Sample records for weak layer fracture

  1. Limits on the critical length of damage in weak snowpack layers from en-echelon slab fracture spacing observed during avalanche release

    NASA Astrophysics Data System (ADS)

    Gauthier, D.; Hutchinson, D. J.

    2012-04-01

    We present simple estimates of the maximum possible critical length of damage or fracture in a weak snowpack layer required to maintain the propagation that leads to avalanche release, based on observations of 'en-echelon' slab fractures during avalanche release. These slab fractures may be preserved in situ if the slab does not slide down slope. The en-echelon fractures are spaced evenly, normally with one every one to ten metres or more. We consider a simple two-dimensional model of a slab and weak layer, with upslope fracture propagating the weak layer, and examine the relationship between the weak layer and en-echelon slab fractures. We assume that the slab fracture occurs in tension, and initiates at either the base or surface of the slab in the area of peak tensile stress at the tip of the weak layer fracture. We also assume that if at the time the slab is completely bisected by fracture the propagation in the weak layer will arrest spontaneously if it has not advanced beyond the critical length. In this scenario, en-echelon slab fractures may only form when the weak layer fracture repeatedly exceeds the critical length; otherwise, there could be only a single slab fracture. We estimate the position of the weak layer fracture at the time of slab bisection using the slab thickness and ratio between the fracture speeds in the weak layer and slab. We show that in the simple model en-echelon fractures only form if the slab thickness multiplied by the velocity ratio is greater than the critical length. Of course, the critical length must also be less than the en-echelon spacing. It follows that the first relationship must be valid independent of the occurrence of en-echelon fractures, although the speed ratio may be process-dependent and difficult to estimate. We use this method to calculate maximum critical lengths for propagation in actual avalanches with and without en echelon fractures, and discuss the implications for comparing competing propagation models. Furthermore, we discuss the possible applications to other cases of progressive basal failure and en-echelon fracturing, e.g. the ribbed flow bowls or so-called 'thumbprint' morphology which sometimes develops during landsliding in sensitive clay soils.

  2. Avalanche weak layer shear fracture parameters from the cohesive crack model

    NASA Astrophysics Data System (ADS)

    McClung, David

    2014-05-01

    Dry slab avalanches release by mode II shear fracture within thin weak layers under cohesive snow slabs. The important fracture parameters include: nominal shear strength, mode II fracture toughness and mode II fracture energy. Alpine snow is not an elastic material unless the rate of deformation is very high. For natural avalanche release, it would not be possible that the fracture parameters can be considered as from classical fracture mechanics from an elastic framework. The strong rate dependence of alpine snow implies that it is a quasi-brittle material (Bažant et al., 2003) with an important size effect on nominal shear strength. Further, the rate of deformation for release of an avalanche is unknown, so it is not possible to calculate the fracture parameters for avalanche release from any model which requires the effective elastic modulus. The cohesive crack model does not require the modulus to be known to estimate the fracture energy. In this paper, the cohesive crack model was used to calculate the mode II fracture energy as a function of a brittleness number and nominal shear strength values calculated from slab avalanche fracture line data (60 with natural triggers; 191 with a mix of triggers). The brittleness number models the ratio of the approximate peak value of shear strength to nominal shear strength. A high brittleness number (> 10) represents large size relative to fracture process zone (FPZ) size and the implications of LEFM (Linear Elastic Fracture Mechanics). A low brittleness number (e.g. 0.1) represents small sample size and primarily plastic response. An intermediate value (e.g. 5) implies non-linear fracture mechanics with intermediate relative size. The calculations also implied effective values for the modulus and the critical shear fracture toughness as functions of the brittleness number. The results showed that the effective mode II fracture energy may vary by two orders of magnitude for alpine snow with median values ranging from 0.08 N/m (non-linear) to 0.18 N/m (LEFM) for median slab density around 200 kg/m3. Schulson and Duval (2009) estimated the fracture energy of solid ice (mode I) to be about 0.22-1 N/m which yields rough theoretical limits of about 0.05- 0.2 N/m for density 200 kg/m3 when the ice volume fraction is accounted for. Mode I results from lab tests (Sigrist, 2006) gave 0.1 N/m (200 kg/m3). The median effective mode II shear fracture toughness was calculated between 0.31 to 0.35 kPa(m)1/2 for the avalanche data. All the fracture energy results are much lower than previously calculated from propagation saw tests (PST) results for a weak layer collapse model (1.3 N/m) (Schweizer et al., 2011). The differences are related to model assumptions and estimates of the effective slab modulus. The calculations in this paper apply to quasi-static deformation and mode II weak layer fracture whereas the weak layer collapse model is more appropriate for dynamic conditions which follow fracture initiation (McClung and Borstad, 2012). References: Bažant, Z.P. et al. (2003) Size effect law and fracture mechanics of the triggering of dry snow slab avalanches, J. Geophys. Res. 108(B2): 2119, doi:10.1029/2002JB))1884.2003. McClung, D.M. and C.P. Borstad (2012) Deformation and energy of dry snow slabs prior to fracture propagation, J. Glaciol. 58(209), 2012 doi:10.3189/2012JoG11J009. Schulson, E.M and P. Duval (2009) Creep and fracture of ice, Cambridge University Press, 401 pp. Schweizer, J. et al. (2011) Measurements of weak layer fracture energy, Cold Reg. Sci. and Tech. 69: 139-144. Sigrist, C. (2006) Measurement of fracture mechanical properties of snow and application to dry snow slab avalanche release, Ph.D thesis: 16736, ETH, Zuerich: 139 pp.

  3. Bayesian Markov Chain Monte Carlo inversion for weak anisotropy parameters and fracture weaknesses using azimuthal elastic impedance

    NASA Astrophysics Data System (ADS)

    Chen, Huaizhen; Pan, Xinpeng; Ji, Yuxin; Zhang, Guangzhi

    2017-08-01

    A system of aligned vertical fractures and fine horizontal shale layers combine to form equivalent orthorhombic media. Weak anisotropy parameters and fracture weaknesses play an important role in the description of orthorhombic anisotropy (OA). We propose a novel approach of utilizing seismic reflection amplitudes to estimate weak anisotropy parameters and fracture weaknesses from observed seismic data, based on azimuthal elastic impedance (EI). We first propose perturbation in stiffness matrix in terms of weak anisotropy parameters and fracture weaknesses, and using the perturbation and scattering function, we derive PP-wave reflection coefficient and azimuthal EI for the case of an interface separating two OA media. Then we demonstrate an approach to first use a model constrained damped least-squares algorithm to estimate azimuthal EI from partially incidence-phase-angle-stack seismic reflection data at different azimuths, and then extract weak anisotropy parameters and fracture weaknesses from the estimated azimuthal EI using a Bayesian Markov Chain Monte Carlo inversion method. In addition, a new procedure to construct rock physics effective model is presented to estimate weak anisotropy parameters and fracture weaknesses from well log interpretation results (minerals and their volumes, porosity, saturation, fracture density, etc.). Tests on synthetic and real data indicate that unknown parameters including elastic properties (P- and S-wave impedances and density), weak anisotropy parameters and fracture weaknesses can be estimated stably in the case of seismic data containing a moderate noise, and our approach can make a reasonable estimation of anisotropy in a fractured shale reservoir.

  4. An analytical approach for the Propagation Saw Test

    NASA Astrophysics Data System (ADS)

    Benedetti, Lorenzo; Fischer, Jan-Thomas; Gaume, Johan

    2016-04-01

    The Propagation Saw Test (PST) [1, 2] is an experimental in-situ technique that has been introduced to assess crack propagation propensity in weak snowpack layers buried below cohesive snow slabs. This test attracted the interest of a large number of practitioners, being relatively easy to perform and providing useful insights for the evaluation of snow instability. The PST procedure requires isolating a snow column of 30 centimeters of width and -at least-1 meter in the downslope direction. Then, once the stratigraphy is known (e.g. from a manual snow profile), a saw is used to cut a weak layer which could fail, potentially leading to the release of a slab avalanche. If the length of the saw cut reaches the so-called critical crack length, the onset of crack propagation occurs. Furthermore, depending on snow properties, the crack in the weak layer can initiate the fracture and detachment of the overlying slab. Statistical studies over a large set of field data confirmed the relevance of the PST, highlighting the positive correlation between test results and the likelihood of avalanche release [3]. Recent works provided key information on the conditions for the onset of crack propagation [4] and on the evolution of slab displacement during the test [5]. In addition, experimental studies [6] and simplified models [7] focused on the qualitative description of snowpack properties leading to different failure types, namely full propagation or fracture arrest (with or without slab fracture). However, beside current numerical studies utilizing discrete elements methods [8], only little attention has been devoted to a detailed analytical description of the PST able to give a comprehensive mechanical framework of the sequence of processes involved in the test. Consequently, this work aims to give a quantitative tool for an exhaustive interpretation of the PST, stressing the attention on important parameters that influence the test outcomes. First, starting from a pure mechanical point of view, a broad phenomenology of the main failure types of the PST is outlined. Then, the Euler-Bernoulli beam theory is applied to the test setup, allowing an easy description of the snowpack stress state in the quasi-static regime. We assume an elastic-perfectly brittle model as constitutive law for the snow slab. Besides, considering the weak layer as a rigid bed of crystals with an a priori inclination, a local instability problem is formulated in order to take into account the combined effect of compressive and shear loading. As a result, the onset of slab and weak layer fracture is described in terms of cut length, slab dimensions and the main mechanical parameters. A condition on the possible propagation of the crack is proposed as well. References [1] C. Sigrist and J. Schweizer, "Critical energy release rates of weak snowpack layers determined in field experiments", Geophysical Research Letters, Volume 34, L03502, 2007. [2] D. Gauthier and B. Jamieson, "Evaluation of a prototype field test for fracture and failure propagation propensity in weak snowpack layers". Cold Regions Science and Technology, Volume 51, Issue 2, Pages 87-97, 2008. [3] R. Simenhois and K.W. Birkeland. "The extended column test: Test effectiveness, spatial variability, and comparison with the propagation saw test." Cold Regions Science and Technology, Volume 59, Issue 23, Pages 210-216, 2009. [4] J. Heierli, P. Gumbsch, M. Zaiser, "Anticrack Nucleation as Triggering Mecchanism for Snow Slab Avalanches", Science, Volume 321, Pages 240-243, 2008. [5] A. van Herwijnen, J. Schweizer, J. Heierli, "Measurement of the deformation field associated with fracture propagation in weak snowpack layers", Journal of Geophysical Research, Volume 115, F03042, 2010. [6] K. W. Birkeland, A. van Herwijnen, E. Knoff, M. Staples, E. Bair, R. Simenhois, "The role of slabs and weak layers in fracture arrest", Proceedings of the International Snow Science Workshop, Banff, 2014. [7] J. Schweizer, B. Reuter, A. van Herwijnen, B. Jamieson, "On how the tensile strength of the slab affects crack propagation propensity", Proceedings of the International Snow Science Workshop, Banff, 2014. [8] J. Gaume, A. van Herwijnen, G. Chambon, K. W. Birkeland, J. Schweizer. "Modeling of crack propagation in weak snowpack layers using the discrete element method", The Cryosphere, Volume 9, Pages 1915-1932, 2015.

  5. Azimuthal Seismic Amplitude Variation with Offset and Azimuth Inversion in Weakly Anisotropic Media with Orthorhombic Symmetry

    NASA Astrophysics Data System (ADS)

    Pan, Xinpeng; Zhang, Guangzhi; Yin, Xingyao

    2018-01-01

    Seismic amplitude variation with offset and azimuth (AVOaz) inversion is well known as a popular and pragmatic tool utilized to estimate fracture parameters. A single set of vertical fractures aligned along a preferred horizontal direction embedded in a horizontally layered medium can be considered as an effective long-wavelength orthorhombic medium. Estimation of Thomsen's weak-anisotropy (WA) parameters and fracture weaknesses plays an important role in characterizing the orthorhombic anisotropy in a weakly anisotropic medium. Our goal is to demonstrate an orthorhombic anisotropic AVOaz inversion approach to describe the orthorhombic anisotropy utilizing the observable wide-azimuth seismic reflection data in a fractured reservoir with the assumption of orthorhombic symmetry. Combining Thomsen's WA theory and linear-slip model, we first derive a perturbation in stiffness matrix of a weakly anisotropic medium with orthorhombic symmetry under the assumption of small WA parameters and fracture weaknesses. Using the perturbation matrix and scattering function, we then derive an expression for linearized PP-wave reflection coefficient in terms of P- and S-wave moduli, density, Thomsen's WA parameters, and fracture weaknesses in such an orthorhombic medium, which avoids the complicated nonlinear relationship between the orthorhombic anisotropy and azimuthal seismic reflection data. Incorporating azimuthal seismic data and Bayesian inversion theory, the maximum a posteriori solutions of Thomsen's WA parameters and fracture weaknesses in a weakly anisotropic medium with orthorhombic symmetry are reasonably estimated with the constraints of Cauchy a priori probability distribution and smooth initial models of model parameters to enhance the inversion resolution and the nonlinear iteratively reweighted least squares strategy. The synthetic examples containing a moderate noise demonstrate the feasibility of the derived orthorhombic anisotropic AVOaz inversion method, and the real data illustrate the inversion stabilities of orthorhombic anisotropy in a fractured reservoir.

  6. Temporal evolution of crack propagation propensity in snow in relation to slab and weak layer properties

    NASA Astrophysics Data System (ADS)

    Schweizer, Jürg; Reuter, Benjamin; van Herwijnen, Alec; Richter, Bettina; Gaume, Johan

    2016-11-01

    If a weak snow layer below a cohesive slab is present in the snow cover, unstable snow conditions can prevail for days or even weeks. We monitored the temporal evolution of a weak layer of faceted crystals as well as the overlaying slab layers at the location of an automatic weather station in the Steintälli field site above Davos (Eastern Swiss Alps). We focussed on the crack propagation propensity and performed propagation saw tests (PSTs) on 7 sampling days during a 2-month period from early January to early March 2015. Based on video images taken during the tests we determined the mechanical properties of the slab and the weak layer and compared them to the results derived from concurrently performed measurements of penetration resistance using the snow micro-penetrometer (SMP). The critical cut length, observed in PSTs, increased overall during the measurement period. The increase was not steady and the lowest values of critical cut length were observed around the middle of the measurement period. The relevant mechanical properties, the slab effective elastic modulus and the weak layer specific fracture, overall increased as well. However, the changes with time differed, suggesting that the critical cut length cannot be assessed by simply monitoring a single mechanical property such as slab load, slab modulus or weak layer specific fracture energy. Instead, crack propagation propensity is the result of a complex interplay between the mechanical properties of the slab and the weak layer. We then compared our field observations to newly developed metrics of snow instability related to either failure initiation or crack propagation propensity. The metrics were either derived from the SMP signal or calculated from simulated snow stratigraphy (SNOWPACK). They partially reproduced the observed temporal evolution of critical cut length and instability test scores. Whereas our unique dataset of quantitative measures of snow instability provides new insights into the complex slab-weak layer interaction, it also showed some deficiencies of the modelled metrics of instability - calling for an improved representation of the mechanical properties.

  7. Layer detection and snowpack stratigraphy characterisation from digital penetrometer signals

    NASA Astrophysics Data System (ADS)

    Floyer, James Antony

    Forecasting for slab avalanches benefits from precise measurements of snow stratigraphy. Snow penetrometers offer the possibility of providing detailed information about snowpack structure; however, their use has yet to be adopted by avalanche forecasting operations in Canada. A manually driven, variable rate force-resistance penetrometer is tested for its ability to measure snowpack information suitable for avalanche forecasting and for spatial variability studies on snowpack properties. Subsequent to modifications, weak layers of 5 mm thick are reliably detected from the penetrometer signals. Rate effects are investigated and found to be insignificant for push velocities between 0.5 to 100 cm s-1 for dry snow. An analysis of snow deformation below the penetrometer tip is presented using particle image velocimetry and two zones associated with particle deflection are identified. The compacted zone is a region of densified snow that is pushed ahead of the penetrometer tip; the deformation zone is a broader zone surrounding the compacted zone, where deformation is in compression and in shear. Initial formation of the compacted zone is responsible for pronounced force spikes in the penetrometer signal. A layer tracing algorithm for tracing weak layers, crusts and interfaces across transects or grids of penetrometer profiles is presented. This algorithm uses Wiener spiking deconvolution to detect a portion of the signal manually identified as a layer in one profile across to an adjacent profile. Layer tracing is found to be most effective for tracing crusts and prominent weak layers, although weak layers close to crusts were not well traced. A framework for extending this method for detecting weak layers with no prior knowledge of weak layer existence is also presented. A study relating the fracture character of layers identified in compression tests is presented. A multivariate model is presented that distinguishes between sudden and other fracture characters 80% of the time. Transects of penetrometer profiles are presented over several alpine terrain features commonly associated with spatial variability of snowpack properties. Physical processes relating to the variability of certain snowpack properties revealed in the transects is discussed. The importance of characteristic signatures for training avalanche practitioners to recognise potentially unstable terrain is also discussed.

  8. Microstructure-Texture-Mechanical Properties in Hot Rolling of a Centrifugal Casting Ring Blank

    NASA Astrophysics Data System (ADS)

    Qin, Fang-cheng; Li, Yong-tang; Qi, Hui-ping; Ju, Li

    2016-03-01

    Deformation characteristic of centrifugal casting 25Mn steel was investigated by compression tests, and then processing maps were established. According to the deformation parameters identified from the established processing maps and hot ring rolling (HRR) process, the industrial test for the 25Mn ring blank was performed. Optical microscope (OM) and electron backscatter diffraction (EBSD) techniques were used for detecting grain boundary features and textures of deformation structures. The morphologies and mechanisms of tensile and impact fracture were revealed. The results show that softening effect plays a dominant role in higher temperatures of 1050-1150 °C and strain rates lower than 0.1 s-1. The average grain size of the rolled 25Mn ring is about 28 μm, but the grains are more coarse and inhomogeneous on the middle layer than that on rest of the areas. The texture on the outer layer is characterized by strong {110} <112> and weak {112} <111>, followed by {001} <100> and {001} <110> on the inner layer and {110} <110> on the center layer, which is mainly associated with the shear deformation. The rolled ring with precise geometrical dimensions and sound mechanical properties is fabricated by HRR. Tensile fracture is composed of clear river-shaped pattern and a little dimple near the inner layer and outer layer, and the fracture mechanism is mainly quasi-cleavage fracture, accompanied by dimple fracture. The morphologies of impact fracture consist of tear ridge and cleavage platform.

  9. Mechanical and fracture behavior of veneer-framework composites for all-ceramic dental bridges.

    PubMed

    Studart, André R; Filser, Frank; Kocher, Peter; Lüthy, Heinz; Gauckler, Ludwig J

    2007-01-01

    High-strength ceramics are required in dental posterior restorations in order to withstand the excessive tensile stresses that occur during mastication. The aim of this study was to investigate the fracture behavior and the fast-fracture mechanical strength of three veneer-framework composites (Empress 2/IPS Eris, TZP/Cercon S and Inceram-Zirconia/Vita VM7) for all-ceramic dental bridges. The load bearing capacity of the veneer-framework composites were evaluated using a bending mechanical apparatus. The stress distribution through the rectangular-shaped layered samples was assessed using simple beam calculations and used to estimate the fracture strength of the veneer layer. Optical microscopy of fractured specimens was employed to determine the origin of cracks and the fracture mode. Under fast fracture conditions, cracks were observed to initiate on, or close to, the veneer outer surface and propagate towards the inner framework material. Crack deflection occurred at the veneer-framework interface of composites containing a tough framework material (TZP/Cercon S and Inceram-Zirconia/Vita VM7), as opposed to the straight propagation observed in the case of weaker frameworks (Empress 2/IPS Eris). The mechanical strength of dental composites containing a weak framework (K(IC)<3 MPam(1/2)) is ultimately determined by the low fracture strength of the veneer layer, since no crack arresting occurs at the veneer-framework interface. Therefore, high-toughness ceramics (K(IC)>5 MPam(1/2)) should be used as framework materials of posterior all-ceramic bridges, so that cracks propagating from the veneer layer do not lead to a premature failure of the prosthesis.

  10. Experimental Analysis of Hydraulic Fracture Growth and Acoustic Emission Response in a Layered Formation

    NASA Astrophysics Data System (ADS)

    Ning, Li; Shicheng, Zhang; Yushi, Zou; Xinfang, Ma; Shan, Wu; Yinuo, Zhang

    2018-04-01

    Microseismic/acoustic emission (AE) monitoring is an essential technology for understanding hydraulic fracture (HF) geometry and stimulated reservoir volume (SRV) during hydraulic fracturing in unconventional reservoirs. To investigate HF growth mechanisms and features of induced microseismic/AE events in a layered formation, laboratory fracturing experiments were performed on shale specimens (30 cm × 30 cm × 30 cm) with multiple bedding planes (BPs) under triaxial stresses. AE monitoring was used to reveal the spatial distribution and hypocenter mechanisms of AE events induced by rock failure. Computerized tomography scanning was used to observe the internal fracture geometry. Experimental results showed that the various HF geometries could be obviously distinguished based on injection pressure curves and AE responses. Fracture complexity was notably increased when vertically growing HFs connected with and opened more BPs. The formation of a complex fracture network was generally indicated by frequent fluctuations in injection pressure curves, intense AE activity, and three-dimensionally distributed AE events. Investigations of the hypocenter mechanisms revealed that shear failure/event dominated in shale specimens. Shear and tensile events were induced in hydraulically connected regions, and shear events also occurred around BPs that were not hydraulically connected. This led to an overestimation of HF height and SRV in layered formations based on the AE location results. The results also showed that variable injection rate and using plugging agent were conducive in promoting HF to penetrate through the weak and high-permeability BPs, thereby increasing the fracture height.

  11. Cross-Linkable, Solvent-Resistant Fullerene Contacts for Robust and Efficient Perovskite Solar Cells with Increased JSC and VOC.

    PubMed

    Watson, Brian L; Rolston, Nicholas; Bush, Kevin A; Leijtens, Tomas; McGehee, Michael D; Dauskardt, Reinhold H

    2016-10-05

    The active layers of perovskite solar cells are also structural layers and are central to ensuring that the structural integrity of the device is maintained over its operational lifetime. Our work evaluating the fracture energies of conventional and inverted solution-processed MAPbI 3 perovskite solar cells has revealed that the MAPbI 3 perovskite exhibits a fracture resistance of only ∼0.5 J/m 2 , while solar cells containing fullerene electron transport layers fracture at even lower values, below ∼0.25 J/m 2 . To address this weakness, a novel styrene-functionalized fullerene derivative, MPMIC 60 , has been developed as a replacement for the fragile PC 61 BM and C 60 transport layers. MPMIC 60 can be transformed into a solvent-resistant material through curing at 250 °C. As-deposited films of MPMIC 60 exhibit a marked 10-fold enhancement in fracture resistance over PC 61 BM and a 14-fold enhancement over C 60 . Conventional-geometry perovskite solar cells utilizing cured films of MPMIC 60 showed a significant, 205% improvement in fracture resistance while exhibiting only a 7% drop in PCE (13.8% vs 14.8% PCE) in comparison to the C 60 control, enabling larger V OC and J SC values. Inverted cells fabricated with MPMIC 60 exhibited a 438% improvement in fracture resistance with only a 6% reduction in PCE (12.3% vs 13.1%) in comparison to those utilizing PC 61 BM, again producing a higher J SC .

  12. Toughening mechanisms in laminated composites: A biomimetic study in mollusk shells

    NASA Astrophysics Data System (ADS)

    Kamat, Shekhar Shripad

    2000-10-01

    Mollusk shells can be described as structural biocomposite materials composed of a mineral (aragonite) and a continuous, albeit minor, organic (protein) component. The conch shell, Strombus Gigas, has intermediate strength and high fracture toughness. The high fracture toughness is a result of enhanced energy dissipation during crack propagation due to delamination, crack bridging, frictional sliding etc. A theoretical and experimental study was conducted on the crack bridging mechanisms operative in the shell. Four-point bend tests were conducted. Acoustic emission and post-mortem dye penetrants were used to characterize the crack propagation, together with conventional fractography. A two layer composite configuration is seen in the shells, with the tough and weak layers having a toughness ratio of ˜4 (Ktough = 2.2MPam1/2). This toughness ratio is a requisite for multiple cracking in the weak layer. A theoretical shear lag analysis of the crack bridging phenomena in the tough layer is shown to lead to a bridging law for the crack wake of the form of p = betau1/2 (p is the bridging traction for a crack opening u, with beta, being a constant of proportionality). Finite element analysis yielded a value of beta = 630 Nmm-5/2 and ucritical = 5 mum for the bridging law parameters. In a nonlinear fracture mechanics phenomenology, these values are relevant material parameters, rather than a critical stress intensity factor. The work of fracture for unnotched specimens is three orders of magnitude higher than mineral aragonite, and is demonstrated numerically incorporating the toughening mechanisms in the shell. Similar structural adaptations have been observed and studied in the red abalone shell, haliotis rufescens and the spines of the sea urchin, Heterocentrotus trigonarius. The toughening mechanisms seen in these shells give insight into structural design needs of brittle matrix composites (BMC) as well as conventional structural ceramics.

  13. Hydraulic Fracture Growth in a Layered Formation based on Fracturing Experiments and Discrete Element Modeling

    NASA Astrophysics Data System (ADS)

    Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li

    2017-09-01

    Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.

  14. Monitoring Fluid Flow in Fractured Carbonate Rocks Using Seismic Measurements

    NASA Astrophysics Data System (ADS)

    Li, W.; Pyrak-Nolte, L. J.

    2008-12-01

    The physical properties of carbonate rock are strongly influenced by the rock fabric which depends on the depositional environment, diagenetic and tectonic processes. The most common form of heterogeneity is layering caused by a variation in porosity among layers and within layers. The variation in porosity among layers leads to anisotropic behavior in the hydraulic, mechanical and seismic properties of carbonate rocks. We present the results of a laboratory study to examine the effect of fabric-controlled layering on fluid flow and seismic wave propagation through intact and fractured carbonate rock. Experiments were performed on cubic samples of Austin Chalk Cordova Cream. Samples AC1, AC5 and AC6 are cubic samples that measure 100 mm on edge. The samples were sealed and contained three inlet and three outlet ports for fluid invasion experiments. Two orthogonal seismic arrays were used to record both compressional and shear wave transmission through intact and fractured samples. The arrays used piezoelectric contact transducers with a central frequency 1.0 MHz. Between the two arrays, sixteen sources and sixteen receivers were used. Seismic measurements were made on the samples as a function of stress and during fluid saturation. The location of the invading fluid front as a function of time was monitored by using the peak-to-peak amplitude of the transmitted signals. The front was assumed to be between a source-receiver pair when the signal amplitude decreased by 50% over the initial value. The hydraulic gradient was parallel and perpendicular to the layers for AC5 and AC6, respectively. Sample AC1 was fractured and flow ports were established on the edges of the fracture plane. The weakly directed fabric controlled the rate at which fluid flowed through the samples. From the seismic data on AC6, the fluid first spread vertically along a layer before flowing across the layers. For AC6, it took the fluid two and half hours to flow between the inlet and the outlet across the layers. However, for AC5, the water flowed quickly along the layers and crossed the entire sample in one and a half hours. From the seismic data on fractured sample AC1, the water initially took more than 15 hours to transverse the sample though portions of the fracture were invaded after two hours. No water was produced at the outlet over a 15 hour period. Upon inspection, chemical precipitation was observed along the fracture plane and fracture- matrix interaction controlled the saturation of the matrix. Seismic monitoring of the fluid-front during saturation indicates that fine bedding affects the hydraulic properties of the sample while geochemical interactions in fractures affect fracture-matrix communication. Acknowledgments: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DEFG02-97ER14785 08) and by Exxon Mobil Upstream Research Company.

  15. A Nanoindentation Study of the Plastic Deformation and Fracture Mechanisms in Single-Crystalline CaFe2As2

    NASA Astrophysics Data System (ADS)

    Frawley, Keara G.; Bakst, Ian; Sypek, John T.; Vijayan, Sriram; Weinberger, Christopher R.; Canfield, Paul C.; Aindow, Mark; Lee, Seok-Woo

    2018-04-01

    The plastic deformation and fracture mechanisms in single-crystalline CaFe2As2 has been studied using nanoindentation and density functional theory simulations. CaFe2As2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe2As2 has an atomic-scale layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe2As2 layers.

  16. A Nanoindentation Study of the Plastic Deformation and Fracture Mechanisms in Single-Crystalline CaFe 2As 2

    DOE PAGES

    Frawley, Keara G.; Bakst, Ian; Sypek, John T.; ...

    2018-04-10

    In this paper, the plastic deformation and fracture mechanisms in single-crystalline CaFe 2As 2 has been studied using nanoindentation and density functional theory simulations. CaFe 2As 2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe 2As 2 has an atomic-scalemore » layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe 2As 2 layers.« less

  17. A Nanoindentation Study of the Plastic Deformation and Fracture Mechanisms in Single-Crystalline CaFe 2As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frawley, Keara G.; Bakst, Ian; Sypek, John T.

    In this paper, the plastic deformation and fracture mechanisms in single-crystalline CaFe 2As 2 has been studied using nanoindentation and density functional theory simulations. CaFe 2As 2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe 2As 2 has an atomic-scalemore » layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe 2As 2 layers.« less

  18. The effect of deformation on two-phase flow through proppant-packed fractured shale samples: A micro-scale experimental investigation

    NASA Astrophysics Data System (ADS)

    Arshadi, Maziar; Zolfaghari, Arsalan; Piri, Mohammad; Al-Muntasheri, Ghaithan A.; Sayed, Mohammed

    2017-07-01

    We present the results of an extensive micro-scale experimental investigation of two-phase flow through miniature, fractured reservoir shale samples that contained different packings of proppant grains. We investigated permeability reduction in the samples by conducting experiments under a wide range of net confining pressures. Three different proppant grain distributions in three individual fractured shale samples were studied: i) multi-layer, ii) uniform mono-layer, and iii) non-uniform mono-layer. We performed oil-displacing-brine (drainage) and brine-displacing-oil (imbibition) flow experiments in the proppant packs under net confining pressures ranging from 200 to 6000 psi. The flow experiments were performed using a state-of-the-art miniature core-flooding apparatus integrated with a high-resolution, X-ray microtomography system. We visualized fluid occupancies, proppant embedment, and shale deformation under different flow and stress conditions. We examined deformation of pore space within the proppant packs and its impact on permeability and residual trapping, proppant embedment due to changes in net confining stress, shale surface deformation, and disintegration of proppant grains at high stress conditions. In particular, geometrical deformation and two-phase flow effects within the proppant pack impacting hydraulic conductivity of the medium were probed. A significant reduction in effective oil permeability at irreducible water saturation was observed due to increase in confining pressure. We propose different mechanisms responsible for the observed permeability reduction in different fracture packings. Samples with dissimilar proppant grain distributions showed significantly different proppant embedment behavior. Thinner proppant layer increased embedment significantly and lowered the onset confining pressure of embedment. As confining stress was increased, small embedments caused the surface of the shale to fracture. The produced shale fragments were then entrained by the flow and partially blocked pore-throat connections within the proppant pack. Deformation of proppant packs resulted in significant changes in waterflood residual oil saturation. In-situ contact angles measured using micro-CT images showed that proppant grains had experienced a drastic alteration of wettability (from strong water-wet to weakly oil-wet) after the medium had been subjected to flow of oil and brine for multiple weeks. Nanometer resolution SEM images captured nano-fractures induced in the shale surfaces during the experiments with mono-layer proppant packing. These fractures improved the effective permeability of the medium and shale/fracture interactions.

  19. Structures Formed in Experimentally Sheared Artificial Fault Gouge: Precise Statistical Measurements

    NASA Astrophysics Data System (ADS)

    Dilov, T.; Yoshida, S.; Kato, A.; Nakatani, M.; Mochizuki, H.; Otsuki, K.

    2004-12-01

    The physical parameters governing earthquakes change with the ongoing formation and evolution of structures, formed in the course of a single or multiple earthquakes, within a particular fault zone or in a broad volume containing interacting tectonic faults. Our precise knowledge of these complex phenomena is still elusive. Especially, works considering geometrical evolution of shear structures under controlled conditions are rare. In order to gain some insights we accomplished a set of 12 laboratory experiments using a servo-controlled direct-shear apparatus, under room temperature and without controlling the air humidity. Two fault gouge layers (industrially produced quartz powder, average particle size of 5 μ m, and pre-shear thickness of 1.5, 2.0 and 3.0 mm,) were sandwiched between three granite blocks. The middle block was slid in order to create frictional structures within the simulated gouge. The total imposed shear strain varies between 0.14 and 11.80. The post-shear gouge layer thickness ranges from 0.99-2.11 mm. Each experiment was run under a constant normal stress (varying from 10-44 MPa through the experiments) and at a constant shear velocity (0.07, 0.7 and 7 μ m/s, through the experiments). Later, in cross-sections of solidified by epoxy glue gouge (parallel to the shear direction, normal to the gouge walls,) we quantified the numerous R-shears, according to their density distribution, fracture thickness (measured perpendicularly to the fracture walls), fracture angle and morphology, and fracture length. In gouge views parallel to the sliding blocks, we measured fracture length and along-strike R-shear morphology. Although the latter data are with lower quality, both observational sets provide precise statistical fracture data as well snapshots of evolving 3D structures. We observe shear localization with decreasing gouge layer thickness and with increasing normal stress. The average density of major fractures increases from 2.83 to 3.67 [fracture/cm] for decrease of the post-shear gouge layer thickness. This is at the expense of a considerable decrease of visible more diffusive minor fractures. On the other hand, the fractures formed at lower normal stress are more irregular and show average fracture density of 4.48 [fracture/cm]. The latter decreases down to 3.64 at higher normal stress, as the fracture morphology becomes more regular. The fracture density increases abruptly from zero, after a small total shear strain (0.15-0.50), and later the change is slower or none with the increase of the total shear strain; the fractures are already localized and they accommodate most of the brittle deformation. Also we observe weak polarity in fracture development in accordance to the sliding sense, especially in the subset of fractures starting from the gouge wall and dying out within the gouge layer. More such fractures are developed along the leading part of the sliding blocks. Our results throw new light over the formation and development of fault-related structures and their dependency on the earthquake-governing physical parameters.

  20. Estimating Effective Seismic Anisotropy Of Coal Seam Gas Reservoirs from Sonic Log Data Using Orthorhombic Buckus-style Upscaling

    NASA Astrophysics Data System (ADS)

    Gross, Lutz; Tyson, Stephen

    2015-04-01

    Fracture density and orientation are key parameters controlling productivity of coal seam gas reservoirs. Seismic anisotropy can help to identify and quantify fracture characteristics. In particular, wide offset and dense azimuthal coverage land seismic recordings offers the opportunity for recovery of anisotropy parameters. In many coal seam gas reservoirs (eg. Walloon Subgroup in the Surat Basin, Queensland, Australia (Esterle et al. 2013)) the thickness of coal-beds and interbeds (e.g mud-stone) are well below the seismic wave length (0.3-1m versus 5-15m). In these situations, the observed seismic anisotropy parameters represent effective elastic properties of the composite media formed of fractured, anisotropic coal and isotropic interbed. As a consequence observed seismic anisotropy cannot directly be linked to fracture characteristics but requires a more careful interpretation. In the paper we will discuss techniques to estimate effective seismic anisotropy parameters from well log data with the objective to improve the interpretation for the case of layered thin coal beds. In the first step we use sonic log data to reconstruct the elasticity parameters as function of depth (at the resolution of the sonic log). It is assumed that within a sample fractures are sparse, of the same size and orientation, penny-shaped and equally spaced. Following classical fracture model this can be modeled as an elastic horizontally transversely isotropic (HTI) media (Schoenberg & Sayers 1995). Under the additional assumption of dry fractures, normal and tangential fracture weakness is estimated from slow and fast shear wave velocities of the sonic log. In the second step we apply Backus-style upscaling to construct effective anisotropy parameters on an appropriate length scale. In order to honor the HTI anisotropy present at each layer we have developed a new extension of the classical Backus averaging for layered isotropic media (Backus 1962) . Our new method assumes layered HTI media with constant anisotropy orientation as recovered in the first step. It leads to an effective horizontal orthorhombic elastic model. From this model Thomsen-style anisotropy parameters are calculated to derive azimuth-dependent normal move out (NMO) velocities (see Grechka & Tsvankin 1998). In our presentation we will show results of our approach from sonic well logs in the Surat Basin to investigate the potential of reconstructing S-wave velocity anisotropy and fracture density from azimuth dependent NMO velocities profiles.

  1. Processing, Microstructure, and Properties of Engineered Diboride Structures

    NASA Astrophysics Data System (ADS)

    Wittmaier, Connor Charles

    The mechanical properties and processing parameters of boride ceramics in foam and laminate architectures were evaluated. The ceramic reticulated foam was produced through a polymer substrate replication technique and the hardness and compressive strength were tested. The laminate structure was tested to evaluate the flexure strength and work of fracture as a function of temperature. The foam architecture was produced using a TiB2 slurry coating on a polyurethane reticulated foam preform. Foams sintered to 2150°C displayed an average grain size of 8.9 +/- 7.3 microm, and a hardness of 17.3 +/- 2.4 GPa. Crush testing foams were sintered at 1975°C, and displayed a specific strength of 208 +/- 63 kPa with an overall porosity of 97%. For these specimens, it is likely that microcracking lowered the hardness, but the overall strength was controlled by the bulk density. The laminate structures were fabricated using alternating layers of ZrB 2 and C-10 vol% ZrB2. The structures were fabricated through the shaping of ceramic loaded thermoplastic polymers that underwent burnout and hot pressing cycles. These specimens had strong phase ZrB2 layers that were about 150 mum thick alternating with weak phase layers that were about 20 mum thick. Specimens exhibited a maximum flexure strength of 311 +/- 10 MPa at 1600°C, and an increased work of fracture compared to conventional ZrB2 ceramics. The maximum fraction of inelastic work of fracture occurred at room temperature, and decreased as temperature increased. This was reflected in the length of the crack path through the specimen. Deflected cracks travelled through the center of the C-ZrB2 layers in the material in Mode II fracture.

  2. Estimation of Dry Fracture Weakness, Porosity, and Fluid Modulus Using Observable Seismic Reflection Data in a Gas-Bearing Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Huaizhen; Zhang, Guangzhi

    2017-05-01

    Fracture detection and fluid identification are important tasks for a fractured reservoir characterization. Our goal is to demonstrate a direct approach to utilize azimuthal seismic data to estimate fluid bulk modulus, porosity, and dry fracture weaknesses, which decreases the uncertainty of fluid identification. Combining Gassmann's (Vier. der Natur. Gesellschaft Zürich 96:1-23, 1951) equations and linear-slip model, we first establish new simplified expressions of stiffness parameters for a gas-bearing saturated fractured rock with low porosity and small fracture density, and then we derive a novel PP-wave reflection coefficient in terms of dry background rock properties (P-wave and S-wave moduli, and density), fracture (dry fracture weaknesses), porosity, and fluid (fluid bulk modulus). A Bayesian Markov chain Monte Carlo nonlinear inversion method is proposed to estimate fluid bulk modulus, porosity, and fracture weaknesses directly from azimuthal seismic data. The inversion method yields reasonable estimates in the case of synthetic data containing a moderate noise and stable results on real data.

  3. Faulting, fracturing and in situ stress prediction in the Ahnet Basin, Algeria — a finite element approach

    NASA Astrophysics Data System (ADS)

    Beekman, Fred; Badsi, Madjid; van Wees, Jan-Diederik

    2000-05-01

    Many low-efficiency hydrocarbon reservoirs are productive largely because effective reservoir permeability is controlled by faults and natural fractures. Accurate and low-cost information on basic fault and fracture properties, orientation in particular, is critical in reducing well costs and increasing well recoveries. This paper describes how we used an advanced numerical modelling technique, the finite element method (FEM), to compute site-specific in situ stresses and rock deformation and to predict fracture attributes as a function of material properties, structural position and tectonic stress. Presented are the numerical results of two-dimensional, plane-strain end-member FEM models of a hydrocarbon-bearing fault-propagation-fold structure. Interpretation of the modelling results remains qualitative because of the intrinsic limitations of numerical modelling; however, it still allows comparisons with (the little available) geological and geophysical data. In all models, the weak mechanical strength and flow properties of a thick shale layer (the main seal) leads to a decoupling of the structural deformation of the shallower sediments from the underlying sediments and basement, and results in flexural slip across the shale layer. All models predict rock fracturing to initiate at the surface and to expand with depth under increasing horizontal tectonic compression. The stress regime for the formation of new fractures changes from compressional to shear with depth. If pre-existing fractures exist, only (sub)horizontal fractures are predicted to open, thus defining the principal orientation of effective reservoir permeability. In models that do not include a blind thrust fault in the basement, flexural amplification of the initial fold structure generates additional fracturing in the crest of the anticline controlled by the material properties of the rocks. The folding-induced fracturing expands laterally along the stratigraphic boundaries under enhanced tectonic loading. Models incorporating a blind thrust fault correctly predict the formation of secondary syn- and anti-thetic mesoscale faults in the basement and sediments of the hanging wall. Some of these faults cut reservoir and/or seal layers, and thus may influence effective reservoir permeability and affect seal integrity. The predicted faults divide the sediments across the anticline in several compartments with different stress levels and different rock failure (and proximity to failure). These numerical model outcomes can assist classic interpretation of seismic and well bore data in search of fractured and overpressured hydrocarbon reservoirs.

  4. Fracture strength and fatigue resistance of all-ceramic molar crowns manufactured with CAD/CAM technology.

    PubMed

    Zahran, Mohammed; El-Mowafy, Omar; Tam, Laura; Watson, Philip A; Finer, Yoav

    2008-07-01

    All-ceramic crowns are subject to fracture during function, especially in the posterior area. The use of yttrium-stabilized zirconium-oxide ceramic as a substructure for all-ceramic crowns to improve fracture resistance is unproven. The aim of this study was to compare fracture strength and fatigue resistance of new zirconium-oxide and feldspathic all-ceramic crowns made with computer-aided design/computer-aided manufacturing (CAD/CAM). An ivorine molar was prepared to receive an all-ceramic crown. Using epoxy resin, 40 replication dies were made of the prepared tooth. Twenty feldspathic all-ceramic crowns (Vita Mark II) (VMII) and 20 zirconium-oxide crown copings (In-Ceram YZ) (YZ) were made using CAD/CAM technique (CEREC-3D). The YZ copings were sintered and veneered manually with a fine-particle ceramic (VM9). All crowns were cemented to their respective dies using resin cement (Panavia F 2.0). Ten crowns in each group were subjected to compressive fatigue loading in a universal testing machine (instron). The other ten crowns from each group were loaded to fracture at a crosshead speed of 1 mm/min. Data were statistically analyzed using independent t-test and Fisher's exact test at alpha= 0.05. There was a significant difference between the survival rates of the two materials during the fatigue test (p < 0.001). All VMII crowns survived without any crack formation, while all YZ crowns fractured (40%) or developed cracks (60%). All the YZ crown fractures occurred within the veneering layer during the fatigue test. There was no significant difference in mean fracture load between the two materials (p= 0.268). Mean fracture loads (standard deviation) in N were: 1459 (492) for YZ crowns and 1272 (109) for VMII crowns. The performance of VMII crowns was superior to YZ crowns in the fatigue test. The premature fractures and cracks of the YZ crowns were attributed to weakness in the YZ veneer layer or in the core/veneer bond.

  5. Evaluation of Shear Strength of RC Beams with Multiple Interfaces Formed before Initial Setting Using 3D Printing Technology

    PubMed Central

    Kim, Kyeongjin; Park, Sangmin; Jeong, Yoseok; Lee, Jaeha

    2017-01-01

    With the recent development of 3D printing technology, concrete materials are sometimes used in 3D printing. Concrete structures based on 3D printing have been characterized to have the form of multiple layer build-up. Unlike general concrete structures, therefore, the 3D-printed concrete can be regarded as an orthotropic material. The material property of the 3D-printed concrete’s interface between layers is expected to be far different from that of general concrete bodies since there are no aggregate interlocks and weak chemical bonding. Such a difference finally affects the structural performance of concrete structures even though the interfaces are formed before initial setting of the concrete. The current study mainly reviewed the changes in fracture energy (toughness) with respect to various environmental conditions of such interface. Changes in fracture energies of interfaces between concrete layers were measured using low-speed Crack Mouth Opening Displacement (CMOD) closed loop concrete fracture test. The experimental results indicated reduction in fracture energy as well as tensile strengths. To improve the tensile strength of interfaces, the use of bridging materials is suggested. Since it was assumed that reduction in fracture energy could be a cause of shear strength, to evaluate the reduced structural performance of concrete structure constructed with multiple interfaces by 3D printing technology, the shear strength of RC beam by 3D printing technology was predicted and compared with that of plain RC beam. Based on the fracture energy measured in this study, Modified Compression Field Theory (MCFT) theory-applied Vector 2 program was employed to predict the degree of reduction in shear strength without considering stirrups. Reduction factors were presented based on the obtained results to predict the reduction in shear strength due to interfaces before initial setting of the concrete.

  6. Morphological Expressions of Crater Infill Collapse: Model Simulations of Chaotic Terrains on Mars

    NASA Astrophysics Data System (ADS)

    Roda, Manuel; Marketos, George; Westerweel, Jan; Govers, Rob

    2017-10-01

    Martian chaotic terrains are characterized by deeply depressed intensively fractured areas that contain a large number of low-strain tilted blocks. Stronger deformation (e.g., higher number of fractures) is generally observed in the rims when compared to the middle regions of the terrains. The distribution and number of fractures and tilted blocks are correlated with the size of the chaotic terrains. Smaller chaotic terrains are characterized by few fractures between undeformed blocks. Larger terrains show an elevated number of fractures uniformly distributed with single blocks. We investigate whether this surface morphology may be a consequence of the collapse of the infill of a crater. We perform numerical simulations with the Discrete Element Method and we evaluate the distribution of fractures within the crater and the influence of the crater size, infill thickness, and collapsing depth on the final morphology. The comparison between model predictions and the morphology of the Martian chaotic terrains shows strong statistical similarities in terms of both number of fractures and correlation between fractures and crater diameters. No or very weak correlation is observed between fractures and the infill thickness or collapsing depth. The strong correspondence between model results and observations suggests that the collapse of an infill layer within a crater is a viable mechanism for the peculiar morphology of the Martian chaotic terrains.

  7. Spacing of bending-induced fractures at saturation: Numerical models and approximate analytical solution

    NASA Astrophysics Data System (ADS)

    Schöpfer, Martin; Lehner, Florian; Grasemann, Bernhard; Kaserer, Klemens; Hinsch, Ralph

    2017-04-01

    John G. Ramsay's sketch of structures developed in a layer progressively folded and deformed by tangential longitudinal strain (Figure 7-65 in Folding and Fracturing of Rocks) and the associated strain pattern analysis have been reproduced in many monographs on Structural Geology and are referred to in numerous publications. Although the origin of outer-arc extension fractures is well-understood and documented in many natural examples, geomechanical factors controlling their (finite or saturation) spacing are hitherto unexplored. This study investigates the formation of bending-induced fractures during constant-curvature forced folding using Distinct Element Method (DEM) numerical modelling. The DEM model comprises a central brittle layer embedded within weaker (low modulus) elastic layers; the layer interfaces are frictionless (free slip). Folding of this three-layer system is enforced by a velocity boundary condition at the model base, while a constant overburden pressure is maintained at the model top. The models illustrate several key stages of fracture array development: (i) Prior to the onset of fracture, the neutral surface is located midway between the layer boundaries; (ii) A first set of regularly spaced fractures develops once the tensile stress in the outer-arc equals the tensile strength of the layer. Since the layer boundaries are frictionless, these bending-induced fractures propagate through the entire layer; (iii) After the appearance of the first fracture set, the rate of fracture formation decreases rapidly and so-called infill fractures develop approximately midway between two existing fractures (sequential infilling); (iv) Eventually no new fractures form, irrespective of any further increase in fold curvature (fracture saturation). Analysis of the interfacial normal stress distributions suggests that at saturation the fracture-bound blocks are subjected to a loading condition similar to three-point bending. Using classical beam theory an analytical solution is derived for the critical fracture spacing, i.e. the spacing below which the maximum tensile stress cannot reach the layer strength. The model results are consistent with an approximate analytical solution, and illustrate that the spacing of bending-induced fractures is proportional to layer thickness and a square root function of the ratio of layer tensile strength to confining pressure. Although highly idealised, models and analysis presented in this study offer an explanation for fracture saturation during folding and point towards certain key factors that may control fracture spacing in natural systems.

  8. Simulation of ground-water flow to assess geohydrologic factors and their effect on source-water areas for bedrock wells in Connecticut

    USGS Publications Warehouse

    Starn, J. Jeffrey; Stone, Janet Radway

    2005-01-01

    Generic ground-water-flow simulation models show that geohydrologic factors?fracture types, fracture geometry, and surficial materials?affect the size, shape, and location of source-water areas for bedrock wells. In this study, conducted by the U.S. Geological Survey in cooperation with the Connecticut Department of Public Health, ground-water flow was simulated to bedrock wells in three settings?on hilltops and hillsides with no surficial aquifer, in a narrow valley with a surficial aquifer, and in a broad valley with a surficial aquifer?to show how different combinations of geohydrologic factors in different topographic settings affect the dimensions and locations of source-water areas in Connecticut. Three principal types of fractures are present in bedrock in Connecticut?(1) Layer-parallel fractures, which developed as partings along bedding in sedimentary rock and compositional layering or foliation in metamorphic rock (dips of these fractures can be gentle or steep); (2) unroofing joints, which developed as strain-release fractures parallel to the land surface as overlying rock was removed by erosion through geologic time; and (3) cross fractures and joints, which developed as a result of tectonically generated stresses that produced typically near-vertical or steeply dipping fractures. Fracture geometry is defined primarily by the presence or absence of layering in the rock unit, and, if layered, by the angle of dip in the layering. Where layered rocks dip steeply, layer-parallel fracturing generally is dominant; unroofing joints also are typically well developed. Where layered rocks dip gently, layer-parallel fracturing also is dominant, and connections among these fractures are provided only by the cross fractures. In gently dipping rocks, unroofing joints generally do not form as a separate fracture set; instead, strain release from unroofing has occurred along gently dipping layer-parallel fractures, enhancing their aperture. In nonlayered and variably layered rocks, layer-parallel fracturing is absent or poorly developed; fracturing is dominated by well-developed subhorizontal unroofing joints and steeply dipping, tectonically generated fractures and (or) cooling joints. Cross fractures (or cooling joints) in nonlayered and variably layered rocks have more random orientations than in layered rocks. Overall, nonlayered or variably layered rocks do not have a strongly developed fracture direction. Generic ground-water-flow simulation models showed that fracture geometry and other geohydrologic factors affect the dimensions and locations of source-water areas for bedrock wells. In general, source-water areas to wells reflect the direction of ground-water flow, which mimics the land-surface topography. Source-water areas to wells in a hilltop setting were not affected greatly by simulated fracture zones, except for an extensive vertical fracture zone. Source-water areas to wells in a hillside setting were not affected greatly by simulated fracture zones, except for the combination of a subhorizontal fracture zone and low bedrock vertical hydraulic conductivity, as might be the case where an extensive subhorizontal fracture zone is not connected or is poorly connected to the surface through vertical fractures. Source-water areas to wells in a narrow valley setting reflect complex ground-water-flow paths. The typical flow path originates in the uplands and passes through either till or bedrock into the surficial aquifer, although only a small area of the surficial aquifer actually contributes water to the well. Source-water areas in uplands can include substantial areas on both sides of a river. Source-water areas for wells in this setting are affected mainly by the rate of ground-water recharge and by the degree of anisotropy. Source-water areas to wells in a broad valley setting (bedrock with a low angle of dip) are affected greatly by fracture properties. The effect of a given fracture is to channel the

  9. Evaluation of road failure vulnerability section through integrated geophysical and geotechnical studies

    NASA Astrophysics Data System (ADS)

    Adiat, K. A. N.; Akinlalu, A. A.; Adegoroye, A. A.

    2017-06-01

    In order to investigate the competence of the proposed road for pavement stability, geotechnical and geophysical investigations involving Land Magnetic, Very Low Frequency Electromagnetic (VLF-EM) and Electrical Resistivity methods were carried out along Akure-Ipinsa road Southwestern Nigeria. The magnetic profile was qualitatively and quantitatively interpreted to produce geomagnetic section that provides information on the basement topography and structural disposition beneath the proposed road. Similarly, the VLF-EM profile was equally interpreted to provide information on the possible occurrence of linear features beneath the study area. These linear features pose a potential risk to the proposed road as they are capable of undermining the stability of the pavement structure. The geoelectric parameters obtained from the quantitative interpretation of the VES data were used to generate geoelectric section. The geoelectric section generated shows that the study area was underlain by four geoelectric layers namely the topsoil, the weathered layer, the partly weathered/fractured basement and the fresh basement. The major part of the topsoil, which constitutes the subgrade, is characterized by relatively low resistivity values (<100 Ωm) suggestive of weak zones that are capable of undermining the stability of the proposed road. This therefore suggests that the layer is composed of incompetent materials that are unsuitable for engineering structures. Furthermore, fractured basement was also delineated beneath some portion of the proposed road. Since fracture is a weak zone, its presence can facilitate failure of the proposed road especially when it is occurring at shallow depth. The geotechnical results reveal that most of the investigated soil samples are clayey in nature. Integration of the results demonstrates that there is a good correlation between geophysical results and the geotechnical results. Furthermore, a vulnerability section that divided the road segments into three zones based on the degree of vulnerability was produced. These zones were high, moderate and low vulnerability zones. It is estimated that about 60% of the road segments constitutes moderate degree of vulnerability while 30% and 10% of the segments respectively constitute high and low degree of vulnerability.

  10. Bonding of contemporary glass ionomer cements to dentin.

    PubMed

    Yip, H K; Tay, F R; Ngo, H C; Smales, R J; Pashley, D H

    2001-09-01

    The objective of this study was to investigate the microtensile bond strength (microTBS) of contemporary glass ionomer cements (GIC) to sound coronal dentin. Three specimen teeth were prepared for each material tested: Fuji IX GP (GC), ChemFlex (Dentsply) and Ketac-Molar Aplicap (ESPE). GIC buildups were made according to the manufacturers' instructions. After being stored at 37 degrees C, 100% humidity for 24h, the teeth were vertically sectioned into 1x1mm beams for microTBS evaluation. Representative fractured beams were prepared for scanning (SEM) and transmission electron microscopic (TEM) examination. Results of the microTBS test were: Fuji IX GP (12.4+/-8.6MPa), ChemFlex (15.0+/-9.3MPa) and Ketac-Molar Aplicap (11.4+/-7.7MPa). One-way ANOVA and a multiple comparison test showed that ChemFlex had a statistically higher microTBS (p<0.05). SEM fractographic analysis showed that the predominant failure modes were interfacial and mixed failures. The GIC side of the fractured beams revealed dehydration cracks, a high level of porosity, and voids with an eggshell-like crust. TEM analysis of the demineralized dentin sides of the fractured beams revealed the presence of an intermediate layer along the GIC-dentin interface. This zone was present on the fractured dentin surface in the case of interfacial failure, and beneath GIC remnants in specimens that exhibited a mixed failure mode. The findings suggest that the bonding of GIC to dentin is not weak and that the microTBS values probably represent the weak yield strengths of GICs under tension.

  11. Microseismic Velocity Imaging of the Fracturing Zone

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Chen, Y.

    2015-12-01

    Hydraulic fracturing of low permeability reservoirs can induce microseismic events during fracture development. For this reason, microseismic monitoring using sensors on surface or in borehole have been widely used to delineate fracture spatial distribution and to understand fracturing mechanisms. It is often the case that the stimulated reservoir volume (SRV) is determined solely based on microseismic locations. However, it is known that for some fracture development stage, long period long duration events, instead of microseismic events may be associated. In addition, because microseismic events are essentially weak and there exist different sources of noise during monitoring, some microseismic events could not be detected and thus located. Therefore the estimation of the SRV is biased if it is solely determined by microseismic locations. With the existence of fluids and fractures, the seismic velocity of reservoir layers will be decreased. Based on this fact, we have developed a near real time seismic velocity tomography method to characterize velocity changes associated with fracturing process. The method is based on double-difference seismic tomography algorithm to image the fracturing zone where microseismic events occur by using differential arrival times from microseismic event pairs. To take into account varying data distribution for different fracking stages, the method solves the velocity model in the wavelet domain so that different scales of model features can be obtained according to different data distribution. We have applied this real time tomography method to both acoustic emission data from lab experiment and microseismic data from a downhole microseismic monitoring project for shale gas hydraulic fracturing treatment. The tomography results from lab data clearly show the velocity changes associated with different rock fracturing stages. For the field data application, it shows that microseismic events are located in low velocity anomalies. By combining low velocity anomalies with microseismic events, we should better estimate the SRV.

  12. Detection of Fracture Patterns Within the Southern Portion of a Residential Complex (Tepozanes), Los Reyes-La Paz County (Edo. de Mexico)

    NASA Astrophysics Data System (ADS)

    Chavez, R. E.; Arango, C.; Tejero, A.; Cifuentes, G.; Hernandez, E.

    2008-12-01

    Most of the urban zone within the Valley of Mexico is built on top of the sediments of the ancient lakes of Chalco, Xochimilco, Mexico, Texcoco, Xaltocan and Zumpango. The sediments that cover this great valley are mainly composed by highly saturated clay-sandy materials; which offer a weak resistance to the constructions built on top. In addition, the increasing need of water supply for the population living in the valley (~22 million inhabitants) has weakened the main groundwater aquifers. This has lead to a differentiated subsidence and collapse of buildings, habitation units and roads. These effects put in a serious risk the inhabitants and the infrastructure of the city. As an example, we present a case of an area located in a densely populated zone, within a low-income residential complex denominated Tepozanes. This is located in the Los Reyes-La Paz County (Mexico State), towards the southeastern portion of the Valley of Mexico. The area is geologically limited by the Chimalhuacan Hill to the N, by the Santa Catarina volcanic range to the S. The previously mentioned effects are evident in the constructions of some buildings, where an exposed fracture is found in the NE-SW direction. This feature is affecting the structure of one of them in the residential complex, where the fracture runs underneath. A geophysical study was proposed to characterize the subsoil and to define the fracturing patterns in the zone. The electrical resistivity tomography (ETR) method employing the capacitive and galvanic modes was used to define the fracturing patters and the position at depth of the saturated layers, which might affect the Residential buildings. As a complement, GPR (Ground Penetrating Radar) profiles were carried out on the same profiles to correlate the information obtained from the ETR capacitive method which has a better resolution in the shallower zone. The computed results show that the buildings foundations were set on top of a high resistivity layer (~1000 Ohm-m), with variable thickness (5 m to 20 m). This layer depicts important discontinuities that can be associated to fractures. Low resistivity sediments lie on top of the resistive horizon. This feature corresponds to saturated sediments (clays and sands) that due to the water flow tend to form areas with low mechanical resistance and vey high compressibility, producing subsidence, following the fracture pattern in the resistive layer. The GPR study defined the presence of small fractures to depths ranging between 1 m and 3 m, which can be correlated with the information provided by the capacitive method. A subsidence map was produced for the studied zone. The fracture pattern is found in the SW-NE direction, affecting the residential complex at the surrounding. Three exploratory wells were drilled within the studied area. The stratigraphy obtained correlated well with the electrical models.

  13. Stress Transfer and Structural Failure of Bilayered Material Systems

    NASA Astrophysics Data System (ADS)

    Prieto-Munoz, Pablo Arthur

    Bilayered material systems are common in naturally formed or artificially engineered structures. Understanding how loads transfer within these structural systems is necessary to predict failure and develop effective designs. Existing methods for evaluating the stress transfer in bilayered materials are limited to overly simplified models or require experimental calibration. As a result, these methods have failed to accurately account for such structural failures as the creep induced roofing panel collapse of Boston's I-90 connector tunnel, which was supported by adhesive anchors. The one-dimensional stress analyses currently used for adhesive anchor design cannot account for viscoelastic creep failure, and consequently results in dangerously under-designed structural systems. In this dissertation, a method for determining the two-dimensional stress and displacement fields for a generalized bilayered material system is developed, and proposes a closed-form analytical solution. A general linear-elastic solution is first proposed by decoupling the elastic governing equations from one another through the so-called plane assumption. Based on this general solution, an axisymmetric problem and a plane strain problem are formulated. These are applied to common bilayered material systems such as: (1) concrete adhesive anchors, (2) material coatings, (3) asphalt pavements, and (4) layered sedimentary rocks. The stress and displacement fields determined by this analytical analysis are validated through the use of finite element models. Through the correspondence principle, the linear-elastic solution is extended to consider time-dependent viscoelastic material properties, thus facilitating the analysis of adhesive anchors and asphalt pavements while incorporating their viscoelastic material behavior. Furthermore, the elastic stress analysis can explain the fracturing phenomenon of material coatings, pavements, and layered rocks, successfully predicting their fracture saturation ratio---which is the ratio of fracture spacing to the thickness of the weak layer where an increase in load will not cause any new fractures to form. Moreover, these specific material systems are looked at in the context of existing and novel experimental results, further demonstrating the advantage of the stress transfer analysis proposed. This research provides a closed-form stress solution for various structural systems that is applied to different failure analyses. The versatility of this method is in the flexibility and the ease upon which the stress and displacement field results can be applied to existing stress- or displacement-based structural failure criteria. As presented, this analysis can be directly used to: (1) design adhesive anchoring systems for long-term creep loading, (2) evaluate the fracture mechanics behind bilayered material coatings and pavement overlay systems, and (3) determine the fracture spacing to layer thickness ratio of layered sedimentary rocks. As is shown in the four material systems presented, this general solution has far reaching applications in facilitating design and analysis of typical bilayered structural systems.

  14. Hydrogeological impacts of a railway tunnel in fractured Precambrian gneiss rocks (south-eastern Norway)

    NASA Astrophysics Data System (ADS)

    Kværner, Jens; Snilsberg, Petter

    2013-11-01

    Groundwater monitoring along the Romeriksporten tunnel, south-eastern Norway, provided an opportunity for studying the impacts of tunnelling on groundwater in fractured Precambrian gneiss rocks, and examining relations between bedrock hydrology, tectonic weakness zones and catchments. Tunnel leakage resulted in groundwater drawdown up to 35 m in weakness zones, converted groundwater discharge zones into recharge zones, and affected groundwater chemistry. The magnitude of drawdown and fluctuations in groundwater level differed between weakness zones, and varied with distance from the tunnel route, tunnel leakage, and recharge from catchments. Clear differences in groundwater level and fluctuation patterns indicated restricted groundwater flow between weakness zones. The groundwater drawdowns demonstrated coherent water-bearing networks to 180-m depth in faults and fracture zones. Similar groundwater levels with highly correlated fluctuations demonstrated hydraulic connectivity within fracture zones. Different groundwater drawdown and leakage in weakness zones with different appearance and influence of tectonic events demonstrated the importance of the geological history for bedrock hydrogeology. Water injection into the bedrock counteracted groundwater drawdowns. Even moderate leakage to underground constructions may lead to large groundwater drawdown in areas with small groundwater recharge. Hydrogeological interpretation of tectonic weakness zones should occur in the context of geological history and local catchment hydrology.

  15. Evolution of fault zones in carbonates with mechanical stratigraphy - Insights from scale models using layered cohesive powder

    NASA Astrophysics Data System (ADS)

    van Gent, Heijn W.; Holland, Marc; Urai, Janos L.; Loosveld, Ramon

    2010-09-01

    We present analogue models of the formation of dilatant normal faults and fractures in carbonate fault zones, using cohesive hemihydrate powder (CaSO 4·½H 2O). The evolution of these dilatant fault zones involves a range of processes such as fragmentation, gravity-driven breccia transport and the formation of dilatant jogs. To allow scaling to natural prototypes, extensive material characterisation was done. This showed that tensile strength and cohesion depend on the state of compaction, whereas the friction angle remains approximately constant. In our models, tensile strength of the hemihydrate increases with depth from 9 to 50 Pa, while cohesion increases from 40 to 250 Pa. We studied homogeneous and layered material sequences, using sand as a relatively weak layer and hemihydrate/graphite mixtures as a slightly stronger layer. Deformation was analyzed by time-lapse photography and Particle Image Velocimetry (PIV) to calculate the evolution of the displacement field. With PIV the initial, predominantly elastic deformation and progressive localization of deformation are observed in detail. We observed near-vertical opening-mode fractures near the surface. With increasing depth, dilational shear faults were dominant, with releasing jogs forming at fault-dip variations. A transition to non-dilatant shear faults was observed near the bottom of the model. In models with mechanical stratigraphy, fault zones are more complex. The inferred stress states and strengths in different parts of the model agree with the observed transitions in the mode of deformation.

  16. Distinct Element Method modelling of fold-related fractures in a multilayer sequence

    NASA Astrophysics Data System (ADS)

    Kaserer, Klemens; Schöpfer, Martin P. J.; Grasemann, Bernhard

    2017-04-01

    Natural fractures have a significant impact on the performance of hydrocarbon systems/reservoirs. In a multilayer sequence, both the fracture density within the individual layers and the type of fracture intersection with bedding contacts are key parameters controlling fluid pathways. In the present study the influence of layer stacking and interlayer friction on fracture density and connectivity within a folded sequence is systematically investigated using 2D Distinct Element Method modelling. Our numerical approach permits forward modelling of both fracture nucleation/propagation/arrest and (contemporaneous) frictional slip along bedding planes in a robust and mechanically sound manner. Folding of the multilayer sequence is achieved by enforcing constant curvature folding by means of a velocity boundary condition at the model base, while a constant overburden pressure is maintained at the model top. The modelling reveals that with high bedding plane friction the multilayer stack behaves mechanically as a single layer so that the neutral surface develops in centre of the sequence and fracture spacing is controlled by the total thickness of the folded sequence. In contrast, low bedding plane friction leads to decoupling of the individual layers (flexural slip folding) so that a neutral surface develops in the centre of each layer and fracture spacing is controlled by the thickness of the individual layers. The low interfacial friction models illustrate that stepping of fractures across bedding planes is a common process, which can however have two contrasting origins: The mechanical properties of the interface cause fracture stepping during fracture propagation. Originally through-going fractures are later offset by interfacial slip during folding. A combination of these two different origins may lead to (apparently) inconsistent fracture offsets across bedding planes within a flexural slip fold.

  17. Fracture in Kaolinite clay suspensions

    NASA Astrophysics Data System (ADS)

    Kosgodagan Acharige, Sebastien; Jerolmack, Douglas J.; Arratia, Paulo E.

    2017-11-01

    Clay minerals are involved in many natural (landslides, river channels) and industrial processes (ceramics, cosmetics, oil recovery). They are plate shaped charged colloids and exhibit different flow properties than simpler colloids when suspended in a liquid such as thixotropy and shear-banding. kaolinite platelets are non-swelling, meaning that the stacks formed by the platelets do not have water layers, and thus the suspension does not have a sol-gel transition. However, it has been shown that kaolinite suspensions possesses a non-zero yield stress even at low concentrations, indicating that the particles arrange themselves in a structure through attractive interactions. Here, we experimentally investigate the sedimentation of kaolinite suspensions in a Hele-Shaw cell. The sedimentation of these dilute suspensions can display solid behavior like fracture, revealed in cross-polarized light, which is linked to the failure of the weakly-bonded structure (typical yield stress 10-2 Pa). By changing the interaction potential of the particles (by sonication or introducing salts), we show through these sedimentation experiments, how the fracture pattern can be avoided. Research was sponsored by the Army Research Laboratory and was accomplished under Grant Number 569074.

  18. Numerical simulation of microstructural damage and tensile strength of snow

    NASA Astrophysics Data System (ADS)

    Hagenmuller, Pascal; Theile, Thiemo C.; Schneebeli, Martin

    2014-01-01

    This contribution uses finite-element analysis to simulate microstructural failure processes and the tensile strength of snow. The 3-D structure of snow was imaged by microtomography. Modeling procedures used the elastic properties of ice with bond fracture assumptions as inputs. The microstructure experiences combined tensile and compressive stresses in response to macroscopic tensile stress. The simulated nonlocalized failure of ice lattice bonds before or after reaching peak stress creates a pseudo-plastic yield curve. This explains the occurrence of acoustic events observed in advance of global failure. The measured and simulated average tensile strengths differed by 35%, a typical range for strength measurements in snow given its low Weibull modulus. The simulation successfully explains damage, fracture nucleation, and strength according to the geometry of the microstructure of snow and the mechanical properties of ice. This novel method can be applied to more complex snow structures including the weak layers that cause avalanches.

  19. Fracture load and failure analysis of zirconia single crowns veneered with pressed and layered ceramics after chewing simulation.

    PubMed

    Stawarczyk, Bogna; Ozcan, Mutlu; Roos, Malgorzata; Trottmann, Albert; Hämmerle, Christoph H F

    2011-01-01

    This study determined the fracture load of zirconia crowns veneered with four overpressed and four layered ceramics after chewing simulation. The veneered zirconia crowns were cemented and subjected to chewing cycling. Subsequently, the specimens were loaded at an angle of 45° in a Universal Testing Machine to determine the fracture load. One-way ANOVA, followed by a post-hoc Scheffé test, t-test and Weibull statistic were performed. Overpressed crowns showed significantly lower fracture load (543-577 N) compared to layered ones (805-1067 N). No statistical difference was found between the fracture loads within the overpressed group. Within the layered groups, LV (1067 N) presented significantly higher results compared to LC (805 N). The mean values of all other groups were not significantly different. Single zirconia crowns veneered with overpressed ceramics exhibited lower fracture load than those of the layered ones after chewing simulation.

  20. Field and numerical descriptions of fracture geometries and terminations in chalk containing chert layers and inclusions; implications for groundwater flow in Danish chalk aquifers

    NASA Astrophysics Data System (ADS)

    Seyum, S.

    2017-12-01

    This study is a description of the fracture distribution in laterally discontinuous chalk and chert layers, with an investigation on how fracture lengths and apertures vary as a function of applied stresses, material properties, and interface properties. Natural fractures intersect laterally extensive, discontinuous, chalk-chert material interfaces in 62 million-year old to 72 million-year old Chalk Group formations exposed at Stevns Klint, Denmark. Approximately one-third of Denmark's fresh water use is from chalk and limestone regional aquifers of the Chalk Group formations, where rock permeability is dominantly a function of open fracture connectivities. Fractured, centimeter- to decimeter-thick chert layers and inclusions (101 GPa elastic stiffness) are interlayered with fractured, meter-thick chalk layers (100 GPa elastic stiffness). Fractures are observed to terminate against and cross chalk-chert interfaces, affecting the vertical flow of water and pollutants between aquifers. The discontinuous and variably thin nature of chert layers at Stevns Klint effectively merges adjacent fracture-confining layers of chalk along discrete position intervals, resulting in lateral variability of fracture spacing. Finite element numerical models are designed to describe fracture interactions with stiff, chert inclusions of various shapes, thicknesses, widths, orientations, and interface friction and fracture toughness values. The models are two-dimensional with isotropic, continuous material in plane strain and uniformly applied remote principal stresses. These characteristics are chosen based on interpretations of the petrophysics of chalk and chert, the burial history of the rock, and the scale of investigation near fracture tips relative to grain sizes. The result are value ranges for relative stiffness contrasts, applied stresses, and material interface conditions that would cause fractures to cross, terminate at, or form along chalk-chert interfaces, with emphasis on conditions that reproduce measured fracture geometries. The results of this study provide predictive, field-supported fracture geometries for flow models and, with appropriate changes to the parameters, the methodology is applicable to describing fracture geometries in chalk hydrocarbon systems.

  1. Effect of metallurgical structure and properties on adhesion and friction behavior of cobalt alloys

    NASA Technical Reports Server (NTRS)

    Keller, D. V., Jr.; Shatynski, S.; Vedamanikam, P. M.

    1972-01-01

    The metallurgical structure and some of the mechanical properties of two cobalt alloys, cobalt-50% iron and cobalt-25% molybdenum-10% chromium, were determined under various heat treated conditions. The mechanical properties of the bcc disordered Co-50Fe alloy, which was found to be very brittle, indicated an exceedingly low fracture strength, low hardness, and very weak grain boundary strength. Ordering by suitable heat treatment only produced a more brittle material with a lower fracture strength and a slightly higher hardness value. Work hardening was found to produce a finer grain structure and a greater grain boundary strength. Tensile properties were examined. It was found that the Co-25Mo-10Cr alloy was difficult to place in the alpha Co solid solution condition, which limited the ability to use precipitation as a hardening reaction. Over two hundred adhesion cycles from zero contact load, to maximum load, to fracture were conducted between couples for each of the above alloys in an ultrahigh vacuum system which would permit the sample surfaces to be cleaned of all contaminant layers. In the Co-50Fe case, the calculated fracture stress from the adhesion tests showed values in the range of 80 to 150 k.s.i., which is about ten times greater than the values from tension tests.

  2. Gravitational spreading of steep-sided ridges ("sackung") in Western United States

    USGS Publications Warehouse

    Radbruch-Hall, D. H.; Varnes, D.J.; Savage, W.Z.

    1976-01-01

    Large-scale gravitational spreading and movement along fractures of steep-sided ridges in the mountainous areas of the western United States are characterized by linear fissures, trenches, and uphill-facing scarps on tops and sides of ridges. Spreading appears to take place by movement along disconnected planes and/or by slow plastic deformation of a rock mass. In some places, valleyward squeezing out of weak shales overlain by rigid rocks causes extensional fracturing and outward movement of the rigid layers, as illustrated by extension of two laccoliths overlying Mancos Shale, one at Dolores Peak and another at Crested Butte in western Colorado. Gravitational forces acting on a ridge of more homogeneous material causes tensional spreading of the ridge parallel to its long axis, for example in fractured granitic rock north of Mt. Massive in central Colorado, where a survey course has been established to monitor the movement. Recognition and understanding of these large-scale gravitational features and the mechanism that causes them are pertinent to site selection and design of engineering structures in high mountains. If fractures extend to considerable depth and if movement is continuing, engineering structures in valleys or tunnels through the spreading ridges could be damaged. ?? 1976 International Association of Engineering Geology.

  3. Traveltime inversion and error analysis for layered anisotropy

    NASA Astrophysics Data System (ADS)

    Jiang, Fan; Zhou, Hua-wei

    2011-02-01

    While tilted transverse isotropy (TTI) is a good approximation of the velocity structure for many dipping and fractured strata, it is still challenging to estimate anisotropic depth models even when the tilted angle is known. With the assumption of weak anisotropy, we present a TTI traveltime inversion approach for models consisting of several thickness-varying layers where the anisotropic parameters are constant for each layer. For each model layer the inversion variables consist of the anisotropic parameters ɛ and δ, the tilted angle φ of its symmetry axis, layer velocity along the symmetry axis, and thickness variation of the layer. Using this method and synthetic data, we evaluate the effects of errors in some of the model parameters on the inverted values of the other parameters in crosswell and Vertical Seismic Profile (VSP) acquisition geometry. The analyses show that the errors in the layer symmetry axes sensitively affect the inverted values of other parameters, especially δ. However, the impact of errors in δ on the inversion of other parameters is much less than the impact on δ from the errors in other parameters. Hence, a practical strategy is first to invert for the most error-tolerant parameter layer velocity, then progressively invert for ɛ in crosswell geometry or δ in VSP geometry.

  4. A 2.5D Reactive Transport Model for Fracture Alteration Simulation

    DOE PAGES

    Deng, Hang; Molins, Sergi; Steefel, Carl; ...

    2016-06-30

    Understanding fracture alteration resulting from geochemical reactions is critical in predicting fluid migration in the subsurface and is relevant to multiple environmental challenges. Here in this paper, we present a novel 2.5D continuum reactive transport model that captures and predicts the spatial pattern of fracture aperture change and the development of an altered layer in the near-fracture region. The model considers permeability heterogeneity in the fracture plane and updates fracture apertures and flow fields based on local reactions. It tracks the reaction front of each mineral phase and calculates the thickness of the altered layer. Given this treatment, the modelmore » is able to account for the diffusion limitation on reaction rates associated with the altered layer. The model results are in good agreement with an experimental study in which a CO 2-acidified brine was injected into a fracture in the Duperow Dolomite, causing dissolution of calcite and dolomite that result in the formation of a preferential flow channel and an altered layer. Finally, with an effective diffusion coefficient consistent with the experimentally observed porosity of the altered layer, the model captures the progressive decrease in the dissolution rate of the fast-reacting mineral in the altered layer.« less

  5. Psychotropics and weak opioid analgesics in plasma samples of older hip fracture patients - detection frequencies and consistency with drug records.

    PubMed

    Waade, Ragnhild Birkeland; Molden, Espen; Martinsen, Mette Irene; Hermann, Monica; Ranhoff, Anette Hylen

    2017-07-01

    To determine use of psychotropic drugs and weak opioids in hip fracture patients by analysing plasma samples at admission, and compare detected drug frequencies with prescription registry data and drug records. Plasma from 250 hip fracture patients aged ≥65 years sampled at hospital admission were analysed by ultra-performance liquid chromatography-tandem mass spectrometry methods for detection of psychotropic drugs and weak opioid analgesics (alcohol also determined). Odds ratios for drugs detected in plasma of hip fracture patients vs. prescription frequencies of the same drugs in an age-, time- and region-matched reference population were calculated. Moreover, recorded and measured drugs were compared. Psychotropic drugs and/or weak opioid analgesics were detected in 158 (63%) of the patients (median age 84 years; 76% females), while alcohol was found in 19 patients (7.6%). The occurrence of diazepam (odds ratio 1.6; 95% confidence interval 1.1-2.4), nitrazepam (2.3; 1.3-4.1), selective serotonin reuptake inhibitors (1.9; 1.3-2.9) and mirtazapine (2.3; 1.2-4.3) was significantly higher in plasma samples of hip fracture patients than in prescription data from the reference population. Poor consistency between recorded and measured drugs was disclosed for z-hypnotics and benzodiazepines; e.g. diazepam was detected in 29 (11.6%), but only recorded in six (2.4%) of the patients. Plasma analysis shows that use of antidepressants and benzodiazepines in hip fracture patients is significantly more frequent than respective prescription frequencies in the general elderly population. Moreover, consistency between recorded and actual use of psychotropic fall-risk drugs is poor at hospital admission of hip fracture patients. © 2017 The British Pharmacological Society.

  6. Frequency-dependent processing and interpretation (FDPI) of seismic data for identifying, imaging and monitoring fluid-saturated underground reservoirs

    DOEpatents

    Goloshubin, Gennady M.; Korneev, Valeri A.

    2006-11-14

    A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.

  7. Frequency-dependent processing and interpretation (FDPI) of seismic data for identifying, imaging and monitoring fluid-saturated underground reservoirs

    DOEpatents

    Goloshubin, Gennady M.; Korneev, Valeri A.

    2005-09-06

    A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.

  8. Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaguang; Wei, Yujie

    Driven by the rapid progress in exploiting unconventional energy resources such as shale gas, there is growing interest in hydraulic fracture of brittle yet heterogeneous shales. In particular, how hydraulic cracks interact with natural weak zones in sedimentary rocks to form permeable cracking networks is of significance in engineering practice. Such a process is typically influenced by crack deflection, material anisotropy, crack-surface friction, crustal stresses, and so on. In this work, we extend the He-Hutchinson theory (He and Hutchinson, 1989) to give the closed-form formulae of the strain energy release rate of a hydraulic crack with arbitrary angles with respect to the crustal stress. The critical conditions in which the hydraulic crack deflects into weak interfaces and exhibits a dependence on crack-surface friction and crustal stress anisotropy are given in explicit formulae. We reveal analytically that, with increasing pressure, hydraulic fracture in shales may sequentially undergo friction locking, mode II fracture, and mixed mode fracture. Mode II fracture dominates the hydraulic fracturing process and the impinging angle between the hydraulic crack and the weak interface is the determining factor that accounts for crack deflection; the lower friction coefficient between cracked planes and the greater crustal stress difference favor hydraulic fracturing. In addition to shale fracking, the analytical solution of crack deflection could be used in failure analysis of other brittle media.

  9. In vitro fracture resistance of molar teeth restored with a short fibre-reinforced composite material.

    PubMed

    Fráter, Márk; Forster, András; Keresztúri, Márk; Braunitzer, Gábor; Nagy, Katalin

    2014-09-01

    The purpose of this in vitro study was to evaluate the efficiency of a short fibre-reinforced composite (SFRC) material compared to conventional composites when restoring class II. MOD cavities in molar teeth with different layering techniques. One hundred and thirty mandibular third molars were divided into 5 groups (n=26). Except for the control group (intact teeth), in all other groups MOD cavities were prepared. The cavities were restored by either conventional composite with horizontal and oblique layering or by SFRC with horizontal and oblique layering. The specimens were submitted to static fracture toughness test. Fracture thresholds and fracture patterns were evaluated. In general, no statistically significant difference was found in fracture toughness between the study groups, except for horizontally layered conventional composite restorations, which turned out to be significantly weaker than controls. However, SFRC yielded noticeably higher fracture thresholds and only obliquely applied SFRC restorations exhibited favourable fracture patterns above chance level. The application of SFRC did not lead to a statistically significant improvement of the fracture toughness of molar teeth with MOD cavities. Still, SFRC applied in oblique increments measurably reduces the chance of unrestorable fractures of molar teeth with class II MOD cavities. The restoration of severely weakened molar teeth with the use of SFRC combined with composite might have advantages over conventional composites alone. It was observed from the statistical data, that the application of SFRC with an oblique layering technique yielded not significantly but better fracture thresholds and more favourable fracture patterns than any other studied material/technique combination. Thus further investigations need to be carried out, to investigate the possible positive mechanical effects of SFRC. The application of the horizontal layering technique with conventional composite materials is inferior to the oblique technique and SFRC materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Impact crater morphology and the Central Pit/Dome of Occator: Ceres as an Ice-rich Body

    NASA Astrophysics Data System (ADS)

    Schenk, P.; Marchi, S.; O'Brien, D. P.; Platz, T.; Bland, M. T.; Buczkowski, D.; Scully, J. E. C.; Ammannito, E.; Raymond, C. A.; Russell, C. T.

    2016-12-01

    Pristine crater morphologies on Ceres (at D <40 km) are astonishingly similar to those on midsize icy bodies (e.g., moons of Saturn) but very different from those on silicate-rich Vesta. All these bodies have similar gravity and broadly similar impact velocities, and these patterns reveal that the upper 10s of km of Ceres are much weaker than on silicate-rich Vesta. This stands in contrast to the lack of viscous relaxation (Bland et al., 2016), which implies an upper layer on Ceres capable of resisting flow despite the relatively high surface temperatures. This can be explained as distinct responses of an outer layer partially composed of weak ices and strong silicates that fail during high-strain impact processes (which are apparently controlled by the weak phase) but does not flow under low-strain creep (which is apparently controlled more by the strong phase). Furthermore, comparison with Martian craters indicates that, in contrast to Ceres, the amount of water ice in the crust of Mars results in hybrid morphologies only midway between silicate and ice worlds, indicating that the upper layers of Ceres must have more ice than does Mars. The presence of apparent impact melt deposits and central pits in larger craters (D>40 km and D>75 km, respectively) on Ceres implies either warmer conditions than at Saturn, or the presence of a deeper layer enriched in (weaker) ice at comparable depths, also consistent with partial relaxation in larger craters. The formation of a fractured dome 3-km-wide and 0.75-km-high within recently formed Occator crater may be due to refreezing of a water zone melted after impact, or mobilization of carbonates or ice in the crater center, possibly from such deeper layers.

  11. Solute transport in a single fracture involving an arbitrary length decay chain with rock matrix comprising different geological layers.

    PubMed

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2014-08-01

    A model is developed to describe solute transport and retention in fractured rocks. It accounts for advection along the fracture, molecular diffusion from the fracture to the rock matrix composed of several geological layers, adsorption on the fracture surface, adsorption in the rock matrix layers and radioactive decay-chains. The analytical solution, obtained for the Laplace-transformed concentration at the outlet of the flowing channel, can conveniently be transformed back to the time domain by the use of the de Hoog algorithm. This allows one to readily include it into a fracture network model or a channel network model to predict nuclide transport through channels in heterogeneous fractured media consisting of an arbitrary number of rock units with piecewise constant properties. More importantly, the simulations made in this study recommend that it is necessary to account for decay-chains and also rock matrix comprising at least two different geological layers, if justified, in safety and performance assessment of the repositories for spent nuclear fuel. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. High-Speed Observations of Dynamic Fracture Propagation in Solids and Their Implications in Earthquake Rupture Dynamics

    NASA Astrophysics Data System (ADS)

    Uenishi, Koji

    2016-04-01

    This contribution outlines our experimental observations of seismicity-related fast fracture (rupture) propagation in solids utilising high-speed analog and digital photography (maximum frame rate 1,000,000 frames per second) over the last two decades. Dynamic fracture may be triggered or initiated in the monolithic or layered seismic models by detonation of micro explosives, a projectile launched by a gun, laser pulses and electric discharge impulses, etc. First, we have investigated strike-slip rupture along planes of weakness in transparent photoelastic (birefringent) materials at a laboratory scale and shown (at that time) extraordinarily fast rupture propagation in a bi-material system and its possible effect on the generation of large strong motion in the limited narrow areas in the Kobe region on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake (Uenishi Ph.D. thesis 1997, Uenishi et al. BSSA 1999). In this series of experiments, we have also modelled shallow dip-slip earthquakes and indicated a possible origin of the asymmetric ground motion in the hanging and foot-walls. In the photoelastic photographs, we have found the unique dynamic wave interaction and generation of specific shear and interface waves numerically predicted by Uenishi and Madariaga (Eos 2005), and considered as a case study the seismic motion associated with the 2014 Nagano-ken Hokubu (Kamishiro Fault), Japan, dip-slip earthquake (Uenishi EFA 2015). Second, we have experimentally shown that even in a monolithic material, rupture speed may exceed the local shear wave speed if we employ hyperelasically behaving materials like natural rubber (balloons) (Uenishi Eos 2006, Uenishi ICF 2009, Uenishi Trans. JSME A 2012) but fracture in typical monolithic thin fluid films (e.g. soap bubbles, which may be treated as a solid material) propagates at an ordinary subsonic (sub-Rayleigh) speed (Uenishi et al. SSJ 2006). More recent investigation handling three-dimensional rupture propagation in monolithic brittle materials (e.g. ice spheres, concrete blocks in the field) has repeatedly indicated some specific (rather simple and smooth) fracture patterns even without the existence of distinct planes of weakness, which may help in understanding how the dynamic fracture propagation is controlled in three-dimensional brittle solids like Earth's crust (Uenishi et al. Con. Buld. Mat. 2010, 2014, JSME 2013).

  13. Microstructures and rheology of a calcite-shale thrust fault

    NASA Astrophysics Data System (ADS)

    Wells, Rachel K.; Newman, Julie; Wojtal, Steven

    2014-08-01

    A thin (˜2 cm) layer of extensively sheared fault rock decorates the ˜15 km displacement Copper Creek thrust at an exposure near Knoxville, TN (USA). In these ultrafine-grained (<0.3 μm) fault rocks, interpenetrating calcite grains form an interconnected network around shale clasts. One cm below the fault rock layer, sedimentary laminations in non-penetratively deformed footwall shale are cut by calcite veins, small faults, and stylolites. A 350 μm thick calcite vein separates the fault rocks and footwall shale. The vein is composed of layers of (1) coarse calcite grains (>5 μm) that exhibit a lattice preferred orientation (LPO) with pores at twin-twin and twin-grain boundary intersections, and (2) ultrafine-grained (0.3 μm) calcite that exhibits interpenetrating grain boundaries, four-grain junctions and lacks a LPO. Coarse calcite layers crosscut ultrafine-grained layers indicating intermittent vein formation during shearing. Calcite in the fault rock layer is derived from vein calcite and grain-size reduction of calcite took place by plasticity-induced fracture. The ultrafine-grained calcite deformed primarily by diffusion-accommodated grain boundary sliding and formed an interconnected network around shale clasts within the shear zone. The interconnected network of ultrafine-grained calcite indicates that calcite, not shale, was the weak phase in this fault zone.

  14. Pathogenesis of Fifth Metatarsal Fractures in College Soccer Players

    PubMed Central

    Fujitaka, Kohei; Taniguchi, Akira; Isomoto, Shinji; Kumai, Tsukasa; Otuki, Shingo; Okubo, Mamoru; Tanaka, Yasuhito

    2015-01-01

    Background: The pathogenesis of fifth metatarsal stress fractures remains uncertain. Hypothesis: Physical characteristics and environmental factors, which have received limited attention in the literature thus far, might be involved in the development of fifth metatarsal stress fractures. Study Design: Case-control study; Level of evidence, 3. Methods: To test the study hypothesis, a medical examination and survey of the living environment of collegiate soccer players was conducted and correlated with the existence of fifth metatarsal stress fractures. The survey and measurements were conducted in 273 male athletes from the same college soccer team between 2005 and 2013. A medical examination comprising assessment of stature, body weight, body mass index, foot–arch height ratio, toe-grip strength, quadriceps angle, leg-heel angle, functional reach test, single-leg standing time with eyes closed, straight-leg raise angle, finger-floor distance, heel-buttock distance, ankle joint range of motion, and a general joint laxity test were performed once a year, along with a questionnaire survey. The survey was also repeated when a fifth metatarsal stress fracture was diagnosed. The study participants were separated into a fifth metatarsal stress fracture injury group and a noninjury group. The measurement items and survey items were compared, and the association between the factors and the presence or absence of injuries was analyzed. Results: Toe-grip strength was significantly weaker in the injury group compared with the noninjury group, suggesting that weak toe-grip is associated with fifth metatarsal stress fracture (P < .05). In addition, fifth metatarsal stress fractures were more common in the nondominant leg (P < .05). Between-group comparisons of the other items showed no statistically significant differences. Conclusion: The association between weak toe-grip strength and fifth metatarsal fracture suggests that weak toe-grip may lead to an increase in the load applied onto the lateral side of the foot, resulting in stress fracture. The finding of stress fracture being more common in the nondominant leg needs further study. PMID:26535399

  15. Predictions and Experimental Microstructural Characterization of High Strain Rate Failure Modes in Layered Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Khanikar, Prasenjit

    Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain-rate applications. The second major objective of this investigation was the use of recently developed dynamic fracture formulations to model and analyze the crack nucleation and propagation of aluminum layered composites subjected to high strain rate loading conditions and how microstructural effects, such as precipitates, dispersed particles, and GB orientations affect failure evolution. This dynamic fracture approach is used to investigate crack nucleation and crack growth as a function of the different microstructural characteristics of each alloy in layered composites with and without pre-existing cracks. The zigzag nature of the crack paths were mainly due to the microstructural features, such as precipitates and dispersed particles distributions and orientations ahead of the crack front, and it underscored the capabilities of the fracture methodology. The evolution of dislocation density and the formation of localized shear slip contributed to the blunting of the propagating crack. Extensive geometrical and thermal softening due to the localized plastic slip also affected crack path orientations and directions. These softening mechanisms resulted in the switching of cleavage planes, which affected crack path orientations. Interface delamination can also have an important role in the failure and toughening of the layered composites. Different scenarios of delamination were investigated, such as planar crack growth and crack penetration into the layers. The presence of brittle surface oxide platelets in the interface region also significantly influenced the interface delamination process. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM) characterization provided further physical insights and validation of the predictive capabilities. The inherent microstructural features of each alloy play a significant role in the dynamic fracture, shear strain localization, and interface delamination of the layered metallic composite. These microstructural features, such as precipitates, dispersed particles, and GB orientations and distributions can be optimized for desired behavior of metallic composites.

  16. Application of remote sensing analysis and MT method for identification geothermal prospect zone in Mt. Endut

    NASA Astrophysics Data System (ADS)

    Akbar, A. M.; Permadi, A. N.; Wildan, D.; Sobirin, R.; Supriyanto

    2017-07-01

    Mount Endut is located at Banten Province, 40 km southward Rangkasbitung City, with geographic UTM position between 9261000-9274000 N and 639000-652000 E. Preliminary survey at Mt. Endut was geological and geochemical survey in 2006, resistivity survey and MT survey in 2007 with 27 measurement point. All survey conducted by Pusat Sumber Daya Geologi (PSDG). According to result of premilinary survey, Mt. Endut is dominated by quartenary volcanic rock produced by Mt. Endut, which breakthrough tertiary sediment layer. NE to SW normal fault produced surface manifestation, namely Cikawah (CKW) hot spring and Handeleum (HDL) hot spring. According to SiO2 and NaK geothermometer, subsurface temperature of Mt Endut is ranging from 162 to 180 °C. Apparent resistivity maps show that thermal manifestation areas coincide with pronounced high anomaly due to resistive intrusion bodies contrast to conductive sedimentary basements. In order to delineate permeability zone, fracture fault density (FFD) analysis from remote sensing image is carry out. FFD analysis from lansdat 7 image shows the area on westward flank of Mt. Endut have high fracture fault density (162-276 m/km2), higher than it's surrounding area and can be assume that area is weak zone and have high permeability. That's structure density anomaly coincide with low resistivity from Magnetotelluric data. Resistivity structure from Magnetotelluric data shows western flank have low permeability layer (14-27 Ohmm) with average thickness 250 m. Below this layer there is layer with higher resistivity (37-100 Ohmm) with ±1000 m depth and interpreted as shallow reservoir. Massive resistif intrusive bodies act controlled the surface manifestation, and act as boundary and bounded the geothermal system in western part of Mt. Endut.

  17. Spatial and layer-controlled variability in fracture networks

    NASA Astrophysics Data System (ADS)

    Procter, Andrew; Sanderson, David J.

    2018-03-01

    Topological sampling, based on 1) node counting and 2) circular sampling areas, is used to measure fracture intensity in surface exposures of a layered limestone/shale sequence in north Somerset, UK. This method provides similar levels of precision as more traditional line samples, but is about 10 times quicker and allows characterization of the network topology. Georeferencing of photographs of the sample sites allows later analysis of trace lengths and orientations, and identification of joint set development. ANOVA tests support a complex interaction of within-layer, between-layer and between-location variability in fracture intensity, with the different layers showing anomalous intensity at different locations. This variation is not simply due to bed thickness, nor can it be related to any obvious compositional or textural variation between the limestone beds. These results are used to assess approaches to the spatial mapping of fracture intensity.

  18. [Hip Fracture--Epidemiology, Management and Liaison Service. Risk factor for hip fracture].

    PubMed

    Fujiwara, Saeko

    2015-04-01

    Many risk factors have been identified for hip fracture, including female, advanced age, osteoporosis, previous fractures, low body weight or low body mass index, alcohol drinking, smoking, family history of fractures, use of glucocorticoid, factors related to falls, and bone strength. The factors related to falls are number of fall, frail, post stroke, paralysis, muscle weakness, anti-anxiety drugs, anti-depression drugs, and sedatives. Dementia and respiratory disease and others have been reported to be risk factors for secondary hip fracture.

  19. Evolution of fracture and fault-controlled fluid pathways in carbonates of the Albanides fold-thrust belt

    USGS Publications Warehouse

    Graham, Wall B.R.; Girbacea, R.; Mesonjesi, A.; Aydin, A.

    2006-01-01

    The process of fracture and fault formation in carbonates of the Albanides fold-thrust belt has been systematically documented using hierarchical development of structural elements from hand sample, outcrop, and geologic-map scales. The function of fractures and faults in fluid migration was elucidated using calcite cement and bitumen in these structures as a paleoflow indicator. Two prefolding pressure-solution and vein assemblages were identified: an overburden assemblage and a remote tectonic stress assemblage. Sheared layer-parallel pressure-solution surfaces of the overburden assemblage define mechanical layers. Shearing of mechanical layers associated with folding resulted in the formation of a series of folding assemblage fractures at different orientations, depending on the slip direction of individual mechanical layers. Prefolding- and folding-related fracture assemblages together formed fragmentation zones in mechanical layers and are the sites of incipient fault localization. Further deformation along these sites was accommodated by rotation and translation of fragmented rock, which formed breccia and facilitated fault offset across multiple mechanical layers. Strike-slip faults formed by this process are organized in two sets in an apparent conjugate pattern. Calcite cement and bitumen that accumulated along fractures and faults are evidence of localized fluid flow along fault zones. By systematic identification of fractures and faults, their evolution, and their fluid and bitumen contents, along with subsurface core and well-log data, we identify northeast-southwest-trending strike-slip faults and the associated structures as dominant fluid pathways in the Albanides fold-thrust belt. Copyright ?? 2006. The American Association of Petroleum Geologists. All rights reserved.

  20. Monolithic and bi-layer CAD/CAM lithium-disilicate versus metal-ceramic fixed dental prostheses: comparison of fracture loads and failure modes after fatigue.

    PubMed

    Schultheis, Stefan; Strub, Joerg R; Gerds, Thomas A; Guess, Petra C

    2013-06-01

    The authors analyzed the effect of fatigue on the survival rate and fracture load of monolithic and bi-layer CAD/CAM lithium-disilicate posterior three-unit fixed dental prostheses (FDPs) in comparison to the metal-ceramic gold standard. The authors divided 96 human premolars and molars into three equal groups. Lithium-disilicate ceramic (IPS-e.max-CAD) was milled with the CEREC-3-system in full-anatomic FDP dimensions (monolithic: M-LiCAD) or as framework (Bi-layer: BL-LiCAD) with subsequent hand-layer veneering. Metal-ceramic FDPs (MC) served as control. Single-load-to-failure tests were performed before and after mouth-motion fatigue. No fracture failures occurred during fatigue. Median fracture loads in [N], before and after fatigue were, respectively, as follows: M-LiCAD, 1,298/1,900; BL-LiCAD, 817/699; MC, 1,966/1,818. M-LiCAD and MC FPDs revealed comparable fracture loads and were both significantly higher than BL-LiCAD. M-LiCAD and BL-LiCAD both failed from core/veneer bulk fracture within the connector area. MC failures were limited to ceramic veneer fractures exposing the metal core. Fatigue had no significant effect on any group. Posterior monolithic CAD/CAM fabricated lithium-disilicate FPDs were shown to be fracture resistant with failure load results comparable to the metal-ceramic gold standard. Clinical investigations are needed to confirm these promising laboratory results. Monolithic CAD/CAM fabricated lithium-disilicate FDPs appeared to be a reliable treatment alternative for the posterior load-bearing area, whereas FDPs in bi-layer configuration were susceptible to low load fracture failure.

  1. Onset of density-driven instabilities in fractured aquifers

    NASA Astrophysics Data System (ADS)

    Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan

    2018-04-01

    Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of C O2 in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.

  2. Encapsulated proppants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.

    2018-01-30

    A capsule for carrying a proppant for emplaced in a formation containing formation fluid by a hydraulic fracture operation using a fracturing fluid. The capsule includes a capsule body. The capsule body includes a proppant. There is a surface layer on the capsule body that is permeable to the formation fluid or the fracturing fluid or is permeable to both the formation fluid and the fracturing fluid. The proppant material is dry cement that interacts with the formation fluid or the fracturing fluid or both the formation fluid and the fracturing fluid that migrate through the surface layer and ismore » taken up by the dry cement causing the dry cement to harden.« less

  3. Encapsulated proppants

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Roberts, Jeffery James; Spadaccini, Christopher M.; Stolaroff, Joshuah K.

    2018-01-09

    A capsule for carrying a proppant for emplaced in a formation containing formation fluid by a hydraulic fracture operation using a fracturing fluid. The capsule includes a capsule body. The capsule body includes a proppant. There is a surface layer on the capsule body that is permeable to the formation fluid or the fracturing fluid or is permeable to both the formation fluid and the fracturing fluid. The proppant material is dry cement that interacts with the formation fluid or the fracturing fluid or both the formation fluid and the fracturing fluid that migrate through the surface layer and is taken up by the dry cement causing the dry cement to harden.

  4. Visual texture for automated characterisation of geological features in borehole televiewer imagery

    NASA Astrophysics Data System (ADS)

    Al-Sit, Waleed; Al-Nuaimy, Waleed; Marelli, Matteo; Al-Ataby, Ali

    2015-08-01

    Detailed characterisation of the structure of subsurface fractures is greatly facilitated by digital borehole logging instruments, the interpretation of which is typically time-consuming and labour-intensive. Despite recent advances towards autonomy and automation, the final interpretation remains heavily dependent on the skill, experience, alertness and consistency of a human operator. Existing computational tools fail to detect layers between rocks that do not exhibit distinct fracture boundaries, and often struggle characterising cross-cutting layers and partial fractures. This paper presents a novel approach to the characterisation of planar rock discontinuities from digital images of borehole logs. Multi-resolution texture segmentation and pattern recognition techniques utilising Gabor filters are combined with an iterative adaptation of the Hough transform to enable non-distinct, partial, distorted and steep fractures and layers to be accurately identified and characterised in a fully automated fashion. This approach has successfully detected fractures and layers with high detection accuracy and at a relatively low computational cost.

  5. Quasi-static analysis of elastic behavior for some systems having higher fracture densities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, J.G.; Aydin, A.

    2009-10-15

    Elastic behavior of geomechanical systems with interacting (but not intersecting) fractures is treated using generalizations of the Backus and the Schoenberg-Muir methods for analyzing layered systems whose layers are intrinsically anisotropic due to locally aligned fractures. By permitting the axis of symmetry of the locally anisotropic compliance matrix for individual layers to differ from that of the layering direction, we derive analytical formulas for interacting fractured regions with arbitrary orientations to each other. This procedure provides a systematic tool for studying how contiguous, but not yet intersecting, fractured domains interact, and provides a direct (though approximate) means of predicting whenmore » and how such interactions lead to more dramatic weakening effects and ultimately to failure of these complicated systems. The method permits decomposition of the system elastic behavior into specific eigenmodes that can all be analyzed, and provides a better understanding about which of these specific modes are expected to be most important to the evolving failure process.« less

  6. Pulverized granite at the brittle-ductile transition: An example from the Kellyland fault zone, eastern Maine, U.S.A.

    NASA Astrophysics Data System (ADS)

    Sullivan, Walter A.; Peterman, Emily M.

    2017-08-01

    Granite from a 50-200-m-wide damage zone adjacent to the brittle-ductile Kellyland Fault Zone contains healed fracture networks that exhibit almost all of the characteristics of dynamically pulverized rocks. Fracture networks exhibit only weak preferred orientations, are mutually cross-cutting, separate jigsaw-like interlocking fragments, and are associated with recrystallized areas likely derived from pervasively comminuted material. Fracture networks in samples with primary igneous grain shapes further indicate pulverization. Minimum fracture densities in microcline are ∼100 mm/mm2. Larger fractures in microcline and quartz are sometimes marked by neoblasts, but most fractures are optically continuous with host grains and only visible in cathodoluminescence images. Fractures in plagioclase are crystallographically controlled and typically biotite filled. Petrologic observations and cross-cutting relationships between brittle structures and mylonitic rocks show that fracturing occurred at temperatures of 400 °C or more and pressures of 200 MPa. These constraints extend the known range of pulverization to much higher temperature and pressure conditions than previously thought possible. The mutually cross-cutting healed fractures also provide the first record of repeated damage in pulverized rocks. Furthermore, pulverization must have had a significant but transient effect on wall-rock porosity, and biotite-filled fracture networks in plagioclase form weak zones that could accommodate future strain localization.

  7. Fracture propagation through a layered shale and limestone sequence at Nash Point, South Wales: Implications on the development of fracture networks in layered sequences

    NASA Astrophysics Data System (ADS)

    Forbes Inskip, N.; Meredith, P. G.; Gudmundsson, A.

    2017-12-01

    While considerable effort has been expended on the study of fracture propagation in rocks in recent years, our understanding of how fractures propagate through sedimentary rocks composed of layers with different mechanical and elastic properties remains poor. Yet the mechanical layering is a key parameter controlling the propagation of fractures in sedimentary sequences. Here we report measurements of the contrasting properties of the Lower Lias at Nash Point, South Wales, which comprises a sequence of interbedded shale and limestone layers, and how those properties influence fracture propagation. The static Young's modulus (Estat) of both rock types has been measured parallel and normal to bedding. The shale is highly anisotropic, with Estat varying from 2.4 GPa, in the bedding-normal orientation, to 7.9 GPa, in the bedding-parallel orientation, yielding an anisotropy of 107%. By contrast the limestone has a very low anisotropy of 8%, with Estat values varying from 28.5 GPa, in the bedding-normal orientation, to 26.3 GPa in the bedding-parallel orientation. It follows that for a vertical fracture propagating in this sequence the modulus contrast is by a factor of about 12. This is important because the contrast in elastic properties is a key factor in controlling whether fractures arrest, deflect, or propagate across interfaces between layers in a sequence. Preliminary numerical modelling results (using a finite element modelling software) of induced fractures at Nash Point demonstrate a rotation of the maximum principal compressive stress across interfaces but also the concentration of tensile stress within the more competent (high Estat) limestone layers. The tensile strength (σT), using the Brazil-disk technique, and fracture toughness (KIc), using the semi-circular bend methodology, of both rock types have been measured. Measurements were made in the three principal orientations relative to bedding, Arrester, Divider, and Short-Transverse, and also at 15° intervals between these planes. Again, values for the shale show a high degree of anisotropy; with similar values in the Arrester and Divider orientations, but much lower values in the Short-Transverse orientation. σT and KIc values for the limestone are considerably higher than those for the shale and exhibit no significant anisotropy.

  8. Numerical and Statistical Analysis of Fractures in Mechanically Dissimilar Rocks of Limestone Interbedded with Shale from Nash Point in Bristol Channel, South Wales, UK.

    NASA Astrophysics Data System (ADS)

    Adeoye-Akinde, K.; Gudmundsson, A.

    2017-12-01

    Heterogeneity and anisotropy, especially with layered strata within the same reservoir, makes the geometry and permeability of an in-situ fracture network challenging to forecast. This study looks at outcrops analogous to reservoir rocks for a better understanding of in-situ fracture networks and permeability, especially fracture formation, propagation, and arrest/deflection. Here, fracture geometry (e.g. length and aperture) from interbedded limestone and shale is combined with statistical and numerical modelling (using the Finite Element Method) to better forecast fracture network properties and permeability. The main aim is to bridge the gap between fracture data obtained at the core level (cm-scale) and at the seismic level (km-scale). Analysis has been made of geometric properties of over 250 fractures from the blue Lias in Nash Point, UK. As fractures propagate, energy is required to keep them going, and according to the laws of thermodynamics, this energy can be linked to entropy. As fractures grow, entropy increases, therefore, the result shows a strong linear correlation between entropy and the scaling exponent of fracture length and aperture-size distributions. Modelling is used to numerically simulate the stress/fracture behaviour in mechanically dissimilar rocks. Results show that the maximum principal compressive stress orientation changes in the host rock as the fracture-induced stress tip moves towards a more compliant (shale) layer. This behaviour can be related to the three mechanisms of fracture arrest/deflection at an interface, namely: elastic mismatch, stress barrier and Cook-Gordon debonding. Tensile stress concentrates at the contact between the stratigraphic layers, ahead of and around the propagating fracture. However, as shale stiffens with time, the stresses concentrated at the contact start to dissipate into it. This can happen in nature through diagenesis, and with greater depth of burial. This study also investigates how induced fractures propagate and interact with existing discontinuities in layered rocks using analogue modelling. Further work will introduce the Maximum Entropy Method for more accurate statistical modelling. This method is mainly useful to forecast likely fracture-size probability distributions from incomplete subsurface information.

  9. Impact-induced fracture mechanisms of immiscible PC/ABS (50/50) blends

    NASA Astrophysics Data System (ADS)

    Machmud, M. N.; Omiya, M.; Inoue, H.; Kishimoto, K.

    2018-03-01

    This paper presents a study on fracture mechanisms of polycarbonate (PC)/acrylonitrile-butadiene-styrene (ABS) (50/50) blends with different ABS types under a drop weight impact test (DWIT) using a circular sheet specimen. Formation of secondary crack indicated by a stress-whitening layer on the mid-plane of scattered specimens and secondary surface of fracture perpendicular to primary fracture surface were captured under scanning electron microscope (SEM). Although the both blends finally failed in brittle modes, SEM observation showed that their secondary fracture mechanisms were completely different. Observation through the thickness of the etched PC/ABS specimen samples using SEM also clearly showed that PC and ABS were immiscible. The immiscibility between PC and ABS was indicated by presence of their layer structures through the thickness of the blends. It was revealed that layer of ABS structure was influenced by size of rubber particle and this latter parameter then affected microstructure and fracture mechanisms of the blends. Impact-induced fracture mechanisms of the blends due to such microstructures are discussed in this paper. It was also pointed out that the secondary cracking was likely caused by interface delamination between PC and ABS layers in the core due to transverse shear stress generated during the impact test.

  10. USASOC Injury Prevention/Performance Optimization Musculoskeletal Screening Initiative

    DTIC Science & Technology

    2012-11-01

    gluteus medius) Poor gait pattern/ Overpronation Tibial Stress Fracture Overloading the bone due to excessive running...Excessively tight iliotibial band Hip musculature weakness (e.g. gluteus medius) Poor gait pattern/ Overpronation Tibial Stress Fracture ...Anatomic Location Specific Injuries Probable Causes All lower extremity is at risk for injury during this exercise Foot fractures Improper

  11. Evidence for TiO2 nanoparticle transfer in a hard-rock aquifer.

    PubMed

    Cary, Lise; Pauwels, Hélène; Ollivier, Patrick; Picot, Géraldine; Leroy, Philippe; Mougin, Bruno; Braibant, Gilles; Labille, Jérôme

    2015-08-01

    Water flow and TiO2 nanoparticle (NP) transfer in a fractured hard-rock aquifer were studied in a tracer test experiment at a pilot site in Brittany, France. Results from the Br tracer test show that the schist aquifer can be represented by a two-layer medium comprising i) fractures with low longitudinal dispersivity in which water and solute transport is relatively fast, and ii) a network of small fissures with high longitudinal dispersivity in which transport is slower. Although a large amount of NPs was retained within the aquifer, a significant TiO2 concentration was measured in a well 15m downstream of the NP injection well, clearly confirming the potential for TiO2 NPs to be transported in groundwater. The Ti concentration profile in the downstream well was modelled using a two-layer medium approach. The delay used for the TiO2 NPs simulation compared to the Br concentration profiles in the downstream well indicate that the aggregated TiO2 NPs interacted with the rock. Unlike Br, NPs do not penetrate the entire pore network during transfer because of electrostatic interactions between NP aggregates and the rock and also to the aggregate size and the hydrodynamic conditions, especially where the porosity is very low; NPs with a weak negative charge can be attached onto the rock surface, and more particularly onto the positively charged iron oxyhydroxides coating the main pathways due to natural denitrification. Nevertheless, TiO2 NPs are mobile and transfer within fracture and fissure media. Any modification of the aquifer's chemical conditions is likely to impact the groundwater pH and, the nitrate content and the denitrification process, and thus affect NP aggregation and attachment. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Further damage induced by water in micro-indentations in phosphate laser glass

    NASA Astrophysics Data System (ADS)

    Yu, Jiaxin; Jian, Qingyun; Yuan, Weifeng; Gu, Bin; Ji, Fang; Huang, Wen

    2014-02-01

    Using a microhardness tester, artificial flaws were made by micro-indentation in N31 Nd-doped phosphate laser glass. Indentation fracture toughness, KIC, was estimated as 0.45-0.53 MPa m1/2 from these indentations. The glasses with indentations were then immersed in ultrapure water to investigate further water-induced damage of these indentations. Stress-enhanced hydrolysis leads to the propagations of radial crack, lateral cracks and microcracks in the subsurface. These crack propagations therefore cause deformation in subsurface to form annular reflections regions around the indentations and further material collapse within imprints. After the residual stresses are exhausted, the leaching plays a more dominated role in glass corrosion in the further immersion. After immersion, the material structure slackens around micro-indentation, which decreases the contact stiffness and results in a lower nano-hardness. For the surface far away from flaws, water immersion presents a weak effect on the near-surface mechanical since the matrix leaching in phosphate glass restricts the formation of hydration layer. During first 20 min immersion, due to higher chemical activity and lower fracture toughness, the radial cracks show a faster propagation in phosphate glass compared with that in K9 silicate glass. For further immersion, crack healing occurs in silicate glass but not in phosphate glass. Analysis shows that the formation of hydration layer on crack walls plays an important role in crack healing in glasses.

  13. Fluid-driven Fractures and Backflow in a Multilayered Elastic Matrix

    NASA Astrophysics Data System (ADS)

    Smiddy, Samuel; Lai, Ching-Yao; Stone, Howard

    2016-11-01

    We study the dynamics when pressurized fluid is injected at a constant flow rate into a multi-layered elastic matrix. In particular, we report experiments of such crack propagation as a function of orientation and distance from the contact of the layers. Subsequently we study the shape and propagation of the fluid along the contact of layers as well as volume of fluid remaining in the matrix once the injection pressure is released and "flowback" occurs. The experiments presented here may mimic the interaction between hydraulic fractures and pre-existing fractures and the dynamics of flowback in hydraulic fracturing. Study made possible by the Andlinger Center for Energy and the Environment and the Fred Fox Fund.

  14. Study on the Weak Stress in Flexural MEMS Cantilever

    NASA Astrophysics Data System (ADS)

    Ge, Yuetao; Ren, Yan

    2018-03-01

    In order to design a better piezoresistive MEMS cantilever beam, especially for cantilever beams that will detect weak forces or will be subjected to weak forces, this paper uses study on the weak stress in flexural MEMS cantilever. The sensor design structure, divided into protective layer, piezoresistive layer, support layer. The protective layer is responsible for protecting the piezoresistive layer so that the varistor is insulated from the outside; the piezoresistive layer is used to make the varistor; the support layer forms the main part of the cantilever beam, the majority of the cantilever beam. This paper has some value for cantilever multilayer structure design and cantilever beam size design.

  15. Experimental validation of microseismic emissions from a controlled hydraulic fracture in a synthetic layered medium

    NASA Astrophysics Data System (ADS)

    Roundtree, Russell

    A controlled hydraulic fracture experiment was performed on two medium sized (11" x 11" x 15") synthetic layered blocks of low permeability, low porosity Lyons sandstone sandwiched between cement. The purpose of the research was to better understand and characterize the fracture evolution as the fracture tip impinged upon the layer boundaries between the well bonded layers. It is also one of the first documented uses of passive microseismic used in a laboratory environment to characterize hydraulic fracturing. A relatively low viscosity fluid of 1000 centipoise, compared to properly scaled previous work (Casas 2005, and Athavale 2007), was pumped at a constant rate of 10 mL/minute through a steel cased hole landed and isolated in the sandstone layer. Efforts were made to contain the hydraulic fracture within the confines of the rock specimen to retain the created hydraulic fracture geometry. Two identical samples and treatment schedules were created and differed only in the monitoring system used to characterize the microseismic activity during the fracture treatment. The first block had eight embedded P-wave transducers placed in the sandstone layer to record the passive microseismic emissions and localize the location and time of the acoustic event. The second block had six compressional wave transducers and twelve shear wave transducers embedded in the sandstone layer of the block. The intention was to record and process the seismic data using conventional P-wave to S-wave difference timing techniques well known in industry. While this goal ultimately not possible due to the geometry of the receiver placements and the limitations of the Vallene acquisition processing software, the data received and the events localized from the 18 transducer test were of much higher numbers and quality than on the eight transducer test. This experiment proved conclusively that passive seismic emission recording can yield positive results in the laboratory. Just as in the field, this provides one of the best far field (away from the well bore) measurements to assess hydraulic fracture behavior. It also provides a calibration tool to extend laboratory results to field scale endeavors. The identification of strong microseismic activity at stress states far below fracture initiation confirms that rocks are critically stressed meta-stable materials and that microseismicity is caused by stress changes, not fractures directly. Advancements are necessary to fully exploit the potential of the microseismic method in laboratory sized samples. Both processing and visualization enhancements are necessary to realize the full benefits of this promising technology in the laboratory environment.

  16. Construction report - US Highway 36, superpave overlay of sand anti-fracture layer over AC/PCC pavement.

    DOT National Transportation Integrated Search

    2000-12-01

    The sand anti-fracture (SAF) technology was implemented on U.S. 36 in DeKalb County, Missouri, during the summer of 2000. The SAF layer is a fine aggregate graded asphalt mixture using highly polymerized asphalt binder that gives the SAF layer the ab...

  17. Osteoporosis in Men

    MedlinePlus

    Osteoporosis in Men A Patient’s Guide In osteoporosis, bones become weak and are more likely to fracture (break). It is a “ ... osteoporosis or osteopenia (mildly low bone mass) are men. The lifetime risk of having a fracture due ...

  18. Magnetic characterisation of folded aeolian sandstones: Interpretation of magnetic fabrics in diamagnetic rocks

    NASA Astrophysics Data System (ADS)

    Callot, J.-P.; Robion, P.; Sassi, W.; Guiton, M. L. E.; Faure, J.-L.; Daniel, J.-M.; Mengus, J.-M.; Schmitz, J.

    2010-12-01

    This study provides an original example of exploitation of Anisotropy of Magnetic Susceptibility (AMS) for rocks with weak magnetic susceptibility. Within the upper Weber Sandstone at Split Mountain, Utah, 430 cores from 31 sites were collected for magnetic characterization. The magnetic susceptibility ranges from -10 to 10 μSI, indicating a mostly diamagnetic matrix, with degree of anisotropy up to 1.6. Specific treatment of magnetic susceptibility allows using diamagnetic data. The fabrics are fairly clustered and triaxial. Sedimentary magnetic fabrics show a foliation plane parallel to the lamina of the sand dunes, without defined lineation. Apart from sedimentary fabrics (< 30%), most of the sites display intermediate to tectonic fabrics related to variable degree of strain (> 70%). Magnetic fabric patterns averaged for sites distributed on the anticline are well defined in sub-groups related to the major structural domains of the anticline. The fracture network at Split Mountain is composed of a dominant N120 set and a secondary N035 set. A scenario of strain record is proposed based on the correlation of (1) fracture sets orientation, (2) diagenetic cementation, (3) paleostresses and (4) distribution of magnetic susceptibility anisotropy. Following the Sevier orogeny and N120 fracture set emplacement, the N035 fracture network and AMS signal were recorded during the Laramide Layer Parallel Shortening phase, with local deviation along pre-existing structures, and recorded a partitioning of the strain during early folding, with a maximum horizontal stress axis perpendicular to the fold bounding faults within the fold.

  19. Spatial analysis of extension fracture systems: A process modeling approach

    USGS Publications Warehouse

    Ferguson, C.C.

    1985-01-01

    Little consensus exists on how best to analyze natural fracture spacings and their sequences. Field measurements and analyses published in geotechnical literature imply fracture processes radically different from those assumed by theoretical structural geologists. The approach adopted in this paper recognizes that disruption of rock layers by layer-parallel extension results in two spacing distributions, one representing layer-fragment lengths and another separation distances between fragments. These two distributions and their sequences reflect mechanics and history of fracture and separation. Such distributions and sequences, represented by a 2 ?? n matrix of lengthsL, can be analyzed using a method that is history sensitive and which yields also a scalar estimate of bulk extension, e (L). The method is illustrated by a series of Monte Carlo experiments representing a variety of fracture-and-separation processes, each with distinct implications for extension history. Resulting distributions of e (L)are process-specific, suggesting that the inverse problem of deducing fracture-and-separation history from final structure may be tractable. ?? 1985 Plenum Publishing Corporation.

  20. Fracture in Hydrogen-Implanted Germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazen, F.; Tauzin, A.; Sanchez, L.

    2008-11-03

    We have studied the mechanism of fracture in hydrogen-implanted Ge. First, the as-implanted Ge state and its evolution during subsequent annealing were characterized via TEM and FTIR-MIR spectroscopy. Results showed that the extended defects formation and growth follow the same basic mechanism in Ge as in Si, which is the reference material. Nevertheless, the global damage level in the implanted Ge layer is higher compared to Si. Second, the fracture step was studied via the fracture kinetics analysis, SIMS and AFM on the transferred layer. An activation energy comparable to the reported data from blistering studies was obtained. Just likemore » in Si, the Cmax of H in Ge measured via SIMS was found to decrease during the fracture anneal. This decrease is associated with the formation of gaseous H{sub 2} that pressurizes the internal cavities and then contributes to the fracture. Finally, a high roughness of the Ge transferred layer was measured, which results from the large thickness of the implantation damaged zone.« less

  1. HSTRESS: A computer program to calculate the height of a hydraulic fracture in a multi-layered stress medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    A computer code for calculating hydraulic fracture height and width in a stressed-layer medium has been modified for easy use on a personal computer. HSTRESS allows for up to 51 layers having different thicknesses, stresses and fracture toughnesses. The code can calculate fracture height versus pressure or pressure versus fracture height, depending on the design model in which the data will be used. At any pressure/height, a width profile is calculated and an equivalent width factor and flow resistance factor are determined. This program is written in FORTRAN. Graphics use PLOT88 software by Plotworks, Inc., but the graphics software mustmore » be obtained by the user because of licensing restrictions. A version without graphics can also be run. This code is available through the National Energy Software Center (NESC), operated by Argonne National Laboratory. 14 refs., 21 figs.« less

  2. Modelling Laccoliths: Fluid-Driven Fracturing in the Lab

    NASA Astrophysics Data System (ADS)

    Ball, T. V.; Neufeld, J. A.

    2017-12-01

    Current modelling of the formation of laccoliths neglects the necessity to fracture rock layers for propagation to occur [1]. In magmatic intrusions at depth the idea of fracture toughness is used to characterise fracturing, however an analogue for near surface intrusions has yet to be explored [2]. We propose an analytical model for laccolith emplacement that accounts for the energy required to fracture at the tip of an intrusion. For realistic physical parameters we find that a lag region exists between the fluid magma front and the crack tip where large negative pressures in the tip cause volatiles to exsolve from the magma. Crucially, the dynamics of this tip region controls the spreading due to the competition between viscous forces and fracture energy. We conduct a series of complementary experiments to investigate fluid-driven fracturing of adhered layers and confirm the existence of two regimes: viscosity dominant spreading, controlled by the pressure in the lag region, and fracture energy dominant spreading, controlled by the energy required to fracture layers. Our experiments provide the first observations, and evolution, of a vapour tip. These experiments and our simplified model provide insight into the key physical processes in near surface magmatic intrusions with applications to fluid-driven fracturing more generally. Michaut J. Geophys. Res. 116(B5), B05205. Bunger & Cruden J. Geophys. Res. 116(B2), B02203.

  3. A Cone Shaped Hill

    NASA Image and Video Library

    2015-10-14

    There are many hills and knobs on Mars that reveal aspects of the local geologic history. Typically, the hills in the relatively-smooth region surrounding this image are flat topped erosional remnants or mesas with irregular or even polyhedral margins. These landforms suggest wide spread erosion of the soft or weakly-cemented sedimentary layers. This hill stands out because of is circular inverted-cone shape and apparent dark streaks along its flanks visible in lower resolution images. Close inspection from HiRISE reveals that the fine soils sloping down from the peak are intersected with radiating lines of rock and eroding rubble. This formation is similar to lava intrusions that form in the core of a volcano. As lava is squeezed up into a central conduit, radiating fractures fill with lava forming rock units called dikes. As the lava cools inside the ground and in the fractures, it forms into a harder rock that is more resistant to erosion. Later, as the surrounding sediments and soils erode, the resistant volcanic rock remains standing to tell a story of what happened underground long ago. http://photojournal.jpl.nasa.gov/catalog/PIA20003

  4. Influence of fracture network physical properties on stability criteria of density-driven flow in a dual-porosity system

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, H.; Jafari Raad, S. M.

    2017-12-01

    Linear stability analysis is conducted to study the onset of buoyancy-driven convection involved in solubility trapping of CO2 into deep fractured aquifers. In this study, the effect of fracture network physical properties on the stability criteria in a brine-rich fractured porous layer is investigated using dual porosity concept for both single and variable matrix block size distributions. Linear stability analysis results show that both fracture interporosity flow and fracture storativity factors play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in a fractured rock with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations that relate the onset of convective instability in fractured aquifers. These findings improve our understanding of buoyancy driven flow in fractured aquifers and are particularly important in estimation of potential storage capacity, risk assessment, and storage sites characterization and screening.Keywords: CO2 sequestration; fractured rock; buoyancy-driven convection; stability analysis

  5. Polyaxial stress-dependent permeability of a three-dimensional fractured rock layer

    NASA Astrophysics Data System (ADS)

    Lei, Qinghua; Wang, Xiaoguang; Xiang, Jiansheng; Latham, John-Paul

    2017-12-01

    A study about the influence of polyaxial (true-triaxial) stresses on the permeability of a three-dimensional (3D) fractured rock layer is presented. The 3D fracture system is constructed by extruding a two-dimensional (2D) outcrop pattern of a limestone bed that exhibits a ladder structure consisting of a "through-going" joint set abutted by later-stage short fractures. Geomechanical behaviour of the 3D fractured rock in response to in-situ stresses is modelled by the finite-discrete element method, which can capture the deformation of matrix blocks, variation of stress fields, reactivation of pre-existing rough fractures and propagation of new cracks. A series of numerical simulations is designed to load the fractured rock using various polyaxial in-situ stresses and the stress-dependent flow properties are further calculated. The fractured layer tends to exhibit stronger flow localisation and higher equivalent permeability as the far-field stress ratio is increased and the stress field is rotated such that fractures are preferentially oriented for shearing. The shear dilation of pre-existing fractures has dominant effects on flow localisation in the system, while the propagation of new fractures has minor impacts. The role of the overburden stress suggests that the conventional 2D analysis that neglects the effect of the out-of-plane stress (perpendicular to the bedding interface) may provide indicative approximations but not fully capture the polyaxial stress-dependent fracture network behaviour. The results of this study have important implications for understanding the heterogeneous flow of geological fluids (e.g. groundwater, petroleum) in subsurface and upscaling permeability for large-scale assessments.

  6. Fracture and Fatigue Resistance of Cemented versus Fused CAD-on Veneers over Customized Zirconia Implant Abutments.

    PubMed

    Nossair, Shereen Ahmed; Aboushelib, Moustafa N; Morsi, Tarek Salah

    2015-01-05

    To evaluate the fracture mechanics of cemented versus fused CAD-on veneers on customized zirconia implant abutments. Forty-five identical customized CAD/CAM zirconia implant abutments (0.5 mm thick) were prepared and seated on short titanium implant abutments (Ti base). A second scan was made to fabricate 45 CAD-on veneers (IPS Empress CAD, A2). Fifteen CAD-on veneers were cemented on the zirconia abutments (Panavia F2.0). Another 15 were fused to the zirconia abutments using low-fusing glass, while manually layered veneers served as control (n = 15). The restorations were subjected to artificial aging (3.2 million cycles between 5 and 10 kg in a water bath at 37°C) before being axially loaded to failure. Fractured specimens were examined using scanning electron microscopy to detect fracture origin, location, and size of critical crack. Stress at failure was calculated using fractography principles (alpha = 0.05). Cemented CAD-on restorations demonstrated significantly higher (F = 72, p < 0.001) fracture load compared to fused CAD-on and manually layered restorations. Fractographic analysis of fractured specimens indicated that cemented CAD-on veneers failed due to radial cracks originating from the veneer/resin interface. Branching of the critical crack was observed in the bulk of the veneer. Fused CAD-on veneers demonstrated cohesive fracture originating at the thickest part of the veneer ceramic, while manually layered veneers failed due to interfacial fracture at the zirconia/veneer interface. Within the limitations of this study, cemented CAD-on veneers on customized zirconia implant abutments demonstrated higher fracture than fused and manually layered veneers. © 2014 by the American College of Prosthodontists.

  7. In vitro comparison of fracture load of implant-supported, zirconia-based, porcelain- and composite-layered restorations after artificial aging.

    PubMed

    Komine, Futoshi; Taguchi, Kohei; Fushiki, Ryosuke; Kamio, Shingo; Iwasaki, Taro; Matsumura, Hideo

    2014-01-01

    This study evaluated fracture load of single-tooth, implant-supported, zirconia-based, porcelain- and indirect composite-layered restorations after artificial aging. Forty-four zirconia-based molar restorations were fabricated on implant abutments and divided into four groups, namely, zirconia-based all-ceramic restorations (ZAC group) and three types of zirconia-based composite-layered restorations (ZIC-P, ZIC-E, and ZIC groups). Before layering an indirect composite material, the zirconia copings in the ZIC-P and ZIC-E groups were primed with Clearfil Photo Bond and Estenia Opaque Primer, respectively. All restorations were cemented on the abutments with glass-ionomer cement and then subjected to thermal cycling and cyclic loading. All specimens survived thermal cycling and cyclic loading. The fracture load of the ZIC-P group (2.72 kN) was not significantly different from that of the ZAC group (3.05 kN). The fracture load of the zirconia-based composite-layered restoration primed with Clearfil Photo Bond (ZIC-P) was comparable to that of the zirconia-based all-ceramic restoration (ZAC) after artificial aging.

  8. Meteorological variables to aid forecasting deep slab avalanches on persistent weak layers

    USGS Publications Warehouse

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2015-01-01

    Deep slab avalanches are particularly challenging to forecast. These avalanches are difficult to trigger, yet when they release they tend to propagate far and can result in large and destructive avalanches. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl ski area in southwest Montana to test the usefulness of meteorological variables for predicting seasons and days with deep slab avalanches. We defined deep slab avalanches as those that failed on persistent weak layers deeper than 0.9 m, and that occurred after February 1st. Previous studies often used meteorological variables from days prior to avalanches, but we also considered meteorological variables over the early months of the season. We used classification trees and random forests for our analyses. Our results showed seasons with either dry or wet deep slabs on persistent weak layers typically had less precipitation from November through January than seasons without deep slabs on persistent weak layers. Days with deep slab avalanches on persistent weak layers often had warmer minimum 24-hour air temperatures, and more precipitation over the prior seven days, than days without deep slabs on persistent weak layers. Days with deep wet slab avalanches on persistent weak layers were typically preceded by three days of above freezing air temperatures. Seasonal and daily meteorological variables were found useful to aid forecasting dry and wet deep slab avalanches on persistent weak layers, and should be used in combination with continuous observation of the snowpack and avalanche activity.

  9. Marine magnetotellurics imaged no distinct plume beneath the Tristan da Cunha hotspot in the southern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Baba, Kiyoshi; Chen, Jin; Sommer, Malte; Utada, Hisashi; Geissler, Wolfram H.; Jokat, Wilfried; Jegen, Marion

    2017-10-01

    The Tristan da Cunha (TDC) is a volcanic island located above a prominent hotspot in the Atlantic Ocean. Many geological and geochemical evidences support a deep origin of the mantle material feeding the hotspot. However, the existence of a plume has not been confirmed as an anomalous structure in the mantle resolved by geophysical data because of lack of the observations in the area. Marine magnetotelluric and seismological observations were conducted in 2012-2013 to examine the upper mantle structure adjacent to TDC. The electrical conductivity structure of the upper mantle beneath the area was investigated in this study. Three-dimensional inversion analysis depicted a high conductive layer at 120 km depth but no distinct plume-like vertical structure. The conductive layer is mostly flat independently on seafloor age and bulges upward beneath the lithospheric segment where the TDC islands are located compared to younger segment south of the TDC Fracture Zone, while the bathymetry is rather deeper than prediction for the northern segment. The apparent inconsistency between the absence of vertical structure in this study and geochemical evidences on deep origin materials suggests that either the upwelling is too small and/or weak to be resolved by the current data set or that the upwelling takes place elsewhere outside of the study area. Other observations suggest that 1) the conductivity of the upper mantle can be explained by the fact that the mantle above the high conductivity layer is depleted in volatiles as the result of partial melting beneath the spreading ridge, 2) the potential temperature of the segments north of the TDC Fracture Zone is lower than that of the southern segment at least during the past 30 Myr.

  10. Use of woven glass fibres to reinforce a composite veneer. A fracture resistance and acoustic emission study.

    PubMed

    Vallittu, P K

    2002-05-01

    The aim of this study was to investigate the possibility to reinforce the mechanically interlocked veneer of a porcelain-fused-to-metal (PFM) crown by woven glass fibre. A simulated situation to repair a fractured porcelain veneer was used in the experimental test set-up. A brass jig made into the shape of a framework of PFM maxillary central incisor crown with a retentive area at the palatal side of the incisal edge was used. A veneer were made with a restorative hybrid composite on the brass jig (control group). In the test groups, one or two layers of woven polymer pre-impregnated glass fibres (thickness: 0.06 mm/layer) were used by pressing the fibre weaves to the surface of the brass jig. Restorative hybrid composite was applied on the glass fibre weaves. Five veneers were made for all groups and the veneers were not cemented on the test jig. The veneers were loaded from the incisal edge until fracture occurred. The force was measured simultaneously with an acoustic emission analysis (AE) of the fracture propagation. Fracture force values for control veneers were 121 N and for those reinforced with one layer of glass fibres 399 N and for those reinforced with two layers of glass fibres 744 N ANOVA revealed significant difference between the mean values (P=0.003). The AE analysis showed different fracture propagation for the unreinforced and glass fibre reinforced veneers. The results of this study suggests that by placing two layers of woven glass fibres on the retentively shaped metal framework of the PFM crown before applying the restorative composite, considerably higher fracture resistance for the veneer could be obtained.

  11. Drainage fracture networks in elastic solids with internal fluid generation

    NASA Astrophysics Data System (ADS)

    Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Galland, Olivier; Renard, François; Meakin, Paul; Jamtveit, Bjørn; Dysthe, Dag K.

    2013-06-01

    Experiments in which CO2 gas was generated by the yeast fermentation of sugar in an elastic layer of gelatine gel confined between two glass plates are described and analyzed theoretically. The CO2 gas pressure causes the gel layer to fracture. The gas produced is drained on short length scales by diffusion and on long length scales by flow in a fracture network, which has topological properties that are intermediate between river networks and hierarchical-fracture networks. A simple model for the experimental system with two parameters that characterize the disorder and the intermediate (river-fracture) topology of the network was developed and the results of the model were compared with the experimental results.

  12. Brittle-viscous deformation of vein quartz under fluid-rich lower greenschist facies conditions

    NASA Astrophysics Data System (ADS)

    Kjøll, H. J.; Viola, G.; Menegon, L.; Sørensen, B. E.

    2015-06-01

    We studied by Electron BackScatter Diffraction (EBSD) and optical microscopy a coarse-grained (ca. 0.5-6 mm) quartz vein embedded in a phyllonitic matrix to gain insights into the recrystallization mechanisms and the processes of strain localization in quartz deformed under lower greenschist facies conditions, broadly coincident with the brittle-viscous transition. The vein deformed during faulting along a phyllonitic thrust of Caledonian age within the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The phyllonite hosting the vein formed at the expense of a metabasaltic protolith through feldspar breakdown to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the quartz vein acted as a relatively rigid body. Viscous deformation in the vein was initially accommodated by quartz basal slip. Under the prevailing deformation conditions, however, dislocation glide- and possibly creep-accommodated deformation of quartz was inefficient, and this resulted in localized strain hardening. In response to the (1) hardening, (2) progressive and cyclic increase of the fluid pressure, and (3) increasing competence contrast between the vein and the weakly foliated host phyllonite, vein quartz crystals began to deform by brittle processes along specific, suitably oriented lattice planes, creating microgouges along microfractures. Nucleated new grains rapidly sealed these fractures as fluids penetrated the actively deforming system. The grains grew initially by solution precipitation and later by grain boundary migration. We suggest that the different initial orientation of the vein crystals led to strain accommodation by different mechanisms in the individual crystals, generating remarkably different microstructures. Crystals suitably oriented for basal slip, for example, accommodated strain mainly viscously and experienced only minor fracturing. Instead, crystals misoriented for basal slip hardened and deformed predominantly by domainal fracturing. This study indicates the importance of considering shear zones as dynamic systems wherein the activated deformation mechanisms may vary through time in response to the complex temporal and spatial evolution of the shear zone, often in a cyclic fashion.

  13. Multiple fracturing experiments: propellant and borehole considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuderman, J F

    1982-01-01

    The technology for multiple fracturing of a wellbore, using progressively burning propellants, is being developed to enhance natural gas recovery. Multiple fracturing appears especially attractive for stimulating naturally fractured reservoirs such as Devonian shales where it is expected to effectively intersect existing fractures and connect them to a wellbore. Previous experiments and modeling efforts defined pressure risetimes required for multiple fracturing as a function of borehole diameter, but identified only a weak dependence on peak pressure attained. Typically, from four to eight equally spaced major fractures occur as a function of pressure risetime and in situ stress orientation. The presentmore » experiments address propellant and rock response considerations required to achieve the desired pressure risetimes for reliable multiple fracturing.« less

  14. Mechanical Flexibility of Zinc Oxide Thin-Film Transistors Prepared by Transfer Printing Method

    NASA Astrophysics Data System (ADS)

    Eun, K. T.; Hwang, W. J.; Sharma, B. K.; Ahn, J. H.; Lee, Y. K.; Choa, S. H.

    In the present study, we demonstrate the performance of Zinc oxide thin film transistors (ZnO TFTs) array subjected to the strain under high bending test and the reliability of TFTs was confirmed for the bending fatigue test of 2000 cycles. Initially, ZnO TFTs were fabricated on Si substrate and subsequently transferred on flexible PET substrate using transfer printing process. It was observed that when the bending radius reached ≥ 11 mm then cracks start to initiate first at SiO2 bridges, acting as interconnecting layers among individual TFT. Whatever the strain is applied to the devices, it is almost equivalently adopted by the SiO2 bridges, as they are relatively weak compared to rest of the part. The initial cracking of destructed SiO2 bridge leads to the secondary cracks to the ITO electrodes upon further increment of bending radius. Numerical simulation suggested that the strain of SiO2 layer reached to fracture level of 0.55% which was concentrated at the edge of SiO2 bridge layer. It also suggests that the round shape of SiO2 bridge can be more fruitful to compensate the stress concentration and to prevent failure of device.

  15. Antimicrobial and bone-forming activity of a copper coated implant in a rabbit model.

    PubMed

    Prinz, Cornelia; Elhensheri, Mohamed; Rychly, Joachim; Neumann, Hans-Georg

    2017-08-01

    Current strategies in implant technology are directed to generate bioactive implants that are capable to activate the regenerative potential of the surrounding tissue. On the other hand, implant-related infections are a common problem in orthopaedic trauma patients. To meet both challenges, i.e. to generate a bone implant with regenerative and antimicrobial characteristics, we tested the use of copper coated nails for surgical fixation in a rabbit model. Copper acetate was galvanically deposited with a copper load of 1 µg/mm 2 onto a porous oxide layer of Ti6Al4V nails, which were used for the fixation of a tibia fracture, inoculated with bacteria. After implantation of the nail the concentration of copper ions did not increase in blood which indicates that copper released from the implant was locally restricted to the fracture site. After four weeks, analyses of the extracted implants revealed a distinct antimicrobial effect of copper, because copper completely prevented both a weak adhesion and firm attachment of biofilm-forming bacteria on the titanium implant. To evaluate fracture healing, radiographic examination demonstrated an increased callus index in animals with copper coated nails. This result indicates a stimulated bone formation by releasing copper ions. We conclude that the use of implants with a defined load of copper ions enables both prevention of bacterial infection and the stimulation of regenerative processes.

  16. Fracture-permeability behavior of shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, J. William; Lei, Zhou; Rougier, Esteban

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  17. Fracture-permeability behavior of shale

    DOE PAGES

    Carey, J. William; Lei, Zhou; Rougier, Esteban; ...

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  18. Detection of Coal Fires: A Case Study Conducted on Indian Coal Seams Using Neural Network and Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Singh, B. B.

    2016-12-01

    India produces majority of its electricity from coal but a huge quantity of coal burns every day due to coal fires and also poses a threat to the environment as severe pollutants. In the present study we had demonstrated the usage of Neural Network based approach with an integrated Particle Swarm Optimization (PSO) inversion technique. The Self Potential (SP) data set is used for the early detection of coal fires. The study was conducted over the East Basuria colliery, Jharia Coal Field, Jharkhand, India. The causative source was modelled as an inclined sheet like anomaly and the synthetic data was generated. Neural Network scheme consists of an input layer, hidden layers and an output layer. The input layer corresponds to the SP data and the output layer is the estimated depth of the coal fire. A synthetic dataset was modelled with some of the known parameters such as depth, conductivity, inclination angle, half width etc. associated with causative body and gives a very low misfit error of 0.0032%. Therefore, the method was found accurate in predicting the depth of the source body. The technique was applied to the real data set and the model was trained until a very good correlation of determination `R2' value of 0.98 is obtained. The depth of the source body was found to be 12.34m with a misfit error percentage of 0.242%. The inversion results were compared with the lithologs obtained from a nearby well which corresponds to the L3 coal seam. The depth of the coal fire had exactly matched with the half width of the anomaly which suggests that the fire is widely spread. The inclination angle of the anomaly was 135.510 which resembles the development of the geometrically complex fracture planes. These fractures may be developed due to anisotropic weakness of the ground which acts as passage for the air. As a result coal fires spreads along these fracture planes. The results obtained from the Neural Network was compared with PSO inversion results and were found in complete agreement. PSO technique had already been found a well-established technique to model SP anomalies. Therefore for successful control and mitigation, SP surveys coupled with Neural Network and PSO technique proves to be novel and economical approach along with other existing geophysical techniques. Keywords: PSO, Coal fire, Self-Potential, Inversion, Neural Network

  19. Delamination Analysis of a Multilayered Two-Dimensional Functionally Graded Cantilever Beam

    NASA Astrophysics Data System (ADS)

    Rizov, V.

    2017-11-01

    Delamination fracture behaviour of a multilayered two-dimensional functionally graded cantilever beam is analyzed in terms of the strain energy release rate. The beam is made of an arbitrary number of layers. Perfect adhesion is assumed between layers. Each layer has individual thickness and material properties. Besides, the material is two-dimensional functionally graded in the cross-section of each layer. There is a delamination crack located arbitrary between layers. The beam is loaded by a bending moment applied at the free end of the lower crack arm. The upper crack arm is free of stresses. The solution to strain energy release rate derived is applied to investigate the influence of the crack location and the material gradient on the delamination fracture. The results obtained can be used to optimize the multilayered two-dimensional functionally graded beam structure with respect to the delamination fracture behaviour.

  20. The fracture properties and mechanical design of human fingernails.

    PubMed

    Farren, L; Shayler, S; Ennos, A R

    2004-02-01

    Fingernails are a characteristic feature of primates, and are composed of three layers of the fibrous composite keratin. This study examined the structure and fracture properties of human fingernails to determine how they resist bending forces while preventing fractures running longitudinally into the nail bed. Nail clippings were first torn manually to examine the preferred crack direction. Next, scissor cutting tests were carried out to compare the fracture toughness of central and outer areas in both the transverse and longitudinal direction. The fracture toughness of each of the three isolated layers was also measured in this way to determine their relative contributions to the toughness. Finally, the structure was examined by carrying out scanning electron microscopy of free fracture surfaces and polarized light microscopy of nail sections. When nails were torn, cracks were always diverted transversely, parallel to the free edge of the nail. Cutting tests showed that this occurred because the energy to cut nails transversely, at approximately 3 kJ m(-2), was about half that needed (approx. 6 kJ m(-2)) to cut them longitudinally. This anisotropy was imparted by the thick intermediate layer, which comprises long, narrow cells that are oriented transversely; the energy needed to cut this layer transversely was only a quarter of that needed to cut it longitudinally. In contrast the tile-like cells in the thinner dorsal and ventral layers showed isotropic behaviour. They probably act to increase the nail's bending strength, and as they wrap around the edge of the nail, they also help prevent cracks from forming. These results cast light on the mechanical behaviour and care of fingernails.

  1. Prediction of weak topological insulators in layered semiconductors.

    PubMed

    Yan, Binghai; Müchler, Lukas; Felser, Claudia

    2012-09-14

    We report the discovery of weak topological insulators by ab initio calculations in a honeycomb lattice. We propose a structure with an odd number of layers in the primitive unit cell as a prerequisite for forming weak topological insulators. Here, the single-layered KHgSb is the most suitable candidate for its large bulk energy gap of 0.24 eV. Its side surface hosts metallic surface states, forming two anisotropic Dirac cones. Although the stacking of even-layered structures leads to trivial insulators, the structures can host a quantum spin Hall layer with a large bulk gap, if an additional single layer exists as a stacking fault in the crystal. The reported honeycomb compounds can serve as prototypes to aid in the finding of new weak topological insulators in layered small-gap semiconductors.

  2. Impact toughness of layered VT6 alloy semiproducts

    NASA Astrophysics Data System (ADS)

    Ganeeva, A. A.; Kruglov, A. A.; Lutfullin, R. Ya.

    2010-10-01

    Layered semiproducts produced by pressure welding of sheet workpieces of a VT6 titanium alloy are studied. Possible methods of achieving isotropic mechanical properties of the semiproducts are discussed. The pores that are present in solid-phase joint zones are found not to influence the impact toughness of the samples in which layers lie perpendicular to a notch. The fracture surface has a ductile character with certain fracture zones.

  3. Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel

    NASA Astrophysics Data System (ADS)

    Chin, Kwang-Geun; Kang, Chung-Yun; Park, Jaeyeong; Lee, Sunghak

    2018-03-01

    An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress-strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.

  4. Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel

    NASA Astrophysics Data System (ADS)

    Chin, Kwang-Geun; Kang, Chung-Yun; Park, Jaeyeong; Lee, Sunghak

    2018-05-01

    An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress-strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.

  5. A three-dimensional semianalytical model of hydraulic fracture growth through weak barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luiskutty, C.T.; Tomutes, L.; Palmer, I.D.

    1989-08-01

    The goal of this research was to develop a fracture model for length/height ratio {le}4 that includes 2D flow (and a line source corresponding to the perforated interval) but makes approximations that allow a semianalytical solution, with large computer-time savings over the fully numerical mode. The height, maximum width, and pressure at the wellbore in this semianalytical model are calculated and compared with the results of the fully three-dimensional (3D) model. There is reasonable agreement in all parameters, the maximum discrepancy being 24%. Comparisons of fracture volume and leakoff volume also show reasonable agreement in volume and fluid efficiencies. Themore » values of length/height ratio, in the four cases in which agreement is found, vary from 1.5 to 3.7. The model offers a useful first-order (or screening) calculation of fracture-height growth through weak barriers (e.g., low stress contrasts). When coupled with the model developed for highly elongated fractures of length/height ratio {ge}4, which are also found to be in basic agreement with the fully numerical model, this new model provides the capability for approximating fracture-height growth through barriers for vertical fracture shapes that vary from penny to highly elongated. The computer time required is estimated to be less than the time required for the fully numerical model by a factor of 10 or more.« less

  6. Treatment of Low Bone Density or Osteoporosis to Prevent Fractures in Men and Women: A Clinical Practice Guideline Update From the American College of Physicians.

    PubMed

    Qaseem, Amir; Forciea, Mary Ann; McLean, Robert M; Denberg, Thomas D

    2017-06-06

    This guideline updates the 2008 American College of Physicians (ACP) recommendations on treatment of low bone density and osteoporosis to prevent fractures in men and women. This guideline is endorsed by the American Academy of Family Physicians. The ACP Clinical Guidelines Committee based these recommendations on a systematic review of randomized controlled trials; systematic reviews; large observational studies (for adverse events); and case reports (for rare events) that were published between 2 January 2005 and 3 June 2011. The review was updated to July 2016 by using a machine-learning method, and a limited update to October 2016 was done. Clinical outcomes evaluated were fractures and adverse events. This guideline focuses on the comparative benefits and risks of short- and long-term pharmacologic treatments for low bone density, including pharmaceutical prescriptions, calcium, vitamin D, and estrogen. Evidence was graded according to the GRADE (Grading of Recommendations Assessment, Development and Evaluation) system. The target audience for this guideline includes all clinicians. The target patient population includes men and women with low bone density and osteoporosis. ACP recommends that clinicians offer pharmacologic treatment with alendronate, risedronate, zoledronic acid, or denosumab to reduce the risk for hip and vertebral fractures in women who have known osteoporosis. (Grade: strong recommendation; high-quality evidence). ACP recommends that clinicians treat osteoporotic women with pharmacologic therapy for 5 years. (Grade: weak recommendation; low-quality evidence). ACP recommends that clinicians offer pharmacologic treatment with bisphosphonates to reduce the risk for vertebral fracture in men who have clinically recognized osteoporosis. (Grade: weak recommendation; low-quality evidence). ACP recommends against bone density monitoring during the 5-year pharmacologic treatment period for osteoporosis in women. (Grade: weak recommendation; low-quality evidence). ACP recommends against using menopausal estrogen therapy or menopausal estrogen plus progestogen therapy or raloxifene for the treatment of osteoporosis in women. (Grade: strong recommendation; moderate-quality evidence). ACP recommends that clinicians should make the decision whether to treat osteopenic women 65 years of age or older who are at a high risk for fracture based on a discussion of patient preferences, fracture risk profile, and benefits, harms, and costs of medications. (Grade: weak recommendation; low-quality evidence).

  7. Quantification of the specific yield in a two-layer hard-rock aquifer model

    NASA Astrophysics Data System (ADS)

    Durand, Véronique; Léonardi, Véronique; de Marsily, Ghislain; Lachassagne, Patrick

    2017-08-01

    Hard rock aquifers (HRA) have long been considered to be two-layer systems, with a mostly capacitive layer just below the surface, the saprolite layer, and a mainly transmissive layer underneath, the fractured layer. Although this hydrogeological conceptual model is widely accepted today within the scientific community, it is difficult to quantify the respective storage properties of each layer with an equivalent porous medium model. Based on an HRA field site, this paper attempts to quantify in a distinct manner the respective values of the specific yield (Sy) in the saprolite and the fractured layer, with the help of a deterministic hydrogeological model. The study site is the Plancoët migmatitic aquifer located in north-western Brittany, France, with piezometric data from 36 observation wells surveyed every two weeks for eight years. Whereas most of the piezometers (26) are located where the water table lies within the saprolite, thus representing the specific yield of the unconfined layer (Sy1), 10 of them are representative of the unconfined fractured layer (Sy2), due to their position where the saprolite is eroded or unsaturated. The two-layer model, based on field observations of the layer geometry, runs with the MODFLOW code. 81 values of the Sy1/Sy2 parameter sets were tested manually, as an inverse calibration was not able to calibrate these parameters. In order to calibrate the storage properties, a new quality-of-fit criterion called ;AdVar; was also developed, equal to the mean squared deviation of the seasonal piezometric amplitude variation. Contrary to the variance, AdVar is able to select the best values for the specific yield in each layer. It is demonstrated that the saprolite layer is about 2.5 times more capacitive than the fractured layer, with Sy1 = 10% (7% < Sy1 < 15%) against Sy2 = 2% (1% < Sy2 < 3%), in this particular example.

  8. Mechanical characterization of stomach tissue under uniaxial tensile action.

    PubMed

    Jia, Z G; Li, W; Zhou, Z R

    2015-02-26

    In this article, the tensile properties of gastric wall were investigated by using biomechanical test and theoretical analysis. The samples of porcine stomach strips from smaller and greater curvature of the stomach were cut in longitudinal and circumferential direction, respectively. The loading-unloading, stress relaxation, strain creep, tensile fracture tests were performed at mucosa-submucosa, serosa-muscle and intact layer, respectively. Results showed that the biomechanical properties of the porcine stomach depended on the layers, orientations and locations of the gastric wall and presented typical viscoelastic, nonlinear and anisotropic mechanical properties. During loading-unloading test, the stress of serosa-muscle layer in the longitudinal direction was 15-20% more than that in the circumferential direction at 12% stretch ratio, while it could reach about 40% for the intact layer and 50% for the mucosa-submucosa layer. The results of stress relaxation and strain creep showed that the variation degree was obviously faster in the circumferential direction than that in the longitudinal direction, and the ultimate residual values were also different for the different layers, orientations and locations. In the process of fracture test, the serosa-muscle layer fractured firstly followed by the mucosa-submucosa layer when the intact layer was tested, the longitudinal strips firstly began to fracture and the required stress value was about twice as much as that in the circumferential strips. The anisotropy and heterogeneity of mechanical characterization of the porcine stomach were related to its complicated geometry, structure and functions. The results would help us to understand the biomechanics of soft organ tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Has Martian History Been Dominated by Explosive Rather than Effusive Volcanism?

    NASA Astrophysics Data System (ADS)

    Bandfield, J. L.; Edwards, C. S.; Montgomery, D. R.

    2010-12-01

    It is important to gain a clear understanding of basic physical properties of the upper martian crust. We can use these derived properties to test a range of plausible formation mechanisms and place constraints on the processes involved in the creation of the martian crust. Previous studies have addressed this problem using a variety of techniques and observations. It has been well-established that the martian upper crust is typically mechanically weak (e.g. Pike, 1980; Schultz, 2002; Stewart and Valiant, 2006) and the notion of a highly fractured mega-regolith has often been invoked as the cause of this weakness. There are apparent contradictions in the interpretations of separate observations, such as the fine-scale layering in canyon walls that would not be preserved in a mega-regolith (McEwen et al., 1999). In all cases, however, the original material that makes up either the layering or mega-regolith has been assumed to originate as effusive volcanic materials. We have re-examined the body of previous work in the light of more recent global thermophysical observations to place further constraints on the nature of the upper martian crust. Although the upper ~10 km of the crust is indeed mechanically weak, consistent with previous studies, these crustal materials are also inconsistent with a mega-regolith composed of fractured blocks. Thermal inertia derived from Thermal Emission Imaging System (THEMIS) data, High Resolution Imaging Science Experiment (HiRISE) images, and Mars Exploration Rover observations clearly indicate that the upper martian crust is more typically composed of weakly consolidated fine-particulate materials. These materials are consistent with a volcaniclastic origin rather than effusive volcanism. Mechanically competent material akin to what might be derived from lava flows is clearly present on Mars in locations such as Hesperia Planum and at low latitudes within the northern lowlands, but it is much less common than has been assumed. It appears that Mars has a unique style of crustal formation that is distinct from that of the Moon and the other terrestrial planets. References: McEwen, A. S., and 14 colleagues (2007) Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res., 112, 10.1029/2005JE002605. Pike, R.J. (1980) Control of crater morphology by gravity and target type - Mars, earth, moon. Proc. Lun. Planet. Sci. Conf., 11, 2159-2189. Schultz, R. A. (2002) Stability of rock slopes in Valles Marineris, Mars. Geophys. Res. Let., 29, 10.1029/2002GL015728. Stewart, S. T. and G. J. Valiant (2006) Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries. Meteor. Planet. Sci., 41, 1509-1537.

  10. Method Producing an SNS Superconducting Junction with Weak Link Barrier

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D. (Inventor)

    1999-01-01

    A method of producing a high temperature superconductor Josephson element and an improved SNS weak link barrier element is provided. A YBaCuO superconducting electrode film is deposited on a substrate at a temperature of approximately 800 C. A weak link barrier layer of a nonsuperconducting film of N-YBaCuO is deposited over the electrode at a temperature range of 520 C. to 540 C. at a lower deposition rate. Subsequently a superconducting counter-electrode film layer of YBaCuO is deposited over the weak link barrier layer at approximately 800 C. The weak link barrier layer has a thickness of approximately 50 A and the SNS element can be constructed to provide an edge geometry junction.

  11. Flexural Progressive Failure of Carbon/Glass Interlayer and Intralayer Hybrid Composites.

    PubMed

    Wang, Qingtao; Wu, Weili; Gong, Zhili; Li, Wei

    2018-04-17

    The flexural progressive failure modes of carbon fiber and glass fiber (C/G) interlayer and intralayer hybrid composites were investigated in this work. Results showed that the bending failure modes for interlayer hybrid composites are determined by the layup structure. Besides, the bending failure is characterized by the compression failure of the upper layer, when carbon fiber tends to distribute in the upper layer, the interlayer hybrid composite fails early, the failure force is characterized by a multi-stage slightly fluctuating decline and the fracture area exhibits a diamond shape. While carbon fiber distributes in the middle or bottom layer, the failure time starts late, and the failure process exhibits one stage sharp force/stress drop, the fracture zone of glass fiber above the carbon layers presents an inverted trapezoid shape, while the fracture of glass fiber below the carbon layers exhibits an inverted triangular shape. With regards to the intralayer hybrid composites, the C/G hybrid ratio plays a dominating role in the bending failure which could be considered as the mixed failures of four structures. The bending failure of intralayer hybrid composites occurs in advance since carbon fiber are located in each layer; the failure process shows a multi-stage fluctuating decline, and the decline slows down as carbon fiber content increases, and the fracture sound release has the characteristics of a low intensity and high frequency for a long time. By contrast, as glass fiber content increases, the bending failure of intralayer composites is featured with a multi-stage cliff decline with a high amplitude and low frequency for a short-time fracture sound release.

  12. Worm melt fracture and fast die build-up at high shear rates in extrusion blow molding of large drums

    NASA Astrophysics Data System (ADS)

    Inn, Yong Woo; Sukhadia, Ashish M.

    2017-05-01

    In the extrusion blow molding process of high density polyethylene (HDPE) for making of large size drums, string-like defects, which are referred to as worm melt fracture in the industry, are often observed on the extrudate surface. Such string-like defects in various shapes and sizes are observed in capillary extrusion at very high shear rates after the slip-stick transition. The HDPE resin with broader molecular weight distribution (MWD) exhibits a greater degree of worm melt fracture while the narrow MWD PE resin, which has higher slip velocity and a uniform slip layer, shows a lesser degree of worm melt fracture. It is hypothesized that the worm melt fracture is related to fast die build-up and cohesive slip layer, a failure within the polymer melts at an internal surface. If the cohesive slip layer at an internal surface emerges out from the die, it can be attached on the surface of extrudate as string-like defects, the worm melt fracture. The resin having more small chains and lower plateau modulus can be easier to have such an internal failure and consequently exhibit more "worm" defects.

  13. Mechanical development of folded chert beds in Monterey Formation, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, D.; Snyder, W.S.

    1988-03-01

    Small-scale folds in the upper siliceous facies of the Miocene Monterey Formation, at Lions Head, California (Santa Maria basin) are of tectonic origin. Folding is well developed in the chert-dominated zones and dies out rapidly in the adjacent siliceous mudstones. A tectonic origin is evidenced by the dominantly brittle deformation of the competent chert layers. Mechanically, the folds formed through a complex interrelationship between fracture and flexural slip. Opal-CT and quartz-chert layers display brittle fractures and rotated fracture blocks that responded to shortening. Thrusting of the chert layers is common in folds where fold propagation was impeded. Dilation breccia andmore » void space occur in the hinges and reflect room problems during development of these disharmonic folds. Subsequent diagenesis has partially healed the fractures and slip surfaces, creating the erroneous appearance that ductile deformation was an important factor in the formation of the folds.« less

  14. Diagenetic alteration of impact spherules in the Neoarchean Monteville layer, South Africa

    USGS Publications Warehouse

    Kohl, I.; Simonson, B.M.; Berke, M.

    2006-01-01

    Intercontinental correlation of distal Archean impact ejecta layers can be used to help create a global time-stratigraphic framework for early Earth events. For example, an impact spherule layer in the Neoarchean Monteville Formation (Griqualand West Basin, South Africa) may be correlated with layers in one or more formations in Western Australia. To help assess the degree to which diagenetic alteration would hinder such correlations, we performed a petrographic study of spherules in the Monteville layer. Most of the spherules in the Monteville layer have botryoidal rims composed of radial-fibrous K-feldspar, but compaction and replacement have greatly altered their appearance and mineralogy. Moreover, the Monteville spherule layer consists of three main subunits, and spherule compaction varies between subunits as well as across the Griqualand West region. Compaction is about three times greater in a medial spherulerich subunit as compared to a basal subunit rich in large intraclasts, resulting in better preservation of the shapes of melt particles in the latter. However, spherule rims have omparable numbers of fractures in both subunits, indicating the melt particles were fractured prior to compaction. Some spherules contain mica ribbons with a septarian geometry. Fracturing via rapid thermal quenching could help explain all of these features. f hot spherules possessing crystalline rims were thermally shocked when they hit the ocean, fractures would have the observed geometries and provide pathways for fluid infiltration and local replacement of glass by mica. Although heavily distorted, impact spherules in the Monteville layer are very similar to those in the Hesta occurrence of the Neoarchean Jeerinah spherule layer of the Hamersley Basin, even showing similar diagenetic histories. In this instance, diagenetic alteration may actually help rather than hinder intercontinental correlation of impact spherule layers. ??2006 Geological Society of America.

  15. Groundwater vulnerability assessment using hydrogeologic and geoelectric layer susceptibility indexing at Igbara Oke, Southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Oni, T. E.; Omosuyi, G. O.; Akinlalu, A. A.

    2017-12-01

    Groundwater vulnerability assessment was carried out at Igbara Oke Southwestern Nigeria, with a view to classify the area into vulnerability zones, by applying the electrical resistivity method, using Schlumberger electrode arrays with maximum electrode separation (AB/2) of 65 m in (41) different locations for data acquisition. Geoelectric parameters (layer resistivity and thickness) were determined from the interpreted data. The study area comprises four geoelectric layers (topsoil, lateritic layer, weathered/fractured layer and fresh basement). The geoelectric parameters of the overlying layers across the area were used to assess the vulnerability of the underlying aquifers to near-surface contaminants with the aid of vulnerability maps generated. Three models were compared by maps using geo-electrically derived models; longitudinal conductance, GOD (groundwater occurrence, overlying lithology and depth to the aquifer) and GLSI (geoelectric layer susceptibility indexing). The total longitudinal conductance map shows the north central part of the study area as a weakly protected (0.1-0.19) area, while the northern and southern parts have poor protective capacity (<0.1); this is in agreement with the GOD method which shows the northern part of the study area as less vulnerable (0-0.1) while the southern part has low/moderate (0.1-0.3) vulnerability to contamination. The longitudinal conductance exaggerates the degree of susceptibility to contamination than the GOD and GLSI models. From the models, vulnerability to contamination can be considered higher at the southern part than the northern part and therefore, sources of contamination like septic tank, refuse dump should be cited far from groundwater development area.

  16. Anisotropic and heterogeneous mechanical properties of a stratified shale/limestone sequence at Nash Point, South Wales: A case study for hydraulic fracture propagation through a layered medium

    NASA Astrophysics Data System (ADS)

    Forbes Inskip, Nathaniel; Meredith, Philip; Gudmundsson, Agust

    2016-04-01

    While considerable effort has been expended on the study of fracture propagation in rocks in recent years, our understanding of how fractures propagate through layered sedimentary rocks with different mechanical and elastic properties remains poorly constrained. Yet this is a key issue controlling the propagation of both natural and anthropogenic hydraulic fractures in layered sequences. Here we report measurements of the contrasting mechanical and elastic properties of the Lower Lias at Nash Point, South Wales, which comprises an interbedded sequence of shale and limestone layers, and how those properties may influence fracture propagation. Elastic properties of both materials have been characterised via ultrasonic wave velocity measurements as a function of azimuth on samples cored both normal and parallel to bedding. The shale is highly anisotropic, with P-wave velocities varying from 2231 to 3890 m s-1, giving an anisotropy of ~55%. By contrast, the limestone is essentially isotropic, with a mean P-wave velocity of 5828 m s-1 and an anisotropy of ~2%. The dynamic Young's modulus of the shale, calculated from P- and S-wave velocity data, is also anisotropic with a value of 36 GPa parallel to bedding and 12 GPa normal to bedding. The modulus of the limestone is again isotropic with a value of 80 GPa. It follows that for a vertical fracture propagating (i.e. normal to bedding) the modulus contrast is 6.6. This is important because the contrast in elastic properties is a key factor in controlling whether fractures arrest, deflect, or propagate across interfaces between layers in a sequence. There are three principal mechanisms by which a fracture may deflect across or along an interface, namely: Cook-Gordon debonding, stress barrier, and elastic mismatch. Preliminary numerical modelling results (using a Finite Element Modelling software) of induced fractures at Nash Point suggest that all three are important. The results demonstrate a rotation of the maximum principal compressive stress across an interface but also a confinement of tensile stress within the host layer. Mechanical properties have been characterised by indirect measurement of the tensile strength using the Brazil-Disk technique. Measurements were made in the three principal orientations relative to bedding, Arrester, Divider, and Short-Transverse, and also at 15° intervals between these planes. Values for the shale again showed a high degree of anisotropy; with similar values in the Arrester and Divider orientations, but with much lower values in the Short-Transverse (bedding parallel) orientation. The tensile strength of the limestone is considerably higher than that of the shale and exhibits no significant anisotropy. Current work is underway to characterise the fracture propagation properties by measuring the fracture toughness and fracture ductility of both rocks using a combination of the Semi-Circular Bend and Short-Rod techniques.

  17. Near-Surface Geologic Units Exposed Along Ares Vallis and in Adjacent Areas: A Potential Source of Sediment at the Mars Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1997-01-01

    A sequence of layers, bright and dark, is exposed on the walls of canyons, impact craters and mesas throughout the Ares Vallis region, Chryse Planitia, and Xanthe Terra, Mars. Four layers can be seen: two pairs of alternating dark and bright albedo. The upper dark layer forms the top surface of many walls and mesas. The upper dark-bright pair was stripped as a unit from many streamlined mesas and from the walls of Ares Valles, leaving a bench at the top of the lower dark layer, approximately 250 m below the highland surface on streamlined islands and on the walls of Ares Vallis itself. Along Ares Vallis, the scarp between the highlands surface and this bench is commonly angular in plan view (not smoothly curving), suggesting that erosion of the upper dark-bright pair of layers controlled by planes of weakness, like fractures or joints. These near-surface layers in the Ares Vallis area have similar thicknesses, colors, and resistances to erosion to layers exposed near the tops of walls in Valles Marineris (Treiman et al.) and may represent the same pedogenic hardpan units. From this correlation, and from analogies with hardpans on Earth, the light-color layers may be cemented by calcite or gypsum. The dark layers are likely cemented by an iron-bearing mineral. Mars Pathfinder instruments should permit recognition and useful analyses of hardpan fragments, provided that clean uncoated surfaces are accessible. Even in hardpan-cemented materials, it should be possible to determine the broad types of lithologies in the Martian highlands. However, detailed geochemical modeling of highland rocks and soils may be compromised by the presence of hardpan cement minerals.

  18. Formative Processes of a Sliding Zone in Pelitic Schist - Implications of Microscopic Analyses on High-quality Drilled Cores

    NASA Astrophysics Data System (ADS)

    Yamasaki, S.; Chigira, M.

    2009-04-01

    Pelitic schist has been known to be easily deformed by gravitational force to form characteristic topographic and geologic features, but little is known about how they develop. This is mainly due to the fact that deformed politic schist is so fragile that it could not be obtained from subsurface without disturbance. We analyzed high-quality undisturbed cores obtained by using a sophisticated drilling technique from two typical pelitic schist landslide sites in Japan. We made analyses on physical, chemical, mineralogical properties and observations from mesoscopic to microscopic rock textures of these cores and found that a special layering of rock-forming minerals determines the locations of shearing by gravity and that there is specific water-rock interaction processes in pelitic schist. Pelitic schist consists of thinly alternating beds of black layers and quartz-rich layers, and a black layer has numerous microscopic layers containing abundant pyrite and graphite grains (pyrite-graphite layers). Many of the black layers were observed to have microfractures connected to open cracks, suggesting that relatively thick, continuous black layers are easily sheared to form an incipient sliding layer. Thus unevenly distributed pyrite-graphite layers likely to determine the potential location of microscopic slip in a rock mass. Shear displacement along black layers occurs unevenly, depending upon the microscopic heterogeneity in mineral composition as well as undulating shape of the layers. Open micro-cracks nearly perpendicular to the schistosity were commonly observed in quartz-rich layers in contact with black layers, suggesting that the shearing occurred with heterogeneous displacements along the black layer and that it occurred under the low confining pressure. This is in the incipient stage of a fracture zone. When shearing occurs along two thick neighboring black layers, the rock in between would be fractured, rotated and pulverized. In some cases, quartz-rich layers were fractured in a brittle manner and their fragments were rearranged to form micro-folds. Rocks are thus pulverized with multiple shear surfaces. Incipient fracture zones and their surroundings have many voids because they are made under low confining pressures near the ground surface, so oxidizing surface water easily percolates through them. Oxidizing water reacts with pyrite which is contained in pelitic schist, producing sulfuric acid through. The rocks therefore become deteriorated by the water-rock interaction and would be easily deformed. Such a combination of the physical processes of deformation and fracturing and the chemical process of weathering develop a sliding zone.

  19. Scaling of the flow-stiffness relationship in weakly correlated single fractures

    NASA Astrophysics Data System (ADS)

    Petrovitch, Christopher L.

    The remote characterization of the hydraulic properties of fractures in rocks is important in many subsurface projects. Fractures create uncertainty in the hydraulic properties of the subsurface in that their topology controls the amount of flow that can occur in addition to that from the matrix. In turn, the fracture topology is also affected by stress which alters the topology as the stress changes directly. This alteration of fracture topology with stress is captured by fracture specific stiffness. The specific stiffness of a single fracture can be remotely probed from the attenuation and velocity of seismic waves. The hydromechanical coupling of single fractures, i.e. the relationship between flow and stiffness, holds the key to finding a method to remotely characterize a fractures hydraulic properties. This thesis is separated into two parts: (1) a description of the hydromechanical coupling of fractures based on numerical models used to generate synthetic fractures, compute the flow through a fracture, and deform fracture topologies to unravel the scaling function that is fundamental to the hydromechanical coupling of single fractures; (2) a Discontinuous Galerkin (DG) method was developed to accurately simulate the scattered seismic waves from realistic fracture topologies. The scaling regimes of fluid flow and specific stiffness in weakly correlated fractures are identified by using techniques from Percolation Theory and initially treating the two processes separately. The fixed points associated with fluid flow were found to display critical scaling while the fixed points for specific stiffness were trivial. The two processes could be indirectly related because the trivial scaling of the mechanical properties allowed the specific stiffness to be used as surrogate to the void area fraction. The dynamic transport exponent was extracted at threshold by deforming fracture geometries within the effective medium regime (near the ``cubic law'' regime) to the critical regime. From this, a scaling function was defined for the hydromechanical coupling. This scaling function provides the link between fluid flow and fracture specific stiffness so that seismic waves may be used to remotely probe the hydraulic properties of fractures. Then, the DG method is shown to be capable of measuring such fracture specific stiffnesses by numerically measuring the velocity of interface waves when propagated across laboratory measured fracture geometries of Austin Chalk.

  20. Protection against hip fractures by energy absorption.

    PubMed

    Lauritzen, J B; Askegaard, V

    1992-02-01

    Impact lateral to the hip was noted in 37 of 60 patients with hip fracture. Women with hip fracture (n = 12) had an average 22 mm thick soft tissue cover of the hip as compared to 32 mm in healthy women (n = 27), even for the same body mass index. Experiments where a steel weight was dropped from various heights onto porcine soft tissue showed that a layer of 29 mm could absorb 60% more energy than a 20 mm thick layer before nearly metallic contact would occur, corresponding to a sharp rise in load. If the results are related to conditions in vivo, then the passive protection of soft tissue over the hip is important for the development of hip fractures, and may under certain assumptions explain the higher risk of hip fractures in thin persons. An external hip protection device might therefore prevent some hip fractures.

  1. Effects of framework design and layering material on fracture strength of implant-supported zirconia-based molar crowns.

    PubMed

    Kamio, Shingo; Komine, Futoshi; Taguchi, Kohei; Iwasaki, Taro; Blatz, Markus B; Matsumura, Hideo

    2015-12-01

    To evaluate the effects of framework design and layering material on the fracture strength of implant-supported zirconia-based molar crowns. Sixty-six titanium abutments (GingiHue Post) were tightened onto dental implants (Implant Lab Analog). These abutment-implant complexes were randomly divided into three groups (n = 22) according to the design of the zirconia framework (Katana), namely, uniform-thickness (UNI), anatomic (ANA), and supported anatomic (SUP) designs. The specimens in each design group were further divided into two subgroups (n = 11): zirconia-based all-ceramic restorations (ZAC group) and zirconia-based restorations with an indirect composite material (Estenia C&B) layered onto the zirconia framework (ZIC group). All crowns were cemented on implant abutments, after which the specimens were tested for fracture resistance. The data were analyzed with the Kruskal-Wallis test and the Mann-Whitney U-test with the Bonferroni correction (α = 0.05). The following mean fracture strength values (kN) were obtained in UNI design, ANA design, and SUP design, respectively: Group ZAC, 3.78, 6.01, 6.50 and Group ZIC, 3.15, 5.65, 5.83. In both the ZAC and ZIC groups, fracture strength was significantly lower for the UNI design than the other two framework designs (P = 0.001). Fracture strength did not significantly differ (P > 0.420) between identical framework designs in the ZAC and ZIC groups. A framework design with standardized layer thickness and adequate support of veneer by zirconia frameworks, as in the ANA and SUP designs, increases fracture resistance in implant-supported zirconia-based restorations under conditions of chewing attrition. Indirect composite material and porcelain perform similarly as layering materials on zirconia frameworks. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Fracture load of metal-ceramic, monolithic, and bi-layered zirconia-based posterior fixed dental prostheses after thermo-mechanical cycling.

    PubMed

    López-Suárez, Carlos; Castillo-Oyagüe, Raquel; Rodríguez-Alonso, Verónica; Lynch, Christopher D; Suárez-García, María-Jesús

    2018-06-01

    This study aims to evaluate the fracture load of differently fabricated 3-unit posterior fixed dental prostheses (FDPs) with an intermediate pontic. Fifty sets of two stainless-steel abutments were randomly assigned to five groups (n = 10 each) depending on the material and technique used for manufacturing the FDPs: (1) Metal-ceramic (MC, control); (2) Lava Zirconia (LZ, bi-layered); (3) Lava Plus (LM, monolithic); (4) VITA In-Ceram YZ (YZ, bi-layered); and (5) IPS e-max ZirCAD (ZZ, bi-layered). After being luted to the dies, all FDPs were submitted to thermo-mechanical cycling (120,000 masticatory cycles, 50 N; plus 774 thermal cycles of 5 °C/55 °C, dwell time: 30 s). Samples were then subjected to a three-point bending test until fracture in a universal testing machine (cross-head speed: 1 mm/min). Fracture load of the veneering ceramic (VF) and total fracture load (TF) were recorded. Microstructure and failure patterns were assessed. Data was analysed using one-way ANOVA and Tukey HSD post-hoc tests (α = 0.05). MC restorations recorded higher VF and TF values than did zirconia FDPs (p = 0.0001), which showed no between-group differences. Within the bi-layered groups, TF was significantly higher than VF. LM pieces registered lower average grain size than did LZ specimens (p = 0.001). Overall, the connector was the weakest part. All of the groups tested could withstand clinical chewing forces in terms of average fracture load. Zirconia-based samples performed similarly to each other, but showed lower mean fracture load values than did metal-ceramic ones. Monolithic zirconia may be recommendable for solving the chipping problem. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Microstructure and micromechanical elastic properties of weak layers

    NASA Astrophysics Data System (ADS)

    Köchle, Berna; Matzl, Margret; Proksch, Martin; Schneebeli, Martin

    2014-05-01

    Weak layers are the mechanically most important stratigraphic layer for avalanches. Yet, there is little known about their exact geometry and their micromechanical properties. To distinguish weak layers or interfaces is essential to assess stability. However, except by destructive mechanical tests, they cannot be easily identified and characterized in the field. We casted natural weak layers and their adjacent layers in the field during two winter seasons and scanned them non-destructively with X-ray computer tomography with a resolution between 10 - 20 µm. Reconstructed three-dimensional models of centimeter-sized layered samples allow for calculating the change of structural properties. We found that structural transitions cannot always by expressed by geometry like density or grain size. In addition, we calculated the Young's modulus and Poisson's ratio of the individual layers with voxel-based finite element simulations. As any material has its characteristic elastic parameters, they may potentially differentiate individual layers, and therefore different microstructures. Our results show that Young's modulus correlates well with density but do not indicate snow's microstructure, in contrast to Poisson's ratio which tends to be lower for strongly anisotropic forms like cup crystals and facets.

  4. Evolution of Friction and Permeability in a Propped Fracture under Shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengshou; Fang, Yi; Elsworth, Derek

    We explore the evolution of friction and permeability of a propped fracture under shear. We examine the effects of normal stress, proppant thickness, proppant size, and fracture wall texture on the frictional and transport response of proppant packs confined between planar fracture surfaces. The proppant-absent and proppant-filled fractures show different frictional strength. For fractures with proppants, the frictional response is mainly controlled by the normal stress and proppant thickness. The depth of shearing-concurrent striations on fracture surfaces suggests that the magnitude of proppant embedment is controlled by the applied normal stress. Under high normal stress, the reduced friction implies thatmore » shear slip is more likely to occur on propped fractures in deeper reservoirs. The increase in the number of proppant layers, from monolayer to triple layers, significantly increases the friction of the propped fracture due to the interlocking of the particles and jamming. Permeability of the propped fracture is mainly controlled by the magnitude of the normal stress, the proppant thickness, and the proppant grain size. Permeability of the propped fracture decreases during shearing due to proppant particle crushing and related clogging. Proppants are prone to crushing if the shear loading evolves concurrently with the normal loading.« less

  5. Evolution of Friction and Permeability in a Propped Fracture under Shear

    DOE PAGES

    Zhang, Fengshou; Fang, Yi; Elsworth, Derek; ...

    2017-12-04

    We explore the evolution of friction and permeability of a propped fracture under shear. We examine the effects of normal stress, proppant thickness, proppant size, and fracture wall texture on the frictional and transport response of proppant packs confined between planar fracture surfaces. The proppant-absent and proppant-filled fractures show different frictional strength. For fractures with proppants, the frictional response is mainly controlled by the normal stress and proppant thickness. The depth of shearing-concurrent striations on fracture surfaces suggests that the magnitude of proppant embedment is controlled by the applied normal stress. Under high normal stress, the reduced friction implies thatmore » shear slip is more likely to occur on propped fractures in deeper reservoirs. The increase in the number of proppant layers, from monolayer to triple layers, significantly increases the friction of the propped fracture due to the interlocking of the particles and jamming. Permeability of the propped fracture is mainly controlled by the magnitude of the normal stress, the proppant thickness, and the proppant grain size. Permeability of the propped fracture decreases during shearing due to proppant particle crushing and related clogging. Proppants are prone to crushing if the shear loading evolves concurrently with the normal loading.« less

  6. Environmental risks associated with unconventional gas extraction: an Australian perspective

    NASA Astrophysics Data System (ADS)

    Mallants, Dirk; Bekele, Elise; Schmidt, Wolfgang; Miotlinski, Konrad; Gerke Gerke, Kirill

    2015-04-01

    Coal seam gas is naturally occurring methane gas (CH4) formed by the degradation of organic material in coal seam layers over geological times, typically over several millions of years. Unlike conventional gas resources, which occur as discrete accumulations in traps formed by folds and other structures in sedimentary layers, coal seam gas is generally trapped in low permeable rock by adsorption of the gas molecules within the rock formation and cannot migrate to a trap and form a conventional gas deposit. Extraction of coal seam gas requires producers to de pressurise the coal measures by abstracting large amounts of groundwater through pumping. For coal measures that have too low permeabilities for gas extraction to be economical, mechanical and chemical techniques are required to increase permeability and thus gas yield. One such technique is hydraulic fracturing (HF). Hydraulic fracturing increases the rate and total amount of gas extracted from coal seam gas reservoirs. The process of hydraulic fracturing involves injecting large volumes of hydraulic fracturing fluids under high pressure into the coal seam layers to open up (i.e. fracture) the gas-containing coal layers, thus facilitating extraction of methane gas through pumping. After a hydraulic fracturing operation has been completed in a coal seam gas well, the fracturing fluid pressure is lowered and a significant proportion of the injected fluid returns to the surface as "flowback" water via coal seam gas wells. Flowback water is fluid that returns to the surface after hydraulic fracturing has occurred but before the well is put into production; whereas produced water is fluid from the coal measure that is pumped to the surface after the well is in production. This paper summarises available literature data from Australian coal seam gas practices on i) spills from hydraulic fracturing-related fluids used during coal seam gas drilling and hydraulic fracturing operations, ii) leaks to soil and shallow groundwater of flowback water and produced water from surface impoundments, iii) risks from well integrity failure, and iv) increased gas in water bores.

  7. Fracture of ECAP-deformed iron and the role of extrinsic toughening mechanisms

    PubMed Central

    Hohenwarter, A.; Pippan, R.

    2013-01-01

    The fracture behaviour of pure iron deformed by equal-channel angular pressing via route A was examined. The fracture toughness was determined for different specimen orientations and measured in terms of the critical plane strain fracture toughness, KIC, the critical J integral, JIC, and the crack opening displacement for crack initiation, CODi. The results demonstrate that the crack plane orientation has a pronounced effect on the fracture toughness. Different crack plane orientations lead to either crack deflection or delamination, resulting in increased fracture resistance in comparison to one remarkably weak specimen orientation. The relation between the microstructure typical for the applied deformation route and the enormous differences in the fracture toughness depending on the crack plane orientation will be analyzed in this paper. PMID:23645995

  8. Butt Welding of 2205/X65 Bimetallic Sheet and Study on the Inhomogeneity of the Properties of the Welded Joint

    NASA Astrophysics Data System (ADS)

    Gou, Ning-Nian; Zhang, Jian-Xun; Wang, Jian-Long; Bi, Zong-Yue

    2017-04-01

    The explosively welded 2205 duplex stainless steel/X65 pipe steel bimetallic sheets were butt jointed by multilayer and multi-pass welding (gas tungsten arc welding for the flyer and gas metal arc welding for the transition and parent layers of the bimetallic sheets). The microstructure and mechanical properties of the welded joint were investigated. The results showed that in the thickness direction, microstructure and mechanical properties of the welded joint exhibited obvious inhomogeneity. The microstructures of parent filler layers consisted of acicular ferrite, widmanstatten ferrite, and a small amount of blocky ferrite. The microstructure of the transition layer and flyer layer consisted of both austenite and ferrite structures; however, the transition layer of weld had a higher volume fraction of austenite. The results of the microhardness test showed that in both weld metal (WM) and heat-affected zone (HAZ) of the parent filler layers, the average hardness decreased with the increasing (from parent filler layer 1 to parent filler layer 3) welding heat input. The results of hardness test also indicated that the hardness of the WM and the HAZ for the flyer and transition layers was equivalent. The tensile test combined with Digital Specklegram Processing Technology demonstrated that the fracturing of the welded joint started at the HAZ of the flyer, and then the fracture grew toward the base metal of the parent flyer near the parent HAZ. The stratified impact test at -5 °C showed that the WM and HAZ of the flyer exhibited lower impact toughness, and the fracture mode was ductile and brittle mixed fracture.

  9. The fracture toughness of borides formed on boronized cold work tool steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Ugur; Sen, Saduman

    2003-06-15

    In this study, the fracture toughness of boride layers of two borided cold work tool steels have been investigated. Boriding was carried out in a salt bath consisting of borax, boric acid, ferro-silicon and aluminum. Boriding was performed at 850 and 950 deg. C for 2 to 7 h. The presence of boride phases were determined by X-ray diffraction (XRD) analysis. Hardness and fracture toughness of borides were measured via Vickers indenter. Increasing of boriding time and temperature leads to reduction of fracture toughness of borides. Metallographic examination showed that boride layer formed on cold work tool steels was compactmore » and smooth.« less

  10. Flexural Progressive Failure of Carbon/Glass Interlayer and Intralayer Hybrid Composites

    PubMed Central

    Wu, Weili; Gong, Zhili

    2018-01-01

    The flexural progressive failure modes of carbon fiber and glass fiber (C/G) interlayer and intralayer hybrid composites were investigated in this work. Results showed that the bending failure modes for interlayer hybrid composites are determined by the layup structure. Besides, the bending failure is characterized by the compression failure of the upper layer, when carbon fiber tends to distribute in the upper layer, the interlayer hybrid composite fails early, the failure force is characterized by a multi-stage slightly fluctuating decline and the fracture area exhibits a diamond shape. While carbon fiber distributes in the middle or bottom layer, the failure time starts late, and the failure process exhibits one stage sharp force/stress drop, the fracture zone of glass fiber above the carbon layers presents an inverted trapezoid shape, while the fracture of glass fiber below the carbon layers exhibits an inverted triangular shape. With regards to the intralayer hybrid composites, the C/G hybrid ratio plays a dominating role in the bending failure which could be considered as the mixed failures of four structures. The bending failure of intralayer hybrid composites occurs in advance since carbon fiber are located in each layer; the failure process shows a multi-stage fluctuating decline, and the decline slows down as carbon fiber content increases, and the fracture sound release has the characteristics of a low intensity and high frequency for a long time. By contrast, as glass fiber content increases, the bending failure of intralayer composites is featured with a multi-stage cliff decline with a high amplitude and low frequency for a short-time fracture sound release. PMID:29673236

  11. Mechanical properties of contemporary composite resins and their interrelations.

    PubMed

    Thomaidis, Socratis; Kakaboura, Afrodite; Mueller, Wolf Dieter; Zinelis, Spiros

    2013-08-01

    To characterize a spectrum of mechanical properties of four representative types of modern dental resin composites and to investigate possible interrelations. Four composite resins were used, a microhybrid (Filtek Z-250), a nanofill (Filtek Ultimate), a nanohybrid (Majesty Posterior) and an ormocer (Admira). The mechanical properties investigated were Flexural Modulus and Flexural Strength (three point bending), Brinell Hardness, Impact Strength, mode I and mode II fracture toughness employing SENB and Brazilian tests and Work of Fracture. Fractographic analysis was carried out in an SEM to determine the origin of fracture for specimens subjected to SENB, Brazilian and Impact Strength testing. The results were statistically analyzed employing ANOVA and Tukey post hoc test (a=0.05) while Pearson correlation was applied among the mechanical properties. Significant differences were found between the mechanical properties of materials tested apart from mode I fracture toughness measured by Brazilian test. The latter significantly underestimated the mode I fracture toughness due to analytical limitations and thus its validity is questionable. Fractography revealed that the origin of fracture is located at notches for fracture toughness tests and contact surface with pendulum for Impact Strength testing. Pearson analysis illustrated a strong correlation between modulus of elasticity and hardness (r=0.87) and a weak negative correlation between Work of Fracture and Flexural Modulus (r=-0.46) and Work of Fracture and Hardness (r=-0.44). Weak correlations were also allocated between Flexural Modulus and Flexural Strength (r=0.40), Flexural Strength and Hardness (r=0.39), and Impact Strength and Hardness (r=0.40). Since the four types of dental resin composite tested exhibited large differences among their mechanical properties differences in their clinical performance is also anticipated. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. What controls diffuse fractures in platform carbonates? Insights from Provence (France) and Apulia (Italy)

    NASA Astrophysics Data System (ADS)

    Lavenu, Arthur P. C.; Lamarche, Juliette

    2018-03-01

    Fractures are widespread in rocks and regional opening-mode arrays are commonly ascribed to major tectonic events. However, fractures occur in otherwise undeformed rocks. Some of these are early-developed features independent of tectonics and forming a background network at regional scale. To overcome this lack of understanding, two hydrocarbon reservoir analogues from platform carbonates have been targeted: the Provence (SE France), and the Apulian platform (SE Italy). In both areas, an early fracturing stage has been observed, made of high-angle-to-bedding opening-mode fractures, and bed-parallel stylolites. These features developed synchronously during the first burial stages and prior to major tectonic events. The fracture sets are not genetically related to the present-day layering. Contrarily, fractures developed in a brittle media where facies transitions were not sharp and did not act as mechanical discontinuities. Carbonate facies distribution and early diagenetic imprint constrained the mechanical stratigraphy when fractures occurred. In addition, we observed that fractures related to late tectonic inversion were partly inhibited. Indeed, rock mechanical properties change through time. Characterizing the temporal evolution of carbonate rocks has revealed that diagenesis and sedimentary facies are the prime actors for brittleness and mechanical layering in carbonates.

  13. Fracture propagation and fluid transport in palaeogeothermal fields and man-made reservoirs in limestone

    NASA Astrophysics Data System (ADS)

    Philipp, S. L.; Reyer, D.; Meier, S.

    2009-04-01

    Geothermal reservoirs are rock units from which the internal heat can be extracted using water as a transport means in an economically efficient manner. In geothermal reservoirs in limestone (and similar in other rocks with low matrix permeability), fluid flow is largely, and may be almost entirely, controlled by the permeability of the fracture network. No flow, however, takes place along a particular fracture network unless the fractures are interconnected. For fluid flow to occur from one site to another there must be at least one interconnected cluster of fractures that links these sites (the percolation threshold must be reached). In order to generate permeability in man-made reservoirs, interconnected fracture systems are formed either by creating hydraulic fractures or by massive hydraulic stimulation of the existing fracture system in the host rock. For effective stimulation, the geometry of the fracture system and the mechanical properties of the host rock (particularly rock stiffnesses and strengths) must be known. Here we present results of a study of fracture systems in rocks that could be used to host man-made geothermal reservoirs: the Muschelkalk (Middle Triassic) limestones in Germany. Studies of fracture systems in exposed palaeogeothermal fields can also help understand the permeability development in stimulated reservoirs. We therefore present data on the infrastructures of extinct fracture-controlled geothermal fields in fault zones in the Blue Lias (Lower Jurassic), Great Britain. In fault zones there are normally two main mechanical and hydrogeological units. The fault core, along which fault slip mostly occurs, consists mainly of breccia and other cataclastic rocks. The fault damage zone comprises numerous fractures of various sizes. During fault slip, the fault core may transport water (if its orientation is favourable to the hydraulic gradient in the area). In the damage zone, however, fluid transport through fracture networks depends particularly on the current local stress field. One reason for this is that fractures are sensitive to changes in the stress field and deform much more easily than circular pores. If the maximum horizontal compression is oriented perpendicular to the fault strike, its fractures (mainly in the damage zone) tend to be closed and lead less water than if the maximum horizontal compression is oriented parallel to the fault strike, in which case its fractures tend to open up and be favourable to fluid transport. In areas of potential geothermal reservoirs, fault zones must be studied, keeping in mind that the permeability structure of a fault zone depends partly on the mechanical units of the fault zone and partly on the local stress field. To explore stress fields affecting fracture propagation we have run numerical models using the finite-element and the boundary-element methods. We focus on the influence of changes in mechanical properties (particularly Young's modulus) between host rock layers in geothrmal reservoirs in limestone. The numerical models show that stresses commonly concentrate in stiff layers. Also, at the contacts between soft marl and stiffer limestone layers, the stress trajectories (directions of the principal stresses) may become rotated. Depending on the external loading conditions, certain layers may become stress barriers to fracture propagation. In a reservoir where most hydrofractures become stratabound (confined to individual layers), interconnected fracture systems are less likely to develop than in one with non-stratabound hydrofractures. Reservoirs with stratabound fractures may not reach the percolation threshold needed for significant permeability. We also used the field data to investigate the fracture-related permeability of fluid reservoirs in limestone with numerical models. We simulated different scenarios, in which potential fluid pathways were added successively (vertical extension fractures, inclined shear fractures and open layer contacts). Short and straight fluid pathways parallel to the flow direction lead to the highest permeabilities. The better the connectivity of the fracture system, the higher is the resulting permeability. Only in well-interconnected, continuous systems of fluid pathways there is a correlation between the apertures of the fractures and the permeability. Our results suggest that fluid transport along faults, and the propagation and aperture variation of hydrofractures, are important parameters in the permeability development of geothermal reservoirs. These studies provide a basis for models of fracture networks and fluid transport in future man-made reservoirs. We conclude that the likely permeability of a man-made geothermal reservoir can be inferred from field data, natural analogues, laboratory measurements, and numerical models.

  14. 2005 Tri-Service Infrastructure Systems Conference and Exhibition. Volume 7, Tracks 7 and 8

    DTIC Science & Technology

    2005-08-04

    dense soils have the potential to wash-out and erode with fluid rotary methods and over excavation and hydraulic fracturing can result. Short...circuiting is possible outside of the temporary or outer casing or through weak soils to grade. Hydraulic fracturing may take place due to soil properties...prevented the potential for hydraulic fracturing of the sensitive dam prior to grouting. Sonic drilling was selected from a ran of proposed

  15. Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jihoon; Moridis, George

    2014-11-01

    We model and assess the possibility of shear failure, using the Mohr-Coulomb model ? along the vertical well by employing a rigorous coupled flow-geomechanic analysis. To this end, we vary the values of cohesion between the well casing and the surrounding cement to representing different quality levels of the cementing operation (low cohesion corresponds to low-quality cement and/or incomplete cementing). The simulation results show that there is very little fracturing when the cement is of high quality.. Conversely, incomplete cementing and/or weak cement can causes significant shear failure and the evolution of long fractures/cracks along the vertical well. Specifically, lowmore » cohesion between the well and cemented areas can cause significant shear failure along the well, but the same cohesion as the cemented zone does not cause shear failure. When the hydraulic fracturing pressure is high, low cohesion of the cement can causes fast propagation of shear failure and of the resulting fracture/crack, but a high-quality cement with no weak zones exhibits limited shear failure that is concentrated near the bottom of the vertical part of the well. Thus, high-quality cement and complete cementing along the vertical well appears to be the strongest protection against shear failure of the wellbore cement and, consequently, against contamination hazards to drinking water aquifers during hydraulic fracturing operations.« less

  16. Displaced Proximal Humerus Fractures: is a Sling as Good as a Plate?

    PubMed

    Steinhaus, Michael E; Dare, David M; Gulotta, Lawrence V

    2016-10-01

    The treatment of displaced proximal humerus fractures is challenging and complex, as its success is predicated on multiple factors. While it is clear that a majority of proximal humerus fractures may be treated nonoperatively, it is less clear which patients benefit from surgical management. The PROFHER trial, a randomized controlled study, used patient-reported outcomes to compare surgical to nonsurgical management of displaced proximal humerus fractures. The purpose of this review is to highlight the strengths and weaknesses of the PROFHER trial and to assess the validity of its conclusion in the context of existing literature. The authors found no difference in the Oxford Shoulder Score (OSS) between the surgical and nonsurgical groups. Additionally, no difference was found between groups in any of the secondary outcomes, which included the Short-Form 12 (SF-12) health survey, surgical and fracture-related complications, additional surgery or therapy, inpatient medical complications, and mortality. They concluded that the recent increase in surgical management of proximal humerus fractures is perhaps unwarranted. While the randomization was successful and the pragmatic design may enable greater generalizability, this study possesses numerous flaws inherent in such an ambitious endeavor, including an inability to identify specific factors which explain the lack of superiority of surgical management. Despite its weaknesses, this study is a valuable datapoint which encourages surgeons to reexamine their surgical indications for this injury.

  17. Simulation of Intergranular Ductile Cracking in β Titanium Alloys Based on a Micro-Mechanical Damage Model

    PubMed Central

    Li, Huan; Li, Jinshan; Tang, Bin; Fan, Jiangkun; Yuan, Huang

    2017-01-01

    The intergranular crack propagation of the lamellar structure β titanium alloys is investigated by using a modified Gurson-type damage model. The representative microstructure of the lamellar alloy, which consists of the soft α phase layer surrounding the hard grain interiors, is generated based on an advanced Voronoi algorithm. Both the normal fracture due to void growth and the shear fracture associated with void shearing are considered for the grain boundary α layer. The individual phase properties are determined according to the experimental nanoindentation result and the macroscopic stress–strain curve from a uni-axial tensile test. The effects of the strain hardening exponent of the grain interiors and the void shearing mechanism of the grain boundary α layer on fracture toughness and the intergranular crack growth behavior are emphatically studied. The computational predictions indicate that fracture toughness can be increased with increasing the strain hardening ability of the grain interiors and void shearing can be deleterious to fracture toughness. Based on the current simulation technique, qualitative understanding of relationships between the individual phase features and the fracture toughness of the lamellar alloys can be obtained, which provides useful suggestions to the heat treatment process of the β titanium alloys. PMID:29084171

  18. Simulation of Intergranular Ductile Cracking in β Titanium Alloys Based on a Micro-Mechanical Damage Model.

    PubMed

    Li, Huan; Li, Jinshan; Tang, Bin; Fan, Jiangkun; Yuan, Huang

    2017-10-30

    The intergranular crack propagation of the lamellar structure β titanium alloys is investigated by using a modified Gurson-type damage model. The representative microstructure of the lamellar alloy, which consists of the soft α phase layer surrounding the hard grain interiors, is generated based on an advanced Voronoi algorithm. Both the normal fracture due to void growth and the shear fracture associated with void shearing are considered for the grain boundary α layer. The individual phase properties are determined according to the experimental nanoindentation result and the macroscopic stress-strain curve from a uni-axial tensile test. The effects of the strain hardening exponent of the grain interiors and the void shearing mechanism of the grain boundary α layer on fracture toughness and the intergranular crack growth behavior are emphatically studied. The computational predictions indicate that fracture toughness can be increased with increasing the strain hardening ability of the grain interiors and void shearing can be deleterious to fracture toughness. Based on the current simulation technique, qualitative understanding of relationships between the individual phase features and the fracture toughness of the lamellar alloys can be obtained, which provides useful suggestions to the heat treatment process of the β titanium alloys.

  19. Stress orientation and fracturing during three-dimensional buckling: Numerical simulation and application to chocolate-tablet structures in folded turbidites, SW Portugal

    NASA Astrophysics Data System (ADS)

    Reber, J. E.; Schmalholz, S. M.; Burg, J.-P.

    2010-10-01

    Two orthogonal sets of veins, both orthogonal to bedding, form chocolate tablet structures on the limbs of folded quartzwackes of Carboniferous turbidites in SW Portugal. Structural observations suggest that (1) mode 1 fractures transverse to the fold axes formed while fold amplitudes were small and limbs were under layer-subparallel compression and (2) mode 1 fractures parallel to the fold axes formed while fold amplitudes were large and limbs were brought to be under layer-subparallel tension. We performed two- and three-dimensional numerical simulations investigating the evolution of stress orientations during viscous folding to test whether and how these two successive sets of fractures were related to folding. We employed ellipses and ellipsoids for the visualization and quantification of the local stress field. The numerical simulations show a change in the orientation of the local σ1 direction by almost 90° with respect to the bedding plane in the fold limbs. The coeval σ3 direction rotates from parallel to the fold axis at low fold amplitudes to orthogonal to the fold axis at high fold amplitudes. The stress orientation changes faster in multilayers than in single-layers. The numerical simulations are consistent with observation and provide a mechanical interpretation for the formation of the chocolate tablet structures through consecutive sets of fractures on rotating limbs of folded competent layers.

  20. Root (Botany)

    Treesearch

    Robert R. Ziemer

    1981-01-01

    Plant roots can contribute significantly to the stability of steep slopes. They can anchor through the soil mass into fractures in bedrock, can cross zones of weakness to more stable soil, and can provide interlocking long fibrous binders within a weak soil mass. In deep soil, anchoring to bedrock becomes negligible, and lateral reinforcement predominates

  1. Micro-imager View: Layers in 'Vera Rubin Ridge,' Mars

    NASA Image and Video Library

    2017-09-13

    This view of "Vera Rubin Ridge" from the Chemistry and Camera (ChemCam) instrument on NASA's Curiosity Mars rover shows multiple sedimentary layers and fracture-filling deposits of minerals. Buried layers of what is now a ridge became fractured, and the fractures were filled with mineral deposits precipitated from underground fluids that moved through the fractures. ChemCam's telescopic Remote Micro-Imager took the 10 component images of this mosaic on July 3, 2017, during the 1,745th Martian day, or sol, of Curiosity's work on Mars. The camera was about 377 feet (115 meters) away from the pictured portion of the ridge. The rover's location at the time, shown in a Sol 1741 traverse map, was west of the place where it began its ascent up the ridge about two months later. The scale bar at lower right indicates how wide a feature 9 inches (22.8 centimeters) in width would look in the middle portion of the scene. https://photojournal.jpl.nasa.gov/catalog/PIA21852

  2. Mathematical modeling and simulation analysis of hydraulic fracture propagation in three-layered poro-elastic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, H.Y.; Advani, S.H.; Lee, T.S.

    1992-11-01

    Hydraulic fracturing plays a pivotal role in the enhancement of oil and gas production recovery from low permeability reservoirs. The process of hydraulic fracturing entails the generation of a fracture by pumping fluids blended with special chemicals and proppants into the payzone at high injection rates and pressures to extend and wedge fractures. The mathematical modeling of hydraulically induced fractures generally incorporates coupling between the formation elasticity, fracture fluid flow, and fracture mechanics equations governing the formation structural responses, fluid pressure profile, and fracture growth. Two allied unsymmetric elliptic fracture models are developed for fracture configuration evolutions in three-layered rockmore » formations. The first approach is based on a Lagrangian formulation incorporating pertinent energy components associated with the formation structural responses and fracture fluid flow. The second model is based on a generalized variational principle, introducing an energy rate related functional. These models initially simulate a penny-shaped fracture, which becomes elliptic if the crack tips encounters (upper and/or lower) barriers with differential reservoir properties (in situ stresses, 16 elastic moduli, and fracture toughness-contrasts and fluid leak-off characteristics). The energy rate component magnitudes are determined to interpret the governing hydraulic fracture mechanisms during fracture evolution. The variational principle is extended to study the phenomenon and consequences of fluid lag in fractures. Finally, parametric sensitivity and energy rate investigations to evaluate the roles of controllable hydraulic treatment variables and uncontrollable reservoir property characterization parameters are performed. The presented field applications demonstrate the overall capabilities of the developed models. These studies provide stimulation treatment guidelines for fracture configuration design, control, and optimization.« less

  3. Water fluoridation and osteoporotic fracture.

    PubMed

    Hillier, S; Inskip, H; Coggon, D; Cooper, C

    1996-09-01

    Osteoporotic fractures constitute a major public health problem. These fractures typically occur at the hip, spine and distal forearm. Their pathogenesis is heterogeneous, with contributions from both bone strength and trauma. Water fluoridation has been widely proposed for its dental health benefits, but concerns have been raised about the balance of skeletal risks and benefits of this measure. Fluoride has potent effects on bone cell function, bone structure and bone strength. These effects are mediated by the incorporation of fluoride ions in bone crystals to form fluoroapatite, and through an increase in osteoblast activity. It is believed that a minimum serum fluoride level of 100 ng/ml must be achieved before osteoblasts will be stimulated. Serum levels associated with drinking water fluoridated to 1 ppm are usually several times lower than this value, but may reach this threshold at concentrations of 4 ppm in the drinking water. Animal studies suggest no effect of low-level (0-3 ppm) fluoride intake on bone strength, but a possible decrease at higher levels. Sodium fluoride has been used to treat established osteoporosis for nearly 30 years. Recent trials of this agent, prescribed at high doses, have suggested that despite a marked increase in bone mineral density, there is no concomitant reduction in vertebral fracture incidence. Furthermore, the increase in bone density at the lumbar spine may be achieved at the expense of bone mineral in the peripheral cortical skeleton. As a consequence, high dose sodium fluoride (80 mg daily) is not currently used to treat osteoporosis. At lower doses, recent trials have suggested a beneficial effect on both bone density and fracture. The majority of epidemiological evidence regarding the effect of fluoridated drinking water on hip fracture incidence is based on ecological comparisons. Although one Finnish study suggested that hip fracture rates in a town with fluoridated water were lower than those in a matching town without fluoride, a later study failed to show differences. Ecological studies from the United States and Great Britain have, if anything, revealed a weak positive association between water fluoride concentration and hip fracture incidence. Two studies examining hip fracture rates before and after fluoridation yielded discordant results, and are complicated by underlying time trends in hip fracture incidence. Only two studies have attempted to examine the relation between water fluoride concentration and fracture risk at an individual level. In one of these, women in a high fluoride community had double the fracture risk of women in a low fluoride community. In the other, there was no relationship between years of fluoride exposure and incidence of spine or non-spine fractures. In conclusion, the epidemiological evidence relating water fluoridation to hip fracture is based upon ecological comparisons and is inconclusive. However, several studies suggest the possibility of a weak adverse effect, which warrants further exploration. Data on the relationship between fluoride intake and hip fracture risk at the individual level, and data relating fluoridation to bone mineral density are required. Until these become available, the burden of evidence suggesting that fluoridation might be a risk factor for hip fracture is weak and not sufficient to retard the progress of the water fluoridation programme.

  4. Obesity and bone.

    PubMed

    Compston, Juliet

    2013-03-01

    Recent studies indicate that fractures in obese postmenopausal women and older men contribute significantly to the overall fracture burden. The effect of obesity is to some extent site-dependent, the risk being increased for some fractures and decreased for others, possibly related to different patterns of falling and the presence or absence of soft tissue padding. Risk factors for fracture in obese individuals appear to be similar to those in the nonobese population, although falls may be particularly important in the obese. There is some evidence that the morbidity associated with fractures in obese individuals is greater than in the nonobese; however, a recent study indicates that the mortality associated with fracture is lower in obese and overweight people than in those of normal weight. The evidence base for strategies to prevent fractures in obese individuals is weak and is an important area for future research.

  5. Effect of chemical composition of Ni-Cr dental casting alloys on the bonding characterization between porcelain and metal.

    PubMed

    Huang, H-H; Lin, M-C; Lee, T-H; Yang, H-W; Chen, F-L; Wu, S-C; Hsu, C-C

    2005-03-01

    The purpose of this study was to investigate the influence of chemical composition of Ni-Cr dental casting alloys on the bonding behaviour between porcelain and metal. A three-point bending test was used to measure the fracture load of alloy after porcelain firing. A scanning electron microscope, accompanied by an energy dispersion spectrometer, was used to analyse the morphology and chemical composition of the fracture surface. An X-ray photoelectron spectrometer and glow discharge spectrometer were used to identify the structure and cross-sectional chemical composition, respectively, of oxide layers on Ni-Cr alloys after heat treatment at 990 degrees C for 5 min. Results showed that the oxide layers formed on all Ni-Cr alloys contained mainly Cr2O3, NiO, and trace MoO3. The Ni-Cr alloy with a higher Cr content had a thicker oxide layer, as well as a weaker bonding behaviour of porcelain/metal interface. The presence of Al (as Al2O3) and Be (as BeO) on the oxide layer suppressed the growth of the oxide layer, leading to a better porcelain/metal bonding behaviour. However, the presence of a small amount of Ti (as TiO2) on the oxide layer did not have any influence on the bonding behaviour. The fracture propagated along the interface between the opaque porcelain and metal, and exhibited an adhesive type of fracture morphology.

  6. Seismic Structure of the Oceanic Plate Entering the Central Part of the Japan Trench Obtained from Ocean-Bottom Seismic Data

    NASA Astrophysics Data System (ADS)

    Ohira, A.; Kodaira, S.; Fujie, G.; No, T.; Nakamura, Y.; Miura, S.

    2017-12-01

    In trench-outer rise regions, the normal faults develop due to the bending of the incoming plate, which cause numerous normal-faulting earthquakes and systematic structural variations toward trenches. In addition to the effects on the bend-related normal fault, structural variations which are interpreted to be attributed to pseudofaults, a fracture zone, and petit-spot volcanic activities are observed in the oceanic plate entering the central part of the Japan Trench, off Miyagi. In May-June 2017, to understand detail structural variations and systematic structural changes of the oceanic plate toward the trench, we conducted an active-source seismic survey off Miyagi using R/V Kaimei, a new research vessel of JAMSTEC. Along a 100 km-long seismic profile which is approximately perpendicular to the trench axis, we deployed 40 ocean-bottom seismometers at intervals of 2 km and fired a large airgun array (total volume 10,600 cubic inches) with 100 m shooting intervals. Multi-channel seismic reflection data were also collected along the profile. On OBS records we observed refractions from the sedimentary layer and the oceanic crust (Pg), wide-angle reflections from the crust-mantle boundary (PmP), and refractions from the uppermost mantle (Pn). Pg is typically observed clearly at near offsets (approximately 20 km) but it highly attenuates at far offsets (> 20 km). A triplication of Pg-PmP-Pn with strong amplitudes is observed at ranges from 30 km to 60 km offsets. Pn is typically weak and its apparent velocity is approximately 8 km/sec. High attenuation of Pg and weak Pn may indicate the complex crustal structure related to petit-spot volcanic activities and/or a fracture zone, which are recognized in bathymetry data around the profile.

  7. Fracture Characterization in the Astor Pass Geothermal Field, Nevada

    NASA Astrophysics Data System (ADS)

    Walsh, D. C.; Reeves, D. M.; Pohll, G.; Lyles, B. F.; Cooper, C. A.

    2011-12-01

    The Astor Pass geothermal field, near Pyramid Lake, NV, is under study as a site of potential geothermal energy production. Three wells have been completed in the graben of this typical Basin and Range geologic setting. Lithologies include a layer of unconsolidated sediment (basin fill) underlain by various tertiary volcanic units and granodiorite and metavolcanic basement rock. Characterization of fractures within the relatively impermeable rock matrix is being conducted for the three wells. Statistical analysis of fracture orientation, densities, and spacing obtained from borehole imaging logs is used to determine stress orientation and to generate a statistically equivalent Discrete Fracture Network (DFN) model. Fractures at depth are compared to fracture data collected in nearby outcrops of the same lithologic stratigraphy. Fracture geometry and density is correlated to mechanically discrete layers within the stratigraphy to test whether variations in fracturing can be attributed to variations in Young's modulus. Correlation of fracture geometry and densities with spinner flowmeter logs and distributed temperature sensor records are made in an effort to identify potential flowing fracture zones intersecting the borehole. Mean fracture aperture is obtained from open fracture counts and reservoir-scale transmissivity values (computed from a 30 day pump test) in the absence of readily available aperture data. The goal of this thorough fracture characterization is to create a physically relevant model which may be coupled with a multipurpose fluid flow and thermal simulator for investigation of geothermal reservoir behavior, particularly at the borehole scale.

  8. Application of Viscoelastic Fracture Model and Non-uniform Crack Initiation at Clinically Relevant Notches in Crosslinked UHMWPE

    PubMed Central

    Sirimamilla, P. Abhiram; Furmanski, Jevan; Rimnac, Clare M.

    2012-01-01

    The mechanism of crack initiation from a clinically relevant notch is not well-understood for crosslinked ultra high molecular weight polyethylene (UHMWPE) used in total joint replacement components. Static mode driving forces, rather than the cyclic mode conditions typically associated with fatigue processes, have been shown to drive crack propagation in this material. Thus, in this study, crack initiation in a notched specimen under a static load was investigated. A video microscope was used to monitor the notch surface of the specimen and crack initiation time was measured from the video by identifying the onset of crack initiation at the notch. Crack initiation was considered using a viscoelastic fracture theory. It was found that the mechanism of crack initiation involved both single layer and a distributed multi-layer phenomenon and that multi-layer crack initiation delayed the crack initiation time for all loading conditions examined. The findings of this study support that the viscoelastic fracture theory governs fracture mechanics in crosslinked UHMWPE. The findings also support that crack initiation from a notch in UHMWPE is a more complex phenomenon than treated by traditional fracture theories for polymers. PMID:23127638

  9. Engineering criteria for fracture flowback procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barree, R.D.; Mukherjee, H.

    1995-12-31

    Post treatment fracture flowback procedures during closure are often critical to the retention of fracture conductivity near the wellbore. Postfrac production performance largely depends on this conductivity. The importance of proper flowback procedure has been documented in the fracture industry, but definitive guidelines for flowback design have never been established. As a result, many misconceptions exist regarding the physics of proppant flowback and its effects on the final proppant distribution in the fracture. This paper presents a rigorous study of fracture flowback and proppant migration during closure using a fully three-dimensional fracture geometry simulator (GOHFER). The effects of rate ofmore » flowback, location of the perforation interval, final proppant concentration, and the fracture geometry prior to flowback on the retained post closure proppant concentration are discussed. Consideration is given to the fluid velocity field in the created fracture resulting from the flowback, and its effects on proppant movement and localized fracture closure. These studies illustrate the difference between ``forced closure`` and ``reverse screenout`` concepts in flowback design. Other effects such as crossflow between multiple perforated layers are also studied. Simulation studies indicate that selection of a desirable flowback rate is very sensitive to crossflow effects resulting from induced fractures in multiple stress layers. This crossflow can result in significant overflushing of proppant in the lower stress zones, if not countered by properly applied flowback procedures.« less

  10. Effect of a weak layer at the base of an oceanic plate on subduction dynamics

    NASA Astrophysics Data System (ADS)

    Carluccio, Roberta; Kaus, Boris

    2017-04-01

    The plate tectonics model relies on the concept of a relatively rigid lithospheric lid moving over a weaker asthenosphere. In this frame, the lithosphere asthenosphere boundary (LAB) is a first-order discontinuity that accommodates differential motions between tectonic plates and the underlying mantle. Recent seismic studies have revealed the existence of a low velocity and high electrical conductivity layer at the base of subducting tectonic plates. This thin layer has been interpreted as being weak and slightly buoyant and was suggested to affect the dynamics of subducting plates. However, geodynamically, the role of a weak layer at the base of the lithosphere remains poorly studied, especially at subduction zones. Therefore, we here use numerical models to investigate the first-order effects of a weak buoyant layer at the LAB on subduction dynamics. We employ both 2-D and 3-D models in which the slab and mantle are either linear viscous or have a more realistic temperature-dependent visco-elastic-plastic rheology. Results show that a weak layer affects the dynamics of the plates, foremost by increasing the subduction speed. The impact of this effect depends on the thickness of the layer and the viscosity contrast between the mantle and the weak layer. For moderate viscosity contrasts (<100) and a layer thickness of 30 km, it increases the plate velocity but not the overall shape of the slab. However, for larger viscosity contrasts (>1000), it can also change the morphology of the subduction itself, perhaps because this changes the overall effective viscosity contrast between the slab the and the mantle. For thinner layers, the overall effect is reduced. Yet, if seismological observations are correct that suggests that this layer is 10 km thick and partially molten, such that the viscosity is 1000 times lower than that of the mantle, our models suggest that this effect should be measurable. Some of our models also show a pile-up of weak material in the bending zone of the subducting plate, consistent with recent seismological observations.

  11. The Role of a Weak Layer at the Base of an Oceanic Plate on Subduction Dynamics

    NASA Astrophysics Data System (ADS)

    Carluccio, R.; Moresi, L. N.; Kaus, B. J. P.

    2017-12-01

    Plate tectonics relies on the concept of an effectively rigid lithospheric lid moving over a weaker asthenosphere. In this model, the lithosphere asthenosphere boundary (LAB) is a first-order discontinuity that accommodates differential motion between tectonic plates and the underlying mantle. Recent seismic studies have revealed the existence of a low velocity and high electrical conductivity layer at the base of subducting tectonic plates. This thin layer has been interpreted as being weak and slightly buoyant and it has the potential to influence the dynamics of subducting plates. However, geodynamically, the role of a weak layer at the base of the lithosphere remains poorly studied, especially at subduction zones. Here, we use numerical models to investigate the first-order effects of a weak buoyant layer at the LAB on subduction dynamics. We employ both 2-D and 3-D models in which the slab and the mantle are either linear viscous or have a more realistic temperature-dependent, visco-elastic-plastic rheology and we vary the properties of the layer at the base of the oceanic lithosphere. Our results show that the presence of a weak layer affects the dynamics of plates, primarily by increasing the subduction speed and also influences the morphology of subducting slab. For moderate viscosity contrasts (<100) and a layer thickness of ˜30 km, it increases the plate velocity but not the overall shape of the slab. However, for larger viscosity contrasts (>1000), it can also change the morphology of the subduction itself and for thinner and more buoyant layers, the overall effect is reduced. The overall impact of this effects may depend on the effective contrast between the properties of the slab and the weak layer + mantle systems, and so, by the layer characteristics modelled such as its viscosity, density, thickness and rheology. In this study, we show and summarise this impact consistently with the recent seismological constraints and observations, for example, a pile-up of weak material in the bending zone of the subducting plate.

  12. Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures.

    PubMed

    Cheon, Gowoon; Duerloo, Karel-Alexander N; Sendek, Austin D; Porter, Chase; Chen, Yuan; Reed, Evan J

    2017-03-08

    Layered materials held together by weak interactions including van der Waals forces, such as graphite, have attracted interest for both technological applications and fundamental physics in their layered form and as an isolated single-layer. Only a few dozen single-layer van der Waals solids have been subject to considerable research focus, although there are likely to be many more that could have superior properties. To identify a broad spectrum of layered materials, we present a novel data mining algorithm that determines the dimensionality of weakly bonded subcomponents based on the atomic positions of bulk, three-dimensional crystal structures. By applying this algorithm to the Materials Project database of over 50,000 inorganic crystals, we identify 1173 two-dimensional layered materials and 487 materials that consist of weakly bonded one-dimensional molecular chains. This is an order of magnitude increase in the number of identified materials with most materials not known as two- or one-dimensional materials. Moreover, we discover 98 weakly bonded heterostructures of two-dimensional and one-dimensional subcomponents that are found within bulk materials, opening new possibilities for much-studied assembly of van der Waals heterostructures. Chemical families of materials, band gaps, and point groups for the materials identified in this work are presented. Point group and piezoelectricity in layered materials are also evaluated in single-layer forms. Three hundred and twenty-five of these materials are expected to have piezoelectric monolayers with a variety of forms of the piezoelectric tensor. This work significantly extends the scope of potential low-dimensional weakly bonded solids to be investigated.

  13. Metamorphic reactions, grain size reduction and deformation of mafic lower crustal rocks

    NASA Astrophysics Data System (ADS)

    Degli Alessandrini, Giulia; Menegon, Luca; Beltrando, Marco; Dijkstra, Arjan; Anderson, Mark

    2016-04-01

    This study investigates grain-scale deformation mechanisms associated with strain localization in the mafic continental lower crust, with particular focus on the role of syn-kinematic metamorphic reactions and their product - symplectites - in promoting grain size reduction and phase mixing. The investigated shear zone is hosted in the Finero mafic-ultramafic complex in the Italian Southern Alps. Shearing occurred at T ≥ 650° C and P ≥ 0.4-0.6 GPa. The shear zone reworks both mafic and ultramafic lithologies and displays anastomosing patterns of (ultra)mylonitic high strain zones wrapping less foliated, weakly deformed low strain domains. Field and microstructural observations indicate that different compositional layers of the shear zone responded differently to deformation, resulting in strain partitioning. Four distinct microstructural domains have been identified: (1) an ultramylonitic domain characterized by an amph + pl matrix (grain size < 30μm) with large amphibole porphyroclasts (grain size between 200μm and 5000μm) and rare garnets; (2) a domain rich in garnet porphyroclasts embedded in a matrix of monomineralic plagioclase displaying a core and mantle structure (average grain size 45μm) (3) a metagabbroic domain with porphyroclasts of clinopyroxene, orthopyroxene and garnets (200μm average grain size) wrapped by monomineralic ribbons of recrystallized plagioclase and (4) a garnet-free ultramylonitic domain composed of an intermixed amph + cpx + opx + pl matrix (6μm average grain size). In these domains, each porphyroclastic mineral responds differently to deformation: amphibole readily breaks down to symplectitic intergrowths of amph + pl or opx + pl. Garnet undergoes fracturing (in domain 2) or reacts to give symplectites of pl + opx (in domain 3). Plagioclase dynamically recrystallizes in mono-phase aggregates, whereas clinopyroxene undergoes fracturing and orthopyroxene undergoes plastic deformation. The behaviour of the different phases and their relative abundance in the layers are believed to influence the deformation of the layers themselves. In symplectite-rich layers (domains 1, 4) deformation is localised, grain-size is below 30μm and phases are well mixed. On the other hand, in pyroxene or plagioclase-rich layers, deformation is less localised, the phases are less mixed and the grain size is larger (domain 2, 3). These preliminary results suggest that syn-kinematic metamorphic reactions forming symplectites played an essential role in grain size reduction, phase mixing and strain localization. We speculate that the compositional domains with symplectites localized deformation more efficiently, by activation of grain size sensitive creep, most likely because those domains were originally more hydrated than the others. On the contrary, domains without symplectites accommodated deformation less efficiently, either through fracturing (clinopyroxene, garnet) or dislocation creep + recrystallization (orthopyroxene, plagioclase).

  14. Interface test series: An in situ study of factors affecting the containment of hydraulic fractures

    NASA Astrophysics Data System (ADS)

    Warpinski, N. R.; Finley, S. J.; Vollendorf, W. C.; Obrien, M.; Eshom, E.

    1982-02-01

    In situ experiments, which are accessible for direct observation by mineback, were conducted to determine the effect that material-property interfaces and in situ stress differences have on hydraulic fracture propagation and the resultant overall geometry. These experiments show conclusively that a difference in elastic modulus at a geologic interface has little or no effect on crack growth and, therefore, is not a feature which would promote containment of fractures within a specified reservoir zone. However, differences in the in situ stress between adjacent layers is shown to have a considerable influence on fracture propagation. Experiments were conducted in a low modulus ash-fall tuff which contained two layers of high minimum principal in situ stress and which was overlain by a formation with at least a factor of 5 increase in elastic modulus. Fractures were observed to terminate in regions of high minimum principal in situ stress in nearly every case.

  15. Fracture Networks from a deterministic physical model as 'forerunners' of Maze Caves

    NASA Astrophysics Data System (ADS)

    Ferer, M. V.; Smith, D. H.; Lace, M. J.

    2013-12-01

    'Fractures are the chief forerunners of caves because they transmit water much more rapidly than intergranular pores.[1] Thus, the cave networks can follow the fracture networks from which the Karst caves formed by a variety of processes. Traditional models of continental Karst define water flow through subsurface geologic formations, slowly dissolving the rock along the pathways (e.g. water saturated with respect to carbon dioxide flowing through fractured carbonate formations). We have developed a deterministic, physical model of fracturing in a model geologic layer of a given thickness, when that layer is strained in one direction and subsequently in a perpendicular direction. It was observed that the connected fracture networks from our model visually resemble maps of maze caves. Since these detailed cave maps offer critical tools in modeling cave development patterns and conduit flow in Karst systems, we were able to test the qualitative resemblance by using statistical analyses to compare our model networks in geologic layers of four different thicknesses with the corresponding statistical analyses of four different maze caves, formed in a variety of geologic settings. The statistical studies performed are: i) standard box-counting to determine if either the caves or the model networks are fractal. We found that both are fractal with a fractal dimension Df ≈ 1.75 . ii) for each section inside a closed path, we determined the area and perimeter-length, enabling a study of the tortuosity of the networks. From the dependence of the section's area upon its perimeter-length, we have found a power-law behavior (for sufficiently large sections) characterized by a 'tortuosity' exponent. These exponents have similar values for both the model networks and the maze caves. The best agreement is between our thickest model layer and the maze-like part of Wind Cave in South Dakota where the data from the model and the cave overlie each other. For the present networks from the physical model, we assumed that the geologic layer was of uniform thickness and that the strain in both directions were the same. The latter may not be the case for the Brazilian, Toca de Boa Cave. These assumptions can be easily modified in our computer code to reflect different geologic histories. Even so the quantitative agreement suggests that our model networks are statistically realistic both for the 'forerunners' of caves and for general fracture networks in geologic layers, which should assist the study of underground fluid flow in many applications for which fracture patterns and fluid flow are difficult to determine (e.g., hydrology, watershed management, oil recovery, carbon dioxide sequestration, etc.). Keywords - Fracture Networks, Karst, Caves, Structurally Variable Pathways, hydrogeological modeling 1 Arthur N. Palmer, CAVE GEOLOGY, pub. Cave Books, Dayton OH, (2007).

  16. Bilateral mandibular angle fractures: clinical considerations.

    PubMed

    Boffano, Paolo; Roccia, Fabio

    2010-03-01

    The mandibular angle is a frequent site of fracture. It is a weak zone that is more exposed to fractures than other areas of the mandibular bone. The presence of incompletely erupted third molars is associated with a further increased risk of angle fractures. Our objective was to evaluate and discuss the surgical outcomes of a group of patients with bilateral mandibular angle fractures.In our study, patients with bilateral mandibular angle fractures surgically treated from January 1, 2001, to June 30, 2009, at the Division of Maxillofacial Surgery of the University of Turin were retrospectively analyzed. A combined transbuccal and intraoral approach or an intraoral approach only was adopted.Eight patients (7 men and 1 woman) underwent surgery for bilateral mandibular angle fractures. Good to satisfactory reduction of the fractures was obtained with both surgical techniques. Good to fair restored occlusion was observed postoperatively in all patients.Successful treatment of bilateral mandibular angle fractures may be achieved via different techniques. Superficially impacted third molars seem to be associated with an increased risk of angle fractures. Bilateral angle fractures are an ideal model to study the biomechanical pathogenesis of angle fractures.

  17. Meteorological variables associated with deep slab avalanches on persistent weak layers

    USGS Publications Warehouse

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2014-01-01

    Deep slab avalanches are a particularly challenging avalanche forecasting problem. These avalanches are typically difficult to trigger, yet when they are triggered they tend to propagate far and result in large and destructive avalanches. For this work we define deep slab avalanches as those that fail on persistent weak layers deeper than 0.9m (3 feet), and that occur after February 1st. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl Ski Area to test the usefulness of meteorological variables for predicting deep slab avalanches. As in previous studies, we used data from the days preceding deep slab cycles, but we also considered meteorological metrics over the early months of the season. We utilized classification trees for our analyses. Our results showed warmer temperatures in the prior twenty-four hours and more loading over the seven days before days with deep slab avalanches on persistent weak layers. In line with previous research, extended periods of above freezing temperatures led to days with deep wet slab avalanches on persistent weak layers. Seasons with either dry or wet avalanches on deep persistent weak layers typically had drier early months, and often had some significant snow depth prior to those dry months. This paper provides insights for ski patrollers, guides, and avalanche forecasters who struggle to forecast deep slab avalanches on persistent weak layers late in the season.

  18. Fracture toughness of esthetic dental coating systems by nanoindentation and FIB sectional analysis.

    PubMed

    Pecnik, Christina Martina; Courty, Diana; Muff, Daniel; Spolenak, Ralph

    2015-07-01

    Improving the esthetics of Ti-based dental implants is the last challenge remaining in the optimization process. The optical issues were recently solved by the application of highly and selectively reflective coatings on Ti implants. This work focuses on the mechanical durability of these esthetic ceramic based coating systems (with and without adhesion layers). The coating systems (Ti-ZrO2, Ti-Al-ZrO2, Ti-Ti-Al-ZrO2, Ti-Ag-ZrO2, Ti-Ti-Ag-ZrO2, Ti-Bragg and Ti-TiO2-Bragg) were subjected to nanoindentation experiments and examined using scanning electron microscopy and focused ion beam cross sectional analysis. Three coating systems contained adhesion layers (10nm of Ti or 60nm of TiO2 layers). The fracture toughness of selected samples was assessed applying two different models from literature, a classical for bulk materials and an energy-based model, which was further developed and adjusted. The ZrO2 based coating systems (total film thickness<200nm) followed a circumferential cracking behavior in contrast to Bragg coated samples (total film thickness around 1.5μm), which showed radial cracking emanating from the indent corners. For Ti-ZrO2 samples, a fracture toughness between 2.70 and 3.70MPam(1/2) was calculated using an energy-based model. The classical model was applied to Bragg coated samples and their fracture toughness ranged between 0.70 and 0.80MPam(1/2). Furthermore, coating systems containing an additional layer (Ti-Ti-Al-ZrO2, Ti-Ti-Ag-ZrO2 and Ti-TiO2-Bragg) showed an improved adhesion between the substrate and the coating. The addition of a Ti or TiO2 layer improved the adhesion between substrate and coating. The validity of the models for the assessment of the fracture toughness depended on the layer structure and fracture profile of the samples investigated here (classical model for thick coatings and energy-based model for thin coatings). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. FRACOR-software toolbox for deterministic mapping of fracture corridors in oil fields on AutoCAD platform

    NASA Astrophysics Data System (ADS)

    Ozkaya, Sait I.

    2018-03-01

    Fracture corridors are interconnected large fractures in a narrow sub vertical tabular array, which usually traverse entire reservoir vertically and extended for several hundreds of meters laterally. Fracture corridors with their huge conductivities constitute an important element of many fractured reservoirs. Unlike small diffuse fractures, actual fracture corridors must be mapped deterministically for simulation or field development purposes. Fracture corridors can be identified and quantified definitely with borehole image logs and well testing. However, there are rarely sufficient image logs or well tests, and it is necessary to utilize various fracture corridor indicators with varying degrees of reliability. Integration of data from many different sources, in turn, requires a platform with powerful editing and layering capability. Available commercial reservoir characterization software packages, with layering and editing capabilities, can be cost intensive. CAD packages are far more affordable and may easily acquire the versatility and power of commercial software packages with addition of a small software toolbox. The objective of this communication is to present FRACOR, a software toolbox which enables deterministic 2D fracture corridor mapping and modeling on AutoCAD platform. The FRACOR toolbox is written in AutoLISPand contains several independent routines to import and integrate available fracture corridor data from an oil field, and export results as text files. The resulting fracture corridor maps consists mainly of fracture corridors with different confidence levels from combination of static and dynamic data and exclusion zones where no fracture corridor can exist. The exported text file of fracture corridors from FRACOR can be imported into an upscaling programs to generate fracture grid for dual porosity simulation or used for field development and well planning.

  20. Geo-mechanical modeling and selection of suitable layer for hydraulic fracturing operation in an oil reservoir (south west of Iran)

    NASA Astrophysics Data System (ADS)

    Darvish, Hoda; Nouri-Taleghani, Morteza; Shokrollahi, Amin; Tatar, Afshin

    2015-11-01

    According to the growth of demands to oil resources, increasing the rate of oil production seems necessary. However, oil production declines with time as a result of pressure drop in reservoir as well as sealing of microscopic cracks and pores in the reservoir rock. Hydraulic fracturing is one of the common methods with high performance, which is widely applied to oil and gas reservoirs. In this study, wells in three sections of east, center, and west sides of a field are compared regarding the suitable layer for hydraulic fracturing operation. Firstly, elastic modulus were obtained in both dynamic and static conditions, then uniaxial compressive strength (UCS), type of shear and tensile failures, the most accurate model of failure in wells, safe and stable mud window, the best zone and layers, and finally reference pressures are determined as nominates for hydraulic fracturing. Types of shear failure in minimum, and maximum range of model and in tensile model were determined to be "Shear failure wide breakout (SWBO)", "Shear narrow breakout (SNBO)", and "Tensile vertical failure (TVER)", respectively. The range of safe mud window (SMW) in the studied wells was almost in the same range as it was in every three spots of the field. This range was determined between 5200-8800psi and 5800-10100psi for Ilam and Sarvak zones, respectively. Initial fracture pressure ranges for selected layers were determined 11,759-14,722, 11,910-14,164, and 11,848-14,953psi for the eastern, central, and western wells. Thus, western wells have the best situation for Hydraulic fracturing operation. Finally, it was concluded that the operation is more economic in Sarvak zone and western wells.

  1. New insight into the relationships between stress, strain and mass change at Mt. Etna during the period between the 1993-94 and 2001 eruptions

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Aloisi, Marco; Vinciguerra, Sergio; Puglisi, Giuseppe

    2014-05-01

    During the time interval between the 1991-93 and 2001 main flank eruptions of Mt. Etna, volcanic activity was confined to the summit vents. Ground deformation and tomography studies suggest that this activity was fed by a magma body located beneath the north-west flank of the volcano, at a depth of around 7 km b.s.l.. Conversely, gravity studies indicate that the most important mass redistributions during the same period took place within an elongated volume centered below the southeastern sector of the volcano, at depths of 2-4 km b.s.l.. The phases of gravity decrease during the 1994-2001 period coincide with phases of higher strain release rate. The coupling between gravity and seismic data could reflect changes in the rate of micro-fracturing along the NNW-SSE weakness zone that cuts the SE slope of the volcano. This interpretation allows to explain why the main pressure and mass sources active at Etna during the 1994-2001 period do not coincide. The extensional dynamics of the southeastern flank of Etna may represent a second-order effect, triggered by the pressure source below the western flank and accommodated along the NNW-SSE weakness zone. In order to gain quantitative insight into the relationship between stress, strain and mass changes at Etna during the 1994-2001 period, we use a finite element modeling approach. Relying on recent studies involving stress- and temperature-induced degradation of the mechanical properties of rocks, we hypothesize that the inferred NNW-SSE weakness zone is characterized by an anomalously low Young's modulus (E). Results of our analysis are summarized in the following two points. (i) The presence of the weakness zone creates a distortion of the displacements field induced by the deeper pressure source, locally resulting in a weak extensional regime. This finding supports the hypothesis of a cause-effect relation between deeper pressurization beneath the western flank and shallower extension across the fracture zone beneath the SE flank of the volcano. However, the bulk extension across the weakness zone which is only due to pressurization of the magma reservoir is not sufficient to induce the observed gravity changes through changes in the rate of microfracturing. We suggest that propagation of pressurized gas, enhanced by the extensional regime across the NNW-SSE weakness zone, may have exerted tensile stresses across it, in turn increasing the bulk extension. (ii) For a given tensile stress across the fracture zone, the bulk extension increases proportionally as the value of E in the weakness zone decreases, while the ground deformation remains almost the same. This provides an explanation to understand how, during the studied period, the inferred changes in the bulk rate of microfracturing along the NNW-SSE weakness zone could have occurred with an associated small ground deformation. Indeed, we found that, as the value of E in correspondence of the fracture zone decreases, the ratio between deep extension and maximum ground displacement increases and, for values of E equal or less than about 10 GPa, deep extension of 1-2 m can develop with deformation of the surface close to the detection limit of GPS measurements. Our results highlight the importance of performing gravity studies at at volcanoes where there exists a causal link between medium fracturing and volcanic activity.

  2. Laceration and Ejection Dangers of Automotive Glass, and the Weak Standards Involved. The Strain Fracture Test.

    PubMed Central

    Clark, Carl C.; Yudenfriend, Herbert; Redner, Alex S.

    2000-01-01

    Glazing types are historically described, with the laceration injuries and ejection deaths associated with present glazing. Sixty tempered glass windows manufactured at nominally four temper levels were tested for uncracked fracture fragment size and weight and length by the American and European standards, which fracture the glass without strain, and our preliminary strain fracture test, which produces longer uncracked fragments and heavier clusters of fragments. Our study relates the results by the three methods to the temper measurements using birefringence, with a discussion of alternate safer glazing and the inadequacy of present standards for reducing laceration and ejection dangers. PMID:11558078

  3. Microscopic analysis of irradiated AGR-1 coated particle fuel compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott A. Ploger; Paul A. Demkowicz; John D. Hunn

    The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak compact-average burnup of 19.5% FIMA with no in-pile failures observed out of 3 x 105 total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Six compacts have been examined, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose from 36 to 79 individual particles near midplanemore » on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer–IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, 981 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in 23% of the particles, and these fractures often resulted in unconstrained kernel protrusion into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer–IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only four classified particles, all in conjunction with IPyC–SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures and IPyC–SiC debonds.« less

  4. Hydrogeological characterization of soil/weathered zone and underlying fractured bedrocks in DNAPL contaminated areas using the electromagnetic flowmeter

    NASA Astrophysics Data System (ADS)

    Kang, E.; Yeo, I.

    2011-12-01

    Flowmeter tests were carried out to characterize hydrogeology at DNAPL contaminated site in Wonju, Korea. Aquifer and slug tests determined hydraulic conductivity of soil/weathered zone and underlying fractured bed rocks to be 2.95×10-6 to 7.11×10-6 m/sec and 9.14×10-7 to 2.59×10-6 m/sec, respectively. Ambient flowmeter tests under natural hydraulic conditions revealed that the inflow and outflow take place through the borehole of soil/weathered zone with a tendency of down flow in the borehole. In particular, the most permeable layer of 22 to 30 m below the surface was found to form a major groundwater flow channel. On the contrary, a slight inflow and outflow was observed in the borehole, and the groundwater that inflows in the bottom section of the fractured bedrock flows up and exits through to the most permeable layer. Hydraulic heads measured at nearby multi-level boreholes confirmed the down flow in the soil/weathered zone and the up flow in fractured bedrocks. It was also revealed that the groundwater flow converges to the most permeable layer. TCE concentration in groundwater was measured at different depths, and in the borehole of the soil/weathered zone, high TCE concentration was found with higher than 10 mg/L near to the water table and decreased to about 6 mg/L with depth. The fractured bedrocks have a relatively constant low TCE concentration through a 20 m thick screen at less than l mg/L. The hydrogeology of the up flow in the soil/weathered zone and the down flow in underlying fractured bedrock leads the groundwater flow, and subsequently TCE plume, mainly to the most permeable layer that also restricts the advective transport of TCE plume to underlying fractured bedrocks. The cross borehole flowmeter test was carried out to find any hydrogeological connection between the soil/weathered zone and underlying fractured bedrocks. When pumping groundwater from the soil/weathered zone, no induced flow by groundwater extraction was observed at the underlying fractured bedrocks, and the hydraulic connection was identified only within the soil/weathered zone. However, when pumping groundwater from the fractured bedrocks, the hydraulic response was observed in the soil/weathered zone rather than another fractured bedrock borehole. Thus, when pump-and-treat is adopted for remediating the dissolved plume of DNAPL, the pumping well should be placed in the soil/weathered zone. Otherwise, the pumping of groundwater from the underlying fractured bedrocks will disperse the TCE plume into underlying fractured bedrocks.

  5. Increased fracture toughness of graphite-epoxy composites through intermittent interlaminar bonding. [Mylar interlayer

    NASA Technical Reports Server (NTRS)

    Felbeck, D. K.; Jea, L. C.

    1980-01-01

    Intermittent interlaminar bonding, which can lead to a large increase in the fracture surface area, was achieved through the introduction of thin perforated Mylar between the layers of a multi-layer continuous-filament graphite-epoxy composite. For the best optimum condition included in this study, fracture toughness was increased from about 100 kJ/sq m for untreated specimens to an average of about 500 kJ/sq m, while tensile strength dropped from 500 MPa to 400 MPa, and elastic modulus remained the same at about 75 GPa. An approximate analysis is presented to explain the observed improvement in toughness.

  6. Modelling hazardous surface hoar layers in the mountain snowpack over space and time

    NASA Astrophysics Data System (ADS)

    Horton, Simon Earl

    Surface hoar layers are a common failure layer in hazardous snow slab avalanches. Surface hoar crystals (frost) initially form on the surface of the snow, and once buried can remain a persistent weak layer for weeks or months. Avalanche forecasters have difficulty tracking the spatial distribution and mechanical properties of these layers in mountainous terrain. This thesis presents numerical models and remote sensing methods to track the distribution and properties of surface hoar layers over space and time. The formation of surface hoar was modelled with meteorological data by calculating the downward flux of water vapour from the atmospheric boundary layer. The timing of surface hoar formation and the modelled crystal size was verified at snow study sites throughout western Canada. The major surface hoar layers over several winters were predicted with fair success. Surface hoar formation was modelled over various spatial scales using meteorological data from weather forecast models. The largest surface hoar crystals formed in regions and elevation bands with clear skies, warm and humid air, cold snow surfaces, and light winds. Field surveys measured similar regional-scale patterns in surface hoar distribution. Surface hoar formation patterns on different slope aspects were observed, but were not modelled reliably. Mechanical field tests on buried surface hoar layers found layers increased in shear strength over time, but had persistent high propensity for fracture propagation. Layers with large crystals and layers overlying hard melt-freeze crusts showed greater signs of instability. Buried surface hoar layers were simulated with the snow cover model SNOWPACK and verified with avalanche observations, finding most hazardous surface hoar layers were identified with a structural stability index. Finally, the optical properties of surface hoar crystals were measured in the field with spectral instruments. Large plate-shaped crystals were less reflective at shortwave infrared wavelengths than other common surface snow grains. The methods presented in this thesis were developed into operational products that model hazardous surface hoar layers in western Canada. Further research and refinements could improve avalanche forecasts in regions prone to hazardous surface hoar layers.

  7. The role of vegetation in the stability of forested slopes

    Treesearch

    Robert R. Ziemer

    1981-01-01

    Summary - Vegetation helps stabilize forested slopes by providing root strength and by modifying the saturated soil water regime. Plant roots can anchor through the soil mass into fractures in bedrock, can cross zones of weakness to more stable soil, and can provide interlocking long fibrous binders within a weak soil mass. In Mediterranean-type climates, having warm...

  8. Impact of layer thickness and well orientation on caprock integrity for geologic carbon storage

    DOE PAGES

    Newell, P.; Martinez, M. J.; Eichhubl, P.

    2016-07-29

    Economic feasibility of geologic carbon storage demands sustaining large storage rates without damaging caprock seals. Reactivation of pre-existing or newly formed fractures may provide a leakage pathway across caprock layers. In this paper, we apply an equivalent continuum approach within a finite element framework to model the fluid-pressure-induced reactivation of pre-existing fractures within the caprock, during high-rate injection of super-critical CO 2 into a brine-saturated reservoir in a hypothetical system, using realistic geomechanical and fluid properties. We investigate the impact of reservoir to caprock layer thickness, wellbore orientation, and injection rate on overall performance of the system with respect tomore » caprock failure and leakage. We find that vertical wells result in locally higher reservoir pressures relative to horizontal injection wells for the same injection rate, with high pressure inducing caprock leakage along reactivated opening-mode fractures in the caprock. After prolonged injection, leakage along reactivated fractures in the caprock is always higher for vertical than horizontal injection wells. Furthermore, we find that low ratios of reservoir to caprock thickness favor high excess pressure and thus fracture reactivation in the caprock. Finally, injection into thick reservoir units thus lowers the risk associated with CO 2 leakage.« less

  9. Existence of global weak solution for a reduced gravity two and a half layer model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Zhenhua, E-mail: zhenhua.guo.math@gmail.com; Li, Zilai, E-mail: lizilai0917@163.com; Yao, Lei, E-mail: yaolei1056@hotmail.com

    2013-12-15

    We investigate the existence of global weak solution to a reduced gravity two and a half layer model in one-dimensional bounded spatial domain or periodic domain. Also, we show that any possible vacuum state has to vanish within finite time, then the weak solution becomes a unique strong one.

  10. Fracture Mechanics of Transverse Cracks and Edge Delamination in Graphite-Epoxy Composite Laminates.

    DTIC Science & Technology

    1982-03-01

    Fracture failure in multi-layer epoxy-based composite laminates seldom begins with breaking of the load-carrying reinforcing fibers. Rather, smeall...often observed sub-laminate fracture mudes in, e.g., glass-epoxy and graph- ite-epoxy composite laminates. Although these matrix-dominated crackings...the uicrostructures of any given fibrous composite , fracture analysis of sub-laminate cracks based on micro leanie [I Is almost Impossible If not

  11. Determination of the effect of formation water on fracture-fluid cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    Understanding hydraulic-fracture cleanup is essential for improving well stimulation. Residual gel damages fracture conductivity, shortens effective fracture half-length, and limits well productivity. The drive to develop fluids, additives, and procedures that minimize this damage continues to be a dominant theme in fracture-fluid-development programs. Fracture cleanup is a complex problem, and many parameters (e.g., fluid system, job design, flowback procedure, and reservoir conditions) can influence polymer and fluid recovery efficiencies. Often, specific products and methods that work well in one reservoir have little effect in another. Systematic analysis of fluid and polymer returns after a treatment is completed is the onlymore » way to quantify fracture cleanup. This is referred to as flowback analysis. This paper discusses a flowback-analysis field study on large hydraulic-fracturing treatments in the Taylor zone of the Cotton Valley formation in east Texas. This is a low-permeability (approximately 0.01 md) tight gas formation. It is a heterogeneous zone with layers of productive sandstone interspersed with relatively impermeable layers of shale. A typical well in this field initially produces approximately 0.75 to 1.3 MMcf/D gas and 35 to 40 bbl of water/MMcf of gas. The returns from 10 wells in this field were analyzed thoroughly.« less

  12. Strong Matrix & Weak Blocks: Evolutionary Inversion of Mélange Rheological Relationships During Subduction and Its Implications for Seismogenesis

    NASA Astrophysics Data System (ADS)

    Clarke, A. P.; Vannucchi, P.; Ougier-Simonin, A.; Morgan, J. P.

    2017-12-01

    Subduction zone interface layers are often conceived to be heterogeneous, polyrheological zones analogous to exhumed mélanges. Mélanges typically contain mechanically strong blocks within a weaker matrix. However, our geomechanical study of the Osa Mélange, SW Costa Rica shows that this mélange contains blocks of altered basalt which are now weaker in friction than their surrounding indurated volcanoclastic matrix. Triaxial deformation experiments were conducted on samples of both the altered basalt blocks and the indurated volcanoclastic matrix at confining pressures of 60 and 120 MPa. These revealed that the volcanoclastic matrix has a strength 7.5 times that of the altered basalt at 60 MPa and 4 times at 120 MPa, with the altered basalt experiencing multi-stage failure. The inverted strength relationship between weaker blocks and stronger matrix evolved during subduction and diagenesis of the melange unit by dewatering, compaction and diagenesis of the matrix and cataclastic brecciation and hydrothermal alteration of the basalt blocks. During the evolution of this material, the matrix progressively indurated until its plastic yield stress became greater than the brittle yield stress of the blocks. At this point, the typical rheological relationship found within melanges inverts and melange blocks can fail seismically as the weakest links along the subduction plate interface. The Osa Melange is currently in the forearc of the erosive Middle America Trench and is being incorporated into the subduction zone interface at the updip limit of seismogenesis. The presence of altered basalt blocks acting as weak inclusions within this rock unit weakens the mélange as a whole rock mass. Seismic fractures can nucleate at or within these weak inclusions and the size of the block may limit the size of initial microseismic rock failure. However, when fractures are able to bridge across the matrix between blocks, significantly larger rupture areas may be possible. While this mechanism is a promising candidate for the updip limit of the unusually shallow seismogenic zone beneath Osa, it remains to be seen whether analogous evolutionary strength-inversions control the updip limit of other subduction seismogenic zones.

  13. Vibrational modes of hydraulic fractures: Inference of fracture geometry from resonant frequencies and attenuation

    NASA Astrophysics Data System (ADS)

    Lipovsky, Bradley P.; Dunham, Eric M.

    2015-02-01

    Oscillatory seismic signals arising from resonant vibrations of hydraulic fractures are observed in many geologic systems, including volcanoes, glaciers and ice sheets, and hydrocarbon and geothermal reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluids within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis, valid at wavelengths greater than the fracture aperture, that accounts for quasi-static elastic deformation of the fracture walls, as well as fluid viscosity, inertia, and compressibility. In the long-wavelength limit, anomalously dispersed guided waves known as crack or Krauklis waves propagate with restoring force from fracture wall elasticity. At shorter wavelengths, the waves become sound waves within the fluid channel. Wave attenuation in our model is due to fluid viscosity, rather than seismic radiation from crack tips or fracture wall roughness. We characterize viscous damping at both low frequencies, where the flow is always fully developed, and at high frequencies, where the flow has a nearly constant velocity profile away from viscous boundary layers near the fracture walls. Most observable seismic signals from resonating fractures likely arise in the boundary layer crack wave limit, where fluid-solid coupling is pronounced and attenuation is minimal. We present a method to estimate the aperture and length of a resonating hydraulic fracture using both the seismically observed quality factor and characteristic frequency. Finally, we develop scaling relations between seismic moment and characteristic frequency that might be useful when interpreting the statistics of hydraulic fracture events.

  14. Simulating Fragmentation and Fluid-Induced Fracture in Disordered Media Using Random Finite-Element Meshes

    DOE PAGES

    Bishop, Joseph E.; Martinez, Mario J.; Newell, Pania

    2016-11-08

    Fracture and fragmentation are extremely nonlinear multiscale processes in which microscale damage mechanisms emerge at the macroscale as new fracture surfaces. Numerous numerical methods have been developed for simulating fracture initiation, propagation, and coalescence. In this paper, we present a computational approach for modeling pervasive fracture in quasi-brittle materials based on random close-packed Voronoi tessellations. Each Voronoi cell is formulated as a polyhedral finite element containing an arbitrary number of vertices and faces. Fracture surfaces are allowed to nucleate only at the intercell faces. Cohesive softening tractions are applied to new fracture surfaces in order to model the energy dissipatedmore » during fracture growth. The randomly seeded Voronoi cells provide a regularized discrete random network for representing fracture surfaces. The potential crack paths within the random network are viewed as instances of realizable crack paths within the continuum material. Mesh convergence of fracture simulations is viewed in a weak, or distributional, sense. The explicit facet representation of fractures within this approach is advantageous for modeling contact on new fracture surfaces and fluid flow within the evolving fracture network. Finally, applications of interest include fracture and fragmentation in quasi-brittle materials and geomechanical applications such as hydraulic fracturing, engineered geothermal systems, compressed-air energy storage, and carbon sequestration.« less

  15. Simulating Fragmentation and Fluid-Induced Fracture in Disordered Media Using Random Finite-Element Meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Joseph E.; Martinez, Mario J.; Newell, Pania

    Fracture and fragmentation are extremely nonlinear multiscale processes in which microscale damage mechanisms emerge at the macroscale as new fracture surfaces. Numerous numerical methods have been developed for simulating fracture initiation, propagation, and coalescence. In this paper, we present a computational approach for modeling pervasive fracture in quasi-brittle materials based on random close-packed Voronoi tessellations. Each Voronoi cell is formulated as a polyhedral finite element containing an arbitrary number of vertices and faces. Fracture surfaces are allowed to nucleate only at the intercell faces. Cohesive softening tractions are applied to new fracture surfaces in order to model the energy dissipatedmore » during fracture growth. The randomly seeded Voronoi cells provide a regularized discrete random network for representing fracture surfaces. The potential crack paths within the random network are viewed as instances of realizable crack paths within the continuum material. Mesh convergence of fracture simulations is viewed in a weak, or distributional, sense. The explicit facet representation of fractures within this approach is advantageous for modeling contact on new fracture surfaces and fluid flow within the evolving fracture network. Finally, applications of interest include fracture and fragmentation in quasi-brittle materials and geomechanical applications such as hydraulic fracturing, engineered geothermal systems, compressed-air energy storage, and carbon sequestration.« less

  16. New hydrologic model of fluid migration in deep porous media

    NASA Astrophysics Data System (ADS)

    Dmitrievsky, A.; Balanyuk, I.

    2009-04-01

    The authors present a new hydrological model of mantle processes that effect on formation of oil-and-gas bearing basins, fault tectonics and thermal convection. Any fluid migration is initially induced by lateral stresses in the crust and lithosphere which result from global geodynamic processes related to the mantle convection. The global processes are further transformed into regional movements in weakness zones. Model of porous media in deep fractured zones and idea of self-oscillation processes in mantle layers and fractured zones of the crust at different depths was used as the basis for developed concept. The content of these notions resides in the fact that there are conditions of dynamic balance in mantle layers originating as a result of combination and alternate actions of compaction and dilatance mechanisms. These mechanisms can be manifested in different combinations and under different conditions as well as can be complemented by other processes influencing on regime of fluid migration. They can act under condition of passive margin, ocean rift and ocean subduction zones as well as in consolidated platform and sheet. Self-oscillation regime, sub vertical direction of fluid flows, anomalously high layer pressure, and high level of anomalies of various geophysical fields are common for them. A certain class of fluid dynamic models describing consolidation of sedimentary basins, free oscillation processes slow and quick (at the final stage) fluid dynamic processes of the evolution of a sedimentary basin in subduction zones is considered for the first time. The last model of quick fluid dynamic processes reflects the process of formation of hydrocarbon deposits in the zones of collision of lithosphere plates. The results of numerical simulation and diagrams reflecting consecutive stages of the gas-fluid dynamic front propagation are assessed of the Pri-Caspian depression as the example. Calculations with this model will simultaneously be carried out for the sedimentary basins of Timan-Pechora region, Barents Sea, Volga-Ural area, etc. Hydrologic model of deep porous media and the idea of self-oscillation processes in fractured layers of the crust at different depths were used as the basis for developed concept. The content of these notions resides in the fact that there are conditions of dynamic balance in fractured layers originating as a result of combination and alternate actions of compaction and dilatance mechanisms. These mechanisms can be manifested in different combinations and under different conditions as well as can be complemented by other processes influencing on regime of fluid migration. They can act under condition of passive margin, rift and subduction zones as well as in consolidated platform and sheet. Self-oscillation regime, sub vertical direction of fluid flows, anomalously high layer pressure, and high level of anomalies of various geophysical fields are common for them. Specific manifestations of these mechanisms can vary in dependence on geological settings and geodynamic situations. In particular, periods of self-oscillations and depths of fractured layers can be various. Orientation of layers can be not only horizontal, but vertical as well, that is, self-oscillations can occur not only in deep porous media, but in faults and impaired fractured zones as well. Predominating vertical fluid migration can be accompanied by horizontal migration along crust waveguide. A set of fluid dynamic models is considered. Mathematical modeling of geodynamic and fluid dynamic processes in these zones seems very promising. Combined consideration of geodynamic and fluid dynamic aspects in a model of lithosphere plates collision enables to understand the influence of P-T conditions and shear deformations on the mechanism of hydrocarbon generation and to look after their migration and to explain these processes, but also to predict some features essential for the search and exploration of hydrocarbon fields in these regions and their classification. In terms of compaction models, multiphase filtration in a piezo-conduction mode and models of deep porous media major stages of fluid evolution under the conditions of developing passive margins and in the zones of collision of plates are described. In particular, compaction models of one of the stages of fluid mode evolution within a sedimentary basin and fluid migration from the convergence zones toward the upper layers are considered. In the final part of work, computation of fluid transfer of hydrocarbons in a pulse mode described by the equation of piezo-conductivity is presented for a mature oil-bearing sedimentary basin over individual sections for short periods of a few hundreds of years. These calculations were executed on the basis of a new mathematical method TEKON and computer programs for quantitative analysis of fluid migration and formation of hydrocarbon deposits with account taken for actual geometrical and lithological properties of the layers. On the basis of the specified numerical calculations the scales, form, and routes of fluid movement were disclosed, as well as the formation of zones of anomalously high rock pressure and non-traditional hydrocarbon deposits.

  17. Comparison of Rooting Strategies to Explore Rock Fractures for Shallow Soil-Adapted Tree Species with Contrasting Aboveground Growth Rates: A Greenhouse Microcosm Experiment.

    PubMed

    Nie, Yunpeng; Chen, Hongsong; Ding, Yali; Yang, Jing; Wang, Kelin

    2017-01-01

    For tree species adapted to shallow soil environments, rooting strategies that efficiently explore rock fractures are important because soil water depletion occurs frequently. However, two questions: (a) to what extent shallow soil-adapted species rely on exploring rock fractures and (b) what outcomes result from drought stress, have rarely been tested. Therefore, based on the expectation that early development of roots into deep soil layers is at the cost of aboveground growth, seedlings of three tree species ( Cyclobalanopsis glauca, Delavaya toxocarpa , and Acer cinnamomifolium ) with distinct aboveground growth rates were selected from a typical shallow soil region. In a greenhouse experiment that mimics the basic features of shallow soil environments, 1-year-old seedlings were transplanted into simulated microcosms of shallow soil overlaying fractured bedrock. Root biomass allocation and leaf physiological activities, as well as leaf δ 13 C values were investigated and compared for two treatments: regular irrigation and repeated cycles of drought stress. Our results show that the three species differed in their rooting strategies in the context of encountering rock fractures, however, these strategies were not closely related to the aboveground growth rate. For the slowest-growing seedling, C. glauca , percentages of root mass in the fractures, as well as in the soil layer between soil and bedrock increased significantly under both treatments, indicating a specialized rooting strategy that facilitated the exploration of rock fractures. Early investment in deep root growth was likely critical to the establishment of this drought-vulnerable species. For the intermediate-growing, A. cinnamomifolium , percentages of root mass in the bedrock and interface soil layers were relatively low and exhibited no obvious change under either treatment. This limited need to explore rock fractures was compensated by a conservative water use strategy. For the fast-growing, D. toxocarpa , percentages of root mass in the bedrock and interface layers increased simultaneously under drought conditions, but not under irrigated conditions. This drought-induced rooting plasticity was associated with drought avoidance by this species. Although, root development might have been affected by the simulated microcosm, contrasting results among the three species indicated that efficient use of rock fractures is not a necessary or specialized strategy of shallow-soil adapted species. The establishment and persistence of these species relied on the mutual complementation between their species-specific rooting strategies and drought adaptations.

  18. Incorporation of plasma-functionalized carbon nanostructures in composite laminates for interlaminar reinforcement and delamination crack monitoring

    NASA Astrophysics Data System (ADS)

    Kravchenko, O. G.; Pedrazzoli, D.; Kovtun, D.; Qian, X.; Manas-Zloczower, I.

    2018-01-01

    A new approach employing carbon nanostructure (CNS) buckypapers (BP) was used to prepare glass fiber/epoxy composite materials with enhanced resistance to delamination along with damage monitoring capability. The CNS-BP was subjected to plasma treatment to improve its wettability by epoxy and to promote stronger interfacial bonding. An increase up to 20% in interlaminar fracture toughness in mode I and mode II was observed in composite laminates incorporating CNS BP. Morphological analysis of the fracture surfaces indicated that failure in the conductive CNS layer provided a more effective energy dissipation mechanism, resulting in interlaminar fracture toughness increase. Moreover, fracture of the conductive CNS layer enabled damage monitoring of the composite by electrical resistance measurements upon delamination. The proposed approach provides multifunctional ply interphases, allowing to couple damage monitoring with interlaminar reinforcement of composite laminates.

  19. Interface toughness of a zirconia-veneer system and the effect of a liner application.

    PubMed

    Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui

    2014-09-01

    Chipping of veneering porcelain and delamination of a zirconia-veneer interface are 2 common clinical failure modes for zirconia-based restorations and may be partially due to weak interface bonding. The effect of liner on the bond strength of the interface has not been clearly identified. The purpose of the research was to evaluate the interface toughness between the zirconia core and veneering porcelain by means of a fracture mechanics test and to assess the effect of liner on the bond strength of the interface. Thirty bilayered beam-shape specimens were prepared and divided into 2 groups according to liner application. The specimens in each group were subdivided into 3 subgroups in accordance with 3 different veneer thicknesses. A fracture mechanics test was used on each specimen, and the energy release rate, G, and phase angle, ψ, were calculated according to the experimental results. A video microscope was used to monitor the crack propagation, and a scanning electron microscope was used to identify the fracture mode after testing. Two-way ANOVA and the Tukey honestly significant difference test were performed to analyze the experimental data (α=.05) . At each phase angle, the interfaces without a liner had higher mean G values than the interfaces with a liner. Both of the interfaces showed mixed failure mode with thin layers of a veneer or a liner that remained on the zirconia surfaces. Liner application before veneering reduced the interface toughness between zirconia and veneer. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. The Role of the Rock on Hydraulic Fracturing of Tight Shales

    NASA Astrophysics Data System (ADS)

    Suarez-Rivera, R.; Green, S.; Stanchits, S.; Yang, Y.

    2011-12-01

    Successful economic production of oil and gas from nano-darcy-range permeability, tight shale reservoirs, is achieved via massive hydraulic fracturing. This is so despite their limited hydrocarbon in place, on per unit rock volume basis. As a reference, consider a typical average porosity of 6% and an average hydrocarbon saturation of 50% to 75%. The importance of tight shales results from their large areal extent and vertical thickness. For example, the areal extent of the Anwar field in Saudi Arabia of 3230 square miles (and 300 ft thick), while the Marcellus shale alone is over 100,000 square miles (and 70 to 150 ft thick). The low permeability of the rock matrix, the predominantly mineralized rock fabric, and the high capillary forces to both brines and hydrocarbons, restrict the mobility of pore fluids in these reservoirs. Thus, one anticipates that fluids do not move very far within tight shales. Successful production, therefore results from maximizing the surface area of contact with the reservoir by massive hydraulic fracturing from horizontal bore holes. This was the conceptual breakthrough of the previous decade and the one that triggered the emergence of gas shales, and recently oily shales, as important economic sources of energy. It is now understood that the process can be made substantially more efficient, more sustainable, and more cost effective by understanding the rock. This will be the breakthrough of this decade. Microseismic monitoring, mass balance calculations, and laboratory experiments of hydraulic fracturing on tight shales indicate the development of fracture complexity and fracture propagation that can not be explained in detail in this layered heterogeneous media. It is now clear that in tight shales the large-scale formation fabric is responsible for fracture complexity. For example, the presence and pervasiveness of mineralized fractures, bed interfaces, lithologic contacts, and other types of discontinuities, and their orientation in relation to the in-situ stresses, have a dominant role in promoting fracture branching and abrupt changes in direction. In general, the problem can be conceptualized as a competition between the effect of stresses (traditional mechanics of homogeneous media) and the effect of rock fabric (the mechanics of heterogeneous media). When the stress difference is low and the rock fabric pronounced, the rock fabric defines the direction of propagation. When the stress difference is high and the fabric is weak, the stress contrast dominates the process. In real systems, both effects compete and result in the complexity that we infer from indirect observations. In this paper we discuss the role of rock fabric on fracture complexity during hydraulic fracture propagation. We show that understanding the far field stresses is not enough to understand fracture propagation and complexity. Understanding the rock-specifically the larger-scale textural features that define the reservoir fabric-is fundamental to understand fracture complexity and fracture containment. We use laboratory experiments with acoustic emission localization to monitor fracturing and making inferences about the large-scale rock behavior. We also show that the fracture geometry, even for the same connected surface area, has significant well production and reservoir recovery implications.

  1. Fiber reinforced solids possessing great fracture toughness: The role of interfacial strength

    NASA Technical Reports Server (NTRS)

    Atkins, A. G.

    1974-01-01

    The high tensile strength characteristic of strong interfacial filament/matrix bonding can be combined with the high fracture toughness of weak interfacial bonding, when the filaments are arranged to have alternate sections of high and low shear stress (and low and high toughness). Such weak and strong areas can be achieved by appropriate intermittent coating of the fibers. An analysis is presented for toughness and strength which demonstrates, in broad terms, the effects of varying the coating parameters of concern. Results show that the toughness of interfaces is an important parameter, differences in which may not be shown up in terms of interfacial strength. Some observations are made upon methods of measuring the components of toughness in composites.

  2. Microstructure anisotropy and its effect on mechanical properties of reduced activation ferritic/martensitic steel fabricated by selective laser melting

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Zhai, Yutao; Liu, Shaojun; Mao, Xiaodong

    2018-03-01

    Selective laser melting (SLM) is a promising way for the fabrication of complex reduced activation ferritic/martensitic steel components. The microstructure of the SLM built China low activation martensitic (CLAM) steel plates was observed and analyzed. The hardness, Charpy impact and tensile testing of the specimens in different orientations were performed at room temperature. The results showed that the difference in the mechanical properties was related to the anisotropy in microstructure. The planer unmelted porosity in the interface of the adjacent layers induced opening/tensile mode when the tensile samples parallel to the build direction were tested whereas the samples vertical to the build direction fractured in the shear mode with the grains being sheared in a slant angle. Moreover, the impact absorbed energy (IAE) of all impact specimens was significantly lower than that of the wrought CLAM steel, and the IAE of the samples vertical to the build direction was higher than that of the samples parallel to the build direction. The impact fracture surfaces revealed that the load parallel to the build layers caused laminated tearing among the layers, and the load vertical to the layers induced intergranular fracture across the layers.

  3. New-type steel plate with ultra high crack-arrestability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, T.; Nomiyama, Y.; Hagiwara, Y.

    1995-12-31

    A new-type steel plate has been developed by controlling the microstructure of the surface layers. The surface layer consists of ultra fine grain ferrite microstructure, which provides excellent fracture toughness even at cryogenic temperature. When an unstable brittle crack propagates in the developed steel plate, shear-lips can be easily formed due to the surface layers with ultra fine grain microstructure. Since unstable running crack behavior is strongly affected by side-ligaments (shear-lips), which are associated with extensive plastic deformation, enhanced formation of the shear-lips can improve crack arrestability. This paper describes the developed steel plates of HT500MPa tensile strength class formore » shipbuilding use. Fracture mechanics investigations using large-scale fracture testings (including ultrawide duplex ESSO tests) clarified that the developed steel plates have ultra high crack-arrestability. It was also confirmed that the plates possess sufficient properties, including weldability and workability, for ship building use.« less

  4. Multi-scale fracture networks within layered shallow water tight carbonates

    NASA Astrophysics Data System (ADS)

    Panza, Elisa; Agosta, Fabrizio; Rustichelli, Andrea; Vinciguerra, Sergio; Zambrano, Miller; Prosser, Giacomo; Tondi, Emanuele

    2015-04-01

    The work is aimed at deciphering the contribution of background deformation and persistent fracture zones on the fluid flow properties of tight platform carbonates. Taking advantage of 3D exposures present in the Murge area of southern Italy, the fracture networks crosscutting at different scales the layered Cretaceous limestone of the Altamura Fm. were analyzed. The rock multi-layer is characterized by 10's of cm-thick, sub-horizontal, laterally continuous carbonate beds. Each bed commonly represents a shallowing-upward peritidal cycle made up of homogeneous micritic limestones grading upward to cm-thick stromatolitic limestones and/or fenestral limestones. The bed interfaces are formed by sharp maximum flooding surfaces. Porosity measurements carried out on 40 limestone samples collected from a single carbonate bed show values ranging between 0,5% and 5,5%. Background deformation includes both stratabound and non-stratabound fractures. The former elements consist of bed-perpendicular joints and sheared joints, which are confined within a single bed and often displace small, bed-parallel stylolites. Non-stratabound fractures consist of incipient, cm offset, sub-vertical strike-slip faults, which crosscut the bed interfaces. The aforementioned elements are often confined within individual bed-packages, which are identified by presence of pronounced surfaces locally marked by veneers of reddish clayey paleosoils. Persistent fracture zones consist of 10's of m-high, 10's of cm-offset strike-slip faults that offset the bed-package interfaces and are confined within individual bed-packages association. Laterally discontinuous, cm- to a few m-thick paleokarstic breccia levels separate the different bed-packages associations. Persistent fracture zones include asymmetric fractured damage zones and mm-thick veneers of discontinuous fault rocks. The fracture networks that pervasively crosscut the study limestone multi-layer are investigated by mean of scanline and scanarea methodologies. The dimensional, spatial and scaling properties of both stratabound and non-stratabound fractures are documented along single beds and bed-packages, respectively. Persistent fracture zones are studied from individual bed-package associations. By computing the intensity, height distribution, aspect ratio, aperture of each fracture/fault set, DFN (Discrete Fracture Network) models are built for the aforementioned different scales of observation. DFN models of single beds and bed-packages include stratabound and non-stratabound fractures. Differently, the DFN model of a bed-packages association also includes persistent fracture zones and related damage zones. To check the results of our computations, we also build up a smaller scale, 1m3 geocellular volume in which fractures are inserted one at time in the model. All DFN models do not include the matrix porosity. Porosity and 3D permeability (Kx, Ky, Kz) values are obtained as outputs of the DFN models. The results are consistent with the most prominet set of non-stratabound fractures being the major control on the petrophysical properties of both single beds and bed-packages. As expected, the persistent fractures zones strongly affect both porosity and permeability of the bed-packages association. The results of ongoing laboratory analyses on representative limestone samples not only will provide a quantitative assessment of the physical properties of the matrix in terms of porosity and permeability, but also will shed new light on the geometry, density and anisotropy of microfractures and their role on fluid flow properties.

  5. Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Ouraga, Zady; Guy, Nicolas; Pouya, Amade

    2018-05-01

    In sedimentary basin context, numerous phenomena, depending on the geological time span, can result in natural fracture network formation. In this paper, fracture network and dynamic fracture spacing triggered by significant sedimentation rate are studied considering mode I fracture propagation using a coupled hydro-mechanical numerical methods. The focus is put on synthetic geological structure under a constant sedimentation rate on its top. This model contains vertical fracture network initially closed and homogeneously distributed. The fractures are modelled with cohesive zone model undergoing damage and the flow is described by Poiseuille's law. The effect of the behaviour of the rock is studied and the analysis leads to a pattern of fracture network and fracture spacing in the geological layer.

  6. A revisit to high-rate mode-II fracture characterization of composites with Kolsky bar techniques.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei-Yang; Song, Bo; Jin, Huiqing

    2010-03-01

    Nowadays composite materials have been extensively utilized in many military and industrial applications. For example, the newest Boeing 787 uses 50% composite (mostly carbon fiber reinforced plastic) in production. However, the weak delamination strength of fiber reinforced composites, when subjected to external impact such as ballistic impact, has been always potential serious threats to the safety of passengers. Dynamic fracture toughness is a critical indicator of the performance from delamination in such impact events. Quasi-static experimental techniques for fracture toughness have been well developed. For example, end notched flexure (ENF) technique, which is illustrated in Fig. 1, has become amore » typical method to determined mode-II fracture toughness for composites under quasi-static loading conditions. However, dynamic fracture characterization of composites has been challenging. This has resulted in conflictive and confusing conclusions in regard to strain rate effects on fracture toughness of composites.« less

  7. Microstructure and Mechanical Properties of Three-Layer TIG-Welded 2219 Aluminum Alloys with Dissimilar Heat Treatments

    NASA Astrophysics Data System (ADS)

    Zhang, Dengkui; Li, Quan; Zhao, Yue; Liu, Xianli; Song, Jianling; Wang, Guoqing; Wu, Aiping

    2018-05-01

    2219-C10S and 2219-CYS aluminum alloys are 2219 aluminum alloys with different heat treatment processes, and they have been widely used in the aerospace industry. In the present study, 2219-C10S and 2219-CYS aluminum alloys were butt-welded by three-layer tungsten inert gas arc welding (with the welding center of the third layer shifted toward the CYS side), and the microstructure characteristics and mechanical properties of the welded joint were investigated. The lamellar θ' phases, the bulk or rod θ phases, and the coarse rod-shaped or pancake-shaped Al-Cu-Fe-Mn phases coexisted in the two aluminum alloys. The Cu content of the α-Al matrix and the distribution of eutectic structures of different welding layers in the weld zone (WZ) were varied, implying that the segregation degrees of the Cu element were different due to the different welding thermal cycles in different welding layers. The microhardness values of the CYS side were much higher than those of the C10S side in each region on both sides of the joint. The tensile test deformation was concentrated mainly in the regions of WZ and the over aged zone (OAZ), where the microhardness values were relatively low. The main deformation concentrated region was transferred from the CYS side to the C10S side with the increase in the tensile load during the tensile test. The fracture behavior of the tensile test showed that the macroscopic crack initiated near the front weld toe had gone through the crack blunt region, the shear fracture region of the partially melted zone (PMZ), and the shear fracture region of OAZ. Meanwhile, the fracture characteristics gradually evolved from brittle to ductile. The concentrated stress and the dense eutectic structure in the region near the front weld toe of the C10S side contributed to the fracture of the joint. The shift of the welding center of the third layer to the CYS side resulted in two effects: (i) the microhardness values from the middle layer to the top layer in the PMZ of the CYS side were the most significantly increased and (ii) the distance between the front weld toe and the fusion line of the CYS side was significantly larger.

  8. Fault geometry and mechanics of marly carbonate multilayers: An integrated field and laboratory study from the Northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Giorgetti, C.; Collettini, C.; Scuderi, M. M.; Barchi, M. R.; Tesei, T.

    2016-12-01

    Sealing layers are often represented by sedimentary sequences characterized by alternating strong and weak lithologies. When involved in faulting processes, these mechanically heterogeneous multilayers develop complex fault geometries. Here we investigate fault initiation and evolution within a mechanical multilayer by integrating field observations and rock deformation experiments. Faults initiate with a staircase trajectory that partially reflects the mechanical properties of the involved lithologies, as suggested by our deformation experiments. However, some faults initiating at low angles in calcite-rich layers (θi = 5°-20°) and at high angles in clay-rich layers (θi = 45°-86°) indicate the important role of structural inheritance at the onset of faulting. With increasing displacement, faults develop well-organized fault cores characterized by a marly, foliated matrix embedding fragments of limestone. The angles of fault reactivation, which concentrate between 30° and 60°, are consistent with the low friction coefficient measured during our experiments on marls (μs = 0.39), indicating that clay minerals exert a main control on fault mechanics. Moreover, our integrated analysis suggests that fracturing and faulting are the main mechanisms allowing fluid circulation within the low-permeability multilayer, and that its sealing integrity can be compromised only by the activity of larger faults cutting across its entire thickness.

  9. On the interfacial fracture of porcelain/zirconia and graded zirconia dental structures.

    PubMed

    Chai, Herzl; Lee, James J-W; Mieleszko, Adam J; Chu, Stephen J; Zhang, Yu

    2014-08-01

    Porcelain fused to zirconia (PFZ) restorations are widely used in prosthetic dentistry. However, their susceptibility to fracture remains a practical problem. The failure of PFZ prostheses often involves crack initiation and growth in the porcelain, which may be followed by fracture along the porcelain/zirconia (P/Z) interface. In this work, we characterized the process of fracture in two PFZ systems, as well as a newly developed graded glass-zirconia structure with emphases placed on resistance to interfacial cracking. Thin porcelain layers were fused onto Y-TZP plates with or without the presence of a glass binder. The specimens were loaded in a four-point-bending fixture with the thin porcelain veneer in tension, simulating the lower portion of the connectors and marginal areas of a fixed dental prosthesis (FDP) during occlusal loading. The evolution of damage was observed by a video camera. The fracture was characterized by unstable growth of cracks perpendicular to the P/Z interface (channel cracks) in the porcelain layer, which was followed by stable cracking along the P/Z interface. The interfacial fracture energy GC was determined by a finite-element analysis taking into account stress-shielding effects due to the presence of adjacent channel cracks. The resulting GC was considerably less than commonly reported values for similar systems. Fracture in the graded Y-TZP samples occurred via a single channel crack at a much greater stress than for PFZ. No delamination between the residual glass layer and graded zirconia occurred in any of the tests. Combined with its enhanced resistance to edge chipping and good esthetic quality, graded Y-TZP emerges as a viable material concept for dental restorations. Copyright © 2014 Acta Materialia Inc. All rights reserved.

  10. Effects of chemical alteration on fracture mechanical properties in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Callahan, O. A.; Eichhubl, P.; Olson, J. E.

    2015-12-01

    Fault and fracture networks often control the distribution of fluids and heat in hydrothermal and epithermal systems, and in related geothermal and mineral resources. Additional chemical influences on conduit evolution are well documented, with dissolution and precipitation of mineral species potentially changing the permeability of fault-facture networks. Less well understood are the impacts of chemical alteration on the mechanical properties governing fracture growth and fracture network geometry. We use double-torsion (DT) load relaxation tests under ambient air conditions to measure the mode-I fracture toughness (KIC) and subcritical fracture growth index (SCI) of variably altered rock samples obtained from outcrop in Dixie Valley, NV. Samples from southern Dixie Valley include 1) weakly altered granite, characterized by minor sericite in plagioclase, albitization and vacuolization of feldspars, and incomplete replacement of biotite with chlorite, and 2) granite from an area of locally intense propylitic alteration with chlorite-calcite-hematite-epidote assemblages. We also evaluated samples of completely silicified gabbro obtained from the Dixie Comstock epithermal gold deposit. In the weakly altered granite KIC and SCI are 1.3 ±0.2 MPam1/2 (n=8) and 59 ±25 (n=29), respectively. In the propylitic assemblage KIC is reduced to 0.6 ±0.1 MPam1/2 (n=11), and the SCI increased to 75 ±36 (n = 33). In both cases, the altered materials have lower fracture toughness and higher SCI than is reported for common geomechanical standards such as Westerly Granite (KIC ~1.7 MPam1/2; SCI ~48). Preliminary analysis of the silicified gabbro shows a significant increase in fracture toughness, 3.6 ±0.4 MPam1/2 (n=2), and SCI, 102 ±45 (n=19), compared to published values for gabbro (2.9 MPam1/2 and SCI = 32). These results suggest that mineralogical and textural changes associated with different alteration assemblages may result in spatially variable rates of fracture initiation and growth in different parts of hydrothermal systems. Contrasting fracture mechanical properties between alteration assemblages may constitute a new mechanism of chemical-mechanical feedback that contributes to the localization of conduits in hydrothermal systems.

  11. Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates

    PubMed Central

    Ganesh, VK; Ramakrishna, K; Ghista, Dhanjoo N

    2005-01-01

    Background In the internal fixation of fractured bone by means of bone-plates fastened to the bone on its tensile surface, an on-going concern has been the excessive stress-shielding of the bone by the excessively-stiff stainless-steel plate. The compressive stress-shielding at the fracture-interface immediately after fracture-fixation delays callus formation and bone healing. Likewise, the tensile stress-shielding of the layer of the bone underneath the plate can cause osteoporosis and decrease in tensile strength of this layer. Method In order to address this problem, we propose to use stiffness-graded plates. Accordingly, we have computed (by finite-element analysis) the stress distribution in the fractured bone fixed by composite plates, whose stiffness is graded both longitudinally and transversely. Results It can be seen that the stiffness-graded composite-plates cause less stress-shielding (as an example: at 50% of the healing stage, stress at the fracture interface is compressive in nature i.e. 0.002 GPa for stainless steel plate whereas stiffness graded plates provides tensile stress of 0.002 GPa. This means that stiffness graded plate is allowing the 50% healed bone to participate in loadings). Stiffness-graded plates are more flexible, and hence permit more bending of the fractured bone. This results in higher compressive stresses induced at the fractured faces accelerate bone-healing. On the other hand, away from the fracture interface the reduced stiffness and elastic modulus of the plate causes the neutral axis of the composite structure to be lowered into the bone resulting in the higher tensile stress in the bone-layer underneath the plate, wherein is conducive to the bone preserving its tensile strength. Conclusion Stiffness graded plates (with in-built variable stiffness) are deemed to offer less stress-shielding to the bone, providing higher compressive stress at the fractured interface (to induce accelerated healing) as well as higher tensile stress in the intact portion of the bone (to prevent bone remodeling and osteoporosis). PMID:16045807

  12. Altered-stress fracturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.; Branagan, P.T.

    Altered-stress fracturing is a concept whereby a hydraulic fracture in one well is reoriented by another hydraulic fracture in a nearby location. The application is in tight, naturally fractured, anisotropic reservoirs in which conventional hydraulic fractures parallel the highly permeable natural fractures and little production enhancement is achieved by conventional hydraulic fracturing. Altered-stress fracturing can modify the stress field so that hydraulic fractures propagate across the permeable natural fractures. A field test was conducted in which stress changes of 250 to 300 psi (1.7 to 2.1 MPa) were measured in an offset well 120 ft (37 m) away during relativelymore » small minifracs in a production well. These results show that stress-altered fracturing is possible at this site and others. Analytic and finite element calculations quantify the effects of layers, stresses, and crack size. Reservoir calculations show significant enhancement compared to conventional treatments. 21 refs., 12 figs., 3 tabs.« less

  13. Weak bones in diabetes mellitus - an update on pharmaceutical treatment options.

    PubMed

    Lin, Daphne P L; Dass, Crispin R

    2018-01-01

    Diabetes mellitus is often associated with a number of complications such as nephropathy, neuropathy, retinopathy and foot ulcers. However, weak bone is a diabetic complication that is often overlooked. Although the exact mechanism for weak bones within diabetes mellitus is unclear, studies have shown that the mechanism does differ in both type I (T1DM) and type II diabetes (T2DM). This review, however, investigates the application of mesenchymal stem cells, recombinant human bone morphogenetic protein-2, teriparatide, insulin administration and the effectiveness of a peroxisome proliferator-activated receptor-ϒ modulator, netoglitazone in the context of diabetic weak bones. In T1DM, weak bones may be the result of defective osteoblast activity, the absence of insulin's anabolic effects on bone, the deregulation of the bone-pancreas negative feedback loop and advanced glycation end product (AGE) aggregation within the bone matrix as a result of hyperglycaemia. Interestingly, T2DM patients placed on insulin administration, thiazolidinediones, SGLT2 inhibitors and sulfonylureas have an associated increased fracture risk. T2DM patients are also observed to have high sclerostin levels that impair osteoblast gene transcription, AGE aggregation within bone, which compromises bone strength and a decrease in esRAGE concentration resulting in a negative association with vertebral fractures. Effective treatment options for weak bones in the context of diabetes are currently lacking. There is certainly scope for discovery and development of novel agents that could alleviate this complication in diabetes patients. © 2017 Royal Pharmaceutical Society.

  14. Deep Fracturing of the Hard Rock Surrounding a Large Underground Cavern Subjected to High Geostress: In Situ Observation and Mechanism Analysis

    NASA Astrophysics Data System (ADS)

    Feng, Xia-Ting; Pei, Shu-Feng; Jiang, Quan; Zhou, Yang-Yi; Li, Shao-Jun; Yao, Zhi-Bin

    2017-08-01

    Rocks that are far removed from caverns or tunnels peripheries and subjected to high geostress may undergo `deep fracturing'. Deep fracturing of hard rock can cause serious hazards that cause delays and increase the cost of construction of underground caverns with high sidewalls and large spans (especially when subjected to high geostress). To extensively investigate the mechanism responsible for deep fracturing, and the relationship between fracturing and the excavation & support of caverns, this paper presents a basic procedure for making in situ observations on the deep fracturing process in hard rock. The basic procedure involves predicting the stress concentration zones in the surrounding rocks of caverns induced by excavation using geomechanical techniques. Boreholes are then drilled through these stress concentration zones from pre-existing tunnels (such as auxiliary galleries) toward the caverns before its excavation. Continuous observations of the fracturing of the surrounding rocks are performed during excavation using a borehole camera in the boreholes in order to analyze the evolution of the fracturing process. The deep fracturing observed in a large underground cavern (high sidewalls and large span) in southwest China excavated in basalt under high geostress is also discussed. By continuously observing the hard rock surrounding the arch on the upstream side of the cavern during the excavation of the first three layers, it was observed that the fracturing developed into the surrounding rocks with downward excavation of the cavern. Fracturing was found at distances up to 8-9 m from the cavern periphery during the excavation of Layer III. Also, the cracks propagated along pre-existing joints or at the interfaces between quartz porphyry and the rock matrix. The relationship between deep fracturing of the surrounding rocks and the advance of the cavern working faces was analyzed during excavation of Layer Ib. The results indicate that the extent of the stress relief zone is about 7 m if footage of 3 m is adopted for the rate of advance of the cavern faces. An analysis of the effects of the initial geostress and evolving stress concentration on deep fracturing was also made. It could be concluded that the deep fracturing of the rocks in the upstream side of the cavern is caused by the combined effect of the high initial geostress, the transfer of the stress concentration zone toward the deep surrounding rocks, and the occurrence of discontinuities.

  15. An investigation of adhesive/adherend and fiber/matrix interactions. Part B: SEM/ESCA analysis of fracture surfaces

    NASA Technical Reports Server (NTRS)

    Beck, B.; Widyani, E.; Wightman, J. P.

    1983-01-01

    Adhesion was studied with emphasis on the characterization of surface oxide layers, the analysis of fracture surfaces, and the interaction of matrices and fibers. A number of surface features of the fractured lap shear samples were noted in the SEM photomicrographs including the beta phase alloy of the Ti 6-4 adherend, the imprint of the adherend on the adhesive failure surface, increased void density for high temperature samples, and the alumina filler particles. Interfacial failure of some of the fractured lap shear samples is invariably characterized by the appearance of an ESCA oxygen photopeak at 530.3 eV assigned to the surface oxide layer of Ti 6-4 adherend. The effect of grit blasting on carbon fiber composites is evident in the SEM analysis. A high surface fluorine concentration on the composite surface is reduced some ten fold by grit blasting.

  16. Characterization of Low-Melting-Point Sn-Bi-In Lead-Free Solders

    NASA Astrophysics Data System (ADS)

    Li, Qin; Ma, Ninshu; Lei, YongPing; Lin, Jian; Fu, HanGuang; Gu, Jian

    2016-11-01

    Development of lead-free solders with low melting temperature is important for substitution of Pb-based solders to reduce direct risks to human health and the environment. In the present work, Sn-Bi-In solders were studied for different ratios of Bi and Sn to obtain solders with low melting temperature. The microstructure, thermal properties, wettability, mechanical properties, and reliability of joints with Cu have been investigated. The results show that the microstructures of the Sn-Bi-In solders were composed of β-Sn, Bi, and InBi phases. The intermetallic compound (IMC) layer was mainly composed of Cu6Sn5, and its thickness increased slightly as the Bi content was increased. The melting temperature of the solders was around 100°C to 104°C. However, when the Sn content exceeded 50 wt.%, the melting range became larger and the wettability became worse. The tensile strength of the solder alloys and solder joints declined with increasing Bi content. Two fracture modes (IMC layer fracture and solder/IMC mixed fracture) were found in solder joints. The fracture mechanism of solder joints was brittle fracture. In addition, cleavage steps on the fracture surface and coarse grains in the fracture structure were comparatively apparent for higher Bi content, resulting in decreased elongation for both solder alloys and solder joints.

  17. Nonequilibrium mechanisms of weak electrolyte electrification under the action of constant voltage

    NASA Astrophysics Data System (ADS)

    Stishkov, Yu. K.; Chirkov, V. A.

    2016-07-01

    The formation of space charge in weak electrolytes, specifically in liquid dielectrics, has been considered. An analytical solution is given to a simplified set of Nernst-Planck equations that describe the formation of nonequilibrium recombination layers in weak electrolytes. This approximate analytical solution is compared with computer simulation data for a complete set of Poisson-Nernst-Planck equations. It has been shown that the current passage in weak electrolytes can be described by a single dimensionless parameter that equals the length of a near-electrode recombination layer divided by the width of the interelectrode gap. The formation mechanism and the structure of charged nonequilibrium near-electrode layers in the nonstationary regime have been analyzed for different injection-to-conduction current ratios. It has been found that almost all charge structures encountered in weak dielectrics can be accounted for by the nonequilibrium dissociation-recombination mechanism of space charge formation.

  18. Fundamental mechanisms of tensile fracture in aluminum sheet undirectionally reinforced with boron filament

    NASA Technical Reports Server (NTRS)

    Herring, H. W.

    1972-01-01

    Results are presented from an experimental study of the tensile-fracture process in aluminum sheet unidirectionally reinforced with boron filament. The tensile strength of the material is severely limited by a noncumulative fracture mechanism which involves the initiation and sustenance of a chain reaction of filament fractures at a relatively low stress level. Matrix fracture follows in a completely ductile manner. The minimum filament stress for initiation of the fracture mechanism is shown to be approximately 1.17 GN/sq m (170 ksi), and appears to be independent of filament diameter, number of filament layers, and the strength of the filament-matrix bond. All the commonly observed features of tensile fracture surfaces are explained in terms of the observed noncumulative fracture mechanism.

  19. Fundamentals of Aeronautical and Aerospace Medical Science,

    DTIC Science & Technology

    1981-07-17

    internal air bubbles and gas embol - isms can appear; over 18 kilometers it is necessary to use a pressure suit to maintain life safety. 10. Airtight...examinations have expanded this to fractures , muscle and skin injuries, blood spots, muscle tension and weakness, heart and intracranial hemorrhaging...vertebra inclines forward and when the front edge of the vertebra is subjected to a concentration of negative overweightness, fractures occur. If the

  20. Investigations at berkeley on fracture flow in rocks: From the parallel plate model to chaotic systems

    NASA Astrophysics Data System (ADS)

    Witherspoon, Paul A.

    This is a review of research at Berkeley over the past 35 years on characterization of fractured rocks and their hydrologic behavior when subjected to perturbations of various kinds. The parallel plate concept was useful as a first approach, but researchers have found that it has limitations when used to examine rough fractures and understand effects of aperture distributions on heterogeneous flow paths, especially when the fracture is deformed under stress. Results of investigations have been applied to fractured and faulted geothermal systems, where the inherent, nonisothermal conditions produce a different kind of perturbation. In 1977, the Stripa project in Sweden provided an unusual underground laboratory excavated in granite where new methods of investigating fractured rock were developed. New theoretical studies have been carried out on the fundamental role of heterogeneous flow paths in controlling fluid migration in fractured rocks. A major field study is now underway at the Yucca Mountain Project in Nevada, where a site for a radioactive waste repository may be constructed. The main effort has been to characterize the rock mass (fractured tuff) in sufficient detail so that a site scale model can be constructed and used to simulate operation of the repository. A new and entirely different problem has been identified through infiltration tests in the fractured basalt layers of the Eastern Snake River Plane in Idaho. Water flow through the unusual heterogeneities of these layers is so erratic that a model based on a hierarchy of scales is being investigated.

  1. Laser-Arc Hybrid Welding of Dissimilar Titanium Alloy and Stainless Steel Using Copper Wire

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Chen, Cong; Wang, Lei; Wang, Zemin; Zeng, Xiaoyan

    2015-05-01

    Laser-arc hybrid welding with Cu3Si filler wire was employed to join dissimilar Ti6Al4V titanium alloy and AISI316 stainless steel (316SS). The effects of welding parameters on bead shape, microstructure, mechanical properties, and fracture behavior were investigated in detail. The results show that cross-weld tensile strength of the joints is up to 212 MPa. In the joint, obvious nonuniformity of the microstructure is found in the fusion zone (FZ) and at the interfaces from the top to the bottom, which could be improved by increasing heat input. For the homogeneous joint, the FZ is characterized by Fe67- x Si x Ti33 dendrites spreading on α-Cu matrix, and the two interfaces of 316SS/FZ and FZ/Ti6Al4V are characterized by a bamboo-like 316SS layer and a CuTi2 layer, respectively. All the tensile samples fractured in the hardest CuTi2 layer at Ti6Al4V side of the joints. The fracture surface is characterized by river pattern revealing brittle cleavage fracture. The bead formation mechanisms were discussed according to the melt flow and the thermodynamic calculation.

  2. Characterization of AISI 4140 borided steels

    NASA Astrophysics Data System (ADS)

    Campos-Silva, I.; Ortiz-Domínguez, M.; López-Perrusquia, N.; Meneses-Amador, A.; Escobar-Galindo, R.; Martínez-Trinidad, J.

    2010-02-01

    The present study characterizes the surface of AISI 4140 steels exposed to the paste-boriding process. The formation of Fe 2B hard coatings was obtained in the temperature range 1123-1273 K with different exposure times, using a 4 mm thick layer of boron carbide paste over the material surface. First, the growth kinetics of boride layers at the surface of AISI 4140 steels was evaluated. Second, the presence and distribution of alloying elements on the Fe 2B phase was measured using the Glow Discharge Optical Emission Spectrometry (GDOES) technique. Further, thermal residual stresses produced on the borided phase were evaluated by X-ray diffraction (XRD) analysis. The fracture toughness of the iron boride layer of the AISI 4140 borided steels was estimated using a Vickers microindentation induced-fracture testing at a constant distance of 25 μm from the surface. The force criterion of fracture toughness was determined from the extent of brittle cracks, both parallel and perpendicular to the surface, originating at the tips of an indenter impression. The fracture toughness values obtained by the Palmqvist crack model are expressed in the form KC( π/2) > KC > KC(0) for the different applied loads and experimental parameters of the boriding process.

  3. Laser Brazing Characteristics of Al to Brass with Zn-Based Filler

    NASA Astrophysics Data System (ADS)

    Tan, Caiwang; Liu, Fuyun; Sun, Yiming; Chen, Bo; Song, Xiaoguo; Li, Liqun; Zhao, Hongyun; Feng, Jicai

    2018-05-01

    Laser brazing of Al to brass in lap configuration with Zn-based filler was performed in this work. The process parameters including laser power, defocused distance were found to have a significant influence on appearance, microstructure and mechanical properties. The process parameters were optimized to be laser power of 2700 W and defocusing distance of + 40 mm from brass surface. In addition, preheating exerted great influence on wetting and spreading ability of Zn filler on brass surface. The microstructure observation showed the thickness of reaction layer (CuZn phase) at the interface of the brass side would grow with the increase in laser power and the decrease in the laser defocusing distance. Moreover, preheating could increase the spreading area of the filler metal and induced the growth of the reaction layer. The highest tensile-shear load of the joint could reach 2100 N, which was 80% of that of Al alloy base metal. All the joints fractured along the CuZn reaction layer and brass interface. The fracture morphology displayed the characteristics of the cleavage fracture when without preheating before welding, while it displayed the characteristics of the quasi-cleavage fracture with preheating before welding.

  4. Detection of Frictional Heating on Faults Using Raman Spectra of Carbonaceous Material

    NASA Astrophysics Data System (ADS)

    Ito, K.; Ujiie, K.; Kagi, H.

    2017-12-01

    Raman spectra of carbonaceous material (RSCM) have been used as geothermometer in sedimentary and metamorphic rocks. However, it remains poorly understood whether RSCM are useful for detecting past frictional heating on faults. To detect increased heating during seismic slip, we examine the thrust fault in the Jurassic accretionary complex, central Japan. The thrust fault zone includes 10 cm-thick cataclasite and a few mm-thick dark layer. The cataclasite is characterized by fragments of black and gray chert in the black carbonaceous mudstone matrix. The dark layer is marked by intensely cracked gray chert fragments in the dark matrix of carbonaceous mudstone composition, which bounds the fractured gray chert above from the cataclasite below. The RSCM are analyzed for carbonaceous material in the cataclasite, dark layer, and host rock <10 mm from cataclasite and dark layer boundaries. The result indicates that there is no increased carbonization in the cataclasite. In contrast, the dark layer and part of host rocks <2 mm from the dark layer boundaries show prominent increase in carbonization. The absent of increased carbonization in the cataclasite could be attributed to insufficient frictional heating associated with distributed shear and/or faulting at low slip rates. The dark layer exhibits the appearance of fault and injection veins, and the dark layer boundaries are irregularly embayed or intensely cracked; these features have been characteristically observed in pseudotachylytes. Therefore, the increased carbonization in the dark layer is likely resulted from increased heating during earthquake faulting. The intensely cracked fragments in the dark layer and cracked wall rocks may reflect thermal fracturing in chert, which is caused by heat conduction from the molten zone. We suggest that RSCM are useful for the detection of increased heating on faults, particularly when the temperature is high enough for frictional melting and thermal fracturing.

  5. Complications and functional recovery in treatment of femoral shaft fractures with unreamed intramedullary nailing.

    PubMed

    Sadic, Sahmir; Custovic, Svemir; Smajic, Nedim; Fazlic, Mirsad; Vujadinovic, Aleksandar; Hrustic, Asmir; Jasarevic, Mahir

    2014-01-01

    Fracture of the femoral shaft is a common fracture encountered in orthopedic practice. In the 1939, Küntscher introduced the concept of intramedullary nailing for stabilization of long bone fractures. Intramedullary nailing has revolutionized the treatment of fractures. The study included 37 male patients and 13 female patients, averaged 39 +/- 20.5 years (range, 16 to 76 years). There were 31 left femurs and 21 right femurs fractured. 46 fractures were the result of blunt trauma. Low energy trauma was the cause of fractures in six patients, of which five in elderly females. 49 fractures were closed. Healing time given in weeks was 19.36 +/- 6.1. The overall healing rate was 93.6%. There were three (6.25%) major complications nonunion. There were one (2%) delayed union, one (2%) rotational malunion and no infection. The shortening of 1 cm were in two patients. Antercurvatum of 10 degrees was found in one patient. There was no statistically significant reduction of a motion in the hip and knee (p < 0.05). There was statistically significant in the thigh (knee extensors) muscle weakness (p < 0.001). : Intramedullary nailing is the treatment of choice for femoral shaft fractures.

  6. Assessment of carbon fibre composite fracture fixation plate using finite element analysis.

    PubMed

    Saidpour, Seyed H

    2006-07-01

    In the internal fixation of fractured bone by means of bone-plates fastened to the bone on its tensile surface, an on-going concern has been the excessive stress shielding of the bone by the excessively-stiff stainless-steel plate. The compressive stress shielding at the fracture-interface immediately after fracture-fixation delays callus formation and bone healing. Likewise, the tensile stress shielding in the layer of bone underneath the plate can cause osteoporosis and decrease in tensile strength of this layer. In this study a novel forearm internal fracture fixation plate made from short carbon fibre reinforced plastic (CFRP) was used in an attempt to address the problem. Accordingly, it has been possible to analyse the stress distribution in the composite plates using finite-element modelling. A three-dimensional, quarter-symmetric finite element model was generated for the plate system. The stress state in the underlying bone was examined for several loading conditions. Based on the analytical results the composite plate system is likely to reduce stress-shielding effects at the fracture site when subjected to bending and torsional loads. The design of the plate was further optimised by reducing the width around the innermost holes.

  7. Folding kinematics expressed in fracture patterns: An example from the Anti-Atlas fold belt, Morocco

    NASA Astrophysics Data System (ADS)

    Ismat, Zeshan

    2008-11-01

    The Anti-Atlas fold belt, Morocco, formed during the same Variscan collisional event that produced the Valley-and-Ridge fold-thrust belt of the Appalachian mountains. Both are external belts of the Appalachian-Ouachita-Mauritanides chain and at the map scale have very similar topographic expressions. The Anti-Atlas, however, consists of map-scale folds that are buckle-related, detachment folds, whereas the Valley-and-Ridge folds developed in response to imbricate thrusting. For this reason, the Anti-Atlas is referred to as a fold belt rather than a fold-thrust belt. This paper examines Variscan folding processes in the Anti-Atlas Mountains. Folding in some layers occurred by sliding along a penetrative network of mesoscale fractures, i.e. cataclastic flow, during buckling. Layer-parallel shortening fractures were reactivated in the later stages of folding to accommodate limb rotation. Although 'boutonnieres', i.e. basement uplifts, punctuate the fold belt, the fracture patterns indicate that the uplifts failed to provide any 'bending' component. Folding is also interpreted to occur under low to moderate confining pressures because the fracture network includes conjugate shear fractures with very small (˜20°) dihedral angles.

  8. Simulations of the effects of proppant placement on the conductivity and mechanical stability of hydraulic fractures

    DOE PAGES

    Bolintineanu, Dan S.; Rao, Rekha R.; Lechman, Jeremy B.; ...

    2017-11-05

    Here, we generate a wide range of models of proppant-packed fractures using discrete element simulations, and measure fracture conductivity using finite element flow simulations. This allows for a controlled computational study of proppant structure and its relationship to fracture conductivity and stress in the proppant pack. For homogeneous multi-layered packings, we observe the expected increase in fracture conductivity with increasing fracture aperture, while the stress on the proppant pack remains nearly constant. This is consistent with the expected behavior in conventional proppant-packed fractures, but the present work offers a novel quantitative analysis with an explicit geometric representation of the proppantmore » particles. In single-layered packings (i.e. proppant monolayers), there is a drastic increase in fracture conductivity as the proppant volume fraction decreases and open flow channels form. However, this also corresponds to a sharp increase in the mechanical stress on the proppant pack, as measured by the maximum normal stress relative to the side crushing strength of typical proppant particles. We also generate a variety of computational geometries that resemble highly heterogeneous proppant packings hypothesized to form during channel fracturing. In some cases, these heterogeneous packings show drastic improvements in conductivity with only moderate increase in the stress on the proppant particles, suggesting that in certain applications these structures are indeed optimal. We also compare our computer-generated structures to micro computed tomography imaging of a manually fractured laboratory-scale shale specimen, and find reasonable agreement in the geometric characteristics.« less

  9. Simulations of the effects of proppant placement on the conductivity and mechanical stability of hydraulic fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolintineanu, Dan S.; Rao, Rekha R.; Lechman, Jeremy B.

    Here, we generate a wide range of models of proppant-packed fractures using discrete element simulations, and measure fracture conductivity using finite element flow simulations. This allows for a controlled computational study of proppant structure and its relationship to fracture conductivity and stress in the proppant pack. For homogeneous multi-layered packings, we observe the expected increase in fracture conductivity with increasing fracture aperture, while the stress on the proppant pack remains nearly constant. This is consistent with the expected behavior in conventional proppant-packed fractures, but the present work offers a novel quantitative analysis with an explicit geometric representation of the proppantmore » particles. In single-layered packings (i.e. proppant monolayers), there is a drastic increase in fracture conductivity as the proppant volume fraction decreases and open flow channels form. However, this also corresponds to a sharp increase in the mechanical stress on the proppant pack, as measured by the maximum normal stress relative to the side crushing strength of typical proppant particles. We also generate a variety of computational geometries that resemble highly heterogeneous proppant packings hypothesized to form during channel fracturing. In some cases, these heterogeneous packings show drastic improvements in conductivity with only moderate increase in the stress on the proppant particles, suggesting that in certain applications these structures are indeed optimal. We also compare our computer-generated structures to micro computed tomography imaging of a manually fractured laboratory-scale shale specimen, and find reasonable agreement in the geometric characteristics.« less

  10. Estimating regional-scale permeability-depth relations in a fractured-rock terrain using groundwater-flow model calibration

    NASA Astrophysics Data System (ADS)

    Sanford, Ward E.

    2017-03-01

    The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1-10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40-60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at <300 m than the regional modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.

  11. Estimating regional-scale permeability–depth relations in a fractured-rock terrain using groundwater-flow model calibration

    USGS Publications Warehouse

    Sanford, Ward E.

    2017-01-01

    The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1–10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40–60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at <300 m than the regional modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.

  12. Celiac disease causing severe osteomalacia: an association still present in Morocco!

    PubMed

    Tahiri, Latifa; Azzouzi, Hamida; Squalli, Ghita; Abourazzak, Fatimazahra; Harzy, Taoufik

    2014-01-01

    Celiac disease (CD), a malabsorption syndrome caused by hypersensitivity to gliadin fraction of gluten. CD can manifest with classic symptoms; however, significant myopathy and multiple fractures are rarely the predominant presentation of untreated celiac disease. Osteomalacia complicating celiac disease had become more and more rare. We describe here a case of osteomalacia secondary to a longstanding untreated celiac disease. This patient complained about progressive bone and muscular pain, weakness, fractures and skeletal deformities. Radiological and laboratory findings were all in favor of severe osteomalacia. Improvement of patient's weakness and laboratory abnormalities was obvious after treatment with gluten free diet, vitamin D, calcium and iron. This case affirms that chronic untreated celiac disease, can lead to an important bone loss and irreversible complications like skeletal deformities.

  13. Celiac disease causing severe osteomalacia: an association still present in Morocco!

    PubMed Central

    Tahiri, Latifa; Azzouzi, Hamida; Squalli, Ghita; Abourazzak, Fatimazahra; Harzy, Taoufik

    2014-01-01

    Celiac disease (CD), a malabsorption syndrome caused by hypersensitivity to gliadin fraction of gluten. CD can manifest with classic symptoms; however, significant myopathy and multiple fractures are rarely the predominant presentation of untreated celiac disease. Osteomalacia complicating celiac disease had become more and more rare. We describe here a case of osteomalacia secondary to a longstanding untreated celiac disease. This patient complained about progressive bone and muscular pain, weakness, fractures and skeletal deformities. Radiological and laboratory findings were all in favor of severe osteomalacia. Improvement of patient's weakness and laboratory abnormalities was obvious after treatment with gluten free diet, vitamin D, calcium and iron. This case affirms that chronic untreated celiac disease, can lead to an important bone loss and irreversible complications like skeletal deformities. PMID:25667705

  14. Giant geode at the olecranon in the rheumatoid elbow--two case reports.

    PubMed

    Nakagawa, Natsuko; Abe, Shuji; Saegusa, Yasuhiro; Kimura, Hiroshi; Imura, Shigeaki; Nishibayashi, Yasuro; Yoshiya, Sinichi

    2004-08-01

    A single giant geode at the olecranon in a patient with rheumatoid arthritis (RA) is relatively rare, and may cause diagnostic difficulties or cause a spontaneous pathological fracture owing to weakness of the cortical bone associated with osteoporosis. We report two cases of patients presenting with single giant geodes at the olecranon. In one case we performed an open reduction and internal fixation with bone grafting for a pathological fracture due to the geode. In the other case we performed curettage of the geode with bone grafting to prevent a pathological fracture, and a synovectomy of the elbow. We suggest that the presence of a giant geode at the olecranon may necessitate surgical intervention to prevent the occurrence of a spontaneous pathological fracture.

  15. Investigation of Brittle Fractures in Graphite-Epoxy Composites Subjected to Impact

    DTIC Science & Technology

    1975-05-01

    Dspertlmew of the Army position unless so des •i•ated by othr authrized documents. Men Goverment drawings. epeOsftions. or other data we used for any...FRACTURE CHARACTERISTICS OF SOME FIBER-STRENGTHEN,1ED EPOXY RESIN SYSTEMS, E. 1. duPont de Nemours and Company, Incorporated, Wilmington, Delaware...Corporation Report TR-0172(SZ816-15)- 1, December 1971. 35 a LAYERS WITH Ela DIFFERENIT C (EACH LAYER ISOTROPIC) E la E lb t Elc E’ In Vila V lb ý VIC

  16. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers.

    PubMed

    Nap, R J; Tagliazucchi, M; Szleifer, I

    2014-01-14

    This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads to systematic, but in general small, corrections to earlier theoretical predictions describing the behavior of weak polyelectrolyte layers. However, polyelectrolyte uncharging results in a decrease in the concentration of counterions and inclusion of the Born Energy can result in a substantial decrease of the counterion concentration. The effect of considering the Born energy contribution is explored for end-grafted weak polyelectrolyte layers by calculating experimental observables which are known to depend on the presence of charges within the polyelectrolyte layer: inclusion of the Born energy contribution leads to a decrease in the capacitance of polyelectrolyte-modified electrodes, a decrease of conductivity of polyelectrolyte-modified nanopores and an increase in the repulsion exerted by a planar polyelectrolyte layer confined by an opposing wall.

  17. Dynamic fracture of the surface of an aluminum alloy under conditions of high-speed erosion

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Atroshenko, S. A.; Kazarinov, N. A.; Evstifeev, A. D.; Solov'ev, V. Yu.

    2017-04-01

    The kinetics of fracture and deformation of the standard aluminum alloy AD1 and a similar alloy subjected to severe plastic deformation by high-pressure torsion under conditions of high-speed erosion has been investigated. It has been shown that, with an increase in the loading rate, the fraction of the brittle component on the fracture surface of the standard material, as well as the thickness of the damaged layer, increases more significantly than that for the material after the severe plastic deformation by high-pressure torsion. A relationship of the surface roughness of the material after the erosion with the loading rate and the thickness of the erosion-damaged layer has been established.

  18. Comparison of Rooting Strategies to Explore Rock Fractures for Shallow Soil-Adapted Tree Species with Contrasting Aboveground Growth Rates: A Greenhouse Microcosm Experiment

    PubMed Central

    Nie, Yunpeng; Chen, Hongsong; Ding, Yali; Yang, Jing; Wang, Kelin

    2017-01-01

    For tree species adapted to shallow soil environments, rooting strategies that efficiently explore rock fractures are important because soil water depletion occurs frequently. However, two questions: (a) to what extent shallow soil-adapted species rely on exploring rock fractures and (b) what outcomes result from drought stress, have rarely been tested. Therefore, based on the expectation that early development of roots into deep soil layers is at the cost of aboveground growth, seedlings of three tree species (Cyclobalanopsis glauca, Delavaya toxocarpa, and Acer cinnamomifolium) with distinct aboveground growth rates were selected from a typical shallow soil region. In a greenhouse experiment that mimics the basic features of shallow soil environments, 1-year-old seedlings were transplanted into simulated microcosms of shallow soil overlaying fractured bedrock. Root biomass allocation and leaf physiological activities, as well as leaf δ13C values were investigated and compared for two treatments: regular irrigation and repeated cycles of drought stress. Our results show that the three species differed in their rooting strategies in the context of encountering rock fractures, however, these strategies were not closely related to the aboveground growth rate. For the slowest-growing seedling, C. glauca, percentages of root mass in the fractures, as well as in the soil layer between soil and bedrock increased significantly under both treatments, indicating a specialized rooting strategy that facilitated the exploration of rock fractures. Early investment in deep root growth was likely critical to the establishment of this drought-vulnerable species. For the intermediate-growing, A. cinnamomifolium, percentages of root mass in the bedrock and interface soil layers were relatively low and exhibited no obvious change under either treatment. This limited need to explore rock fractures was compensated by a conservative water use strategy. For the fast-growing, D. toxocarpa, percentages of root mass in the bedrock and interface layers increased simultaneously under drought conditions, but not under irrigated conditions. This drought-induced rooting plasticity was associated with drought avoidance by this species. Although, root development might have been affected by the simulated microcosm, contrasting results among the three species indicated that efficient use of rock fractures is not a necessary or specialized strategy of shallow-soil adapted species. The establishment and persistence of these species relied on the mutual complementation between their species-specific rooting strategies and drought adaptations. PMID:29018464

  19. Rock-Salt Growth-Induced (003) Cracking in a Layered Positive Electrode for Li-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hanlei; Omenya, Fredrick; Yan, Pengfei

    For the first time, the (003) cracking is observed and determined to be the major cracking mechanism for the primary particles of Ni-rich layered dioxides as the positive electrode for Li-ion batteries. Using transmission electron microscopy techniques, here we show that the propagation and fracturing of platelet-like rock-salt phase along the (003) plane of the layered oxide are the leading cause for the cracking of primary particles. The fracturing of the rock-salt platelet is induced by the stress discontinuity between the parent layered oxide and the rock-salt phase. The high nickel content is considered to be the key factor formore » the formation of the rock-salt platelet and thus the (003) cracking. The (003)-type cracking can be a major factor for the structural degradation and associated capacity fade of the layered positive electrode.« less

  20. Adhesion and interfacial fracture toughness between hard and soft materials

    NASA Astrophysics Data System (ADS)

    Rahbar, Nima; Wolf, Kurt; Orana, Argjenta; Fennimore, Roy; Zong, Zong; Meng, Juan; Papandreou, George; Maryanoff, Cynthia; Soboyejo, Wole

    2008-11-01

    This paper presents the results of a combined experimental and theoretical study of adhesion between hard and soft layers that are relevant to medical devices such as drug-eluting stents and semiconductor applications. Brazil disk specimens were used to measure the interfacial fracture energies between model parylene C and 316L stainless steel over a wide range of mode mixities. The trends in the overall fracture energies are predicted using a combination of adhesion theories and fracture mechanics concepts. The measured interfacial fracture energies are shown to be in good agreement with the predictions.

  1. Investigate feasibility of using ground penetrating radar in QC/QA of rubblization projects.

    DOT National Transportation Integrated Search

    2011-07-01

    This study investigated if Ground Penetrating Radar can offer a suitable technology for mapping the physical condition of fractured slab rapidly, particularly under the steel reinforcement, without disturbing the fractured layer. A 4000 long compo...

  2. Fractures in Carbonate-Bearing Rocks at Mars Huygens Basin

    NASA Image and Video Library

    2011-03-08

    This false-color image NASA Mars Reconnaissance Orbiter shows that fractures and possible layers are visible in the light-toned rock exposure containing the carbonates. The location is inside an unnamed crater on the uplifted rim of Huygens crater.

  3. Progressive Fracture of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2008-01-01

    A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells and the built-up composite structure global fracture are enhanced when internal pressure is combined with shear loads.

  4. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling

    NASA Astrophysics Data System (ADS)

    Goode, Daniel J.; Imbrigiotta, Thomas E.; Lacombe, Pierre J.

    2014-12-01

    Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55 years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently dipping mudstones. Despite more than 18 years of pump and treat (P&T) remediation, and natural attenuation processes, CVOC concentrations in aqueous samples pumped from these deeper strata remain elevated in isolated intervals. DNAPL was detected in one borehole during coring at a depth of 27 m. In contrast to core samples from the weathered zone, concentrations in core samples from deeper unweathered and unfractured strata are typically below detection. However, high CVOC concentrations were found in isolated samples from fissile black carbon-rich strata and fractured gray laminated strata. Aqueous-phase concentrations were correspondingly high in samples pumped from these strata via short-interval wells or packer-isolated zones in long boreholes. A refined conceptual site model considers that prior to P&T remediation groundwater flow was primarily subhorizontal in the higher-permeability near surface strata, and the bulk of contaminant mass was shallow. CVOCs diffused into these fractured and weathered mudstones. DNAPL and high concentrations of CVOCs migrated slowly down in deeper unweathered strata, primarily along isolated dipping bedding-plane fractures. After P&T began in 1995, using wells open to both shallow and deep strata, downward transport of dissolved CVOCs accelerated. Diffusion of TCE and other CVOCs from deeper fractures penetrated only a few centimeters into the unweathered rock matrix, likely due to sorption of CVOCs on rock organic carbon. Remediation in the deep, unweathered strata may benefit from the relatively limited migration of CVOCs into the rock matrix. Synthesis of rock core sampling from closely spaced boreholes with geophysical logging and hydraulic testing improves understanding of the controls on CVOC delineation and informs remediation design and monitoring.

  5. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: depth- and strata-dependent spatial variability from rock-core sampling

    USGS Publications Warehouse

    Goode, Daniel J.; Imbrigiotta, Thomas E.; Lacombe, Pierre J.

    2014-01-01

    Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55 years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently dipping mudstones. Despite more than 18 years of pump and treat (P&T) remediation, and natural attenuation processes, CVOC concentrations in aqueous samples pumped from these deeper strata remain elevated in isolated intervals. DNAPL was detected in one borehole during coring at a depth of 27 m. In contrast to core samples from the weathered zone, concentrations in core samples from deeper unweathered and unfractured strata are typically below detection. However, high CVOC concentrations were found in isolated samples from fissile black carbon-rich strata and fractured gray laminated strata. Aqueous-phase concentrations were correspondingly high in samples pumped from these strata via short-interval wells or packer-isolated zones in long boreholes. A refined conceptual site model considers that prior to P&T remediation groundwater flow was primarily subhorizontal in the higher-permeability near surface strata, and the bulk of contaminant mass was shallow. CVOCs diffused into these fractured and weathered mudstones. DNAPL and high concentrations of CVOCs migrated slowly down in deeper unweathered strata, primarily along isolated dipping bedding-plane fractures. After P&T began in 1995, using wells open to both shallow and deep strata, downward transport of dissolved CVOCs accelerated. Diffusion of TCE and other CVOCs from deeper fractures penetrated only a few centimeters into the unweathered rock matrix, likely due to sorption of CVOCs on rock organic carbon. Remediation in the deep, unweathered strata may benefit from the relatively limited migration of CVOCs into the rock matrix. Synthesis of rock core sampling from closely spaced boreholes with geophysical logging and hydraulic testing improves understanding of the controls on CVOC delineation and informs remediation design and monitoring.

  6. Effect of low appendicular lean mass, grip strength, and gait speed on the functional outcome after surgery for distal radius fractures.

    PubMed

    Roh, Young Hak; Noh, Jung Ho; Gong, Hyun Sik; Baek, Goo Hyun

    2017-12-01

    Patients with low appendicular lean mass plus slow gait speed or weak grip strength are at risk for poor functional recovery after surgery for distal radius fracture, even when they have similar radiologic outcomes. Loss of skeletal muscle mass and consequent loss in muscle function associate with aging, and this condition negatively impacts the activities of daily living and increases elderly individuals' frailty to falls. Thus, patients with low appendicular lean mass would show different functional recovery compared to those without this condition after surgery for distal radius fracture (DRF). This study compares the functional outcomes after surgery for DRF in patients with or without low appendicular lean mass plus slowness or weakness. A total of 157 patients older than 50 years of age with a DRF treated via volar plate fixation were enrolled in this prospective study. A definition of low appendicular lean mass with slowness or weakness was based on the consensus of the Asian Working Group for Sarcopenia. The researchers compared functional assessments (wrist range of motion and Michigan Hand Questionnaire [MHQ]) and radiographic assessments (radial inclination, volar tilt, ulnar variance, and articular congruity) 12 months after surgery between patients with and without low appendicular lean mass plus slowness or weakness. Multivariable regression analyses were performed to determine whether appendicular lean mass, grip strength, gait speed, patient demographic, or injury characteristics accounted for the functional outcomes. Patients with low appendicular lean mass plus slowness or weakness showed a significantly lower recovery of MHQ score than those in the control group throughout 12 months. There was no significant difference in the range of motion between the groups. The radiologic outcomes showed no significant difference between groups in terms of volar tilt, radial inclination, or ulnar variance. According to multivariable regression analysis, the poor recovery of MHQ score was associated with an increase in age, weak grip strength, and lower appendicular lean mass, and these three factors accounted for 37% of the variation in the MHQ scores. Patients with low appendicular lean mass plus slowness or weakness are at risk for poor functional recovery after surgery for DRF, even when they have similar radiologic outcomes.

  7. Study on the Mechanical Properties of Bionic Coupling Layered B4C/5083Al Composite Materials

    PubMed Central

    Zhao, Qian; Liang, Yunhong; Liu, Qingping; Zhang, Zhihui; Yu, Zhenglei; Ren, Luquan

    2018-01-01

    Based on microstructure characteristics of Meretrix lusoria shell and Rapana venosa shell, bionic coupling layered B4C/5083Al composites with different layered structures and hard/soft combination models were fabricated via hot pressed sintering. The simplified bionic coupling models with hard and soft layers were similar to layered structure and hardness tendency of shells, guiding the bionic design and fabrication. B4C/5083Al composites with various B4C contents and pure 5083Al were treated as hard and soft layers, respectively. Hot pressed sintering maintained the designed bionic structure and enhanced high bonding strength between ceramics and matrix. Compared with B4C/5083Al composites, bionic layered composites exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The hard layers absorbed applied loads in the form of intergranular fracture. Besides connection role, soft layers restrained slabbing phenomenon and reset extension direction of cracks among layers. The coupling functions of bionic composites proved the feasibility and practicability of bionic fabrication, providing a new method for improvement of ceramic/Al composite with properties of being lightweight and high mechanical strength. PMID:29701707

  8. Cooptimization of Adhesion and Power Conversion Efficiency of Organic Solar Cells by Controlling Surface Energy of Buffer Layers.

    PubMed

    Lee, Inhwa; Noh, Jonghyeon; Lee, Jung-Yong; Kim, Taek-Soo

    2017-10-25

    Here, we demonstrate the cooptimization of the interfacial fracture energy and power conversion efficiency (PCE) of poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT)-based organic solar cells (OSCs) by surface treatments of the buffer layer. The investigated surface treatments of the buffer layer simultaneously changed the crack path and interfacial fracture energy of OSCs under mechanical stress and the work function of the buffer layer. To investigate the effects of surface treatments, the work of adhesion values were calculated and matched with the experimental results based on the Owens-Wendt model. Subsequently, we fabricated OSCs on surface-treated buffer layers. In particular, ZnO layers treated with poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) simultaneously satisfied the high mechanical reliability and PCE of OSCs by achieving high work of adhesion and optimized work function.

  9. Tectonic analysis of folds in the Colorado plateau of Arizona

    NASA Technical Reports Server (NTRS)

    Davis, G. H.

    1975-01-01

    Structural mapping and analysis of folds in Phanerozoic rocks in northern Arizona, using LANDSAT-1 imagery, yielded information for a tectonic model useful in identifying regional fracture zones within the Colorado Plateau tectonic province. Since the monoclines within the province developed as a response to differential movements of basement blocks along high-angle faults, the monoclinal fold pattern records the position and trend of many elements of the regional fracture system. The Plateau is divided into a mosaic of complex, polyhedral crustal blocks whose steeply dipping faces correspond to major fracture zones. Zones of convergence and changes in the trend of the monoclinal traces reveal the corners of the blocks. Igneous (and salt) diapirs have been emplaced into many of the designated zones of crustal weakness. As loci of major fracturing, folding, and probably facies changes, the fractures exert control on the entrapment of oil and gas.

  10. Identification tibia and fibula bone fracture location using scanline algorithm

    NASA Astrophysics Data System (ADS)

    Muchtar, M. A.; Simanjuntak, S. E.; Rahmat, R. F.; Mawengkang, H.; Zarlis, M.; Sitompul, O. S.; Winanto, I. D.; Andayani, U.; Syahputra, M. F.; Siregar, I.; Nasution, T. H.

    2018-03-01

    Fracture is a condition that there is a damage in the continuity of the bone, usually caused by stress, trauma or weak bones. The tibia and fibula are two separated-long bones in the lower leg, closely linked at the knee and ankle. Tibia/fibula fracture often happen when there is too much force applied to the bone that it can withstand. One of the way to identify the location of tibia/fibula fracture is to read X-ray image manually. Visual examination requires more time and allows for errors in identification due to the noise in image. In addition, reading X-ray needs highlighting background to make the objects in X-ray image appear more clearly. Therefore, a method is required to help radiologist to identify the location of tibia/fibula fracture. We propose some image-processing techniques for processing cruris image and Scan line algorithm for the identification of fracture location. The result shows that our proposed method is able to identify it and reach up to 87.5% of accuracy.

  11. The effect of fatigue and environment on the adhesion and delamination of thin polymer films

    NASA Astrophysics Data System (ADS)

    Snodgrass, Jeffrey Matthew

    Polymers are increasingly used in the interconnect and packaging levels of microelectronic devices. Thus, adhesion of polymer films to their adjacent inorganic layers is critical to the manufacturability and reliability of microelectronic components. Weak interfacial adhesion can result in delamination, causing a loss of package hermeticity or the failure of electrical contacts. Recently, interface fracture mechanics techniques have been applied to the problem of thin film delamination and are now used to measure interface adhesion. These techniques allow for characterization of interface adhesion in terms of the critical strain energy release rate, GC, in units of J/m2. In this dissertation, studies are described that quantify the effects of fundamental parameters on the critical adhesion and resistance to subcritical (time-dependent) delamination of benzocyclobutene (BCB)/silica and epoxy underfill/polyimide interfaces. Results are presented detailing the action of small-molecule adhesion promoters on the critical interface adhesion energy of BCB/silica. Silane coupling agents with different functional end groups were used to increase chemical bonding at this interface in order to achieve optimized adhesion. Testing was performed at different mode mixities to evaluate the effect of loading mode on the polymer interface fracture. Subcritical debonding data were measured under two different loading conditions and results are presented in terms of the debond growth rate as a function of applied strain energy release rate. Monotonic loading was used to examine environment-assisted delamination processes, while fatigue loading was used to understand the effects of thermomechanical cycling. Debond growth rates over the range of 10-3 to 10-9 m/s were characterized under mode I and mixed-mode loading. Atomic force microscopy and X-ray photoelectron spectroscopy were used to characterize the fracture surfaces of these interfaces and to generate detailed information about the debond fracture path and mechanisms. The AFM and XPS results suggest that the failure mode of BCB/silica interfaces is cohesive in the BCB layer, in a region very close to the interface. Mechanical fatigue was found to considerably accelerate subcritical debond growth rates and decrease debond growth thresholds to as low as 25% of the critical adhesion energy. Fatigue loading produced fatigue striations on the BCB surface with a striation height of ˜1--2 nm and a spacing that was correlated with the debond growth rate. Finally, a model is presented for the mechanism of striation formation.

  12. Shock and thermal metamorphism of basalt by nuclear explosion, Nevada test site

    USGS Publications Warehouse

    James, O.B.

    1969-01-01

    Olivine trachybasalt metamorphosed by nuclear explosion is classified into categories of progressive metamorphism: (i) Weak. Plagioclase is microfractured, and augite cotainis fine twin lamellae. (ii) Moderate. Plagioclase is converted to glass, and mafic minerals show intragranular deformation (undulatory extinction, twin lamellae, and, possibly, deformation lamellae), but rock texture is preserved. (iii) Moderately strong. Plagioclase glass shows small-scale flow, mafic minerals are fractured and show intragranular deformation, and rocks contain tension fractures. (iv) Strong. Plagioclase glass is vesicular, augite is minutely fractured, and olivine is coarsely fragmented, shows mosaic extinction, distinctive lamellar structures, and is locally recrystallized. (v) Intense. Rocks are converted to inhomogeneous basaltic glass.

  13. Could the Geminid meteoroid stream be the result of long-term thermal fracture?

    NASA Astrophysics Data System (ADS)

    Ryabova, G.

    2015-01-01

    The previous models by Ryabova have shown that the Geminid meteoroid stream has a cometary origin, so asteroid (3200) Phaethon (the Geminids' parent body) is probably a dead comet. Recently (in 2009 and 2012) some weak activity was observed (Jewitt and Li, 2010, 2013), but it was not a cometary activity. Recurrent brightening of Phaethon at perihelion could be the result of thermal fracture and decomposition. In this study we model the long term dust release from Phaethon based on this mechanism. It is unlikely that the Geminid meteoroid stream (or its low-active wide component) was generated by long-time thermal fracture.

  14. Experimental Modeling of the Formation of Saucer-Shaped sills

    NASA Astrophysics Data System (ADS)

    Galland, O.; Planke, S.; Malthe-Sorenssen, A.

    2007-12-01

    Many magma intrusions in sedimentary basins are sills, and especially saucer-shaped sills. These features are observed in many places (i.e. South Africa; the Norwegian and North Sea; Siberia; Argentina). Sand injectites exhibit similar geometries. The occurrence of such features in so various settings suggests that their emplacement results from fundamental processes in sedimentary basins. To understand such processes, we performed experimental modeling of saucer-shaped sill emplacement. The experiments consist of injecting a molten low viscosity vegetable oil (model magma) at a constant flow rate into a fine-grained Coulomb silica flour (model rock). When the oil starts intruding, the initially flat surface of the model inflates and forms a smooth dome. At the end of the experiment, the oil erupts at the edge of the dome. After the experiment, the oil cools and solidifies, the resulting solid intrusion is unburied and exposed, and its upper surface digitalized. For our purpose, we did our experiments without external deformation. We performed two series of experiments with varying depth of injection. The first series consisted of injection into a homogeneous medium. The resulting intrusions were cone-sheets and dykes. The second series consisted of heterogeneous models where the heterogeneity was a weak layer made of a flexible net. The resulting intrusions were made of (1) a horizontal basal sill emplaced along the weakness, and (2) inclined sheets nucleating at the edges of the basal sill and propagating upward and outward. The inclined sheets exhibited a convex shape, i.e. a decreasing slope outward. In addition, the deeper the sills emplaced, the larger they were. Our experimental results are consistent with saucer-shaped features in nature. We infer from our results that the transition between the basal sills and the inclined sheets results from a transition of emplacement processes. We suggest that the basal sill emplace by open (mode I) fracturing, whereas the inclined sheets result from shear (mode II) fracturing, i.e. along faults at the edge of the dome.

  15. XFEM modeling of hydraulic fracture in porous rocks with natural fractures

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo

    2017-08-01

    Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

  16. New observations on mid-plate volcanism and the tectonic history of the Pacific plate, Tahiti to Easter microplate

    NASA Astrophysics Data System (ADS)

    Searle, R. C.; Francheteau, J.; Cornaglia, B.

    1995-04-01

    We describe the geology and tectonics of a continuous swathe of seafloor between Tahiti and the western edge of the Easter microplate imaged by GLORIA and Sea Beam on two separate cruise transits in 1987 and 1988. The data reveal that mid-plate volcanism is common in this region, even on deep seafloor hundreds of kilometres from major lines of seamounts and islands. This supports the idea of a thin weak lithosphere over the Pacific Superswell, and the idea that the tops of major mantle plumes may spread out over diameters of the order of 1000 km. The mid-plate volcanism occurs in two distinct forms. Over most of our traverse it appears as fields of relatively young and acoustically strongly backscattering lava flows, often accompanied by groups of numerous small, circular volcanoes. East of 122° W (about chron 5A), however, we observed a distinct form: major, sharp-crested, constructional volcanic ridges, many tens of kilometres long, individually trending ENE, but lying en-echelon along an E-W regional trend. These ridges appear morphologically identical to the 'cross-grain ridges' seen elsewhere in the Pacific. We attribute their formation to magma supplied from the regionally hot mantle leaking along tectonic lines of weakness. However, although these ridges are parallel to fracture zone trends seen farther west, they are morphologically very different from any known fracture zone. Moreover, individual ridges are somewhat oblique to the tectonic spreading fabric around them, and so do not seem to follow actual fracture zone traces. The whole line of en-echelon ridges lies along part of the predicted trace of Fracture Zone 2 of Okal and Cazenave [15], and is probably its morphological expression. However, nowhere did we see a convincing 'conventional' fracture zone trace in or following the predicted position or orientation. We suggest instead that magma from an independent source has used lines of weakness along minor fracture zones to produce these en-echelon features. The Austral Fracture Zone is the only major fracture zone crossed in our transit, and here is characterised by four fossil transform strands. Its marked position on the AAPG and GEBCO maps is found to be in error. Finally, we found that the expected change from NNW- to NNE-trending spreading fabric at chron 6C did not occur in a clear-cut way, as predicted by earlier tectonic histories of the Pacific. Instead, the post-chron 6C fabric oscillates in a confused way between NNE and NNW, suggesting to us that this area has been characterised by an unstable plate boundary, probably associated with a succession of propagating rifts or microplates from chron 6C to the present.

  17. Brachial Plexus Injury in a 6-Year-Old Boy with 100% Displaced Proximal Humeral Metaphyseal Fracture: A Case Presentation.

    PubMed

    Jovanovich, Elizabeth Nora; Howard, James F

    2017-12-01

    Posttraumatic brachial plexopathies can occur following displaced proximal humeral fractures, causing profound functional deficits. Described here is an unusual case of a displaced proximal humeral metaphyseal fracture in a young child. The patient underwent closed reduction and serial casting, but hand weakness and forearm sensory loss persisted. Needle electromyography localized the injury to the mid/proximal arm near the fracture site, resulting in damage to the posterior and medial cords of the brachial plexus with profound involvement of the radial, ulnar, and median nerves and sparing of the axillary nerve. After months of occupational therapy, hand strength improved, with a nearly full return of function. V. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  18. Complications and Functional Recovery in Treatment of Femoral Shaft Fractures with Unreamed Intramedullary Nailing

    PubMed Central

    Sadic, Sahmir; Custovic, Svemir; Smajic, Nedim; Fazlic, Mirsad; Vujadinovic, Aleksandar; Hrustic, Asmir; Jasarevic, Mahir

    2014-01-01

    ABSTRACT Introduction: Fracture of the femoral shaft is a common fracture encountered in orthopedic practice. In the 1939, Küntscher introduced the concept of intramedullary nailing for stabilization of long bone fractures. Intramedullary nailing has revolutionized the treatment of fractures. Material and methods: The study included 37 male patients and 13 female patients, averaged 39±20,5 years (range, 16 to 76 years). Results and discussion: There were 31 left femurs and 21 right femurs fractured. 46 fractures were the result of blunt trauma. Low energy trauma was the cause of fractures in six patients, of which five in elderly females. 49 fractures were closed. Healing time given in weeks was 19,36 ± 6,1. The overall healing rate was 93,6%. There were three (6,25%) major complications nonunion. There were one (2%) delayed union, one (2%) rotational malunion and no infection. The shortening of 1 cm were in two patients. Antercurvatum of 10 degrees was found in one patient. There was no statistically significant reduction of a motion in the hip and knee (p<0.05). There was statistically significant in the thigh (knee extensors) muscle weakness (p<0.001). Conclusion: Intramedullary nailing is the treatment of choice for femoral shaft fractures. PMID:24783908

  19. Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E, J. C.; Huang, J. Y.; Bie, B. X.

    Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less

  20. Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study

    DOE PAGES

    E, J. C.; Huang, J. Y.; Bie, B. X.; ...

    2016-08-02

    Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less

  1. Multiscale Multifunctional Progressive Fracture of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Minnetyan, L.

    2012-01-01

    A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells. Global fracture is enhanced when internal pressure is combined with shear loads. The old reference denotes that nothing has been added to this comprehensive report since then.

  2. Fracture surfaces of granular pastes.

    PubMed

    Mohamed Abdelhaye, Y O; Chaouche, M; Van Damme, H

    2013-11-01

    Granular pastes are dense dispersions of non-colloidal grains in a simple or a complex fluid. Typical examples are the coating, gluing or sealing mortars used in building applications. We study the cohesive rupture of thick mortar layers in a simple pulling test where the paste is initially confined between two flat surfaces. After hardening, the morphology of the fracture surfaces was investigated, using either the box counting method to analyze fracture profiles perpendicular to the mean fracture plane, or the slit-island method to analyze the islands obtained by cutting the fracture surfaces at different heights, parallel to the mean fracture plane. The fracture surfaces were shown to exhibit scaling properties over several decades. However, contrary to what has been observed in the brittle or ductile fracture of solid materials, the islands were shown to be mass fractals. This was related to the extensive plastic flow involved in the fracture process.

  3. Formation of a Crack-Free, Hybrid Skin Layer with Tunable Surface Topography and Improved Gas Permeation Selectivity on Elastomers Using Gel–Liquid Infiltration Polymerization

    DOE PAGES

    Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.; ...

    2017-07-31

    Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less

  4. Formation of a Crack-Free, Hybrid Skin Layer with Tunable Surface Topography and Improved Gas Permeation Selectivity on Elastomers Using Gel–Liquid Infiltration Polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.

    Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Kyoungsoo, E-mail: kpark16@illinois.ed; Paulino, Glaucio H.; Roesler, Jeffery

    A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total fracture energy of plain concrete, while the fiber bridging zone is associated with the difference between the total fracture energy of fiber reinforced concrete and the total fracture energy of plain concrete. The cohesive fracture model is defined by experimental fracture parameters, which are obtained through three-point bending and split tensile tests. As expected, the model describes fracture behavior of plain concrete beams. Inmore » addition, it predicts the fracture behavior of either fiber reinforced concrete beams or a combination of plain and fiber reinforced concrete functionally layered in a single beam specimen. The validated model is also applied to investigate continuously, functionally graded fiber reinforced concrete composites.« less

  6. Journal of Special Operations Medicine, Training Supplement. Winter 2011

    DTIC Science & Technology

    2011-01-01

    hours. 9. Ort/lQped;.;iCompartment $)’ndlQlTle memogemeot: a. AppIV lract~n splints a reqUIred. b. Rease" fractures aod spitnlin position of...Continue analgesia a5 required. 11. ReasSGSS fractures and nGurovaacular slalUl. • • Considef use or traenon S~inl&_ 12. Antlbiolic:s: s...or AGE. A. Arterial gat embolism (AGE) - uncomciooJSf\\ess. paralysis. weakness. fatigue. iatJle araaa Clf abnormal sensations. COfflUlsICIns

  7. Geochemical modelling of EGS fracture stimulation applying weak and strong acid treatments

    NASA Astrophysics Data System (ADS)

    Sigfusson, Bergur; Sif Pind Aradottir, Edda

    2015-04-01

    Engineered Geothermal systems (EGS) provide geothermal power by tapping into the Earth's deep geothermal resources that are otherwise not exploitable due to lack of water and fractures, location or rock type. EGS technologies have the potential to cost effectively produce large amounts of electricity almost anywhere in the world. The EGS technology creates permeability in the rock by hydro-fracturing the reservoir with cold water pumped into the first well (the injection well) at a high pressure. The second well (the production well) intersects the stimulated fracture system and returns the hot water to the surface where electricity can be generated. A significant technological hurdle is ensuring effective connection between the wells and the fracture system and to control the deep-rooted fractures (can exceed 5 000 m depth). A large area for heat transfer and sufficient mass flow needs to be ensured between wells without creating fast flowing paths in the fracture network. Maintaining flow through the fracture system can cause considerable energy penalty to the overall process. Therefore, chemical methods to maintain fractures and prevent scaling can be necessary to prevent excessive pressure build up in the re-injection wells of EGS systems. The effect of different acid treatments on the porosity development of selected rock types was simulated with the aid of the Petrasim interface to the Toughreact simulation code. The thermodynamic and kinetic database of Aradottir et al. (2014) was expanded to include new minerals and the most important fluoride bearing species involved in mineral reactions during acid stimulation of geothermal systems. A series of simulations with injection waters containing fluoric acid, hydrochloric acid and CO2 or mixtures thereof were then carried out and porosity development in the fracture system monitored. The periodic injection of weak acid mixtures into EGS systems may be cost effective in some isolated cases to prevent pressure build-up and therefore lowering pumping costs during operation. Selection of the acid is though highly dependent on the chemistry of the reservoir in question. Reference Aradottir, E. S. P., Gunnarsson, I., Sigfusson, B., Gunnarsson, G., Juliusson, B. M., Gunnlaugsson, E., Sigurdardóttir, H., Arnarson, M. T., Sonnenthal, E., 2014. Toward Cleaner Geothermal Energy Utilization: Capturing and Sequestering CO2 and H2S Emissions from Geothermal Power Plants. Transport in Porous Media. DOI 10.1007s/11242-014-0316-5

  8. Castiglione (Oletta, Corsica): relationships between phenomena of calcification and tectonic fossiliferous fracture dating

    NASA Astrophysics Data System (ADS)

    Pereira, Elisabeth; Rouzaud, François; Salotti, Michelle; Dubois, Jean-Noël; Ferrandini, Jean; Ottaviani-Spella, Marie-Madeleine; Quinif, Yves

    Six cavities have been discovered in the Oletta massif. The massif, today constitued of Schistes lustrés with several metres of calcareous layers above them, has undergone intense fracturing. The networks of cavities are organised along north-south and subequatorial directions, and form a narrow bayonnet-network. All the elements in the galleries appear to be karstic: stalagmites, stalactites and calcitic deposits along the walls; but no trace of dissolution or excavation was found. Thus, the origin of the galleries is only tectonic, while the calcitic deposits result from the dissolution of the old, thick calcareous layers above, which are no longer present. The thickness and the volume of the calcitic deposits, which is variable depending on the galleries, indicates the chronology of the different tectonic periods which have fractured the massif. Five tectonic and successsive events have been detected. Calcitic datings confirm the timing of successional fracturing, indicating also the variable age of the fossiliferous Middle Pleistocene deposits found in these cavities.

  9. High Temperature Fracture Characteristics of a Nanostructured Ferritic Alloy (NFA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, Thak Sang; Kim, Jeoung H; Ji Hyun, Yoon

    2010-01-01

    High temperature fracture behavior has been investigated for the nanostructured ferritic alloy 14YWT (SM10). The fracture toughness of the alloy was above 140 MPa m at low temperatures, room temperature (RT) and 200 C, but decreased to a low fracture toughness range of 52 82 MPa m at higher temperatures up to 700 C. This behavior was explained by the fractography results indicating that the unique nanostructure of 14YWT alloy produced shallow plasticity layers at high temperatures and a low-ductility grain boundary debonding occurred at 700 C.

  10. Resistivity method contribution in determining of fault zone and hydro-geophysical characteristics of carbonate aquifer, eastern desert, Egypt

    NASA Astrophysics Data System (ADS)

    Ammar, A. I.; Kamal, K. A.

    2018-03-01

    Determination of fault zone and hydro-geophysical characteristics of the fractured aquifers are complicated, because their fractures are controlled by different factors. Therefore, 60 VESs were carried out as well as 17 productive wells for determining the locations of the fault zones and the characteristics of the carbonate aquifer at the eastern desert, Egypt. The general curve type of the recorded rock units was QKH. These curves were used in delineating the zones of faults according to the application of the new assumptions. The main aquifer was included at end of the K-curve type and front of the H-curve type. The subsurface layers classified into seven different geoelectric layers. The fractured shaly limestone and fractured limestone layers were the main aquifer and their resistivity changed from low to medium (11-93 Ω m). The hydro-geophysical properties of this aquifer such as the areas of very high, high, and intermediate fracture densities of high groundwater accumulations, salinity, shale content, porosity distribution, and recharging and flowing of groundwater were determined. The statistical analysis appeared that depending of aquifer resistivity on the water salinities (T.D.S.) and water resistivities add to the fracture density and shale content. The T.D.S. increasing were controlled by Na+, Cl-, Ca2+, Mg2+, and then (SO4)2-, respectively. The porosity was calculated and its average value was 19%. The hydrochemical analysis of groundwater appeared that its type was brackish and the arrangements of cation concentrations were Na+ > Ca2+ > Mg2+ > K+ and anion concentrations were Cl- > (SO4)2- > HCO3 - > CO3 -. The groundwater was characterized by sodium-bicarbonate and sodium-sulfate genetic water types and meteoric in origin. Hence, it can use the DC-resistivity method in delineating the fault zone and determining the hydro-geophysical characteristics of the fractured aquifer with taking into account the quality of measurements and interpretation.

  11. Heterogeneities of mechanical properties in potential geothermal reservoir rocks of the North German Basin

    NASA Astrophysics Data System (ADS)

    Reyer, D.; Philipp, S. L.

    2012-04-01

    Heterogeneous rock properties in terms of layering and complex infrastructure of fault zones are typical phenomena in sedimentary basins such as the North German Basin. To be able to model reservoir stimulation in layered stratifications and to better adapt the drilling strategy to the rock mechanical conditions it is important to have knowledge about the effects of heterogeneous rock properties on fracture propagation and fault zone infrastructure for typical sedimentary reservoir rocks in the North German Basin. Therefore we aim at quantifying these properties by performing structural geological field studies in outcrop analogues combined with laboratory analyses. The field studies in Rotliegend sandstones (Lower Permian), the sandstones of the Middle Bunter (Lower Triassic) and the sandstones of the Upper Keuper (Upper Triassic) focus on 1) host rock fracture systems and 2) fault zone infrastructure. We analyse quantitatively the dimension, geometry, persistence and connectivity of fracture systems separately for host rocks and fault damage zones. The results show that in rocks with distinctive layering (sandstones and shales) natural fractures are often restricted to individual layers, that is, they are stratabound. The probability of fracture arrest seems to depend on the stiffness contrast between the two layers and on the thickness of the softer layer. The field studies are complemented by systematic sampling to obtain mechanical property variations caused by the layering. For the samples we measure the parameters Young's modulus, compressive and tensile strengths, elastic strain energy, density and porosity. The results show that the mechanical properties vary considerably and many samples are clearly anisotropic. That is, samples taken perpendicular to layering commonly have higher strengths but lower stiffnesses than those taken parallel to layering. We combine the results of laboratory analyses and field measurements to specify the mechanical heterogeneities of the sedimentary reservoir rocks of the North German Basin and of the mechanical units of fault zones therein. To estimate the in situ rock properties at different depths it is further important to understand how rocks from outcrops differ from rocks at depth (for example due to alteration and removal of the overburden load). To answer these questions we analyse samples from drill cores from depths relevant for the use as geothermal reservoirs which are stratigraphically and lithologically equivalent to those taken in outcrop analogues. The results from drill-core sample analyses are then compared with the results from the outcrop samples. Another approach is to analyse how rock mechanical properties correlate with petrographic properties (e.g., mineral content, cementation, fabric, porosity) to use this knowledge to extrapolate the data to depth. Altogether these results will be very useful to make better assumptions on natural reservoir permeabilities and to better adapt the drilling and reservoir stimulation strategy to the rock mechanical conditions.

  12. Performance Evaluation and Durability Studies of Adhesive Bonds

    NASA Astrophysics Data System (ADS)

    Ranade, Shantanu Rajendra

    In this thesis, four test approaches were developed to characterize the adhesion performance and durability of adhesive bonds for specific applications in areas spanning from structural adhesive joints to popular confectionaries such as chewing gum. In the first chapter, a double cantilever beam (DCB) specimen geometry is proposed for combinatorial fracture studies of structural adhesive bonds. This specimen geometry enabled the characterization of fracture energy vs. bondline thickness trends through fewer tests than those required during a conventional "one at a time" characterization approach, potentially offering a significant reduction in characterization times. The second chapter investigates the adhesive fracture resistance and crack path selection in adhesive joints containing patterns of discreet localized weak interfaces created using physical vapor deposition of copper. In a DCB specimen tested under mode-I conditions, fracture energy within the patterned regions scaled according to a simple rule of mixture, while reverse R-curve and R-curve type trends were observed in the regions surrounding weak interface patterns. Under mixed mode conditions such that bonding surface with patterns is subjected to axial tension, fracture energy did not show R-curve type trends while it was observed that a crack could be made to avoid exceptionally weak interfaces when loaded such that bonding surface with defects is subjected to axial compression. In the third chapter, an adaptation of the probe tack test is proposed to characterize the adhesion behavior of gum cuds. This test method allowed the introduction of substrates with well-defined surface energies and topologies to study their effects on gum cud adhesion. This approach and reported insights could potentially be useful in developing chewing gum formulations that facilitate easy removal of improperly discarded gum cuds from adhering surfaces. In the fourth chapter we highlight a procedure to obtain insights into the long-term performance of silicone sealants designed for load-bearing applications such as solar panel support sealants. Using small strain constitutive tests and time-temperature-superposition principle, thermal shift factors were obtained and successfully used to characterize the creep rupture master curves for specific joint configurations, leading to insights into delayed failures corresponding to three years through experiments carried out in one month.

  13. A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions: FULLY COUPLED PARALLEL SIMULATION OF HYDRAULIC FRACTURES IN 3-D

    DOE PAGES

    Settgast, Randolph R.; Fu, Pengcheng; Walsh, Stuart D. C.; ...

    2016-09-18

    This study describes a fully coupled finite element/finite volume approach for simulating field-scale hydraulically driven fractures in three dimensions, using massively parallel computing platforms. The proposed method is capable of capturing realistic representations of local heterogeneities, layering and natural fracture networks in a reservoir. A detailed description of the numerical implementation is provided, along with numerical studies comparing the model with both analytical solutions and experimental results. The results demonstrate the effectiveness of the proposed method for modeling large-scale problems involving hydraulically driven fractures in three dimensions.

  14. A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions: FULLY COUPLED PARALLEL SIMULATION OF HYDRAULIC FRACTURES IN 3-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Settgast, Randolph R.; Fu, Pengcheng; Walsh, Stuart D. C.

    This study describes a fully coupled finite element/finite volume approach for simulating field-scale hydraulically driven fractures in three dimensions, using massively parallel computing platforms. The proposed method is capable of capturing realistic representations of local heterogeneities, layering and natural fracture networks in a reservoir. A detailed description of the numerical implementation is provided, along with numerical studies comparing the model with both analytical solutions and experimental results. The results demonstrate the effectiveness of the proposed method for modeling large-scale problems involving hydraulically driven fractures in three dimensions.

  15. Spatial distribution of the human enamel fracture toughness with aging.

    PubMed

    Zheng, Qinghua; Xu, Haiping; Song, Fan; Zhang, Lan; Zhou, Xuedong; Shao, Yingfeng; Huang, Dingming

    2013-10-01

    A better understanding of the fracture toughness (KIC) of human enamel and the changes induced by aging is important for the clinical treatment of teeth cracks and fractures. We conducted microindentation tests and chemical content measurements on molar teeth from "young" (18 ≤ age ≤ 25) and "old" (55 ≤ age) patients. The KIC and the mineral contents (calcium and phosphorus) in the outer, the middle, and the inner enamel layers within the cuspal and the intercuspal regions of the crown were measured through the Vickers toughness test and Energy Dispersive X-Ray Spectroscopy (EDS), respectively. The elastic modulus used for the KIC calculation was measured through atomic force microscope (AFM)-based nanoindentation tests. In the outer enamel layer, two direction-specific values of the KIC were calculated separately (direction I, crack running parallel to the occlusal surface; direction II, perpendicular to direction I). The mean KIC of the outer enamel layer was lower than that of the internal layers (p<0.05). No other region-related differences in the mechanical properties were found in both groups. In the outer enamel layer, old enamel has a lower KIC, II and higher mineral contents than young enamel (p<0.05). The enamel surface becomes more prone to cracks with aging partly due to the reduction in the interprismatic organic matrix observed with the maturation of enamel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Architecture of the hydrophobic and hydrophilic layers as found from crystal structure analysis of N-benzyl-N,N-dimethylalkylammonium bromides.

    PubMed

    Hodorowicz, Maciej; Stadnicka, Katarzyna; Czapkiewicz, Jan

    2005-10-01

    The molecular and crystal structures of N-benzyl-N,N-dimethylalkylammonium bromides monohydrates with chain length n=8-10 have been determined. The crystals are isostructural with the N-benzyl-N,N-dimethyldodecylammonium bromide monohydrate. The structures consist of alternated hydrophobic and hydrophilic layers perpendicular to [001]. The attraction between N+ of the cation head-groups and Br- anions is achieved through weak C_H...Br interactions. The water molecules incorporated into ionic layers are donors for two O_H...Br hydrogen bonds and serve as the acceptors in two weak interactions of C_H...O type. The methylene chains, with the slightly curved general shape, have the extended all-trans conformation. The mutual packing of the chains in the hydrophobic layers is governed by weak C_H...pi interactions.

  17. Ultrasonic-assisted soldering of fine-grained 7034 aluminum alloy using Sn-Zn solders below 300°C.

    PubMed

    Guo, Weibing; Luan, Tianmin; He, Jingshan; Yan, Jiuchun

    2018-01-01

    The fine-grained Al alloys prefer to be soldered at as low as temperature to keep their mechanical properties. Solders of Sn-4Zn, Sn-9Zn, and Sn-20Zn alloys were used to solder fine-grained 7034 Al alloy pieces by ultrasonic-assisted soldering below 300°C in air. The joint using Sn-4Zn solder had the highest tensile strength of 201MPa and the fractures occurred in both β-Sn and Sn-Zn eutectic phases. Such joint was much stronger than the 1060 Al joint using Sn-4Zn solder, and its strength had approached the strength of 7034 Al joint using Zn-5Al solder. The strength of the joints using Sn-9Zn and Sn-20Zn solders dropped to∼160MPa due to the appearance of weak interfaces between η-Zn and eutectic phases in the bond layers. All the joints using Sn-Zn solders had very strong interfacial bonding, and alumina interlayers were identified at all the interfaces. Al dissolved in the bond layer reacted with the O rapidly to form alumina interlayers at the interfaces under the ultrasonic action. Zn segregated at the interface and formed strong bonds with both the Al terminated surface of alumina and the bond layer, resulting in strong interfacial bonding between Sn-Zn solders and Al alloys. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Uniaxial experimental study of the acoustic emission and deformation behavior of composite rock based on 3D digital image correlation (DIC)

    NASA Astrophysics Data System (ADS)

    Cheng, Jian-Long; Yang, Sheng-Qi; Chen, Kui; Ma, Dan; Li, Feng-Yuan; Wang, Li-Ming

    2017-12-01

    In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0{°}-45{°} specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60{°}-90{°} specimens gradually increased during the loading process. When the anisotropic angle θ increased from 0{°} to 90{°}, the peak strength, peak strain, and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories: tensile fracture across the discontinuities (θ = 0{°}-30{°}), sliding failure along the discontinuities (θ = 45{°}-75{°}), and tensile-split along the discontinuities (θ = 90{°}). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0{°}-45{°} specimens and was almost the same as that of the θ = 60{°}-90{°} specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0{°}-30{°} specimens appeared in the rock matrix approximately parallel to the loading direction, while in the θ = 45{°}-90{°} specimens it appeared at the hard and weak rock layer interface.

  19. Magnetotelluric study of the Pahute Mesa and Oasis Valley regions, Nye County, Nevada

    USGS Publications Warehouse

    Schenkel, Clifford J.; Hildenbrand, Thomas G.; Dixon, Gary L.

    1999-01-01

    Magnetotelluric data delineate distinct layers and lateral variations above the pre-Tertiary basement. On Pahute Mesa, three resistivity layers associated with the volcanic rocks are defined: a moderately resistive surface layer, an underlying conductive layer, and a deep resistive layer. Considerable geologic information can be derived from the conductive layer which extents from near the water table down to a depth of approximately 2 km. The increase in conductivity is probably related to zeolite zonation observed in the volcanic rock on Pahute Mesa, which is relatively impermeable to groundwater flow unless fractured. Inferred faults within this conductive layer are modeled on several profiles crossing the Thirsty Canyon fault zone. This fault zone extends from Pahute Mesa into Oasis Valley basin. Near Colson Pond where the basement is shallow, the Thirsty Canyon fault zone is several (~2.5) kilometers wide. Due to the indicated vertical offsets associated with the Thirsty Canyon fault zone, the fault zone may act as a barrier to transverse (E-W) groundwater flow by juxtaposing rocks of different permeabilities. We propose that the Thirsty Canyon fault zone diverts water southward from Pahute Mesa to Oasis Valley. The electrically conductive nature of this fault zone indicates the presence of abundant alteration minerals or a dense network of open and interconnected fractures filled with electrically conductive groundwater. The formation of alteration minerals require the presence of water suggesting that an extensive interconnected fracture system exists or existed at one time. Thus, the fractures within the fault zone may be either a barrier or a conduit for groundwater flow, depending on the degree of alteration and the volume of open pore space. In Oasis Valley basin, a conductive surface layer, composed of alluvium and possibly altered volcanic rocks, extends to a depth of 300 to 500 m. The underlying volcanic layer, composed mostly of tuffs, fills the basin with about 3-3.5 km of relief on basement. A fault zone, related to the southern margin of the basin, appears to extend up to a depth of about 500 m. The path of groundwater encountering this fault zone is uncertain but may be either to the southwest towards Beatty or to the south towards Crater Flat.

  20. Dimensional crossover of electron weak localization in ZnO/TiO{sub x} stacked layers grown by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.

    2016-01-25

    We report on the dimensional crossover of electron weak localization in ZnO/TiO{sub x} stacked layers having well-defined and spatially-localized Ti dopant profiles along film thickness. These films were grown by in situ incorporation of sub-monolayer TiO{sub x} on the growing ZnO film surface and subsequent overgrowth of thin conducting ZnO spacer layer using atomic layer deposition. Film thickness was varied in the range of ∼6–65 nm by vertically stacking different numbers (n = 1–7) of ZnO/TiO{sub x} layers of nearly identical dopant-profiles. The evolution of zero-field sheet resistance (R{sub ◻}) versus temperature with decreasing film thickness showed a metal to insulator transition. Onmore » the metallic side of the metal-insulator transition, R{sub ◻}(T) and magnetoresistance data were found to be well corroborated with the theoretical framework of electron weak localization in the diffusive transport regime. The temperature dependence of both R{sub ◻} and inelastic scattering length provided strong evidence for a smooth crossover from 2D to 3D weak localization behaviour. Results of this study provide deeper insight into the electron transport in low-dimensional n-type ZnO/TiO{sub x} stacked layers which have potential applications in the field of transparent oxide electronics.« less

  1. Early Warning Signals for Regime Transition in the Stable Boundary Layer: A Model Study

    NASA Astrophysics Data System (ADS)

    van Hooijdonk, I. G. S.; Moene, A. F.; Scheffer, M.; Clercx, H. J. H.; van de Wiel, B. J. H.

    2017-02-01

    The evening transition is investigated in an idealized model for the nocturnal boundary layer. From earlier studies it is known that the nocturnal boundary layer may manifest itself in two distinct regimes, depending on the ambient synoptic conditions: strong-wind or overcast conditions typically lead to weakly stable, turbulent nights; clear-sky and weak-wind conditions, on the other hand, lead to very stable, weakly turbulent conditions. Previously, the dynamical behaviour near the transition between these regimes was investigated in an idealized setting, relying on Monin-Obukhov (MO) similarity to describe turbulent transport. Here, we investigate a similar set-up, using direct numerical simulation; in contrast to MO-based models, this type of simulation does not need to rely on turbulence closure assumptions. We show that previous predictions are verified, but now independent of turbulence parametrizations. Also, it appears that a regime shift to the very stable state is signaled in advance by specific changes in the dynamics of the turbulent boundary layer. Here, we show how these changes may be used to infer a quantitative estimate of the transition point from the weakly stable boundary layer to the very stable boundary layer. In addition, it is shown that the idealized, nocturnal boundary-layer system shares important similarities with generic non-linear dynamical systems that exhibit critical transitions. Therefore, the presence of other, generic early warning signals is tested as well. Indeed, indications are found that such signals are present in stably stratified turbulent flows.

  2. Syn-emplacement fracturing in the Sandfell laccolith, eastern Iceland – implications for rhyolite intrusion growth and volcanic hazards

    NASA Astrophysics Data System (ADS)

    Mattsson, Tobias; Burchardt, Steffi; Almqvist, Bjarne S. G.; Ronchin, Erika

    2018-02-01

    Felsic magma commonly pools within shallow mushroom-shaped magmatic intrusions, so-called laccoliths or cryptodomes, which can cause both explosive eruptions and collapse of the volcanic edifice. Deformation during laccolith emplacement is primarily considered to occur in the host rock. However, shallowly emplaced laccoliths (cryptodomes) show extensive internal deformation. While deformation of magma in volcanic conduits is an important process for regulating eruptive behavior, the effects of magma deformation on intrusion emplacement remain largely unexplored. In this study, we investigate the emplacement of the 0.57 km3 rhyolitic Sandfell laccolith, Iceland, which formed at a depth of 500 m in a single intrusive event. By combining field measurements, 3D modeling, anisotropy of magnetic susceptibility, microstructural analysis, and FEM modeling we examine deformation in the magma to constrain its influence on intrusion emplacement. Concentric flow bands and S-C fabrics reveal contact-parallel magma flow during the initial stages of laccolith inflation. The magma flow fabric is overprinted by strain-localization bands and more than one third of the volume of the Sandfell laccolith display concentric intensely fractured layers. A dominantly oblate magmatic fabric in the fractured areas and conjugate geometry of strain-localization bands, and fractures in the fracture layers demonstrate that the magma was deformed by intrusive stresses. This implies that a large volume of magma became viscously stalled and was unable to flow during intrusion. Fine-grained groundmass and vesicle-poor rock adjacent to the fracture layers point to that the interaction between the strain-localization bands and the flow bands at sub-solidus state caused the brittle-failure and led to decompression degassing and crystallization and rapid viscosity increase in the magma. The extent of syn-emplacement fracturing in the Sandfell laccolith further shows that strain-induced degassing limited the amount of eruptible magma by essentially solidifying the rim of the magma body. Our observations indicate that syn-emplacement changes in rheology, and the associated fracturing of intruding magma not only occur in volcanic conduits, but also play a major role in the emplacement of viscous magma intrusions in the upper kilometer of the crust.

  3. Non-Destructive X-ray Computed Tomography (XCT) of Gas Hydrate Bearing Fractures in Marine Sediment

    NASA Astrophysics Data System (ADS)

    Oti, E.; Buchwalter, E.; Cook, A.; Crandall, D.

    2017-12-01

    Hydrate-filled fractures are found in many environments, both related to methane vents and constrained to lithologic layers; how hydrate filled fractures form in layered environments is not well understood. We focus on understanding hydrate origins and fracture formation by examining hydrate-bearing fractures in conventional cores taken from Gulf of Mexico sites from JIP Leg 1 and UT-GOM, Keathley Canyon 151. There are two main methane sources available for hydrate formation. The first is the hydrocarbon reservoir underlying the Gulf sediments. This reservoir formed when deeply buried organic matter of high molecular weight was exposed to high temperature and pressures and degraded. A second source is the biogenesis of organic material, which occurs when microbial activity breaks down organic materials. Biogenic methane is more enriched in lighter carbon isotopes as the reduction or fermentation reactions preferentially consume lighter carbon isotopes. As a result, we hypothesize that sediment surrounding biogenically derived methane will have heavier carbon isotopes when compared to non-host sediment, due to the consumption of the lighter carbon isotopes during methanogenesis. We use non-destructive X-ray Computed Tomography (XCT) scanning to visualize and identify hydrate-bearing fractures. The presence of hydrate fractures is further confirmed with a salinity analysis, as hydrate dissociation freshens the pore water and lowers the salinity. After hydrate fracture location is inferred, carbon isotope analysis is used to identify hydrocarbon source. XCT scans of Keathley Canyon core JIP-1 17H-4 revealed 10 total fractures, five of which XCT and salinity analysis indicated as formerly containing hydrate. All ten fractures, in addition to background sediment, underwent a carbon isotope analysis in which organic isotopes were measured. In the background sediment and the non hydrate-bearing fractures, DOC values were relatively light, with dC13 percentages ranging from -27.8% to -30.8%. In the five hydrate fracture regions, DOC was comparatively heavy, with DOC dC13 values ranging from -23.2% to -30.3%. These values suggest that biogenic methane was formed adjacent to the fracture and likely migrated into the hydrate filled fracture.

  4. Full waveform seismic AVAZ signatures of anisotropic shales by integrated rock physics and the reflectivity method

    NASA Astrophysics Data System (ADS)

    Liu, Xiwu; Guo, Zhiqi; Han, Xu

    2018-06-01

    A set of parallel vertical fractures embedded in a vertically transverse isotropy (VTI) background leads to orthorhombic anisotropy and corresponding azimuthal seismic responses. We conducted seismic modeling of full waveform amplitude variations versus azimuth (AVAZ) responses of anisotropic shale by integrating a rock physics model and a reflectivity method. The results indicate that the azimuthal variation of P-wave velocity tends to be more complicated for orthorhombic medium compared to the horizontally transverse isotropy (HTI) case, especially at high polar angles. Correspondingly, for the HTI layer in the theoretical model, the short axis of the azimuthal PP amplitudes at the top interface is parallel to the fracture strike, while the long axis at the bottom reflection directs the fracture strike. In contrast, the orthorhombic layer in the theoretical model shows distinct AVAZ responses in terms of PP reflections. Nevertheless, the azimuthal signatures of the R- and T-components of the mode-converted PS reflections show similar AVAZ features for the HTI and orthorhombic layers, which may imply that the PS responses are dominated by fractures. For the application to real data, a seismic-well tie based on upscaled data and a reflectivity method illustrate good agreement between the reference layers and the corresponding reflected events. Finally, the full waveform seismic AVAZ responses of the Longmaxi shale formation are computed for the cases of HTI and orthorhombic anisotropy for comparison. For the two cases, the azimuthal features represent differences mainly in amplitudes, while slightly in the phases of the reflected waveforms. Azimuth variations in the PP reflections from the reference layers show distinct behaviors for the HTI and orthorhombic cases, while the mode-converted PS reflections in terms of the R- and T-components show little differences in azimuthal features. It may suggest that the behaviors of the PS waves are dominated by vertically aligned fractures. This work provides further insight into the azimuthal seismic response of orthorhombic shales. The proposed method may help to improve the seismic-well tie, seismic interpretation, and inversion results using an azimuth anisotropy dataset.

  5. Fracture toughness of Ti-Al3Ti-Al-Al3Ti laminate composites under static and cyclic loading conditions

    NASA Astrophysics Data System (ADS)

    Patselov, A. M.; Gladkovskii, S. V.; Lavrikov, R. D.; Kamantsev, I. S.

    2015-10-01

    The static and cyclic fracture toughnesses of a Ti-Al3Ti-Al-Al3Ti laminate composite material containing at most 15 vol % intermetallic compound are studied. Composite specimens are prepared by terminating reaction sintering of titanium and aluminum foils under pressure. The fracture of the titanium layers is quasi-cleavage during cyclic crack growth and is ductile during subsequent static loading.

  6. A new approach to assess the skier additional stress within a multi-layered snowpack

    NASA Astrophysics Data System (ADS)

    Monti, Fabiano; Gaume, Johan; van Herwijnen, Alec; Schweizer, Jürg

    2014-05-01

    The physical and mechanical processes of dry-snow slab avalanche formation can be distinguished into two subsequent phases: failure initiation and crack propagation. Several approaches tried to quantify slab avalanche release probability in terms of failure initiation, based on a simple strength-of-material approach (strength vs. stress). Even if it is known that both weak layer and slab properties play a major role in avalanche release, apart from weak layer characteristics, often only the slab thickness and its average density were considered. For calculating the amount of additional stress (e.g. due to a skier) at the depth of the weak layer, the snow cover was often assumed to be a semi-infinite elastic half space in order to apply Boussinesq's theory. However, finite element (FE) calculations have shown that slab layering strongly influences the stress at depth. To avoid FE calculations, we suggest a new approach based on a simplification of multi-layered elasticity theory. It allows computing the additional stress due to a skier at the depth of the weak layer, taking into account the layering of the snow slab and the substratum. The proposed approach was first tested on simplified snow profiles and compared reasonably well with FE calculations. We then implemented the method to refine the classical skier stability index. Using manually observed snow profiles, classified in different stability classes using stability tests, we obtained a satisfactory discrimination power. Lastly, the refined skier stability index was implemented into the 1-D snow cover model SNOWPACK and presented on two case studies. In the future, it will be interesting to implement the proposed method for describing skier-induced stress within a multi-layered snowpack into more complex models which take into account not only failure initiation but also crack propagation.

  7. Double Layers in Astrophysics

    NASA Technical Reports Server (NTRS)

    Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)

    1987-01-01

    Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.

  8. Layer-by-layer introduction of poly(phenylenevinylene) onto microspheres and probing the influence from the weak/strong polyanion spacer-layers.

    PubMed

    Song, Jing; Qiu, Tian; Chen, Yun; Zhang, Wei; Fan, Li-Juan

    2015-08-15

    The layer-by-layer (LBL) technique was employed for preparing fluorescent microspheres with a core-shell structure by the alternating adsorption of positively charged poly(p-phenylenevinylene) precursor (pre-PPV) and the polyanions onto polymer substrate spheres, followed by the thermal elimination to convert pre-PPV into fluorescent poly(p-phenylenevinylene) (PPV). Weak polyelectrolytes poly(acrylic acid) (PAA) (usually in a partly ionized form) and strong polyelectrolytes poly(sodium-p-styrenesulfonate) (PSS) were used as the anions to space the PPV layers and reduce the fluorescence self-quenching. Flow cytometry, combined with spectroscopy and microscopy, were used to study the structure and photophysical properties of the resulting microspheres. Optimization of the processing factors was carried out. PAA and PSS as weak and strong polyelectrolytes, respectively, displayed very different influence on the final emission of the spheres. Such difference was attributed to different inherent characteristics of PAA and PSS after detailed investigation in many aspects. In addition, the fluorescent spheres were found to have excellent photostability and thermal stability. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Stress anisotropy analysis and its effect on unconventional resource development in Montney play, Kakwa, Canada

    NASA Astrophysics Data System (ADS)

    Tak, Heewon; Choi, Jaewon; Jo, Sohyun; Hwang, Sukyeon

    2017-04-01

    Stress anisotropy analysis is important for estimating both stress regime and fracture geometry for the efficient development of unconventional resources. Despite being within the same play, different areas can have different stress regimes, which can affect drilling decisions. The Montney play is located in Canada between British Columbia and Alberta. In British Columbia it is known for its ductile shale and high horizontal stress anisotropy because of the Rocky Mountains; however, in Alberta, it has different geological characteristics with some studies finding weak horizontal stress anisotropy. Therefore, we studied the horizontal stress anisotropy using full azimuth seismic and well data in the Kakwa area in order to establish a drilling plan. Minimal horizontal anisotropy was discovered within the area and the direction of maximum horizontal anisotropy corresponded with the regional scale (i.e., NE-SW). The induced fractures were assumed to have a normal stress regime because of the large depth (> 3000 m). Additionally, because of the very high brittleness (Young's modulus > 9) and relatively weak horizontal stress anisotropy, the fracture geometry in the Kakwa area was estimated as complex or complex planar, as opposed to simply planar.

  10. Complications of the retromandibular transparotid approach for low condylar neck and subcondylar fractures: a retrospective study

    PubMed Central

    2018-01-01

    Objectives The goal of this study was to evaluate the rates of complications, morbidity, and safety with the transparotid approach. Materials and Methods A retrospective study was conducted and consisted of 53 surgically treated patients in the past five years for low condylar neck and subcondylar fractures. Only patients with malocclusion and who underwent open reduction with internal fixation with the retromandibular transparotid approach were included. The examined parameters were postoperative suboptimal occlusion, deflection, saliva fistula, and facial nerve weakness. Results Fifty-three patients had an open reduction with internal fixation on 55 sides (41 males, 77.4%; mean age, 42 years [range, 18–72 years]). Four patients (7.5%) experienced transient facial nerve weakness of the marginal mandibular branch, but none was permanent. Four patients had a salivary fistula, and 5 patients showed postoperative malocclusion, where one needed repeat surgery after one year. One patient showed long-term deflection. No other complications were observed. Conclusion The retromandibular transparotid approach is a safe procedure for open reduction and internal fixation of low condylar neck and subcondylar fractures, and it has minimal complications. PMID:29732312

  11. Unveiling the signals from extremely noisy microseismic data for high-resolution hydraulic fracturing monitoring.

    PubMed

    Huang, Weilin; Wang, Runqiu; Li, Huijian; Chen, Yangkang

    2017-09-20

    Microseismic method is an essential technique for monitoring the dynamic status of hydraulic fracturing during the development of unconventional reservoirs. However, one of the challenges in microseismic monitoring is that those seismic signals generated from micro seismicity have extremely low amplitude. We develop a methodology to unveil the signals that are smeared in the strong ambient noise and thus facilitate a more accurate arrival-time picking that will ultimately improve the localization accuracy. In the proposed technique, we decompose the recorded data into several morphological multi-scale components. In order to unveil weak signal, we propose an orthogonalization operator which acts as a time-varying weighting in the morphological reconstruction. The orthogonalization operator is obtained using an inversion process. This orthogonalized morphological reconstruction can be interpreted as a projection of the higher-dimensional vector. We first test the proposed technique using a synthetic dataset. Then the proposed technique is applied to a field dataset recorded in a project in China, in which the signals induced from hydraulic fracturing are recorded by twelve three-component (3-C) geophones in a monitoring well. The result demonstrates that the orthogonalized morphological reconstruction can make the extremely weak microseismic signals detectable.

  12. Cognitive outcome of cerebral fat embolism.

    PubMed

    Manousakis, Georgios; Han, Dong Y; Backonja, Miroslav

    2012-11-01

    Cerebral fat embolism is an uncommon but serious complication of long-bone fracture. We report a young adult patient who sustained fat embolism after a femoral fracture. He developed stupor and coma within 24 hours from his injury. His acute recovery was characterized by marked frontal dysfunction. A comprehensive neuropsychological evaluation 4 months later revealed overall normal cognitive function, except for mild residual frontal dysfunction and weakness of verbal memory. Copyright © 2012 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  13. Particle Swarm Transport through Immiscible Fluid Layers in a Fracture

    NASA Astrophysics Data System (ADS)

    Teasdale, N. D.; Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    Immiscible fluids occur either naturally (e.g. oil & water) or from anthropogenic processes (e.g. liquid CO2 & water) in the subsurface and complicate the transport of natural or engineered micro- or nano-scale particles. In this study, we examined the effect of immiscible fluids on the formation and evolution of particle swarms in a fracture. A particle swarm is a collection of colloidal-size particles in a dilute suspension that exhibits cohesive behavior. Swarms fall under gravity with a velocity that is greater than the settling velocity of a single particle. Thus a particle swarm of colloidal contaminants can potentially travel farther and faster in a fracture than expected for a dispersion or emulsion of colloidal particles. We investigated the formation, evolution, and break-up of colloidal swarms under gravity in a uniform aperture fracture as hydrophobic/hydrophyllic particle swarms move across an oil-water interface. A uniform aperture fracture was fabricated from two transparent acrylic rectangular prisms (100 mm x 50 mm x 100 mm) that are separated by 1, 2.5, 5, 10 or 50 mm. The fracture was placed, vertically, inside a glass tank containing a layer of pure silicone oil (polydimethylsiloxane) on distilled water. Along the length of the fracture, 30 mm was filled with oil and 70 mm with water. Experiments were conducted using silicone oils with viscosities of 5, 10, 100, or 1000 cSt. Particle swarms (5 μl) were comprised of a 1% concentration (by mass) of 25 micron glass beads (hydrophilic) suspended in a water drop, or a 1% concentration (by mass) of 3 micron polystyrene fluorescent beads (hydrophobic) suspended in a water drop. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera and by green (525 nm) LED arrays for illumination. Swarms were spherical and remained coherent as they fell through the oil because of the immiscibility of oil and water. However, as a swarm approached the oil-water interface, it decreased in speed and came to rest on the interface while maintaining its spherical shape. After the interface between a swarm and the oil thinned sufficiently, the swarm was rapidly released into the water layer. The time that this took depended on the viscosity of the oil layer, which determines the rate of thinning, and on the size and properties of the particles. The swarm geometry and velocity in the water layer depended on the aperture of the fracture, the viscosity of the oil and the hydrophobicity or hydrophyllicity of the particles in the swarm. Hydrophobic beads result in multiple mini swarms after breaking through the interface rather than a single large swarm like that observed for hydrophilic swarms. After many experiments a pile formed at the bottom of the tank near the center of the fracture, indicating that swarms can lead to locally high concentration of colloidal contaminants. Acknowledgment: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DE-FG02-09ER16022) and the Summer Undergraduate Research Fellowship program at Purdue University.

  14. Thermally stable diamond brazing

    DOEpatents

    Radtke, Robert P [Kingwood, TX

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  15. Settlement mechanism of piled-raft foundation due to cyclic train loads and its countermeasure

    NASA Astrophysics Data System (ADS)

    Gu, Linlin; Ye, Guanlin; Wang, Zhen; Ling, Xianzhang; Zhang, Feng

    2017-07-01

    In this paper, numerical simulation with soil-water coupling finite element-finite difference (FE-FD) analysis is conducted to investigate the settlement and the excess pore water pressure (EPWP) of a piled-raft foundation due to cyclic high-speed (speed: 300km/h) train loading. To demonstrate the performance of this numerical simulation, the settlement and EPWP in the ground under the train loading within one month was calculated and confirmed by monitoring data, which shows that the change of the settlement and EPWP can be simulated well on the whole. In order to ensure the safety of train operation, countermeasure by the fracturing grouting is proposed. Two cases are analyzed, namely, grouting in No-4 softest layer and No-9 pile bearing layer respectively. It is found that fracturing grouting in the pile bearing layer (No-9 layer) has better effect on reducing the settlement.

  16. Partial double-layered patella in a nondysplasic adolescent.

    PubMed

    García-Mata, Serafín; Hidalgo-Ovejero, Angel

    2016-11-01

    Double-layered patella (DLP) is a rare patella-formation abnormality reported in association with multiple epiphyseal dysplasia. DLP is one of the five types of bipartite patella, caused by a coronal septum that divides the patella into anterior and posterior segments. Although the double layer of bone has been reported as complete, it may also manifest as partial, as in our case. A 13-year-old male patient attended A&E after accidentally falling and sustaining a direct injury to his left knee, with pain in the anterior surface of the right patella. He was diagnosed with an incomplete vertical fracture of the left patella. An axial view radiography indicated an external partial DLP. No bone dysplasia was found. Computed tomographic scan and MRI showed partial DLP and bone marrow oedema because of the injury in the femoral condyle, but no fracture. The reason for highlighting this type of patella abnormality is to present the case of a patient without bone dysplasia, either partial or incomplete, that has not been reported previously. We also wish to emphasize the importance of not confusing it with a fracture in standard radiographies.

  17. Bilateral Femoral Neck Fatigue Fracture due to Osteomalacia Secondary to Celiac Disease: Report of Three Cases.

    PubMed

    Selek, Ozgur; Memisoglu, Kaya; Selek, Alev

    2015-08-01

    Bilateral non traumatic femoral neck fatigue fracture is a rare condition usually occurring secondary to medical conditions such as pregnancy, pelvic irradiation, corticosteroid exposure, chronic renal failure and osteomalacia. In this report, we present three young female patients with bilateral femoral neck fracture secondary to osteomalacia. The underlying cause of osteomalacia was Celiac disease in all patients. The patients were treated with closed reduction and internal fixation with cannulated lag screws. They were free of pain and full weight bearing was achieved at three months. There were no complications, avascular necrosis and nonunion during the follow up period. In patients with bone pain, non traumatic fractures and muscle weakness, osteomalacia should be kept in mind and proper diagnostic work-up should be performed to identify the underlying cause of osteomalacia such as celiac disease.

  18. Towards evidence based emergency medicine: Best BETs from the Manchester Royal Infirmary. BET 3: Toe fractures in adults.

    PubMed

    Paradise, David

    2012-11-01

    A short cut review was carried out to establish whether intervention and follow up of patients with toe phalanx fractures is better than no treatment at reducing time to return to normal activity and need for surgical intervention. 40 papers were found using the reported searches, of which 1 presented the best evidence to answer the clinical question. The author, date and country of publication, patient group studied, study type, relevant outcomes, results and study weaknesses of this best paper is tabulated. It is concluded that there is no evidence to determine whether intervention of any type improves outcome in toe phalanx fractures.

  19. Solid Oxide Fuel Cell Seal Glass - BN Nanotubes Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.; Hurst, Janet B.; Garg, Anita

    2005-01-01

    Solid oxide fuel cell seal glass G18 composites reinforced with approx.4 weight percent of BN nanotubes were fabricated via hot pressing. Room temperature strength and fracture toughness of the composite were determined by four-point flexure and single edge V-notch beam methods, respectively. The strength and fracture toughness of the composite were higher by as much as 90% and 35%, respectively, than those of the glass G18. Microscopic examination of the composite fracture surfaces using SEM and TEM showed pullout of the BN nanotubes, similar in feature to fiber-reinforced ceramic matrix composites with weak interfaces. Other mechanical and physical properties of the composite will also be presented.

  20. Ancient microbial activity recorded in fracture fillings from granitic rocks (Äspö Hard Rock Laboratory, Sweden).

    PubMed

    Heim, C; Lausmaa, J; Sjövall, P; Toporski, J; Dieing, T; Simon, K; Hansen, B T; Kronz, A; Arp, G; Reitner, J; Thiel, V

    2012-07-01

    Fracture minerals within the 1.8-Ga-old Äspö Diorite (Sweden) were investigated for fossil traces of subterranean microbial activity. To track the potential organic and inorganic biosignatures, an approach combining complementary analytical techniques of high lateral resolution was applied to drill core material obtained at -450 m depth in the Äspö Hard Rock Laboratory. This approach included polarization microscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), confocal Raman microscopy, electron microprobe (EMP) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The fracture mineral succession, consisting of fluorite and low-temperature calcite, showed a thin (20-100 μm), dark amorphous layer lining the boundary between the two phases. Microscopic investigations of the amorphous layer revealed corrosion marks and, in places, branched tubular structures within the fluorite. Geochemical analysis showed significant accumulations of Si, Al, Mg, Fe and the light rare earth elements (REE) in the amorphous layer. In the same area, ToF-SIMS imaging revealed abundant, partly functionalized organic moieties, for example, C(x)H(y)⁺, C(x)H(y)N⁺, C(x)H(y)O⁺. The presence of such functionalized organic compounds was corroborated by Raman imaging showing bands characteristic of C-C, C-N and C-O bonds. According to its organic nature and the abundance of relatively unstable N- and O- heterocompounds, the organic-rich amorphous layer is interpreted to represent the remains of a microbial biofilm that established much later than the initial cooling of the Precambrian host rock. Indeed, δ¹³C, δ¹⁸O and ⁸⁷Sr/⁸⁶Sr isotope data of the fracture minerals and the host rock point to an association with a fracture reactivation event in the most recent geological past. © 2012 Blackwell Publishing Ltd.

  1. Structural optimization and amorphous calcium phosphate mineralization in sensory setae of a terrestrial crustacean (Isopoda: Oniscidea).

    PubMed

    Vittori, Miloš; Srot, Vesna; Bussmann, Birgit; Predel, Felicitas; van Aken, Peter A; Štrus, Jasna

    2018-06-09

    Terrestrial isopods possess large sensory setae on their walking legs. Increased fracture resistance of these elongated structures is of crucial importance, making the exoskeleton forming the setae an interesting durable material that may inspire biomimetic designs. We studied the cuticle of the sensory setae with analytical electron microscopy in order to gain detailed insights into its structure and composition at the nanometer scale and identify features that increase the fracture resistance of these minute skeletal elements. The setae are stiff structures formed by mineralized cuticle that are connected to the leg exoskeleton by a non-mineralized joint membrane. Our results demonstrate that different layers of the setal cuticle display contrasting organizations of the chitin-protein fibers and mineral particles. While in the externally positioned exocuticle organic fibers shift their orientation helicoidally in sequential layers, the fibers are aligned axially in the internally positioned endocuticle. In the setal cuticle, layers of structurally anisotropic cuticle likely providing strength in the axial direction are combined with layers of isotropic cuticle which may allow the setae to better resist perpendicular loading. They are further strengthened with amorphous calcium phosphate, a highly fracture resistant mineral rarely observed in invertebrate skeletons. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Effect of the state of internal boundaries on granite fracture nature under quasi-static compression

    NASA Astrophysics Data System (ADS)

    Damaskinskaya, E. E.; Panteleev, I. A.; Kadomtsev, A. G.; Naimark, O. B.

    2017-05-01

    Based on an analysis of the spatial distribution of hypocenters of acoustic emission signal sources and an analysis of the energy distributions of acoustic emission signals, the effect of the liquid phase and a weak electric field on the spatiotemporal nature of granite sample fracture is studied. Experiments on uniaxial compression of granite samples of natural moisture showed that the damage accumulation process is twostage: disperse accumulation of damages is followed by localized accumulation of damages in the formed macrofracture nucleus region. In energy distributions of acoustic emission signals, this transition is accompanied by a change in the distribution shape from exponential to power-law. Granite water saturation qualitatively changes the damage accumulation nature: the process is delocalized until macrofracture with the exponential energy distribution of acoustic emission signals. An exposure to a weak electric field results in a selective change in the damage accumulation nature in the sample volume.

  3. Epidemiology of atlas fractures--a national registry-based cohort study of 1,537 cases.

    PubMed

    Matthiessen, Christian; Robinson, Yohan

    2015-11-01

    The epidemiology of fractures of the first cervical vertebra-the atlas-has not been well documented. Previous studies concerning atlas fractures focus on treatment and form a weak platform for epidemiologic study. This study aims to provide reliable epidemiologic data on atlas fractures. This was a national registry-based cohort study. A total of 1,537 cases of atlas fractures between 1997 and 2011 from the Swedish National Patient Registry (NPR). The outcome measures were annual incidence and mortality. Data from the NPR and the Swedish Cause of Death Registry were extracted, including age, gender, diagnosis, comorbidity, treatment codes, and date of death. The Charlson Comorbidity Index was calculated and a survival analysis performed. A total of 869 (56.5%) cases were men, and 668 (43.5%) were women. The mean age of the entire population was 64 years. The proportion of atlas fractures of all registered cervical fractures was 10.6%. In 19% of all cases, there was an additional fracture of the axis, and 7% of all cases had additional subaxial cervical fractures. Patients with fractures of the axis were older than patients with isolated atlas fractures. The annual incidence almost doubled during the study period, and in 2011, it was 17 per million inhabitants. The greatest increase in incidence occurred in the elderly population. Atlas fractures occurred predominantly in the elderly population. Further study is needed to determine the cause of the increasing incidence. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Relation between the fracture laws and the fatigue life of a surface-hardened pseudo-α titanium alloy

    NASA Astrophysics Data System (ADS)

    Bagmutov, V. P.; Vodop'yanov, V. I.; Zakharov, I. N.; Denisevich, D. S.

    2016-07-01

    The laws of fracture and fatigue life of the PT-3V pseudo-α titanium alloy subjected to surface hardening using electromechanical, ultrasonic, and combined treatment are studied. Fracture mechanisms and the structures of crack nucleation and growth zones are described using the results of metallographic and fractographic analysis of samples after fatigue tests. It is shown that the existence of a thin hardened layer on the sample surface changes the crack nucleation time and the state of fracture surface in the crack nucleation zone. This surface is characterized by signs of brittle or ductile fracture, which substantially affects the fatigue life of the sample.

  5. Natural fault and fracture network versus anisotropy in the Lower Paleozoic rocks of Pomerania (Poland)

    NASA Astrophysics Data System (ADS)

    Haluch, Anna; Rybak-Ostrowska, Barbara; Konon, Andrzej

    2017-04-01

    Knowledge of the anisotropy of rock fabric, geometry and distribution of the natural fault and fracture network play a crucial role in the exploration for unconventional hydrocarbon recourses. Lower Paleozoic rocks from Pomerania within the Polish part of Peri-Baltic Basin, as prospective sequences, can be considered a laboratory for analysis of fault and fracture arrangement in relation to the mineral composition of the host rocks. A microstructural study of core samples from five boreholes in Pomerania indicate that the Silurian succession in the study area is predominantly composed of claystones and mudstones interbedded with thin layers of tuffites. Intervals with a high content of detrital quartz or diagenetic silica also occur. Most of the Silurian deposits are abundant in pyrite framboids forming layers or isolated small concretions. Early diagenetic carbonate concretions are also present. The direction and distribution of natural faults and fractures have resulted not only from paleostress. Preliminary study reveals that the fault and fracture arrangement is related to the mechanical properties of the host rocks that depend on their fabric and mineralogical composition: subvertical fractures in mudstones and limestones show steeper dips than those within the more clayey intervals; bedding-parallel fractures occur within organic-rich claystones and along the boundaries between different lithologies; tuffites and radiolaria-bearing siliceous mudstones are more brittle and show denser nets of fractures or wider mineral apertures; and, fracture refraction is observed at competence contrast or around spherical concretions. The fault and fracture mineralization itself is prone to the heterogenity of the rock profile. Thus, fractures infilled with calcite occur in all types of the studied rocks, but mineral growth is syntaxial within marly mudstones because of chemical uniformity, and antitaxial within sillicous mudstones. Fractures infilled with quartz are restricted to tuffites and claystones with biogenic silica. Matching the complex microstructural and mineralogical data with the geomechanical analysis of the host rocks will be the base for further studies on induced fault and fracture development. The study was supported by grant no.: 13-03-00-501-90-472946, funded by the National Centre for Research and Development (NCBiR)

  6. Mechanical stratigraphic controls on natural fracture spacing and penetration

    NASA Astrophysics Data System (ADS)

    McGinnis, Ronald N.; Ferrill, David A.; Morris, Alan P.; Smart, Kevin J.; Lehrmann, Daniel

    2017-02-01

    Fine-grained low permeability sedimentary rocks, such as shale and mudrock, have drawn attention as unconventional hydrocarbon reservoirs. Fracturing - both natural and induced - is extremely important for increasing permeability in otherwise low-permeability rock. We analyze natural extension fracture networks within a complete measured outcrop section of the Ernst Member of the Boquillas Formation in Big Bend National Park, west Texas. Results of bed-center, dip-parallel scanline surveys demonstrate nearly identical fracture strikes and slight variation in dip between mudrock, chalk, and limestone beds. Fracture spacing tends to increase proportional to bed thickness in limestone and chalk beds; however, dramatic differences in fracture spacing are observed in mudrock. A direct relationship is observed between fracture spacing/thickness ratio and rock competence. Vertical fracture penetrations measured from the middle of chalk and limestone beds generally extend to and often beyond bed boundaries into the vertically adjacent mudrock beds. In contrast, fractures in the mudrock beds rarely penetrate beyond the bed boundaries into the adjacent carbonate beds. Consequently, natural bed-perpendicular fracture connectivity through the mechanically layered sequence generally is poor. Fracture connectivity strongly influences permeability architecture, and fracture prediction should consider thin bed-scale control on fracture heights and the strong lithologic control on fracture spacing.

  7. [Iliac spine fractures in children].

    PubMed

    Sułko, Jerzy; Olipra, Wojciech

    2010-01-01

    Iliac spine fractures in children are a form of avulsion fractures at mechanically weak spot caused by the presence of the growth plate. Presentation of observations concerning treatment and results of iliac spine fractures in children. 49 children (1 girl and 48 boys). Age, at the time of injury, average 15.1 years (10.6-18 years). We analyzed medical and radiological documentation of patients. 17 patients sustained anterior superior iliac spine fractures (ASIS), 32 fracture of the inferior iliac spine (AIIS). Most of injuries happened during sport activities--27 patients suffered fracture while playing football. 37 patients asked for medical advice immediately after the injury. Rest of patients, who came late--sustained AIIS fracture. We hospitalized 26 patients (53%), all of them suffered significant pain. The average length of stay in hospital was 8 days. All patients were treated conservatively. All of the fractures healed without complications. Larger study than ours group, concerning 84 patients with iliac spine fractures, was presented only by Italian authors who analyzed injures of professional athletes. In literature reviewed conservative treatment strongly predominates. Only a small group of patients were treated surgically (including athletes treated by Croatian surgeons). The treatment of iliac spines in children should be conservative, consisting of a couple days of bed rest and then for 2-3 weeks walking on crutches with only toe touching until the pain resolves. We recommend return to full activities after 2 months.

  8. Contact zone permeability at intrusion boundaries: New results from hydraulic testing and geophysical logging in the Newark Rift Basin, New York, USA

    USGS Publications Warehouse

    Matter, J.M.; Goldberg, D.S.; Morin, R.H.; Stute, M.

    2006-01-01

    Hydraulic tests and geophysical logging performed in the Palisades sill and the underlying sedimentary rocks in the NE part of the Newark Rift Basin, New York, USA, confirm that the particular transmissive zones are localized within the dolerite-sedimentary rock contact zone and within a narrow interval below this contact zone that is characterized by the occurrence of small layers of chilled dolerite. Transmissivity values determined from fluid injection, aquifer testing, and flowmeter measurements generally fall in the range of 8.1E-08 to 9.95E-06 m2/s and correspond to various scales of investigation. The analysis of acoustic and optical BHTV images reveals two primary fracture sets within the dolerite and the sedimentary rocks - subhorizontal fractures, intersected by subvertical ones. Despite being highly fractured either with subhorizontal, subvertical or both fracture populations, the dolerite above and the sedimentary rocks below the contact zone and the zone with the layers of chilled dolerite are significantly less conductive. The distribution of the particular conductive intervals is not a function of the two dominant fracture populations or their density but rather of the intrusion path of the sill. The intrusion caused thermal fracturing and cracking of both formations, resulting in higher permeability along the contact zone. ?? Springer-Verlag 2005.

  9. Composites with improved fiber-resin interfacial adhesion

    NASA Technical Reports Server (NTRS)

    Cizmecioglu, Muzaffer (Inventor)

    1989-01-01

    The adhesion of fiber reinforcement such as high modulus graphite to a matrix resin such as polycarbonate is greatly enhanced by applying a very thin layer, suitably from 50 Angstroms to below 1000 Angstroms, to the surface of the fiber such as by immersing the fiber in a dilute solution of the matrix resin in a volatile solvent followed by draining to remove excess solution and air drying to remove the solvent. The thin layer wets the fiber surface. The very dilute solution of matrix resin is able to impregnate multifilament fibers and the solution evenly flows onto the surface of the fibers. A thin uniform layer is formed on the surface of the fiber after removal of the solvent. The matrix resin coated fiber is completely wetted by the matrix resin during formation of the composite. Increased adhesion of the resin to the fibers is observed at fracture. At least 65 percent of the surface of the graphite fiber is covered with polycarbonate resin at fracture whereas uncoated fibers have very little matrix resin adhering to their surfaces at fracture and epoxy sized graphite fibers exhibit only slightly higher coverage with matrix resin at fracture. Flexural modulus of the composite containing matrix resin coated fibers is increased by 50 percent and flexural strength by 37 percent as compared to composites made with unsized fibers.

  10. Spall fracture in additive manufactured Ti-6Al-4V

    DOE PAGES

    Jones, David Robert; Fensin, Saryu Jindal; Dippo, Olivia; ...

    2016-10-07

    Here, we present a study on the spall strength of additive manufactured (AM) Ti-6Al-4V. Samples were obtained from two pieces of selective laser melted (SLM, a powder bed fusion technique) Ti-6Al-4V such that the response to dynamic tensile loading could be investigated as a function of the orientation between the build layers and the loading direction. A sample of wrought bar-stock Ti-6Al-4V was also tested to act as a baseline representing the traditionally manufactured material response. A single-stage light gas-gun was used to launch a thin flyer plate into the samples, generating a region of intense tensile stress on amore » plane normal to the impact direction. The rear free surface velocity time history of each sample was recorded with laser-based velocimetry to allow the spall strength to be calculated. The samples were also soft recovered to enable post-mortem characterization of the spall damage evolution. Results showed that when the tensile load was applied normal to the interfaces between the build layers caused by the SLM fabrication process the spall strength was drastically reduced, dropping to 60% of that of the wrought material. However, when loaded parallel to the AM build layer interfaces the spall strength was found to remain at 95% of the wrought control, suggesting that when loading normal to the AM layer interfaces, void nucleation is facilitated more readily due to weaknesses along these boundaries. Quasi-static testing of the same sample orientations revealed a much lower degree of anisotropy, demonstrating the importance of rate-dependent studies for damage evolution in AM materials.« less

  11. Spall fracture in additive manufactured Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Jones, D. R.; Fensin, S. J.; Dippo, O.; Beal, R. A.; Livescu, V.; Martinez, D. T.; Trujillo, C. P.; Florando, J. N.; Kumar, M.; Gray, G. T.

    2016-10-01

    We present a study on the spall strength of additive manufactured (AM) Ti-6Al-4V. Samples were obtained from two pieces of selective laser melted (SLM, a powder bed fusion technique) Ti-6Al-4V such that the response to dynamic tensile loading could be investigated as a function of the orientation between the build layers and the loading direction. A sample of wrought bar-stock Ti-6Al-4V was also tested to act as a baseline representing the traditionally manufactured material response. A single-stage light gas-gun was used to launch a thin flyer plate into the samples, generating a region of intense tensile stress on a plane normal to the impact direction. The rear free surface velocity time history of each sample was recorded with laser-based velocimetry to allow the spall strength to be calculated. The samples were also soft recovered to enable post-mortem characterization of the spall damage evolution. Results showed that when the tensile load was applied normal to the interfaces between the build layers caused by the SLM fabrication process the spall strength was drastically reduced, dropping to 60% of that of the wrought material. However, when loaded parallel to the AM build layer interfaces the spall strength was found to remain at 95% of the wrought control, suggesting that when loading normal to the AM layer interfaces, void nucleation is facilitated more readily due to weaknesses along these boundaries. Quasi-static testing of the same sample orientations revealed a much lower degree of anisotropy, demonstrating the importance of rate-dependent studies for damage evolution in AM materials.

  12. A Study for Anisotropic Wavefield Analysis with Elastic Layered Models

    NASA Astrophysics Data System (ADS)

    Yoneki, R.; Mikada, H.; Takekawa, J.

    2015-12-01

    Subsurface materials are generally anisotropic due to complicated geological conditions, for example, sedimentary materials, fractures reflecting various stress conditions in the past and present in the subsurface. There are many studies on seismic wave propagation in TI (transversely isotropic) and orthorhombic media (e.g., Thomsen, 1986; Alkhalifah, 2000; Bansal and Sen, 2008). In most of those studies, the magnitude of anisotropy is assumed to be weak. Therefore, it may be not appropriate to apply their theories directly to strongly anisotropic subsurface media in seismic exploration. It is necessary to understand the effects of the anisotropy on the behavior of seismic wave propagation in strongly anisotropic media in the seismic exploration. In this study, we investigate the influence of strong anisotropy on received seismic waveforms using three-dimensional numerical models, and verified capability of detecting subsurface anisotropy. Our numerical models contain an isotropic and an anisotropic (VTI, transversely isotropic media with vertical symmetry axis) layer, respectively, in the isotropic background subsurface. Since the difference between the two models is only the anisotropy in the vertical propagation velocity, we could look at the influence of anisotropy in the residual wavefield that is the difference in the observed wavefields of two models. We analyzed the orbital motions of the residual wavefield to see what kind of wave motions the waveforms show. We found that the residual waveforms generated by the anisotropic layer include the orbital motions of shear waves right after the first arrival, i.e., mode conversion from the compressional waves due to the anisotropy. The residual waveforms could be exploited to estimate both the order of anisotropy and the thickness of anisotropic layer in subsurface.

  13. The relationship of fall-related fractures to social deprivation.

    PubMed

    Court-Brown, C M; Aitken, S A; Ralston, S H; McQueen, M M

    2011-04-01

    The relationship between fall-related fractures and social deprivation was studied in 3,843 patients. The incidence of fractures correlated with deprivation in all age groups although the spectrum of fractures was not affected by deprivation. The average age and the prevalence of hip fractures decreased with increasing deprivation. This study examines the relationship between social deprivation and fall-related fractures. Social deprivation has been shown to be a predisposing factor in a number of diseases. There is evidence that it is implicated in fractures in children and young adults, but the evidence that it is associated with fragility fractures in older adults is weak. As fragility fractures are becoming progressively more common and increasingly expensive to treat, the association between social deprivation and fractures is important to define. All out-patient and in-patient fractures presenting to the Royal Infirmary of Edinburgh over a 1-year period were prospectively recorded. The fractures caused by falls from a standing height were analysed in all patients of at least 15 years of age. Social deprivation was assessed using the Carstairs score and social deprivation deciles, and the 2001 census was used to calculate fracture incidence. The data were used to analyse the relationship between social deprivation and fall-related fractures in all age groups. The incidence of fall-related fractures correlated with social deprivation in all age groups including fragility fractures in the elderly. The overall spectrum of fractures was not affected by social deprivation although the prevalence of proximal femoral fractures decreased with increasing deprivation. The average age of patients with fall-related fractures also decreased with increasing social deprivation as did the requirement for in-patient treatment. This is the first study to show the relationship between fall-related fractures and social deprivation in older patients. We believe that the decreased incidence of proximal femoral fractures, and the lower average age of patients with fall-related fractures, in the socially deprived relates to the relative life expectancies in the different deprivation deciles.

  14. Hydraulic Properties of Closely Spaced Dipping Open Fractures Intersecting a Fluid-Filled Borehole Derived From Tube Wave Generation and Scattering

    NASA Astrophysics Data System (ADS)

    Minato, Shohei; Ghose, Ranajit; Tsuji, Takeshi; Ikeda, Michiharu; Onishi, Kozo

    2017-10-01

    Fluid-filled fractures and fissures often determine the pathways and volume of fluid movement. They are critically important in crustal seismology and in the exploration of geothermal and hydrocarbon reservoirs. We introduce a model for tube wave scattering and generation at dipping, parallel-wall fractures intersecting a fluid-filled borehole. A new equation reveals the interaction of tube wavefield with multiple, closely spaced fractures, showing that the fracture dip significantly affects the tube waves. Numerical modeling demonstrates the possibility of imaging these fractures using a focusing analysis. The focused traces correspond well with the known fracture density, aperture, and dip angles. Testing the method on a VSP data set obtained at a fault-damaged zone in the Median Tectonic Line, Japan, presents evidences of tube waves being generated and scattered at open fractures and thin cataclasite layers. This finding leads to a new possibility for imaging, characterizing, and monitoring in situ hydraulic properties of dipping fractures using the tube wavefield.

  15. Shear Wave Splitting analysis of borehole microseismic reveals weak azimuthal anisotropy hidden behind strong VTI fabric of Lower Paleozoic shales in northern Poland

    NASA Astrophysics Data System (ADS)

    Gajek, Wojciech; Verdon, James; Malinowski, Michał; Trojanowski, Jacek

    2017-04-01

    Azimuthal anisotropy plays a key-role in hydraulic fracturing experiments, since it provides information on stress orientation and pre-existing fracture system presence. The Lower Paleozoic shale plays in northern Poland are characterized by a strong (15-18%) Vertical Transverse Isotropy (VTI) fabric which dominates weak azimuthal anisotropy being of order of 1-2%. A shear wave travelling in the subsurface after entering an anisotropic medium splits into two orthogonally polarized waves travelling with different velocities. Splitting parameters which can be assessed using a microseismic array are polarization of the fast shear wave and time delay between two modes. Polarization of the fast wave characterizes the anisotropic system on the wave path while the time delay is proportional to the magnitude of anisotropy. We employ Shear Wave Splitting (SWS) technique using a borehole microseismic dataset collected during a hydraulic stimulation treatment located in northern Poland, to image fracture strike masked by a strong VTI signature. During the inversion part, the VTI background parameters were kept constant using information from 3D seismic (VTI model used for pre-stack depth migration). Obtained fracture azimuths averaged over fracturing stages are consistent with the available XRMI imager logs from the nearby vertical well, however they are different from the large-scale maximum stress direction (by 40-45 degrees). Inverted Hudson's crack density (ca. 2%) are compatible with the low shear-wave anisotropy observed in the cross-dipole sonic logs (1-2%). This work has been funded by the Polish National Centre for Research and Development within the Blue Gas project (No BG2/SHALEMECH/14). Data were provided by the PGNiG SA. Collaboration with University of Bristol was supported within TIDES COST Action ES1401.

  16. Rodingite in Layered Gabbro of the Leka Ophiolite Complex, North-Central Caledonides of Norway

    NASA Astrophysics Data System (ADS)

    Prestvik, T.; Austrheim, H.

    2006-12-01

    Both the ultramafic (mantle) and the layered ultramafic to gabbroic (crustal) sequences of the Cambrian (497 Ma) Leka ophiolite are characterized by extensive serpentinization. Rodingite, containing grossular garnet, clinopyroxene, clinozoisite, prehnite, chlorite and preiswerkite, which has been found in the lowermost plagioclase-rich layers of the gabbro sequence seems to represent an unusual (new?) mode of rodingite occurrence compared to the more common rodingitized basaltic dikes described from many ultramafic complexes worldwide. The 5 to 15 cm wide rodingitized plagioclase layers, that alternate with less altered layers of wehrlite, clinopyroxenite, and websterite, are located c. 10 m away from a 10 m wide layer of serpentinized dunite. The whole sequence is cut by numerous fractures oriented almost perpendicular to the layering, and rodingite occurs where the fractures transect the plagioclase layers. In the adjacent lithologies, the fractures can be followed as thin veins filled with grossular, clinopyroxene, amphibole, epidote, and chlorite. These fractures were most likely channelways for the rodingite-forming fluids. Gresen analysis, assuming constant volume, shows that the rodingite formed from the plagioclase-rich layers by addition of c. 22 g of CaO, 6 g of FeO and SiO2 and removal of 10 g of Al2O3 and all (2 g) of Na2O per 100 g of protolith. Microtextures show chlorite and serpentine pseudomorphs after primary clinopyroxene, demonstrating that the alteration took place at constant volume. This reaction is the most likely Ca source for the rodingitization, possibly in addition to the serpentinization of olivine in the dunite layers. Furthermore, Ca-enriched and Al2O3- depleted clinopyroxene of the rodingite - compared to the primary clinopyroxene of the layered sequence - attest to the mobil nature of these elements. While both the protolith and the rodingite are almost K2O-free, one of the plagioclase-rich layers has K2O in the 1.1 to 1.4% range for several meters along strike and has abundant secondary phlogopite. The source for K is not easily accounted for and may suggest large scale transport. LA-ICP-MS analysis of trace elements in grossular garnet shows a strongly LREE depleted pattern with a considerable (10x) positive Eu anomaly. We interpret this as evidence for reduced conditions during formation of the rodingite (or that the garnet inherited the Eu anomaly from primary plagioclase). This first description of rodingite at Leka indicates that serpentinization and rodingitization were related and most likely took place as part of a large scale Cambrian hydrothermal system associated with an oceanic rift. It further implies that the hydrothermal alteration affected rocks at sub-Moho level.

  17. Frictional stability-permeability relationships for fractures in shales

    NASA Astrophysics Data System (ADS)

    Fang, Yi; Elsworth, Derek; Wang, Chaoyi; Ishibashi, Takuya; Fitts, Jeffrey P.

    2017-03-01

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.

  18. Time-resolved measurement of photon emission during fast crack propagation in three-point bending fracture of silica glass and soda lime glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiota, Tadashi, E-mail: tshiota@ceram.titech.ac.jp; Sato, Yoshitaka; Yasuda, Kouichi

    2014-03-10

    Simultaneous time-resolved measurements of photon emission (PE) and fast crack propagation upon bending fracture were conducted in silica glass and soda lime glass. Observation of fracture surfaces revealed that macroscopic crack propagation behavior was similar between the silica glass and soda lime glass when fracture loads for these specimens were comparable and cracks propagated without branching. However, a large difference in the PE characteristics was found between the two glasses. In silica glass, PE (645–655 nm) was observed during the entire crack propagation process, whereas intense PE (430–490 nm and 500–600 nm) was observed during the initial stages of propagation. In contrast, onlymore » weak PE was detected in soda lime glass. These results show that there is a large difference in the atomic processes involved in fast crack propagation between these glasses, and that PE can be used to study brittle fracture on the atomic scale.« less

  19. Extrapolating subsurface geometry by surface expressions in transpressional strike slip fault, deduced from analogue experiments with settings of rheology and convergence angle

    NASA Astrophysics Data System (ADS)

    Hsieh, Shang Yu; Neubauer, Franz

    2015-04-01

    The internal structure of major strike-slip faults is still poorly understood, particularly how to extrapolate subsurface structures by surface expressions. Series of brittle analogue experiments by Leever et al., 2011 resulted the convergence angle is the most influential factor for surface structures. Further analogue models with different ductile settings allow a better understanding in extrapolating surface structures to the subsurface geometry of strike-slip faults. Fifteen analogue experiments were constructed to represent strike-slip faults in nature in different geological settings. As key parameters investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The experiments are aimed to explain first order structures along major transcurrent strike-slip faults such as the Altyn, Kunlun, San Andrea and Greendale (Darfield earthquake 2010) faults. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressional system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences, suggesting that the correlation of structures across a weak layer has to be supported by geophysical data, which help constraining the geometry of the deep part. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry.

  20. Experimental research on the structural instability mechanism and the effect of multi-echelon support of deep roadways in a kilometre-deep well

    PubMed Central

    Peng, Rui; Zhao, Guangming; Li, Yingming; Zhu, Jianming

    2018-01-01

    We study the structural instability mechanism and effect of a multi-echelon support in very-deep roadways. We conduct a scale model test for analysing the structural failure mechanism and the effect of multi-echelon support of roadways under high horizontal stress. Mechanical bearing structures are classified according to their secondary stress distribution and the strength degradation of the surrounding rock after roadway excavation. A new method is proposed by partitioning the mechanical bearing structure of the surrounding rock into weak, key and main coupling bearing stratums. In the surrounding rock, the main bearing stratum is the plastic reshaping and flowing area. The weak bearing stratum is the peeling layer or the caving part. And the key bearing stratum is the shearing and yielding area. The structural fracture mechanism of roadways is considered in analysing the bearing structure instability of the surrounding rock, and multi-echelon support that considers the structural characteristics of roadway bearings is proposed. Results of the experimental study indicate that horizontal pressure seriously influences the stability of the surrounding rock, as indicated by extension of the weak bearing area and the transfer of the main and key bearing zones. The falling roof, rib spalling, and floor heave indicate the decline of the bearing capacity of surrounding rock, thereby causing roadway structural instability. Multi-echelon support is proposed according to the mechanical bearing structure of the surrounding rock without support. The redesigned support can reduce the scope of the weak bearing area and limit the transfer of the main and key bearing areas. Consequently, kilometre-deep roadway disasters, such as wedge roof caving, floor heave, and rib spalling, can be avoided to a certain degree, and plastic flow in the surrounding rock is relieved. The adverse effect of horizontal stress on the vault, spandrel and arch foot decreases. The stability of the soft rock surrounding the roadways is maintained. PMID:29447180

  1. Rodingitization and hydration of the oceanic lithosphere as developed in the Leka ophiolite, north central Norway

    NASA Astrophysics Data System (ADS)

    Austrheim, H.; Prestvik, T.

    2008-08-01

    Ophiolite complexes in mountain chains may give supplementary information on the hydration of the oceanic lithosphere to that obtained from dredged and drilled samples from the ocean floor. The ultramafic (mantle) and the layered ultramafic to anorthositic (crustal) sequences of the Cambrian (497 Ma) Leka ophiolite are variably serpentinized and chloritized. Grossular-rodingite (rodingite s.s.) has been found over a c.500 m long and tens of meters wide zone in the layered, crustal section of the complex and is developed in both pyroxenites and gabbro/anorthosite layers. Shear zones and meter wide fracture zones, where the rock has developed a fracture cleavage, are oriented at high angel to the layering and these zones were the main conduits for transport of fluid and solute between the various lithologies. Some 5-15 cm thick layers of anorthosite (or leucogabbro) have been rodingitized around such a fractures zone, with the development of three distinct metasomatic zones along the plagioclase layer. A central grossular-dominated zone with clinopyroxene, clinozoisite, prehnite, chlorite and minor titanite (rodingite zone) extends for up to 3 m along strike and gives way to a clinozoisite-dominated zone (typically 0.5 m wide) with additional grossular, clinopyroxene and chlorite which is followed outward by a LILE-enriched zone (LILE-zone) with clinozoisite, phlogopite, K-feldspar, plagioclase and preiswerkite. The LILE-zone extends more than 3 m out from the clinozoisite-dominated zone (Clz-zone). Assuming constant volume, the rodingite formed from the plagioclase layer by addition of 20 g of CaO per 100 g of rock. All Na 2O (c. 2 g) was removed from both rodingite- and Clz-zones. Ti and V increase almost 10× in the rodingite compared to its protolith. K, Ba, Rb and Cs are strongly enriched in the LILE-zone compared to the protolith and suggest interaction with sea water. The lithologies alternating with the plagioclase layers (clinopyroxenite, wehrlite, websterite and dunite) display textures indicating a number of Ca-releasing (Cpx → Chl, Cpx → Srp, Cpx → Amph) and Ca-consuming (Opx → Cpx2, Ol → Cpx2, Cpx1 → Cpx2) reactions. The replacement textures are distributed around fracture and shear zones, with the Ca -releasing reactions in the core and the Ca -consuming reactions in distal parts, forming a metasomatic column out from the fluid pathways. Serpentinization and chloritization of clinopyroxene was the main Ca-source for the rodingitization process. This first description of rodingite in a layered sequence of an ophiolite complex indicates that the hydration of the oceanic lithosphere occurred at various structural levels and was associated with Ca-metasomatism also in places where rodingite s.s. is lacking. The different lithologies exchanged elements through transport on shear and fracture zones.

  2. Development of chemical compositions for impervious screens in rocks

    NASA Astrophysics Data System (ADS)

    Kurlenya, MV; Serdyukov, SV; Shilova, TV; Patutin, AV

    2017-02-01

    The paper presents the method to create anti-seepage screens by hydraulic fracturing with three-component polyurethane mixture. The proposed working fluids and their pumping circuits allow creation of a fracture and an adjacent insulation layer. Gas permeability of porous medium is determined at limit consumption of reagents per insulating screen unit area.

  3. Fracture resistance and failure mode of posterior fixed dental prostheses fabricated with two zirconia CAD/CAM systems

    PubMed Central

    López-Suárez, Carlos; Gonzalo, Esther; Peláez, Jesús; Rodríguez, Verónica

    2015-01-01

    Background In recent years there has been an improvement of zirconia ceramic materials to replace posterior missing teeth. To date little in vitro studies has been carried out on the fracture resistance of zirconia veneered posterior fixed dental prostheses. This study investigated the fracture resistance and the failure mode of 3-unit zirconia-based posterior fixed dental prostheses fabricated with two CAD/CAM systems. Material and Methods Twenty posterior fixed dental prostheses were studied. Samples were randomly divided into two groups (n=10 each) according to the zirconia ceramic analyzed: Lava and Procera. Specimens were loaded until fracture under static load. Data were analyzed using Wilcoxon´s rank sum test and Wilcoxon´s signed-rank test (P<0.05). Results Partial fracture of the veneering porcelain occurred in 100% of the samples. Within each group, significant differences were shown between the veneering and the framework fracture resistance (P=0.002). The failure occurred in the connector cervical area in 80% of the cases. Conclusions All fracture load values of the zirconia frameworks could be considered clinically acceptable. The connector area is the weak point of the restorations. Key words:Fixed dental prostheses, zirconium-dioxide, zirconia, fracture resistance, failure mode. PMID:26155341

  4. Bending fracture in carbon nanotubes.

    PubMed

    Kuo, Wen-Shyong; Lu, Hsin-Fang

    2008-12-10

    A novel approach was adopted to incur bending fracture in carbon nanotubes (CNTs). Expanded graphite (EG) was made by intercalating and exfoliating natural graphite flakes. The EG was deposited with nickel particles, from which CNTs were grown by chemical vapor deposition. The CNTs were tip-grown, and their roots were fixed on the EG flakes. The EG flakes were compressed, and many CNTs on the surface were fragmented due to the compression-induced bending. Two major modes of the bending fracture were observed: cone-shaped and shear-cut. High-resolution scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the crack growth within the graphene layers. The bending fracture is characterized by two-region crack growth. An opening crack first appears around the outer-tube due to the bending-induced tensile stress. The crack then branches to grow along an inclined direction toward the inner-tube due to the presence of the shear stress in between graphene layers. An inner-tube pullout with inclined side surface is formed. The onset and development of the crack in these two regions are discussed.

  5. Electrohydrodynamic channeling effects in narrow fractures and pores

    NASA Astrophysics Data System (ADS)

    Bolet, Asger; Linga, Gaute; Mathiesen, Joachim

    2018-04-01

    In low-permeability rock, fluid and mineral transport occur in pores and fracture apertures at the scale of micrometers and below. At this scale, the presence of surface charge, and a resultant electrical double layer, may considerably alter transport properties. However, due to the inherent nonlinearity of the governing equations, numerical and theoretical studies of the coupling between electric double layers and flow have mostly been limited to two-dimensional or axisymmetric geometries. Here, we present comprehensive three-dimensional simulations of electrohydrodynamic flow in an idealized fracture geometry consisting of a sinusoidally undulated bottom surface and a flat top surface. We investigate the effects of varying the amplitude and the Debye length (relative to the fracture aperture) and quantify their impact on flow channeling. The results indicate that channeling can be significantly increased in the plane of flow. Local flow in the narrow regions can be slowed down by up to 5 % compared to the same geometry without charge, for the highest amplitude considered. This indicates that electrohydrodynamics may have consequences for transport phenomena and surface growth in geophysical systems.

  6. UNDERSTANDING HARD ROCK HYDROGEOLOGY THROUGH AN EXPERIMENTAL HYDROGEOLOGICAL PARK IN SOUTH INDIA: Site development and investigations on the major role of the fractured zone in crystalline aquifers

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Guiheneuf, N.; Boisson, A.; Marechal, J.; Chandra, S.; Dewandel, B.; Perrin, J.

    2012-12-01

    In water stressed south India most of the groundwater used for irrigation is pumped from crystalline rocks aquifers. In those structures groundwater flow dominantly occur in a shallow higher-permeability zone that overlies a deeper lower-permeability zone hosting little flow. The fractured zone of the weathering profile plays an important role for groundwater. In order to understand clearly this impact on water availability and quality changes the Experimental Hydrogeological Park at Choutuppal, Andhra Pradesh, India is developed in the framework of the SORE H+ network. Several hydraulic tests (injection, flowmeter profiles, single-packer tests…) and geophysical measurements (ERT, Borehole logging…) are carried out on the site in order to characterize the depth-dependence of hydrodynamic parameters in the Indian Archean granite. Specific investigation on a borewell through packer tests demonstrate that the most conductive part of the aquifer corresponds to the upper part of the fractured layer, located just below the saprolite bottom, between 15 meters and 20 meters depth. There is no highly conductive fracture beyond 20 meters depth and no indication for any conductive fracture beyond 25 meters depth. Packer tests show that the upper part of the fractured layer (15-20 m depth) is characterized by a good vertical connectivity. On the contrary, the tests carried out below 20 m depth show no vertical connectivity at all. The geometry of the fracture network and associated hydrodynamic parameters are in agreement with the conceptual model of hard-rock aquifers that derive its properties from weathering processes. The general existence of such a highly conductive structure at the top of the fractured zone has a great impact on water prospection and exploitation in such crystalline aquifers.

  7. The 2016 groundwater flow model for Dane County, Wisconsin

    USGS Publications Warehouse

    Parsen, Michael J.; Bradbury, Kenneth R.; Hunt, Randall J.; Feinstein, Daniel T.

    2016-01-01

    A new groundwater flow model for Dane County, Wisconsin, replaces an earlier model developed in the 1990s by the Wisconsin Geological and Natural History Survey (WGNHS) and the U.S. Geological Survey (USGS). This modeling study was conducted cooperatively by the WGNHS and the USGS with funding from the Capital Area Regional Planning Commission (CARPC). Although the overall conceptual model of the groundwater system remains largely unchanged, the incorporation of newly acquired high-quality datasets, recent research findings, and improved modeling and calibration techniques have led to the development of a more detailed and sophisticated model representation of the groundwater system. The new model is three-dimensional and transient, and conceptualizes the county’s hydrogeology as a 12-layer system including all major unlithified and bedrock hydrostratigraphic units and two high-conductivity horizontal fracture zones. Beginning from the surface down, the model represents the unlithified deposits as two distinct model layers (1 and 2). A single layer (3) simulates the Ordovician sandstone and dolomite of the Sinnipee, Ancell, and Prairie du Chien Groups. Sandstone of the Jordan Formation (layer 4) and silty dolostone of the St. Lawrence Formation (layer 5) each comprise separate model layers. The underlying glauconitic sandstone of the Tunnel City Group makes up three distinct layers: an upper aquifer (layer 6), a fracture feature (layer 7), and a lower aquifer (layer 8). The fracture layer represents a network of horizontal bedding-plane fractures that serve as a preferential pathway for groundwater flow. The model simulates the sandstone of the Wonewoc Formation as an upper aquifer (layer 9) with a bedding-plane fracture feature (layer 10) at its base. The Eau Claire aquitard (layer 11) includes shale beds within the upper portion of the Eau Claire Formation. This layer, along with overlying bedrock units, is mostly absent in the preglacially eroded valleys along the Yahara River valley and in northeastern Dane County. Layer 12 represents the Mount Simon sandstone as the lowermost model layer. It directly overlies the Precambrian crystalline basement rock, whose top surface forms the lower boundary of the model. The model uses the USGS MODFLOW-NWT finite-difference code, a standalone version of MODFLOW-2005 that incorporates the Newton (NWT) solver. MODFLOW-NWT improves the handling of unconfined conditions by smoothing the transition from wet to dry cells. The model explicitly simulates groundwater–surface-water interaction with streamflow routing and lake-level fluctuation. Model input included published and unpublished hydrogeologic data from recent estimates of aquifer hydraulic conductivities. A spatial groundwater recharge distribution was obtained from a recent GIS-based, soil-water-balance model for Dane County. Groundwater withdrawals from pumping were simulated for 572 wells across the entire model domain, which includes Dane County and portions of seven neighboring counties—Columbia, Dodge, Green, Iowa, Jefferson, Lafayette, and Rock. These wells withdrew an average of 60 million gallons per day (mgd) over the 5-year period from 2006 through 2010. Within Dane County, 385 wells were simulated with an average withdrawal rate of 52 mgd.Model calibration used the parameter estimation code PEST, and calibration targets included heads, stream and spring flows, lake levels, and borehole flows. Steady-state calibration focused on the period 2006 through 2010; the transient calibration focused on the 7-week drought period from late May through July 2012. This model represents a significant step forward from previous work because of its finer grid resolution, improved hydrostratigraphic discretization, transient capabilities, and more sophisticated representation of surface-water features and multi-aquifer wells.Potential applications of the model include evaluation of potential sites for and impacts of new high-capacity wells, development of wellhead protection plans, evaluating the effects of changing land use and climate on groundwater, and quantifying the relationships between groundwater and surface water.

  8. Earthquake cycle deformation in the Tibetan plateau with a weak mid-crustal layer

    NASA Astrophysics Data System (ADS)

    DeVries, Phoebe M. R.; Meade, Brendan J.

    2013-06-01

    observations of interseismic deformation across the Tibetan plateau contain information about both tectonic and earthquake cycle processes. Time-variations in surface velocities between large earthquakes are sensitive to the rheological structure of the subseismogenic crust, and, in particular, the viscosity of the middle and lower crust. Here we develop a semianalytic solution for time-dependent interseismic velocities resulting from viscoelastic stress relaxation in a localized midcrustal layer in response to forcing by a sequence of periodic earthquakes. Earthquake cycle models with a weak midcrustal layer exhibit substantially more near-fault preseismic strain localization than do classic two-layer models at short (<100 yr) Maxwell times. We apply both this three-layer model and the classic two-layer model to geodetic observations before and after the 1997 MW = 7.6 Manyi and 2001 MW = 7.8 Kokoxili strike-slip earthquakes in Tibet to estimate the viscosity of the crust below a 20 km thick seismogenic layer. For these events, interseismic stress relaxation in a weak (viscosity ≤1018.5 Paṡs) and thin (height ≤20 km) midcrustal layer explains observations of both preseismic near-fault strain localization and rapid (>50 mm/yr) postseismic velocities in the years following the coseismic ruptures. We suggest that earthquake cycle models with a localized midcrustal layer can simultaneously explain both preseismic and postseismic geodetic observations with a single Maxwell viscosity, while the classic two-layer model requires a rheology with multiple relaxation time scales.

  9. Controlled Source Electromagnetic Monitoring of Hydraulic Fracturing: Wellbore and Fluid Effects

    NASA Astrophysics Data System (ADS)

    Couchman, M. J.; Everett, M. E.

    2017-12-01

    As unconventional resources become increasingly important, we must tackle the issue of real-time monitoring of the efficiency of unconventional hydrocarbon extraction. Controlled Source Electromagnetics (CSEM) have been used primarily as a marine-based technique to monitor conventional oil bearing reservoirs with a strong resurgence the new millennium. Many of these studies revolving around detecting a thin resistive layer such as a reservoir at 1m - 3km depth. In these cases, the presence of the resistive layer is characterized by a jump in electric field amplitude recorded at the boundary between the layer and the host sediments. The lessons learned from these studies can be applied to terrestrial unconventional settings with appropriate modifications. The work shown here is a means develop methods which enable more reliable terrestrial CSEM monitoring of the flow of injected fluids associated with hydraulic fracturing of unconventional reservoirs and to detect subsurface fluids based on their CSEM signature and in turn, to infer the subsurface flow of electrically conductive injected fluids. The predictive model validated for various 1-D marine, and terrestrial cases focus on the mapping of fluid flow in from a horizontal wellbore in a uniform halfspace using an in-line Horizontal Electric Dipole (HED) with electric field amplitude recorded by an array of electric field sensors. The effect of the of the vertical and horizontal wellbores are documented taking into account the conductivity, size, and thickness of each wellbore. The fracturing fluids flow and conductivity are also taken into account throughout various stages of the fracturing process. In each case, the sensitivity at a location of the surface in-line electric field to a given resistive or conductive layer, due to a source is calculated.

  10. Manipulating electronic and mechanical properties at metal-ceramic interfaces with a nanomolecular layer

    NASA Astrophysics Data System (ADS)

    Kwan, Matthew P.

    This work demonstrates that inserting nanomolecular layers (NMLs) can profoundly change and/or lead to novel electronic and mechanical properties of metal-ceramic interfaces. The first set of results demonstrate that organophosphonate NMLs up to 1.8 nm thick can alter metal work functions by +/- 0.6 eV. This work function change is a strong function of the NML terminal groups (methyl, mercaptan, carboxylic acid, or phosphonic acid), morphology (up right, lying down, or mixed orientation), and the nature of the bonding (covalent, polar, or Van der Waals) between NML and the adjacent layers. Additionally, while NML-ceramic bond type and strength can influence and counteract the effect of NML morphology, the metal-NML bond appears to be independent of the morphology of the NML underlayer. The second set of results demonstrate that inserting an organosilane NML at a metal-ceramic interface can lead to multifold fracture toughening under both static (stress corrosion) and cyclic loads (fatigue) tested in four-point bend. Nanolayer-induced interface strengthening during static loading activates metal plasticity above the metal yield strength, leading to two-fold fracture toughening. Metal plasticity-induced toughening increases as temperature is increased up to 85 °C due to decreasing yield stress. In the fatigue fracture tests I report for the first time a loading-frequency-dependent tripling in fracture toughening in the 75-300 Hz range upon inserting a mercapto-silane NML at the weakest interface of a ceramic-polymer-metal-ceramic stack. This unusual behavior arises from the NML strengthened interface enabling load transfer to- and plasticity in the polymer layer, while the fatigue toughening magnitude and frequency range are determined by polymer rheology.

  11. The effect of finish line preparation and layer thickness on the failure load and fractography of ZrO2 copings.

    PubMed

    Reich, Sven; Petschelt, Anselm; Lohbauer, Ulrich

    2008-05-01

    To prevent tooth weakening or pulp irritation, there is a need for a minimally invasive method of preparing single anterior crowns. Restoration dimensions for reduced coping thicknesses or less invasive finish line preparations are required. The purposed of this in vitro was to study investigate the fracture performance of high-strength zirconia copings, compare knife-edge margins with chamfer finish lines, and examine the effect of reducing the layer thickness from 0.5 mm to 0.3 mm. Y-TZP zirconia copings were manufactured on brass dies of a maxillary central incisor. Forty copings, with 2 layer thicknesses (0.5 and 0.3 mm), and 2 finish line preparations (knife edge and chamfer; n=10) were cemented using a conventional glass ionomer cement and stored in distilled water at 37 degrees C for 24 hours. The copings were vertically loaded until fracture using a universal testing machine. Data were analyzed by 2-way ANOVA (alpha=.05). Fractographic examination was performed using scanning electron microscopy and confocal laser scanning microscopy. A significantly higher mean failure load was measured for knife-edge (0.5 mm, 1110 +/-175 N; 0.3 mm, 730 +/-160 N) versus chamfer (0.5 mm, 697 +/-126 N; 0.3 mm, 455 +/-79 N) preparations (P<.001), and for 0.5-mm versus 0.3-mm thickness layers (P<.001). Knife-edge preparations present a promising alternative to chamfer finish lines; the fracture load required for knife-edge preparations was 38% greater than that required for chamfer preparations, regardless of coping thickness. Reducing the thickness of a single crown coping from 0.5 to 0.3 mm resulted in a 35% reduction in fracture load required for either preparation type.

  12. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr

    NASA Astrophysics Data System (ADS)

    Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong; Lee, Changhee; Woo, WanChuck; Park, Sunhong

    2015-08-01

    Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures combined with the crack initiation sites such as the fractured WC particles, pores and solidification cracks. WC particles directly caused clad cracks by particle fracture under the tensile stress. The pores and solidification cracks also affected as initiation sites and provided an easy crack path ways for large brittle fractures.

  13. TDEM survey in an area of seismicity induced by water wells in Paraná sedimentary basin, Northern São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    Porsani, Jorge Luís; Almeida, Emerson Rodrigo; Bortolozo, Cassiano Antonio; Santos, Fernando Acácio Monteiro dos

    2012-07-01

    This article presents TDEM results from an area with recent induced shallow seismicity. The purpose was to do a geoelectrical mapping of sedimentary and fractured basaltic aquifers for better understanding of the hydrogeologic setting. The study area is in the Paraná basin where flood basalts are overlain by sedimentary units near the city of Bebedouro, northern São Paulo State, Brazil. 86 TDEM soundings were acquired in an area of 90 km2 in the Andes and Botafogo study areas. The soundings were chosen next to wells for calibration, and also along profiles crossing the seismically active areas. 1-D interpretation results showed the general geoelectrical stratigraphy of this part of the Paraná basin. The upper geoelectrical layer is the shallow sedimentary aquifer (Adamantina formation) with less than 80 m thickness. The second geoelectrical layer contains the upper basalts of the Serra Geral formation at about 60-80 m depths. A saturated fractured basalt zone between 100 and 300 m depths was identifiable on various TDEM soundings. This depth range corresponds to the range of hypocentral depths for more than 3000 micro-earthquakes in this area. The lower basalt layer was estimated to lie between 400 and 650 m depth. The deepest geoelectrical layer detected by various TDEM soundings corresponds to the Botucatu sandstone (Guarani aquifer). Results suggest that the high-discharge wells are located in the fractured zone in the middle basalt of the Serra Geral formation. There is a good correlation between seismically active areas, high discharge wells (> 190 m3/h), and fracture zones in the middle basalt. The results reinforce the hypothesis that the shallow seismic activity in the Bebedouro region is being triggered by high rates of groundwater withdrawal.

  14. Heterogeneous flow in multi-layer joint networks and its influence on incipient karst generation

    NASA Astrophysics Data System (ADS)

    Wang, X.; Jourde, H.

    2017-12-01

    Various dissolution types (e.g. pipe, stripe and sheet karstic features) have been observed in fractured layered limestones. Yet, due to a large range of structural and hydraulic parameters play a role in the karstification process, the dissolution mechanism, occurring either along fractures or bedding planes, is difficult to quantify. In this study, we use numerical models to investigate the influence of these parameters on the generation of different types of incipient karst. Specifically, we focus on two parameters: the fracture intensity contrast between adjacent layers and the aperture ratio between bedding planes and joints (abed/ajoint). The DFN models were generated using a pseudo-genetic code that considers the stress shadow zone. Flow simulations were performed using a combined finite-volume finite-element simulator under practical boundary conditions. The flow channeling within the fracture networks was characterized by applying a multi-fractal technique. The rock block equivalent permeability (keff) was also calculated to quantify the change in bulk hydraulic properties when changing the selected structural and hydraulic parameters. The flow simulation results show that the abed/ajoint ratio has a first-order control on the heterogeneous distribution of flow in the multi-layer system and on the magnitude of equivalent permeability. When abed/ajoint < 0.1, flow in the system is highly localized and controlled by joints, and the keff is low; while, when abed/ajoint > 0.1, the bedding plane has more control and flow becomes more pervasive and uniform, and the keff is accordingly high. A simple model, accounting for the calculation of the heterogeneous distributions of Damköhler number associated with different aperture ratios, is proposed to predict what type of incipient karst tends to develop under the studied flow conditions.

  15. Influence of Weak Base Addition to Hole-Collecting Buffer Layers in Polymer:Fullerene Solar Cells.

    PubMed

    Seo, Jooyeok; Park, Soohyeong; Song, Myeonghun; Jeong, Jaehoon; Lee, Chulyeon; Kim, Hwajeong; Kim, Youngkyoo

    2017-02-09

    We report the effect of weak base addition to acidic polymer hole-collecting layers in normal-type polymer:fullerene solar cells. Varying amounts of the weak base aniline (AN) were added to solutions of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The acidity of the aniline-added PEDOT:PSS solutions gradually decreased from pH = 1.74 (AN = 0 mol% ) to pH = 4.24 (AN = 1.8 mol %). The electrical conductivity of the PEDOT:PSS-AN films did not change much with the pH value, while the ratio of conductivity between out-of-plane and in-plane directions was dependent on the pH of solutions. The highest power conversion efficiency (PCE) was obtained at pH = 2.52, even though all devices with the PEDOT:PSS-AN layers exhibited better PCE than those with the pristine PEDOT:PSS layers. Atomic force microscopy investigation revealed that the size of PEDOT:PSS domains became smaller as the pH increased. The stability test for 100 h illumination under one sun condition disclosed that the PCE decay was relatively slower for the devices with the PEDOT:PSS-AN layers than for those with pristine PEDOT:PSS layers.

  16. Vertically oriented structure and its fracture behavior of the Indonesia white-pearl oyster.

    PubMed

    Chen, Guowei; Luo, Hongyun; Luo, Shunfei; Lin, Zhenying; Ma, Yue

    2017-02-01

    Structural calcites, aragonites, and the bonding organic network decide the growth, structure and mechanical properties of the mollusk bivalvia shell. Here, it was found out that the calcite prisms together with the coated organics construct another kind of 'brick and mortar' structure similar to the aragonite tablets. The calcite layer can be divided into three sublayers and direct evidences show that the calcite prisms are produced by two methods: nucleation and growing in the first sublayer; or fusing from the aragonites, which is quite different from some previous reports. The crystallographic orientation, micro hardness and crack propagations were tested and observed by XRD, micro harness tester, SEM and TEM. Submicron twin crystals were observed in the immature aragonite tablets. The fracture processes and the micro deformation of the aragonite tablets are detected by acoustic emission (AE) in the tensile tests, which gave the interpretation of the dynamical fracture processes: plastic deformation and fracture of the organics, and friction of the minerals at the first two stages; wear and fracture of the minerals at the third stage. Calcites and aragonites are combined and working together, like two layers of vertical 'brick and mortar's, ensuring the stable mechanical properties of the whole shell. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Tensile stress-dependent fracture behavior and its influences on photovoltaic characteristics in flexible PbS/CdS thin-film solar cells.

    PubMed

    Lee, Seung Min; Yeon, Deuk Ho; Mohanty, Bhaskar Chandra; Cho, Yong Soo

    2015-03-04

    Tensile stress-dependent fracture behavior of flexible PbS/CdS heterojunction thin-film solar cells on indium tin oxide-coated polyethylene terephthalate (PET) substrates is investigated in terms of the variations of fracture parameters with applied strains and their influences on photovoltaic properties. The PbS absorber layer that exhibits only mechanical cracks within the applied strain range from ∼0.67 to 1.33% is prepared by chemical bath deposition at different temperatures of 50, 70, and 90 °C. The PbS thin films prepared at 50 °C demonstrate better mechanical resistance against the applied bending strain with the highest crack initiating bending strain of ∼1.14% and the lowest saturated crack density of 0.036 μm(-1). Photovoltaic properties of the cells depend on the deposition temperature and the level of applied tensile stress. The values of short-circuit current density and fill factor are dramatically reduced above a certain level of applied strain, while open-circuit voltage is nearly maintained. The dependency of photovoltaic properties on the progress of fractures is understood as related to the reduced fracture energy and toughness, which is limitedly controllable by microstructural features of the absorber layer.

  18. [Fractographic analysis of clinically failed anterior all ceramic crowns].

    PubMed

    DU, Qian; Zhou, Min-bo; Zhang, Xin-ping; Zhao, Ke

    2012-04-01

    To identify the site of crack initiation and propagation path of clinically failed all ceramic crowns by fractographic analysis. Three clinically failed anterior IPS Empress II crowns and two anterior In-Ceram alumina crowns were retrieved. Fracture surfaces were examined using both optical stereo and scanning electron microscopy. Fractographic theory and fracture mechanics principles were applied to disclose the damage characteristics and fracture mode. All the crowns failed by cohesive failure within the veneer on the labial surface. Critical crack originated at the incisal contact area and propagated gingivally. Porosity was found within the veneer because of slurry preparation and the sintering of veneer powder. Cohesive failure within the veneer is the main failure mode of all ceramic crown. Veneer becomes vulnerable when flaws are present. To reduce the chances of chipping, multi-point occlusal contacts are recommended, and layering and sintering technique of veneering layer should also be improved.

  19. Fat Embolism Syndrome With Cerebral Fat Embolism Associated With Long-Bone Fracture.

    PubMed

    DeFroda, Steven F; Klinge, Stephen A

    Fat embolism syndrome (FES) is a well-known sequela of long-bone fracture and fixation. FES most commonly affects the pulmonary system. Brain emboli may lead to a symptomatic cerebral fat embolism (CFE), which is devastating. In this article, we review the presentation, causes, and management of FES presenting with CFE, report a case, and review the literature. The case involved an otherwise healthy 42-year-old woman who developed CFE after reamed intramedullary nail fixation of femoral and tibial shaft fractures during a single operation. When the patient presented after surgery, she was nonverbal and was having diffuse extremity weakness. The diagnosis was stroke and resultant diffuse encephalopathy secondary to CFE. Within days of urgent management, the patient's cognitive and ophthalmologic deficits were substantially improved. Six months after surgery, cognitive and ophthalmologic recovery was excellent, and the fractures were healing with good functional recovery in the affected limb.

  20. Pathologic Femoral Neck Fracture Due to Fanconi Syndrome Induced by Adefovir Dipivoxil Therapy for Hepatitis B

    PubMed Central

    Lee, Yoon-Suk; Kim, Byung-Kook; Lee, Ho-Jae

    2016-01-01

    In Fanconi syndrome, hypophosphatemic osteomalacia is caused by proximal renal tubule dysfunction which leads to impaired reabsorption of amino acids, glucose, urate, and phosphate. We present a rare case of a 43-year-old Korean male who was found to have insufficiency stress fracture of the femoral neck secondary to osteomalacia due to Fanconi syndrome. He had been receiving low-dose adefovir dipivoxil (ADV, 10 mg/day) for the treatment of chronic hepatitis B virus infection for 7 years and he subsequently developed severe hypophosphatemia and proximal renal tubule dysfunction. The incomplete femoral neck fracture was fixed with multiple cannulated screws to prevent further displacement of the initial fracture. After cessation of ADV and correction of hypophosphatemia with oral phosphorus supplementation, the patient's clinical symptoms, such as bone pain, muscle weakness, and laboratory findings improved. PMID:27247753

  1. Importance of weak minerals on earthquake mechanics

    NASA Astrophysics Data System (ADS)

    Kaneki, S.; Hirono, T.

    2017-12-01

    The role of weak minerals such as smectite and talc on earthquake mechanics is one of the important issues, and has been debated for recent several decades. Traditionally weak minerals in fault have been reported to weaken fault strength causing from its low frictional resistance. Furthermore, velocity-strengthening behavior of such weak mineral (talc) is considered to responsible for fault creep (aseismic slip) in the San Andreas fault. In contrast, recent studies reported that large amount of weak smectite in the Japan Trench could facilitate gigantic seismic slip during the 2011 Tohoku-oki earthquake. To investigate the role of weak minerals on rupture propagation process and magnitude of slip, we focus on the frictional properties of carbonaceous materials (CMs), which is the representative weak materials widely distributed in and around the convergent boundaries. Field observation and geochemical analyses revealed that graphitized CMs-layer is distributed along the slip surface of a fossil plate-subduction fault. Laboratory friction experiments demonstrated that pure quartz, bulk mixtures with bituminous coal (1 wt.%), and quartz with layered coal samples exhibited almost similar frictional properties (initial, yield, and dynamic friction). However, mixtures of quartz (99 wt.%) and layered graphite (1 wt.%) showed significantly lower initial and yield friction coefficient (0.31 and 0.50, respectively). Furthermore, the stress ratio S, defined as (yield stress-initial stress)/(initial stress-dynamic stress), increased in layered graphite samples (1.97) compared to quartz samples (0.14). Similar trend was observed in smectite-rich fault gouge. By referring the reported results of dynamic rupture propagation simulation using S ratio of 1.4 (typical value for the Japan Trench) and 2.0 (this study), we confirmed that higher S ratio results in smaller slip distance by approximately 20 %. On the basis of these results, we could conclude that weak minerals have lower initial/yield strength and higher S ratio, and thus restrain magnitude of slip during earthquake.

  2. Sandia fracture challenge 2: Sandia California's modeling approach

    DOE PAGES

    Karlson, Kyle N.; James W. Foulk, III; Brown, Arthur A.; ...

    2016-03-09

    The second Sandia Fracture Challenge illustrates that predicting the ductile fracture of Ti-6Al-4V subjected to moderate and elevated rates of loading requires thermomechanical coupling, elasto-thermo-poro-viscoplastic constitutive models with the physics of anisotropy and regularized numerical methods for crack initiation and propagation. We detail our initial approach with an emphasis on iterative calibration and systematically increasing complexity to accommodate anisotropy in the context of an isotropic material model. Blind predictions illustrate strengths and weaknesses of our initial approach. We then revisit our findings to illustrate the importance of including anisotropy in the failure process. Furthermore, mesh-independent solutions of continuum damage modelsmore » having both isotropic and anisotropic yields surfaces are obtained through nonlocality and localization elements.« less

  3. Fracture-induced amorphization of polycrystalline SiO2 stishovite: a potential platform for toughening in ceramics

    PubMed Central

    Nishiyama, Norimasa; Wakai, Fumihiro; Ohfuji, Hiroaki; Tamenori, Yusuke; Murata, Hidenobu; Taniguchi, Takashi; Matsushita, Masafumi; Takahashi, Manabu; Kulik, Eleonora; Yoshida, Kimiko; Wada, Kouhei; Bednarcik, Jozef; Irifune, Tetsuo

    2014-01-01

    Silicon dioxide has eight stable crystalline phases at conditions of the Earth's rocky parts. Many metastable phases including amorphous phases have been known, which indicates the presence of large kinetic barriers. As a consequence, some crystalline silica phases transform to amorphous phases by bypassing the liquid via two different pathways. Here we show a new pathway, a fracture-induced amorphization of stishovite that is a high-pressure polymorph. The amorphization accompanies a huge volume expansion of ~100% and occurs in a thin layer whose thickness from the fracture surface is several tens of nanometers. Amorphous silica materials that look like strings or worms were observed on the fracture surfaces. The amount of amorphous silica near the fracture surfaces is positively correlated with indentation fracture toughness. This result indicates that the fracture-induced amorphization causes toughening of stishovite polycrystals. The fracture-induced solid-state amorphization may provide a potential platform for toughening in ceramics. PMID:25297473

  4. Fracture-induced amorphization of polycrystalline SiO2 stishovite: a potential platform for toughening in ceramics.

    PubMed

    Nishiyama, Norimasa; Wakai, Fumihiro; Ohfuji, Hiroaki; Tamenori, Yusuke; Murata, Hidenobu; Taniguchi, Takashi; Matsushita, Masafumi; Takahashi, Manabu; Kulik, Eleonora; Yoshida, Kimiko; Wada, Kouhei; Bednarcik, Jozef; Irifune, Tetsuo

    2014-10-09

    Silicon dioxide has eight stable crystalline phases at conditions of the Earth's rocky parts. Many metastable phases including amorphous phases have been known, which indicates the presence of large kinetic barriers. As a consequence, some crystalline silica phases transform to amorphous phases by bypassing the liquid via two different pathways. Here we show a new pathway, a fracture-induced amorphization of stishovite that is a high-pressure polymorph. The amorphization accompanies a huge volume expansion of ~100% and occurs in a thin layer whose thickness from the fracture surface is several tens of nanometers. Amorphous silica materials that look like strings or worms were observed on the fracture surfaces. The amount of amorphous silica near the fracture surfaces is positively correlated with indentation fracture toughness. This result indicates that the fracture-induced amorphization causes toughening of stishovite polycrystals. The fracture-induced solid-state amorphization may provide a potential platform for toughening in ceramics.

  5. Fracture Surface Analysis of Clinically Failed Fixed Partial Dentures

    PubMed Central

    Taskonak, B.; Mecholsky, J.J.; Anusavice, K.J.

    2008-01-01

    Ceramic systems have limited long-term fracture resistance, especially when they are used in posterior areas or for fixed partial dentures. The objective of this study was to determine the site of crack initiation and the causes of fracture of clinically failed ceramic fixed partial dentures. Six Empress 2® lithia-disilicate (Li2O·2SiO2)-based veneered bridges and 7 experimental lithia-disilicate-based non-veneered ceramic bridges were retrieved and analyzed. Fractography and fracture mechanics methods were used to estimate the stresses at failure in 6 bridges (50%) whose fracture initiated from the occlusal surface of the connectors. Fracture of 1 non-veneered bridge (8%) initiated within the gingival surface of the connector. Three veneered bridges fractured within the veneer layers. Failure stresses of the all-core fixed partial dentures ranged from 107 to 161 MPa. Failure stresses of the veneered fixed partial dentures ranged from 19 to 68 MPa. We conclude that fracture initiation sites are controlled primarily by contact damage. PMID:16498078

  6. Structure and morphology of submarine slab slides: clues to origin and behavior

    USGS Publications Warehouse

    O'Leary, Dennis W.

    1991-01-01

    Geologic features suggest that some slab slides probably result from long-term strength degradation of weak layers deep in the homoclinal section. Time-dependent strain in clay-rich layers can create potential slide surfaces of low frictional strength. Competent layers are weak in tension and probably fragment in the first instance of, or even prior to, translation, and the allochthonous mass is readily transformed into a high-momentum debris flow. The structure and geomorphology of slab slides provide important clues to their origin and behavior. -from Author

  7. Resolution and sensitivity of boat-towed RMT data to delineate fracture zones - Example of the Stockholm bypass multi-lane tunnel

    NASA Astrophysics Data System (ADS)

    Mehta, Suman; Bastani, Mehrdad; Malehmir, Alireza; Pedersen, Laust B.

    2017-04-01

    The resolution and sensitivity of water-borne boat-towed multi-frequency radio-magnetotelluric (RMT) data for delineating zones of weaknesses in bedrock are examined in this study. 2D modeling of RMT data along 40 profiles in joint transverse electric (TE) and transverse magnetic (TM) as well as determinant mode was used for this purpose. The RMT data were acquired over two water passages from the Lake Mälaren near the city of Stockholm where one of the largest underground infrastructure projects, a multi-lane tunnel, in Europe is currently being developed. Comparison with available borehole coring, refraction seismic and bathymetric data was used to scrutinize the RMT resistivity models. A low-resistivity zone observed in the middle of all the profiles is suggested to be from fracture/fault zones striking in the same direction as the water passages. Drilling observations confirm the presence of brittle structures in the bedrock, which manifest themselves as zones of low-resistivity and low-velocity in the RMT and refraction seismic data, respectively. Nevertheless, RMT is an inductive electromagnetic method hence the presence of conductive lake sediments may shield detecting the underlying fractured bedrock. The loss of resolution at depth implies that the structures within the bedrock under the lake sediments cannot reliably be delineated. To support this, a synthetic data analysis was carried out providing useful information on how to improve and plan the lake measurements for future studies. Synthetic modeling results for example suggested that frequencies as low as 3 kHz would be required to reliably resolve the bedrock and fracture zone within it in the study area. The modeling further illustrated the advantage of a fresh water layer that acts as a near-surface homogeneous medium eliminating the static shift effects. While boat-towed RMT data provided substantial information about the subsurface geology, the acquisition system should be upgraded to enable controlled-source data acquisition to increase the penetration depth and to overcome the shortcomings of using only radio-frequencies.

  8. What are the control mechanisms of evenly-spaced parallel strike-slip faults? Insights from DEM modeling

    NASA Astrophysics Data System (ADS)

    Bonilla Sierra, V.; Donze, F. V.; Duriez, J.; Klinger, Y.; Scholtes, L.

    2016-12-01

    At the very early stages of a pure strike-slip fault zone formation, shear displacement along a deep buried parent fault produces a characteristic set of "evenly-spaced" strike-slip faults at the surface, e.g. Southern San Andreas, North Anatolian, Central Asian, and Northern Tibetan fault systems. This mode III fracture propagation is initiated by the rotation of the local principal stress at the tip of the parent discontinuity, generating twisted fractures with a helicoidal shape. In sandbox or clay-cake experiments used to reproduce these structures, it has been observed that the spacing and possibly the characteristic length of the fractures appearing at the surface are proportional to the overburden thickness of the deformed layer. Based on a Discrete Element Method (YADE DEM-Open Source), we have investigated the conditions controlling the linear relationships between the spacing of the surface "evenly-spaced" strike-slip discontinuities and the thickness of the deformed layer. Increasing the basement displacement of the model, a diffused shear zone appears first at the tip of the basal parent discontinuity. From this mist zone, localized and strongly interacting shear fractures start to propagate. This interaction process can generate complex internal structures: some fractures will propagate faster than their neighbors, modifying their close surrounding stress environment. Some propagating fractures can stop growing and asymmetrical fracture sets can be observed. This resulting hierarchical bifurcation process leads to a set of "en echelon" discontinuities appearing at the surface (Figure 1). In a pure strike-slip mode, fracture spacing is proportional to the thickness, with a ratio and a bifurcation mode controlled by the cohesion value at the first order. Depending on the Poisson's ratio value, which mainly controls the orientation of the discontinuities, this ratio can be affected at a lower degree. In presence of mixed-mode (transpression or transtension), these linear relationships disappear. Figure 1: Effects of the cohesion C and the thickness T of the deformed layer on the surface discontinuity pattern (a) T = Tref and C = Cref (b) T = Tref and C= 10×Cref (c) T = 2×Tref and C = Cref (d) T = 2×Tref and 10×Cref. The color code corresponds to the instantaneous velocity in the Y direction.

  9. Bottom-water observations in the Vema fracture zone

    NASA Astrophysics Data System (ADS)

    Eittreim, Stephen L.; Biscaye, Pierre E.; Jacobs, Stanley S.

    1983-03-01

    The Vema fracture zone trough, at 11°N between 41° and 45°E, is open to the west at the 5000-m level but is silled at the 4650-m level on the east where it intersects the axis of the Mid-Atlantic Ridge. The trough is filled with Antarctic Bottom Water (AABW) with a potential temperature of 1.32°C and salinity of 34.82 ppt. The bottom water is thermally well mixed in a nearly homogeneous layer about 700 m thick. The great thickness of this bottom layer, as compared with the bottom-water structure of the western Atlantic basin, may result from enhanced mixing induced by topographic constriction at the west end of the fracture zone trough. A benthic thermocline, with potential temperature gradients of about 1.2 mdeg m-1, is associated with an abrupt increase in turbidity with depth at about 1200 m above bottom. A transitional layer of more moderate temperature gradients, about 0.4 mdeg m-1, lies between the benthic thermocline above and the AABW below. The AABW layer whose depth-averaged suspended paniculate concentrations range from 8 to 19 μg L-1, is consistently higher in turbidity than the overlying waters. At the eastern end of the trough, 140 m below sill depth, very low northeastward current velocities, with maximums of 3 cm s-1, were recorded for an 11-day period.

  10. Fracture toughness of the nickel-alumina laminates by digital image-correlation technique

    NASA Astrophysics Data System (ADS)

    Mekky, Waleed

    The purpose of this work is to implement the digital image correlation technique (DIC) in composite laminate fracture testing. The latter involves measuring the crack opening displacement (COD) during stable crack propagation and characterizing the strain development in a constrained nickel layer under applied loading. The major challenge to measure the COD of alternated metal/ceramic layers is the elastic-mismatch effect. This leads to oscillating COD measurement. Smoothing the result with built-in modules of commercial software leads to a loss of data accuracy. A least-squares fitting routine for the data output gave acceptable COD profiles. The behavior of a single Ni ligament sandwiched between two Al2O3 layers was determined for two Ni thicknesses (0.125 and 0.25mm). Modeling of the behavior via a modified Bridgman approach for rectangular cross section samples, proved limited as different mechanisms are operating. Nevertheless, the behavior is however captured to a point, but the model underestimates the results vis a vis experimental ones. The fracture-resistance curves for Nickel/Alumina laminates were developed experimentally and modeled via LEFM using the weight function approach and utilizing single-ligament-, and COD-, data. The crack-tip toughness was found to increase with Ni layer thickness due to crack-tip-shielding. The crack-initiation-toughness was estimated from the stress field and the crack-opening-displacement of the main crack.

  11. Dissolution of cemented fractures in gas bearing shales in the context of CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Kamil; Szymczak, Piotr

    2016-04-01

    Carbon dioxide has a stronger binding than methane to the organic matter contained in the matrix of shale rocks [1]. Thus, the injection of CO2 into shale formation may enhance the production rate and total amount of produced methane, and simultaneously permanently store pumped CO2. Carbon dioxide can be injected during the initial fracking stage as CO2 based hydraulic fracturing, and/or later, as a part of enhanced gas recovery (EGR) [2]. Economic and environmental benefits makes CO2 sequestration in shales potentially very for industrial-scale operation [3]. However, the effective process requires large area of fracture-matrix interface, where CO2 and CH4 can be exchanged. Usually natural fractures, existing in shale formation, are preferentially reactivated during hydraulic fracturing, thus they considerably contribute to the flow paths in the resulting fracture system [4]. Unfortunately, very often these natural fractures are sealed by calcite [5]. Consequently the layer of calcite coating surfaces impedes exchange of gases, both CO2 and CH4, between shale matrix and fracture. In this communication we address the question whether carbonic acid, formed when CO2 is mixed with brine, is able to effectively dissolve a calcite layer present in the natural fractures. We investigate numerically fluid flow and dissolution of calcite coating in natural shale fractures, with CO2-brine mixture as a reactive fluid. Moreover, we discuss the differences between slow dissolution (driven by carbonic acid) and fast dissolution (driven by stronger hydrochloric acid) of calcite layer. We compare an impact of the flow rate and geometry of the fracture on the parameters of practical importance: available surface area, morphology of dissolution front, time scale of the dissolution, and the penetration length. We investigate whether the dissolution is sufficiently non-uniform to retain the fracture permeability, even in the absence of the proppant. The sizes of analysed fractures varying from 0.2 x 0.2 m2 up to 4 x 4 m2, together with discussion of a further upscaling, make the study relevant to the industrial applications. While the results of this study should be applicable to different shale formations throughout the world, we discuss them in the context of preparation to gas-production from Pomeranian shale basin, located in the northern Poland. [1] Mosher, K., He, J., Liu, Y., Rupp, E., & Wilcox, J. Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems. International Journal of Coal Geology, 109, 36-44 (2013) [2] Grieser, W. V., Wheaton, W. E., Magness, W. D., Blauch, M. E., & Loghry, R, "Surface Reactive Fluid's Effect on Shale." Proceedings of the Production and Operations Symposium, 31 March-3 April 2007, Oklahoma City (SPE-106815-MS) [3] Tao, Z. and Clarens, A., Estimating the carbon sequestration capacity of shale formations using methane production rates, Environmental Science and Technology, 47, 11318-11325 (2013). [4] Zhang, X., Jeffrey, R. G., & Thiercelin, M. (2009). Mechanics of fluid-driven fracture growth in naturally fractured reservoirs with simple network geometries. Journal of Geophysical Research: Solid Earth, 114, B12406 (2009) [5] Gale, J.F., Laubach, S.E., Olson, J.E., Eichhubl, P., Fall, A. Natural fractures in shale: A review and new observations. AAPG Bulletin 98(11):2165-2216 (2014)

  12. Weld formation during material extrusion additive manufacturing.

    PubMed

    Seppala, Jonathan E; Hoon Han, Seung; Hillgartner, Kaitlyn E; Davis, Chelsea S; Migler, Kalman B

    2017-10-04

    Material extrusion (ME) is a layer-by-layer additive manufacturing process that is now used in personal and commercial production where prototyping and customization are required. However, parts produced from ME frequently exhibit poor mechanical performance relative to those from traditional means; moreover, fundamental knowledge of the factors leading to development of inter-layer strength in this highly non-isothermal process is limited. In this work, we seek to understand the development of inter-layer weld strength from the perspective of polymer interdiffusion under conditions of rapidly changing mobility. Our framework centers around three interrelated components: in situ thermal measurements (via infrared imaging), temperature dependent molecular processes (via rheology), and mechanical testing (via mode III fracture). We develop the concept of an equivalent isothermal weld time and test its relationship to fracture energy. For the printing conditions studied the equivalent isothermal weld time for T ref = 230 °C ranged from 0.1 ms to 100 ms. The results of these analysis provide a basis for optimizing inter-layer strength, the limitations of the ME process, and guide development of new materials.

  13. Evolution of stress and strain during 3D folding: application to orthogonal fracture systems in folded turbidites, SW Portugal

    NASA Astrophysics Data System (ADS)

    Reber, J. E.; Schmalholz, S. M.; Lechmann, S. M.

    2009-04-01

    We present field data and numerical modeling results which show the evolution of stress and strain patterns during 3D folding resulting in an orthogonal fracture system. The field area is located near Almograve, SW Portugal. The area is part of the Mira Formation which itself is part of the South Portuguese Zone (SPZ). The structural development of the SPZ is characterized by southwest vergent folding and thrust displacement. The metamorphism in the SPZ increases from diagenetic conditions in the southwest to greenschist-facies conditions to the northeast. The Mira Formation is composed of turbiditic layers of Carboniferous age with low sandstone to shale ratio. The data was gathered at three outcrops which show structures similar to chocolate tablet structures in the folded sandstone layers. Chocolate tablet structures are generated under simultaneous extension in two directions and show two fracture systems of the same age which are perpendicular to each other. However, the Mira Formation is located in a convergent area. Also, the outcrops near Almograve show two fracture systems of different age. The fractures orthogonal to the fold axis and the bedding are crosscut by fractures parallel to the fold axis and orthogonal to the bedding. Our hypothesis for the evolution of the observed fracture systems is as follows; the older fractures which are now orthogonal to the fold axis and to the bedding plane were generated during compression while the layers were still approximately horizontal. They are parallel to σ1(i.e. mode 1 fractures). The second and younger fracture family was generated in a phase where there is local extension in the fold limbs. These fractures are orthogonal to the far-field σ1, parallel to the fold axis and perpendicular to the bedding. The shortening direction is constant during the entire folding process. We test our hypothesis with numerical modeling. We use 2D and 3D finite element codes with a mixed formulation for incompressible flow and a viscous rheology. The stress and strain tensor components are calculated at each numerical nodal point. The stress and strain fields are visualized through ellipses and ellipsoids which are calculated using the eigenvalues of the respective tensors. The shortest main axis represents the direction of the smallest stress σ3 and the longest main axis represents the direction of the largest stress σ1. To generate two orthogonal fracture systems in the fold limbs we expect a relatively rapid change of the stress field in the fold limbs during folding. With a relatively slow change of the stress field we would expect to see more than two fracture systems with a wide range of fracture orientation which we did not observe in the field. The preliminary 2D results show, as expected, a sudden flip of the main axes of the stress ellipse which corresponds to a change from limb-parallel compression to extension. For the 3D model we expect similar results and we will investigate the impact of different deformation boundary conditions on the evolution of the 3D stress and strain fields.

  14. Effect of thermal fatigue on the structure and properties of Ni3Al-based alloy single crystals

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Drozdov, A. A.; Bazyleva, O. A.; Bulakhtina, M. A.; Alad'ev, N. A.; Antonova, A. V.; Arginbaeva, E. G.; Morozov, A. E.

    2014-05-01

    The effect of thermal fatigue during tests of <001> and <111> single crystals according to the schedules 100 ai 850°C, 100 ai 1050°C, 100 ai 1100°C at a peak-to-peak stress Δσtc = 700-1000 MPa (sum of the maximum tensile and compressive stresses in a thermal cycle) on the structure, the fracture, and the fatigue life of an Ni3Al-based VKNA-1V alloy is studied. It is found that, at 103 thermal cycles, the <111> single crystals have the maximum thermal fatigue resistance at the maximum cycle temperature of 850 and 1050°C, and the properties of the <001> and <111> samples are almost the same at the maximum thermal cycle temperature of 1100°C. After thermal cycling at the maximum temperature of 850°C, the γ layers in the two-phase γ' + γ region in dendrites remain a single-phase structure, as in the as-cast material, and the layer thickness is 100-150 nm. When the maximum thermal cycle temperature increases to 1050 or 1100°C, the discontinuous γ-phase layers in the γ'(Ni3Al) matrix change their morphology and become shorter and wider (their thickness is 300-700 nm). The nickel-based supersaturated solid solution in these layers decomposes with the formation of secondary γ'(Ni3Al)-phase (γ'sec) precipitates in the form of cuboids 50 and 100 nm in size at the maximum cycle temperature of 1050 and 1100°C, respectively. The alternating stresses that appear during thermal cycling cause plastic deformation. As in nickel superalloys, this deformation at the first stage proceeds via the slip of screw dislocations along octahedral {111} planes. Networks of 60° dislocation segments form at γ'/γ interfaces in this case. Fracture begins at the lines of intersection of the slip planes of the {111} octahedron with the sample surface. During fractional, a crack passes from one octahedral plane to another and forms terraces and steps (crystallographic fracture); as a result, the fracture surface bends and becomes curved. In all cases, the fracture surfaces have a mixed brittle-ductile character with a combination of crystallographic and ductile (dimple) fracture elements.

  15. Interfacial Reaction During Dissimilar Joining of Aluminum Alloy to Magnesium and Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Robson, J. D.; Panteli, A.; Zhang, C. Q.; Baptiste, D.; Cai, E.; Prangnell, P. B.

    Ultrasonic welding (USW), a solid state joining process, has been used to produce welds between AA6111 aluminum alloy and AZ31 magnesium alloys or titanium alloy Ti-6Al-4V. The mechanical properties of the welds have been assessed and it has been shown that it is the nature and thickness of the intermetallic compounds (IMCs) at the joint line that are critical in determining joint strength and particularly fracture energy. Al-Mg welds suffer from a very low fracture energy, even when strength is comparable with that of similar metal Mg-Mg welds, due to a thick IMC layer always being formed. It is demonstrated that in USW of Al-Ti alloy the slow interdiffusion kinetics means that an IMC layer does not form during welding, and fracture energy is greater. A model has been developed to predict IMC formation during welding and provide an understanding of the critical factors that determine the IMC thickness. It is predicted that in Al-Mg welds, most of the lMC thickening occurs whilst the IMC regions grow as separate islands, prior to the formation of a continuous layer.

  16. Vertical wind shear characteristics that promote supercell-to-MCS transitions

    NASA Astrophysics Data System (ADS)

    Peters, J. M.

    2017-12-01

    What causes supercells to transition into MCSs in some situations, but not others? To explore this question, I first examined observed environmental characteristics of supercell events when MCSs formed, and compared them to the analogous environmental characteristics of supercell events when MCSs did not form. During events when MCS growth occurred, 0-1 km (low-level) vertical wind shear was stronger and 0-10 km (deep-layer) vertical wind shear was weaker than the wind shear during events when MCS growth did not occur. Next, I used idealized simulations of supercell thunderstorms to understand the connections between low-level and deep-layer shear and MCS growth. Compared to simulations with strong deep-layer shear, the simulations with weak deep-layer shear had rain in the storm's forward-flank downdraft (FFD) that fell closer to the updraft, fell through storm-moistened air and evaporated less, and produced a more intense FFD. Compared to simulations with weak low-level shear, the simulations with stronger low-level shear showed enhanced northward low-level hydrometeor transport into the FFD. Environments with strong low-level shear and weak deep-layer shear therefore conspired to produce a storm with a more intense FFD cold pool, when compared to environments with weak low-level shear and/or strong deep-layer shear. This strong FFD periodically disrupted the supercells' mesocyclones, and favorably interacted with westerly wind shear to produce widespread linear convection initiation, which drove MCS growth. These results suggest that increasing low-level wind shear after dark - while commonly assumed to enhance tornado potential - may in fact drive MCS growth and reduce tornado potential, unless it is combined with sufficiently strong deep layer shear.

  17. Receiver function and gravity constraints on crustal structure and vertical movements of the Upper Mississippi Embayment and Ozark Uplift

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Gao, Stephen S.; Liu, Kelly H.; Mickus, Kevin

    2017-06-01

    The Upper Mississippi Embayment (UME), where the seismically active New Madrid Seismic Zone resides, experienced two phases of subsidence commencing in the Late Precambrian and Cretaceous, respectively. To provide new constraints on models proposed for the mechanisms responsible for the subsidence, we computed and stacked P-to-S receiver functions recorded by 49 USArray and other seismic stations located in the UME and the adjacent Ozark Uplift and modeled Bouguer gravity anomaly data. The inferred thickness, density, and Vp/Vs of the upper and lower crustal layers suggest that the UME is characterized by a mafic and high-density upper crustal layer of ˜30 km thickness, which is underlain by a higher-density lower crustal layer of up to ˜15 km. Those measurements, in the background of previously published geological observations on the subsidence and uplift history of the UME, are in agreement with the model that the Cretaceous subsidence, which was suggested to be preceded by an approximately 2 km uplift, was the consequence of the passage of a previously proposed thermal plume. The thermoelastic effects of the plume would have induced wide-spread intrusion of mafic mantle material into the weak UME crust fractured by Precambrian rifting and increased its density, resulting in renewed subsidence after the thermal source was removed. In contrast, the Ozark Uplift has crustal density, thickness, and Vp/Vs measurements that are comparable to those observed on cratonic areas, suggesting an overall normal crust without significant modification by the proposed plume, probably owing to the relatively strong and thick lithosphere.

  18. Evaluation of sandwich layer system of flexible pavements in Virginia.

    DOT National Transportation Integrated Search

    1972-01-01

    The use of a weak sandwich layer in a four-layer system is common in the construction of flexible pavements, but the use of a sandwich layer in a three-layer system is in the experimental stage in Virginia. Theoretical and field studies have been car...

  19. Microfracture spacing distributions and the evolution of fracture patterns in sandstones

    NASA Astrophysics Data System (ADS)

    Hooker, J. N.; Laubach, S. E.; Marrett, R.

    2018-03-01

    Natural fracture patterns in sandstone were sampled using scanning electron microscope-based cathodoluminescence (SEM-CL) imaging. All fractures are opening-mode and are fully or partially sealed by quartz cement. Most sampled fractures are too small to be height-restricted by sedimentary layers. At very low strains (<∼0.001), fracture spatial distributions are indistinguishable from random, whereas at higher strains, fractures are generally statistically clustered. All 12 large (N > 100) datasets show spacings that are best fit by log-normal size distributions, compared to exponential, power law, or normal distributions. The clustering of fractures suggests that the locations of natural factures are not determined by a random process. To investigate natural fracture localization, we reconstructed the opening history of a cluster of fractures within the Huizachal Group in northeastern Mexico, using fluid inclusions from synkinematic cements and thermal-history constraints. The largest fracture, which is the only fracture in the cluster visible to the naked eye, among 101 present, opened relatively late in the sequence. This result suggests that the growth of sets of fractures is a self-organized process, in which small, initially isolated fractures grow and progressively interact, with preferential growth of a subset of fractures developing at the expense of growth of the rest. Size-dependent sealing of fractures within sets suggests that synkinematic cementation may contribute to fracture clustering.

  20. The effect of the interaction of cracks in orthotropic layered materials under compressive loading.

    PubMed

    Winiarski, B; Guz, I A

    2008-05-28

    The non-classical problem of fracture mechanics of composites compressed along the layers with interfacial cracks is analysed. The statement of the problem is based on the model of piecewise homogeneous medium, the most accurate within the framework of the mechanics of deformable bodies as applied to composites. The condition of plane strain state is examined. The layers are modelled by a transversally isotropic material (a matrix reinforced by continuous parallel fibres). The frictionless Hertzian contact of the crack faces is considered. The complex fracture mechanics problem is solved using the finite-element analysis. The shear mode of stability loss is studied. The results are obtained for the typical dispositions of cracks. It was found that the interacting crack faces, the crack length and the mutual position of cracks influence the critical strain in the composite.

  1. Adhesion properties in systems of laminated pigmented polymers, carbon-graphite fiber composite framework and titanium surfaces in implant suprastructures.

    PubMed

    Segerström, Susanna; Ruyter, I Eystein

    2009-09-01

    For long-term stability the adhering interfaces of an implant-retained supraconstruction of titanium/carbon-graphite fiber-reinforced (CGFR) polymer/opaquer layer/denture base polymer/denture teeth must function as a unity. The aim was to evaluate adhesion of CGFR polymer to a titanium surface or CGFR polymer to two different opaquer layers/with two denture base polymers. Titanium plates were surface-treated and silanized and combined with a bolt of CGFR polymer or denture base polymer (Probase Hot). Heat-polymerized plates of CGFR polymer (47 wt% fiber) based on poly(methyl methacrylate) and a copolymer matrix were treated with an opaquer (Sinfony or Ropak) before a denture base polymer bolt was attached (Probase Hot or Lucitone 199). All specimens were heat-polymerized, water saturated (200 days) and thermally cycled (5000 cycles, 5/55 degrees C) before shear bond testing. Silicatized titanium surfaces gave higher bond strength to CGFR polymer (16.2+/-2.34 and 18.6+/-1.32) MPa and cohesive fracture than a sandblasted surface (5.9+/-2.11) MPa where the fracture was adhesive. The opaquer Sinfony gave higher adhesion values and mainly cohesive fractures than the opaquer Ropak. Different surface treatments (roughened or polished) of the CGFR polymer had no effect on bond strength. The fracture surfaces of silicatized titanium/CGFR polymer/opaquer layer (Sinfony)/denture base polymers were mainly cohesive. A combination of these materials in an implant-retained supraconstruction is promising for in vivo evaluation.

  2. Gunshot-induced fractures of the extremities: a review of antibiotic and debridement practices.

    PubMed

    Sathiyakumar, Vasanth; Thakore, Rachel V; Stinner, Daniel J; Obremskey, William T; Ficke, James R; Sethi, Manish K

    2015-09-01

    The use of antibiotic prophylaxis and debridement is controversial when treating low- and high-velocity gunshot-induced fractures, and established treatment guidelines are currently unavailable. The purpose of this review was to evaluate the literature for the prophylactic antibiotic and debridement policies for (1) low-velocity gunshot fractures of the extremities, joints, and pelvis and (2) high-velocity gunshot fractures of the extremities. Low-velocity gunshot fractures of the extremities were subcategorized into operative and non-operative cases, whereas low-velocity gunshot fractures of the joints and pelvis were evaluated based on the presence or absence of concomitant bowel injury. In the absence of surgical necessity for fracture care such as concomitant absence of gross wound contamination, vascular injury, large soft-tissue defect, or associated compartment syndrome, the literature suggests that superficial debridement for low-velocity ballistic fractures with administration of antibiotics is a satisfactory alternative to extensive operative irrigation and debridement. In operative cases or those involving bowel injuries secondary to pelvic fractures, the literature provides support for and against extensive debridement but does suggest the use of intravenous antibiotics. For high-velocity ballistic injuries, the literature points towards the practice of extensive immediate debridement with prophylactic intravenous antibiotics. Our systematic review demonstrates weak evidence for superficial debridement of low-velocity ballistic fractures, extensive debridement for high-velocity ballistic injuries, and antibiotic use for both types of injury. Intra-articular fractures seem to warrant debridement, while pelvic fractures with bowel injury have conflicting evidence for debridement but stronger evidence for antibiotic use. Given a relatively low number of studies on this subject, we recommend that further high-quality research on the debridement and antibiotic use for gunshot-induced fractures of the extremities should be conducted before definitive recommendations and guidelines are developed.

  3. Fracture spacing in tensile brittle layers adhering to a rigid substrate

    NASA Astrophysics Data System (ADS)

    Lazarus, Véronique

    2017-01-01

    A natural question arising when observing crack networks in brittle layers such as, e.g., paints, muds, skins, pottery glazes, coatings, ceramics, is what determines the distance between cracks. This apparently simple question received a wealth of more or less complex and appropriate answers, but no consensus has emerged. Here, we show that the cracks interact mutually as soon as the spacing between them is smaller than ten times the thickness of the layer. Then, a simple Griffith-type balance between the elastic deformation energy and the fracture bulk and debonding costs captures a broad number of observations, going from the square-root or linear increase of the spacing with the thickness, to its decrease with loading until saturation. The adhesion strength is identified as playing a key role in these behaviour changes. As illustration, we show how the model can be applied to study the influence of the layer thickness on crack patterns. We believe that the versatility of the approach should permit wide applicability, from geosciences to engineering.

  4. Facies-controlled fluid migration patterns and subsequent reservoir collapse by depressurization - the Entrada Sandstone, Utah

    NASA Astrophysics Data System (ADS)

    Sundal, A.; Skurtveit, E.; Midtkandal, I.; Hope, I.; Larsen, E.; Kristensen, R. S.; Braathen, A.

    2016-12-01

    The thick and laterally extensive Middle Jurassic Entrada Sandstone forms a regionally significant reservoir both in the subsurface and as outcrops in Utah. Individual layers of fluvial sandstone within otherwise fine-grained aeolian dunes and silty inter-dune deposits of the Entrada Earthy Member are of particular interest as CO2 reservoir analogs to study injectivity, reservoir-caprock interaction and bypass systems. Detailed mapping of facies and deformation structures, including petrographic studies and core plug tests, show significant rock property contrasts between layers of different sedimentary facies. Beds representing fluvial facies appear as white, medium-grained, well-sorted and cross-stratified sandstone, displaying high porosity, high micro-scale permeability, low tensile strength, and low seismic velocity. Subsequent to deposition, these beds were structurally deformed and contain a dense network of deformation bands, especially in proximity to faults and injectites. Over- and underlying low-permeability layers of inter-dune aeolian facies contain none or few deformation bands, display significantly higher rock strengths and high seismic velocities compared to the fluvial inter-beds. Permeable units between low-permeability layers are prone to become over-pressured during burial, and the establishment of fluid escape routes during regional tectonic events may have caused depressurization and selective collapse of weak layers. Through-cutting, vertical sand pipes display large clasts of stratified sandstone suspended in remobilized sand matrix, and may have served as permeable fluid conduits and pressure vents before becoming preferentially cemented and plugged. Bleached zones around faults and fractures throughout the succession indicate leakage and migration of reducing fluids. The fluvial beds are porous and would appear in wireline logs and seismic profiles as excellent reservoirs; whereas due to dense populations of deformation bands they may in fact display reduced horizontal and vertical permeability locally. Facies-related differences in geomechanical properties, pressure distribution and selective structural collapse have significant implications for injectivity and reservoir behavior.

  5. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu

    2016-11-01

    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  6. Motion of Discrete Interfaces Through Mushy Layers

    NASA Astrophysics Data System (ADS)

    Braides, Andrea; Solci, Margherita

    2016-08-01

    We study the geometric motion of sets in the plane derived from the homogenization of discrete ferromagnetic energies with weak inclusions. We show that the discrete sets are composed by a `bulky' part and an external `mushy region' composed only of weak inclusions. The relevant motion is that of the bulky part, which asymptotically obeys to a motion by crystalline mean curvature with a forcing term, due to the energetic contribution of the mushy layers, and pinning effects, due to discreteness. From an analytical standpoint, it is interesting to note that the presence of the mushy layers implies only a weak and not strong convergence of the discrete motions, so that the convergence of the energies does not commute with the evolution. From a mechanical standpoint it is interesting to note the geometrical similarity of some phenomena in the cooling of binary melts.

  7. Open reduction and internal fixation of intra-articular fractures of the mandibular condyle: our first experiences.

    PubMed

    Vesnaver, Ales

    2008-10-01

    Treatment of intra-articular fractures of the mandibular condyle head is conservative at most institutions dealing with facial fractures. Recently, reports had been published about benefits of surgical treatment in these fractures. From July 2004 until the end of June 2006, 13 patients with 16 displaced intra-articular fractures of the mandibular condyle were treated with open reduction and internal fixation at the Department of Oral and Maxillofacial Surgery in Ljubljana, Slovenia, using the preauricular approach and the lag screw technique. Twelve of the 13 patients could open their mouths for 40 mm or more, and 10 had a deflection of the chin of less than 2 mm upon maximal opening. None of the patients experienced pain upon rest, palpation, or chewing. Occlusion was not noted as altered in any of the cases, neither subjectively, nor on examination. There were no cases of postoperative weakness of the temporal branch of the facial nerve. Surgical treatment of intra-articular condyle fractures using the preauricular approach achieves a good exposure and enables proper reduction. Stable fixation of fractured bony fragments can be achieved using the lag screw technique. Another benefit of open exposure is revision and repair of TMJ soft tissues. With the appropriate surgical technique, the surgical procedure is safe and leads to good results.

  8. Frictional stability-permeability relationships for fractures in shales: Friction-Permeability Relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yi; Elsworth, Derek; Wang, Chaoyi

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO 2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS).more » We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.« less

  9. Enhanced oil displacement by nanofluid's structural disjoining pressure in model fractured porous media.

    PubMed

    Zhang, Hua; Ramakrishnan, T S; Nikolov, Alex; Wasan, Darsh

    2018-02-01

    Nanofluids for improved oil recovery has been demonstrated through laboratory corefloods. Despite numerous experimental studies, little is known about the efficacy of nanofluids in fractured systems. Here, we present studies of nanofluid injection in fractured porous media (both water-wet and oil-wet) formed by sintering borosilicate glass-beads around a dissolvable substrate. The fracture inside the porous medium is characterized and visualized using a high resolution X-ray microtomography. Based on a simple displacement theory, the nanofluid injection is conducted at a rate where structural disjoining pressure driven oil recovery is operational. An additional 23.8% oil was displaced using nanofluid after brine injection with an overall recovery efficiency of 90.4% provided the matrix was in its native wettability state. But only 6% additional oil was displaced by nanofluid following brine injection when the bead-pack was rendered oil-wet. Nanofluids appear to be a good candidate for enhanced oil recovery (EOR) in fractured water-wet to weakly water-wet media but not necessarily for strongly oil-wet systems. Our laboratory studies enable us to understand limitations of nanofluids for improving oil recovery in fractured media. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The Subduction of an Exhumed and Serpentinized Magma-Poor Basement Beneath the Northern Lesser Antilles Reveals the Early Tectonic Fabric at Slow-Spreading Mid-Oceanic Ridges

    NASA Astrophysics Data System (ADS)

    Marcaillou, B.; Klingelhoefer, F.; Laurencin, M.; Biari, Y.; Graindorge, D.; Jean-Frederic, L.; Laigle, M.; Lallemand, S.

    2017-12-01

    Multichannel and wide-angle seismic data as well as heat-flow measurements (ANTITHESIS cruise, 2016) reveal a 200x200km patch of magma-poor oceanic basement in the trench and beneath the outer fore-arc offshore of Antigua to Saint Martin in the Northern Lesser Antilles. These data highlight an oceanic basement with the following features: 1/ Absence of any reflection at typical Moho depth and layer2/layer3 limit depths. 2/ High Velocity Vp at the top (>5.5 km/s), low velocity gradient with depth (<0.3 s-1) and no significant velocity change at theoretical Moho depth. 3/ Anomalously low heat-flow (40±15mW.m-2) compared to the central Antilles and to theoretical values for an 80 Myr-old oceanic plate suggesting the influence of deep hydrothermal circulation. 4/ Two sets of reflections dipping toward the paleo mid-Atlantic ridge and toward the Vidal Transform Fault Zone respectively. These highly reflective planes sometimes fracture the top of the basement, deforming the interplate contact and extend downward to 20km depth with a 20° angle. We thus propose that a large patch of mantle rocks, exhumed and serpentinized at the slow-spreading mid-Atlantic Ridge 80 Myr ago, is currently subducting beneath the Northern Lesser Antilles. During the exhumation, early extension triggers penetrative shear zones sub-parallel to the ridge and to the transform fault. Eventually, this early extension generates sliding along the so-called detachment fault, while the other proto-detachment abort. Approaching the trench, the plate bending reactivates these weak zones in normal faults and fluid pathways promoting deep serpentinisation and localizing tectonic deformation at the plate interface. These subducting fluid-rich mechanically weak mantle rocks rise questions about their relation to the faster slab deepening, the lower seismic activity and the pervasive tectonic partitioning in this margin segment.

  11. Microstructural characterization of ultrasonic impact treated aluminum-magnesium alloy

    NASA Astrophysics Data System (ADS)

    Tran, Kim Ngoc Thi

    Aluminum 5456-H116 has high as-welded strength, is formable, and highly corrosion resistant, however, it can become sensitized when exposed to elevated temperatures for a prolonged time. Sensitization results in the formation of a continuous β phase at the grain boundaries that is anodic to the matrix. Thus the grain boundaries become susceptible to stress corrosion cracking (SCC) and intergranular corrosion cracking (IGC). Cracking issues on aluminum superstructures have prompted the use of a severe plastic deformation processes, such as ultrasonic impact treatment (UIT), to improve SCC resistance. This study correlated the effects of UIT on the properties of 5456-H116 alloy to the microstructural evolution of the alloy and helped develop a fundamental understanding of the mechanisms that cause the microstructural evolution. Ultrasonic impact treatment produces a deformed layer at the surface ˜ 10 to 18 µm thick that is characterized by micro-cracks, tears, and voids. Ultrasonic impact treatment results in grain refinement within the deformation layer and extending below the deformed layer. The microstructure exhibits weak crystallographic texture with larger fraction of high angle grain boundaries. Nanocrystalline grains within the deformation layer vary in size from 2 to 200 nm in diameter and exhibit curved or wavy grain boundaries. The nanocrystalline grains are thermally stable up to 300°C. Above 300°C, grain growth occurs with an activation energy of ˜ 32 kJ/mol. Below the deformation layer, the microstructure is characterized by submicron grains, complex structure of dislocations, sub-boundaries, and Moiré fringes depicting overlapping grains. The deformation layer does not exhibit the presence of a continuous β phase, however below the deformation layer; a continuous β phase along the grain boundaries is present. In general the highest hardness and yield strength is at the UIT surface which is attributed to the formation of nanocrystalline grains. Although the highest hardness and yield strength was observed at the UIT surface, the results were mixed with some lower values. The lower hardness and yield strength values at the UIT surface are attributed to the voids and micro cracking/micro voids observed in the deformation layer. The fracture mode was transgranular ductile fracture with micro void coalescence and dimples. Both UIT and untreated material exhibit similar levels of intergranular corrosion susceptibility. Corrosive attack was intergranular with slightly deeper attack in the untreated material. Numerical simulation modeling showed that the calculated residual stress under the tool, ˜80 MPa, is of the same order of magnitude as the compressive residual stresses measured by XRD measurements near the surface. Modeling also showed that high effective strains were induced almost immediately. The UIT process also resulted in rapid localized heating to a maximum temperature of ˜32°C during the first eleven pin tool cycles. The model also showed that during UIT processing, the material undulates as the pin tool impacts and retracts from the surface of the material. The undulations represent the elastic response of the surface to the compressive stresses built up during a pin tool cycle.

  12. The importance of early operative treatment in open fractures of the fingers.

    PubMed

    Ng, Tim; Unadkat, Jignesh; Bilonick, Richard A; Wollstein, Ronit

    2014-04-01

    Current guidelines suggest early surgical treatment of open fractures. This rule in open hand fractures is not well supported and may be practically difficult to observe. Furthermore, desirable washout can be obtained in the emergency department (ED). The purpose of this study was to determine the importance of early surgery in our institution. Seventy patients with open fractures of the hand were retrospectively reviewed for demographics, fracture characteristics, and complications. Statistical analysis included univariate analysis, Fisher exact test, and Akaike information criterion. Intravenous antibiotics were administered early in 53 (75.7%) patients. Mean (SD) time to surgery was 2.3 (134.9) hours. The infection rate was 11.4%. No significant relationship was found between fracture type, finger involved, hand dominance, comorbidities, and infection. Antibiotic administration was significantly related to infection (P = 0.007), whereas time to surgery was not (P = 0.33). Age was weakly related to infection (P = 0.08). Administration of intravenous antibiotics in the ED was the most significant factor in preventing infection, whereas the time to operation was not significant. Because a thorough washout and debridement can be performed on open hand fractures in the ED due to the ability to provide adequate anesthesia, the actual time to surgery may possibly be delayed without increasing the risk of infection. Future prospective studies may allow for better guidelines for the treatment of open hand fractures.

  13. Changes over time in hip fracture risk: Greater improvements in men compared to women.

    PubMed

    Smith, Roger; Perera, Buddhini K; Chan, Daniela W C

    2018-06-09

    The aim of this study was to determine whether there has been a change in the mean age and age-standardized incidence of minimal trauma hip fractures in the Newcastle and Lake Macquarie population of Australia between 1998 and 2015. Patients with neck of femur fractures over 50 who presented to the regional referral centre were retrospectively identified using the ICD-9 and ICD-10 coding system. There were 233 and 308 eligible patients in 1998 and 2015, respectively. For females, the mean age for hip fracture of 83.2 years in 1998 was not significantly different from the mean age of 84.5 years in 2015 (P = .16). For males, the mean age for hip fracture was significantly older at 84.6 years in 2015 compared to 80.4 years in 1998 (P = .005). For females, the decrease in the rate of hip fracture from 1998 to 2015 was 13% and was weakly statistically significant (IRR = 0.86, P = .05). For males, there was a statistically significant decrease in the rate of hip fractures from 1998 to 2015 by 33% (IRR = 0.67, P = .001). Our study shows a decrease in age-standardized rates of hip fractures for men and women and suggests that men are demonstrating a greater improvement in bone health compared to women. © 2018 John Wiley & Sons Ltd.

  14. Sudden onset odontoid fracture caused by cervical instability in hypotonic cerebral palsy.

    PubMed

    Shiohama, Tadashi; Fujii, Katsunori; Kitazawa, Katsuhiko; Takahashi, Akiko; Maemoto, Tatsuo; Honda, Akihito

    2013-11-01

    Fractures of the upper cervical spine rarely occur but carry a high rate of mortality and neurological disabilities in children. Although odontoid fractures are commonly caused by high-impact injuries, cerebral palsy children with cervical instability have a risk of developing spinal fractures even from mild trauma. We herein present the first case of an odontoid fracture in a 4-year-old boy with cerebral palsy. He exhibited prominent cervical instability due to hypotonic cerebral palsy from infancy. He suddenly developed acute respiratory failure, which subsequently required mechanical ventilation. Neuroimaging clearly revealed a type-III odontoid fracture accompanied by anterior displacement with compression of the cervical spinal cord. Bone mineral density was prominently decreased probably due to his long-term bedridden status and poor nutritional condition. We subsequently performed posterior internal fixation surgically using an onlay bone graft, resulting in a dramatic improvement in his respiratory failure. To our knowledge, this is the first report of an odontoid fracture caused by cervical instability in hypotonic cerebral palsy. Since cervical instability and decreased bone mineral density are frequently associated with cerebral palsy, odontoid fractures should be cautiously examined in cases of sudden onset respiratory failure and aggravated weakness, especially in hypotonic cerebral palsy patients. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  15. Application of characteristic time concepts for hydraulic fracture configuration design, control, and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advani, S.H.; Lee, T.S.; Moon, H.

    1992-10-01

    The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracturemore » toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.« less

  16. Application of characteristic time concepts for hydraulic fracture configuration design, control, and optimization. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advani, S.H.; Lee, T.S.; Moon, H.

    1992-10-01

    The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracturemore » toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.« less

  17. Microseismicity Induced by Hydraulic Fracturing in Oil and Gas Wells

    NASA Astrophysics Data System (ADS)

    Warpinski, N. R.; Maxwell, S.; Waltman, C.

    2006-12-01

    The detection and analysis of microseismicity induced by injection of fluids at high pressure has proved to be an effective technology for monitoring the placement of the fluid in applications such as hydraulic fracture stimulation of oil and gas wells, "shear-dilation" enhancement of hot-dry-rock reservoirs, waterflooding and tertiary recovery processes in oil reservoirs, CO2 injection for sequestration, drill cuttings injection, and many others. Microseismic mapping of hydraulic fractures, in particular, has grown into an extensive industry that provides critical information on many facets of fracture behavior and the overall geometry, with the results showing both expected and unexpected behavior in various tests. These industrial fractures are typically mapped with arrays of downhole tri-axial receivers placed in one or more wells at the reservoir level. With the number of microseismically mapped fractures now exceeding 1,000, numerous observations and inferences about fracture mechanisms can be made. In a large group of reservoirs, the created hydraulic fractures are mostly planar and follow a consistent azimuth. In other reservoirs, such as naturally fractured shales similar to the Barnett shale in the Fort Worth basin, the created fracture is highly dependent on the treatment. In these shale reservoirs, the use of viscous gels results in a mostly planar geometry, but stimulations with high-rate, large-volume "waterfracs" result in network fractures that may exceed 400 m by 1200 m in areal extent. In horizontal wells where several stages of these waterfracs are commonly pumped, the stages are found to often interfere and redirect subsequent stages. In many reservoirs, the heights of the hydraulic fractures have been found to be less than the expected heights based on known or inferred in situ stress contrasts between the reservoir layer and the bounding rocks, suggesting that some properties of the layering are important for limiting height growth. In lenticular sandstones, fractures are commonly observed to follow the sandstone lithologies and migrate upward or downward to remain within the accreted sandstone beds. A number of mapping tests have been performed in environments where the hydraulic fracture has interacted with faults. In such cases, the log-scale relative magnitudes of the events may suddenly increase by two or more. The faults often extend hundreds of meters upward or downward out of zone, or in directions different from the initial hydraulic fracture. Overall, the orientations and dimensions of the mapped fractures are providing the necessary information to optimize field development and improve hydraulic fracture effectiveness. In addition, these tests are providing important clues to help understand the geomechanical conditions of the reservoir and the changes induced by hydraulic fracturing.

  18. The Features of Fracture Behavior of an Aluminum-Magnesium Alloy AMg6 Under High-Rate Straining

    NASA Astrophysics Data System (ADS)

    Skripnyak, N. V.

    2015-09-01

    The results of investigation of fracture dynamics of rolled sheet specimens of an AMg6 alloy are presented for the range of strain rates from 10-3 to 103 s-1. It is found out that the presence of nanostructured surface layers on the thin AMg6 rolled sheets results in improved strength characteristics within the above range of strain rates. A modified model of a deforming medium is proposed to describe the plastic flow and fracture of the AMg6 alloy.

  19. Different phases of a system of hard rods on three dimensional cubic lattice

    NASA Astrophysics Data System (ADS)

    Vigneshwar, N.; Dhar, Deepak; Rajesh, R.

    2017-11-01

    We study the different phases of a system of monodispersed hard rods of length k on a cubic lattice, using an efficient cluster algorithm able to simulate densities close to the fully-packed limit. For k≤slant 4 , the system is disordered at all densities. For k=5, 6 , we find a single density-driven transition, from a disordered phase to high density layered-disordered phase, in which the density of rods of one orientation is strongly suppressed, breaking the system into weakly coupled layers. Within a layer, the system is disordered. For k ≥slant 7 , three density-driven transitions are observed numerically: isotropic to nematic to layered-nematic to layered-disordered. In the layered-nematic phase, the system breaks up into layers, with nematic order in each layer, but very weak correlation between the ordering directions of different layers. We argue that the layered-nematic phase is a finite-size effect, and in the thermodynamic limit, the nematic phase will have higher entropy per site. We expect the systems of rods in four and higher dimensions will have a qualitatively similar phase diagram.

  20. High revision rate but good healing capacity of atypical femoral fractures. A comparison with common shaft fractures.

    PubMed

    Schilcher, Jörg

    2015-12-01

    Healing of complete, atypical femoral fractures is thought to be impaired, but the evidence is weak and appears to be based on the delayed healing observed in patients with incomplete atypical fractures. Time until fracture healing is difficult to assess, therefore we compared the reoperation rates between women with complete atypical femoral fractures and common femoral shaft fractures. We searched the orthopaedic surgical registry in Östergötland County for patients with subtrochanteric and femoral shaft fractures (ICD-10 diagnosis codes S72.2, S72.3 and M84.3F) between January 1st 2007 and December 31st 2013. Out of 895 patients with surgically treated femoral shaft fractures, 511 were women 50 years of age or older. Among these we identified 24 women with atypical femoral shaft fractures, and 71 with common shaft fractures. Reoperations were performed in 6 and 5 patients, respectively, odds ratio 4.4 (95% CI 1.2 to 16.1). However, 5 reoperations in the atypical fracture group could not be ascribed to poor healing. In 3 patients the reoperation was due to a new fracture proximal to a standard intramedullary nail. In 2 patients the distal locking screws were removed due to callus formation that was deemed incomplete 5 months post-operatively. The one patient with poor healing showed faint callus formation at 5 months when the fracture was dynamised and callus remained sparse at 11 months. Among patients with common shaft fractures, 2 reoperations were performed to remove loose screws, 2 because of peri-implant fractures and 1 reoperation due to infection. Reoperation rates in patients with complete atypical femoral fractures are higher than in patients with common shaft fractures. The main reason for failure was peri-implant fragility fractures which might be prevented with the use of cephalomedullary nails at the index surgery. Fracture healing however, seems generally good. A watchful waiting approach is advocated in patients with fractures that appear to heal slowly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Fracture heuristics: surgical decision for approaches to distal radius fractures. A surgeon's perspective.

    PubMed

    Wichlas, Florian; Tsitsilonis, Serafim; Kopf, Sebastian; Krapohl, Björn Dirk; Manegold, Sebastian

    2017-01-01

    Introduction: The aim of the present study is to develop a heuristic that could replace the surgeon's analysis for the decision on the operative approach of distal radius fractures based on simple fracture characteristics. Patients and methods: Five hundred distal radius fractures operated between 2011 and 2014 were analyzed for the surgeon's decision on the approach used. The 500 distal radius fractures were treated with open reduction and internal fixation through palmar, dorsal, and dorsopalmar approaches with 2.4 mm locking plates or underwent percutaneous fixation. The parameters that should replace the surgeon's analysis were the fractured palmar cortex, and the frontal and the sagittal split of the articular surface of the distal radius. Results: The palmar approach was used for 422 (84.4%) fractures, the dorsal approach for 39 (7.8%), and the combined dorsopalmar approach for 30 (6.0%). Nine (1.8%) fractures were treated percutaneously. The correlation between the fractured palmar cortex and the used palmar approach was moderate (r=0.464; p<0.0001). The correlation between the frontal split and the dorsal approach, including the dorsopalmar approach, was strong (r=0.715; p<0.0001). The sagittal split had only a weak correlation for the dorsal and dorsopalmar approach (r=0.300; p<0.0001). Discussion: The study shows that the surgical decision on the preferred approach is dictated through two simple factors, even in the case of complex fractures. Conclusion: When the palmar cortex is displaced in distal radius fractures, a palmar approach should be used. When there is a displaced frontal split of the articular surface, a dorsal approach should be used. When both are present, a dorsopalmar approach should be used. These two simple parameters could replace the surgeon's analysis for the surgical approach.

  2. Finite element analysis of functionally graded bone plate at femur bone fracture site

    NASA Astrophysics Data System (ADS)

    Satapathy, Pravat Kumar; Sahoo, Bamadev; Panda, L. N.; Das, S.

    2018-03-01

    This paper focuses on the analysis of fractured Femur bone with functionally graded bone plate. The Femur bone is modeled by using the data from the CT (Computerized Tomography) scan and the material properties are assigned using Mimics software. The fracture fixation plate used here is composed of Functionally Graded Material (FGM). The functionally graded bone plate is considered to be composed of different layers of homogeneous materials. Finite element method approach is adopted for analysis. The volume fraction of the material is calculated by considering its variation along the thickness direction (z) according to a power law and the effective properties of the homogeneous layers are estimated. The model developed is validated by comparing numerical results available in the literature. Static analysis has been performed for the bone plate system by considering both axial compressive load and torsional load. The investigation shows that by introducing FG bone plate instead of titanium, the stress at the fracture site increases by 63 percentage and the deformation decreases by 15 percentage, especially when torsional load is taken into consideration. The present model yields better results in comparison with the commercially available bone plates.

  3. Extrapolating surface structures to depth in transpressional systems: the role of rheology and convergence angle deduced from analogue experiments

    NASA Astrophysics Data System (ADS)

    Hsieh, S. Y.; Neubauer, F.; Willingshofer, E.; Sokoutis, D.

    2014-12-01

    The internal structure of major strike-slip faults is still poorly understood, particularly how the deep structure could be inferred from its surface expression (Molnar and Dayem, 2011). Previous analogue experiments suggest that the convergence angle is the most influential factor (Leever et al., 2011). Further analogue modeling may allow a better understanding how to extrapolate surface structures to the subsurface geometry of strike-slip faults. Various scenarios of analogue experiments were designed to represent strike-slip faults in nature from different geological settings. As such key parameters, which are investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The latter aimed to simulate the effect of a hot metamorphic core complex or an alignment of uprising plutons bordered by a transtensional/transpressional strike-slip fault. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressive system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry.

  4. Catheter fracture of intravenous ports and its management.

    PubMed

    Wu, Ching-Yang; Fu, Jui-Ying; Feng, Po-Hao; Kao, Tsung-Chi; Yu, Sheng-Yueh; Li, Hao-Jui; Ko, Po-Jen; Hsieh, Hung-Chang

    2011-11-01

    Intravenous ports are widely used for oncology patients. However, catheter fractures may lead to the need for re-intervention. We aimed to identify the risk factors associated with catheter fractures. Between January 1 and December 31, 2006, we retrospectively reviewed the clinical data and plain chest films of 1,505 patients implanted with an intravenous port at Chang Gung Memorial Hospital. Different vascular sites were compared using the chi-square or Fisher's exact test for categorical variables, and the t test was used for continuous variables with normal distribution; P < 0.05 was considered statistically significant. There were 59 and 1,448 procedures in the fracture and non-fracture groups, respectively. Monovariate analysis revealed that the risk factors for catheter fracture were as follows: large angle (P < 0.0001), female gender (P < 0.0008), subclavian route (P < 0.0001), and port type Arrow French (Fr.) 8.1 (P < 0.0001). Because these risk factors showed no interaction effects, they were all considered independent risk factors. When all factors were considered together, all risk factors, except angle and age, retained their statistical significance. Most catheter fractures were caused by material weakness. If catheter fracture is confirmed, further intervention for port and catheter removal is recommended. Female gender, intravenous port implantation via the subclavian route, and the Arrow Fr. 8.1 port were found to be risk factors. Patients with these risk factors should be monitored closely to avoid catheter fractures.

  5. Method of making dielectric capacitors with increased dielectric breakdown strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Beihai; Balachandran, Uthamalingam; Liu, Shanshan

    The invention is directed to a process for making a dielectric ceramic film capacitor and the ceramic dielectric laminated capacitor formed therefrom, the dielectric ceramic film capacitors having increased dielectric breakdown strength. The invention increases breakdown strength by embedding a conductive oxide layer between electrode layers within the dielectric layer of the capacitors. The conductive oxide layer redistributes and dissipates charge, thus mitigating charge concentration and micro fractures formed within the dielectric by electric fields.

  6. NiFeCo/Cu superlattices with high magnetoresistive sensitivity and weak hysteresis

    NASA Astrophysics Data System (ADS)

    Bannikova, N. S.; Milyaev, M. A.; Naumova, L. I.; Krinitsina, T. P.; Patrakov, E. I.; Proglyado, V. V.; Chernyshova, T. A.; Ustinov, V. V.

    2016-10-01

    The microstructure and the magetoresistive characteristics of [NiFeCo/Cu]8 superlattices prepared by magnetron sputtering with various thickness of the buffer NiFeCr layer and exhibiting a giant magnetoresistive effect have been studied. It has been found that these nanostructures are formed with a strong or weak hysteresis depending on the structure (bcc or fcc) formed in the NiFeCr buffer layer. The method of the substantial decrease in the hysteresis loop width of the magnetoresistance by using the composite Ta/NiFeCr buffer layer has been suggested.

  7. Vertical Structural Variation and Their Development of the Sanukayama Rhyolite Lava in Kozushima Island, Japan

    NASA Astrophysics Data System (ADS)

    Furukawa, K.; Uno, K.; Kanamaru, T.; Nakai, K.

    2017-12-01

    We revealed structural development of the Pleistocene Sanukayama rhyolite lava of Kozushima Island, Japan. The good exposure, with about 130 m thick, provides valuable opportunity to understand the vertical structural variation. This exposure corresponds to the upper half of the lava. The paleomagnetic results show that the lava emplaced in subaerial condition at least in the exposed part. The vertical lithofacies are divided into the pumiceous (25-40 m thick), obsidian (40-60 m), spherulitic (30-50 m) layers from top to base. The pumiceous layer is characterized by massive foliated pumice. The foliation dips are gradually changed from gentle (10-30°) in lower part to steep (around 90°) in upper part. This shows the balloon-like morphology. The massive pumiceous layer would be generated from late stage diapiric inflation of the lava (Fink and Manley, 1987). The obsidian layer is composed of massive and welded-brecciated parts. The ductile-deformed light-colored veins, with a few mm thick, are frequently developed. In the microscopic observation, the veins are composed of broken crystals and obsidian clasts indicating fracturing of the lava followed by ductile deformation such as the RFH process (Tuffen et al., 2003). In this layer, extensive vesiculation and microlite development must have been prevented by higher load pressure and faster cooling, respectively. Consequently, they resulted in formation of the obsidian. The spherulitic layer is characterized by development of the ductile-deformed flow banding. The microscopic observation shows that the bands are formed by the spherulite trail. Furthermore, the microlites are aligned within the spherulites. In the heat-retained inner part of the lava, microlites would be developed around the healed fractures. The microlites acted as nucleation site of spherulite. In transition layer between obsidian and spherulitic layers (<10 m thick), the fragments of spherulitic rhyolite are entrained within the obsidian layer. This would be caused by high flow-induced shear arising from their rheological contrast. We showed the complicated structure of the Sanukayama rhyolite lava, especially for varied crystal occurrences. The variation is considered to be caused by specific phenomena of high-viscous magma such as sluggish atomic mobility and lava fracturing.

  8. All Along the Fractures

    NASA Image and Video Library

    2015-09-30

    This image from NASA Mars Reconnaissance Orbiter spacecraft provides information about erosion and movement of surface material, about wind and weather patterns, even about the soil grains and grain sizes. However, looking past the dunes, these images also reveal the nature of the substrate beneath. Within the spaces between the dunes, a resistant and highly fractured surface is revealed. The fractured ground is resistant to erosion by the wind, and suggests the material is bedrock that is now shattered by a history of bending stresses or temperature changes, such as cooling, for example. Alternately, the surface may be a sedimentary layer that was once wet and shrunk and fractured as it dried, like gigantic mud cracks. In either case, the relative small and indistinct fractures have trapped the dark dune sand marching overhead. Now the fractures have become quite distinct, allowing us to examine the orientation and spacing of the fractures to learn more about the processes that formed them. http://photojournal.jpl.nasa.gov/catalog/PIA19958

  9. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene

    PubMed Central

    Mihnev, Momchil T.; Tolsma, John R.; Divin, Charles J.; Sun, Dong; Asgari, Reza; Polini, Marco; Berger, Claire; de Heer, Walt A.; MacDonald, Allan H.; Norris, Theodore B.

    2015-01-01

    In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied. PMID:26399955

  10. Prediction of weak and strong topological insulators in layered semiconductors.

    NASA Astrophysics Data System (ADS)

    Felser, Claudia

    2013-03-01

    We investigate a new class of ternary materials such as LiAuSe and KHgSb with a honeycomb structure in Au-Se and Hg-Sb layers. We demonstrate the band inversion in these materials similar to HgTe, which is a strong precondition for existence of the topological surface states. In contrast with graphene, these materials exhibit strong spin-orbit coupling and a small direct band gap at the point. Since these materials are centrosymmetric, it is straightforward to determine the parity of their wave functions, and hence their topological character. Surprisingly, the compound with strong spin-orbit coupling (KHgSb) is trivial, whereas LiAuSe is found to be a topological insulator. However KHgSb is a weak topological insulators in case of an odd number of layers in the primitive unit cell. Here, the single-layered KHgSb shows a large bulk energy gap of 0.24 eV. Its side surface hosts metallic surface states, forming two anisotropic Dirac cones. Although the stacking of even-layered structures leads to trivial insulators, the structures can host a quantum spin Hall layer with a large bulk gap, if an additional single layer exists as a stacking fault in the crystal. The reported honeycomb compounds can serve as prototypes to aid in the finding of new weak topological insulators in layered small-gap semiconductors. In collaboration with Binghai Yan, Lukas Müchler, Hai-Jun Zhang, Shou-Cheng Zhang and Jürgen Kübler.

  11. Thermally induced fracture for core-veneered dental ceramic structures.

    PubMed

    Zhang, Zhongpu; Guazzato, Massimiliano; Sornsuwan, Tanapon; Scherrer, Susanne S; Rungsiyakull, Chaiy; Li, Wei; Swain, Michael V; Li, Qing

    2013-09-01

    Effective and reliable clinical uses of dental ceramics necessitate an insightful analysis of the fracture behaviour under critical conditions. To better understand failure characteristics of porcelain veneered to zirconia core ceramic structures, thermally induced cracking during the cooling phase of fabrication is studied here by using the extended finite element method (XFEM). In this study, a transient thermal analysis of cooling is conducted first to determine the temperature distributions. The time-dependent temperature field is then imported to the XFEM model for viscoelastic thermomechanical analysis, which predicts thermally induced damage and cracking at different time steps. Temperature-dependent material properties are used in both transient thermal and thermomechanical analyses. Three typical ceramic structures are considered in this paper, namely bi-layered spheres, squat cylinders and dental crowns with thickness ratios of either 1:2 or 1:1. The XFEM fracture patterns exhibit good agreement with clinical observation and the in vitro experimental results obtained from scanning electron microscopy characterization. The study reveals that fast cooling can lead to thermal fracture of these different bi-layered ceramic structures, and cooling rate (in terms of heat transfer coefficient) plays a critical role in crack initiation and propagation. By exploring different cooling rates, the heat transfer coefficient thresholds of fracture are determined for different structures, which are of clear clinical implication. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Structural Analysis: Folds Classification of metasedimentary rock in the Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Shamsuddin, A.

    2017-10-01

    Understanding shear zone characteristics of deformation are a crucial part in the oil and gas industry as it might increase the knowledge of the fracture characteristics and lead to the prediction of the location of fracture zones or fracture swarms. This zone might give high influence on reservoir performance. There are four general types of shear zones which are brittle, ductile, semibrittle and brittle-ductile transition zones. The objective of this study is to study and observe the structural geometry of the shear zones and its implication as there is a lack of understanding, especially in the subsurface area because of the limitation of seismic resolution. A field study was conducted on the metasedimentary rocks (shear zone) which are exposed along the coastal part of the Peninsular Malaysia as this type of rock resembles the types of rock in the subsurface. The analysis in this area shows three main types of rock which are non-foliated metaquartzite and foliated rock which can be divided into slate and phyllite. Two different fold classification can be determined in this study. Layer 1 with phyllite as the main type of rock can be classified in class 1C and layer 2 with slate as the main type of rock can be classified in class 1A. This study will benefit in predicting the characteristics of the fracture and fracture zones.

  13. Fracture Toughness (KIC) of Lithography Based Manufactured Alumina Ceramic

    NASA Astrophysics Data System (ADS)

    Nindhia, T. G. T.; Schlacher, J.; Lube, T.

    2018-04-01

    Precision shaped ceramic components can be obtained by an emerging technique called Lithography based Ceramic Manufacturing (LCM). A green part is made from a slurry consisting of a ceramic powder in a photocurable binder with addition of dispersant and plasticizer. Components are built in a layer–by-layer way by exposing the desired cross- sections to light. The parts are subsequently sintered to their final density. It is a challenge to produce ceramic component with this method that yield the same mechanical properties in all direction. The fracture toughness (KIc) of of LCM-alumina (prepared at LITHOZ GmbH, Austria) was tested by using the Single-Edge-V-Notched Beam (SEVNB) method. Notches are made into prismatic bend-bars in all three direction X, Y and Z to recognize the value of fracture toughness of the material in all three directions. The microstructure was revealed with optical microscopy as well as Scanning Electron Microscopy (SEM). The results indicate that the fracture toughness in Y-direction has the highest value (3.10 MPam1/2) that is followed by the one in X-direction which is just a bit lower (2.90 MPam1/2). The Z-direction is found to have a similar fracture toughness (2.95 MPam1/2). This is supported by a homogeneous microstructure showing no hint of the layers used during production.

  14. 8-Anilino-1-naphthalenesulfonate/Layered Double Hydroxide Ultrathin Films: Small Anion Assembly and Its Potential Application as a Fluorescent Biosensor.

    PubMed

    Zhang, Ping; Li, Ling; Zhao, Yun; Tian, Zeyun; Qin, Yumei; Lu, Jun

    2016-09-06

    The fluorescent dye 8-anilino-1-naphthalenesulfonate (ANS) is a widely used fluorescent probe molecule for biochemistry analysis. This paper reported the fabrication of ANS/layered double hydroxide nanosheets (ANS/LDH)n ultrathin films (UTFs) via the layer-by-layer small anion assembly technique based on electrostatic interaction and two possible weak interactions: hydrogen-bond and induced electrostatic interactions between ANS and positive-charged LDH nanosheets. The obtained UTFs show a long-range-ordered periodic layered stacking structure and weak fluorescence in dry air or water, but it split into three narrow strong peaks in a weak polarity environment induced by the two-dimensional (2D) confinement effect of the LDH laminate; the fluorescence intensity increases with decreasing the solvent polarity, concomitant with the blue shift of the emission peaks, which show good sensoring reversibility. Meanwhile, the UTFs exhibit selective fluorescence enhancement to the bovine serum albumin (BSA)-like protein biomolecules, and the rate of fluorescence enhancement with the protein concentration is significantly different with the different protein aggregate states. The (ANS/LDH)n UTF has the potential to be a novel type of biological flourescence sensor material.

  15. Matrix deformation mechanisms in HP-LT tectonic mélanges — Microstructural record of jadeite blueschist from the Franciscan Complex, California

    NASA Astrophysics Data System (ADS)

    Wassmann, Sara; Stöckhert, Bernhard

    2012-09-01

    Exhumed high pressure-low temperature metamorphic mélanges of tectonic origin are believed to reflect high strain accumulated in large scale interplate shear zones during subduction. Rigid blocks of widely varying size are embedded in a weak matrix, which takes up the deformation and controls the rheology of the composite. The microfabrics of a highly deformed jadeite-blueschist from the Franciscan Complex, California, are investigated to help understand deformation mechanisms at depth. The specimen shows a transposed foliation with dismembered fold hinges and boudinage structures. Several generations of open fractures have been sealed to become veins at high-pressure metamorphic conditions. The shape of these veins, frequently restricted to specific layers, indicates distributed host rock deformation during and after sealing. Small cracks in jadeite and lawsonite are healed, with tiny quartz inclusions aligned along the former fracture surface. Large jadeite porphyroblasts show strain caps and strain shadows. Open fractures are sealed by quartz and new jadeite epitactically grown on the broken host. Monophase glaucophane aggregates consist of undeformed needles with a diameter between 0.1 and 2 μm, grown after formation of isoclinal folds. Only quartz microfabrics indicate some stage of crystal-plastic deformation, followed by annealing and grain growth. Aragonite in the latest vein generation shows retrogression to calcite along its rims. The entire deformation happened under HP-LT metamorphic conditions in the stability field of jadeite and quartz, at temperatures between 300 and 450 °C and pressures exceeding 1-1.4 GPa. The microfabrics indicate that dissolution precipitation creep was the predominant deformation mechanism, accompanied by brittle failure and vein formation at quasi-lithostatic pore fluid pressure. This indicates low flow strength and, combined with high strain rates expected for localized deformation between the plates, a very low viscosity of material in the interplate shear zone at a depth > 30-45 km.

  16. Imaging hydraulic fractures at Median Tectonic Line, Japan using multiply generated and scattered tube waves in a shallow VSP experiment

    NASA Astrophysics Data System (ADS)

    Minato, Shohei; Ghose, Ranajit; Tsuji, Takeshi; Ikeda, Michiharu; Onishi, Kozo

    2016-04-01

    Tube waves are low frequency guided waves that propagate along a fluid-filled borehole. The analysis of tube waves is a promising approach to image and characterize hydraulic fractures intersecting a borehole. It exploits tube waves generated by an external seismic wavefield which compresses fractures and injects fluid into the borehole. It also utilizes the attenuation of tube waves due to fluid exchange between the fracture and the borehole, which creates scattered waves (reflection and transmission). Conventional approaches consider tube waves due to a single fracture. However, when the spacing between multiple fractures is short relative to the wavelength of the tube waves, the generated and scattered tube waves interfere with each other, making it difficult to isolate the effect of a single fracture. The analysis of closely spaced fractures is important in highly fractured areas, such as a fault zone. In this study, we explore the possibility of prediction and utilization of generated and scattered tube waves due to multiple fractures. We derive a new integral equation of the full tube wavefield using 1D wavefield representation theory incorporating nonwelded interfaces. We adapt the recent developments in modeling tube wave generation/scattering at a fracture. In these models, a fracture is represented as a parallel wall or a thin poloelastic layer. This allowed us to consider the effects of a dynamic fracture aperture with fracture compliances and the permeability. The representation also leads to a new imaging method for the hydraulic fractures, using multiply-generated and scattered tube waves. This is achieved by applying an inverse operator to the observed tube waves, which focuses the tube waves to the depth where they are generated and/or scattered. The inverse operator is constructed by a tube wave Green's function with a known propagation velocity. The Median Tectonic Line (MTL) is the most significant fault in Japan, extending NE-SW for over 1000 km across the Japanese Islands. We observed multiple tube waves in a P-wave VSP experiment in a 250 m deep, vertical borehole located on the MTL at Shikoku, Japan. The borehole televiewer and the core studies show that below 40 m depth, the Sambagawa metamorphic rocks contain highly fractured zones which consist of more than 100 open fractures and more than 30 cataclasites. We predict the full tube wavefield using the values of fracture depth and thickness known from the borehole televiewer. We model the open fractures as parallel-wall fractures and the cataclasites as thin poroelastic layers. Furthermore, we estimate the depth of the hydraulic fractures by applying the inverse operator. The results show that the tube waves could be generated and scattered at these permeable structures. Our preliminary results also indicate the possibility that the effect of the open fractures is more dominant in the generation and scattering of tube waves than that of the cataclasites in this field. The formulation and the results presented in this study and the following discussion will be useful in analysis of tube waves in highly fractured zones, in order to localize and characterize hydraulic fractures.

  17. Weak-microcavity organic light-emitting diodes with improved light out-coupling.

    PubMed

    Cho, Sang-Hwan; Song, Young-Woo; Lee, Joon-gu; Kim, Yoon-Chang; Lee, Jong Hyuk; Ha, Jaeheung; Oh, Jong-Suk; Lee, So Young; Lee, Sun Young; Hwang, Kyu Hwan; Zang, Dong-Sik; Lee, Yong-Hee

    2008-08-18

    We propose and demonstrate weak-microcavity organic light-emitting diode (OLED) displays with improved light-extraction and viewing-angle characteristics. A single pair of low- and high-index layers is inserted between indium tin oxide (ITO) and a glass substrate. The electroluminescent (EL) efficiencies of discrete red, green, and blue weak-microcavity OLEDs are enhanced by 56%, 107%, and 26%, respectively, with improved color purity. Moreover, full-color passive-matrix bottom-emitting OLED displays are fabricated by employing low-index layers of two thicknesses. As a display, the EL efficiency of white color was 27% higher than that of a conventional OLED display.

  18. How geometrical constraints contribute to the weakness of mature faults

    USGS Publications Warehouse

    Lockner, D.A.; Byerlee, J.D.

    1993-01-01

    Increasing evidence that the San Andreas fault has low shear strength1 has fuelled considerable discussion regarding the role of fluid pressure in controlling fault strength. Byerlee2,3 and Rice4 have shown how fluid pressure gradients within a fault zone can produce a fault with low strength while avoiding hydraulic fracture of the surrounding rock due to excessive fluid pressure. It may not be widely realised, however, that the same analysis2-4 shows that even in the absence of fluids, the presence of a relatively soft 'gouge' layer surrounded by harder country rock can also reduce the effective shear strength of the fault. As shown most recently by Byerlee and Savage5, as the shear stress across a fault increases, the stress state within the fault zone evolves to a limiting condition in which the maximum shear stress within the fault zone is parallel to the fault, which then slips with a lower apparent coefficient of friction than the same material unconstrained by the fault. Here we confirm the importance of fault geometry in determining the apparent weakness of fault zones, by showing that the apparent friction on a sawcut granite surface can be predicted from the friction measured in intact rock, given only the geometrical constraints introduced by the fault surfaces. This link between the sliding friction of faults and the internal friction of intact rock suggests a new approach to understanding the microphysical processes that underlie friction in brittle materials.

  19. Nanoparticle modification by weak polyelectrolytes for pH-sensitive pickering emulsions.

    PubMed

    Haase, Martin F; Grigoriev, Dmitry; Moehwald, Helmuth; Tiersch, Brigitte; Shchukin, Dmitry G

    2011-01-04

    The affinity of weak polyelectrolyte coated oxide particles to the oil-water interface can be controlled by the degree of dissociation and the thickness of the weak polyelectrolyte layer. Thereby the oil in water (o/w) emulsification ability of the particles can be enabled. We selected the weak polyacid poly(methacrylic acid sodium salt) and the weak polybase poly(allylamine hydrochloride) for the surface modification of oppositely charged alumina and silica colloids, respectively. The isoelectric point and the pH range of colloidal stability of both particle-polyelectrolyte composites depend on the thickness of the weak polyelectrolyte layer. The pH-dependent wettability of a weak polyelectrolyte-coated oxide surface is characterized by contact angle measurements. The o/w emulsification properties of both particles for the nonpolar oil dodecane and the more polar oil diethylphthalate are investigated by measurements of the droplet size distributions. Highly stable emulsions can be obtained when the degree of dissociation of the weak polyelectrolyte is below 80%. Here the average droplet size depends on the degree of dissociation, and a minimum can be found when 15 to 45% of the monomer units are dissociated. The thickness of the adsorbed polyelectrolyte layer strongly influences the droplet size of dodecane/water emulsion droplets but has a less pronounced impact on the diethylphthalate/water droplets. We explain the dependency of the droplet size on the emulsion pH value and the polyelectrolyte coating thickness with arguments based on the particle-wetting properties, the particle aggregation state, and the oil phase polarity. Cryo-SEM visualization shows that the regularity of the densely packed particles on the oil-water interface correlates with the degree of dissociation of the corresponding polyelectrolyte.

  20. Brittle-viscous deformation of vein quartz under fluid-rich low greenschist facies conditions

    NASA Astrophysics Data System (ADS)

    Kjøll, H. J.; Viola, G.; Menegon, L.; Sørensen, B. E.

    2015-01-01

    A coarse grained, statically crystallized quartz vein, embedded in a phyllonitic matrix, was studied by EBSD and optical microscopy to gain insights into the processes of strain localization in quartz deformed under low-grade conditions, broadly coincident with the frictional-viscous transition. The vein is from a high strain zone at the front of the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The vein was deformed under lower greenschist facies conditions during deformation along a large out-of-sequence phyllonitic thrust of Caledonian age. The host phyllonite formed at the expense of metabasalt wherein feldspar broke down to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the studied quartz vein acted as a relatively rigid body deforming mainly by coaxial strain. Viscous deformation was initially accommodated by basal ⟨a⟩ slip of quartz during the development of a mesoscopic pervasive extensional crenulation cleavage. Under the prevailing boundary conditions, however, dislocation glide-accommodated deformation of quartz resulted inefficient and led to dislocation tangling and strain hardening of the vein. In response to hardening, to the progressive increase of fluid pressure and the increasing competence contrast between the vein and the weak foliated host phyllonite, quartz crystals began to deform frictionally along specific, optimally oriented lattice planes, creating microgouges along microfractures. These were, however, rapidly sealed by nucleation of new grains as transiently over pressured fluids penetrated the deforming system. The new nucleated grains grew initially by solution-precipitation and later by grain boundary migration. Due to the random initial orientation of the vein crystals, strain was accommodated differently in the individual crystals, leading to the development of remarkably different microstructures. Crystals oriented optimally for basal slip accommodated strain mainly viscously and experienced only minor fracturing. Instead, the crystals misoriented for basal slip hardened and deformed by pervasive domainal fracturing. This study indicates the importance of considering shear zones as dynamic systems wherein the activated deformation mechanisms vary transiently in response to the complex temporal and spatial evolution of the shear zone, often in a cyclic fashion.

  1. Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots

    PubMed Central

    Wang, Yan; Liu, Yang; Zhang, Jianfang; Wu, Jingjie; Xu, Hui; Wen, Xiewen; Zhang, Xiang; Tiwary, Chandra Sekhar; Yang, Wei; Vajtai, Robert; Zhang, Yong; Chopra, Nitin; Odeh, Ihab Nizar; Wu, Yucheng; Ajayan, Pulickel M.

    2017-01-01

    Atomically thin quantum dots from layered materials promise new science and applications, but their scalable synthesis and separation have been challenging. We demonstrate a universal approach for the preparation of quantum dots from a series of materials, such as graphite, MoS2, WS2, h-BN, TiS2, NbS2, Bi2Se3, MoTe2, Sb2Te3, etc., using a cryo-mediated liquid-phase exfoliation and fracturing process. The method relies on liquid nitrogen pretreatment of bulk layered materials before exfoliation and breakdown into atomically thin two-dimensional quantum dots of few-nanometer lateral dimensions, exhibiting size-confined optical properties. This process is efficient for a variety of common solvents with a wide range of surface tension parameters and eliminates the use of surfactants, resulting in pristine quantum dots without surfactant covering or chemical modification. PMID:29250597

  2. Worldwide variation in hip fracture incidence weakly aligns with genetic divergence between populations.

    PubMed

    Wallace, I J; Botigué, L R; Lin, M; Smaers, J B; Henn, B M; Grine, F E

    2016-09-01

    This study investigates the influence of genetic differentiation in determining worldwide heterogeneity in osteoporosis-related hip fracture rates. The results indicate that global variation in fracture incidence exceeds that expected on the basis of random genetic variance. Worldwide, the incidence of osteoporotic hip fractures varies considerably. This variability is believed to relate mainly to non-genetic factors. It is conceivable, however, that genetic susceptibility indeed differs across populations. Here, we present the first quantitative assessment of the effects of genetic differentiation on global variability in hip fracture rates. We investigate the observed variance in publically reported age-standardized rates of hip fracture among 28 populations from around the world relative to the expected variance given the phylogenetic relatedness of these populations. The extent to which these variances are similar constitutes a "phylogenetic signal," which was measured using the K statistic. Population genetic divergence was calculated using a robust array of genome-wide single nucleotide polymorphisms. While phylogenetic signal is maximized when K > 1, a K value of only 0.103 was detected in the combined-sex fracture rate pattern across the 28 populations, indicating that fracture rates vary more than expected based on phylogenetic relationships. When fracture rates for the sexes were analyzed separately, the degree of phylogenetic signal was also found to be small (females: K = 0.102; males: K = 0.081). The lack of a strong phylogenetic signal underscores the importance of factors other than stochastic genetic diversity in shaping worldwide heterogeneity in hip fracture incidence.

  3. Hydraulic anisotropy characterization of pneumatic-fractured sediments using azimuthal self potential gradient

    USGS Publications Warehouse

    Wishart, D.N.; Slater, L.D.; Schnell, D.L.; Herman, G.C.

    2009-01-01

    The pneumatic fracturing technique is used to enhance the permeability and porosity of tight unconsolidated soils (e.g. clays), thereby improving the effectiveness of remediation treatments. Azimuthal self potential gradient (ASPG) surveys were performed on a compacted, unconsolidated clay block in order to evaluate their potential to delineate contaminant migration pathways in a mechanically-induced fracture network. Azimuthal resistivity (ARS) measurements were also made for comparative purposes. Following similar procedures to those used in the field, compressed kaolinite sediments were pneumatically fractured and the resulting fracture geometry characterized from strike analysis of visible fractures combined with strike data from optical borehole televiewer (BHTV) imaging. We subsequently injected a simulated treatment (electrolyte/dye) into the fractures. Both ASPG and ARS data exhibit anisotropic geoelectric signatures resulting from the fracturing. Self potentials observed during injection of electrolyte are consistent with electrokinetic theory and previous laboratory results on a fracture block model. Visual (polar plot) analysis and linear regression of cross plots show ASPG lobes are correlated with azimuths of high fracture strike density, evidence that the ASPG anisotropy is a proxy measure of hydraulic anisotropy created by the pneumatic fracturing. However, ARS data are uncorrelated with fracture strike maxima and resistivity anisotropy is probably dominated by enhanced surface conduction along azimuths of weak 'starter paths' formed from pulverization of the clay and increases in interfacial surface area. We find the magnitude of electrokinetic SP scales with the applied N2 gas pressure gradient (??PN2) for any particular hydraulically-active fracture set and that the positive lobe of the ASPG anomaly indicates the flow direction within the fracture network. These findings demonstrate the use of ASPG in characterizing the effectiveness of (1) pneumatic fracturing and (2) defining likely flow directions of remedial treatments in unconsolidated sediments and rock. ?? 2008 Elsevier B.V. All rights reserved.

  4. When and where do hip fractures occur? A population-based study.

    PubMed

    Leavy, B; Åberg, A C; Melhus, H; Mallmin, H; Michaëlsson, K; Byberg, L

    2013-09-01

    We investigated the effects of socio-demographic and health factors on timing and location of hip fracture among 484 subjects. Time of fracture varied between community dwellers and residential care facility dwellers, and in relation to subjects' psychotropic drug status. Indoor hip fracture incidence increased on snow-covered days. This paper aims to describe the timing and whereabouts of hip fracture cases in a population-based setting and to relate these factors with residential and health status, seasonal variation, and snow-covered ground. We consecutively included 484 incident hip fracture events (age ≥50 years) admitted to a Swedish orthopedic department during a 1-year period. Data concerning socio-demographic details, fall location, time of fracture, comorbidity, and medications were collected from in-patient medical records and through patient or caregiver interviews. The expected peak in fracture occurrence during daytime was observed among community dwellers but not among subjects living in residential care. Hip fracture was twice as likely to occur during nighttime hours among psychotropic drug users (adjusted odds ratio (Adj. OR), 2.20; 95% confidence interval (CI), 1.12-4.30) compared to those not receiving these medications. Subjects without dementia, taking psychotropic drugs, were also more likely to fracture during nighttime hours (Adj. OR, 2.91; 95% CI, 1.40-6.0). We observed an increase in indoor hip fracture incidence on snow-covered days among community dwellers (incidence rate ratio, 1.34; 95% CI, 1.02-1.74). We observed only a weak seasonal trend in hip fracture incidence, based on month, among community dwellers who fractured indoors. Special attention and possibly fall-preventive efforts should be directed not only toward those living in residential care facilities but also toward community-dwelling subjects taking psychotropic drugs since these groups have a higher incidence of nighttime hip fracture. Further research aiming to explain the seasonal variation of indoor fracture incidence among community dwellers is warranted.

  5. Matrix cracking in composite laminates with resin-rich interlaminar layers

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Dost, Ernest F.; Mccool, J. W.; Grande, D. H.

    1991-01-01

    Fracture mechanics analysis and test data for a toughened composite material that has a resin-rich interlaminar layer (RIL) were used to investigate in situ strength. Exposure to a range of environmental conditions was considered. A parametric analysis study was performed to judge the effects of laminate and material variables. A finite thickness effect, indicating an interaction between ply group thickness and effective flaw size, was found dominant. The magnitude of the effect was directly related to RIL stiffness. In situ strength was found to decrease with decreasing RIL stiffness. This work indicates the need to use a fracture mechanics model of actual lamina microstructure and heterogeneous properties to predict in situ strength in materials with RIL.

  6. Linear and weakly nonlinear aspects of free shear layer instability, roll-up, subharmonic interaction and wall influence

    NASA Technical Reports Server (NTRS)

    Cain, A. B.; Thompson, M. W.

    1986-01-01

    The growth of the momentum thickness and the modal disturbance energies are examined to study the nature and onset of nonlinearity in a temporally growing free shear layer. A shooting technique is used to find solutions to the linearized eigenvalue problem, and pseudospectral weakly nonlinear simulations of this flow are obtained for comparison. The roll-up of a fundamental disturbance follows linear theory predictions even with a 20 percent disturbance amplitude. A weak nonlinear interaction of the disturbance creates a finite-amplitude mean shear stress which dominates the growth of the layer momentum thickness, and the disturbance growth rate changes until the fundamental disturbance dominates. The fundamental then becomes an energy source for the harmonic, resulting in an increase in the growth rate of the subharmonic over the linear prediction even when the fundamental has no energy to give. Also considered are phase relations and the wall influence.

  7. [Response of sensorimotor cortex neurons to weak disturbances of the magnetic field in Wistar rats. Cytochemical study].

    PubMed

    Shpin'kova, V N; Nikol'skaia, K A; Gershteĭn, L M

    2000-01-01

    The influence of weak disturbances (up to 300 microT) of natural magnetic field on the protein metabolism in neurons of sensomotor cortex (layers III and V) in Wistar rats upon learning in a complex maze was studied. It was found that sensomotor neurons were very sensitive to weak disturbances of magnetic field. The protein content increased, while the nucleus-cytoplasm ratio and osmotic state of neurons remained unchanged. The specificity of neuron's reaction manifested itself in a sharp increase of nucleus and cytoplasm dimensions. In associative neurons (layer III), both the nucleus and cytoplasm were involved in the response; in efferent neurons (layer V), only nuclear parameters changed. The variance coefficients of all parameters of protein metabolism in sensomotor neurons, independently of their functional properties, were much higher than in control, which resulted in a wide diversity of cytochemical response.

  8. Weak incident shock interactions with Mach 8 laminar boundary layers. [of flat plate

    NASA Technical Reports Server (NTRS)

    Kaufman, L. G., II; Johnson, C. B.

    1974-01-01

    Weak shock-wave interactions with boundary layers on a flat plate were investigated experimentally in Mach 8 variable-density tunnel for plate-length Reynolds numbers. The undisturbed boundary layers were laminar over the entire plate length. Pressure and heat-transfer distributions were obtained for wedge-generated incident shock waves that resulted in pressure rises ranging from 1.36 to 4.46 (both nonseparated and separated boundary-layer flows). The resulting heat-transfer amplifications ranged from 1.45 to 14. The distributions followed established trends for nonseparated flows, for incipient separation, and for laminar free-interaction pressure rises. The experimental results corroborated established trends for the extent of the pressure rise and for certain peak heat-transfer correlations.

  9. Landslide processes in saprolitic soils of a tropical rain forest, Puerto Rico

    USGS Publications Warehouse

    Larsen, Matthew C.; Simon, Andrew; Larue, D.K.; Draper, G.

    1990-01-01

    Slickensides are present in the saprolite along relict fractures and joints derived from the parent rock; they are common in quartz-diorite bedrock, and less so in marine-deposited volcaniclastic bedrock. The failure planes of many landslides have exposed these relict fractures and joints as slickensides, and landslides appear to move on these pre-existing planes of weakness in the saprolite. The larges landslides (areas greater than 20,000 m2, however, are those that fail along saprolite-bedrock boundaries, which are zones of contrasting density and permeability within or at the base of the weathered profile.

  10. Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites: Influence of Interface Modification

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1998-01-01

    Unidirectional celsian matrix composites having 42-45 vol % of uncoated or BN-SIC coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 35 MPa and a flat fracture surface. In contrast, composites reinforced with coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01%, respectively, with ultimate strength as high as 960 MPa. The elastic Young modulus of the uncoated and coated fiber-reinforced composites were 184 +/- 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of composite with uncoated fibers is due to degradation of the fiber strength from mechanical damage during processing. Because both the coated- and uncoated-fiber-reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SIC dual layer is primarily the protection of fibers from mechanical damage during processing.

  11. Fracture surface analysis in composite and titanium bonding

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Wightman, J. P.

    1985-01-01

    To understand the mechanical properties of fiber-reinforced composite materials, it is necessary to understand the mechanical properties of the matrix materials and of the reinforcing fibers. Another factor that can affect the mechanical properties of a composite material is the interaction between the fiber and the matrix. In general, composites with strong fiber matrix bonding will give higher modulus, lower toughness composites. Composites with weak bonding will have a lower modulus and more ductility. The situation becomes a bit more complex when all possibilities are examined. To be considered are the following: the properties of the surface layer on the fiber, the interactive forces between polymer and matrix, the surface roughness and porosity of the fiber, and the morphology of the matrix polymer at the fiber surface. In practice, the surface of the fibers is treated to enhance the mechanical properties of a composite. These treatments include anodization, acid etching, high temperature oxidation, and plasma oxidation, to name a few. The goal is to be able to predict the surface properties of carbon fibers treated in various ways, and then to relate surface properties to fiber matrix bonding.

  12. Numerical modelling of the role of salt in continental collision: An application to the southeast Zagros fold-and-thrust belt

    NASA Astrophysics Data System (ADS)

    Ghazian, Reza Khabbaz; Buiter, Susanne J. H.

    2014-09-01

    The Zagros fold-and-thrust belt formed in the collision of Arabia with Central Iran. Its sedimentary sequence is characterised by the presence of several weak layers that may control the style of folding and thrusting. We use 2-D thermo-mechanical models to investigate the role of salt in the southeast Zagros fold-and-thrust belt. We constrain the crustal and lithospheric thickness, sedimentary stratification, convergence velocity, and thermal structure of the models from available geological and geophysical data. We find that the thick basal layer of Hormuz salt in models on the scale of the upper-mantle decouples the overlying sediments from the basement and localises deformation in the sediments by trench-verging shear bands. In the collision stage of the models, basement dips with + 1° towards the trench. Including the basal Hormuz salt improves the fit of predicted topography to observed topography. We use the kinematic results and thermal structure of this large-scale model as the initial conditions of a series of upper-crustal-scale models. These models aim to investigate the effects of basal and intervening weak layers, salt strength, basal dip, and lateral salt distribution on deformation style of the simply folded Zagros. Our results show that in addition to the Hormuz salt at the base of the sedimentary cover, at least one intervening weak layer is required to initiate fold-dominated deformation in the southeast Zagros. We find that an upper-crustal-scale model, with a basal and three internal weak layers with viscosities between 5 × 1018 and 1019 Pa s, and a basement that dips + 1° towards the trench, best reproduces present-day topography and the regular folding of the sedimentary layers of the simply folded Zagros.

  13. Plastic damage induced fracture behaviors of dental ceramic layer structures subjected to monotonic load.

    PubMed

    Wang, Raorao; Lu, Chenglin; Arola, Dwayne; Zhang, Dongsheng

    2013-08-01

    The aim of this study was to compare failure modes and fracture strength of ceramic structures using a combination of experimental and numerical methods. Twelve specimens with flat layer structures were fabricated from two types of ceramic systems (IPS e.max ceram/e.max press-CP and Vita VM9/Lava zirconia-VZ) and subjected to monotonic load to fracture with a tungsten carbide sphere. Digital image correlation (DIC) and fractography technology were used to analyze fracture behaviors of specimens. Numerical simulation was also applied to analyze the stress distribution in these two types of dental ceramics. Quasi-plastic damage occurred beneath the indenter in porcelain in all cases. In general, the fracture strength of VZ specimens was greater than that of CP specimens. The crack initiation loads of VZ and CP were determined as 958 ± 50 N and 724 ± 36 N, respectively. Cracks were induced by plastic damage and were subsequently driven by tensile stress at the elastic/plastic boundary and extended downward toward to the veneer/core interface from the observation of DIC at the specimen surface. Cracks penetrated into e.max press core, which led to a serious bulk fracture in CP crowns, while in VZ specimens, cracks were deflected and extended along the porcelain/zirconia core interface without penetration into the zirconia core. The rupture loads for VZ and CP ceramics were determined as 1150 ± 170 N and 857 ± 66 N, respectively. Quasi-plastic deformation (damage) is responsible for crack initiation within porcelain in both types of crowns. Due to the intrinsic mechanical properties, the fracture behaviors of these two types of ceramics are different. The zirconia core with high strength and high elastic modulus has better resistance to fracture than the e.max core. © 2013 by the American College of Prosthodontists.

  14. Biochemical Predictors of Low Bone Mineral Density and Fracture Susceptibility in Maltese Postmenopausal Women.

    PubMed

    Formosa, Melissa M; Xuereb-Anastasi, Angela

    2016-01-01

    Osteoporosis and fractures are complex conditions influenced by an interplay of genetic and environmental factors. The aim of the study was to investigate three biochemical parameters including total serum calcium, total serum alkaline phosphatase (sALP) and albumin in relation to bone mineral density (BMD) at the lumbar spine and femoral neck (FN), and with all-type of low-trauma fractures in Maltese postmenopausal women. Levels were also correlated with age and physical activity. A case-control study of 1045 women was performed. Women who suffered a fracture were classified as cases whereas women without a fracture history were included as controls subdivided into normal, osteopenic, or osteoporotic according to their BMD measurements. Blood specimens were collected following good standard practice and testing was performed by spectrophotometry. Calcium and sALP levels were weakly correlated with FN BMD levels (calcium: r = -0.111, p = 0.002; sALP: r = 0.089, p = 0.013). Fracture cases had the lowest serum levels of calcium, sALP and albumin relative to all other control groups, which decreased with increasing age, possibly increasing fracture risk. Biochemical levels were lowest in women who sustained a hip fracture and more than one fracture. Biochemical parameters decreased with reduced physical activity; however, this was most evident for fracture cases. Reduced physical activity was associated with lower BMD levels at the hip, and to a lower extent at the spine. In conclusion, results suggest that levels of serum calcium and albumin could be indicative of fracture risk, whereas calcium levels and to lower extent sALP levels could be indicators of hip BMD.

  15. Retroauricular transmeatal approach to manage mandibular condylar head fractures.

    PubMed

    Benech, Arnaldo; Arcuri, Francesco; Baragiotta, Nicola; Nicolotti, Matteo; Brucoli, Matteo

    2011-03-01

    There is a multitude of reported surgical approaches and technical variants with some unresolved technical problems to gain direct access to mandibular condylar head fractures; they can be divided into 2 groups: intraoral and extraoral. In 2005, Neff et al (Mund Kiefer Gesichtschir 2005;9:80), supported by a previous experimental work, reported a successful clinical study of condylar head fractures treated by a retroauricular approach; this article is in German, and the later English-language literature does not mention about this approach to open reduction and internal fixation of mandibular condylar fractures. The retroauricular transmeatal access, selected and performed by the senior author to treat 14 patients affected by highly located condylar head fracture, is illustrated in details. We collected data of 14 consecutive adult patients who, after the discussion about all options, had consented to have 16 mandibular condylar head fractures treated with open reduction and internal fixation by miniplates and screws via a retroauricular transmeatal approach. We exposed the temporomandibular joint area easily and better by dissecting via a retroauricular route with identification, ligation, and transection of the retromandibular vein; because of the posterior access, the frontal branch of the facial nerve and the auriculotemporal nerve are located and protected within the substance of the anteriorly retracted flap, superficial to the retromandibular vein. The follow-up clinical examination showed temporary weakness of the frontal branch of the facial nerve in 1 case with a recovery to normal function of 1.6 months; no patients had permanent weakness of the facial nerve or injury of the auriculotemporal nerve. There was absence of any salivary fistula, sialocele, and Frey syndrome; hearing was preserved in all cases, without any auditory stenosis or aesthetic deformity, and there was absence of any infections, hematoma, or scarring. Retroauricular approach provides good exposure of the temporomandibular joint and satisfactory protection from nerve injuries and vascular lesions, allowing an adequate osteosynthesis. The scar is hidden behind the ear, and the morbidity is low in terms of auditory stenosis, aesthetic deformity, and salivary fistulas.

  16. Mechanical and thermal control of cleating and shearing in coal: examples from the Alabama coalbed methane field, USA

    USGS Publications Warehouse

    Pashin, Jack; Carroll, R.E.; Hatch, Joseph R.; Goldhaber, Martin B.

    1999-01-01

    Natural fractures provide most of the interconnected macroporosity in coal. Therefore, understanding the characteristics of these fractures and the associated mechanisms of formation is essential for effective coalbed methane exploration and field management. Natural fractures in coal can be divided into two general types: cleat and shear structures. Cleat has been studied for more than a century, yet the mechanisms of cleat formation remain poorly understood (see reviews by Close, 1993; Laubach et al.,1998). An important aspect of cleating is that systematic fracturing of coal is takes place in concert with devolatization and concomitant shrinkage of the coal matrix during thermal maturation (Ammosov and Eremin, 1960). Coal, furthermore, is a mechanically weak rock type that is subject to bedding-plane shear between more competent beds like shale, sandstone, and limestone. Yet, the significance of shear structures in coal has only begun to attract scientific interest (Hathaway and Gayer, 1996; Pashin, 1998).

  17. A sophisticated simulation for the fracture behavior of concrete material using XFEM

    NASA Astrophysics Data System (ADS)

    Zhai, Changhai; Wang, Xiaomin; Kong, Jingchang; Li, Shuang; Xie, Lili

    2017-10-01

    The development of a powerful numerical model to simulate the fracture behavior of concrete material has long been one of the dominant research areas in earthquake engineering. A reliable model should be able to adequately represent the discontinuous characteristics of cracks and simulate various failure behaviors under complicated loading conditions. In this paper, a numerical formulation, which incorporates a sophisticated rigid-plastic interface constitutive model coupling cohesion softening, contact, friction and shear dilatation into the XFEM, is proposed to describe various crack behaviors of concrete material. An effective numerical integration scheme for accurately assembling the contribution to the weak form on both sides of the discontinuity is introduced. The effectiveness of the proposed method has been assessed by simulating several well-known experimental tests. It is concluded that the numerical method can successfully capture the crack paths and accurately predict the fracture behavior of concrete structures. The influence of mode-II parameters on the mixed-mode fracture behavior is further investigated to better determine these parameters.

  18. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    PubMed Central

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-01-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives. PMID:27297565

  19. Bilateral femoral shaft fractures complicated by fat and pulmonary embolism: a case report.

    PubMed

    Randelli, Filippo; Capitani, Paolo; Pace, Fabrizio; Favilla, Sara; Galante, Claudio; Randelli, Pietro

    2015-12-01

    A 25-year-old man was admitted to our hospital because of pulmonary embolism and suspected fat embolism after sustaining bilateral femoral shaft fracture. A left arm weakness, tachycardia and sudden hemoglobin drop delayed his definitive fixation with intramedullary nailing. His clinical course was further complicated by bleeding from the pin sites of the external fixators which had initially been used to temporarily stabilize his femoral fractures (clotting disturbances). A lower leg Doppler ultrasound and a new pelvic-chest CT angiography excluded any remaining thrombus, meanwhile the embolus had broken in smaller pieces, more distally. His unfractionated heparin was revised to a Low Molecular Weight Heparin at prophylactic dose. After a 10 day period and when his condition had been improved bilateral reamed nailing was performed. Although bilateral closed femoral shaft fractures should be stabilized early, fat embolism syndrome (FES) and thromboembolic events (TEV) should always be kept in mind in these patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    DOE PAGES

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; ...

    2016-06-14

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural pathmore » for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.« less

  1. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-06-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

  2. Seismic, magnetic, and geotechnical properties of a landslide and clinker deposits, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Miller, C.H.

    1979-01-01

    Exploitation of vast coal and other resources in the Powder River Basin has caused recent, rapid increases in population and in commercial and residential development and has prompted land utilization studies. Two aspects of land utilization were studied for this report: (1) the seismic and geotechnical properties of a landslide and (2) the seismic, magnetic, and geotechnical properties of clinker deposits. (1) The landslide seismic survey revealed two layers in the slide area. The upper (low-velocity) layer is a relatively weak mantle of colluvium and unconsolidated and weathered bedrock that ranges in thickness from 3.0 to 7.5 m and has an average seismic velocity of about 390 m/s. It overlies high-velocity, relatively strong sedimentary bedrock that has velocities greater than about 1330 m/s. The low-velocity layer is also present at the other eight seismic refraction sites in the basin; a similar layer has also been reported in the Soviet Union in a landslide area over similar bedrock. The buried contact of the low- and high-velocity layers is relatively smooth and is nearly parallel with the restored topographic surface. There is no indication that any of the high-velocity layer (bedrock) has been displaced or removed. The seismic data also show that the shear modulus of the low-velocity layer is only about one-tenth that of the high-velocity layer and the shear strength (at failure) is only about one-thirtieth. Much of the slide failure is clearly in the shear mode, and failure is, therefore, concluded to be confined to the low-velocity layer. The major immediate factor contributing to landslide failure is apparently the addition of moisture to the low-velocity layer. The study implies that the low-velocity layer can be defined over some of the basin by seismic surveys and that they can help predict or delineate potential slides. Preventative actions that could then be taken include avoidance, dewatering, prevention of saturation, buttressing the toe, and unloading the head. The low-velocity layer is usually less than about 5 m thick and may be excavated by dozing, whereas the bedrock must be blasted. Thus, it would seem economically feasible to underpin a structure to nonweathered bedrock or, perhaps, to remove the low-velocity layer prior to construction. (2) Many coal beds in the Powder River Basin have burned along their outcrops, and the resulting intense heat has baked and fused the overlying clastic (sedimentary) rocks into clinkers. The clinkers are very magnetic and a buried edge of a single layer of burn can easily be located by magnetic prospecting methods. Location of the edge is very important in estimating unburned coal deposits, locating clinker quarries, and planning drilling of seismic reflection lines. The clinkers are very porous and highly fractured,-and seismic and geotechnical tests show that they have relatively low strength and competency. Many of the laboratory tests, however, are inherently biased because the clinkers are so highly fractured that only competent samples are selected. The laboratory tests, for example, show that clinkers must be loosened by heavy ripping tractors or blasting, whereas the field data and practical experience indicate that clinkers may be mined with light equipment. Heavy structures such as coal silos and bridge abutments may have to be sited on clinkers. However, differential settlement may occur, with failure in the shear mode, because chimneys of relatively greater strength occur among the weaker clinkers. Preliminary data indicate that the chimneys may be located by magnetic or possibly seismic surveys. Special foundation-preparation techniques could be used or, perhaps, the chimneys could be avoided altogether at a construction site.

  3. Analogue modelling of caprock failure and sediment mobilisation due to pore fluid overpressure in shallow reservoirs

    NASA Astrophysics Data System (ADS)

    Warsitzka, Michael; Kukowski, Nina; May, Franz

    2017-04-01

    Injection of CO2 in geological formations may cause excess pore fluid pressure by enhancing the fluid volume in the reservoir rock and by buoyancy-driven flow. If sediments in the reservoir and the caprock are undercompacted, pore fluid overpressure can lead to hydro-fractures in the caprock and fluidisation of sediments. Eventually, these processes trigger the formation of pipe structures, gas chimneys, gas domes or sand injections. Generally, such structures serve as high permeable pathways for fluid migration through a low-permeable seal layer and have to be considered in risk assessment or modelling of caprock integrity of CO2 storage sites. We applied scaled analogue experiments to characterise and quantify mechanisms determining the onset and migration of hydro-fractures in a low-permeable, cohesive caprock and fluidisation of unconsolidated sediments of the reservoir layer. The caprock is simulated by different types of cohesive powder. The reservoir layer consists of granulates with small particle density. Air injected through the base of the experiment and additionally through a single needle valve reaching into the analogue material is applied to generate fluid pressure within the materials. With this procedure, regional fluid pressure increase or a point-like local fluid pressure increase (e.g. injection well), respectively, can be simulated. The deformation in the analogue materials is analysed with a particle tracking imaging velocimetry technique. Pressure sensors at the base of the experiment and in the needle valve record the air pressure during an experimental run. The structural evolution observed in the experiments reveal that the cohesive cap rock first forms a dome-like anticline. Extensional fractures occur at the hinges of the anticline. A further increase of fluid pressure causes a migration of this fractures towards the surface, which is followed by intrusion of reservoir material into the fractures and the collapse of the anticline. The breakthrough of the fractures at the surface is accompanied by a significant drop of air pressure at the base of the analogue materials. The width of the dome shaped uplift is narrower and the initiating fluid pressure in the needle valve is lower, if the fluid pressure at the base of the experiment is larger. The experimental outcomes help to evaluate if the injection of CO2 into a reservoir potentially provokes initiation or reactivation of fractures and sediment mobilisation structures.

  4. Clinical and financial comparison of operative and nonoperative treatment of displaced clavicle fractures.

    PubMed

    Althausen, Peter L; Shannon, Steven; Lu, Minggen; O'Mara, Timothy J; Bray, Timothy J

    2013-05-01

    Surgical stabilization of displaced clavicle fractures was once considered to have rare indications. Our purpose was to present the clinical and economic effects of surgical management using data collected from operative and nonoperative patients. Our fracture database was queried from January 1, 2005, to January 1, 2010, identifying 204 patients with displaced midclavicular fractures. Radiographs and charts were reviewed, and questionnaires were distributed. Operative patients had less chronic pain (6.1% vs 25.3%), less cosmetic deformity (18.2% vs 32.5%), less weakness (10.6% vs 33.7%), less loss of motion (15.2% vs 31.3%), and fewer nonunions (0% vs 4.8%). Operative patients missed fewer days of work (8.4 days vs 35.2 days) and required less assistance (3 days vs 7 days) for care at home. Mean income lost was $321.69 versus $10,506.25. Operative patients had a mean emergency department bill of $2,060.51 versus $1,871.92 and had a mean hospital bill of $8,520.30 versus $3,692.65, and anesthesia charges averaged $946.11. Operative patients required less physical therapy, and the mean physical therapy cost was $971.76 versus $1,820. Nonoperative patients required more pain medication ($43.22 vs $45.98). Overall, the cost was $12,976.94 for operative patients and $18,068.27 for nonoperative patients. Patients with displaced clavicle fractures benefit clinically and financially from stabilization. They have less chronic pain, less deformity, less weakness, and better range of motion. They return to work sooner, take less pain medication, and require less physical therapy. Their initial hospital bill is higher because of surgical charges but is balanced by less income loss, resulting in a cost savings of $5,091.33 in operative patients. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  5. Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys

    PubMed Central

    Gao, Ming; Chen, Cong; Gu, Yunze; Zeng, Xiaoyan

    2014-01-01

    Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up to 213 MPa, 95.5% of same Al weld. The optimal range of heat input for accepted joints was obtained as 83–98 J·mm−1. Within this range, the joint is stronger than 200 MPa and fractures in weld metal, or else, it becomes weaker and fractures at the intermetallic compounds (IMCs) layer. The IMCs layer of an accepted joint is usually thin and continuous, which is about 1μm-thick and only consists of TiAl2 due to fast solidification rate. However, the IMCs layer at the top corner of fusion zone/Ti substrate is easily thickened with increasing heat input. This thickened IMCs layer consists of a wide TiAl3 layer close to FZ and a thin TiAl2 layer close to Ti substrate. Furthermore, both bead shape formation and interface growth were discussed by laser-arc interaction and melt flow. Tensile behavior was summarized by interface properties. PMID:28788533

  6. Pollution par les nitrates des eaux souterraines du bassin d'Essaouira (Maroc)

    NASA Astrophysics Data System (ADS)

    Laftouhi, Nour-Eddine; Vanclooster, Marnik; Jalal, Mohammed; Witam, Omar; Aboufirassi, Mohamed; Bahir, Mohamed; Persoons, Étienne

    2003-03-01

    The Essaouira Basin (Morocco) contains a multi-layered aquifer situated in fractured and karstic materials from the Middle and Upper Cretaceous (the Cenomanian, Turonian and Senonian). Water percolates through the limestone and dolomite formations of the Turonian stage either through the marls and calcareous marls of the Cenomanian or through the calcareous marly materials of the Senonian. The aquifer system may be interconnected since the marl layer separating the Turonian, Cenomanian and Senonian aquifers is thin or intensively fractured. In that case, the water is transported through a network of fractures and stratification joints. This paper describes the extent of the nitrate pollution in the area and its origin. Most of the wells and drillholes located in the Kourimat perimeter are contaminated by nitrates with some concentrations over 400 mg l-1. Nitrate contamination is also observed in the surface water of the Qsob River, which constitutes the natural outlet of the multi-layered complex aquifer system. In this area, agriculture is more developed than in the rest of the Essaouira Basin. Diffuse pollution of the karstic groundwater body by agricultural fertiliser residues may therefore partially explain the observed nitrate pollution. However, point pollution around the wells, springs and drillholes from human wastewater, livestock faeces and the mineralisation of organic debris close to the Muslim cemeteries cannot be excluded.

  7. Experimental investigation of the strength and failure behavior of layered sandstone under uniaxial compression and Brazilian testing

    NASA Astrophysics Data System (ADS)

    Yin, Peng-Fei; Yang, Sheng-Qi

    2018-05-01

    As a typical inherently anisotropic rock, layered sandstones can differ from each other in several aspects, including grain size, type of material, type of cementation, and degree of compaction. An experimental study is essential to obtain and convictive evidence to characterize the mechanical behavior of such rock. In this paper, the mechanical behavior of a layered sandstone from Xuzhou, China, is investigated under uniaxial compression and Brazilian test conditions. The loading tests are conducted on 7 sets of bedding inclinations, which are defined as the angle between the bedding plane and horizontal direction. The uniaxial compression strength (UCS) and elastic modulus values show an undulatory variation when the bedding inclination increases. The overall trend of the UCS and elastic modulus values with bedding inclination is decreasing. The BTS value decreases with respect to the bedding inclination and the overall trend of it is approximating a linear variation. The 3D digital high-speed camera images reveal that the failure and fracture of a specimen are related to the surface deformation. Layered sandstone tested under uniaxial compression does not show a typical failure mode, although shear slip along the bedding plane occurs at high bedding inclinations. Strain gauge readings during the Brazilian tests indicate that the normal stress on the bedding plane transforms from compression to tension as the bedding inclination increases. The stress parallel to the bedding plane in a rock material transforms from tension to compression and agrees well with the fracture patterns; "central fractures" occur at bedding inclinations of 0°-75°, "layer activation" occurs at high bedding inclinations of 75°-90°, and a combination of the two occurs at 75°.

  8. Bioinspired design and interfacial failure of biomedical systems

    NASA Astrophysics Data System (ADS)

    Rahbar, Nima

    The deformation mechanism of nacre as a model biological material is studied in this project. A numerical model is presented which consists of tensile pillars, shear pillars, asperities and aragonite platelets. It has been shown that the tensile pillars are the main elements that control the global stiffness of the nacre structure. Meanwhile, ultimate strength of the nacre structure is controlled by asperities and their behavior and the ratio of L/2D which is itself a function of the geometry of the platelets. Protein/shear pillars provide the glue which holds the assembly of entire system together, particularly in the direction normal to the platelets main axis. This dissertation also presents the results of a combined theoretical/computational and experimental effort to develop crack resistant dental multilayers that are inspired by the functionally graded dento-enamel junction (DEJ) structure that occurs between dentin and enamel in natural teeth. The complex structures of natural teeth and ceramic crowns are idealized using at layered configurations. The potential effects of occlusal contact are then modeled using finite element simulations of Hertzian contact. The resulting stress distributions are compared for a range of possible bioinspired, functionally graded architecture. The computed stress distributions show that the highest stress concentrations in the top ceramic layer of crown structures are reduced significantly by the use of bioinspired functionally graded architectures. The reduced stresses are shown to be associated with significant improvements (30%) in the pop-in loads over a wide range of clinically-relevant loading rates. The implications of the results are discussed for the design of bioinspired dental ceramic crown structures. The results of a combined experimental and computational study of mixed mode fracture in glass/cement and zirconia/cement interfaces that are relevant to dental restorations is also presented. The interfacial fracture is investigated using Brazil-nut specimens. The kinking in-and-out of the interface that occurs between glass/cement and zirconia/cement interfaces, is also shown to be consistent with predictions from a microstructure-based finite element model. The predictions are later verified using focused ion beam and scanning electron microscopy images. Finally, the adhesion between layers that are relevant to drug-eluting stents is explored. Brazil disk specimens were used to measure the interfacial fracture energies between the layers of a model drug eluting stent over a wide range of mode mixities. The trends in the overall fracture energies are predicted using a combination of adhesion theories and fracture mechanics concepts. The measured interfacial fracture energies are shown to be in good agreement with the predictions.

  9. Candidate-penetrative-fracture mapping of the Grand Canyon area, Arizona, from spatial correlation of deep geophysical features and surficial lineaments

    USGS Publications Warehouse

    Gettings, Mark E.; Bultman, Mark W.

    2005-01-01

    Some aquifers of the southwestern Colorado Plateaus Province are deeply buried and overlain by several impermeable shale layers, and so recharge to the aquifer probably is mainly by seepage down penetrative-fracture systems. The purpose of this 2-year study, sponsored by the U.S. National Park Service, was to map candidate deep penetrative fractures over a 120,000-km2 area, using gravity and aeromagnetic-anomaly data together with surficial-fracture data. The study area was on the Colorado Plateau south of the Grand Canyon and west of Black Mesa; mapping was carried out at a scale of 1:250,000. The resulting database constitutes a spatially registered estimate of deep-fracture locations. Candidate penetrative fractures were located by spatial correlation of horizontal- gradient and analytic-signal maximums of gravity and magnetic anomalies with major surficial lineaments obtained from geologic, topographic, side-looking-airborne-radar, and satellite imagery. The maps define a subset of candidate penetrative fractures because of limitations in the data coverage and the analytical technique. In particular, the data and analytical technique used cannot predict whether the fractures are open or closed. Correlations were carried out by using image-processing software, such that every pixel on the resulting images was coded to uniquely identify which datasets are correlated. The technique correctly identified known and many new deep fracture systems. The resulting penetrative-fracture-distribution maps constitute an objectively obtained, repeatable dataset and a benchmark from which additional studies can begin. The maps also define in detail the tectonic fabrics of the southwestern Colorado Plateaus Province. Overlaying the correlated lineaments on the normalized-density-of-vegetation-index image reveals that many of these lineaments correlate with the boundaries of vegetation zones in drainages and canyons and so may be controlling near-surface water availability in some places. Many derivative products can be produced from the database, such as fracture-density-estimate maps, and maps with the number of correlations color-coded to estimate the possible quality of correlation. The database contained in this report is designed to be used in a geographic information system and image-processing systems, and most data layers are in georeferenced tagged image format (Geotiff) or ARC grids. The report includes 163 map plates and various metadata, supporting, and statistical diagram files.

  10. 7-year follow-up after open reduction and internal screw fixation in Bennett fractures.

    PubMed

    Leclère, Franck Marie Patrick; Jenzer, Achat; Hüsler, Rolf; Kiermeir, David; Bignion, Dietmar; Unglaub, Frank; Vögelin, Esther

    2012-07-01

    Bennett fractures are unstable, and, with inadequate treatment, lead to osteoarthritis, weakness and loss of function of the first carpometacarpal joint. This study focuses on long-term functional and radiological outcomes after open reduction and internal fixation. Between June 1997 and December 2005, 24 patients with Bennett fractures were treated with open reduction and internal fixation with screws at our center. Radiological and functional assessments including range of motion of the thumb and pinch and grip strength were performed 4 months post-procedure and at the long-term follow-up, on average 83 months after surgery. Reduction of the Bennett fracture was maintained as it was at the time of the procedure in 96 % of the cases when fixation with two lag screws was performed. At the 4-month follow-up, mean pinch and grip strength reached 92 ± 3 and 89 ± 4 % of the contralateral side, respectively. Long-term follow-up demonstrated no correlation between the accuracy of the fracture reduction and the development of post-traumatic arthritis. Good clinical results could be observed, if successful reduction of the fracture was achieved and maintained. However, there was no correlation between the accuracy of the fracture reduction considering a gap and step <2 mm and the development of arthritis.

  11. 7-Meth­oxy­indan-1-one

    PubMed Central

    Chang, Yuan Jay; Chen, Kew-Yu

    2012-01-01

    In the title compound, C10H10O2, the 1-indanone unit is essentially planar (r.m.s. deviation = 0.028 Å). In the crystal, molecules are linked via C—H⋯O hydrogen bonds, forming layers lying parallel to the ab plane. This two-dimensional structure is stabilized by a weak C—H⋯π inter­action. A second weak C—H⋯π inter­action links the layers, forming a three-dimensional structure. PMID:23284398

  12. Soft-plastic brace for lower limb fractures in patients with spinal cord injury.

    PubMed

    Uehara, K; Akai, M; Kubo, T; Yamasaki, N; Okuma, Y; Tobimatsu, Y; Iwaya, T

    2013-04-01

    Retrospective study at a rehabilitation center. Patients with spinal cord injury, even if they are wheelchair users, sometimes suffer from fractures of the lower limb bones. As their bones are too weak to have surgery, and because a precise reduction is not required for restoration, such patients are often indicated for conservative treatment. This case series study investigated the use of a hinged, soft-plastic brace as a conservative approach to treating fractures of the lower extremities of patients with spinal cord injury. National Rehabilitation Center, Japan. Fifteen patients (male, n=10; female, n=5; average age, 52.7 years) with 19 fractures of the femur or the tibia who were treated with a newly-developed hinged, soft-plastic brace were studied. All of them used wheelchairs. We analyzed the time taken for fracture union and for wearing orthotics, degree of malalignment, femorotibial angle and side effects. The fractures in this series were caused by relatively low-energy impact. The average time taken for fracture union was 80.1 (37-189) days, and the average amount of time spent wearing orthotics was 77.9 (42-197) days. On final X-ray imaging, the average femorotibial angle was 176.9° (s.d. ±8.90), and 15° of misalignment in the sagittal plane occurred in one patient. A hinged, soft-plastic brace is a useful option as a conservative approach for treating fractures of the lower extremities in patients with spinal cord injury.

  13. Multiple slope failures shaped the lower continental slope offshore NW Svalbard in the Fram Strait

    NASA Astrophysics Data System (ADS)

    Osti, Giacomo; Mienert, Jürgen; Forwick, Matthias; Sverre Laberg, Jan

    2016-04-01

    Bathymetry data show that the lower slope (between 1300 m and 3000 m water depth) of the NW-Svalbard passive margin has been affected by multiple slope failure events. The single events differ in terms of extension, volume of mobilized sediments, morphology of the slide scar, run-out distance and age. As for several mega-scale and minor Arctic slides, the trigger mechanism is still speculative and may include high sedimentation rates, dissociation of gas hydrates, excess pore pressure, or earthquakes caused by isostatic rebound. In this study, we discuss the potential trigger mechanisms that have led to the multiple slope failure events within what we suggest to be named the Fram Strait Slide Complex. The slide complex lies in proximity to the tectonically active Spitsbergen Fracture Zone where earthquakes events, occurrences of potential weak layers in the sediment column, low sedimentation rates, and extended gas hydrate-bearing sediments may all have contributed to the causes leading to multiple slope failures. Preliminary results obtained from 14C dating on N. pachyderma sin. from sediment cores from the Spitsbergen Fracture Zone slides (SFZS 1 and 2), coupled with sub-bottom profiler data (frequency 9 to 15 KHz) show that the two shallowest glide planes within one of the observed slide scars failed ~100,000 and ~115,000 yr BP. Whilst SFZS 1 affected an area of 750 km2 mobilizing a total sediment volume of 40 km3, SFZS 2 moved an area of 230 km2 with a sediment volume of 4.5 km3.

  14. Application and Testing of Transparent Plastics Used in Airplane Construction

    NASA Technical Reports Server (NTRS)

    Riechers, K; Olms, J

    1938-01-01

    This report concerns the efforts being made to remove the source of danger to passengers arising from the fracturing of silicate glass. Some of the alternatives presented include: single-layer safety glass, multi-layer safety glass, transparent plastic resins. Some of the resins considered are celluloid, cellulose acetates, and mixtures of polymers.

  15. Local Characteristics of the Nocturnal Boundary Layer in Response to External Pressure Forcing

    NASA Astrophysics Data System (ADS)

    van der Linden, Steven; Baas, Peter; van Hooft, Antoon; van Hooijdonk, Ivo; Bosveld, Fred; van de Wiel, Bas

    2017-04-01

    Geostrophic wind speed data, derived from pressure observations, are used in combination with tower measurements to investigate the nocturnal stable boundary layer at Cabauw, The Netherlands. Since the geostrophic wind speed is not directly influenced by local nocturnal stability, it may be regarded as an external forcing parameter of the nocturnal stable boundary layer. This is in contrast to local parameters such as in situ wind speed, the Monin-Obukhov stability parameter (z/L) or the local Richardson number. To characterize the stable boundary layer, ensemble averages of clear-sky nights with similar geostrophic wind speed are formed. In this manner, the mean dynamical behavior of near-surface turbulent characteristics, and composite profiles of wind and temperature is systematically investigated. We find that the classification results in a gradual ordering of the diagnosed variables in terms of the geostrophic wind speed. In an ensemble sense the transition from the weakly stable to very stable boundary layer is more gradual than expected. Interestingly, for very weak geostrophic winds turbulent activity is found to be negligibly small while the resulting boundary cooling stays finite. Realistic numerical simulations for those cases should therefore have a a solid description of other thermodynamic processes such as soil heat conduction and radiative transfer. This prerequisite poses a challenge for Large-Eddy Simulations of weak wind nocturnal boundary layers.

  16. Hip abductor strength and lower extremity running related injury in distance runners: A systematic review.

    PubMed

    Mucha, Matthew D; Caldwell, Wade; Schlueter, Emily L; Walters, Carly; Hassen, Amy

    2017-04-01

    Determine the association between hip abduction strength and lower extremity running related injury in distance runners. Systematic review. Prospective longitudinal and cross sectional studies that quantified hip abduction strength and provided diagnosis of running related injury in distance runners were included and assessed for quality. Effect size was calculated for between group differences in hip abduction strength. Of the 1841 articles returned in the initial search, 11 studies matched all inclusion criteria. Studies were grouped according to injury: iliotibial band syndrome, patellofemoral pain syndrome, medial tibial stress syndrome, tibial stress fracture, and Achilles tendinopathy, and examined for strength differences between injured and non-injured groups. Meaningful differences were found in the studies examining iliotibial band syndrome. Three of five iliotibial band syndrome articles found weakness in runners with iliotibial band syndrome; two were of strong methodological rigor and both of those found a relationship between weakness and injury. Other results did not form associative or predictive relationships between weakness and injury in distance runners. Hip abduction weakness evaluated by hand held dynamometer may be associated with iliotibial band syndrome in distance runners as suggested by several cross sectional studies but is unclear as a significant factor for the development of patellofemoral pain syndrome, medial tibial stress syndrome, tibial stress fracture or Achilles tendinopathy according to the current literature. Future studies are needed with consistent methodology and inclusion of all distance running populations to determine the significance of hip abduction strength in relationship to lower extremity injury. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. Morphologies, microstructures, and mechanical properties of samples produced using laser metal deposition with 316 L stainless steel wire

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Mi, Gaoyang; Luo, Yuanqing; Jiang, Ping; Shao, Xinyu; Wang, Chunming

    2017-07-01

    Laser metal deposition (LMD) with a filler has been demonstrated to be an effective method for additive manufacturing because of its high material deposition efficiency, improved surface quality, reduced material wastage, and cleaner process environment without metal dust pollution. In this study, single beads and samples with ten layers were successfully deposited on a 316 L stainless steel surface under optimized conditions using a 4000 W continuous wave fibre laser and an arc welding machine. The results showed that satisfactory layered samples with a large deposition height and smooth side surface could be achieved under appropriate parameters. The uniform structures had fine cellular and network austenite grains with good metallurgical bonding between layers, showing an austenite solidification mode. Precipitated ferrite at the grain boundaries showed a subgrain structure with fine uniform grain size. A higher microhardness (205-226 HV) was detected in the middle of the deposition area, while the tensile strength of the 50 layer sample reached 669 MPa. In addition, ductile fracturing was proven by the emergence of obvious dimples at the fracture surface.

  18. The Flexural Strength and Fracture Toughness of TC4-Based Laminated Composites Reinforced with Ti Aluminide and Carbide

    PubMed Central

    Fei, Yanhan; Ai, Taotao; Niu, Qunfei; Li, Wenhu; Yuan, Xinqiang; Jing, Ran; Dong, Hongfeng

    2017-01-01

    TiC–Ti–Al mixed powders and TC4 titanium alloy foils were overlapped layer-by-layer in the graphite die. The TC4-based laminated composite sheets reinforced by Ti aluminide and carbide were successfully fabricated via spark plasma sintering (SPS) at 1100 °C with a well-bonded interface. The composite layers were mainly composed of TiAl, Ti3Al, Ti2AlC, and Ti3AlC2 phases. The carbides particles distributed in the matrix played an important role in the deflection of cracks and the passivation of microcracks. TC4 titanium alloy layers had an obvious effect on the stress distribution during the loading process, and provided an energy dissipation mechanism, which could improve the mechanical properties of the laminated composite sheets obviously. When the theoretical amount of Ti2AlC was 20 wt %, the flexural strength and fracture toughness of the laminated composite sheets reached the maximum value in the arrester direction, which were 1428.79 MPa and 64.08 MPa·m1/2, respectively. PMID:29027949

  19. The Flexural Strength and Fracture Toughness of TC4-Based Laminated Composites Reinforced with Ti Aluminide and Carbide.

    PubMed

    Fei, Yanhan; Ai, Taotao; Niu, Qunfei; Li, Wenhu; Yuan, Xinqiang; Jing, Ran; Dong, Hongfeng

    2017-10-13

    TiC-Ti-Al mixed powders and TC4 titanium alloy foils were overlapped layer-by-layer in the graphite die. The TC4-based laminated composite sheets reinforced by Ti aluminide and carbide were successfully fabricated via spark plasma sintering (SPS) at 1100 °C with a well-bonded interface. The composite layers were mainly composed of TiAl, Ti₃Al, Ti₂AlC, and Ti₃AlC₂ phases. The carbides particles distributed in the matrix played an important role in the deflection of cracks and the passivation of microcracks. TC4 titanium alloy layers had an obvious effect on the stress distribution during the loading process, and provided an energy dissipation mechanism, which could improve the mechanical properties of the laminated composite sheets obviously. When the theoretical amount of Ti₂AlC was 20 wt %, the flexural strength and fracture toughness of the laminated composite sheets reached the maximum value in the arrester direction, which were 1428.79 MPa and 64.08 MPa·m 1/2 , respectively.

  20. Microstructure and mechanical behavior of Zr substrates coated with FeCrAl and Mo by cold-spraying

    NASA Astrophysics Data System (ADS)

    Park, Dong Jun; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2018-06-01

    FeCrAl and Mo layers were cold-sprayed onto a Zr surface, with the Mo layer introduced between the FeCrAl coating and the Zr matrix preventing high-temperature interdiffusion. Microstructural characterization of the first-deposited Mo layer and the Zr matrix immediately below the Mo/Zr interface was performed using transmission electron microscopy, and near-interface elemental distributions were obtained using energy-dispersive X-ray spectroscopy. The deformation of the coated Mo powder induced the formation of microbands and mechanically interlocked nanoscale structures. The mechanical behavior of Zr with a coating layer was compared with those characteristic of conventional Zr samples. The coated sample showed smaller strength reduction in the test conducted at elevated temperature. The hardness and fracture morphology of the Zr matrix near the interface region were investigated to determine the effect of impacting Mo particles on the matrix microstructure. The enhanced hardness and cleavage fracture morphology of the Zr matrix immediately below the Mo/Zr interface indicated the occurrence of localized deformation owing to Mo particle impact.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osman, T.M.; Lewandowski, J.J.

    Recently, laminate structures have been investigated as a method for enhancing the fracture resistance of discontinuously reinforced aluminum (DRA) materials. Laminated DRA materials have been constructed which contain alternating layers of DRA material and monolithic aluminum. Initiation in these laminates has been found to preferentially occur in the DRA layers. After initiation, stable crack growth is produced in the DRA material via a crack bridging mechanism in which the ductile aluminum ligaments in the crack wake serve to reduce the driving force for propagation in the DRA layer. In a manner similar to that of Kaufman and Goolsby, it wasmore » proposed that the initiation toughness of the DRA laminates may be improved if the thickness of the DRA layers was reduced. The goal of this study was to investigate the influence of thickness on the toughness of a DRA material based upon a transition from plane strain to plane stress conditions and how this transition may affect the fracture resistance of laminated DRA materials. The following sections document initial attempts to determine the influence of DRA thickness on toughness both in conventional DRA materials and laminated DRA materials.« less

  2. Ultralow-Carbon Nanotube-Toughened Epoxy: The Critical Role of a Double-Layer Interface.

    PubMed

    Liu, Jingwei; Chen, Chao; Feng, Yuezhan; Liao, Yonggui; Ye, Yunsheng; Xie, Xiaolin; Mai, Yiu-Wing

    2018-01-10

    Understanding the chemistry and structure of interfaces within epoxy resins is important for studying the mechanical properties of nanofiller-filled nanocomposites as well as for developing high-performance polymer nanocomposites. Despite the intensive efforts to construct nanofiller/matrix interfaces, few studies have demonstrated an enhanced stress-transferring efficiency while avoiding unfavorable deformation due to undesirable interface fractures. Here, we report an optimized method to prepare epoxy-based nanocomposites whose interfaces are chemically modulated by poly(glycidyl methacrylate)-block-poly(hexyl methacrylate) (PGMA-b-PHMA)-functionalized multiwalled carbon nanotubes (bc@fMWNTs) and also offer a fundamental explanation of crack growth behavior and the toughening mechanism of the resulting nanocomposites. The presence of block copolymers on the surface of the MWNT results in a promising double-layered interface, in which (1) the outer-layered PGMA segment provides good dispersion in and strong interface bonding with the epoxy matrix, which enhances load transfer efficiency and debonding stress, and (2) the interlayered rubbery PHMA segment around the MWNT provides the maximum removable space for nanotubes as well as triggering cavitation while promoting local plastic matrix deformation, for example, shear banding to dissipate fracture energy. An outstanding toughening effect is achieved with only a 0.05 wt % carbon nanotube loading with the bc@fMWNT, that is, needing only a 20-times lower loading to obtain improvements in fracture toughness comparable to epoxy-based nanocomposites. The enhancements of their corresponding ultimate mode-I fracture toughnesses and fracture energies are 4 times higher than those of pristine MWNT-filled epoxy. These results demonstrate that a MWNT/epoxy interface could be optimized by changing the component structure of grafted modifiers, thereby facilitating the transfer of both mechanical load and energy dissipation across the nanofiller/matrix interface. This work provides a new route for the rational design and development of polymer nanocomposites with exceptional mechanical performance.

  3. Fluid identification based on P-wave anisotropy dispersion gradient inversion for fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Zhang, J. W.; Huang, H. D.; Zhu, B. H.; Liao, W.

    2017-10-01

    Fluid identification in fractured reservoirs is a challenging issue and has drawn increasing attentions. As aligned fractures in subsurface formations can induce anisotropy, we must choose parameters independent with azimuths to characterize fractures and fluid effects such as anisotropy parameters for fractured reservoirs. Anisotropy is often frequency dependent due to wave-induced fluid flow between pores and fractures. This property is conducive for identifying fluid type using azimuthal seismic data in fractured reservoirs. Through the numerical simulation based on Chapman model, we choose the P-wave anisotropy parameter dispersion gradient (PADG) as the new fluid factor. PADG is dependent both on average fracture radius and fluid type but independent on azimuths. When the aligned fractures in the reservoir are meter-scaled, gas-bearing layer could be accurately identified using PADG attribute. The reflection coefficient formula for horizontal transverse isotropy media by Rüger is reformulated and simplified according to frequency and the target function for inverting PADG based on frequency-dependent amplitude versus azimuth is derived. A spectral decomposition method combining Orthogonal Matching Pursuit and Wigner-Ville distribution is used to prepare the frequency-division data. Through application to synthetic data and real seismic data, the results suggest that the method is useful for gas identification in reservoirs with meter-scaled fractures using high-qualified seismic data.

  4. Transverse and Oblique Long Bone Fracture Evaluation by Low Order Ultrasonic Guided Waves: A Simulation Study

    PubMed Central

    Li, Ying; Liu, Dan; Xu, Kailiang; Le, Lawrence H.; Wang, Weiqi

    2017-01-01

    Ultrasonic guided waves have recently been used in fracture evaluation and fracture healing monitoring. An axial transmission technique has been used to quantify the impact of the gap breakage width and fracture angle on the amplitudes of low order guided wave modes S0 and A0 under a 100 kHz narrowband excitation. In our two dimensional finite-difference time-domain (2D-FDTD) simulation, the long bones are modeled as three layers with a soft tissue overlay and marrow underlay. The simulations of the transversely and obliquely fractured long bones show that the amplitudes of both S0 and A0 decrease as the gap breakage widens. Fixing the crack width, the increase of the fracture angle relative to the cross section perpendicular to the long axis enhances the amplitude of A0, while the amplitude of S0 shows a nonmonotonic trend with the decrease of the fracture angle. The amplitude ratio between the S0 and A0 modes is used to quantitatively evaluate the fracture width and angles. The study suggests that the low order guided wave modes S0 and A0 have potentials for transverse and oblique bone fracture evaluation and fracture healing monitoring. PMID:28182135

  5. Transverse and Oblique Long Bone Fracture Evaluation by Low Order Ultrasonic Guided Waves: A Simulation Study.

    PubMed

    Li, Ying; Liu, Dan; Xu, Kailiang; Ta, Dean; Le, Lawrence H; Wang, Weiqi

    2017-01-01

    Ultrasonic guided waves have recently been used in fracture evaluation and fracture healing monitoring. An axial transmission technique has been used to quantify the impact of the gap breakage width and fracture angle on the amplitudes of low order guided wave modes S 0 and A 0 under a 100 kHz narrowband excitation. In our two dimensional finite-difference time-domain (2D-FDTD) simulation, the long bones are modeled as three layers with a soft tissue overlay and marrow underlay. The simulations of the transversely and obliquely fractured long bones show that the amplitudes of both S 0 and A 0 decrease as the gap breakage widens. Fixing the crack width, the increase of the fracture angle relative to the cross section perpendicular to the long axis enhances the amplitude of A 0, while the amplitude of S 0 shows a nonmonotonic trend with the decrease of the fracture angle. The amplitude ratio between the S 0 and A 0 modes is used to quantitatively evaluate the fracture width and angles. The study suggests that the low order guided wave modes S 0 and A 0 have potentials for transverse and oblique bone fracture evaluation and fracture healing monitoring.

  6. Thrombotic thrombocytopenic purpura presenting with pathologic fracture: a case report.

    PubMed

    Berber, Ilhami; Erkurt, Mehmet Ali; Kuku, Irfan; Kaya, Emin; Unlu, Serkan; Ertem, Kadir; Nizam, Ilknur

    2014-08-01

    Thrombotic thrombocytopenic purpura is an acute syndrome with abnormalities in multiple organ systems, which becomes manifest with microangiopathic hemolytic anemia and thrombocytopenia. The hereditary or acquired deficiency of ADAMTS-13 activity leads to an excess of high molecular weight von Willebrand factor multimers in plasma, leading to platelet aggregation and diffuse intravascular thrombus formation, resulting in thrombotic thrombocytopenic purpura. Thrombotic lesions occurring in TTP leads to ischemia and convulsion. Depending on the properties of the bony tissue, fractures are divided into three groups as traumatic, pathological, and stress fractures. A pathologic fracture is a broken bone caused by disease leading to weakness of the bone. This process is most commonly due to osteoporosis, but may also be due to other pathologies such as cancer, infections, inherited bone disorders, or a bone cyst. We herein report a case with a pathologic fracture due to convulsion secondary to thrombotic thrombocytopenic pupura. Thrombotic lesions occurring in TTP may lead to ischemia and convulsion, as in our patient and pathological fractures presented in our case report may occur as a result of severe muscle contractions associated with convulsive activity. Thrombotic thrombocytopenic pupura is a disease that involves many organ systems and thus may have a very wide spectrum of clinical presentations. Copyright © 2014. Published by Elsevier Ltd.

  7. Fracture resistance and reinforcement of immature roots with gutta percha, mineral trioxide aggregate and calcium phosphate bone cement: a standardized in vitro model.

    PubMed

    Cauwels, Rita G E C; Pieters, Ilse Y; Martens, Luc C; Verbeeck, Ronald M H

    2010-04-01

    Endodontic treatment of immature teeth is often complicated because of flaring root canals and open apices for which apexification is needed. Long-term prognosis for these teeth is surprisingly low because of cervical root fractures occurring after an impact of weak forces. In this study, an experimental model was developed to determine the fracture resistance of immature teeth and to test the hypothesis that endodontic materials succeed in reinforcing them. Compact and hollow bone cylinders from bovine femurs were used as standardized samples. In order to evaluate the experimental model, fracture resistance in both groups was evaluated by determining the ultimate force to fracture (UFF) under diametral tensile stress. Analysis of variance (ANOVA) revealed a statistically significant difference between the mean values of UFF for both groups, independently of the sampling location or subject. In a following setting, the hypothesis that obturation with gutta percha (GP), mineral trioxide aggregate (MTA), or calcium phosphate bone cement (CPBC) reinforces the hollow bone samples was investigated. Obturation resulted in a significant reinforcement for all materials, but the degree of reinforcement depended on the material. The experimental model appeared to be suitable for in vitro investigation of reinforcement and fracture resistance in a standardized way.

  8. On the theoretical description of weakly charged surfaces.

    PubMed

    Wang, Rui; Wang, Zhen-Gang

    2015-03-14

    It is widely accepted that the Poisson-Boltzmann (PB) theory provides a valid description for charged surfaces in the so-called weak coupling limit. Here, we show that the image charge repulsion creates a depletion boundary layer that cannot be captured by a regular perturbation approach. The correct weak-coupling theory must include the self-energy of the ion due to the image charge interaction. The image force qualitatively alters the double layer structure and properties, and gives rise to many non-PB effects, such as nonmonotonic dependence of the surface energy on concentration and charge inversion. In the presence of dielectric discontinuity, there is no limiting condition for which the PB theory is valid.

  9. Analysis of two different surgical approaches for fractures of the mandibular condyle.

    PubMed

    Kumaran, S; Thambiah, L J

    2012-01-01

    Fractures of the condyle account for one third of all the mandibular fractures. Different surgical approaches to the condyle described hitherto testify to the advantages and disadvantages of the different surgical techniques used for approaching the condyle in such cases of fractures. We have described and compared two of such surgical techniques in this study. The aim of this study is to compare the outcome of dealing with condylar fractures by two different surgical techniques: the mini retromandibular approach, and the preauricular approach. A prospective study of 31 patients who had suffered with mandibular condylar fractures was carried out. Of these, 26 patients had unilateral condylar fractures, and 5 patients had a bilateral fracture. Further, 19 of these patients were treated by the mini retromandibular approach and 12 by the preauricular approach. The treated patients were followed up and evaluated for a minimum period of 1 year and assessed for parameters such as the maximum mouth opening, lateral movement on the fractured side, mandibular movements such as protrusion, dental occlusion, scar formation, facial nerve weakness, salivary fistula formation and time taken for the completion of the surgical procedure. t- test was used for statistical analysis of the data obtained in the study. Dental occlusion was restored in all the cases, and good anatomical reduction was achieved. The mean operating time was higher 63.53 (mean) ± 18.12 minutes standard deviation (SD) in the preauricular approach compared to 45.22 (mean) ± 18.86 minutes SD in the mini retromandibular approach. Scar formation was satisfactory in almost all the cases.

  10. Hypophosphatemic osteomalacia: an unusual clinical presentation of multiple myeloma.

    PubMed

    Reyskens, M; Sleurs, K; Verresen, L; Janssen, M; van den Bergh, J; van den Berg, J; Geusens, P

    2015-07-01

    An unusual case of a 75-year-old man is presented who had multiple stress fractures due to adult onset hypophosphatemic osteomalacia, which was the result of Fanconi syndrome, with light chain cast proximal tubulopathy due to multiple myeloma. A 75-year-old man presented with diffuse pain and muscle weakness. He had multiple stress fractures, low serum phosphate, decreased renal tubular reabsorption of phosphate, and normal PTH and FGF23, indicating adult onset hypophosphatemic osteomalacia. Phosphate supplements with calcitriol resulted in clinical recovery and healing of stress fractures. Because of proteinuria, a renal biopsy was performed that revealed Fanconi syndrome with light chain cast proximal tubulopathy and light kappa chains were found in serum and urine. A bone biopsy confirmed the diagnosis of multiple myeloma, and treatment with chemotherapy resulted in cytological and clinical recovery.

  11. Migration of conservative and sorbing radionuclides in heterogeneous fractured rock aquifers at the Nevada Test Site

    NASA Astrophysics Data System (ADS)

    Boryta, J. R.; Wolfsberg, A. V.

    2003-12-01

    The Nevada Test Site (NTS) is the United States continental nuclear weapons testing site. The larger underground tests, including BENHAM and TYBO, were conducted at Pahute Mesa. The BENHAM test, conducted in 1968, was detonated 1.4 km below the surface and the TYBO test, conducted in 1975, was detonated at a depth of 765 m. Between 1996 and 1998, several radionuclides were discovered in trace concentrations in a monitoring well complex 273 m from TYBO and 1300 m from BENHAM. Previous studies associated with these measurements have focused primarily on a) plutonium discovered in the observation wells, which was identified through isotopic finger printing as originating at BENHAM, b) colloid-facilitated plutonium transport processes, and c) vertical convection in subsurface nuclear test collapse chimneys. In addition to plutonium, several other non-, weakly-, and strongly-sorbing radionuclides were discovered in trace concentrations in the observation wells, including tritium, carbon-14, chlorine-36, iodine-129, technetium-99, neptunium-237, strontium-90, cesium-137, americium-241, and europium-152,154,155. The range in retardation processes affecting these different radionuclides provides additional information for assessing groundwater solute transport model formulations. For all radionuclides, simulation results are most sensitive to the fracture porosity and fracture aperture. Additionally, for weakly sorbing Np, simulation results are highly sensitive to the matrix sorption coefficient. For strongly sorbing species, migration in the absence of colloids can only be simulated if fracture apertures are set very large, reducing the amount of diffusion that can occur. For these species, colloid-facilitated transport appears to be a more likely explanation for the measurements. This is corroborated with colloid-transport model simulations.

  12. Transient versus long-term strength of the "dry" lower continental crust (Musgrave Ranges, Central Australia)

    NASA Astrophysics Data System (ADS)

    Mancktelow, Neil; Hawemann, Friedrich; Wex, Sebastian; Pennacchioni, Giorgio; Camacho, Alfredo

    2017-04-01

    One-dimensional yield strength envelope or "Christmas tree" models for the strength of the continental lithosphere assume homogeneous deformation at constant strain-rate and generally predict that felsic lower crust should be viscous and relatively weak. Over the longer term, distributed flow of this supposedly weak lower crust should tend to flatten any irregularities in the Moho. However, these model predictions are in direct contradiction to observations from the well-exposed lower-crustal Fregon Subdomain in the Musgrave Ranges, Central Australia. This unit underwent dehydrating granulite facies metamorphism during the ca. 1200 Ma Musgravian Orogeny. During the subsequent Petermann Orogeny (ca. 550 Ma), these effectively "dry" rocks were very heterogeneously deformed under sub-eclogitic, lower-crustal conditions (ca. 650°C, 1.2 GPa). Shear zones localized over a wide range of thickness and length scales, from mm to km. Widespread and repeated fracturing and pseudotachylyte generation also occurred during the same deformation event, providing weak and approximately planar precursors on which viscous shear zones subsequently localized. On the lithospheric scale, the present day Moho still preserves an offset on the order of 20 km that was caused by the Petermann Orogeny. Brittle fracturing of dry rocks and related pseudotachylyte formation at pressures of ca. 1.2 GPa imply high differential stresses on the order of 1 GPa, if the Mohr-Coulomb yield criterion is still approximately correct at such high confining pressure. High stresses, at least transiently, are also implied by the observed local fracturing of granulite-facies garnets in the vicinity of pseudotachylytes. However, the stress associated with slower crystal-plastic flow appears to be much less, on the order of 10's of MPa, as indicated by the dynamically recrystallized grain size of quartz. Several other observations also indicate that the long-term viscous strength could not have been maintained at GPa levels: (1) viscous reactivation of fractures that are highly misoriented, with planes at a large angle to the shortening direction; (2) the lack of any discernible pressure difference between doleritic dykes oriented at varying angles to the shortening direction (i.e. no tectonic overpressure or underpressure effects); and (3) the lack of evident long-term shear heating on major shear zones. The implication is that the high differential stress must have occurred as transient pulses, causing repeated seismic fracturing of lower crustal rocks that on the longer term were deforming by crystal-plastic viscous creep at much lower differential stress.

  13. Experimental Study of Hybrid Fractures and the Transition From Joints to Faults

    NASA Astrophysics Data System (ADS)

    Ramsey, J. M.; Chester, F. M.

    2003-12-01

    Joints and faults are end members of a continuous spectrum of brittle fractures including the hybrid fractures, hypothesized to form under mixed compressive and tensile stress. However, unequivocal evidence for the existence of hybrid fractures has not been presented. To investigate this transition, we have conducted triaxial extension experiments on dog-bone shaped cylindrical samples of Carrara marble at room temperature, an axial extension rate of 2x10-2 mm s-1, and confining pressures between 7.5 and 170 MPa. Two parallel suites of experiments were completed, one using very weak, latex jacketing to obtain accurate failure strength, and another using copper foil jacketing to preserve fracture surfaces. The combined data set provides strong evidence for the existence of hybrid fractures on the basis of the progressive change in failure strength, fracture orientation, and fracture surface morphology from joints to faults. At the lowest confining pressures (7.5 to 60 MPa), fractures are oriented approximately parallel to the maximum principal compressive stress, form at a tensile axial stress of approximately -7.75 MPa (i.e. the uniaxial tensile strength), and display fracture surfaces characterized by many reflective grain-scale cleavage faces, consistent with jointing. At the highest confining pressures (130 to 170 MPa), fractures are oriented from 13.4 to 21.6 degrees to the maximum principal compressive stress, form under completely compressive stress states where the axial stress is between 0 and 4.3 MPa, and are characterized by short slip lineations and powdery, finely comminuted grains consistent with faulting. At intermediate confining pressures (70 to 120 MPa), fractures are oriented from 3.7 to 12.4 degrees to the maximum principal compressive stress, form under mixed stress conditions with the axial stress ranging from -10.6 to -3.0 MPa, and display both reflective cleavage faces and short slip lineations with comminuted grains, consistent with hybrid fracturing.

  14. Fracture mechanisms in multilayer phosphorene assemblies: from brittle to ductile.

    PubMed

    Liu, Ning; Hong, Jiawang; Zeng, Xiaowei; Pidaparti, Ramana; Wang, Xianqiao

    2017-05-24

    The outstanding mechanical performance of nacre has stimulated numerous studies on the design of artificial nacres. Phosphorene, a new two-dimensional (2D) material, has a crystalline in-plane structure and non-bonded interaction between adjacent flakes. Therefore, multi-layer phosphorene assemblies (MLPs), in which phosphorene flakes are piled up in a staggered manner, may exhibit outstanding mechanical performance, especially exceptional toughness. Therefore, molecular dynamics simulations are performed to study the dependence of the mechanical properties on the overlap distance between adjacent phosphorene layers and the number of phosphorene flakes per layer. The results indicate that when the flake number is equal to 1, a transition of fracture patterns is observed by increasing the overlap distance, from a ductile failure controlled by interfacial friction to a brittle failure dominated by the breakage of covalent bonds inside phosphorene flakes. Moreover, the failure pattern can be tuned by changing the number of flakes in each phosphorene layer. The results imply that the ultimate strength follows a power law with the exponent -0.5 in terms of the flake number, which is in good agreement with our analytical model. Furthermore, the flake number in each phosphorene layer is optimized as 2 when the temperature is 1 K in order to potentially achieve both high toughness and strength. Moreover, our results regarding the relations between mechanical performance and overlap distance can be explained well using a shear-lag model. However, it should be pointed out that increasing the temperature of MLPs could cause the transition of fracture patterns from ductile to brittle. Therefore, the optimal flake number depends heavily on temperature to achieve both its outstanding strength and toughness. Overall, our findings unveil the fundamental mechanism at the nanoscale for MLPs as well as provide a method to design phosphorene-based structures with targeted properties via tunable overlap distance and flake number in phosphorene layers.

  15. Parallel numerical modeling of hybrid-dimensional compositional non-isothermal Darcy flows in fractured porous media

    NASA Astrophysics Data System (ADS)

    Xing, F.; Masson, R.; Lopez, S.

    2017-09-01

    This paper introduces a new discrete fracture model accounting for non-isothermal compositional multiphase Darcy flows and complex networks of fractures with intersecting, immersed and non-immersed fractures. The so called hybrid-dimensional model using a 2D model in the fractures coupled with a 3D model in the matrix is first derived rigorously starting from the equi-dimensional matrix fracture model. Then, it is discretized using a fully implicit time integration combined with the Vertex Approximate Gradient (VAG) finite volume scheme which is adapted to polyhedral meshes and anisotropic heterogeneous media. The fully coupled systems are assembled and solved in parallel using the Single Program Multiple Data (SPMD) paradigm with one layer of ghost cells. This strategy allows for a local assembly of the discrete systems. An efficient preconditioner is implemented to solve the linear systems at each time step and each Newton type iteration of the simulation. The numerical efficiency of our approach is assessed on different meshes, fracture networks, and physical settings in terms of parallel scalability, nonlinear convergence and linear convergence.

  16. Semianalytical solutions for transport in aquifer and fractured clay matrix system

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Goltz, Mark N.

    2015-09-01

    A three-dimensional mathematical model that describes transport of contaminant in a horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of semianalytical solutions is derived based on specific initial and boundary conditions as well as various source functions. The analytical model solutions are evaluated by numerical Laplace inverse transformation and analytical Fourier inverse transformation. The model solutions can be used to study the fate and transport in a three-dimensional spatial domain in which a nonaqueous phase liquid exists as a pool atop a fractured low-permeability clay layer. The nonaqueous phase liquid gradually dissolves into the groundwater flowing past the pool, while simultaneously diffusing into the fractured clay formation below the aquifer. Mass transfer of the contaminant into the clay formation is demonstrated to be significantly enhanced by the existence of the fractures, even though the volume of fractures is relatively small compared to the volume of the clay matrix. The model solution is a useful tool in assessing contaminant attenuation processes in a confined aquifer underlain by a fractured clay formation.

  17. How to fracture formations (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Risco V.M.

    1971-01-01

    Government-owned Petroleos del Peru has found the limited-entry fracturing technique to be the most suitable under prevailing conditions for its NW. Peruvian oil fields. There, most formations available for stimulation are low- permeability and highly compact sands interbedded with thin and thick layers of clay. After experimenting with 8 different commercially available methods, a detailed analysis of the results showed the Shoot-Frac system to be the most effective.

  18. Welding of Aluminum Alloys to Steels: An Overview

    DTIC Science & Technology

    2013-08-01

    and deformations are a few examples of the unwanted consequences which somehow would lead to brittle fracture, fatigue fracture, shape instability...was made under the copper tips of the spot welding machine. The fatigue results showed higher fatigue strength of the joints with transition layer...kHz ultrasonic butt welding system with a vibration source applying eight bolt-clamped Langevin type PZT transducers and a 50 kW static induction

  19. CHARACTERIZATION OF POLED SINGLE-LAYER PZT FOR PIEZO STACK IN FUEL INJECTION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hong; Matsunaga, Tadashi; Lin, Hua-Tay

    2010-01-01

    Poled single-layer PZT has been characterized in as-extracted and as-received states. PZT plate specimens in the former were extracted from a stack. Flexure strength of PZT was evaluated by using ball-on-ring and 4-point bend tests. Fractography showed that intergranular fractures dominated the fracture surface and that volume pores were the primary strength-limiting flaws. The electric field effect was investigated by testing the PZT in open circuit and coercive field levels. An asymmetrical response on the biaxial flexure strength with respect to the electric field direction was observed. These experimental results will assist reliability design of the piezo stack that ismore » being considered in fuel injection system.« less

  20. Strain Measurements within Fibre Boards. Part II: Strain Concentrations at the Crack Tip of MDF Specimens Tested by the Wedge Splitting Method

    PubMed Central

    Sinn, Gerhard; Müller, Ulrich; Konnerth, Johannes; Rathke, Jörn

    2012-01-01

    This is the second part of an article series where the mechanical and fracture mechanical properties of medium density fiberboard (MDF) were studied. While the first part of the series focused on internal bond strength and density profiles, this article discusses the fracture mechanical properties of the core layer. Fracture properties were studied with a wedge splitting setup. The critical stress intensity factors as well as the specific fracture energies were determined. Critical stress intensity factors were calculated from maximum splitting force and two-dimensional isotropic finite elements simulations of the specimen geometry. Size and shape of micro crack zone were measured with electronic laser speckle interferometry. The process zone length was approx. 5 mm. The specific fracture energy was determined to be 45.2 ± 14.4 J/m2 and the critical stress intensity factor was 0.11 ± 0.02 MPa.

  1. Monte Carlo study of magnetization reversal in the model of a hard/soft magnetic bilayer

    NASA Astrophysics Data System (ADS)

    Taaev, T. A.; Khizriev, K. Sh.; Murtazaev, A. K.

    2017-06-01

    Magnetization reversal in the model of a hard/soft magnetic bilayer under the action of an external magnetic field has been investigated by the Monte Carlo method. Calculations have been performed for three systems: (i) the model without a soft-magnetic layer (hard-magnetic layer), (ii) the model with a soft-magnetic layer of thickness 25 atomic layers (predominantly exchange-coupled system), and (iii) with 50 (weak exchange coupling) atomic layers. The effect of a soft-magnetic phase on the magnetization reversal of the magnetic bilayer and on the formation of a 1D spin spring in the magnetic bilayer has been demonstrated. An inf lection that has been detected on the arch of the hysteresis loop only for the system with weak exchange coupling is completely determined by the behavior of the soft layer in the external magnetic field. The critical fields of magnetization reversal decrease with increasing thickness of the soft phase.

  2. Characterization of structures of the Nankai Trough accretionary prism from integrated analyses of LWD log response, resistivity images and clay mineralogy of cuttings: Expedition 338 Site C0002

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Schleicher, Anja

    2014-05-01

    The objective of our research is a detailed characterization of structures on the basis of LWD oriented images and logs,and clay mineralogy of cuttings from Hole C0002F of the Nankai Trough accretionary prism. Our results show an integrated interpretation of structures derived from borehole images, petrophysical characterization on LWD logs and cuttings mineralogy. The geometry of the structure intersected at Hole C0002F has been characterized by the interpretation of oriented borehole resistivity images acquired during IODP Expedition 338. The characterization of structural features, faults and fracture zones is based on a detailed post-cruise interpretation of bedding and fractures on borehole images and also on the analysis of Logging While Drilling (LWD) log response (gamma radioactivity, resistivity and sonic logs). The interpretation and complete characterization of structures (fractures, fracture zones, fault zones, folds) was achieved after detailed shorebased reprocessing of resistivity images, which allowed to enhance bedding and fracture's imaging for geometry and orientation interpretation. In order to characterize distinctive petrophysical properties based on LWD log response, it could be compared with compositional changes derived from cuttings analyses. Cuttings analyses were used to calibrate and to characterize log response and to verify interpretations in terms of changes in composition and texture at fractures and fault zones defined on borehole images. Cuttings were taken routinely every 5 m during Expedition 338, indicating a clay-dominated lithology of silty claystone with interbeds of weakly consolidated, fine sandstones. The main mineralogical components are clay minerals, quartz, feldspar and calcite. Selected cuttings were taken from areas of interest as defined on LWD logs and images. The clay mineralogy was investigated on the <2 micron clay-size fraction, with special focus on smectite and illite minerals. Based on X-ray diffraction analysis measured at room temperature and a relative humidity of ~30%, we compared the shape and size of illite and smectite, as well as their water content and their polytypes. The comparison of cuttings mineralogy with logging while drilling (LWD) data allowed us to characterize structural, petrophysical and mineralogical properties at fracture and fault zones. We also analyzed the relationship between deformation structures and compositional and mineralogical changes. We established a correlation between observed results on clay mineralogy and log responses in relation with the structures and trends characterized on logging data. In general, the log data provide a good correlation with the actual mineralogy and the relative abundance of clay. In particular we analyzed trends characterized by smectite water layers as indication of compaction. These trends were correlated with log response (on sonic velocity) within Unit IV. Our results show the integration of logging data and cutting sample analyses as a valuable tool for characterization of petrophysical and mineralogical changes of the structures of the Nankai accretionary prism.

  3. Results of operative treatment of avulsion fractures of the iliac crest apophysis in adolescents.

    PubMed

    Li, Xigong; Xu, Sanzhong; Lin, Xiangjin; Wang, Quan; Pan, Jun

    2014-04-01

    Avulsion fracture of the iliac crest apophysis is a rare condition that commonly occurs in adolescent athletes. Conservative treatment for this injury can produce excellent functional outcomes. However, the rehabilitation process requires a rather long immobilisation period. This study aimed to evaluate the use of cannulated screws for fixation of avulsion fractures of iliac crest apophysis. Ten patients with avulsion fractures of iliac crest apophysis were treated by open reduction and internal fixation using cannulated screws. The mean age of patients was 14.6 years (range, 13-15 years). The mean intraoperative blood loss was 14.9 ml (range, 10-25 ml). The mean operative time was 40.3 min (range, 33-52 min). The mean follow-up period was 11.2 months (range, 6-20 months). At the 4-week follow-up, all patients returned to previously normal activity without pain and had no evidence of lower extremity muscle weakness. At the final follow-up, all patients resumed their athletic activity without any complications. Open reduction and internal fixation for the treatment of avulsion fracture of iliac crest apophysis can be recommended for patients requiring rapid rehabilitation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Mechanical properties and fracture behaviour of defective phosphorene nanotubes under uniaxial tension

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Pei, Qing-Xiang; Huang, Wei; Zhang, Yong-Wei

    2017-12-01

    The easy formation of vacancy defects and the asymmetry in the two sublayers of phosphorene nanotubes (PNTs) may result in brand new mechanical properties and failure behaviour. Herein, we investigate the mechanical properties and fracture behaviour of defective PNTs under uniaxial tension using molecular dynamics simulations. Our simulation results show that atomic vacancies cause local stress concentration and thus significantly reduce the fracture strength and fracture strain of PNTs. More specifically, a 1% defect concentration is able to reduce the fracture strength and fracture strain by as much as 50% and 66%, respectively. Interestingly, the reduction in the mechanical properties is found to depend on the defect location: a defect located in the outer sublayer has a stronger effect than one located in the inner layer, especially for PNTs with a small diameter. Temperature is also found to strongly influence the mechanical properties of both defect-free and defective PNTs. When the temperature is increased from 0 K to 400 K, the fracture strength and fracture strain of defective PNTs with a defect concentration of 1% are reduced further by 71% and 61%, respectively. These findings are of great importance for the structural design of PNTs as building blocks in nanodevices.

  5. Asynchronous cracking with dissimilar paths in multilayer graphene.

    PubMed

    Jang, Bongkyun; Kim, Byungwoon; Kim, Jae-Hyun; Lee, Hak-Joo; Sumigawa, Takashi; Kitamura, Takayuki

    2017-11-16

    Multilayer graphene consists of a stack of single-atomic-thick monolayer graphene sheets bound with π-π interactions and is a fascinating model material opening up a new field of fracture mechanics. In this study, fracture behavior of single-crystalline multilayer graphene was investigated using an in situ mode I fracture test under a scanning electron microscope, and abnormal crack propagation in multilayer graphene was identified for the first time. The fracture toughness of graphene was determined from the measured load-displacement curves and the realistic finite element modelling of specimen geometries. Nonlinear fracture behavior of the multilayer graphene is discussed based on nonlinear elastic fracture mechanics. In situ scanning electron microscope images obtained during the fracture test showed asynchronous crack propagation along independent paths, causing interlayer shear stress and slippages. We also found that energy dissipation by interlayer slippages between the graphene layers is the reason for the enhanced fracture toughness of multilayer graphene. The asynchronous cracking with independent paths is a unique cracking and toughening mechanism for single-crystalline multilayer graphene, which is not observed for the monolayer graphene. This could provide a useful insight for the design and development of graphene-based composite materials for structural applications.

  6. Snow mechanics and avalanche formation: field experiments on the dynamic response of the snow cover

    NASA Astrophysics Data System (ADS)

    Schweizer, Jürg; Schneebeli, Martin; Fierz, Charles; Föhn, Paul M. B.

    1995-11-01

    Knowledge about snow mechanics and snow avalanche formation forms the basis of any hazard mitigation measures. The crucial point is the snow stability. The most relevant mechanical properties - the compressive, tensile and shear strength of the individual snow layers within the snow cover - vary substantially in space and time. Among other things the strength of the snow layers depends strongly on the state of stress and the strain rate. The evaluation of the stability of the snow cover is hence a difficult task involving many extrapolations. To gain insight in the release mechanism of slab avalanches triggered by skiers, the skier's impact is measured with a load cell at different depths within the snow cover and for different snow conditions. The study focused on the effects of the dynamic loading and of the damping by snow compaction. In accordance with earlier finite-element (FE) calculations the results show the importance of the depth of the weak layer or interface and the snow conditions, especially the sublayering. In order to directly measure the impact force and to study the snow properties in more detail, a new instrument, called rammrutsch was developed. It combines the properties of the rutschblock with the defined impact properties of the rammsonde. The mechanical properties are determined using (i) the impact energy of the rammrutsch and (ii) the deformations of the snow cover measured with accelerometers and digital image processing of video sequences. The new method is well suited to detect and to measure the mechanical processes and properties of the fracturing layers. The duration of one test is around 10 minutes and the method seems appropriate for determining the spatial variability of the snow cover. A series of experiments in a forest opening showed a clear difference in the snow stability between sites below trees and ones in the free field of the opening.

  7. Clues to the formation of Enceladus' south-polar terrain from simulations of funiscular plains formation

    NASA Astrophysics Data System (ADS)

    Bland, M. T.; McKinnon, W. B.

    2013-12-01

    Cassini imaging and thermal data have demonstrated that Enceladus' four south-polar linear-fractures are the source of both Enceladus' cryovolcanic plume and its extreme thermal emission. These long (130 km), parallel 'tiger stripes' are located within a young, quasi-circular, south-polar depression characterized by extensive tectonic deformation that includes sets of both small-scale fractures (possibly relic tiger stripes) [Patthoff and Kattenhorn 2011], and large-amplitude circumferential ridges. Between the tiger stripes themselves are broad regions of periodic, low amplitude (50-100 m), short-wavelength (1 km) ridges (dubbed 'funiscular' terrain) that generally run parallel to the larger tiger stripe fractures but occasionally intersect them at small angles [Spencer et al. 2009]. The formation of the south polar terrain (SPT) may be related to localized melting of Enceladus' ice layer [e.g., Collins and Goodman, 2007] but the detailed formation kinematics of the SPT and its specific tectonic structures is far from certain. Here we constrain the formation of the SPT by simulating the development of funiscular terrain specifically. This terrain dominates the central portion of the SPT, including regions immediately adjacent to the tiger stripes. The stripes are, in effect, large-scale fractures imbedded within the funiscular terrain; thus, any kinematic or dynamic prescription for SPT formation must account for funiscular morphology. The simplest formation mechanism consistent with the funiscular ridges is that of low-amplitude, short-wavelength folding of a thin surface layer. Barr and Pruess [2010] demonstrated the plausibility of this mechanism using an analytical model developed for folds forming on lava flow tops. We extend their analysis using finite element modeling of the contraction of a thin, brittle lithosphere overlying ductile ice. We find fold morphologies consistent with the funiscular terrain (50-100 m amplitude, 1.5 km wavelengths) for lithospheric thicknesses of 250-500 m assuming weak (~100 kPa) near surface ice and 10% shortening. Creation of short wavelengths and tight fold hinges requires kinematic fold growth that shortens the fold wavelength subsequent to establishment of a longer, initial dominant wavelength. Thicker lithospheres (1 km) also reproduce the deformation if strains exceed 10%, though fold amplitudes are lower and wavelengths longer in this case. The thin lithosphere required to produce funiscular morphologies require exceedingly high heat flow if intact (low porosity) ice is assumed (≥1 W m-2). Significant lithospheric porosity that depresses the ice thermal conductivity (e.g., by a factor of ~3 for 30% porosity [Shoshany et al. 2002]) is likely required, and could decrease the necessary heat flux to ~300 mW m-2. The thin lithosphere necessary for its formation might account for the funiscular terrain's limited spatial extent adjacent to the tiger stripes, the locus of SPT thermal activity. A compressive stress regime between the tensile tiger stripes suggests local accommodation of strain in a dominantly extensional setting that is likely modulated by tidally-induced shear.

  8. Pseudotachylyte formation vs. mylonitization - repeated cycles of seismic fracture and aseismic creep in the middle crust (Woodroffe Thrust, Central Australia)

    NASA Astrophysics Data System (ADS)

    Wex, Sebastian; Mancktelow, Neil; Hawemann, Friedrich; Camacho, Alfredo; Pennacchioni, Giorgio

    2014-05-01

    The Musgrave Ranges in Central Australia provide excellent exposure of the shallowly south-dipping Woodroffe Thrust, which placed ~1200 Ma granulites onto amphibolite facies gneisses. This ~400 km long E-W structure developed under mid-crustal conditions during the intracratonic Petermann Orogeny around 550 Ma. From field observations and measurements, the shortening direction is constrained to be N-S and the movement sense top-to-north. Ductile deformation during this process almost entirely localized in the footwall rocks, developing a zone of mylonites, ultramylonites and sheared pseudotachylytes, several hundred metres wide, with pseudotachylyte abundance rapidly decreasing further into the footwall. In contrast, the hanging wall behaved in a predominantly brittle manner, producing significant volumes of pseudotachylyte breccia and isolated veins, but was otherwise mostly unaffected and only weakly foliated. The difference in rheological behaviour is reflected in the pseudotachylyte fabric, which is dominantly sheared in the footwall and largely unsheared in the hanging wall. Low-strain domains in the footwall show that localized shearing initiated along pseudotachylyte veins and that shear zones and mylonitic foliations were in turn exploited by subsequent pseudotachylyte veins. Neither phyllonitization nor synkinematic growth of new muscovite is observed. In contrast to models with a simple brittle-to-viscous transition, these observations show that a continuous cycle of brittle fracturing and shearing is active in dry mid-crustal environments. The products of multiple earthquakes and ductile overprint, repeatedly exploiting the same structural discontinuity, are composite layers of sheared pseudotachylyte. In the Woodroffe Thrust, these layers are numerous and frequently observed parallel to the foliation in the footwall mylonites. The thickest of these sheared pseudotachylyte horizons (~15 m thick) mark the immediate contact to the hanging wall and almost entirely consist of pseudotachylyte matrix. Particularly in the footwall, but locally also in the hanging wall, shear strain can additionally be concentrated along the margins of dolerite dykes, whose mineral assemblages will be studied to determine the metamorphic conditions that were active during development of the Woodroffe Thrust.

  9. All high Tc edge-geometry weak links utilizing Y-Ba-Cu-O barrier layers

    NASA Technical Reports Server (NTRS)

    Hunt, B. D.; Foote, M. C.; Bajuk, L. J.

    1991-01-01

    High quality YBa2Cu3O(7-x) normal-metal/YBa2Cu3O(7-x) edge-geometry weak links have been fabricated using nonsuperconducting Y-Ba-Cu-O barrier layers deposited by laser ablation at reduced growth temperatures. Devices incorporating 25-100 A thick barrier layers exhibit current-voltage characteristics consistent with the resistively shunted junction model, with strong microwave and magnetic field response at temperatures up to 85 K. The critical currents vary exponentially with barrier thickness, and the resistances scale linearly with Y-Ba-Cu-O interlayer thickness and device area, indicating good barrier uniformity, with an effective mormal metal coherence length of 20 A.

  10. Channel flow and trichloroethylene treatment in a partly iron-filled fracture: experimental and model results.

    PubMed

    Cai, Zuansi; Merly, Corrine; Thomson, Neil R; Wilson, Ryan D; Lerner, David N

    2007-08-15

    Technical developments have now made it possible to emplace granular zero-valent iron (Fe(0)) in fractured media to create a Fe(0) fracture reactive barrier (Fe(0) FRB) for the treatment of contaminated groundwater. To evaluate this concept, we conducted a laboratory experiment in which trichloroethylene (TCE) contaminated water was flushed through a single uniform fracture created between two sandstone blocks. This fracture was partly filled with what was intended to be a uniform thickness of iron. Partial treatment of TCE by iron demonstrated that the concept of a Fe(0) FRB is practical, but was less than anticipated for an iron layer of uniform thickness. When the experiment was disassembled, evidence of discrete channelised flow was noted and attributed to imperfect placement of the iron. To evaluate the effect of the channel flow, an explicit Channel Model was developed that simplifies this complex flow regime into a conceptualised set of uniform and parallel channels. The mathematical representation of this conceptualisation directly accounts for (i) flow channels and immobile fluid arising from the non-uniform iron placement, (ii) mass transfer from the open fracture to iron and immobile fluid regions, and (iii) degradation in the iron regions. A favourable comparison between laboratory data and the results from the developed mathematical model suggests that the model is capable of representing TCE degradation in fractures with non-uniform iron placement. In order to apply this Channel Model concept to a Fe(0) FRB system, a simplified, or implicit, Lumped Channel Model was developed where the physical and chemical processes in the iron layer and immobile fluid regions are captured by a first-order lumped rate parameter. The performance of this Lumped Channel Model was compared to laboratory data, and benchmarked against the Channel Model. The advantages of the Lumped Channel Model are that the degradation of TCE in the system is represented by a first-order parameter that can be used directly in readily available numerical simulators.

  11. Channel flow and trichloroethylene treatment in a partly iron-filled fracture: Experimental and model results

    NASA Astrophysics Data System (ADS)

    Cai, Zuansi; Merly, Corrine; Thomson, Neil R.; Wilson, Ryan D.; Lerner, David N.

    2007-08-01

    Technical developments have now made it possible to emplace granular zero-valent iron (Fe 0) in fractured media to create a Fe 0 fracture reactive barrier (Fe 0 FRB) for the treatment of contaminated groundwater. To evaluate this concept, we conducted a laboratory experiment in which trichloroethylene (TCE) contaminated water was flushed through a single uniform fracture created between two sandstone blocks. This fracture was partly filled with what was intended to be a uniform thickness of iron. Partial treatment of TCE by iron demonstrated that the concept of a Fe 0 FRB is practical, but was less than anticipated for an iron layer of uniform thickness. When the experiment was disassembled, evidence of discrete channelised flow was noted and attributed to imperfect placement of the iron. To evaluate the effect of the channel flow, an explicit Channel Model was developed that simplifies this complex flow regime into a conceptualised set of uniform and parallel channels. The mathematical representation of this conceptualisation directly accounts for (i) flow channels and immobile fluid arising from the non-uniform iron placement, (ii) mass transfer from the open fracture to iron and immobile fluid regions, and (iii) degradation in the iron regions. A favourable comparison between laboratory data and the results from the developed mathematical model suggests that the model is capable of representing TCE degradation in fractures with non-uniform iron placement. In order to apply this Channel Model concept to a Fe 0 FRB system, a simplified, or implicit, Lumped Channel Model was developed where the physical and chemical processes in the iron layer and immobile fluid regions are captured by a first-order lumped rate parameter. The performance of this Lumped Channel Model was compared to laboratory data, and benchmarked against the Channel Model. The advantages of the Lumped Channel Model are that the degradation of TCE in the system is represented by a first-order parameter that can be used directly in readily available numerical simulators.

  12. Nature of weak magnetism in SrTiO3/LaAlO3 multilayers.

    PubMed

    Salman, Z; Ofer, O; Radovic, M; Hao, H; Ben Shalom, M; Chow, K H; Dagan, Y; Hossain, M D; Levy, C D P; Macfarlane, W A; Morris, G M; Patthey, L; Pearson, M R; Saadaoui, H; Schmitt, T; Wang, D; Kiefl, R F

    2012-12-21

    We report the observation of weak magnetism in superlattices of LaAlO(3)/SrTiO(3) using β-detected nuclear magnetic resonance. The spin lattice relaxation rate of ^{8}Li in superlattices with a spacer layers of 8 and 6 unit cells of LaAlO(3) exhibits a strong peak near ~35 K, whereas no such peak is observed in a superlattice with spacer layer thickness of 3 unit cells. We attribute the observed temperature dependence to slowing down of weakly coupled electronic moments at the LaAlO(3)/SrTiO(3) interface. These results show that the magnetism at the interface depends strongly on the thickness of the spacer layer, and that a minimal thickness of ~4-6 unit cells is required for the appearance of magnetism. A simple model is used to determine that the observed relaxation is due to small fluctuating moments (~0.002μ(B)) in the two samples with a larger LaAlO(3) spacer thickness.

  13. Exhibition of veiled features in diffusion bonding of titanium alloy and stainless steel via copper

    NASA Astrophysics Data System (ADS)

    Thirunavukarasu, Gopinath; Kundu, Sukumar; Laha, Tapas; Roy, Deb; Chatterjee, Subrata

    2017-11-01

    An investigation was carried out to know the extent of influence of bonding-time on the interface structure and mechanical properties of diffusion bonding (DB) of TiA|Cu|SS. DB of Ti6Al4V (TiA) and 304 stainless steel (SS) using pure copper (Cu) of 200-μm thickness were processed in vacuum using 4-MPa bonding-pressure at 1123 K from 15 to 120 min in steps of 15 min. Preparation of DB was not possible when bonding-time was less than 60 min as the bonding at Cu|SS interface was unsuccessful in spite of effective bonding at TiA|Cu interface; however, successful DB were produced when the bonding-time was 60 min and beyond. DB processed for 60 and 75 min (classified as shorter bonding-time interval) showed distinctive characteristics (structural, mechanical, and fractural) as compared to the DB processed for 90, 105, and 120 min (classified as longer bonding-time interval). DB processed for 60 and 75 min exhibited layer-wise Cu-Ti-based intermetallics at TiA|Cu interface, whereas Cu|SS interface was completely free from reaction products. The layer-wise structure of Cu-Ti-based intermetallics were not observed at TiA|Cu interface in the DB processed for longer bonding-time; however, the Cu|SS interface had layer-wise ternary intermetallic compounds (T1, T2, and T3) of Cu-Fe-Ti-based along with σ phase depending upon the bonding-time chosen. Diffusivity of Ti-atoms in Cu-layer (DTi in Cu-layer) was much greater than the diffusivity of Fe-atoms in Cu-layer (DFe in Cu-layer). Ti-atoms reached Cu|SS interface but Fe-atoms were unable to reach TiA|Cu interface. It was observed that DB fractured at Cu|SS interface when processed for shorter bonding-time interval, whereas the DB processed for longer bonding-time interval fractured apparently at the middle of Cu-foil region predominantly due to the existence of brittle Cu-Fe-Ti-based intermetallics.

  14. Chain Conformation and Dynamics in Spin-Assisted Weak Polyelectrolyte Multilayers

    DOE PAGES

    Zhuk, Aliaksandr; Selin, Victor; Zhuk, Iryna; ...

    2015-03-13

    In this paper, we report on the effect of the deposition technique on film layering, stability, and chain mobility in weak polyelectrolyte layer-by-layer (LbL) films. Ellipsometry and neutron reflectometry (NR) showed that shear forces arising during spin-assisted assembly lead to smaller amounts of adsorbed polyelectrolytes within LbL films, result in a higher degree of internal film order, and dramatically improve stability of assemblies in salt solutions as compared to dip-assisted LbL assemblies. The underlying flattening of polyelectrolyte chains in spin-assisted LbL films was also revealed as an increase in ionization degree of the assembled weak polyelectrolytes. As demonstrated by fluorescencemore » recovery after photobleaching (FRAP), strong binding between spin-deposited polyelectrolytes results in a significant slowdown of chain diffusion in salt solutions as compared to dip-deposited films. Moreover, salt-induced chain intermixing in the direction perpendicular to the substrate is largely inhibited in spin-deposited films, resulting in only subdiffusional (<2 Å) chain displacements even after 200 h exposure to 1 M NaCl solutions. Finally, this persistence of polyelectrolyte layering has important ramifications for multistage drug delivery and optical applications of LbL assemblies.« less

  15. On the role of weak interface in crack blunting process in nanoscale layered composites

    NASA Astrophysics Data System (ADS)

    Li, Yi; Zhou, Qing; Zhang, Shuang; Huang, Ping; Xu, Kewei; Wang, Fei; Lu, Tianjian

    2018-03-01

    Heterointerface in a nanoscale metallic layered composite could improve its crack resistance. However, the influence of metallic interface structures on crack propagation has not been well understood at atomic scale. By using the method of molecular dynamics (MD) simulation, the crack propagation behavior in Cu-Nb bilayer is compared with that in Cu-Ni bilayer. We find that the weak Cu-Nb interface plays an important role in hindering crack propagation in two ways: (i) dislocation nucleation at the interface releases stress concentration for the crack to propagate; (ii) the easily sheared weak incoherent interface blunts the crack tip. The results are helpful for understanding the interface structure dependent crack resistance of nanoscale bicrystal interfaces.

  16. Experimental investigation of residual stress distribution during turning of weak stiffness revolving parts

    NASA Astrophysics Data System (ADS)

    Jiao, Sicheng; Zhang, Chengyan; Liu, Guancheng; Lu, Jiping; Tang, Shuiyuan

    2017-08-01

    A series of turning experiments have been carried out to study the effect of different cutting speed, feed rate and pre-tightening torque on residual stress distribution during turning of weak stiffness revolving parts. Surface residual stress and the peak residual compressive stress are selected from the typical residual stress distribution profile. The residual stress by turning was measured by X-ray diffraction method. In order to get the distribution of residual stress along depth direction, the specimens need to be etched layer by layer. From this investigation, it can be concluded that it is practicable to control the distribution of residual stress by changing the pre-tightening torque and cutting parameters during turning of weak stiffness revolving parts.

  17. Atomistic simulation on the plastic deformation and fracture of bio-inspired graphene/Ni nanocomposites

    NASA Astrophysics Data System (ADS)

    Yang, Zhenyu; Wang, Dandan; Lu, Zixing; Hu, Wenjun

    2016-11-01

    Molecular dynamics simulations were performed to investigate the plastic deformation and fracture behaviors of bio-inspired graphene/metal nanocomposites, which have a "brick-and-mortar" nanostructure, consisting of hard graphene single-layers embedded in a soft Ni matrix. The plastic deformation mechanisms of the nanocomposites were analyzed as well as their effects on the mechanical properties with various geometrical variations. It was found that the strength and ductility of the metal matrix can be highly enhanced with the addition of the staggered graphene layers, and the plastic deformation can be attributed to the interfacial sliding, dislocation nucleation, and cracks' combination. The strength of the nanocomposites strongly depends on the length scale of the nanostructure and the interlayer distance as well. In addition, slip at the interface releases the stress in graphene layers, leading to the stress distribution on the graphene more uniform. The present results are expected to contribute to the design of the nanolayered graphene/metal composites with high performance.

  18. Microstructure and mechanical properties of Al/Cu/Mg laminated composite sheets produced by the ARB proces

    NASA Astrophysics Data System (ADS)

    Rahmatabadi, Davood; Tayyebi, Moslem; Hashemi, Ramin; Faraji, Ghader

    2018-05-01

    In the present study, an Al/Cu/Mg multi-layered composite was produced by accumulative roll bonding (ARB) through seven passes, and its microstructure and mechanical properties were evaluated. The microstructure investigations show that plastic instability occurred in both the copper and magnesium reinforcements in the primary sandwich. In addition, a composite with a perfectly uniform distribution of copper and magnesium reinforcing layers was produced during the last pass. By increasing the number of ARB cycles, the microhardness of the layers including aluminum, copper, and magnesium was significantly increased. The ultimate tensile strength of the sandwich was enhanced continually and reached a maximum value of 355.5 MPa. This strength value was about 3.2, 2, and 2.1 times higher than the initial strength values for the aluminum, copper, and magnesium sheets, respectively. Investigation of tensile fracture surfaces during the ARB process indicated that the fracture mechanism changed to shear ductile at the seventh pass.

  19. Experimental and numerical study on the strength of all-ceramic crowns

    NASA Astrophysics Data System (ADS)

    Lu, Chenglin; Zhang, Xiuyin; Zhang, Dongsheng

    2008-11-01

    Two types of sectioned tooth-like ceramic crowns (IPS Empress 2) were prepared along lingual-facial direction and the fracture process of crowns under contact load was directly monitored with the use of imaging system. The displacement filed resulted from digital image correlation indicate that the fracture mode of real crown is more complicated while the flat crown has the same rupture mode as described by other investigators. Meanwhile numerical simulation was also carried out to support the experiments. Stress distributions in individual layer and interface were presented. Results indicate that the presented experimental and numerical methods are efficient in studying the fracture mechanism of all-ceramic crowns.

  20. Mechanical behavior of single-layer ceramized zirconia abutments for dental implant prosthetic rehabilitation

    PubMed Central

    Jiménez-Melendo, Manuel; Llena-Blasco, Oriol; Bruguera, August; Llena-Blasco, Jaime; Yáñez-Vico, Rosa-María; García-Calderón, Manuel; Vaquero-Aguilar, Cristina; Velázquez-Cayón, Rocío; Gutiérrez-Pérez, José-Luis

    2014-01-01

    Objectives: This study was undertaken to characterize the mechanical response of bare (as-received) and single-layer ceramized zirconia abutments with both internal and external connections that have been developed to enhanced aesthetic restorations. Material and Methods: Sixteen zirconia implant abutments (ZiReal Post®, Biomet 3i, USA) with internal and external connections have been analyzed. Half of the specimens were coated with a 0.5mm-thick layer of a low-fusing fluroapatite ceramic. Mechanical tests were carried out under static (constant cross-head speed of 1mm/min until fracture) and dynamic (between 100 and 400N at a frequency of 1Hz) loading conditions. The failure location was identified by electron microscopy. The removal torque of the retaining screws after testing was also evaluated. Results: The average fracture strength was above 300N for all the abutments, regardless of connection geometry and coating. In most of the cases (94%), failure occurred by abutment fracture. No significant differences were observed either in fatigue behavior and removal torque between the different abutment groups. Conclusions: Mechanical behavior of Zireal zirconia abutments is independent of the type of internal/external connection and the presence/absence of ceramic coating. This may be clinically valuable in dental rehabilitation to improve the aesthetic outcome of zirconia-based dental implant systems. Key words:Dental implant, zirconia, ceramic structure, mechanical properties. PMID:25674313

  1. Strain energy release rates of composite interlaminar end-notch and mixed-mode fracture: A sublaminate/ply level analysis and a computer code

    NASA Technical Reports Server (NTRS)

    Valisetty, R. R.; Chamis, C. C.

    1987-01-01

    A computer code is presented for the sublaminate/ply level analysis of composite structures. This code is useful for obtaining stresses in regions affected by delaminations, transverse cracks, and discontinuities related to inherent fabrication anomalies, geometric configurations, and loading conditions. Particular attention is focussed on those layers or groups of layers (sublaminates) which are immediately affected by the inherent flaws. These layers are analyzed as homogeneous bodies in equilibrium and in isolation from the rest of the laminate. The theoretical model used to analyze the individual layers allows the relevant stresses and displacements near discontinuities to be represented in the form of pure exponential-decay-type functions which are selected to eliminate the exponential-precision-related difficulties in sublaminate/ply level analysis. Thus, sublaminate analysis can be conducted without any restriction on the maximum number of layers, delaminations, transverse cracks, or other types of discontinuities. In conjunction with the strain energy release rate (SERR) concept and composite micromechanics, this computational procedure is used to model select cases of end-notch and mixed-mode fracture specimens. The computed stresses are in good agreement with those from a three-dimensional finite element analysis. Also, SERRs compare well with limited available experimental data.

  2. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones

    NASA Astrophysics Data System (ADS)

    Tetreault, J. L.; Buiter, S. J. H.

    2012-08-01

    Crustal growth at convergent margins can occur by the accretion of future allochthonous terranes (FATs), such as island arcs, oceanic plateaus, submarine ridges, and continental fragments. Using geodynamic numerical experiments, we demonstrate how crustal properties of FATs impact the amount of FAT crust that is accreted or subducted, the type of accretionary process, and the style of deformation on the overriding plate. Our results show that (1) accretion of crustal units occurs when there is a weak detachment layer within the FAT, (2) the depth of detachment controls the amount of crust accreted onto the overriding plate, and (3) lithospheric buoyancy does not prevent FAT subduction during constant convergence. Island arcs, oceanic plateaus, and continental fragments will completely subduct, despite having buoyant lithospheric densities, if they have rheologically strong crusts. Weak basal layers, representing pre-existing weaknesses or detachment layers, will either lead to underplating of faulted blocks of FAT crust to the overriding plate or collision and suturing of an unbroken FAT crust. Our experiments show that the weak, ultramafic layer found at the base of island arcs and oceanic plateaus plays a significant role in terrane accretion. The different types of accretionary processes also affect deformation and uplift patterns in the overriding plate, trench migration and jumping, and the dip of the plate interface. The resulting accreted terranes produced from our numerical experiments resemble observed accreted terranes, such as the Wrangellia Terrane and Klamath Mountain terranes in the North American Cordilleran Belt.

  3. Interactive calculation procedures for mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Reshotko, Eli

    1983-01-01

    The proper design of engine nacelle installations for supersonic aircraft depends on a sophisticated understanding of the interactions between the boundary layers and the bounding external flows. The successful operation of mixed external-internal compression inlets depends significantly on the ability to closely control the operation of the internal compression portion of the inlet. This portion of the inlet is one where compression is achieved by multiple reflection of oblique shock waves and weak compression waves in a converging internal flow passage. However weak these shocks and waves may seem gas-dynamically, they are of sufficient strength to separate a laminar boundary layer and generally even strong enough for separation or incipient separation of the turbulent boundary layers. An understanding was developed of the viscous-inviscid interactions and of the shock wave boundary layer interactions and reflections.

  4. Combined Bearing Capacity of Spudcans on a Double Layer Deposit of Strong-Over-Weak Clays

    NASA Astrophysics Data System (ADS)

    Yin, Qilin; Dong, Sheng

    2018-05-01

    An extreme sea storm process can lead to a jack-up rig under the combined loading condition of vertical load (V), horizontal load (H), and moment (M) to have stability problems. This paper presents the analysis of combined bearing capacities of a circular spudcan on layered clays with a strong layer overlying a comparatively weaker layer. Numerical models combined with displacement- based load tests, swipe tests, and constant ratio displacement probe tests are adopted to calculate the uniaxial bearing capacities, failure envelopes in combined V-H, V-M planes, and failure envelopes in a combined V-H-M load space, respectively. A parametric study on the effects of vertical load level V, the layer strength ratio s u,t/s u,b, and the hard layer thickness t 1 on the bearing capacities is then performed. Results show that the vertical load level is a key factor that influences the values of H and M and the size of the H-M failure envelope. The existence of the underlying weak clay decreases the bearing capacities in all directions, and the vertical capacity V ult is affected more than the horizontal (H ult) and moment (M ult) capacities based on a single uniform deposit. The influence of the underlying weak clay on H-M failure envelope is mainly shown where H and M are coupled in the same direction. In contrast, little difference is observed when H and M are coupled in opposite directions.

  5. Risk factors for stress fractures.

    PubMed

    Bennell, K; Matheson, G; Meeuwisse, W; Brukner, P

    1999-08-01

    Preventing stress fractures requires knowledge of the risk factors that predispose to this injury. The aetiology of stress fractures is multifactorial, but methodological limitations and expediency often lead to research study designs that evaluate individual risk factors. Intrinsic risk factors include mechanical factors such as bone density, skeletal alignment and body size and composition, physiological factors such as bone turnover rate, flexibility, and muscular strength and endurance, as well as hormonal and nutritional factors. Extrinsic risk factors include mechanical factors such as surface, footwear and external loading as well as physical training parameters. Psychological traits may also play a role in increasing stress fracture risk. Equally important to these types of analyses of individual risk factors is the integration of information to produce a composite picture of risk. The purpose of this paper is to critically appraise the existing literature by evaluating study design and quality, in order to provide a current synopsis of the known scientific information related to stress fracture risk factors. The literature is not fully complete with well conducted studies on this topic, but a great deal of information has accumulated over the past 20 years. Although stress fractures result from repeated loading, the exact contribution of training factors (volume, intensity, surface) has not been clearly established. From what we do know, menstrual disturbances, caloric restriction, lower bone density, muscle weakness and leg length differences are risk factors for stress fracture. Other time-honoured risk factors such as lower extremity alignment have not been shown to be causative even though anecdotal evidence indicates they are likely to play an important role in stress fracture pathogenesis.

  6. Effect of processing induced particle alignment on the fracture toughness and fracture behavior of multiphase dental ceramics.

    PubMed

    Gonzaga, Carla C; Okada, Cristina Yuri; Cesar, Paulo F; Miranda, Walter G; Yoshimura, Humberto N

    2009-11-01

    To investigate the processing induced particle alignment on fracture behavior of four multiphase dental ceramics (one porcelain, two glass-ceramics and a glass-infiltrated-alumina composite). Disks (Ø12 mm x 1.1mm-thick) and bars (3 mm x 4 mm x 20 mm) of each material were processed according to manufacturer instructions, machined and polished. Fracture toughness (K(Ic)) was determined by the indentation strength method using 3-point bending and biaxial flexure fixtures for the fracture of bars and disks, respectively. Microstructural and fractographic analyses were performed with scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The isotropic microstructure of the porcelain and the leucite-based glass-ceramic resulted in similar fracture toughness values regardless of the specimen geometry. On the other hand, materials containing second-phase particles with high aspect ratio (lithium disilicate glass-ceramic and glass-infiltrated-alumina composite) showed lower fracture toughness for disk specimens compared to bars. For the lithium disilicate glass-ceramic disks, it was demonstrated that the occurrence of particle alignment during the heat-pressing procedure resulted in an unfavorable pattern that created weak microstructural paths during the biaxial test. For the glass-infiltrated-alumina composite, the microstructural analysis showed that the large alumina platelets tended to align their large surfaces perpendicularly to the direction of particle deposition during slip casting of green preforms. The fracture toughness of dental ceramics with anisotropic microstructure should be determined by means of biaxial testing, since it results in lower values.

  7. [Balloon osteoplasty as reduction technique in the treatment of tibial head fractures].

    PubMed

    Freude, T; Kraus, T M; Sandmann, G H

    2015-10-01

    Tibial plateau fractures requiring surgery are severe injuries of the lower extremities. Depending on the fracture pattern, the age of the patient, the range of activity and the bone quality there is a broad variation in adequate treatment.  This article reports on an innovative treatment concept to address split depression fractures (Schatzker type II) and depression fractures (Schatzker type III) of the tibial head using the balloon osteoplasty technique for fracture reduction. Using the balloon technique achieves a precise and safe fracture reduction. This internal osteoplasty combines a minimal invasive percutaneous approach with a gently rise of the depressed area and the associated protection of the stratum regenerativum below the articular cartilage surface. This article lights up the surgical procedure using the balloon technique in tibia depression fractures. Using the balloon technique a precise and safe fracture reduction can be achieved. This internal osteoplasty combines a minimally invasive percutaneous approach with a gentle raising of the depressed area and the associated protection of the regenerative layer below the articular cartilage surface. Fracture reduction by use of a tamper results in high peak forces over small areas, whereas by using the balloon the forces are distributed over a larger area causing less secondary stress to the cartilage tissue. This less invasive approach might help to achieve a better long-term outcome with decreased secondary osteoarthritis due to the precise and chondroprotective reduction technique.

  8. Measuring the hydraulic fracture-induced deformation of reservoirs and adjacent rocks employing a deeply buried inclinometer array: GRI/DOE multi-site project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branagan, P.T.; Warpinski, N.R.; Engler, B.

    A vertical inclinometer array consisting of six biaxial tiltmeters was cemented behind pipe at depths between 4,273 and 4,628 ft. This wide-aperture array provided real-time tilt profiles corresponding to a series of seven hydraulic fractures being conducted in a nearby offset well in a fluvial sandstone reservoir. Array profiles for three KCl water fracs indicated that height growth was confined to the gross thickness of the reservoir despite extensive fracture length extension. Long-term monitoring of the array suggests that a substantial residual frac: width remained long after fracture closure occurred. For two 400-bbl linear gel minifracs, some height growth wasmore » observed but it was not extensive. Tilt amplitudes related to expanded frac widths were found to increase as would be expected with these thicker frac fluids. When cross-linker and proppant were included in the last fracture, tilt-derived heights were seen to grow rapidly extending into the bounding layers as the more complex fluids entered the fracture system. This inclinometer array was one of several independent, yet complimentary, fracture diagnostics tools that included crosswell multilevel microseismic arrays, FRACPRO{reg_sign} and a remote fracture intersection well. Their purpose was to provide integrated field-scale data regarding hydraulic fracture dynamics and geometry that would be used to construct accurate fracture mapping and diagnostic techniques.« less

  9. Comparison of cyclic and impact-based reference point indentation measurements in human cadaveric tibia.

    PubMed

    Karim, Lamya; Van Vliet, Miranda; Bouxsein, Mary L

    2018-01-01

    Although low bone mineral density (BMD) is strongly associated with increased fracture risk, up to 50% of those who suffer fractures are not detected as high-risk patients by BMD testing. Thus, new approaches may improve identification of those at increased risk for fracture by in vivo assessment of altered bone tissue properties, which may contribute to skeletal fragility. Recently developed reference point indentation (RPI) allows for assessment of cortical bone indentation properties in vivo using devices that apply cyclic loading or impact loading, but there is little information available to assist with interpretation of RPI measurements. Our goals were to use human cadaveric tibia to determine: 1) the associations between RPI variables, cortical bone density, and morphology; 2) the association between variables obtained from RPI systems using cyclic, slow loading versus a single impact load; and 3) age-related differences in RPI variables. We obtained 20 human tibia and femur pairs from female donors (53-97years), measured total hip BMD using dual-energy X-ray absorptiometry, assessed tibial cortical microarchitecture using high-resolution peripheral quantitative computed tomography (HR-pQCT), and assessed cortical bone indentation properties at the mid-tibial diaphysis using both the cyclic and impact-based RPI systems (Biodent and Osteoprobe, respectively, Active Life Scientific, Santa Barbara, CA). We found a few weak associations between RPI variables, BMD, and cortical geometry; a few weak associations between measurements obtained by the two RPI systems; and no age-related differences in RPI variables. Our findings indicate that in cadaveric tibia from older women RPI measurements are largely independent of age, femoral BMD, and cortical geometry. Furthermore, measurements from the cyclic and impact loading RPI devices are weakly related to each other, indicating that each device reflects different aspects of cortical bone indentation properties. Copyright © 2016. Published by Elsevier Inc.

  10. Complex proximal humerus fractures: Hertel's criteria reliability to predict head necrosis.

    PubMed

    Campochiaro, G; Rebuzzi, M; Baudi, P; Catani, F

    2015-09-01

    The risk of post-traumatic humeral head avascular necrosis (AVN), regardless of the treatment, has a high reported incidence. In 2004, Hertel et al. stated that the most relevant predictors of ischemia after intracapsular fracture treated with osteosynthesis are the calcar length, medial hinge integrity and some specific fracture types. Based on Hertel's model, the purpose of this study is to evaluate both its reliability and weaknesses in our series of 267 fractures, assessing how the anatomical configuration of fracture, the quality of reduction and its maintenance were predictive of osteonecrosis development, and so to suggest a treatment choice algorithm. A retrospective study, level of evidence IV, was conducted to duly assess the radiographic features of 267 fractures treated from 2004 to 2010 following Hertel's criteria treated with open reduction and internal fixation by angular stability plates and screws. The average age was 65.2 years. The average follow-up was 28.3 ± 17.0 months. The percentage of AVN, the quality and maintenance of reduction obtained during surgery were evaluated. The AVN incidence was 3.7 %. No significant correlation with gender, age and fracture type was found. At the last follow-up X-ray, only 30 % presented all Hertel's good predictors in the AVN group, 4.7 % in the non-AVN group (p < 0.05). About quality of reduction in the AVN group, it was poor in 50 %; while in the non-AVN group, it was poor in 3.4 % (p < 0.05). Four patients with AVN were symptomatic, and three needed a second surgery. Hertel's criteria are important in the surgical planning, but they are not sufficient: an accurate evaluation of the calcar area fracture in three planes is required. All fractures involving calcar area should be studied with CT.

  11. Sonic logging for detecting the excavation disturbed and fracture zones

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Chang, Y. F.; Liu, J. W.; Tseng, C. W.

    2017-12-01

    This study presents a new sonic logging method to detect the excavation disturbed zone (EDZ) and fracture zones in a tunnel. The EDZ is a weak rock zone where its properties and conditions have been changed by excavation, which results such as fracturing, stress redistribution and desaturation in this zone. Thus, the EDZ is considered as a physically less stable and could form a continuous and high-permeable pathway for groundwater flow. Since EDZ and fracture zone have the potential of affecting the safety of the underground openings and repository performance, many studies were conducted to characterize the EDZ and fracture zone by different methods, such as the rock mass displacements and strain measurements, seismic refraction survey, seismic tomography and hydraulic test, etc. In this study, we designed a new sonic logging method to explore the EDZ and fracture zone in a tunnel at eastern Taiwan. A high power and high frequency sonic system was set up which includes a two hydrophones pitch-catch technique with a common-offset immersed in water-filled uncased wells and producing a 20 KHz sound to scan the well rock. Four dominant sonic events were observed in the measurements, they are refracted P- and S-wave along the well rock, direct water wave and the reverberation in the well water. Thus the measured P- and S-wave velocities, the signal-to-noise ratio of the refraction and the amplitudes of reverberation along the well rock were used as indexes to determine the EDZ and fracture zone. Comparing these indexes with core samples shows that significant changes in the indexes are consistent with the EDZ and fracture zone. Thus, the EDZ and fracture zone can be detected by this new sonic method conclusively.

  12. The Effect of Vitamin A on Fracture Risk: A Meta-Analysis of Cohort Studies

    PubMed Central

    Zhang, Xinge; Zhang, Rui; Wang, Yueqiao; Yan, Hanyi; Wu, Yingru; Tan, Anran; Fu, Jialin; Shen, Ziqiong; Qin, Guiyu; Li, Rui; Chen, Guoxun

    2017-01-01

    This meta-analysis evaluated the influence of dietary intake and blood level of vitamin A (total vitamin A, retinol or β-carotene) on total and hip fracture risk. Cohort studies published before July 2017 were selected through English-language literature searches in several databases. Relative risk (RR) with corresponding 95% confidence interval (CI) was used to evaluate the risk. Heterogeneity was checked by Chi-square and I2 test. Sensitivity analysis and publication bias were also performed. For the association between retinol intake and total fracture risk, we performed subgroup analysis by sex, region, case ascertainment, education level, age at menopause and vitamin D intake. R software was used to complete all statistical analyses. A total of 319,077 participants over the age of 20 years were included. Higher dietary intake of retinol and total vitamin A may slightly decrease total fracture risk (RR with 95% CI: 0.95 (0.91, 1.00) and 0.94 (0.88, 0.99), respectively), and increase hip fracture risk (RR with 95% CI: 1.40 (1.02, 1.91) and 1.29 (1.06, 1.57), respectively). Lower blood level of retinol may slightly increase total fracture risk (RR with 95% CI: 1.11 (0.94, 1.30)) and hip fracture risk (RR with 95% CI: 1.27 (1.05, 1.53)). In addition, higher β-carotene intake was weakly associated with the increased risk of total fracture (RR with 95% CI: 1.07 (0.97, 1.17)). Our data suggest that vitamin A intake and level may differentially influence the risks of total and hip fractures. Clinical trials are warranted to confirm these results and assess the clinical applicability. PMID:28891953

  13. Analysis of the results of hydraulic-fracture stimulation of two crystalline bedrock boreholes, Grand Portage, Minnesota

    USGS Publications Warehouse

    Paillet, Dr. Fredrick L.; Olson, James D.

    1994-01-01

    Hydraulic fracture-stimulation procedures typical of those provided by contractors in the water-well industry were applied to two boreholes in basaltic and gabbroic rocks near Grand Portage, Minnesota.These boreholes were considered incapable of supplying adequate ground water for even a single household although geophysical logs showed both boreholes were intersected by many apparently permeable fractures. Tests made before and after stimulation indicated that the two boreholes would produce about 0.05 and 0.25 gallon per minute before stimulation, and about 1.5 and 1.2 gallons per minute after stimulation. These increases would be enough to obtain adequate domestic water supplies from the two boreholes but would not furnish enough water for more than a single household from either borehole. Profiles of high-resolution flow made during pumping after stimulation indicated that the stimulation enhanced previously small inflows or stimulated new inflow from seven fractures or fracture zones in one borehole and from six fractures or fracture zones in the other.Geophysical logs obtained after stimulation showed no specific changes in these 13 fractures that could be related to stimulation other than the increases in flow indicated by the flowmeter logs. The results indicate that the stimulation has increased inflow to the two boreholes by improving the connectivity of favorably orientated fractures with larger scale flow zones in the surrounding rocks. Three of four possible diagnostics related to measured pressure and flow during the stimulation treatments were weakly correlated with the increases in production associated with each treatment interval. These correlations are not statistically significant on the basis of the limited sample of 16 treatment intervals in two boreholes, but the results indicate that significant correlations might be established from a much larger data set.

  14. Seismic waves in rocks with fluids and fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, J.G.

    2007-05-14

    Seismic wave propagation through the earth is often stronglyaffected by the presence of fractures. When these fractures are filledwith fluids (oil, gas, water, CO2, etc.), the type and state of the fluid(liquid or gas) can make a large difference in the response of theseismic waves. This paper summarizes recent work on methods ofdeconstructing the effects of fractures, and any fluids within thesefractures, on seismic wave propagation as observed in reflection seismicdata. One method explored here is Thomsen's weak anisotropy approximationfor wave moveout (since fractures often induce elastic anisotropy due tononuniform crack-orientation statistics). Another method makes use ofsome very convenient fracturemore » parameters introduced previously thatpermit a relatively simple deconstruction of the elastic and wavepropagation behavior in terms of a small number of fracture parameters(whenever this is appropriate, as is certainly the case for small crackdensities). Then, the quantitative effects of fluids on thesecrack-influence parameters are shown to be directly related to Skempton scoefficient B of undrained poroelasticity (where B typically ranges from0 to 1). In particular, the rigorous result obtained for the low crackdensity limit is that the crack-influence parameters are multiplied by afactor (1 ? B) for undrained systems. It is also shown how fractureanisotropy affects Rayleigh wave speed, and how measured Rayleigh wavespeeds can be used to infer shear wave speed of the fractured medium.Higher crack density results are also presented by incorporating recentsimulation data on such cracked systems.« less

  15. A potential-of-mean-force approach for fracture mechanics of heterogeneous materials using the lattice element method

    NASA Astrophysics Data System (ADS)

    Laubie, Hadrien; Radjaï, Farhang; Pellenq, Roland; Ulm, Franz-Josef

    2017-08-01

    Fracture of heterogeneous materials has emerged as a critical issue in many engineering applications, ranging from subsurface energy to biomedical applications, and requires a rational framework that allows linking local fracture processes with global fracture descriptors such as the energy release rate, fracture energy and fracture toughness. This is achieved here by means of a local and a global potential-of-mean-force (PMF) inspired Lattice Element Method (LEM) approach. In the local approach, fracture-strength criteria derived from the effective interaction potentials between mass points are shown to exhibit a scaling commensurable with the energy dissipation of fracture processes. In the global PMF-approach, fracture is considered as a sequence of equilibrium states associated with minimum potential energy states analogous to Griffith's approach. It is found that this global approach has much in common with a Grand Canonical Monte Carlo (GCMC) approach, in which mass points are randomly removed following a maximum dissipation criterion until the energy release rate reaches the fracture energy. The duality of the two approaches is illustrated through the application of the PMF-inspired LEM for fracture propagation in a homogeneous linear elastic solid using different means of evaluating the energy release rate. Finally, by application of the method to a textbook example of fracture propagation in a heterogeneous material, it is shown that the proposed PMF-inspired LEM approach captures some well-known toughening mechanisms related to fracture energy contrast, elasticity contrast and crack deflection in the considered two-phase layered composite material.

  16. Extrapolating surface structures to depth in transpressional systems: the role of rheology and convergence angle deduced from analogue experiments

    NASA Astrophysics Data System (ADS)

    Hsieh, Shang Yu; Neubauer, Franz; Cloetingh, Sierd; Willingshofer, Ernst; Sokoutis, Dimitrios

    2014-05-01

    The internal structure of major strike-slip faults is still poorly understood, particularly how the deep structure could be inferred from its surface expression (Molnar and Dayem, 2011 and references therein). Previous analogue experiments suggest that the convergence angle is the most influential factor (Leever et al., 2011). Further analogue modeling may allow a better understanding how to extrapolate surface structures to the subsurface geometry of strike-slip faults. Various scenarios of analogue experiments were designed to represent strike-slip faults in nature from different geological settings. As such key parameters, which are investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The latter aimed to simulate the effect of a hot metamorphic core complex or an alignment of uprising plutons bordered by a transtensional/transpressional strike-slip fault. The experiments are aimed to explain first order structures along major transcurrent strike-slip faults such as the Altyn, Kunlun, San Andrea and Greendale (Darfield earthquake 2010) faults. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressive system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences, suggesting that the correlation of structures across a weak layer has to be supported by geophysical data, which help constraining the geometry of the deep part. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry. References Leever, K. A., Gabrielsen, R. H., Sokoutis, D., Willingshofer, E., 2011. The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high-resolution digital image analysis. Tectonics, 30(2), TC2013. Molnar, P., Dayem, K.E., 2010. Major intracontinental strike-slip faults and contrasts in lithospheric strength. Geosphere, 6, 444-467.

  17. Fracture of a Brittle-Particle Ductile Matrix Composite with Applications to a Coating System

    NASA Astrophysics Data System (ADS)

    Bianculli, Steven J.

    In material systems consisting of hard second phase particles in a ductile matrix, failure initiating from cracking of the second phase particles is an important failure mechanism. This dissertation applies the principles of fracture mechanics to consider this problem, first from the standpoint of fracture of the particles, and then the onset of crack propagation from fractured particles. This research was inspired by the observation of the failure mechanism of a commercial zinc-based anti-corrosion coating and the analysis was initially approached as coatings problem. As the work progressed it became evident that failure mechanism was relevant to a broad range of composite material systems and research approach was generalized to consider failure of a system consisting of ellipsoidal second phase particles in a ductile matrix. The starting point for the analysis is the classical Eshelby Problem, which considered stress transfer from the matrix to an ellipsoidal inclusion. The particle fracture problem is approached by considering cracks within particles and how they are affected by the particle/matrix interface, the difference in properties between the particle and matrix, and by particle shape. These effects are mapped out for a wide range of material combinations. The trends developed show that, although the particle fracture problem is very complex, the potential for fracture among a range of particle shapes can, for certain ranges in particle shape, be considered easily on the basis of the Eshelby Stress alone. Additionally, the evaluation of cracks near the curved particle/matrix interface adds to the existing body of work of cracks approaching bi-material interfaces in layered material systems. The onset of crack propagation from fractured particles is then considered as a function of particle shape and mismatch in material properties between the particle and matrix. This behavior is mapped out for a wide range of material combinations. The final section of this dissertation qualitatively considers an approach to determine critical particle sizes, below which crack propagation will not occur for a coating system that exhibited stable cracks in an interfacial layer between the coating and substrate.

  18. Relation of lineaments to sulfide deposits: Bald Eagle Mountain, Centre County, Pennsylvania

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Krohn, M. D.; Gold, D. P.

    1975-01-01

    The author has identified the following significant results. Discrete areas of finely-fractured and brecciated sandstone float are present along the crest of Bald Mountain and are commonly sites of sulfide mineralization, as evidenced by the presence of barite and limonite gossans. The frequency distributions of the brecciated float as the negative binomial distribution supports the interpretation of a separate population of intensely fractured material. Such zones of concentrated breccia float have an average width of one kilometer with a range from 0.4 to 1.6 kilometers and were observed in a quarry face to have subvertical dips. Direct spatial correlation of the Landsat-derived lineaments to the fractured areas on the ridge is low; however, the mineralized and fracture zones are commonly assymetrical to the lineament positions. Such a systematic dislocation might result from an inherent bias in the float population or could be the product of the relative erosional resistance of the silicified material in the mineralized areas in relation to the erosionally weak material at the stream gaps.

  19. Liquid impact and fracture of free-standing CVD diamond

    NASA Astrophysics Data System (ADS)

    Kennedy, Claire F.; Telling, Robert H.; Field, John E.

    1999-07-01

    The Cavendish Laboratory has developed extensive facilities for studies of liquid and solid particle erosion. This paper describes the high-speed liquid impact erosion of thin CVD diamond discs and the variation with grain sizes of the absolute damage threshold velocity (ADTV), viz., the threshold below which the specimen shows no damage. All specimens fail by rear surface cracking and there is shown to be a shallow dependence of rear surface ADTV on grain size. Fracture propagation in CVD diamond has also been monitored using a specially-designed double-torsion apparatus and data for K1C are presented. Tentatively, the results suggest that finer-grained CVD diamond exhibits a higher fracture toughness, although the differences are slight even over a fourfold variation in the mean grain size. No preference for intergranular fracture was observed and one may conclude from this that the grain boundaries themselves do not seriously weaken the material. The large pre-existing flaws, both within and between grains, whose size varies the grain size are believed to be the dominant source of weakness.

  20. Aspects of internal fixation of fractures in porotic bone. Principles, technologies and procedures using locked plate screws.

    PubMed

    Perren, S M; Linke, B; Schwieger, K; Wahl, D; Schneider, E

    2005-01-01

    Fractures of the bones of elderly people occur more often and have a more important effect because of a generally diminished ability to coordinate stance and walking. These fractures occur at a lower level of load because of lack of strength of the porotic bone. Prompt recovery of skeletal support function is essential to avoid respiratory and circulatory complications in the elderly. To prevent elderly people from the risks of being bedridden, demanding internal fixation of fractures is required. The weak porotic bone and the high level of uncontrolled loading after internal fixation pose complex problems. A combination of several technical elements of design, application and aftercare in internal fixation are proposed. Internal fixators with locked screws improve the biology and the mechanics of internal fixation. When such fixators are used as elevated splints they may stimulate early callus formation because of their flexibility, the limit of flexibility being set by the demands of resistance and function of the limb. Our own studies of triangulation of locked screws have demonstrated their beneficial effects and unexpected limitations.

  1. Evidence-based treatment for ankle injuries: a clinical perspective

    PubMed Central

    Lin, Chung-Wei Christine; Hiller, Claire E; de Bie, Rob A

    2010-01-01

    The most common ankle injuries are ankle sprain and ankle fracture. This review discusses treatments for ankle sprain (including the management of the acute sprain and chronic instability) and ankle fracture, using evidence from recent systematic reviews and randomized controlled trials. After ankle sprain, there is evidence for the use of functional support and non-steroidal anti-inflammatory drugs. There is weak evidence suggesting that the use of manual therapy may lead to positive short-term effects. Electro-physical agents do not appear to enhance outcomes and are not recommended. Exercise may reduce the occurrence of recurrent ankle sprains and may be effective in managing chronic ankle instability. After surgical fixation for ankle fracture, an early introduction of activity, administered via early weight-bearing or exercise during the immobilization period, may lead to better outcomes. However, the use of a brace or orthosis to enable exercise during the immobilization period may also lead to a higher rate of adverse events, suggesting that this treatment regimen needs to be applied judiciously. After the immobilization period, the focus of treatment for ankle fracture should be on a progressive exercise program. PMID:21655420

  2. Impact of the geological structures on the groundwater potential using geophysical techniques in West Bani Mazar area, El Minia - Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Mahmoud, Hussein Hosni; Kotb, Adel Diab Mohammed

    2017-06-01

    Establishment of the new agricultural projects in west Bani Mazar area, El Minia, Egypt needs a good knowledge about groundwater. Groundwater serves as the unique source of water supplies in the study area. Vertical Electrical Sounding technique is a convenient tool for groundwater exploration. This technique was utilized to illustrate the geoelectric succession, vertical and spatial extensions of the encountered layers, depth to water bearing layers and the structures affecting these layers. Profiling technique was carried out along a grid pattern using different half current electrode spacings (150 m, 300 m and 500 m) to clarify changes in resistivity values throughout the study area at different depths. Geoelectric layers B1 and B2 of the saturated zone are suitable for groundwater extraction in the study area. The resistivity values of the geoelectric layer B1 decrease towards the West direction, they decrease from 23.0 Ωm to 16.0 Ωm; and its thicknesses increase towards the SE direction from 12.0 m to 18.0 m. Whereas, the resistivity values of the geoelectric layer B2 decrease towards the NW direction from 40.0 Ωm to 26.5 Ωm; and its thicknesses vary from 34.0 m to 40.0 m. The depths to the upper surface of the water bearing layer B1 increase towards the NW direction from 44.0 m to 89.4 m. Based on the results obtained from the Vertical Electrical Soundings, four two-dimensional resistivity imaging profiles were measured at the selected sites. These 2-D resistivity profiles aim to determine depths to the water bearing layers, their thicknesses and the shallow structure. The inverted models of these profiles matched with the geoelectric sequence at these sites. In addition, a normal fault is detected at the northwestern part of the study area. According to the results obtained from this study it is clear that the groundwater in the area under consideration is occurred in the fractured limestone layers that belong to Eocene Age. Resistivity values of the water bearing layers increase with depth as a result of decreasing fracture density; and these values decreased towards the northwestern direction due to their proximity from the fault zone. The groundwater potential of these layers depends mainly on the lithologic composition and the geological structures affecting these layers. The secondary porosity of these limestone layers depends mainly on the degree of fracturing and fissuring. The proper sites to drill new productive wells were recommended, and the obtained data from drilling new well in the southeastern part of the study area coincide with the interpreted data of the different geophysical techniques.

  3. Effects of aperture variability and wettability on immiscible displacement in fractures

    NASA Astrophysics Data System (ADS)

    Yang, Zhibing; Méheust, Yves; Neuweiler, Insa

    2017-04-01

    Fluid-fluid displacement in porous and fractured media is an important process. Understanding and controlling this process is key to many practical applications, such as hydrocarbon recovery, geological storage of CO2, groundwater remediation, etc. Here, we numerically study fluid-fluid displacement in rough-walled fractures. We focus on the combined effect of wettability and fracture surface topography on displacement patterns and interface growth. We develop a novel numerical model to simulate dynamic fluid invasion under the influence of capillary and viscous forces. The capillary force is calculated using the two principal curvatures (aperture-induced curvature and in-plane curvature) at the fluid-fluid interface, and the viscous force is taken into account by solving the fluid pressure distribution. The aperture field of a fracture is represented by a spatially correlated random field, which is described by a power spectrum for the fracture wall topography and a cutoff wave-length. We numerically produce displacement patterns ranging from stable displacement, capillary fingering, and viscous fingering, as well as the transitions between them. We show that both reducing the aperture variability and increasing the contact angle (from drainage to weak imbibition) stabilize the displacement due to the influence of the in-plane curvature, an effect analogous to that of the cooperative pore filling in porous media. Implications of these results will be discussed.

  4. Linear Elastic and Cohesive Fracture Analysis to Model Hydraulic Fracture in Brittle and Ductile Rocks

    NASA Astrophysics Data System (ADS)

    Yao, Yao

    2012-05-01

    Hydraulic fracturing technology is being widely used within the oil and gas industry for both waste injection and unconventional gas production wells. It is essential to predict the behavior of hydraulic fractures accurately based on understanding the fundamental mechanism(s). The prevailing approach for hydraulic fracture modeling continues to rely on computational methods based on Linear Elastic Fracture Mechanics (LEFM). Generally, these methods give reasonable predictions for hard rock hydraulic fracture processes, but still have inherent limitations, especially when fluid injection is performed in soft rock/sand or other non-conventional formations. These methods typically give very conservative predictions on fracture geometry and inaccurate estimation of required fracture pressure. One of the reasons the LEFM-based methods fail to give accurate predictions for these materials is that the fracture process zone ahead of the crack tip and softening effect should not be neglected in ductile rock fracture analysis. A 3D pore pressure cohesive zone model has been developed and applied to predict hydraulic fracturing under fluid injection. The cohesive zone method is a numerical tool developed to model crack initiation and growth in quasi-brittle materials considering the material softening effect. The pore pressure cohesive zone model has been applied to investigate the hydraulic fracture with different rock properties. The hydraulic fracture predictions of a three-layer water injection case have been compared using the pore pressure cohesive zone model with revised parameters, LEFM-based pseudo 3D model, a Perkins-Kern-Nordgren (PKN) model, and an analytical solution. Based on the size of the fracture process zone and its effect on crack extension in ductile rock, the fundamental mechanical difference of LEFM and cohesive fracture mechanics-based methods is discussed. An effective fracture toughness method has been proposed to consider the fracture process zone effect on the ductile rock fracture.

  5. Physical fundamentals of criterial estimation of nitriding technology for parts of friction units

    NASA Astrophysics Data System (ADS)

    Kuksenova, L. I.; Gerasimov, S. A.; Lapteva, V. G.; Alekseeva, M. S.

    2013-03-01

    Characteristics of the structure and properties of surface layers of nitrided structural steels and alloys, which affect the level of surface fracture under friction, are studied. A generalized structural parameter for optimizing the nitriding process and a rapid method for estimating the quality of the surface layer of nitrided parts of friction units are developed.

  6. Evidences of Neotectonic Movements Recorded in Fluvial and Lacustrine Deposits of the Niger River in Bamako, Mali

    NASA Astrophysics Data System (ADS)

    Dembele, N. D. J.

    2015-12-01

    Two alluvial profiles showing evidences of tectonic movements were discovered along the right bank of the Niger River at Bamako. The first profile of 25 meters thick is composed of a laminated silt layer of about 22 meters, of a gray sand layer of 25 cm and a pebble layer of 2 meters. A layer of 80 cm wide, an intrusive body, crosscuts the silt layers. The Grain size and heavy minerals analysis showed that this vertical layer is different in structure, texture and composition from the other layers. The second profile of about 20 meters is composed of interbedded fluvial gravel and sand deposits. The tectonic evidences found on those layers are of three types: faults and fractures, folds and the intrusion between silts deposits of the sand layers previously presented. The faults and fractures are located mainly on the fluvial gravel and sand deposits, whereas the silts deposits are folded and show some microfaults. The intrusion of a sand layer between the silt layer is a geological process that is not yet well understood but it is believed that this phenomena occurs during earthquakes as the sand layer during such event behave as a liquid. The discovery of such layer testifies that earthquakes used to happen in the area. As they concern only the alluvial deposits, their age should be no more than the Quaternary period. The presence of such tectonic evidences is surprising as Bamako like all the Republic of Mali is located on the west African craton that is supposed to be tectonically stable and their occurrence on Quaternary unconsolidated sediments shows that tectonic movements used to occur on that area during the last 2 millions years or may be less whereas people continue to build houses and other social infrastructures on them without any caution.

  7. [INVITED] Laser gas assisted treatment of Ti-alloy: Analysis of surface characteristics

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-04-01

    Laser gas assisted treatment of Ti6Al4V alloy surface is carried out and nitrogen/oxygen mixture with partial pressure of PO2/PN2=1/3 is introduced during the surface treatment process. Analytical tools are used to characterize the laser treated surfaces. The fracture toughness at the surface and the residual stress in the surface region of the laser treated layer are measured. Scratch tests are carried out to determine the friction coefficient of the treated surface. It is found that closely spaced regular laser scanning tracks generates a self-annealing effect in the laser treated layer while lowering the stress levels in the treated region. Introducing high pressure gas mixture impingement at the surface results in formation of oxide and nitride species including, TiO, TiO2, TiN and TiOxNy in the surface region. A dense layer consisting of fine size grains are formed in the surface region of the laser treated layer, which enhances the microhardness at the surface. The fracture toughness reduces after the laser treatment process because of the microhardness enhancement at the surface. The residual stress formed is comprehensive, which is in the order of -350 MPa.

  8. Self-lubricating layer consist of polytetrafluoroethylene micropowders and fluorocarbon acrylate resin formation on surface of geotextile

    NASA Astrophysics Data System (ADS)

    Long, Xiaoyun; He, Lifen; Zhang, Yan; Ge, Mingqiao

    2018-04-01

    In this study, the self-lubricating layer consist of polytetrafluoroethylene (PTFE) micropowders and two types fluorocarbon acrylate resin were formed on the surface of geotextile, to improves the evenness and decreases the frictional angle value of geotextile surface. The surface and cross section morphology of geotextile were examined by scanning electron microscopy (SEM). It was determined that composite resin emulsion was evenly coated on the surface of geotextile, to form a even and complete self-lubricating layer, and it was strongly combined with the geotextile due to formation of the transition layer. The tensile fracture stress and strain values of samples were evaluated by mechanical properties measurement, the tensile fracture stress of the untreated and treated sample was approximately 5329 kN/m and 5452 kN/m while the elongation at the yield of them was approximately 85% to 83.9%, respectively. In addition, the frictional angle values of municipal solid waste (MSW)/geotextile interface was measured by the tilt table test, the values of untreated sample was 28.1° and 24.2° under the dry and moist condition, the values of treated sample was 16.2° and 9.8°, respectively.

  9. Surface treatment to form a dispersed Y2O3 layer on Zircaloy-4 tubes

    NASA Astrophysics Data System (ADS)

    Jung, Yang-Il; Kim, Hyun-Gil; Guim, Hwan-Uk; Lim, Yoon-Soo; Park, Jung-Hwan; Park, Dong-Jun; Yang, Jae-Ho

    2018-01-01

    Zircaloy-4 is a traditional zirconium-based alloy developed for application in nuclear fuel cladding tubes. The surfaces of Zircaloy-4 tubes were treated using a laser beam to increase their mechanical strength. Laser beam scanning of a tube coated with yttrium oxide (Y2O3) resulted in the formation of a dispersed oxide layer in the tube's surface region. Y2O3 particles penetrated the Zircaloy-4 during the laser treatment and were distributed uniformly in the surface region. The thickness of the dispersed oxide layer varied from 50 to 140 μm depending on the laser beam trajectory. The laser treatment also modified the texture of the tube. The preferred basal orientation along the normal to the tube surface disappeared, and a random structure appeared after laser processing. The most obvious result was an increase in the mechanical strength. The tensile strength of Zircaloy-4 increased by 10-20% with the formation of the dispersed oxide layer. The compressive yield stress also increased, by more than 15%. Brittle fracture was observed in the surface-treated samples during tensile and compressive deformation at room temperature; however, the fracture behavior was changed in ductile at elevated temperatures.

  10. Metallurgical Aspects of Layered Cracks in Hot-Rolled Plates

    NASA Astrophysics Data System (ADS)

    Farber, V. M.; Arabey, A. B.; Khotinov, V. A.; Morozova, A. N.; Karabanalov, M. S.

    2018-03-01

    The nature of separations arising in hot-rolled plates from high-toughness steels of the new generation like 05G2B and of cleavages arising in traditional building steels of type 09G2S is studied. Like and unlike features of separations and cleavages are determined. The concept of "critical stress σb^{cr} " describing the strength of the interlayer boundaries responsible for formation of layered cracks is used to analyze various factors responsible for the susceptibility of rolled plates to layered fracture.

  11. Fracture behavior of hybrid composite laminates

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.

    1983-01-01

    The tensile fracture behavior of 15 center-notched hybrid laminates was studied. Three basic laminate groups were tested: (1) a baseline group with graphite/epoxy plies, (2) a group with the same stacking sequence but where the zero-deg plies were one or two plies of S-glass or Kevlar, and (3) a group with graphite plies but where the zero-deg plies were sandwiched between layers of perforated Mylar. Specimens were loaded linearly with time; load, far field strain, and crack opening displacement (COD) were monitored. The loading was stopped periodically and the notched region was radiographed to reveal the extent and type of damage (failure progression). Results of the tests showed that the hybrid laminates had higher fracture toughnesses than comparable all-graphite laminates. The higher fracture toughness was due primarily to the larger damage region at the ends of the slit; delamination and splitting lowered the stress concentration in the primary load-carrying plies. A linear elastic fracture analysis, which ignored delamination and splitting, underestimated the fracture toughness. For almost all of the laminates, the tests showed that the fracture toughness increased with crack length. The size of the damage region at the ends of the slit and COD measurements also increased with crack length.

  12. Acoustic emission and fatigue damage induced in plasma-sprayed hydroxyapatite coating layers.

    PubMed

    Laonapakul, Teerawat; Otsuka, Yuichi; Nimkerdphol, Achariya Rakngarm; Mutoh, Yoshiharu

    2012-04-01

    In order to improve the adhesive strength of hydroxyapatite (HAp) coatings, grit blasting with Al(2)O(3) powder and then wet blasting with HAp/Ti mixed powders was carried out on a commercially pure Ti (cp-Ti) substrate. Subsequently, an HAp/Ti bond coat layer and HAp top coat layer were deposited by plasma spraying. Fatigue tests of the HAp-coated specimens were carried out under four-point bending. Acoustic emission (AE) signals during the entire fatigue test were monitored to investigate the fatigue cracking behavior of the HAp-coated specimens. The HAp-coated specimens could survive up to 10(7) cycles without spallation of the HAp coating layers at the stress amplitude of 120 MPa. The HAp-coated specimens without HAp/Ti bond coat layer showed shorter fatigue life and easy crack nucleation compared to the HAp-coated specimens with HAp/Ti bond coat layer. The delamination and spallation of the HAp top coat with HAp/Ti bond coat on cp-Ti was not observed until the crack propagated into the cp-Ti during the final fracture stage of the fatigue cycle. Therefore, the HAp/Ti bond coat layer was found to greatly improve the fatigue damage resistance of the HAp coating layer. Three stages of the fatigue failure behavior of the HAp top coat with HAp/Ti bond coat on a cp-Ti substrate can be clearly estimated by the AE monitoring technique. These stages are cracks nucleating and propagating in the coating layer, cracks propagating in the substrate, and cracks propagating unstably to final fracture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. How rheological heterogeneities control the internal deformation of salt giants.

    NASA Astrophysics Data System (ADS)

    Raith, Alexander; Urai, Janos L.

    2017-04-01

    Salt giants, like the North European Zechstein, consist of several evaporation cycles of different evaporites with highly diverse rheologies. Common Potassium and Magnesium (K-Mg) salt are typically 10 to 100 times less viscous as halite while stringers consisting of anhydrite and carbonates are about 100 times more viscous. In most parts, these mechanically layered bodies experienced complex deformation, resulting in large scale internal folding with ruptured stringers and shear zones, as observed in seismic images. Furthermore, locally varying evaporation history produced different mechanical stratigraphies across the salt basin. Although most of these extraordinary soft or strong layers are rather thin (<100 m) compared to the dominating halite, we propose they have first order control on the deformation and the resulting structures inside salt bodies. Numerical models representing different mechanical stratigraphies of hard and soft layers inside a salt body were performed to analyze their influence on the internal deformation during lateral salt flow. The results show that a continuous or fractured stringer is folded and thrusted during salt contraction while soft K-Mg salt layers act as internal décollement. Depending on the viscosity of the fractured stringers, the shortening is mostly compensated by either folding or thrusting. This folding has large control over the internal structure of the salt body imposing a dominating wavelength to the whole structure during early deformation. Beside strong stringers, K-Mg salt layers also influence the deformation and salt flow inside the salt pillow. Strain is accumulated in the soft layers leading to stronger salt flow near these layers and extensive deformation inside of them. Thus, if a soft layer is present near a stringer, it will experience more deformation. Additionally, the strong strain concentration in the soft layers could decouple parts of the salt body from the main deformation.

  14. High-T(sub c) Edge-geometry SNS Weak Links on Silicon-on-sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Hunt, B.; Foote, M.; Pike, W.; Barner, J.; Vasquez, R.

    1994-01-01

    High-quality superconductor/normal-metal/superconductor(SNS) edge-geometry weak links have been produced on silicon-on-sapphire (SOS) substrates using a new SrTiO(sub 3)/'seed layer'/cubic-zirconia (YS2) buffer system.

  15. Fundamental Mechanisms of Tensile Fracture in Aluminum Sheet Unidirectionally Reinforced with Boron Filament. Ph.D. Thesis - Virginia Polytechnic Inst.

    NASA Technical Reports Server (NTRS)

    Herring, H. W.

    1971-01-01

    Results are presented from an experimental research effort to gain a more complete understanding of the physics of tensile fracture in unidirectionally reinforced B-Al composite sheet. By varying the degree of filament degradation resulting from fabrication, composite specimens were produced which failed in tension by the cumulative mode, the noncumulative mode, or by any desired combination of the two modes. Radiographic and acoustic emission techniques were combined to identify and physically describe a previously unrecognized fundamental fracture mechanism which was responsible for the noncumulative mode. The tensile strength of the composite was found to be severely limited by the noncumulative mechanism which involved the initiation and sustenance of a chain reaction of filament fractures at a relatively low stress level followed by ductile fracture of the matrix. The minimum average filament stress required for initiation of the fracture mechanism was shown to be approximately 170 ksi, and appeared to be independent of filament diameter, number of filament layers, and the identity of the matrix alloy.

  16. Experimental studies of rock fracture behavior related to hydraulic fracture

    NASA Astrophysics Data System (ADS)

    Ma, Zifeng

    The objective of this experimental investigation stems from the uncontrollable of the hydraulic fracture shape in the oil and gas production field. A small-scale laboratory investigation of crack propagation in sandstone was first performed with the objective to simulate the field fracture growth. Test results showed that the fracture resistance increased with crack extension, assuming that there was an interaction between crack faces (bridging, interlocking, and friction). An acoustic emission test was conducted to examine the existence of the interaction by locating AE events and analyzing waveform. Furthermore, the effects of confining stress, loading rate, stress field, and strength heterogeneous on the tortuosity of the fracture surface were experimentally investigated in the study. Finally, a test was designed and conducted to investigate the crack propagation in a stratified media with permeability contrast. Crack was observed to arrested in an interface. The phenomenon of delamination along an interface between layers with permeability contrast was observed. The delamination was proposed to be the cause of crack arrest and crack jump in the saturated stratified materials under confinement test.

  17. Multi-Region Boundary Element Analysis for Coupled Thermal-Fracturing Processes in Geomaterials

    NASA Astrophysics Data System (ADS)

    Shen, Baotang; Kim, Hyung-Mok; Park, Eui-Seob; Kim, Taek-Kon; Wuttke, Manfred W.; Rinne, Mikael; Backers, Tobias; Stephansson, Ove

    2013-01-01

    This paper describes a boundary element code development on coupled thermal-mechanical processes of rock fracture propagation. The code development was based on the fracture mechanics code FRACOD that has previously been developed by Shen and Stephansson (Int J Eng Fracture Mech 47:177-189, 1993) and FRACOM (A fracture propagation code—FRACOD, User's manual. FRACOM Ltd. 2002) and simulates complex fracture propagation in rocks governed by both tensile and shear mechanisms. For the coupled thermal-fracturing analysis, an indirect boundary element method, namely the fictitious heat source method, was implemented in FRACOD to simulate the temperature change and thermal stresses in rocks. This indirect method is particularly suitable for the thermal-fracturing coupling in FRACOD where the displacement discontinuity method is used for mechanical simulation. The coupled code was also extended to simulate multiple region problems in which rock mass, concrete linings and insulation layers with different thermal and mechanical properties were present. Both verification and application cases were presented where a point heat source in a 2D infinite medium and a pilot LNG underground cavern were solved and studied using the coupled code. Good agreement was observed between the simulation results, analytical solutions and in situ measurements which validates an applicability of the developed coupled code.

  18. A New Physics-Based Modeling of Multiple Non-Planar Hydraulic Fractures Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jing; Huang, Hai; Deo, Milind

    Because of the low permeability in shale plays, closely spaced hydraulic fractures and multilateral horizontal wells are generally required to improve production. Therefore, understanding the potential fracture interaction and stress evolution is critical in optimizing fracture/well design and completion strategy in multi-stage horizontal wells. In this paper, a novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple non-planar fractures propagation. The numerical model from Discrete Element Method (DEM) is used to simulate the mechanics of fracture propagations and interactions, while a conjugate irregular lattice network is generated to represent fluid flowmore » in both fractures and formation. The fluid flow in the formation is controlled by Darcy’s law, but within fractures it is simulated by using cubic law for laminar flow through parallel plates. Initiation, growth and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. We investigate the fracture propagation path in both homogeneous and heterogeneous reservoirs using the simulator developed. Stress shadow caused by the transverse fracture will change the orientation of principal stress in the fracture neighborhood, which may inhibit or alter the growth direction of nearby fracture clusters. However, the initial in-situ stress anisotropy often helps overcome this phenomenon. Under large in-situ stress anisotropy, the hydraulic fractures are more likely to propagate in a direction that is perpendicular to the minimum horizontal stress. Under small in-situ stress anisotropy, there is a greater chance for fractures from nearby clusters to merge with each other. Then, we examine the differences in fracture geometry caused by fracturing in cemented or uncemented wellbore. Moreover, the impact of intrinsic reservoir heterogeneity caused by the rock fabric and mineralogy on fracture nucleation and propagation paths is examined through a three-layered reservoir. Finally, we apply the method to a realistic heterogeneous dataset.« less

  19. Hydraulic fracturing in cells and tissues: fracking meets cell biology.

    PubMed

    Arroyo, Marino; Trepat, Xavier

    2017-02-01

    The animal body is largely made of water. A small fraction of body water is freely flowing in blood and lymph, but most of it is trapped in hydrogels such as the extracellular matrix (ECM), the cytoskeleton, and chromatin. Besides providing a medium for biological molecules to diffuse, water trapped in hydrogels plays a fundamental mechanical role. This role is well captured by the theory of poroelasticity, which explains how any deformation applied to a hydrogel causes pressure gradients and water flows, much like compressing a sponge squeezes water out of it. Here we review recent evidence that poroelastic pressures and flows can fracture essential biological barriers such as the nuclear envelope, the cellular cortex, and epithelial layers. This type of fracture is known in engineering literature as hydraulic fracturing or 'fracking'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. High resolution thickness measurements of ultrathin Si:P monolayers using weak localization

    NASA Astrophysics Data System (ADS)

    Hagmann, Joseph A.; Wang, Xiqiao; Namboodiri, Pradeep; Wyrick, Jonathan; Murray, Roy; Stewart, M. D.; Silver, Richard M.; Richter, Curt A.

    2018-01-01

    The key building blocks for the fabrication of devices based on the deterministic placement of dopants in silicon using scanning tunneling microscopy (STM) hydrogen lithography are the formation of well-defined dopant delta-layers and the overgrowth of high quality crystalline Si. To develop these capabilities, it is of critical importance to quantify dopant movement in the sub-nanometer regime. To this end, we investigate Si:P delta-layer samples produced by fully exposing a Si surface to PH3 prior to Si encapsulation with dramatically different levels of dopant confinement. We examine the effect of delta layer confinement on the weak localization signal in parallel and perpendicular magnetic fields and extract the delta-layer thickness from fits to the Hikami-Larkin-Nagaoka equation. We find good agreement with secondary ion mass spectroscopy measurements and demonstrate the applicability of this method in the sub-nanometer thickness regime. Our analysis serves as detailed instruction for the determination of the conducting layer thickness of a Si:P delta-layer by means of a high-throughput, nondestructive electrical transport measurement.

Top