study the adsorption geometry of zinc tetraphenylporphyrin (ZnTPP) molecules on three noble metal surfaces: Au(111), Ag(111), and Ag(100). These surfaces were chosen to systematically compare the molecular self-assembly and adsorption behavior on two metals of the same surface symmetry and two surface symmetries of one metal. From this investigation, we improve the understanding of self-assembly at organic/metal interfaces and the relative strengths of competing intermolecular and molecule-substrate interactions that influence molecular adsorption geometry. We then investigate the electronic structure of the ZnTPP/Au(111), Ag(111), and Ag(100) interfaces as examples of weakly-interacting systems. We compare these cases to ZnTPP on TiO2(110), a wide-bandgap oxide semiconductor, and explain the intermolecular and molecule-substrate interactions that determine the electronic energy level alignment at the interface. Finally we study tetracyanoquinodimethane (TCNQ), a strong electron acceptor, on TiO2(110), which exhibits chemical hybridization accompanied by molecular distortion, as well as extreme charge transfer resulting in the development of a space charge layer in the oxide. Thus, we present a broad experimental and theoretical perspective on the study of organic/metal and organic/oxide interfaces, elucidating fundamental physical interactions that govern molecular organization and energy level alignment.

  17. Critical Two-Point Function for Long-Range O( n) Models Below the Upper Critical Dimension

    NASA Astrophysics Data System (ADS)

    Lohmann, Martin; Slade, Gordon; Wallace, Benjamin C.

    2017-12-01

    We consider the n-component |φ|^4 lattice spin model (n ≥ 1) and the weakly self-avoiding walk (n=0) on Z^d, in dimensions d=1,2,3. We study long-range models based on the fractional Laplacian, with spin-spin interactions or walk step probabilities decaying with distance r as r^{-(d+α )} with α \\in (0,2). The upper critical dimension is d_c=2α . For ɛ >0, and α = 1/2 (d+ɛ ), the dimension d=d_c-ɛ is below the upper critical dimension. For small ɛ , weak coupling, and all integers n ≥ 0, we prove that the two-point function at the critical point decays with distance as r^{-(d-α )}. This "sticking" of the critical exponent at its mean-field value was first predicted in the physics literature in 1972. Our proof is based on a rigorous renormalisation group method. The treatment of observables differs from that used in recent work on the nearest-neighbour 4-dimensional case, via our use of a cluster expansion.

  18. Vindication of Yb2Ti2O7 as a model exchange quantum spin ice.

    PubMed

    Applegate, R; Hayre, N R; Singh, R R P; Lin, T; Day, A G R; Gingras, M J P

    2012-08-31

    We use numerical linked-cluster expansions to compute the specific heat C(T) and entropy S(T) of a quantum spin ice Hamiltonian for Yb2Ti2O7 using anisotropic exchange interactions, recently determined from inelastic neutron scattering measurements, and find good agreement with experimental calorimetric data. This vindicates Yb2Ti2O7 as a model quantum spin ice. We find that in the perturbative weak quantum regime, such a system has a ferrimagnetic ordered ground state, with two peaks in C(T): a Schottky anomaly signaling the paramagnetic to spin ice crossover, followed at a lower temperature by a sharp peak accompanying a first-order phase transition to the ordered state. We suggest that the two C(T) features observed in Yb2Ti2O7 are associated with the same physics. Spin excitations in this regime consist of weakly confined spinon-antispinon pairs. We anticipate that the conventional ground state with exotic quantum dynamics will prove a prevalent characteristic of many real quantum spin ice materials.

  19. Weak hybridization and isolated localized magnetic moments in the compounds CeT 2Cd 20 (T = Ni, Pd)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, B. D.; Yazici, D.; Ho, P. -C.

    2015-07-20

    Here, we report the physical properties of single crystals of the compounds CeT 2Cd 20 (T = Ni, Pd) that were grown in a molten Cd flux. Large separations of ~6.7- 6.8 Å between Ce ions favor the localized magnetic moments that are observed in measurements of the magnetization. The strength of the Ruderman-Kittel-Kasuya- Yosida magnetic exchange interaction between the localized moments is severely limited by the large Ce-Ce separations and by weak hybridization between localized Ce 4f and itinerant electron states. Measurements of electrical resistivity performed down to 0.138 K were unable to observe evidence for the emergence ofmore » magnetic order; however, magnetically-ordered ground states with very low transition temperatures are still expected in these compounds despite the isolated nature of the localized magnetic moments. Such a fragile magnetic order could be highly susceptible to tuning via applied pressure, but evidence for the emergence of magnetic order has not been observed so far in our measurements up to 2.5 GPa.« less

  20. Neutron whispering gallery

    NASA Astrophysics Data System (ADS)

    Nesvizhevsky, Valery V.; Voronin, Alexei Yu.; Cubitt, Robert; Protasov, Konstantin V.

    2010-02-01

    The `whispering gallery' effect has been known since ancient times for sound waves in air, later in water and more recently for a broad range of electromagnetic waves: radio, optics, Roentgen and so on. It consists of wave localization near a curved reflecting surface and is expected for waves of various natures, for instance, for atoms and neutrons. For matter waves, it would include a new feature: a massive particle would be settled in quantum states, with parameters depending on its mass. Here, we present for the first time the quantum whispering-gallery effect for cold neutrons. This phenomenon provides an example of an exactly solvable problem analogous to the `quantum bouncer'; it is complementary to the recently discovered gravitationally bound quantum states of neutrons . These two phenomena provide a direct demonstration of the weak equivalence principle for a massive particle in a pure quantum state. Deeply bound whispering-gallery states are long-living and weakly sensitive to surface potential; highly excited states are short-living and very sensitive to the wall potential shape. Therefore, they are a promising tool for studying fundamental neutron-matter interactions, quantum neutron optics and surface physics effects.

  1. Quantum measurement-induced antiferromagnetic order and density modulations in ultracold Fermi gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Mazzucchi, Gabriel; Caballero-Benitez, Santiago F.; Mekhov, Igor B.

    2016-08-01

    Ultracold atomic systems offer a unique tool for understanding behavior of matter in the quantum degenerate regime, promising studies of a vast range of phenomena covering many disciplines from condensed matter to quantum information and particle physics. Coupling these systems to quantized light fields opens further possibilities of observing delicate effects typical of quantum optics in the context of strongly correlated systems. Measurement backaction is one of the most funda- mental manifestations of quantum mechanics and it is at the core of many famous quantum optics experiments. Here we show that quantum backaction of weak measurement can be used for tailoring long-range correlations of ultracold fermions, realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves. We demonstrate that such long-range correlations cannot be realized with local addressing, and they are a consequence of the competition between global but spatially structured backaction of weak quantum measurement and unitary dynamics of fermions.

  2. Sorption of hydrogen by silica aerogel at low-temperatures

    NASA Astrophysics Data System (ADS)

    Dolbin, A. V.; Khlistyuck, M. V.; Esel'son, V. B.; Gavrilko, V. G.; Vinnikov, N. A.; Basnukaeva, R. M.; Martsenuk, V. E.; Veselova, N. V.; Kaliuzhnyi, I. A.; Storozhko, A. V.

    2018-02-01

    The programmed thermal desorption method is used at temperatures of 7-95 K to study the sorption and subsequent desorption of hydrogen by a sample of silica aerogel. Physical sorption of hydrogen owing to the weak van-der-Waals interaction of hydrogen molecules with the silicon dioxide walls of the pores of the sample was observed over the entire temperature range. The total capacity of the aerogel sample for hydrogen was ˜1.5 mass %. It was found that when the sample temperature was lowered from 95 to 60 K, the characteristic sorption times for hydrogen by the silica aerogel increase; this is typical of thermally activated diffusion (Ea ≈ 408 K). For temperatures of 15-45 K the characteristic H2 sorption times depended weakly on temperature, presumably because of the predominance of a tunnel mechanism for diffusion over thermally activated diffusion. Below 15 K the characteristic sorption times increase somewhat as the temperature is lowered; this may be explained by the formation of a monolayer of H2 molecules on the surface of the aerogel grains.

  3. Confinement and hadron-hadron interactions by general relativistic methods

    NASA Astrophysics Data System (ADS)

    Recami, Erasmo

    By postulating covariance of physical laws under global dilations, one can describe gravitational and strong interactions in a unified way. Namely, in terms of the new discrete dilational degree of freedom, our cosmos and hadrons can be regarded as finite, similar systems. And a discrete hierarchy of finite ``universes'' may be defined, which are governed by fields with strengths inversally proportional to their radii; in each universe an Equivalence Principle holds, so that the relevant field can be there geometrized. Scaled-down Einstein equations -with cosmological term- are assumed to hold inside hadrons (= strong micro-cosmoses); and they yield in a natural way classical confinement, as well as ``asymptotic freedom'', of the hadron constituents. In other words, the association of strong micro-universes of Friedmann type with hadrons (i.e., applying the methods of General Relativity to subnuclear particle physics) allows avoiding recourse to phenomenological models such as the Bag Model. Inside hadrons we have to deal with a tensorial field (= strong gravity), and hadron constituents are supposed to exchange spin-2 ``gluons''. Our approach allows us also to write down a tensorial, bi-scale field theory of hadron-hadron interactions, based on modified Einstein-type equations here proposed for strong interactions in our space. We obtain in particular: (i) the correct Yukawa behaviour of the strong scalar potential at the static limit and for r>~l fm; (ii) the value of hadron radii. As a byproduct, we derive a whole ``numerology'', connecting our gravitational cosmos with the strong micro-cosmoses (hadrons), such that it does imply no variation of G with the epoch. Finally, since a structute of the ``micro-universe'' type seems to be characteristic even of leptons, a hope for the future is including also weak interactions in our classical unification of the fundamental forces.

  4. The Kardar-Parisi-Zhang Equation as Scaling Limit of Weakly Asymmetric Interacting Brownian Motions

    NASA Astrophysics Data System (ADS)

    Diehl, Joscha; Gubinelli, Massimiliano; Perkowski, Nicolas

    2017-09-01

    We consider a system of infinitely many interacting Brownian motions that models the height of a one-dimensional interface between two bulk phases. We prove that the large scale fluctuations of the system are well approximated by the solution to the KPZ equation provided the microscopic interaction is weakly asymmetric. The proof is based on the martingale solutions of Gonçalves and Jara (Arch Ration Mech Anal 212(2):597-644, 2014) and the corresponding uniqueness result of Gubinelli and Perkowski (Energy solutions of KPZ are unique, 2015).

  5. Kelvin-wave cascade in the vortex filament model

    NASA Astrophysics Data System (ADS)

    Baggaley, Andrew W.; Laurie, Jason

    2014-01-01

    The small-scale energy-transfer mechanism in zero-temperature superfluid turbulence of helium-4 is still a widely debated topic. Currently, the main hypothesis is that weakly nonlinear interacting Kelvin waves (KWs) transfer energy to sufficiently small scales such that energy is dissipated as heat via phonon excitations. Theoretically, there are at least two proposed theories for Kelvin-wave interactions. We perform the most comprehensive numerical simulation of weakly nonlinear interacting KWs to date and show, using a specially designed numerical algorithm incorporating the full Biot-Savart equation, that our results are consistent with the nonlocal six-wave KW interactions as proposed by L'vov and Nazarenko.

  6. Interaction of In(I) and Tl(I) cations with 2,6-diaryl pyridine ligands: cation encapsulation within a very weakly interacting N/arene host environment.

    PubMed

    Mansaray, Hassanatu B; Tang, Christina Y; Vidovic, Dragoslav; Thompson, Amber L; Aldridge, Simon

    2012-12-03

    The interaction of 2,6-dimesitylpyridine with Tl(I) and In(I) cations has been investigated with a view to developing tractable molecular M(I) compounds which are soluble in organic media. In stark contrast to isosteric and isoelectronic terphenyl systems, complexes featuring the [(2,6-Mes(2)py)M](+) fragment feature very weak metal-ligand interactions in the solid state, as revealed by M-N distances of the order of 2.45 Å (M = In) and 2.64 Å (M = Tl). While additional weak π interactions are observed with arene solvate molecules in these systems, the related 2:1 complex [(2,6-Mes(2)py)(2)In][BAr(f)(4)] features an In(I) center wholly encapsulated by the bulky Mes(2)py donors, and even longer In-N distances [2.586(6) and 2.662(5) Å]. These contacts are about 0.5 Å greater than the sum of the respective covalent radii (2.13 Å) and provide evidence for an effectively "naked" In(I) cation stabilized to a minor extent by orbital interactions.

  7. Architecture of the hydrophobic and hydrophilic layers as found from crystal structure analysis of N-benzyl-N,N-dimethylalkylammonium bromides.

    PubMed

    Hodorowicz, Maciej; Stadnicka, Katarzyna; Czapkiewicz, Jan

    2005-10-01

    The molecular and crystal structures of N-benzyl-N,N-dimethylalkylammonium bromides monohydrates with chain length n=8-10 have been determined. The crystals are isostructural with the N-benzyl-N,N-dimethyldodecylammonium bromide monohydrate. The structures consist of alternated hydrophobic and hydrophilic layers perpendicular to [001]. The attraction between N+ of the cation head-groups and Br- anions is achieved through weak C_H...Br interactions. The water molecules incorporated into ionic layers are donors for two O_H...Br hydrogen bonds and serve as the acceptors in two weak interactions of C_H...O type. The methylene chains, with the slightly curved general shape, have the extended all-trans conformation. The mutual packing of the chains in the hydrophobic layers is governed by weak C_H...pi interactions.

  8. Microwave Spectrum of the Isopropanol-Water Dimer

    NASA Astrophysics Data System (ADS)

    Mead, Griffin; Finneran, Ian A.; Carroll, Brandon; Blake, Geoffrey

    2016-06-01

    Microwave spectroscopy provides a unique opportunity to study model non-covalent interactions. Of particular interest is the hydrogen bonding of water, whose various molecular properties are influenced by both strong and weak intermolecular forces. More specifically, measuring the hydrogen bonded structures of water-alcohol dimers investigates both strong (OH ··· OH) and weak (CH ··· OH) hydrogen bond interactions. Recently, we have measured the pure rotational spectrum of the isopropanol-water dimer using chirped-pulse Fourier transform microwave spectroscopy (CP-FTMW) between 8-18 GHz. Here, we present the spectrum of this dimer and elaborate on the structure's strong and weak hydrogen bonding.

  9. Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions.

    PubMed

    Xue, Fei; MacDonald, A H

    2018-05-04

    We study the phase diagram of a model quantum spin Hall system as a function of band inversion and band-coupling strength, demonstrating that when band hybridization is weak, an interaction-induced nematic insulator state emerges over a wide range of band inversion. This property is a consequence of the long-range Coulomb interaction, which favors interband phase coherence that is weakly dependent on momentum and therefore frustrated by the single-particle Hamiltonian at the band inversion point. For weak band hybridization, interactions convert the continuous gap closing topological phase transition at inversion into a pair of continuous phase transitions bounding a state with broken time-reversal and rotational symmetries. At intermediate band hybridization, the topological phase transition proceeds instead via a quantum anomalous Hall insulator state, whereas at strong hybridization interactions play no role. We comment on the implications of our findings for InAs/GaSb and HgTe/CdTe quantum spin Hall systems.

  10. Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions

    NASA Astrophysics Data System (ADS)

    Xue, Fei; MacDonald, A. H.

    2018-05-01

    We study the phase diagram of a model quantum spin Hall system as a function of band inversion and band-coupling strength, demonstrating that when band hybridization is weak, an interaction-induced nematic insulator state emerges over a wide range of band inversion. This property is a consequence of the long-range Coulomb interaction, which favors interband phase coherence that is weakly dependent on momentum and therefore frustrated by the single-particle Hamiltonian at the band inversion point. For weak band hybridization, interactions convert the continuous gap closing topological phase transition at inversion into a pair of continuous phase transitions bounding a state with broken time-reversal and rotational symmetries. At intermediate band hybridization, the topological phase transition proceeds instead via a quantum anomalous Hall insulator state, whereas at strong hybridization interactions play no role. We comment on the implications of our findings for InAs/GaSb and HgTe/CdTe quantum spin Hall systems.

  11. Two component Feebly Interacting Massive Particle (FIMP) dark matter

    NASA Astrophysics Data System (ADS)

    Pandey, Madhurima; Majumdar, Debasish; Prasad Modak, Kamakshya

    2018-06-01

    We explore the idea of an alternative candidate for particle dark matter namely Feebly Interacting Massive Particle (FIMP) in the framework of a two component singlet scalar model. Singlet scalar dark matter has already been demonstrated to be a viable candidate for WIMP (Weakly Interacting Massive Particle) dark matter in literature. In the FIMP scenario, dark matter particles are slowly produced via "thermal freeze-in" mechanism in the early Universe and are never abundant enough to reach thermal equilibrium or to undergo pair annihilation inside the Universe's plasma due to their extremely small couplings. We demonstrate that for smaller couplings too, required for freeze-in process, a two component scalar dark matter model considered here could well be a viable candidate for FIMP . In this scenario, the Standard Model of particle physics is extended by two gauge singlet real scalars whose stability is protected by an unbroken Z2× Z'2 symmetry and they are assumed to acquire no VEV after Spontaneous Symmetry Breaking. We explore the viable mass regions in the present two scalar DM model that is in accordance with the FIMP scenario. We also explore the upper limits of masses of the two components from the consideration of their self interactions.

  12. Interaction of Kelvin waves and nonlocality of energy transfer in superfluids

    NASA Astrophysics Data System (ADS)

    Laurie, Jason; L'Vov, Victor S.; Nazarenko, Sergey; Rudenko, Oleksii

    2010-03-01

    We argue that the physics of interacting Kelvin Waves (KWs) is highly nontrivial and cannot be understood on the basis of pure dimensional reasoning. A consistent theory of KW turbulence in superfluids should be based upon explicit knowledge of their interactions. To achieve this, we present a detailed calculation and comprehensive analysis of the interaction coefficients for KW turbuelence, thereby, resolving previous mistakes stemming from unaccounted contributions. As a first application of this analysis, we derive a local nonlinear (partial differential) equation. This equation is much simpler for analysis and numerical simulations of KWs than the Biot-Savart equation, and in contrast to the completely integrable local induction approximation (in which the energy exchange between KWs is absent), describes the nonlinear dynamics of KWs. Second, we show that the previously suggested Kozik-Svistunov energy spectrum for KWs, which has often been used in the analysis of experimental and numerical data in superfluid turbulence, is irrelevant, because it is based upon an erroneous assumption of the locality of the energy transfer through scales. Moreover, we demonstrate the weak nonlocality of the inverse cascade spectrum with a constant particle-number flux and find resulting logarithmic corrections to this spectrum.

  13. Exponentially Enhanced Light-Matter Interaction, Cooperativities, and Steady-State Entanglement Using Parametric Amplification

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Miranowicz, Adam; Li, Peng-Bo; Lü, Xin-You; You, J. Q.; Nori, Franco

    2018-03-01

    We propose an experimentally feasible method for enhancing the atom-field coupling as well as the ratio between this coupling and dissipation (i.e., cooperativity) in an optical cavity. It exploits optical parametric amplification to exponentially enhance the atom-cavity interaction and, hence, the cooperativity of the system, with the squeezing-induced noise being completely eliminated. Consequently, the atom-cavity system can be driven from the weak-coupling regime to the strong-coupling regime for modest squeezing parameters, and even can achieve an effective cooperativity much larger than 100. Based on this, we further demonstrate the generation of steady-state nearly maximal quantum entanglement. The resulting entanglement infidelity (which quantifies the deviation of the actual state from a maximally entangled state) is exponentially smaller than the lower bound on the infidelities obtained in other dissipative entanglement preparations without applying squeezing. In principle, we can make an arbitrarily small infidelity. Our generic method for enhancing atom-cavity interaction and cooperativities can be implemented in a wide range of physical systems, and it can provide diverse applications for quantum information processing.

  14. 1-[6-(1H-Indol-1-yl)pyridin-2-yl]-1H-indole-3-carbaldehyde.

    PubMed

    Ramathilagam, C; Umarani, P R; Venkatesan, N; Rajakumar, P; Gunasekaran, B; Manivannan, V

    2014-02-01

    In the title compound, C22H15N3O, the dihedral angle between the two indole units is 33.72 (3)°. The mol-ecular structure features a weak intra-molecular C-H⋯N inter-action. In the crystal, weak C-H⋯O and C-H⋯π inter-actions, forming a two-dimensional network parallel to the bc plane.

  15. FAA computer security : concerns remain due to personnel and other continuing weaknesses

    DOT National Transportation Integrated Search

    2000-08-01

    FAA has a history of computer security weaknesses in a number of areas, including its physical security management at facilities that house air traffic control (ATC) systems, systems security for both operational and future systems, management struct...

  16. Adaptation of the TH Epsilon Mu formalism for the analysis of the equivalence principle in the presence of the weak and electroweak interaction

    NASA Technical Reports Server (NTRS)

    Fennelly, A. J.

    1981-01-01

    The TH epsilon mu formalism, used in analyzing equivalence principle experiments of metric and nonmetric gravity theories, is adapted to the description of the electroweak interaction using the Weinberg-Salam unified SU(2) x U(1) model. The use of the TH epsilon mu formalism is thereby extended to the weak interactions, showing how the gravitational field affects W sub mu (+ or -1) and Z sub mu (0) boson propagation and the rates of interactions mediated by them. The possibility of a similar extension to the strong interactions via SU(5) grand unified theories is briefly discussed. Also, using the effects of the potentials on the baryon and lepton wave functions, the effects of gravity on transition mediated in high-A atoms which are electromagnetically forbidden. Three possible experiments to test the equivalence principle in the presence of the weak interactions, which are technologically feasible, are then briefly outline: (1) K-capture by the FE nucleus (counting the emitted X-ray); (2) forbidden absorption transitions in high-A atoms' vapor; and (3) counting the relative Beta-decay rates in a suitable alpha-beta decay chain, assuming the strong interactions obey the equivalence principle.

  17. Search for the standard model Higgs boson in $$l\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dikai

    2013-01-01

    Humans have always attempted to understand the mystery of Nature, and more recently physicists have established theories to describe the observed phenomena. The most recent theory is a gauge quantum field theory framework, called Standard Model (SM), which proposes a model comprised of elementary matter particles and interaction particles which are fundamental force carriers in the most unified way. The Standard Model contains the internal symmetries of the unitary product group SU(3) c ⓍSU(2) L Ⓧ U(1) Y , describes the electromagnetic, weak and strong interactions; the model also describes how quarks interact with each other through all of thesemore » three interactions, how leptons interact with each other through electromagnetic and weak forces, and how force carriers mediate the fundamental interactions.« less

  18. Dual fermionic variables and renormalization group approach to junctions of strongly interacting quantum wires

    NASA Astrophysics Data System (ADS)

    Giuliano, Domenico; Nava, Andrea

    2015-09-01

    Making a combined use of bosonization and fermionization techniques, we build nonlocal transformations between dual fermion operators, describing junctions of strongly interacting spinful one-dimensional quantum wires. Our approach allows for trading strongly interacting (in the original coordinates) fermionic Hamiltonians for weakly interacting (in the dual coordinates) ones. It enables us to generalize to the strongly interacting regime the fermionic renormalization group approach to weakly interacting junctions. As a result, on one hand, we are able to pertinently complement the information about the phase diagram of the junction obtained within the bosonization approach; on the other hand, we map out the full crossover of the conductance tensors between any two fixed points in the phase diagram connected by a renormalization group trajectory.

  19. Magnetic anisotropy in binuclear complexes in the weak-exchange limit: From the multispin to the giant-spin Hamiltonian

    NASA Astrophysics Data System (ADS)

    Maurice, Rémi; de Graaf, Coen; Guihéry, Nathalie

    2010-06-01

    This paper studies the physical basis of the giant-spin Hamiltonian, which is usually used to describe the anisotropy of single-molecule magnets. A rigorous extraction of the model has been performed in the weak-exchange limit of a binuclear centrosymmetric Ni(II) complex, using correlated ab initio calculations and effective Hamiltonian theory. It is shown that the giant-spin Hamiltonian is not appropriate to describe polynuclear complexes as soon as spin mixing becomes non-negligible. A relevant model is proposed involving fourth-order operators, different from the traditionally used Stevens operators. The new giant-spin Hamiltonian correctly reproduces the effects of the spin mixing in the weak-exchange limit. A procedure to switch on and off the spin mixing in the extraction has been implemented in order to separate this effect from other anisotropic effects and to numerically evaluate both contributions to the tunnel splitting. Furthermore, the new giant-spin Hamiltonian has been derived analytically from the multispin Hamiltonian at the second order of perturbation and the theoretical link between the two models is studied to gain understanding concerning the microscopic origin of the fourth-order interaction in terms of axial, rhombic, or mixed (axial-rhombic) character. Finally, an adequate method is proposed to extract the proper magnetic axes frame for polynuclear anisotropic systems.

  20. $$\\chi$$EFT studies of few-nucleon systems: a status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiavilla, Rocco

    2016-06-01

    A status report onmore » $$\\chi$$EFT studies of few-nucleon electroweak structure and dynamics is provided, including electromagnetic elastic form factors of few-nucleon systems, the $pp$ weak fusion and muon weak captures on deuteron and $^3$He, and a number of parity-violating processes induced by hadronic weak interactions.« less

  1. Ultracold Gas Theory from the Top-Down and Bottom-Up

    NASA Astrophysics Data System (ADS)

    Colussi, Victor E.

    Advances in trapping and cooling of ultracold gases over the last several decades have made it possible to test many formerly outstanding predictions from disparate branches of physics. This thesis touches on three historical problems that have found new life recently in the context of ultracold Bose gases of alkali atoms. The first problem revolves around an outstanding prediction from Boltzmann over a century and half old that the breathing mode of a isotropically trapped classical gas should oscillate indefinitely. I analyze recent experimental results, and attribute observed damping sources to trap imperfections. The second question is about the analogue of first and second sound modes from liquid helium in trapped dilute gases. I present the results of a joint theoretical/experimental investigation of the breathing mode of a finite temperature Bose-Einstein condensate (BEC), attributing a striking collapse revival behavior of the resultant oscillation to in-phase and out-of-phase normal modes of the thermal cloud and condensate. The third problem is that of the formation of Borromean ring-like three-body bound states, referred to as Efimov trimers, in strongly-interacting few-body systems. I extend the predicted spectrum of Efimov states into the realm of many degenerate internal levels, and investigate the difficult three-body elastic scattering problem. These questions are part of the broader theme of this thesis: How can our understanding of few-body physics in the ultracold limit be translated into statements about the bulk behavior of an ultracold gas? For weakly-interacting Bose gases, this translation is well-known: the many-body properties of the gas are well-described by the tracking just the one and two particle correlations. I analyze a generalization of this procedure to higher order correlations, the general connection between few-body physics and correlations in a dilute gas, and results for the emergence of Efimov physics in the magnetic phase of the strongly-interacting Bose gas.

  2. Detuned resonances of Tollmien-Schlichting waves in an airfoil boundary layer: Experiment, theory, and direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Würz, W.; Sartorius, D.; Kloker, M.; Borodulin, V. I.; Kachanov, Y. S.; Smorodsky, B. V.

    2012-09-01

    Transition prediction in two-dimensional laminar boundary layers developing on airfoil sections at subsonic speeds and very low turbulence levels is still a challenge. The commonly used semi-empirical prediction tools are mainly based on linear stability theory and do not account for nonlinear effects present unavoidably starting with certain stages of transition. One reason is the lack of systematic investigations of the weakly nonlinear stages of transition, especially of the strongest interactions of the instability modes predominant in non-self-similar boundary layers. The present paper is devoted to the detailed experimental, numerical, and theoretical study of weakly nonlinear subharmonic resonances of Tollmien-Schlichting waves in an airfoil boundary layer, representing main candidates for the strongest mechanism of these initial nonlinear stages. The experimental approach is based on phase-locked hot-wire measurements under controlled disturbance conditions using a new disturbance source being capable to produce well-defined, complex wave compositions in a wide range of streamwise and spanwise wave numbers. The tests were performed in a low-turbulence wind tunnel at a chord Reynolds number of Re = 0.7 × 106. Direct numerical simulations (DNS) were utilized to provide a detailed comparison for the test cases. The results of weakly nonlinear theory (WNT) enabled a profound understanding of the underlying physical mechanisms observed in the experiments and DNS. The data obtained in experiment, DNS and WNT agree basically and provide a high degree of reliability of the results. Interactions occurring between components of various initial frequency-wavenumber spectra of instability waves are investigated by systematic variation of parameters. It is shown that frequency-detuned and spanwise-wavenumber-detuned subharmonic-type resonant interactions have an extremely large spectral width. Similar to results obtained for self-similar base flows it is found that the amplification factors in the frequency-detuned resonances can be even higher than in tuned cases, in spite of the strong base-flow non-self-similarity. An explanation of this unusual phenomenon is found based on the theoretical analysis and comparison of experimental, theoretical, and DNS data.

  3. Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John A. Krommes

    2001-02-16

    A pedagogical review of the historical development and current status (as of early 2000) of systematic statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and methodology, not practical applications. Particular attention is paid to equations and formalism appropriate to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those are developed independently, then shown to be special cases of the direct-interaction approximation (DIA), which providesmore » a central focus for the article. Various methods of renormalized perturbation theory are described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose. A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations, stochasticity criteria for quasilinear theory, formal aspects of resonance-broadening theory, Novikov's theorem, the treatment of weak inhomogeneity, the derivation of the Vlasov weak-turbulence wave kinetic equation from a fully renormalized description, some features of a code for solving the direct-interaction approximation and related Markovian closures, the details of the solution of the EDQNM closure for a solvable three-wave model, and the notation used in the article.« less

  4. Self-efficacy, physical activity, and aerobic fitness in middle school children: examination of a pedometer intervention program.

    PubMed

    Manley, Dana; Cowan, Patricia; Graff, Carolyn; Perlow, Michael; Rice, Pamela; Richey, Phyllis; Sanchez, Zoila

    2014-01-01

    Physical activity in children has been associated with a number of health benefits. Unfortunately, physical inactivity continues to increase. The purpose of this study was to examine the relationships among self-efficacy levels, physical activity, aerobic fitness, and body composition (relative body mass index [RBMI]) and to determine whether a school-based pedometer intervention program would improve those variables. The sample consisted of 116 rural 11- to 13-year-old students. Weakly positive correlations between self-efficacy, physical activity, and aerobic fitness and weakly correlated inverse relationships between self-efficacy, physical activity, aerobic fitness and RBMI were found. There was no statistical significance between the intervention and control group when analyzing outcome variables. These findings suggest that those with optimal RBMI levels have higher self-efficacy, physical activity and aerobic fitness levels. Although not statistically significant, the intervention group had greater improvements in mean self-efficacy scores, aerobic fitness levels, and RBMI. © 2014.

  5. PREFACE: 1st Franco-Algerian Workshop on Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Mebarki, N.; Mimouni, J.; Vanucci, F.; Aissaoui, H.

    2015-04-01

    The first Franco-Algerian workshop on neutrino physics was held on 22-23 October 2013 at the University of Mentouri, Constantine, Algeria. It was jointly organized by the Laboratory of Mathematical and Subatomic Physics (LPMS) and the Direction of Scientific Research (DGRSTD) for the Algerian side, and for the French part by the IN2P3, CNRS and CEA IRFU. It is one of a series of international scientific meetings organized every two years by the LPMS at Constantine on high energy physics (theoretical, nuclear physics, classical and quantum cosmology, astrophysics, mathematical physics and quantum computing etc...) to maintain a high quality in scientific research and education at Algerian universities. This specific meeting brought together experts in particle physics, astrophysics and cosmology from France and Algeria. It touched upon several theoretical, phenomenological as well as experimental aspects of the neutrinos. The workshop participants were mostly young researchers from many universities and research institutes in Algeria. The physics of neutrinos is a very active field in particle physics, hence the importance for the High Energy community in Algeria to gain expertise in this ''strategic'' area at the intersection of various topics in theoretical physics and high energy astrophysics (SM physics, CP violation, in general, SNe explosions, baryogenesis...). The neutrino proposed by Pauli back in 1930 as a ''desperate remedy'' to save the law of energy conservation in beta decay had a bright early history. Discovered in 1956 in the Cowan-Reines experiment despite all odds, this elusive particle which enabled us to understand the chiral nature of the weak interactions which later lead to the electro-weak unification finally appears to hold a key role in understanding subatomic physics as well as the structure and structuration of the Universe. It is also, after the discovery of the Higgs particle at the LHC in 2012, the only grey area left today in the Standard Model of particle physics. The various contributions covered in this scientific meeting lie between oral and posters presentations including many specialized topics like neutrinos' oscillations, the various large experiments like Borexino and Opera, the geo-neutrinos, as more theoretical topics like Majorana neutrinos and the double beta decay, anomalies in neutrino physics, neutrino models beyond the standard model and in curved space-time. We hope that putting in print the various contributions to this exciting meeting will be a valuable contribution to the literature to both professional as well as young researchers in neutrino physics. This workshop couldn't have taken place without the generous and unfaltering support of the DGRSTD which fully financed it through its various stages. Editors Profs. The editors: Mebarki N., Mimouni J., Vanucci F., Aissaoui H.

  6. How did matter gain the upper hand over antimatter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Helen; /SLAC

    2009-01-30

    Antimatter exists! We routinely make it in laboratories. For every familiar particle type we find a matching antiparticle with opposite charge, but exactly the same mass. For example, a positron with positive charge has the same mass as an electron; an antiproton with negative charge has the same mass as a proton. Antimatter occurs naturally all over the universe wherever high-energy particles collide. The laws of physics for antimatter are very, very similar to those for antimatter--so far we know only one tiny difference in them, a detail of the weak interactions of quarks that earned Makoto Kobayashi and Toshihidemore » Maskawa a share of the 2008 Nobel Prize for Physics. Our understanding of the early Universe also tells us that after inflation ended equal amounts of matter and antimatter were produced. Today there's a lot of matter in the universe, but very little antimatter. This leaves a big question for cosmology. How did matter gain the upper hand over antimatter? It's a question at the root of our existence. Without this excess, there would be no stars, no Earth, and no us! When a particle meets its antiparticle, they annihilate each other in a flash of radiation. This process removed all the antimatter and most of the matter as the universe expanded and cooled. All that's left today is the excess amount of matter when destruction began to dominate over production. To get from equality to inequality for matter and antimatter requires a difference in the laws of physics between them and some special situation where it affects the balance between them. But, when we try to use the tiny difference we know about between quark and antiquark weak interactions to generate the imbalance, it doesn't work. We find a way that it can indeed give a small excess of matter over antimatter, but not nearly enough to give us all the matter we see in our universe. We can patch up the theory by adding unknown particles to it to make a scenario that works. Indeed we can do that in two very different ways. One way adds more quark-antiquark differences. The other introduces a matter-antimatter difference that affects only neutrinos, ghostly subatomic particles that barely interact with matter. As yet we have no way to choose between these two speculative ideas; future experiments may help us decide between them.« less

  7. Combined collapse by bridging and self-adhesion in a prototypical polymer model inspired by the bacterial nucleoid

    NASA Astrophysics Data System (ADS)

    Scolari, Vittore F.; Cosentino Lagomarsino, Marco

    Recent experimental results suggest that the E. coli chromosome feels a self-attracting interaction of osmotic origin, and is condensed in foci by bridging interactions. Motivated by these findings, we explore a generic modeling framework combining solely these two ingredients, in order to characterize their joint effects. Specifically, we study a simple polymer physics computational model with weak ubiquitous short-ranged self attraction and stronger sparse bridging interactions. Combining theoretical arguments and simulations, we study the general phenomenology of polymer collapse induced by these dual contributions, in the case of regularly-spaced bridging. Our results distinguish a regime of classical Flory-like coil-globule collapse dictated by the interplay of excluded volume and attractive energy and a switch-like collapse where bridging interaction compete with entropy loss terms from the looped arms of a star-like rosette. Additionally, we show that bridging can induce stable compartmentalized domains. In these configurations, different "cores" of bridging proteins are kept separated by star-like polymer loops in an entropically favorable multi-domain configuration, with a mechanism that parallels micellar polysoaps. Such compartmentalized domains are stable, and do not need any intra-specific interactions driving their segregation. Domains can be stable also in presence of uniform attraction, as long as the uniform collapse is above its theta point.

  8. The quest for novel modes of excitation in exotic nuclei

    NASA Astrophysics Data System (ADS)

    Paar, N.

    2010-06-01

    This paper provides an insight into several open problems in the quest for novel modes of excitation in nuclei with isospin asymmetry, deformation and finite-temperature characteristics in stellar environments. Major unsolved problems include the nature of pygmy dipole resonances, the quest for various multipole and spin-isospin excitations both in neutron-rich and proton drip-line nuclei mainly driven by loosely bound nucleons, excitations in unstable deformed nuclei and evolution of their properties with the shape phase transition. Exotic modes of excitation in nuclei at finite temperatures characteristic of supernova evolution present open problems with a possible impact in modeling astrophysically relevant weak interaction rates. All these issues challenge self-consistent many-body theory frameworks at the frontiers of on-going research, including nuclear energy density functionals, both phenomenological and constrained by the strong interaction physics of QCD, models based on low-momentum two-nucleon interaction Vlow-k and correlated realistic nucleon-nucleon interaction VUCOM, supplemented by three-body force, as well as two-nucleon and three-nucleon interactions derived from the chiral effective field theory. Joined theoretical and experimental efforts, including research with radioactive isotope beams, are needed to provide insight into dynamical properties of nuclei away from the valley of stability, involving the interplay of isospin asymmetry, deformation and finite temperature.

  9. Weak Presentations in Introductory Physics Texts.

    ERIC Educational Resources Information Center

    Jacobs, Samuel

    1978-01-01

    Presents a few illustrations of physics areas such as capacitors, free fall, vectors, and waves, to show that methods of presentation of specific topics, in some physics textbooks, produce in the average student the wrong impression and ignorance of important scientific facts. (GA)

  10. Literature review of models on tire-pavement interaction noise

    NASA Astrophysics Data System (ADS)

    Li, Tan; Burdisso, Ricardo; Sandu, Corina

    2018-04-01

    Tire-pavement interaction noise (TPIN) becomes dominant at speeds above 40 km/h for passenger vehicles and 70 km/h for trucks. Several models have been developed to describe and predict the TPIN. However, these models do not fully reveal the physical mechanisms or predict TPIN accurately. It is well known that all the models have both strengths and weaknesses, and different models fit different investigation purposes or conditions. The numerous papers that present these models are widely scattered among thousands of journals, and it is difficult to get the complete picture of the status of research in this area. This review article aims at presenting the history and current state of TPIN models systematically, making it easier to identify and distribute the key knowledge and opinions, and providing insight into the future research trend in this field. In this work, over 2000 references related to TPIN were collected, and 74 models were reviewed from nearly 200 selected references; these were categorized into deterministic models (37), statistical models (18), and hybrid models (19). The sections explaining the models are self-contained with key principles, equations, and illustrations included. The deterministic models were divided into three sub-categories: conventional physics models, finite element and boundary element models, and computational fluid dynamics models; the statistical models were divided into three sub-categories: traditional regression models, principal component analysis models, and fuzzy curve-fitting models; the hybrid models were divided into three sub-categories: tire-pavement interface models, mechanism separation models, and noise propagation models. At the end of each category of models, a summary table is presented to compare these models with the key information extracted. Readers may refer to these tables to find models of their interest. The strengths and weaknesses of the models in different categories were then analyzed. Finally, the modeling trend and future direction in this area are given.

  11. Roles of bond orientational ordering in glass transition and crystallization.

    PubMed

    Tanaka, Hajime

    2011-07-20

    It is widely believed that crystallization in three dimensions is primarily controlled by positional ordering, and not by bond orientational ordering. In other words, bond orientational ordering is usually considered to be merely a consequence of positional ordering and thus has often been ignored. This one-order-parameter (density) description may be reasonable when we consider an equilibrium liquid-solid transition, but may not be enough to describe a metastable state and the kinetics of the transition. Here we propose that bond orientational ordering can play a key role in (i) crystallization, (ii) the ordering to quasi-crystal and (iii) vitrification, which occurs under rather weak frustration against crystallization. In a metastable supercooled state before crystallization, a system generally tends to have bond orientational order at least locally as a result of a constraint of dense packing. For a system interacting with hard-core repulsions, the constraint is intrinsically of geometrical origin and thus the basic physics is the same as nematic ordering of rod-like particles upon densification. Furthermore, positional ordering is easily destroyed even by weak frustration such as polydispersity and anisotropic interactions which favour a symmetry not consistent with that of the equilibrium crystal. Thus we may say that vitrification can be achieved by disturbing and prohibiting long-range positional ordering. Even in such a situation, bond orientational ordering still survives, accompanying its critical-like fluctuations, which are the origin of dynamic heterogeneity for this case. This scenario naturally explains both the absence of positional order and the development of bond orientational order upon cooling in a supercooled state. Although our argument is speculative in nature, we emphasize that this physical picture can coherently explain crystallization, vitrification, quasi-crystallization and their relationship in a natural manner. For a strongly frustrated system, even bond orientational order can be destroyed. Even in such a case there may still appear a structural signature of dense packing, which is linked to slow dynamics.

  12. Gauge Bosons--The Ties That Bind.

    ERIC Educational Resources Information Center

    Hill, Christopher T.

    1982-01-01

    Discusses four basic forces/interactions in nature (strong force, weak force, electromagnetic force and gravity), associated with elementary particles. Focuses on "gauge bosons" (for example, photons), thought to account for strong, weak, and electromagnetic forces. (Author/JN)

  13. Impact of (α, n) reactions on weak r-process in neutrino-driven winds

    NASA Astrophysics Data System (ADS)

    Bliss, J.; Arcones, A.; Montes, F.; Pereira, J.

    2017-05-01

    After a successful core-collapse supernova, a neutrino-driven wind develops where it is possible to synthesize lighter heavy elements (30 < Z < 45). In the early galaxy, the origin of these elements is associated with the r-process and to an additional process. Here we assume that the additional process corresponds to the weak r-process (sometimes referred to as alpha-process) taking place in neutrino-driven winds. Based on a trajectory obtained from hydrodynamical simulations we study the astrophysics and nuclear physics uncertainties of a weak r-process with our main focus on the (α, n) reactions. These reactions are critical to redistribute the matter and allow it to move from light to heavy elements after nuclear statistical equilibrium freezes out. In this first sensitivity study, we vary all (α, n) reactions by given constant factors which are justified based on the uncertainties of the statistical model and its nuclear physics input, mainly alpha optical potentials for weak r-process conditions. Our results show that (α, n) rate uncertainties are indeed crucial to predict abundances. Therefore, further studies will follow to identify individual critical reactions. Since the nucleosynthesis path is close to stability, these reactions can be measured in the near future. Since much of the other nuclear data for the weak r-process are known, the reduction in nuclear physics uncertainties provided by these experiments will allow astronomical observations to directly constrain the astronomical conditions in the wind.

  14. Heisenberg scaling with weak measurement: a quantum state discrimination point of view

    DTIC Science & Technology

    2015-03-18

    a quantum state discrimination point of view. The Heisenberg scaling of the photon number for the precision of the interaction parameter between...coherent light and a spin one-half particle (or pseudo-spin) has a simple interpretation in terms of the interaction rotating the quantum state to an...release; distribution is unlimited. Heisenberg scaling with weak measurement: a quantum state discrimination point of view The views, opinions and/or

  15. Integrated analysis of energy transfers in elastic-wave turbulence.

    PubMed

    Yokoyama, Naoto; Takaoka, Masanori

    2017-08-01

    In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.

  16. Microcanonical fluctuations of the condensate in weakly interacting Bose gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idziaszek, Zbigniew

    2005-05-15

    We study fluctuations of the number of Bose condensed atoms in a weakly interacting homogeneous and trapped gases. For a homogeneous system we apply the particle-number-conserving formulation of the Bogoliubov theory and calculate the condensate fluctuations within the canonical and the microcanonical ensembles. We demonstrate that, at least in the low-temperature regime, predictions of the particle-number-conserving and traditional, nonconserving theory are identical, and lead to the anomalous scaling of fluctuations. Furthermore, the microcanonical fluctuations differ from the canonical ones by a quantity which scales normally in the number of particles, thus predictions of both ensembles are equivalent in the thermodynamicmore » limit. We observe a similar behavior for a weakly interacting gas in a harmonic trap. This is in contrast to the trapped, ideal gas, where microcanonical and canonical fluctuations are different in the thermodynamic limit.« less

  17. Designing perturbative metamaterials from discrete models.

    PubMed

    Matlack, Kathryn H; Serra-Garcia, Marc; Palermo, Antonio; Huber, Sebastian D; Daraio, Chiara

    2018-04-01

    Identifying material geometries that lead to metamaterials with desired functionalities presents a challenge for the field. Discrete, or reduced-order, models provide a concise description of complex phenomena, such as negative refraction, or topological surface states; therefore, the combination of geometric building blocks to replicate discrete models presenting the desired features represents a promising approach. However, there is no reliable way to solve such an inverse problem. Here, we introduce 'perturbative metamaterials', a class of metamaterials consisting of weakly interacting unit cells. The weak interaction allows us to associate each element of the discrete model with individual geometric features of the metamaterial, thereby enabling a systematic design process. We demonstrate our approach by designing two-dimensional elastic metamaterials that realize Veselago lenses, zero-dispersion bands and topological surface phonons. While our selected examples are within the mechanical domain, the same design principle can be applied to acoustic, thermal and photonic metamaterials composed of weakly interacting unit cells.

  18. Elucidating the weak protein-protein interaction mechanisms behind the liquid-liquid phase separation of a mAb solution by different types of additives.

    PubMed

    Wu, Guoliang; Wang, Shujing; Tian, Zhou; Zhang, Ning; Sheng, Han; Dai, Weiguo; Qian, Feng

    2017-11-01

    Liquid-liquid phase separation (LLPS) has long been observed during the physical stability investigation of therapeutic protein formulations. The buffer conditions and the presence of various excipients are thought to play important roles in the formulation development of monoclonal antibodies (mAbs). In this study, the effects of several small-molecule excipients (histidine, alanine, glycine, sodium phosphate, sodium chloride, sorbitol and sucrose) with diverse physical-chemical properties on LLPS of a model IgG1 (JM2) solutions were investigated by multiple techniques, including UV-vis spectroscopy, circular dichroism, differential scanning calorimetry/fluorimetry, size exclusion chromatography and dynamic light scattering. The LLPS of JM2 was confirmed to be a thermodynamic equilibrium process with no structural changes or irreversible aggregation of proteins. Phase diagrams of various JM2 formulations were constructed, suggesting that the phase behavior of JM2 was dependent on the solution pH, ionic strength and the presence of other excipients such as glycine, alanine, sorbitol and sucrose. Furthermore, we demonstrated that for this mAb, the interaction parameter (k D ) determined at low protein concentration appeared to be a good predictor for the occurrence of LLPS at high concentration. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Global ICME-Mars Interaction and Induced Atmospheric Loss

    NASA Astrophysics Data System (ADS)

    Fang, X.; Ma, Y.; Manchester, W.

    2013-12-01

    Without the shielding of a strong intrinsic magnetic field, the present-day Mars atmosphere is more vulnerable to external solar wind forcing than the Earth's atmosphere. Therefore interplanetary coronal mass ejections (ICMEs) are expected to drive disturbances in the Mars environment in a profoundly different way, which, however, is poorly understood due to the lack of coordinated solar wind and Mars observations. In this study, three sophisticated models work in concert to simulate the physical domain extending from the solar corona to near-Mars space for the 13 May 2005 ICME event. The Space Weather Modeling Framework (SWMF) will be used to investigate the interaction of the ICME with the ambient solar wind and monitor its propagation from the Sun to the planet. A 3-D MHD model for Mars will be applied to assess the planetary atmospheric/ionospheric responses during the ICME passage of Mars. In the Mars weak magnetic field environment, the ion kinetic effects are important and will be included through the use of a 3-D Monte Carlo pickup ion transport model. These physics-based modeling efforts enable us to provide a global and time series view of the Mars response to transient solar wind disturbances and induced atmospheric loss, which is currently not possible due to the limitation of observations.

  20. Neutrino physics with DARWIN

    NASA Astrophysics Data System (ADS)

    Benabderrahmane, M. L.

    2017-09-01

    DARWIN (DARk matter WImp search with liquid xenoN) will be a multi-ton dark matter detector with the primary goal of exploring the entire experimentally accessible parameter space for weakly interacting massive particles (WIMPs) over a wide mass-range. With its 40 tonne active liquid xenon target, low-energy threshold and ultra-low background level, DARWIN can also search for other rare interactions. Here we present its sensitivity to low-energy solar neutrinos and to neutrinoless double beta decay. In a low-energy window of 2-30 keV a rate of 105/year, from pp and 7Be neutrinos can be reached. Such a measurement, with 1% precision will allow testing neutrinos models. DARWIN could also reach a competitive half-life sensitivity of 8.5 · 1027 y to the neutrinoless double beta decay (0νββ) of 136Xe after an exposure of 140 t×y of natural xenon. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below 5 GeV/c2, and the event rate from 8B neutrinos would range from a few to a few tens of events per tonne and year, depending on the energy threshold of the detector. Deviations from the predicted but yet unmeasured neutrino flux would be an indication for physics beyond the Standard Model

  1. Nontraditional approach to algebra-based general physics

    NASA Astrophysics Data System (ADS)

    Meltzer, David E.

    1997-03-01

    In order to improve the degree of conceptual learning in our algebra-based general physics course, the second semester (of a two-semester sequence) has been taught in a nontraditional format during the past year. The key characteristics of this course were: 1) Intense and continuous use of interactive-engagement methods and cooperative learning; 2) coverage of less than half of the conventional number of topics, 3) heavy emphasis on qualitative questions as opposed to quantitative problems, 4) adjustment of the pacing of the course based on continuous (twice per week) formative assessment. The students enrolled in the course were relatively poorly prepared, with weak mathematical skills. Open-book quizzes stressing qualitative concepts in electricity and magnetism were given twice per week; most were given in "group quiz" format, allowing collaboration. Exams (also open-book) were all done individually. Most of the class time was taken up by quizzes, and by interactive discussion and group work related to quiz questions. New topics were not introduced until a majority of the class demonstrated competence in the topic under discussion. Despite lengthy and intensive focus on qualitative, conceptual questions and simple quantitative problems, only a small minority of the class ultimately demonstrated mastery of the targeted concepts. Frequent testing and re-testing of the students on basic concepts disclosed tenacious persistence of misconceptions.

  2. Condensate fluctuations of interacting Bose gases within a microcanonical ensemble.

    PubMed

    Wang, Jianhui; He, Jizhou; Ma, Yongli

    2011-05-01

    Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.

  3. Validation of Physics Standardized Test Items

    NASA Astrophysics Data System (ADS)

    Marshall, Jill

    2008-10-01

    The Texas Physics Assessment Team (TPAT) examined the Texas Assessment of Knowledge and Skills (TAKS) to determine whether it is a valid indicator of physics preparation for future course work and employment, and of the knowledge and skills needed to act as an informed citizen in a technological society. We categorized science items from the 2003 and 2004 10th and 11th grade TAKS by content area(s) covered, knowledge and skills required to select the correct answer, and overall quality. We also analyzed a 5000 student sample of item-level results from the 2004 11th grade exam using standard statistical methods employed by test developers (factor analysis and Item Response Theory). Triangulation of our results revealed strengths and weaknesses of the different methods of analysis. The TAKS was found to be only weakly indicative of physics preparation and we make recommendations for increasing the validity of standardized physics testing..

  4. Literary Reading Activities of Good and Weak Students: A Think Aloud Study

    ERIC Educational Resources Information Center

    Janssen, Tanja; Braaksma, Martine; Rijlaarsdam, Gert

    2006-01-01

    In this study we examined how good and weak students of literature interact with short literary stories. We focused on differences in the use of cognitive and affective reading activities, and in the extent to which good and weak students adapt their activities to (parts of) the story they are reading. 19 Dutch tenth-grade students from 8 classes…

  5. Landau instability and mobility edges of the interacting one-dimensional Bose gas in weak random potentials

    NASA Astrophysics Data System (ADS)

    Cherny, Alexander Yu; Caux, Jean-Sébastien; Brand, Joachim

    2018-01-01

    We study the frictional force exerted on the trapped, interacting 1D Bose gas under the influence of a moving random potential. Specifically we consider weak potentials generated by optical speckle patterns with finite correlation length. We show that repulsive interactions between bosons lead to a superfluid response and suppression of frictional force, which can inhibit the onset of Anderson localisation. We perform a quantitative analysis of the Landau instability based on the dynamic structure factor of the integrable Lieb-Liniger model and demonstrate the existence of effective mobility edges.

  6. Weak Interaction Models with New Quarks and Right-handed Currents

    DOE R&D Accomplishments Database

    Wilczek, F. A.; Zee, A.; Kingsley, R. L.; Treiman, S. B.

    1975-06-01

    We discuss various weak interaction issues for a general class of models within the SU(2) x U(1) gauge theory framework, with special emphasis on the effects of right-handed, charged currents and of quarks bearing new quantum numbers. In particular we consider the restrictions on model building which are imposed by the small KL - KS mass difference and by the .I = = rule; and we classify various possibilities for neutral current interactions and, in the case of heavy mesons with new quantum numbers, various possibilities for mixing effects analogous to KL - KS mixing.

  7. Early Career: The search for weakly interacting dark matter with liquid xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Carter

    2017-02-08

    We report results from a search for weakly interacting dark matter particles obtained with the LUX experiment. LUX was located at a depth of 4850 feet at the Sanford Underground Research Facility in Lead, South Dakota from 2013 through 2016. It found no evidence for dark matter particle interactions and set new constraints on the properties of such particles for masses between 6 GeV and 100 TeV. The work reported here also characterized the performance of such experiments by developing a new calibration technique based upon a tritium beta decay source.

  8. Weak Interactions

    DOE R&D Accomplishments Database

    Lee, T. D.

    1957-06-01

    Experimental results on the non-conservation of parity and charge conservation in weak interactions are reviewed. The two-component theory of the neutrino is discussed. Lepton reactions are examined under the assumption of the law of conservation of leptons and that the neutrino is described by a two- component theory. From the results of this examination, the universal Fermi interactions are analyzed. Although reactions involving the neutrino can be described, the same is not true of reactions which do not involve the lepton, as the discussion of the decay of K mesons and hyperons shows. The question of the invariance of time reversal is next examined. (J.S.R.)

  9. Fully- and weakly-nonlinear biperiodic traveling waves in shallow water

    NASA Astrophysics Data System (ADS)

    Hirakawa, Tomoaki; Okamura, Makoto

    2018-04-01

    We directly calculate fully nonlinear traveling waves that are periodic in two independent horizontal directions (biperiodic) in shallow water. Based on the Riemann theta function, we also calculate exact periodic solutions to the Kadomtsev-Petviashvili (KP) equation, which can be obtained by assuming weakly-nonlinear, weakly-dispersive, weakly-two-dimensional waves. To clarify how the accuracy of the biperiodic KP solution is affected when some of the KP approximations are not satisfied, we compare the fully- and weakly-nonlinear periodic traveling waves of various wave amplitudes, wave depths, and interaction angles. As the interaction angle θ decreases, the wave frequency and the maximum wave height of the biperiodic KP solution both increase, and the central peak sharpens and grows beyond the height of the corresponding direct numerical solutions, indicating that the biperiodic KP solution cannot qualitatively model direct numerical solutions for θ ≲ 45^\\circ . To remedy the weak two-dimensionality approximation, we apply the correction of Yeh et al (2010 Eur. Phys. J. Spec. Top. 185 97-111) to the biperiodic KP solution, which substantially improves the solution accuracy and results in wave profiles that are indistinguishable from most other cases.

  10. The General Weakness Syndrome Therapy (GymNAST) study: protocol for a cohort study on recovery on walking function

    PubMed Central

    Mehrholz, Jan; Mückel, Simone; Oehmichen, Frank; Pohl, Marcus

    2014-01-01

    Introduction Critical illness myopathy (CIM) and polyneuropathy (CIP) are common complications of critical illness that frequently occur together. Both cause so called intensive care unit (ICU)-acquired muscle weakness. This weakness of limb muscles increases morbidity and delay rehabilitation and recovery of walking ability. Although full recovery has been reported people with severe weakness may take months to improve walking. Focused physical rehabilitation of people with ICU-acquired muscle weakness is therefore of great importance. However, although physical rehabilitation is common, detailed knowledge about the pattern and the time course of recovery of walking function are not well understood. Therefore, the aim of the General Weakness Syndrome Therapy (GymNAST) study is to describe the time course of recovery of walking function and other activities of daily living in these patients. Methods and analysis We conduct a prospective cohort study of people with ICU-acquired muscle weakness with defined diagnosis of CIM or CIP. Based on our sample size calculation, approximately 150 patients will be recruited from the ICU of our hospital in Germany. Amount and content of physical rehabilitation, clinical tests for example, muscle strength and motor function and neuropsychological assessments will be used as independent variables. The primary outcomes will include recovery of walking function and mobility. Secondary outcomes will include global motor function, activities in daily life and participation. Ethics and dissemination The study is being carried out in agreement with the Declaration of Helsinki and conducted with the approval of the local medical Ethics Committee (Landesärztekammer Sachsen, Germany, reference number EK-BR-32/13-1) and with the understanding and written consent of each patient's guardian. The results of this study will be published in peer-reviewed journals and disseminated to the medical society and general public. PMID:25344484

  11. Precision cosmology with weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Hearin, Andrew P.

    In recent years, cosmological science has developed a highly predictive model for the universe on large scales that is in quantitative agreement with a wide range of astronomical observations. While the number and diversity of successes of this model provide great confidence that our general picture of cosmology is correct, numerous puzzles remain. In this dissertation, I analyze the potential of planned and near future galaxy surveys to provide new understanding of several unanswered questions in cosmology, and address some of the leading challenges to this observational program. In particular, I study an emerging technique called cosmic shear, the weak gravitational lensing produced by large scale structure. I focus on developing strategies to optimally use the cosmic shear signal observed in galaxy imaging surveys to uncover the physics of dark energy and the early universe. In chapter 1 I give an overview of a few unsolved mysteries in cosmology and I motivate weak lensing as a cosmological probe. I discuss the use of weak lensing as a test of general relativity in chapter 2 and assess the threat to such tests presented by our uncertainty in the physics of galaxy formation. Interpreting the cosmic shear signal requires knowledge of the redshift distribution of the lensed galaxies. This redshift distribution will be significantly uncertain since it must be determined photometrically. In chapter 3 I investigate the influence of photometric redshift errors on our ability to constrain dark energy models with weak lensing. The ability to study dark energy with cosmic shear is also limited by the imprecision in our understanding of the physics of gravitational collapse. In chapter 4 I present the stringent calibration requirements on this source of uncertainty. I study the potential of weak lensing to resolve a debate over a long-standing anomaly in CMB measurements in chapter 5. Finally, in chapter 6 I summarize my findings and conclude with a brief discussion of my outlook on the future of weak lensing studies of cosmology.

  12. Weak interactions at high energies. [Lectures, review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories frommore » the Higgs bosons to speculations about proton decay. 187 references. (JFP)« less

  13. The QBO and weak external forcing by solar activity: A three dimensional model study

    NASA Technical Reports Server (NTRS)

    Dameris, M.; Ebel, A.

    1989-01-01

    A better understanding is attempted of the physical mechanisms leading to significant correlations between oscillations in the lower and middle stratosphere and solar variability associated with the sun's rotation. A global 3-d mechanistic model of the middle atmosphere is employed to investigate the effects of minor artificially induced perturbations. The aim is to explore the physical mechanisms of the dynamical response especially of the stratosphere to weak external forcing as it may result from UV flux changes due to solar rotation. First results of numerical experiments dealing about the external forcing of the middle atmosphere by solar activity were presented elsewhere. Different numerical studies regarding the excitation and propagation of weak perturbations have been continued since then. The model calculations presented are made to investigate the influence of the quasi-biennial oscillation (QBO) on the dynamical response of the middle atmosphere to weak perturbations by employing different initial wind fields which represent the west and east phase of the QBO.

  14. Measurement of the Effective Weak Mixing Angle in p p ¯ → Z / γ * → e + e - Events

    DOE PAGES

    Abazov, V.  M.; Abbott, B.; Acharya, B.  S.; ...

    2015-07-22

    We present a measurement of the fundamental parameter of the standard model, the weak mixing angle sin 2θ ℓ eff which determines the relative strength of weak and electromagnetic interactions, in pp¯→Z/γ*→e +e - events at a center of mass energy of 1.96 TeV, using data corresponding to 9.7 fb -1 of integrated luminosity collected by the D0 detector at the Fermilab Tevatron. The effective weak mixing angle is extracted from the forward-backward charge asymmetry as a function of the invariant mass around the Z boson pole. The measured value of sin 2θ ℓ eff=0.23147±0.00047 is the most precise measurementmore » from light quark interactions to date, with a precision close to the best LEP and SLD results.« less

  15. Measurement of the Effective Weak Mixing Angle in p p ¯ → Z / γ * → e + e - Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.

    2015-07-22

    We present a measurement of the fundamental parameter of the standard model, the weak mixing angle sin 2θ ℓ eff which determines the relative strength of weak and electromagnetic interactions, in pp¯→Z/γ*→e +e - events at a center of mass energy of 1.96 TeV, using data corresponding to 9.7 fb -1 of integrated luminosity collected by the D0 detector at the Fermilab Tevatron. The effective weak mixing angle is extracted from the forward-backward charge asymmetry as a function of the invariant mass around the Z boson pole. The measured value of sin 2θ ℓ eff=0.23147±0.00047 is the most precise measurementmore » from light quark interactions to date, with a precision close to the best LEP and SLD results.« less

  16. Phase Diagram of the Bose Hubbard Model with Weak Links

    NASA Astrophysics Data System (ADS)

    Hettiarachchilage, Kalani; Rousseau, Valy; Tam, Ka-Ming; Moreno, Juana; Jarrell, Mark; Sheehy, Daniel

    2012-02-01

    We study the ground state phase diagram of strongly interacting ultracold Bose gas in a one-dimensional optical lattice with a tunable weak link, by means of Quantum Monte Carlo simulation. This model contains an on-site repulsive interaction (U) and two different near-neighbor hopping terms, J and t, for the weak link and the remainder of the chain, respectively. We show that by reducing the strength of J, a novel intermediate phase develops which is compressible and non-superfluid. This novel phase is identified as a Normal Bose Liquid (NBL) which does not appear in the phase diagram of the homogeneous bosonic Hubbard model. Further, we find a linear variation of the phase boundary of Normal Bose Liquid (NBL) to SuperFluid (SF) as a function of the strength of the weak link. These results may provide a new path to design advanced atomtronic devices in the future.

  17. Quantum weak turbulence with applications to semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Lvov, Y. V.; Binder, R.; Newell, A. C.

    1998-10-01

    Based on a model Hamiltonian appropriate for the description of fermionic systems such as semiconductor lasers, we describe a natural asymptotic closure of the BBGKY hierarchy in complete analogy with that derived for classical weak turbulence. The main features of the interaction Hamiltonian are the inclusion of full Fermi statistics containing Pauli blocking and a simple, phenomenological, uniformly weak two-particle interaction potential equivalent to the static screening approximation. We find a new class of solutions to the quantum kinetic equation which are analogous to the Kolmogorov spectra of hydrodynamics and classical weak turbulence. They involve finite fluxes of particles and energy in momentum space and are particularly relevant for describing the behavior of systems containing sources and sinks. We make a prima facie case that these finite flux solutions can be important in the context of semiconductor lasers and show how they might be used to enhance laser performance.

  18. Current understanding of the physics of type III solar radio bursts

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.

    1980-01-01

    One of the most exciting plasma physics investigations of recent years has been connected with the understanding of a new strong turbulent plasma state excited by propagating electron beams. This new state is initiated on the linear level by parametric instabilities (OTS, modulational, etc.) and results in a very dynamic state composed of collective clusters of modes called solitons, cavitons, spikons, etc. Introduction of these concepts into the classic beam-plasma interaction problem has rendered quasi-linear and weak turbulence theories inapplicable over most of the interesting parameter range, and helped explain many paradoxes connected with the propagation of beams in the laboratory and space. Following a brief review of these nonlinear notions, the means by which their application to type III solar radiobursts has revolutionized understanding of their propagation, radioemission and scaling properties and has guided the in situ observations towards a more complete understanding are demonstrated. A particular burst (May 16, 1971) is analyzed in detail and compared with numerical predictions.

  19. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5

    PubMed Central

    Lu, Y. F.; Kono, H.; Larkin, T. I.; Rost, A. W.; Takayama, T.; Boris, A. V.; Keimer, B.; Takagi, H.

    2017-01-01

    The excitonic insulator is a long conjectured correlated electron phase of narrow-gap semiconductors and semimetals, driven by weakly screened electron–hole interactions. Having been proposed more than 50 years ago, conclusive experimental evidence for its existence remains elusive. Ta2NiSe5 is a narrow-gap semiconductor with a small one-electron bandgap EG of <50 meV. Below TC=326 K, a putative excitonic insulator is stabilized. Here we report an optical excitation gap Eop ∼0.16 eV below TC comparable to the estimated exciton binding energy EB. Specific heat measurements show the entropy associated with the transition being consistent with a primarily electronic origin. To further explore this physics, we map the TC–EG phase diagram tuning EG via chemical and physical pressure. The dome-like behaviour around EG∼0 combined with our transport, thermodynamic and optical results are fully consistent with an excitonic insulator phase in Ta2NiSe5. PMID:28205553

  20. John Wheeler, 1933 - 1959: Particles and Weapons

    NASA Astrophysics Data System (ADS)

    Ford, Kenneth

    2009-05-01

    During the early part of his career, John Archibald Wheeler made an astonishing number of contributions to nuclear and particle physics, as well as to classical electrodynamics, often in collaboration with another physicist. He was also a major contributor to the Manhattan Project (in Chicago and Hanford rather than Los Alamos), and, following World War II, became an influential scientific cold warrior. His early achievements in physics include the calculated scattering of light by light (with Gregory Breit), the prediction of nuclear rotational states (with Edward Teller), the theory of fission (with Niels Bohr), action-at-a-distance electrodynamics (with Richard Feynman), the theory of positronium, the universal weak interaction (with Jayme Tiomno), and the proposed use of the muon as a nuclear probe particle. He gained modest fame as the person who identified xenon 135 as a reactor poison. His Project Matterhorn contributed significantly to the design of the H bomb, and his Project 137, which he had hoped would flower into a major defense lab, served as the precursor to the Jason group.

  1. Physical controls on directed virus assembly at nanoscale chemical templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, C L; Chung, S; Chatterji, A

    2006-05-10

    Viruses are attractive building blocks for nanoscale heterostructures, but little is understood about the physical principles governing their directed assembly. In-situ force microscopy was used to investigate organization of Cowpea Mosaic Virus engineered to bind specifically and reversibly at nanoscale chemical templates with sub-30nm features. Morphological evolution and assembly kinetics were measured as virus flux and inter-viral potential were varied. The resulting morphologies were similar to those of atomic-scale epitaxial systems, but the underlying thermodynamics was analogous to that of colloidal systems in confined geometries. The 1D templates biased the location of initial cluster formation, introduced asymmetric sticking probabilities, andmore » drove 1D and 2D condensation at subcritical volume fractions. The growth kinetics followed a t{sup 1/2} law controlled by the slow diffusion of viruses. The lateral expansion of virus clusters that initially form on the 1D templates following introduction of polyethylene glycol (PEG) into the solution suggests a significant role for weak interaction.« less

  2. Microphysics in Multi-scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2012-01-01

    Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.

  3. Atmospheric Signatures and Effects of Space-based Relativistic Electron Beam Injection

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Sanchez, E. R.; Kero, A.; Turunen, E. S.; Marsh, D. R.

    2017-12-01

    Future relativistic electron beam injection experiments have the potential to provide groundbreaking insights into the physics of wave-particle interactions and beam-neutral interactions, relevant to space physics and to fundamental plasma physics. However, these experiments are only useful if their signatures can be detected. In this work, we use a physics-based forward modeling framework to investigate the observable signatures of a relativistic beam interacting with the upper atmosphere. The modeling framework is based around the Electron Precipitation Monte Carlo (EPMC) model, used to simulate electron precipitation in the upper atmosphere. That model is coupled to physics-based models of i) optical emission production; ii) bremsstrahlung photon production and propagation; iii) D-region ion chemistry; and iv) VLF wave propagation in the Earth-ionosphere waveguide. Using these modeling tools, we predict the optical, X-ray, chemical, radar, and VLF signatures of a realistic beam injection, based on recent space-based accelerator designs. In particular, we inject a beam pulse of 10 mA for a duration of 500 μs at an energy of 1 MeV, providing a total pulse energy of 5 J. We further investigate variations in these parameters, in particular the total energy and the electron energy. Our modeling shows that for this 5 J pulse injection at 1 MeV electron energy, the optical signal is easily detectable from the ground in common emission bands, but the X-ray signal is likely too weak to be seen from either balloons or LEO orbiting spacecraft. We further predict the optical signal-to-noise ratio that would be expected in different optical systems. Chemical signatures such as changes to NOx and HOx concentrations are too short-lived to be detectable; however our modeling provides a valuable estimate of the total chemical response. Electron density perturbations should be easily measurable from ground-based high-power radars and via VLF subionospheric remote sensing. However, the VLF diagnostic is complicated by the geometry of the problem, in that the perturbation in the upper atmosphere is much smaller than the VLF wavelength, so wide-angle scattering needs to be taken into account.

  4. Interacting Supernovae: Types IIn and Ibn

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    Supernovae that show evidence of strong shock interaction between their ejecta and pre-existing slower circumstellar material (CSM) constitute an interesting, diverse, and still poorly understood category of explosive transients. The chief reason they are extremely interesting is because they tell us that in a subset of stellar deaths, the progenitor star becomes wildly unstable in the years, decades, or centuries before explosion. This is something that has not been included in standard stellar evolution models but may significantly change the end product and yield of that evolution and complicates our attempts to map SNe to their progenitors. Another reason they are interesting is because CSM interaction is an efficient engine for making bright transients, allowing superluminous transients to arise from normal SN explosion energy, and transients of normal supernova luminosity to arise from sub-energetic explosions or low radioactivity yield. CSM interaction shrouds the fast ejecta in bright shock emission, obscuring our view of the underlying explosion, and the radiation hydrodynamics is challenging to model. The CSM interaction may also be highly nonspherical, perhaps linked to binary interaction in the progenitor system. In some cases, these complications make it difficult to tell the difference between a core-collapse and thermonuclear explosion or to discern between a nonterminal eruption, failed supernova, or weak supernova. Efforts to uncover the physical parameters of individual events and connections to progenitor stars make this a rapidly evolving topic that challenges paradigms of stellar evolution.

  5. Alleles versus genotypes: Genetic interactions and the dynamics of selection in sexual populations

    NASA Astrophysics Data System (ADS)

    Neher, Richard

    2010-03-01

    Physical interactions between amino-acids are essential for protein structure and activity, while protein-protein interactions and regulatory interactions are central to cellular function. As a consequence of these interactions, the combined effect of two mutations can differ from the sum of the individual effects of the mutations. This phenomenon of genetic interaction is known as epistasis. However, the importance of epistasis and its effects on evolutionary dynamics are poorly understood, especially in sexual populations where recombination breaks up existing combinations of alleles to produce new ones. Here, we present a computational model of selection dynamics involving many epistatic loci in a recombining population. We demonstrate that a large number of polymorphic interacting loci can, despite frequent recombination, exhibit cooperative behavior that locks alleles into favorable genotypes leading to a population consisting of a set of competing clones. As the recombination rate exceeds a certain critical value this ``genotype selection'' phase disappears in an abrupt transition giving way to ``allele selection'' - the phase where different loci are only weakly correlated as expected in sexually reproducing populations. Clustering of interacting sets of genes on a chromosome leads to the emergence of an intermediate regime, where localized blocks of cooperating alleles lock into genetic modules. Large populations attain highest fitness at a recombination rate just below critical, suggesting that natural selection might tune recombination rates to balance the beneficial aspect of exploration of genotype space with the breaking up of synergistic allele combinations.

  6. Number-squeezed and fragmented states of strongly interacting bosons in a double well

    NASA Astrophysics Data System (ADS)

    Corbo, Joel C.; DuBois, Jonathan L.; Whaley, K. Birgitta

    2017-11-01

    We present a systematic study of the phenomena of number squeezing and fragmentation for a repulsive Bose-Einstein condensate (BEC) in a three-dimensional double-well potential over a range of interaction strengths and barrier heights, including geometries that exhibit appreciable overlap in the one-body wave functions localized in the left and right wells. We compute the properties of the condensate with numerically exact, full-dimensional path-integral ground-state (PIGS) quantum Monte Carlo simulations and compare with results obtained from using two- and eight-mode truncated basis models. The truncated basis models are found to agree with the numerically exact PIGS simulations for weak interactions, but fail to correctly predict the amount of number squeezing and fragmentation exhibited by the PIGS simulations for strong interactions. We find that both number squeezing and fragmentation of the BEC show nonmonotonic behavior at large values of interaction strength a . The number squeezing shows a universal scaling with the product of number of particles and interaction strength (N a ), but no such universal behavior is found for fragmentation. Detailed analysis shows that the introduction of repulsive interactions not only suppresses number fluctuations to enhance number squeezing, but can also enhance delocalization across wells and tunneling between wells, each of which may suppress number squeezing. This results in a dynamical competition whose resolution shows a complex dependence on all three physical parameters defining the system: interaction strength, number of particles, and barrier height.

  7. Propagation of electromagnetic soliton in a spin polarized current driven weak ferromagnetic nanowire

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, V.; Kavitha, L.; Gopi, D.

    2017-11-01

    We investigate the nonlinear spin dynamics of a spin polarized current driven anisotropic ferromagnetic nanowire with Dzyaloshinskii-Moriya interaction (DMI) under the influence of electromagnetic wave (EMW) propagating along the axis of the nanowire. The magnetization dynamics and electromagnetic wave propagation in the ferromagnetic nanowire with weak anti-symmetric interaction is governed by a coupled vector Landau-Lifshitz-Gilbert and Maxwell's equations. These coupled nonlinear vector equations are recasted into the extended derivative nonlinear Schrödinger (EDNLS) equation in the framework of reductive perturbation method. As it is well known, the modulational instability is a precursor for the emergence of localized envelope structures of various kinds, we compute the instability criteria for the weak ferromagnetic nanowire through linear stability analysis. Further, we invoke the homogeneous balance method to construct kink and anti-solitonic like electromagnetic (EM) soliton profiles for the EDNLS equation. We also explore the appreciable effect of the anti-symmetric weak interaction on the magnetization components of the propagating EM soliton. We find that the combination of spin-polarized current and the anti-symmetric DMI have a profound effect on the propagating EMW in a weak ferromagnetic nanowire. Thus, the anti-symmetric DMI in a spin polarized current driven ferromagnetic nanowire supports the lossless propagation of EM solitons, which may have potential applications in magnetic data storage devices.

  8. Dependence of weak interaction rates on the nuclear composition during stellar core collapse

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Nagakura, Hiroki; Sumiyoshi, Kohsuke; Kato, Chinami; Yamada, Shoichi

    2017-02-01

    We investigate the influences of the nuclear composition on the weak interaction rates of heavy nuclei during the core collapse of massive stars. The nuclear abundances in nuclear statistical equilibrium (NSE) are calculated by some equation of state (EOS) models including in-medium effects on nuclear masses. We systematically examine the sensitivities of electron capture and neutrino-nucleus scattering on heavy nuclei to the nuclear shell effects and the single-nucleus approximation. We find that the washout of the shell effect at high temperatures brings significant change to weak rates by smoothing the nuclear abundance distribution: the electron capture rate decreases by ˜20 % in the early phase and increases by ˜40 % in the late phase at most, while the cross section for neutrino-nucleus scattering is reduced by ˜15 % . This is because the open-shell nuclei become abundant instead of those with closed neutron shells as the shell effects disappear. We also find that the single-nucleus description based on the average values leads to underestimations of weak rates. Electron captures and neutrino coherent scattering on heavy nuclei are reduced by ˜80 % in the early phase and by ˜5 % in the late phase, respectively. These results indicate that NSE like EOS accounting for shell washout is indispensable for the reliable estimation of weak interaction rates in simulations of core-collapse supernovae.

  9. Measurement of CP Violation in B Anti-B Mixing on the Recoil of Partially Reconstructed Anti-B0 to D* L- Anti-Nu/L Using Kaon Tags

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaz, Alessandro

    2011-11-16

    After its formulation in 1960's the Standard Model of Fundamental Interactions has gone through an impressive series of successes, begun with the discovery of neutral weak currents [1] and the experimental observations of the massive carriers of weak interactions, the W ± and Z 0 bosons [2], [3]. High precision measurements performed at LEP and SLAC test the validity of the theory to an unprecedented level of accuracy and do not show any significant deviations with respect to the Standard Model predictions. One of the attractive features of the Standard Model is the description of the phenomena which violate the matter-antimatter symmetry (CP), and this violation uniquely depends (in the quark sector) on a weak phase in the matrix describing the couplings among different quark flavors. CP-violation was discovered in 1964 as a tiny effect in the mixing of the K 0 -more » $$\\bar{K}$$ 0 system [12] but, after a few decades of study of the physics of K mesons, no strong confirmation of the Standard Model can be obtained on the mechanism which generates CP-violation. On the other hand the physics of B mesons is suitable for a pretty large number of measurements which can confirm or disprove this aspect of the theory. The main goal of the BABAR and Belle experiments physics program is to test the description of CP-violation and flavor physics mainly from the decays of B u and B d mesons. Soon after the beginning of data-taking in 1999, CP-violation was discovered in the interference between mixing and decay in the golden channel B 0 → J/Ψ}K 0 [17] [18], while in 2004 a large direct charge asymmetry was observed in the B 0 → K +π - channel [16]. There is a third kind of CP-violation which can be exhibited by the B d - $$\\bar{B}$$ d system, the so called CP-violation in mixing. The Standard Model predicts this asymmetry to be small, possibly out of reach of current experiments, but several New Physics models contain new particles and couplings which can enhance it up to detectable levels. In this thesis we search for CP-violation in B d - $$\\bar{B}$$ d mixing at the BABAR experiment. We reconstruct one of the two B mesons produced at the PEP-II electromagnetic collider using the partial reconstruction technique, while the flavor of the other B is inferred by the charge of a kaon identified among its decay products. Given the smallness of the physical asymmetry we want to measure, a crucial aspect of this analysis is the control of spurious charge asymmetries arising from the interaction of particles with the detector material. We accomplish this by using a control sample of charged kaons on the same data we use in our analysis. After a brief introduction of the theoretical framework and the phenomenology of the decays of B mesons at a B-factory (chapters 1 and 2), we will review in chapter 3 the current experimental results on this topic. We will then describe the characteristics of the collider and the experimental apparatus (chapter 4) used to perform our measurement. The available dataset and the event pre-selection techniques are treated in chapter 5, while the analysis method is discussed in detail in the following one. In chapters 7 and 8 the definitions of the probability density functions used to model each component of our sample are given and then they are tested in samples of simulated data. Toy and reweighted Monte Carlo data are used in chapter 9 to test the sensitivity of our fitting procedure to the physical parameters related to CP violation; chapter 10 discusses the possibility of modeling some of the components of our sample directly on the data. Finally the fit on the real data sample is described in chapter 11 and the treatment of systematic uncertainties is done in chapter 12, while the final result is given in chapter 13.« less

  10. Physical activity in climacteric women: comparison between self-reporting and pedometer.

    PubMed

    Colpani, Verônica; Spritzer, Poli Mara; Lodi, Ana Paula; Dorigo, Guilherme Gustavo; Miranda, Isabela Albuquerque Severo de; Hahn, Laiza Beck; Palludo, Luana Pedroso; Pietroski, Rafaela Lazzari; Oppermann, Karen

    2014-04-01

    To compare two methods of assessing physical activity in pre-, peri- and postmenopausal women. Cross-sectional study nested in a cohort of pre-, peri- and postmenopausal women in a city in Southern Brazil. The participants completed a questionnaire that included sociodemographic and clinical data. Physical activity was assessed using a digital pedometer and the International Physical Activity Questionnaire, short version. The participants were classified into strata of physical activity according to the instrument used. For statistical analysis, the Spearman correlation test, Kappa index, concordance coefficient and Bland-Altman plots were used. The concordance (k = 0110; p = 0.007) and the correlation (rho = 0.136, p = 0.02) between the International Physical Activity Questionnaire, short version, and pedometer were weak. In Bland-Altman plots, it was observed that differences deviate from zero value whether the physical activity is minimal or more intense. Comparing the two methods, the frequency of inactive women is higher when assessed by pedometer than by the International Physical Activity Questionnaire--short version, and the opposite occurs in active women. Agreement between the methods was weak. Although easy to use, Physical Activity Questionnaire--short version overestimates physical activity compared with assessment by pedometer.

  11. A simple physical model for X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Joss, P. C.; Rappaport, S.

    1977-01-01

    In connection with information considered by Illarianov and Sunyaev (1975) and van den Heuvel (1975), a simple physical model for an X-ray burst source in the galactic disk is proposed. The model includes an unevolved OB star with a relatively weak stellar wind and a compact object in a close binary system. For some reason, the stellar wind from the OB star is unable to accrete steadily on to the compact object. When the stellar wind is sufficiently weak, the compact object accretes irregularly, leading to X-ray bursts.

  12. Weak values in collision theory

    NASA Astrophysics Data System (ADS)

    de Castro, Leonardo Andreta; Brasil, Carlos Alexandre; Napolitano, Reginaldo de Jesus

    2018-05-01

    Weak measurements have an increasing number of applications in contemporary quantum mechanics. They were originally described as a weak interaction that slightly entangled the translational degrees of freedom of a particle to its spin, yielding surprising results after post-selection. That description often ignores the kinetic energy of the particle and its movement in three dimensions. Here, we include these elements and re-obtain the weak values within the context of collision theory by two different approaches, and prove that the results are compatible with each other and with the results from the traditional approach. To provide a more complete description, we generalize weak values into weak tensors and use them to provide a more realistic description of the Stern-Gerlach apparatus.

  13. Macroion solutions in the cell model studied by field theory and Monte Carlo simulations.

    PubMed

    Lue, Leo; Linse, Per

    2011-12-14

    Aqueous solutions of charged spherical macroions with variable dielectric permittivity and their associated counterions are examined within the cell model using a field theory and Monte Carlo simulations. The field theory is based on separation of fields into short- and long-wavelength terms, which are subjected to different statistical-mechanical treatments. The simulations were performed by using a new, accurate, and fast algorithm for numerical evaluation of the electrostatic polarization interaction. The field theory provides counterion distributions outside a macroion in good agreement with the simulation results over the full range from weak to strong electrostatic coupling. A low-dielectric macroion leads to a displacement of the counterions away from the macroion. © 2011 American Institute of Physics

  14. Tough Adhesives for Diverse Wet Surfaces

    PubMed Central

    Li, J.; Celiz, A. D.; Yang, J.; Yang, Q.; Wamala, I.; Whyte, W.; Seo, B. R.; Vasilyev, N. V.; Vlassak, J. J.; Suo, Z.; Mooney, D. J.

    2018-01-01

    Adhesion to wet and dynamic surfaces, including biological tissues, is important in many fields, but has proven extremely challenging. Existing adhesives are either cytotoxic, adhere weakly to tissues, or cannot be utilized in wet environments. We report a bio-inspired design for adhesives consisting of two layers: an adhesive surface and a dissipative matrix. The former adheres to the substrate by electrostatic interactions, covalent bonds, and physical interpenetration. The latter amplifies energy dissipation through hysteresis. The two layers synergistically lead to higher adhesion energy on wet surfaces than existing adhesives. Adhesion occurs within minutes, independent of blood exposure, and compatible with in vivo dynamic movements. This family of adhesives may be useful in many areas of application, including tissue adhesives, wound dressings and tissue repair. PMID:28751604

  15. Material content of the universe - Introductory survey

    NASA Astrophysics Data System (ADS)

    Tayler, R. J.

    1986-12-01

    Matter in the universe can be detected either by the radiation it emits or by its gravitational influence. There is a strong suggestion that the universe contains substantial hidden matter, mass without corresponding light. There are also arguments from elementary particle physics that the universe should have closure density, which would also imply hidden mass. Observations of the chemical composition of the universe interpreted in terms of the hot Big Bang cosmological theory suggest that this hidden matter cannot all be of baryonic form but must consist of weakly interacting elementary particles. A combination of observations and theoretical ideas about the origin of large-scale structure may demand that these particles are of a type which is not yet definitely known to exist.

  16. Study of Omega-proton correlations in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Han, Yifei; STAR Collaboration

    2015-10-01

    Recently the STAR experiment at RHIC measured Lambda-Lambda correlations from Au+Au collisions at √{sNN} = 200 GeV to search for the H particle (uuddss). The correlation strength indicated that the Lambda-Lambda interaction is weak and is unlikely to be attractive enough to form a bound state. A recent lattice QCD calculation predicted a possible di-baryon bound state with Omega-nucleon. Thus, we will extend the correlation measurements to Omega-proton, which could potentially be a sensitive approach to search for such a state. We will present the Omega-proton correlations based on data collected by STAR in Au+Au collisions at √{sNN} =200 GeV, and discuss the physics implications. for the STAR collaboration.

  17. Magnetic white dwarfs: Observations, theory and future prospects

    NASA Astrophysics Data System (ADS)

    García-Berro, Enrique; Kilic, Mukremin; Kepler, Souza Oliveira

    2016-01-01

    Isolated magnetic white dwarfs have field strengths ranging from 103G to 109G, and constitute an interesting class of objects. The origin of the magnetic field is still the subject of a hot debate. Whether these fields are fossil, hence the remnants of original weak magnetic fields amplified during the course of the evolution of the progenitor of white dwarfs, or on the contrary, are the result of binary interactions or, finally, other physical mechanisms that could produce such large magnetic fields during the evolution of the white dwarf itself, remains to be elucidated. In this work, we review the current status and paradigms of magnetic fields in white dwarfs, from both the theoretical and observational points of view.

  18. Chiral Spin Order in Kondo-Heisenberg systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsvelik, A. M.; Yevtushenko, O. M.

    We demonstrate that Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel- Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our nding paves the way towards pioneering experimental realizations of themore » chiral spin liquid in low dimensional systems with spontaneously broken time reversal symmetry.« less

  19. Self-consistent formation of electron $\\kappa$ distribution: 1. Theory

    NASA Astrophysics Data System (ADS)

    Yoon, Peter H.; Rhee, Tongnyeol; Ryu, Chang-Mo

    2006-09-01

    Since the early days of plasma physics research suprathermal electrons were observed to be generated during beam-plasma laboratory experiments. Energetic electrons, often modeled by κ distributions, are also ubiquitously observed in space. Various particle acceleration mechanisms have been proposed to explain such a feature, but all previous theories rely on either qualitative analytical method or on non-self-consistent approaches. This paper discusses the self-consistent acceleration of electrons to suprathermal energies by weak turbulence processes which involve the Langmuir/ion-sound turbulence and the beam-plasma interaction. It is discussed that the spontaneous scatttering process, which is absent in the purely collisionless theory, is singularly responsible for the generation of κ distributions. The conclusion is that purely collisionless Vlasov theory cannot produce suprathermal population.

  20. Monte Carlo simulations of flexible polyanions complexing with whey proteins at their isoelectric point.

    PubMed

    de Vries, R

    2004-02-15

    Electrostatic complexation of flexible polyanions with the whey proteins alpha-lactalbumin and beta-lactoglobulin is studied using Monte Carlo simulations. The proteins are considered at their respective isoelectric points. Discrete charges on the model polyelectrolytes and proteins interact through Debye-Huckel potentials. Protein excluded volume is taken into account through a coarse-grained model of the protein shape. Consistent with experimental results, it is found that alpha-lactalbumin complexes much more strongly than beta-lactoglobulin. For alpha-lactalbumin, strong complexation is due to localized binding to a single large positive "charge patch," whereas for beta-lactoglobulin, weak complexation is due to diffuse binding to multiple smaller charge patches. Copyright 2004 American Institute of Physics

Top